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Abstract

Approaches to achieve three dimensional (3D) reconstruction from 2D images can be

grouped into two categories: computer-vision-based reconstruction and tomographic

reconstruction. By exploring both the differences and connections between these two

types of reconstruction, the thesis attempts to develop a new technique that can be

applied to 3D reconstruction of biological structures. Specific attention is given to the

reconstruction of the cell cytoskeleton from electron microscope images.

The thesis is composed of two parts. The first part studies computer-vision-based

reconstruction methods that extract 3D information from geometric relationship among

images. First, a multiple-feature-based stereo reconstruction algorithm that recovers the

3D structure of an object from two images is presented. A volumetric reconstruction

method is then developed by extending the algorithm to multiple images. The method

integrates a sequence of 3D reconstruction from different stereo pairs. It achieves a

globally optimized reconstruction by evaluating certainty values of each stereo

reconstruction. This method is tuned and applied to 3D reconstruction of the cell

cytoskeleton. Feasibility, reliability and flexibility of the method are explored.
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The second part of the thesis focuses on a special tomographic reconstruction, discrete

tomography, where the object to be reconstructed is composed of a discrete set of

materials each with uniform values. A Bayesian labeling process is proposed as a

framework for discrete tomography. The process uses an expectation-maximization (EM)

algorithm with which the reconstruction is obtained efficiently. Results demonstrate that

the proposed algorithm achieves high reconstruction quality even with a small number of

projections. An interesting relationship between discrete tomography and conventional

tomography is also derived, showing that discrete tomography is a more generalized form

of tomography and conventional tomography is only a special case of such

generalization.

Thesis Committee:

C. Forbes Dewey, Jr., Professor of Mechanical Engineering and Bioengineering

Eric Grimson, Professor of Computer Science and Engineering

David Gossard, Professor of Mechanical Engineering

John Hartwig, Associate Professor of Brigham and Women's Hospital
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This thesis is intended to summarize the research in which I have participated over the

past four and half years. The goal of my project mainly aims to explore and develop a

new technique that is capable of reconstructing structural information from 2D electron

microscope images and furthermore to provide quantitative measurements about some

biological structures, e.g., the cell cytoskeleton. This Chapter gives an overview of the

thesis and some background that this thesis will rely on.

1.1 Origin of Research

The motivation of this project originated from the need to obtain 3D cellular structural

properties in our studies of cell cytoskeleton. The cytoskeleton of eucaryotic cells is

primarily composed of three types of polymers: actin filaments, microtubules and

intermediate filaments. Actin filaments are the most abundant components and they are

arranged into a 3D structural network that gives the cytoplasm its shape, form, and

mechanical properties. Considerable effort has gone into defining the structural and

biochemical properties of the 3D polymer systems that comprise the cytoskeleton. One

technique that has been widely applied to understanding this architecture is electron

microscopy (EM). Figure 1 exhibits an example of cell cytoskeleton image. The images

(or micrographs) taken from EM provide information on the length, geometry, and

interaction and location of various cytoskeletal components. However, the images are

only a 2D representation of 3D objects. Structural studies are often hampered by the

inability to faithfully obtain the complicated 3D geometric relationships made by actin

filaments as they course throughout the cytoplasmic space. Over the past years, 3D

information is obtained largely by manual measurements. Not only is such manual work
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tedious, but also the measurements are very subjective and inaccurate. Therefore, it is

very desirable to develop a compute-automated system that reconstructs the 3D structures

from 2D images by computer and ultimately makes the measurements on the

reconstructed structures. The thesis will mainly focus on the first part of the problem, i.e.,

the reconstruction of 3D structures from given 2D images.

Figure 1 An example of cell cytoskeleton image from electron microscope

1.2 The World of 3D Reconstruction

3D reconstruction from 2D images in general has been of interest in a number of fields,

including computer vision, robotics, medical imaging, structural biology, etc. The

methods used for 3D reconstruction can roughly be categorized into two groups: one is a

computer vision approach and the other is a tomographic approach. This separation is

mainly due to their different treatments of the imaging function. The imaging function is

defined as a function that maps the relationship between image and object. It describes

how the brightness or intensity value in the image is related to the object value or some

property value of the object in 3D space. The tomographic approach focuses on the

11



reconstruction in which the image records the transmission or emission property of the

object. The imaging function is relatively simple. For instance, in linear tomography, the

value in the image is represented as the integral of the object's property values along the

imaging direction. On the other hand, the computer vision approach often deals with the

reconstruction problem in which the image primarily describes the reflectance of the

object, e.g. an image taken by a camera. The related imaging function is usually very

complicated, which may involve the object's shape, its reflectance properties, position,

and illumination.

1.2.1 Computer Vision

Computer vision has emerged over the years as a discipline that attempts to enable the

machine or computer to sense and interact with the environment. Major efforts have been

directed towards the reconstruction of 3D structure of objects using machine analysis of

images (Dhond and Aggarwal 1989). However, unlike the tomographic reconstruction,

there is no mathematically sound inverse reconstruction method. This is mainly because

computer vision has much more complicated relationship between image and object than

tomography does. This complexity involves the object's shape, its reflectance properties,

position, light sources, etc. The imaging function is sometimes very difficult to obtain.

In computer vision, the understanding of 3D structure is primarily extracted from the

geometric relationships between images (Grimson 1980; Grimson 1985; Dhond and

Aggarwal 1989; Faugeras 1993; Okutomi and Kanada 1993; Kanada and Okutomi 1994).

The images of a 3D object are typically taken at the different locations. The positions of

the object in the images are therefore different. This difference, termed disparity, is

directly related to the position of the object in 3D space. In other words, the 3D

information about the object is embedded in the images in the form of disparity. For

instance, Figure 2 illustrates a famous stereo vision model of parallel axis geometry. The

camera is simply represented by a pin-hole model. Let us denote (X,Y,Z) as a point on an

object in 3D world coordinates with origin at 0. Its positions in two images are denoted

by (xi, y') and (Xr, yr) with respect to their own image coordinate system. Letf be the focal

12



length of both cameras and d be the baseline distance between two camera. By simple

triangulation, we have

x1 X+d12x 1  X~d/2(1.1)
f Z

Xr -X-d/2 (1.2)
f Z

-- -r - (1.3)
f f Z

Solving for (X,Y,Z) gives:

X d(x, + Xr) (1.4)
2(x - Xr)

Y= d(y,+ Yr) (1.5)
2(x,- x,)

Z= df (1.6)
(x1 -xr)

where (xr-xr) in the equations are often referred as the disparity. The equations indicate

that if we know the object's projection positions in two images, we can fully determine

the object position in 3D space. The implication is very powerful. The reconstruction

problem is therefore simplified to find the object's projection positions in images.

However, finding the corresponding projection position in images, called matching, is

usually not trivial. Over the years, a number of matching techniques have been

developed. We will discuss them in details in Chapter 3. Also in Chapter 3, we will study

a different type of imaging model that results in a completely different set of equations

but the concept remains the same.

One of the advantages of this reconstruction method is that we don't need to worry about

the complicated imaging function between the image and the object. The reconstruction

can be applicable to any type of imaging systems. However, since no imaging function is

used, the exact values of the object cannot be obtained. The obtained reconstruction only

provides the locations or the shapes of the 3D object. In other words, we may only tell

whether there exists an object or not. We cannot know what value the object may take.

13



The tomographic reconstruction that will be discussed later is completely different in this

point. It can give both location of the object and the value of the object because the

reconstruction is derived from the given imaging function.

(XYYZ)

(X1 ,(X 
Left Right
Camera Cm

Figure 2 Parallel axis stereo geometry

Besides the reconstruction from disparity, there are several other 3D reconstruction

techniques in computer vision. For example, shape from shading (Horn 1986; Horn and

Brooks 1989), which requires a manageable imaging function, reconstructs 3D surface

from 2D images with different shades. The technique is based on the observation that

under different illumination conditions the image brightness responds differently based

on the surface orientations. There have been some successful stories of this technique but

its use is still very limited because controlling illumination condition and surface

properties are practically very difficult. Interested readers are referred to related literature

(Horn 1986; Horn and Brooks 1989). Another alternative reconstruction method in

computer vision is optical flow (Horn 1986). Optical flow provides a reliable

approximation to the image motion. Barron et al (Barron, Fleet et al. 1994) did a very

good review on various optical flow algorithms and their performances. Optical flow can

be used to estimate the disparity map between images. With disparity map, 3D surface or

object may be recovered via geometric relationships such as Equations (1.4) ~ (1.6). This

two-step procedure is often referred as indirect method. In contrast, Horn and Weldon

(Horn and Weldon 1988) developed a direct method for scene reconstruction using
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optical flow. Shashua and Stein (Shashua 1995; Stein and Shashua 1996; Stein 1998;

Stein and Shashua 2000) further expanded the approach to three views. In both the direct

and the indirect method, the optical flow approach is based on a fundamental assumption:

the constant brightness assumption. It assumes that the brightness pattern of the object

remains the same between images even though their positions may change. In order for

this assumption to be applicable, there are some strict requirements, such as Lambertian

surface, uniform illumination, etc. These conditions are normally hard to satisfy in

practice.

As a summary, due to the complexity of the imaging function in computer vision, there is

no direct inverse reconstruction from the image to 3D object. The reconstruction is

primarily obtained by establishing the geometric relationship between image and object.

Reconstruction from disparity is one of the most used methods in computer vision

because it shields us from the complexity of the imaging function. Other methods, such

as shape from shading and structure from motion (optical flow), are alternative methods

of reconstruction in computer vision, applicable to some controlled conditions.

Note that in this thesis we will mainly focus on the method of the reconstruction from

disparity.

1.2.2 Tomography

Tomography solves a special reconstruction problem in which the imaging function is

known and has a strict form. The reconstruction can be derived mathematically via an

inverse mapping function. 3D reconstruction in tomography can be considered a simple

extension of the 2D tomographic reconstruction. In most situations, 3D reconstruction is

obtained by stacking a series of 2D reconstructed slices. Let us begin our discussion on

2D reconstruction first.

The fundamental problem that needs to solve is the reconstruction from projections. The

solution to this problem is tomography. Over the past 40 years, it has seen its rapid
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developments and applications expanding into a large number of scientific, medical, and

technical fields. Of all the applications, probably the greatest impact has been in the areas

of diagnostic medicine (Herman 1980). It earned itself two Nobel prizes: one in 1979 for

computerized tomography (CT) and the other in 1982 for electron tomography (which

will be discussed separately in next subsection). In recent years, some newly emerged

technologies in medicine, such as MRI (Magnetic Resonance Imaging), SPECT (Single

Photon Emission Computed Tomography) and PET (Positron Emission Tomography) are

all based on tomography.

x

Figure 3 Projection imaging geometry of tomography

Interestingly, as early as 1917, Radon derived mathematical theories of Radon transform

and inverse Radon transform, which turned out to be the underlying fundamentals of

tomography. In linear tomography, the imaging function is defined as follows: the value

in each projection is the integral of the object values along projection direction. Figure 3

illustrates a 2D case of the projection geometry. The relationship is expressed as:

g(p,O)= ff(x,y)du (1.7)
U

f f Jf(x, y>6(x cosO0 + ysinO0 - p)dxdy, (1.8)
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where u is the projection direction and 5(.) is a Dirac delta function (impulse function).

The projections g(p,O) can be re-organized into an image with p and 0 as two

coordinates, and often called a sinogram. Therefore, the goal in tomography is to

reconstruct the object functionj(xy) from its sinogram g(p,0). Equation (1.8) is actually

the exact form of Radon transform. The objectJ(xy) can therefore be obtained by inverse

Radon transform. Inversion of the Radon transform can be done in several ways. One

standard algorithm is based on the projection-slice theorem (Mersereau 1973; Jain 1989).

The theorem indicates that the one-dimensional Fourier transform of the projection g(p,0)

with respect to p is equal to the central slice, at angle 0, of the two-dimensional Fourier

transform of the objectf(x,y), i.e.,

G(4,0)=F,(4,O) ,(1.9)

where capital names, such as G or F, represent the function in Fourier domain and 4 is

the coordinate in Fourier space. Subscript p means the variables are in the polar

coordinate system, such as Fp. If we fill the whole Fourier domain at any angle with

corresponding projection, the object is then obtained by inverse Fourier transform.

Mathematically, it can be derived as follows (Jain 1989; Toft 1996). The inverse Fourier

transform is given by:

f(x, y) = f f F(,, 4,) exp [j2 (4,x + ,y)] d4,d (1.10)
-00 -00

When written in polar coordinates in Fourier domain, Equation (1.10) gives:

f (x, y) =f F(4, 0)exp [j27r (x cos0 + y sin0 )] d4 d

(1.11)

fJf G(4,0) exp[j22r4(x cos0 + y sin0)]d4dA

= g(x cos0 + y sin 0,0)d0 , (1.12)
0

where

g(p,0)= f 4 G(4,0) exp [j2~p ] d4 .(1.13)
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Equation (1.13) is an inverse Fourier transform of function |4IG(4, 0), which can be

considered a filtered version of G(4, 0) with the high-pass filter 1 I in Fourier domain.

Equation (1.12) is called back-projection. In fact, these two equations, Equations (1.12)

and (1.13) form the famous filtered-backprojection (FBP) method, which involves two

steps. First, each projection g(p,0) is filtered by the one-dimensional filter whose Fourier

transform is |4| (which is Equation (1.13)). The result, g(p,0), is then back-projected to

yieldJ(x,y) (which is Equation (1.12)).

It is also possible to make the backprojection before the filtering (Herman 1980; Jain

1989). The method is called filtering after backprojection (FABP), as well as rho-filtered

layergram in some early literature. In this method, a different filter must be used. The

procedures are given as follows:

7r

f(x, y) = g(x cos0 + y sin0,0)dO (1.14)
0

f (x, y ) = + J(,, ) exp (j2)T (4xx + y ) dCxd4, (1.15)
-00 -00

where F(4,, ,) is the Fourier transform of f(x, y). The filter is a two-dimensional

filter with the form of 4 + in Fourier domain. Although FABP method is not used

as popularly as FBP method in practice, it achieves comparable performance to FBP

(Suzuki and Yamaguchi 1988). In Chapter 5 of the thesis, we will come back to FABP

method which helped us to derive an efficient algorithm for discrete tomography. One

common property of both FBP and FABP methods, as indicated in Equation (1.12) or

(1.14), is that they require a full range of projections (0 from 0 to 7r). The incomplete

projections may lead to incorrect reconstruction.

In practice, perfect reconstruction described by the above methods can not be achieved

because we cannot obtain an infinite number of projections for the integral operation in

Equations (1.12) and (1.14). Furthermore, the methods have to be implemented in the

computer and all operations are approximated by their discrete versions. Therefore, each
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method has its reconstruction limit. The resolution is typically dependant on the angle

between adjacent projections (AO) and the point resolution in each projection (Ap).

Besides the direct inverse formulas above, inversion of the Radon transform can also be

obtained via some iterative methods, such as algebraic reconstruction techniques (ART)

(Gordon, Bender et al. 1970) or expectation maximization (EM) methods (Shepp and

Vardi 1982; Green 1990). In comparison to the direct reconstruction method, iterative

methods are usually very expensive in computation. However, they may achieve better

reconstruction quality. More importantly, iterative methods offer a great deal of

flexibility and robustness. They can deal with situations like incomplete projection data,

uneven-sampled projections, noise-deteriorated projections, reconstruction with

constraints, etc. None of the direct inverse methods can easily handle these common but

difficult situations. It is because of these advantages that iterative methods have gained a

lot of attention and popularity in many medical applications, such as PET and SPECT.

We will review some of the well-known iterative reconstruction techniques later in the

thesis. Those iterative methods form the basis to our algorithm for discrete tomographic

reconstruction.

One important observation worthy of mentioning is the duality between linear algebraic

operations and the Radon / inverse Radon transforms. In discrete implementation, the

linear projection of Equation (1.7) can be represented by the sum of the object points

along the projection path. If we represent the all object points in a vector form denoted by

x and all projection points in a vector form denoted by b, the projections can then be

written in a matrix vector formulation:

b = Ax (1.16)

where A is coefficient matrix containing the weighting factors between each of object

points and projection direction. With this linear algebra formula, the reconstruction

problem becomes to solve the linear equation of Equation (1.16). Since matrix A is non-

square, one approach to solve Equation (1.16) is to form a normal equation:

AT b = A T Ax (1.17)
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where AT is the transpose of A, and ATA is a square matrix. If we assume A A is

invertible, the solution of the linear equation is given by:

x = (ATA)-'Ab. (1.18)

Let us draw some analogy between this linear algebraic form and the direct inverse

Radon transform (Kawata and Nalcioglu 1985; Toft 1996). Equation (1.16) corresponds

to the Radon transform, which does the forward projection. Thus, Equation (1.18)

essentially represents the inverse Radon transform. More interestingly, if matrix A is

considered a projection operator, its transpose A is actually a backprojection operator.

Therefore, Equation (1.18) can be interpreted as filtering after backprojection (FABP)

with A representing backprojection and (ATA)l representing the filter. This filter

corresponds to the one given in Equation (1.15). Similarly, filtered backprojection (FBP)

can be matched to a different form of linear equation solution:

x = (A TA)- 1 AT b (1.19)

= (A T A)-1 AT (AA T )(AA T )-' b

= A T (AA T )-'b .(1.20)

In Equation (1.20), (AAT)l corresponds to the high-pass filter in Equation (1.13). The

backprojection AT is performed after filtering. In summary, Figure 4 lists these duality

mappings.

Ax = b

A

A T

x = A T (AA T )-1 b

(AA T )y

x = (A T A)-' AT b

(A T A)-1

b is projection

projection operator

backprojection operator

FBP method

filter in FBP method

FABP method

filter in FABP method

Figure 4 Duality relationships between algebraic method and direct method

So far, the reconstruction from projections has been focused on 2D tomography. 3D

reconstruction can simply be constructed from 2D case slice by slice. Alternatively, 3D
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tomography can also be obtained by 3D Radon transform and inverse 3D Radon

transform (Deans 1993). Both direct inverse and iterative methods are applicable in 3D

but may have a different form. Some types of 3D projection and reconstruction are

described in (Toft 1996).

1.2.3 Electron Tomography

Electron tomography specifically refers to the technique that employs an electron

microscope to collect projections of an object and uses these projections to reconstruct

the object (Frank 1996). It inherits all the theories developed in tomography. In structural

biology, it is currently the primary approach of 3D reconstruction for macromolecular or

sub-cellular level structures, such as virus or ribosome (Frank 1996). In some literature,

one would prefer to exclude crystallographic methods from electron tomography, more or

less for historical reasons. Crystallography specifically refers to the technique that makes

use of inherent order or symmetry properties of the object in reconstruction (DeRosier

and Klug 1968). Electron tomography is considered a more general theory of

reconstruction that makes no assumption of the presence of the order or symmetry.

Fundamentally, both crystallography and electron tomography are based on the same

underlying theorem: the projection-slice theorem, developed in tomography. The goal of

the reconstruction is to use projections to fill the entire Fourier space as the theorem

suggests.

Unlike the tomography in medical applications, electron tomography faces a number of

its own obstacles. The first is the restricted tilt angles of the electron microscope. The

angular range in most electron microscopes does not exceed ±600. A significant portion

of the Fourier transform is simply missing, which may result in a great deal of distortion

in the reconstruction. However, crystallography is one exception. Because of the

symmetries, crystallography has been very successful in dealing with this issue when

reconstructing crystalline objects. Due to the same symmetries in Fourier space, the

missing part of the Fourier transform can be inferred and derived from other parts of the

Fourier space and the entire Fourier transform can therefore be obtained. Another special
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case is some macromolecules that exist structurally identical copies in the volume

considered. These identical copies typically have random orientations in each projection.

The projection copies at these orientations can be used to make up the missing projection

at unreachable tilt angles. Therefore, the missing part of Fourier transform can be filled as

well. The current applications of Electron tomography have primarily focused on these

macromolecular structures (Frank 1992; Frank 1995). However, in nature, the biological

structures or entities that fit these special criteria are very limited. The development of

electron tomography has been hampered greatly because of this.

The second obstacle is the strict imaging function requirement. Since both tomography

and electron tomography are based on projection-slice theorem. The applicability of the

theorem relies on the imaging relationship between projection and object being the form

of Equation (1.7). In the case of electron-microscope imaging system, such relationship

usually doesn't hold well. Some approximation has to be made. The condition for

approximation is dependant on the specimen preparation, imaging conditions, etc. (Frank

1992)

Another issue is the difficulty of preserving the native structure during specimen

preparation and image collection. The associated problems are two folds. One is the

ability of the electron beam to penetrate the specimen. The second is the structural

damages induced by multiple exposure to electron beams during imaging. The former

one tends to suggest the use of intermediate to high voltage electron microscope while the

latter one suggests the opposite. In addition, in order to improve the contrast, the

specimen is often carefully stained or gold-labeled (Hartwig 1992; Frank 1996).

However, the presence of heavy atoms in stained specimen makes the approximation of

the imaging function untenable.

Notwithstanding these obstacles, electron tomographic techniques have had tremendous

success and impact in structural biology. In recent years, many new developments have

been witnessed. For instance, the technique of double-tilt is used to reduce the size of the

angular gap (Penczek, Marko et al. 1995). However, obstacles still exist. Electron
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tomography is still not generally applicable to a large number of biological structures or

entities. The thesis, in some ways, attempts to explore an alternative reconstruction

technique that would tackle some of these obstacles.

1.3 Bayesian Estimation

Let us look at the reconstruction problem from a different perspective. The central

problem of reconstruction is to recover the object from its projections. It perfectly fits

into the estimation methodology where we want to estimate the unknown input (the

object) from the given output (the projections). Estimation of input from output has been

a very classical problem in many areas. In statistic estimation, the problem can be

approached by attempting to answer this question: what is the statistically best input that

generates the given output?

In this section, we will first briefly introduce some mathematics and terminology of

statistical estimation. Focus will be on discussing estimation methods under a Bayesian

framework. We assume that readers are familiar with basic probability and statistics, such

as random variables, random vectors, probability function, mean, variance, etc. In the

thesis, a prevailing convention is adopted: probability distribution function P(.) (capital

letter P) is used when the considered random variable is discrete, and probability density

function p(.) (low-case letter p) is used when the random variable is continuous. Bold

case is used to refer a random vector, such as x, while non-bold represents a scalar

random variable, such as x.

1.3.1 Conditional Probability and Bayes' Rule

We will frequently deal with several random variables. These random variables may or

may not be related to each other. If they are, we hope that they may be predictable from

each other. However, the predictability is not guaranteed. For instance, when two random

variables are completely independent, knowing one random variable does not help to

predict the other.
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The relationship between random variables can be characterized by the joint distribution

and conditional distribution. The joint distribution of two random variables, P(XY),

describes the co-occurrence of both events X and Y. The marginal distribution, which

defines the occurrence of either X or Y, can be obtained from their joint distribution:

P(X) = Z P(X, Y = y) (1.21)

P(Y) = Y P(X = x,Y ) (1.22)
XEQX~

where Qx and Q y are sample spaces of random variable X and Y, respectively.

The conditional distribution, P(XY), describes the probability of random variable X given

Y. It is defined as:

P(X I Y)P(XY) . (1.23)
P(Y)

Likewise, the conditional distribution, P(X), is given by:

P(Y X) P(XY) . (1.24)
P(X)

A straightforward extension of Equations (1.23) and (1.24) is the well-known Bayes'

Rule, which inverts the conditional distributions:

P(Y I X)P(X)P(X I Y) = .P() (1.25)
P(Y )

When random variables are continuous variables, similar definitions are given to the

probability density functions. In brief, the marginal density functions are obtained from:

P"(x) = fP,,(x, y)dy (1.26)

PY= (f p,,(x, y)dx. (1.27)

The relationship between joint density function and conditional density functions are

given by:

pY(x, y) = p ,(x | y)p,(y) = p, (y I x)p,(x) (1.28)
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Therefore, Bayes' Rule is easily derived from Equation (1.28):

p)I (y Ix)p, (x)
px y = .x I(Y = p (x) (1.29)

p,(y)

Bayes' Rule has been very useful in decision theory, estimation, learning, pattern

classification, etc. For instance, in estimation problem, Equation (1.29) can be used to

find the best estimation of unknown variable x from given observations of known

variable y.

Finally, we would like to stress that the above definitions and derivations hold not only

for random variables but also for random vectors.

1.3.2 Bayesian Estimation Methods

In the Bayesian framework, we refer to the probability density px(x) for the vector x to be

estimated as the a priori density. This is because this density fully specifies our

knowledge about x prior to any observation of the measurement y. The conditional

density py (yx), which fully specifies how y contains the information about x, is typically

called the likelihood function. Generally, this likelihood function, pyw(ylx), is not directly

given but can be inferred from the measurement model. The conditional density pxL(xLy)

is called the a posteriori density because it specifies the behavior of x in accordance to

the measurement y.

We refer to the estimation of x as the estimator denoted by k. Let X (y) denote the

estimation of x based on measurements y. In a Bayesian framework, we choose the

estimator so that it optimizes some performance criterion. For instance, a cost function

C(x, x) is often used to evaluate the cost of estimating an arbitrary vector x as .Ci. The

best estimator is defined as the one that minimizes the average cost given y:

x(y) = arg min EC(x,a) y]
a

(1.30)
= arg min C(x, a)pxly (x y)dx

a
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As Equation (1.30) indicates, the a posteriori density function plays an important role in

Bayesian estimation.

Consider the cost function given by:

1 1 a - a 1> e
C(a,a)= 0  otherwise (1.31)

which uniformly penalizes all estimation errors with magnitude bigger than E.

Substitution of Equation (1.31) into Equation (1.30) gives:

^(y) = arg min(I - + 0,x| 0dx amn - :Pxy(x I y)dx] (1.32)
= arg max Jpxl,(x | y)dx

a

This estimator is called minimum uniform cost (MUC) estimation. It finds the interval of

length 2E where the a posteriori density is the most concentrated. If we let E get sufficient

small, MUC estimation essentially approaches the point corresponding to the peak of the

a posteriori density function. This is the so called maximum a posteriori (MAP)

estimation:

XMAP(Y) argmaxpX1 (a I y). (1.33)
a

The MAP method has been one of the most widely used estimation techniques because of

its simplicity and computability. The maximum of px,(xty) may be obtained by

differentiating the function:

a PI(I )=0(1.34)
ax

p I( y) = 0.-(-4

Furthermore, according to Bayes' Rule, substituting Equation (1.29) into Equation (1.34)

leads to:

r px(ylx)px(x) (1.35)

ax p,(y) 9
Since py(y) is not a function of x, Equation is equivalent to

a (py, (yI x)pX(x)) = 0. (1.36)
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It is sometimes more convenient to maximize some monotonic function of a posteriori

density than itself. For example, a normal log function is often used. Maximizing

lnps,(x[y) is often easier than maximizing pxy(x y) directly. In this case, the MAP

equation of (1.36) is rewritten as:

a a-- In p,(y I x) + - In px (x) = 0 . (1.37)
ax ax

Equation (1.37) indicates that MAP estimation is only dependent on a priori density px(x)

of x and likelihood function py jyx).

Let us consider a rather special case. If our knowledge indicates that x is only an

unknown constant (such as some parameter), instead of a random vector, the MAP

method reduces to be the maximum likelihood (ML) method. Because in this situation the

a priori function px(x) becomes a constant, ML estimation can then be obtained by:

a---In pyl(y Ix) =0. (1.38)
ax

This illustrates the close relationship between ML and MAP methods. A formal

derivation of ML estimation can be found in any good book on statistics (Papoulis 1991).

As a final remark, with a different cost function, we may achieve many other estimation

methods, such as minimum absolute-error (MAE) estimation, minimum mean square

error (MMSE) estimation, etc. Choosing a suitable method for a particular problem

depends on a variety of factors, including the knowledge about the unknown x and

observation y, the importance of errors, the computability of optimization, etc.

1.3.3 Markov Random Field (MRF)

A priori information about x is very important and useful in estimating x. Intuitively, the

more a priori information we know about x, the better estimation we can expect to

obtain. In addition, as Equation (1.37) indicates, knowing the exact form of the a priori

function is necessary for MAP method to be applied. In many problems, the a priori

function is not always given, or is very difficult to obtain. Markov Random Field (MRF)

can be used in many problems to model the a priori function based on some assumptions.
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MRF defines a field of random variables whose relationships are represented by a

neighborhood structure. In discrete case, the field is often represented by a lattice,

composed of a set of sites or nodes in a graph. For example, an mxn image can be

represented as an mxn lattice where each site corresponds to a pixel in the image. One of

the most important properties of MRF is local characteristics, which asserts conditional

independence: given its immediate neighbors, a random variable of MRF is independent

of all other variables. Mathematically, this property is expressed by:

P(x, I x, Vr # s) = P(x, I x, VrE Ns) (1.39)

where s (a site) represent a variable under consideration and N, is its neighborhood. The

left-hand side of Equation (1.39) is the conditional probability of the variable given the

rest of other variables in the lattice. The right-hand side of Equation (1.39) is the

conditional probability of that variable given the states of all variables in its

neighborhood. The neighborhood N, is defined as a collection of "neighbors" of the site

s. Neighbors are dependent on the order of the neighborhood to be considered. For

instance, a first-order neighborhood of a pixel (i, j) in an image is composed of pixels

immediately above, below, to the left and to the right of the given pixel (ij), i.e., NY={(i-

1, ), (i, j-1), (i, j+1), (i+1, j)}. A second-order neighborhood includes the first order

neighbors as well as pixels that are diagonally across from the given pixel, i.e., NU={(i-1,

j), (i, j-1), (i, j+1), (i+1, j), (i-1, j-1), (i-1, j+1), (i+1, j-1), (i+1, j+1)}. Higher order

neighborhood can be similarly defined, but they are rarely used in practical applications.

Let us introduce another term, clique. A clique c is defined as a subset of sites in S (the

space of s) and neighborhood N (Li 1995). It consists either of a single site c={s}, or of a

pair of neighboring sites c= {s, s'}, or of a triple of neighboring sites c= {s, s', s "}, and so

on. The collections of single-site, pair-site and triple-site cliques are denoted by C1 , C2,

C 3 , respectively:

C, = {s Is e S}

C2 ={{s,s'}Is e S,s'e N,}

C 2 = {{s, s', s "}Is, s', s " e S are neighbors to each other} .

(1.40)

(1.41)

(1.42)

The collection of all cliques is denoted by C:
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C = C, U C2 U C( 1.43

The Hammersley-Clifford theorem provides us a systematic way for modeling MRF

(Besag 1974; Geman and Geman 1984; Besag 1986; Li 1995). The theorem establishes

equivalence between MRF and Gibbs random fields (GRF) and allows us to construct

MRF using a GRF model. With this equivalence, the conditional distribution model of

MRF is converted to a joint distribution model of GRF. The Gibbs distribution is given

as:

P(x) = Iexp(- E(x) , (1.44)
Z T

where T is a constant called the temperature. Z is a normalizing constant,

ExxZ = Iexp(- E() (1.45)
X T

and also known as partition function. It ensures that the sum of all probabilities P(x) is

equal to 1. E(x) is called the energy function and expressed as a sum of clique potentials

over all possible cliques C:

E(x) = IV, (x) . (1.46)
eC

The value of Ve(x) depends on local configuration on the clique c.

In recent years, MRF has been of great interests in many areas, such as computer vision

and image processing (Geman and Geman 1984; Geiger and Girosi 1991; Kapur,

Grimson et al. 1998). It works particularly well when a problem involves uncertainties or

constraints that are difficult to solve by other methods. MRF offers a great deal of

flexibility for modeling different types of a priori information, such as local smoothness

(Geman and Geman 1984; Geiger and Girosi 1991), geometric relationship (Kapur,

Grimson et al. 1998), etc.
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1.4 Overview and Contributions

Due to limitations of electron microscopy, a lot of biological structures can not be

reconstructed directly by electron tomography. Furthermore, when a specimen is stained

with heavy metals, the imaging function no longer satisfies the condition of the

projection-slice theorem. Tomographic reconstruction methods won't work well in these

situations. This thesis attempts to explore and develop a new reconstruction technique

that can be applied to a large variety of structures, especially to ones that are intractable

using electron tomography. It may serve as an alternative method to electron tomography

in structural biology.

This thesis addresses reconstruction problems in a more general context, covering both

computer vision based reconstruction and tomographic reconstruction. However, specific

attention is given to 3D reconstruction of biological cellular structures, such as cell

cytoskeleton, from electron microscope images taken at different tilt angles. The thesis is

composed of two parts. At the first part of the thesis, we study reconstruction from a

computer vision perspective. As mentioned earlier, the reconstruction by computer vision

approaches doesn't require exact knowledge of an imaging function, and 3D information

is extracted mainly from the geometric relationship between images. This shields us from

complexity of the imaging function. Interestingly, computer vision based reconstruction

has rarely been used in biological applications. As one of our goals, we hope that this

thesis will bring computer vision based techniques to the attention of structural biology

communities.

We first derive the geometric relationship that describes the imaging system of electron

microscope. Then, the thesis focuses on finding structural relationships between 3D

objects and 2D images. Based on a stereo vision idea, a stereo reconstruction method is

presented, which reconstructs 3D structure from only two images taken at two different

tilt angles. A multiple-feature matching algorithm is employed. The algorithm introduces

a complex-value representation that takes into account both feature value and the

certainty of this value. A volumetric reconstruction method is then developed by
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extending stereo reconstruction to reconstruction from multiple images. The method

integrates a sequence of 3D reconstruction from different image pair. The integration is

an optimization process that attempts to find the best estimation for each location in a 3D

object space. As an example of applications to biological structure, the proposed

approach is tuned and applied to 3D reconstruction of cell cytoskeleton structure from

multiple images taken at different tilt angles on an electron microscope. The

reconstruction demonstrates the feasibility, reliability and flexibility of the proposed

approach.

The second part of this thesis focuses on a special tomographic reconstruction, namely

discrete tomography. Discrete tomography deals with a reconstruction problem in which

the object to be reconstructed is composed of a discrete set of materials each with

uniform values. Such condition or constraint is termed discreteness in this thesis. The

discreteness can be confirmed from observations that each type of biological structure

tends to have one uniform value in its electron microscopy images.

Discrete tomography has recently been of interest to many fields, such as medical

imaging (Frese, Bouman et al. 1998; Vardi and Lee 1998; Chan, Herman et al. 1999;

Herman and Kuba 1999). This thesis studies discrete tomography in a general format.

The proposed approach starts with an explicit model of the discreteness constraint. within

a Bayesian framework. The problem of discrete tomography is converted into a Bayesian

labeling process, assigning a unique label to each object point. The formula also

establishes a mathematical relationship between discrete tomography and conventional

tomography, suggesting that discrete tomography may be a more generalized form of

tomography and conventional tomography is only a special case of such generalization.

An expectation-maximization (EM) algorithm is developed to solve discrete tomography.

An efficient solution for discrete tomography is proposed in the light of the duality of

tomographic reconstruction methods discussed in earlier section.

As a summary, this thesis studies 3D reconstruction from 2D images using imaging

function as guidance. The thesis is primarily composed of two parts that corresponds to
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two different treatments to the imaging function. In the first part of thesis, a computer

vision based reconstruction is developed, which doesn't require any knowledge of the

imaging function. The second part of thesis deals with discrete tomography in which an

approximation of the imaging function is used and some constraints are considered.

The key contributions of this thesis are closely related to these two parts as well:

. The thesis develops computer vision based reconstruction methods for both stereo

images and multiple images. The proposed volumetric reconstruction method can

be applied to a large number of biological structures, demonstrated by the

reconstruction of the cell cytoskeleton from multiple images. The approach offers

an alternative reconstruction technique to electron tomography in structural

biology.

. The thesis proposes an integrated model for discrete tomography and develops a

Bayesian labeling method and an efficient algorithm. A mathematical relationship

between discrete tomography and conventional tomography is established and

suggests a close tie between them.
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2.1 Overview

As described in the previous Chapter, 3D information of objects is embedded within 2D

images in the form of disparities. For instance, 3D positions can be recovered by

triangulation from the disparities among 2D images (Marr and Poggio 1979; Grimson

1980; Grimson 1985). However, due to inherent deviations of imaging device or

movements introduced during image acquisition process, images obtained are rarely in

perfect alignment with respect to each other. Disparities among images are often

contaminated and contain in-plane translations, rotations, and/or even scaling change of

each image with respect to the other. The alignment is a process that compensates these

movements so that the images will share a common coordinate system and the disparities

will truly reflect 3D information of the objects. The alignment is a necessary pre-process

before reconstruction can be conducted.

The fiducial-marker alignment method, developed by Lawrence (Luther, Lawrence et al.

1988; Lawrence 1992), is used widely in electron tomography field. It requires users to

manually pick several markers from each image. In biological applications, markers are

often made by embedding gold particles into specimen before taking images. Image

movements, including in-plane translation, rotation and scaling, are then calculated by

minimizing a least-square error between measured marker coordinates in images and

their true coordinates projected from 3D space. However, this least-mean-square-error

(LMSE) method results in a set of non-linear equations. Solving these non-linear

equations is often computationally difficult and time-consuming.
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In this Chapter, we propose a new and iterative algorithm with which the solutions for

alignment can be obtained from a set of linear equations, as opposed to non-linear ones.

The proposed algorithm proves to be fast and robust.

2.2 Iterative Algorithm

The proposed algorithm also adopts the idea of using fiducial-markers. Markers need to

be picked manually in each image. The number of markers needed can be as few as two

in each image. However, more markers improve accuracy and quality of the alignment.

We have developed a graphic user interface (GUI) program to help users with this

process. The program is described in Appendix A. In addition, since electron microscope

imaging system is modeled by parallel projection, the scaling factor is negligible. Thus,

only in-plane translations and rotations need to be computed in the alignment.

Let us assume markers have been picked from each image and denoted by (xij, yij), where

(x, y) is the coordinate in each image plane. Let i=1,2,..,m denote the ith image plane with

corresponding tilt angle 0, . Let j=1,2,...,n denote the jth marker. Denote XYZ as the

common 3D coordinate reference frame where 3D objects are imaged. With a parallel

projection model, the geometric relationship of a point's position in 3D space and its

coordinates in the image plane is given as follows:

x,4 = Ri P T Xi + di , (i = 1, 2,..., m ; j= 1, 2,..., ) (2.1)

where xij is the image coordinate vector [Xij, yj] T (where T represents transpose) of the

projection of thejth marker in the ith image plane, where T represents transpose. X1 is the

position vector [X, Y o, Zj] Tfthejth marker in the 3D common coordinate system. Ti is a

3x3 rotation matrix representing the tilting operation with tilt angle 0i. P is a 2x3

projection matrix. R is a 2x2 rotation matrix describing the in-plane rotation of the ith

image plane with angle ai. d, is a two-dimensional vector representing the in-plane

translation of the ith image plane. Let us assume the tilting axis is always the Y-axis and

parallel to image planes. The transformation matrices in Equation (2.1) have this form:
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cos 0 0 --sinO 1 -
Ti 0 1 0 0 [cosai -sinai

Ti= I0 1 0 I, P=I , Ri= I'I. (2.2)

sin 0 cos ] L0  1 0- Cosa]

There is one very important observation from Equation (2.1): the common coordinate

system is translation-invariant. It means that if the common coordinate system is

translated, we can always find in-plane translations di such that the image coordinates xij

remains the same. Therefore, the in-plane translations di are merely relative values with

respect to the common coordinate system we choose. This property holds mainly because

of the parallel projection model of our imaging system.

Bearing this property in mind, let us proceed to solve the alignment. The alignment can

be considered to solve an inverse estimation problem. It seeks to retrieve unknown inputs

X, and the best set of parameters, Ri 's and di 's, from known output markers' position xij

in each image plane. The LMS method is adopted to minimize the mean square error

(MSE) between the measured marker coordinates in the images and their true coordinates

projected from the 3D space:

MSE= (x R, P T X -d) . (2.3)
iij

To make the problem simpler, let us assume the tilt angle 0, 's are known and accurate.

Furthermore, due to the translation-invariant property, the in-plane translations di in

Equation (2.3) can be eliminated by choosing a proper reference point. It is easy to derive

that such reference point is the centroid of the picked markers. Its projection in each

image plane is also the centroid of the markers' projections in each image plane. They can

be obtained by:

X, = , for i =2,..., m. (2.4)
n n

These reference points are then treated as the origins of the common coordinate system

and each image planes. New coordinates are obtained by translations:

35



X'1 = Xj -x x. =x, -x for i =,2,..., m; j = 1,2,...,n. (2.5)

Under new coordinate systems, Equation (2.1) then becomes

X'j = R P T X'1 . (i = 1,2,..., m ; j = 1,2,..., n.) (2.6)

Unknown variables in Equation (2.6) are in-plane rotation Ri and the 3D coordinate X'; in

the new common coordinate system. The corresponding MSE equation is given by:

MSE = 1 1(x' j- R P Ti X' ) . (2.7)
iij

The direct differentiation on Equation (2.7) will lead to a set of non-linear equations,

which is not good for computation. However, by some manipulation of Equation (2.6),

we find a linearization scheme to get around this non-linear issue. By moving the rotation

matrix R, to the left hand side of Equation (2.6), a new MSE function is formed and given

by:

MSE = j (R1 x' - P Tj X'1 ) , (2.8)
i J

where R;-1 is the inverse matrix of R;. Furthermore, let us assume the rotation angle ac is

very small for now. R can be approximated by:

cosa. s1ina F 1 a.

[-sin a cos a] L -a 1

The LMS method on this MSE function of Equation (2.8) will then result in a set of linear

equations, obtained by setting partial differentiation of ai, Xj, Yj, Zj to be zeros:

in (m
- xi + y2 i ja + (y s, - Xxi- Y + yj' Sin Oi Zj = 0 , 1, 2,..., m.

- (y cosO-a)+ Z cos 2 o +X + Zsin , =cos inZ =Z x cosOi , j=1,2,...,n.
Ki J(2.10)

in mn

Z(x 1  n) -n ( = - y , j=1,2,...,n.

- y sinO -ai)+ sin sinei-X +rsin2o -Z; = x si , , j =1,2,...,n.

This (m+3n)x(m+3n) linear equation simply has the form of:

Av = b, (2.11)
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where the unknown vector v = [a, a2, ... a,n, X ,X 2,...,X,Y 1 ,Y 2,...,Y,Z4,Z 2 . Zn ]',

including the rotation angles a and 3D coordinates of the markers. A is coefficient

matrix and b is some constant vector. By solving the linear equation, both rotation angles

at and 3-D coordinates of the markers are obtained. Even though 3-D coordinates of the

markers are of no use in the image alignment, they can yield some useful information

about the range of the object space.

One important issue here is the approximation introduced in Equation (2.9). In practice,

since in-plane rotations can be arbitrary, the approximation may not be correct for large

angle of ai. In order to get around this issue, the algorithm introduces an iterative

procedure that can be used to obtain solutions for any rotation angles. The iterative

procedure is described as follows:

Step 1: Assume small angle of at and then solve for the a1's from linear equation

of Equation (2.11).

Step 2: Rotate the marker's coordinates x'ij based on the obtained ai's. New set of

coordinates is obtained by rotating each image plane with corresponding

at. These coordinates are considered new positions of the markers.

Step 3: Perform the LMS method based on Equation (2.8) and Equation (2.11) to

obtain the new set of rotation angle a. Total rotation angle is the sum of

the new a, and the previous ones. In other words, the rotation angle a, is

accumulated during each iteration.

Step 4: Iterate the Step 2 and Step 3. The iteration stops when MSE is less than

some given threshold.

With this iterative procedure, our alignment method has the ability to recover the

incorrect alignment of very large rotation angle ai, even up to ±900. The method proves

to converge very fast. For instance, given the synthetic data with a ranging between -90'

to +900, the proposed iterative algorithm reaches ±0.010 precision within only 4 to 5

iterations.
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2.3 Performance Studies

Experiments are designed to study the performance of the proposed algorithm. In all

experiments, synthetic data are used so that their true positions or values are known. We

use root mean square errors (RMSE) to measure the accuracy of obtained results with

respect to their true values. RMSE is given by:

rmse = Ui u,- Uit (2.12)
n i

where u,, is the measured value and ut is the true value. Due to the property of translation-

invariance, obtained in-plane translations are relative values. Therefore, we primarily

measure the RMSE of obtained in-plane rotations in following experiments.

2.3.1 Wide range of rotation angles a

One important assumption in our algorithm is that the rotation angles a, are small so that

non-linear equations can be approximated by linear ones. The algorithm later introduces

an iterative procedure to deal with large rotation angles.

This experiment uses synthetic data of 10 marker points, 6 projected images with tilt

angles between [-20', 200]. Figure 5 exhibits the performance measure of our algorithm

on different range of rotation angles. The result clearly demonstrates the proposed

iterative algorithm is capable of dealing with a wide range of rotation angles. The data

with a small range of rotation angles need less iterations than ones with a large range of

rotation angles. The convergence is very fast even in the case of large angles. The

accurate solutions are obtained within 4 or 5 iterations.
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-+- rot within [-90, 90]
-*- rot within [-45, 45]
-e- rot within [-15, 15]

Figure 5 Performance on different range of rotation angles

2.3.2 Imperfect tilt angles

As described in previous section, the algorithm also assumes that the tilt angles are

known and accurate. In practice, the tilt angles is read out from the goniometer, and often

not very accurate. One would wonder how well the proposed alignment algorithm

performs on imperfect tilt angles. This experiment is intended to address this concern.

This experiment uses a set of synthetic data similar to the previous experiment. The only

difference is that some random noise is added into each tilt angle. The level of noise is set

to be 20% of interval tilt angles between neighboring images. Figure 6 shows the

performance measure of the algorithm on these data. Interestingly, the result or the

performance of the algorithm doesn't seem to be affected much. We barely see any

difference in comparison to the previous experiment in which the tilt angles are accurate.

This interesting observation seems to imply that the estimation of in-plane translations

and rotations may be irrelevant to tilt angles.
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Figure 6 Performance on imperfect tilt angles

In fact, the LMS method can be used to estimate true tilt angles (i.e. 9j) in Equation (2.7),

along with in-plane translations and rotations, if tilt angles are unknown. In other words,

the picked marker points already contain all information about tilt angles. They alone are

sufficient to estimate either the tilt angles, or alignment-associated in-plane translations

or rotations. Therefore, imperfect tilt angles won't affect the estimation of in-plane

translations or rotations, which is in accordance with our experiment. However, it is not

meaning that we don't need tilt angles. Knowing, even imperfect, tilt angles helps greatly

in estimating in-plane translations or rotations. It improves the algorithm's convergence

and helps to find the best solutions quickly. If tilt angles, along with in-plane rotations

and translations, are completely unknown, the LMS method will lead to a set of

complicated highly non-linear equations, which would be very difficult to solve.
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2.3.3 Number of markers

Another interesting question in the marker-based alignment method is that how many

markers one need to pick in each image. This experiment is designed to help to answer

this question.

This experiment also uses similar synthetic data as previous experiments, except that we

vary the number of markers this time and randomly choose the rotation angle within the

range of [-90', 900]. The results are exhibited in Figure 7. The observation seems to

suggest that more marker points improve the performance and convergence of the

algorithm. This observation matches our expectation. In addition, Figure 7 also depicts

that we obtain almost the same results in each case after a certain number of iterations. It

implies that more marker points may not necessarily help a lot. These two seemly

contrary observations are both true in practice. Since the markers need to be picked

manually, this process is very error-prone. The markers picked in one image may not

perfectly match to the markers picked from the other. These imperfect matches will lead

to incorrect alignment. More markers may help to build up statistics and reduce the

incorrectness, but in the mean time, more markers also mean more chance to expose to

that error-prone process. As a tentative conclusion, we recommend the number of marker

points be around 6 for each image.
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Figure 7 Performance on different number of marker points

2.4 Summary

Alignment is a necessary process before 3D reconstruction. This Chapter proposed an

iterative algorithm to solve the alignment problem, including in-plane translations and

rotations. By making some approximations and reorganizing the error function, the

algorithm converts an non-linear problem to a linear one. An iterative scheme is

employed to compensate or even eliminate errors introduced by approximation. Verified

by a number of experiments, the proposed algirthm proves to be fast, robust and accurate.
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The alignment in Chapter 2 establishes a necessary starting point for reconstruction.

Hereafter, we will assume all images have been aligned correctly.

In this Chapter, the most basic form of computer vision based reconstruction, stereo

reconstruction (from two images), is reviewed and explored. A new algorithm is

proposed. The algorithm is designed to take advantage of various structural

characteristics of the objects. The work presented in this Chapter has also been published

in the paper of (Cheng, Hartmink et al. 2000).

3.1 Introduction

Based on triangulation, 3D information, such as depth, of the objects can be reconstructed

from images taken from different perspectives (Barnard and Fischler 1982; Dhond and

Aggarwal 1989; Faugeras 1993). In its simplest form, two images may be sufficient to

recover the depth information of the objects. The depth is actually embedded within 2D

images in the form of coordinate differences, or formally termed the disparity (Marr and

Poggio 1979; Grimson 1980; Grimson 1985). Reconstruction from two images, called

stereo reconstruction or stereo vision, has been studied extensively in computer vision

field. Many approaches have been proposed to find disparities between paired images.

They can roughly be grouped into two categories (Barnard and Fischler 1982; Vosselman

1992; Fua 1993): feature-based and area-based methods. The feature-based method first

extracts features, such as edges/lines (Ohta and Kanada 1985; McIntosh and Mutch 1988;

Horaud and Skordas 1989), zero-crossings (Grimson 1980; Grimson 1985), or contours
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(Marapane and Trivedi 1994) from each image and then matches these features between

two images. In general, the feature-based method is more accurate and less sensitive to

noise. However, these features, called high-level descriptors, provide only an abstract

description about the objects in the image. The features often only exist at certain pixels

in the image. The disparities obtained by the feature-based method are sparsely

distributed. In order to obtain a disparity map of the whole image, interpolation

techniques are used. On the other hand, the area-based method uses only the intensity

value as the matching element. To reduce the noise sensitivity, correlation methods, such

as cross-correlation or sum of squared difference (SSD), are often employed (Hannah

1989; Fua 1993; Okutomi and Kanada 1993). Since the intensity value is a low-level

descriptor, it is not necessarily related to the presence of the objects in the image. Thus,

the structural information is not explicitly considered in the matching. The advantage,

however, is that a dense disparity map can be obtained without interpolation because the

intensity value is available for each pixel.

The stereo reconstruction approach proposed in this chapter attempts to combine

advantages of both feature-based and area-based methods. It finds multiple features using

both high-level and low-level descriptors of each image. Stereo matching is then

conducted on a point-to-point basis. The approach allows us to obtain a dense disparity

map without interpolation while the structural information is considered explicitly so as

to reduce noise. Furthermore, the approach introduces a complex representation so that

the certainty information is always naturally incorporated and considered in the process.

Finally, the approach is specifically tuned to the reconstruction of the actin-based

cytoskeleton structures. Their structural information is explicitly incorporated into the

analysis and reconstruction process.

3.2 Geometry of the Imaging System

Cell cytoskeleton micrographs are obtained in a Transmission Electron Microscope

(TEM) at different tilt angles. Each image is a projection of the 3D structure onto a 2D
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plane. Figure 8 shows a schematic diagram of an electron microscope imaging system.

Although there are two models for imaging systems, parallel projection and perspective

projection (Horn 1986; Faugeras 1993), parallel projection is adopted because of the

small field of view in our imaging system.

0 P

Zi Y
3D object
volume

image planes

Figure 8 Geometry of the imaging system

As illustrated in Figure 8, the specimen coordinate reference frame is denoted XYZ and

the image planes are denoted xyi (subscript i is the index of the images). Let us assume

that the tilting axis is defined to be the Y-axis of the specimen coordinates and the images

have been aligned correctly via algorithm presented in the previous Chapter. With the

parallel projection model, the geometric relationship of the point and its projection in the

image plane is simply obtained, which can be expressed as follows:

x 1=LXcosO, + Z sinOj 
(3.1)

Y1 YI

where 01 is the tilt angle. If the specimen is tilted to another angle 02, the projection of the

same point [X, Y, Z]T is given as:

x 2 Xcos0 2 + Z sin0 2  
(3.2)

Y2 Y

By solving X, Y, Z from Equations (3. 1) and (3.2), we obtain
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X x2 sin0i - x1 sin 02 (33)
sin(O -0-2)

Y =y = y2 (3.4)

Z x1 cos0 2 - x 2 cos 0 1  (3.5)
sin(01 -02)

Without the loss of generality, let us consider the situation where two projections (xi, yi)

and (x2, y2) are taken from two symmetric tilt angles, i.e., 0 =01 =-02. Equations (3.3) and

(3.5) are simplified as

X - X2 + (3.6)
2cos0

z= X1 = d ,(3.7)
2sinZ 2sin(

where d=(xi -x 2) is the disparity. The Equation (3.7) indicates that the depth Z is

proportional to the disparity d. With Equation (3.7), the problem of the reconstruction of

the 3D objects now becomes one of computing the disparity d.

3.3 Description of Method

3.3.1 Feature representation

Three features are extracted from the images: local direction, local phase, and intensity.

Local direction represents the orientation of a structure where the point lies, and is

denoted by the angle a ranged between 0 to 7r. Local phase indicates the degree to which

the point is part of an edge or a line in the object (more details are discussed in the

following subsections A and B), and is denoted by the angle P ranged between 0 and 27T.

Both local direction and local phase are related to the line/edge information of the object

or structure in the image. They are therefore high-level descriptors implying that local

direction and local phase may not be available at every pixel in the image. To overcome

this problem, we introduce a complex value for each of the features. The phase of the

complex value represents each feature value, such as the angle a or P. The magnitude,

normalized between 0 to 1, of the complex value indicates the certainty of the feature

46



value. Small magnitude values mean that the feature value has a low degree of certainty.

Therefore, a complex value with magnitude equal to zero can be used to represent the

points lacking local direction and local phase. The advantage of using complex

representation is that the certainty information can be carried into the subsequent

calculations.

3.3.1.1 Local direction

Local direction is estimated by vector representation as proposed by Granlund3 *

(Granlund 1978; Granlund and Knutsson 1995). "Local" means that the direction of a

point is calculated based on its neighboring area, hereafter referred to as its

"neighborhood." The estimation operations are designed to detect the directional

information in a neighborhood with a dominant orientation, constituted by a line and/or

an edge. The direction is obtained by combining a number of outputs of directional

quadrature filters. The quadrature filter is defined in the frequency domain and only lies

on the half plane of the frequency domain. In the spatial domain, the quadrature filter is a

complex function. Its real component is an even function like a line filter and its

imaginary component is an odd function like an edge filter. The output of each

quadrature filter collects the energy of a structure along the direction that the filter is

defined. Different directional quadrature filters collect the energy of the structure from

multiple directions. A proper combination of their outputs ensures a continuous

representation of angles, i.e., the operations are valid for any angle value that the

structure may have. The representation of the local direction at a point is a complex

value: its phase is the double of the local direction value (in radians) and its magnitude is

the certainty. It can be expressed as

D, = Cd ei 2" (3.8)

where D, is the complex-valued directional representation, a is the local direction value

ranged between [0, n], and Cd is the certainty value normalized within [0,1]. Interested

"' We would like to thank Professor Gosta Granlund and his group at Link6ping University for their filter

kernels and many insightful comments.
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readers are referred to more comprehensive descriptions about directional estimation in

the literature (Granlund 1978); (Granlund and Knutsson 1995).

3.3.1.2 Local phase

Phase information alone has been often used to estimate the disparity in stereo vision

(Sanger 1988; Fleet, Jepson et al. 1991; Westelius 1995). However, the proposed

reconstruction approach in this Chapter uses local phase as only one type of feature. The

local phase is the phase of the output of a complex filter, such as a Gabor filter (Sanger

1988) or quadrature filter (Westelius 1995). Westelius (Westelius 1995) studied and

compared a number of complex filters for the extraction of local phase information. By

using quadrature filters, the phase information can be interpreted as a measure of the

degree of a point being in a line or an edge. Figure 9 illustrates such a representation of

local phase. Local phase is also represented by a complex value. The angle P is the value

of local phase and the magnitude of the complex value depicts the certainty. The

expression is given as:

Pc = CP ei, (3.9)

where P, is a complex-valued representation for the local phase, P is the local phase value

ranged between [0, 27r], and C, is the certainty value normalized within [0,1].

(left edge)

(-line) +f 3 Jy (+line)

(right edge)

Figure 9 A representation of the local phase / as a complex vector
(Reproduced from Westelius (1995))
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3.3.1.3 Intensity

As discussed in preceding subsections, the complex representation provides us a certainty

measure of the local direction and local phase. To maintain consistency with this

certainty measure, a number is created for each intensity value and treated as its certainty

value. Therefore, the intensity is represented as hc{C, I} 3.2, where I, is the complex

representation containing two components C and I. C, is the certainty value of the

intensity value I. In the implementation, since the actin filaments have higher intensity

(brightness) than the rest part of the images, we assign large certainty values to the points

with high intensity. The mapping function between the intensity value and its certainty is

given by
I2

Ci =I - e 2a )2 (3.10)

where I is the intensity value of a point. (7 is the parameter used to adjust the mapping

relationship. The mapping function with a, equal to 40 is used in our calculation.

3.3.2 Stereo matching

Stereo matching uses the features described above to find the corresponding points

between stereo images. The matching process is carried out on a point-to-point basis so

that a dense disparity map can be obtained. However, due to ambiguities during

matching, one point in one image may have several possible corresponding points in the

other images. In order to distinguish among these candidates, a metric function is

necessary to evaluate and compare them.

From feature representation, each point in a stereo image is described by three features:

local direction (Dc), local phase (Pc) and intensity (Ic). If two points from each of the

stereo images are matching points, they should have the same, or the closest, feature

3.2 The complex representation of the form Ae" implies that the phase has a period of 271. However,

intensity doesn't have this property so that its complex representation cannot be expressed in the same form

as local direction and local phase. We represent it as IJC, I) to indicate that it also has two components

similar to the form Ae'".
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values for all features. The reconstruction approach utilized here defines a similarity

function to measure this proximity. The similarity function integrates all contributions

from three feature values defined above and their certainty values. It yields a large

similarity value when the feature values of two points are close and their corresponding

certainty values are high. Mathematically, the similarity function is given as:

SLR = Sintensity (IL, IR) + Sdirection (DL, DR) + Sphase (PL, PR)

(AI ) (Ace)
2  (A A)

2

U2U2 (3.11)
= C e 2 1 + C' e 2a2 + C' e 2 (

where AI=I-IR, Aa=aL-aR and A1=3 L-R are the differences of each feature value

between stereo pairs denoted as the left (L) and right (R) images. CI, CD and Cp are three

coefficients depicting the contributions of the certainty values on the similarity measure.

They are calculated from the certainty values of the features between two images. o-], C;

and cr3 are three predefined parameters controlling the normalization of the three features.

The exponent y adjusts the weight of the contribution from certainty values. It is normally

set at 1. Since the features are represented as complex values, their differences can be

calculated as follows. In a general form, the difference between two complex values ZL

and ZR is given by (Westelius 1995):

d=ZL ZR (3.12)
d L R '

dl = Z JR (3.13)

arg(d) = arg(ZL) - arg(ZR) (3.14)

where Z* denotes the complex conjugate of Z. Equation (3.14) generates the feature

value difference A used in Equation (3.11). Equation (3.13) calculates the new certainty

value, which is the coefficient C in Equation (3.11). The coefficient C is large only if

both certainty values are large.

During the stereo matching, corresponding points are determined by comparing all

candidate points according to Equation (3.11). Corresponding points are chosen that

exhibit the maximum similarity value. The coordinate differences of the corresponding

points give the disparity value. On the other hand, the corresponding similarity value
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from Equation (3.11) provides the certainty measure of this disparity estimation. It is

utilized in the disparity-refining process.

3.3.3 Disparity refinement

Because the depth of an object or structure usually does not change significantly from

one pixel to another, the disparity obtained at one point is expected to be very similar to

the disparities of the points in the neighboring area. However, because of the ambiguities

in the matching procedure and signal noise present in the imaging process, there are often

variations in the disparity map obtained. Therefore, a disparity-refining process is carried

out as a final step to improve the disparity map obtained from the stereo matching.

If the structure composes a continuous smooth surface, refinement could be accomplished

by simply averaging the disparity map over a neighborhood to reduce the variations.

However, the filament structure that we are concerned with has continuity primarily in

one direction (the filament's contour direction). Simple averaging might miscalculate the

disparities when two filaments with different depths and different directions are in the

same neighborhood. In the proposed reconstruction approach, a more precise refining

process is utilized. The process first distinguishes the different structures in a

neighborhood. The disparity is then smoothed on each individual structure with little

influence from other structures present in the same neighborhood. Therefore, the process

still preserves the structural difference after refinement. In the actin-filament structures,

the directional feature is the dominant structural information. The difference of the local

directions is therefore considered the indicator of the structural difference. To measure

this structural difference, a metric function is defined and given as follows:

(a -a,)2

w(i, j) = e , w e (0,1] , (3.15)

where a and a; are two local directions of the points i, j, respectively. The metric

function of Equation (3.15) exhibits the shape of a Gaussian function controlled by

parameter cy. The function gives the maximum value 1 when two local directions are the

same. The value decreases as the structural difference increases.
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As discussed earlier, the similarity value is considered the certainty of the disparity

estimation. It is also included in the disparity-refinement. By extending the normalization

concept (Knutsson and Westin 1993), the disparity-refining process used in the proposed

reconstruction approach takes into account the disparity value, the similarity value and

the structural difference measured by the metric function of Equation (3.15). If we denote

d a disparity value and S its corresponding similarity value (the certainty value of d), the

disparity-refining process is conducted as follows:

Z(w.S.d)
dne = " (3.16)

"" ( W -S )'
m ,n

((w -S)

Sew = '",n (3.17)
m ,n

where m, n defines the size of the neighborhood of a point under consideration. dnew and

Snev are the new disparity value and its new similarity value, respectively. The disparity-

refining process is performed at each point of the disparity map. The advantage of this

refining process is that it smoothes the disparity map while it preserves the structural

difference.

3.3.4 Hierarchical coarse-to-fine strategy

The proposed reconstruction approach is implemented in a multi-resolution manner. A

hierarchical coarse-to-fine strategy allows for the successive improvement of the

disparity estimation and reduces the computation of the stereo matching (Grimson 1985;

Westelius 1995). Figure 10 illustrates the computational framework of the hierarchical

implementation. The pyramid in Figure 10 is formed by successively downsampling the

image, according to the Laplacian pyramid method proposed by Burt (Burt and Adelson

1983). With downsampling, the resolution of the image is reduced by a factor of 2

between two consecutive levels. Accordingly, the resolution of the disparity map between
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two consecutive levels is also downsampled by a factor of 2. Therefore, the highest level

in the pyramid has the coarsest resolution in both image size and disparity map.

feature
representation

left
image

Ur

Disparity

3D

feature
epresentation

right
image

Figure 10 Hierarchical architecture of the computation

With this coarse-to-fine strategy, the algorithm starts at the highest level (lowest

resolution). Feature representation is first applied in the downsampled images at this

level, followed by the stereo matching and the disparity-refinement. The disparity map

obtained at this level is then inputted into a disparity accumulator that updates the

disparities from level to level. The disparity is then upsampled and fed into the next lower

level (higher resolution) of the pyramid. Thus, the algorithm goes down one level in the

pyramid. The images at the corresponding level are warped according to the disparity

map fed from the higher level. Warping moves one image relative to the other according

to the current disparity map. After the warping, a new disparity map at this level is

obtained by performing the feature representation, stereo matching and disparity-refining

process and inputted into disparity accumulator. The updated disparity map in the

disparity accumulator is then upsampled and fed into the next lower level of the pyramid

as before. This procedure is reiterated until the algorithm comes to the lowest level (finest

resolution) of the pyramid. Finally, the disparity map in the disparity accumulator at the
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lowest level is the final disparity map that now is used to compute the depth information

based on Equation (3.7).

3.4 Experiment and Results

To demonstrate the algorithm described in previous sections, 3D reconstruction of a

cortical portion of a cell cytoskeleton is obtained and shown in Figure 11 and Figure 12.

Figure 11 depicts the paired images of the cell cytoskeleton taken at ±100 tilt angles. The

scale bar indicates that one pixel in the image roughly corresponds to 1.33 nanometers.

(The specimen used in this experiment is prepared by Dr. Hartwig, Brigham and

Women's Hospital, Harvard Medical School.) Since the validity of the reconstruction

requires faithful preservation of the specimen in the electron microscope, all efforts have

been made to preserve the 3D structure of the cytoskeleton (Heuser and Evans 1980;

Niederman, Amrein et al. 1983; Hartwig and Shevlin 1986; Hartwig 1992). Generally,

the specimen is prepared such that the cytoskeleton is completely separated from the

membrane and other soluble proteins under conditions where actin filaments are

stabilized (Hartwig 1992). The cortical cytoskeleton observed consists mostly of actin

filaments (F-actin), a small number of actin-binding-proteins, and a negligible amount of

monomeric actin. In order to enhance the contrast, the specimen is further coated using

metal. With coating, the filament is thickened by 2~4 nm. The background regions in the

micrograph are cytoplasmic space where the electron beam has little attenuation because

they lack actin filaments. The regions (see Figure 11) exhibit low intensity and lack high-

level features, such as local direction or local phase. The certainty values of the features

within these regions are therefore very low. Using these properties, background regions

can be readily detected and separated from the actin filaments.
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(a) (b) (c)

Figure 11 Example of electron microscope stereo images (400x400 in pixels) of cell
cytoskeleton which were taken at ±10* of tilt angles: (a) left image; (b) scale bar; (c) right

image. The reconstruction is performed on the region indicated by the white box
(320x240 in pixels).

The proposed reconstruction approach described in previous section was applied to these

images. Only the region indicated by the white box in Figure 11 is considered in the

reconstruction. In this example, the coarse-to-fine "pyramid" implementation consisted of

three levels. Figure 12 depicts the 3D reconstructed volume visualized by the isosurface

method. Background regions are removed from the structure.
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Figure 12 Reconstructed 3D cytoskeleton structure visualized by isosurface method.

After 3D reconstruction, new structural information becomes available. 3D structures

provide realistic and accurate descriptions about the intersection points of actin filaments,

the geometry of filaments at intersections, the pore size formed by intersecting filaments,

the cytoskeleton thickness, and the filament concentration in a cytoskeleton volume.

These properties can be measured quantitatively with additional modeling.

For example, the estimations of the cytoskeleton thickness and the actin filament

concentration in the volume can be estimated easily from the reconstruction. The

thickness of the reconstructed volume is considered the cytoskeleton thickness. The

filament concentration in the volume is defined as the volume fraction of the filament in

the reconstructed volume. In Figure 12, the cytoskeleton thickness of the volume is

determined to be ~ 90 nm. Furthermore, we model each filament as a solid cylinder-type

structure with the diameter about 14 nm as measured from Figure 11. The filament

concentration is then calculated as ~ 5.2%, i.e., filaments occupy ~ 5.2% of the volume.

This number is actually the combined volume fraction of the actin filaments and their

metal coat. The true volume fraction of the filaments should be corrected according to the

amount of the metal coat. If we assume that the metal coat uniformly increases the

diameter of each filament by 2 nm, the filament concentration decreases to 3.8%. The
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value is in reasonable agreement with what is currently known about the cytoskeleton.

For example, Hartwig and Shevlin (1986) manually calculated a 10 mg/ml concentration

of actin filaments in the cortex of a white cell, which corresponds to a filament

concentration by volume of = 1.7%.3.3

3.5 Discussion and Conclusion

In this Chapter, we have presented a stereo reconstruction approach that reconstructs 3D

structure from two images. The approach introduced a complex-valued representation of

features, incorporating both feature values and corresponding certainty values into the

reconstruction. In the experiment, the algorithm is applied to reconstruct the cell

cytoskeleton structure from stereo images. The results demonstrate that the reconstruction

offers us more opportunities to make valuable quantitative measurements in a 3D context.

The analysis of these measurements will furthermore provide useful insights to the

understanding and modeling of cell mechanical properties and cytoskeletal dynamics.

More experiments and measurements would be conducted in the future for the algorithm

to be used routinely.

Even though the algorithm is tuned for the cell cytoskeleton structure, the proposed

approach has its generality. It is applicable to other applications, especially in the

situations involving filament-like structures such as blood vessel networks or neural

networks (Kim, Aggarwal et al. 1990; Ramirez, Mitra et al. 1999).

3 The concentration of actin filaments in the cell cortex is approximately 10 mg/ml. The following

estimation is based on the size of the monomers even though the actin filaments we consider are polymers.

If we consider 1 ml, the volume contains 10 mg of actin. Because one mole of actin monomers weighs

42000 g, 1 ml contains 2.5x10-7 moles of monomers. Since there are 6x10 2 3 monomers in one mole, 1 ml

contains 1.5x 101 monomers of actin. When a monomer of actin is modeled as a sphere of diameter 6 nm,

its volume is approximately 113 nm3, or 1.3x10'-9 ml. Therefore, the total volume of monomers is

approximately 0.017 ml, or 1.7%.

57



The limitations of the reconstruction from only two images are also visible, especially in

situations of occlusion or noise contaminated images. The ambiguities in the matching

process are inevitable. One remedy is the extension to 3D reconstruction from multiple

images. Reconstruction from multiple images will alleviate the limitations and reduce the

ambiguities.
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A natural extension of stereo reconstruction is the reconstruction from multiple images.

In this Chapter, we extend the reconstruction from two images developed in the previous

Chapter to reconstruction from multiple images. A volumetric reconstruction method is

proposed. It consists of two main processes: moving stereo reconstruction and

integration.

4.1 Introduction

In theory, 3D information can be retrieved from as few as two images by stereo

reconstruction. However, there usually exist a great deal of ambiguities in stereo

reconstruction. For example, because of object occlusion, some part of the object may

only appear in one image, not the other. Stereo reconstruction cannot recover accurate

information about the structures in these parts. One remedy is to perform reconstruction

from multiple images. With multiple images, occluded object missing in some images

can be reconstructed from other images that contain the view of the missing parts.

In addition, reconstruction from multiple images improves both reconstruction precision

and reconstruction accuracy. As discussed in previous Chapter, the 3D depth Z is related

to the disparity d by:

2sinO(4.1)
2sinO 2sinO

where x1 and x2 are positions in two images with tilt angles 0 and -0, respectively.

Besides the proportional relationship between depth Z and disparity d, this equation also
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indicates that Z is inverse proportional to tilt angle 0. The term 1/(2sin0) acts as a

magnification factor in Equation (4.1). With unit change in disparity, depth estimation is

more precise when tilt angle 0 is larger, i.e., larger tilt angle produces better precision.

However, images with larger tilt angle often have fewer similarities between them. This

poses a big problem in stereo matching. Since matching algorithm in stereo

reconstruction relies largely on the similarity between two images, there is greater

possibility of false match when tilt angle is larger. In other words, reconstruction is less

accurate when using larger tilt angle. A tradeoff exists between accuracy and precision

when only two images are used. Reconstruction from multiple images can help to

improve such tradeoff and achieve both accuracy and precision at the same time because

multiple images can span a wide range of angles with small increment between sequential

images.

4.1.1 Related Work

Recently, there have been many studies on reconstruction from multiple images in

computer vision. One special case is reconstruction from triple images, often called

trinocular stereo. The three views are taken from two motions, usually perpendicular to

each other. (Motion means the change of camera position, or equivalently using multiple

cameras at multiple positions.) Shashua (Shashua 1995) introduced a trilinear tensor that

represents geometric constraints among three views. Stein (Stein and Shashua 1996; Stein

1998; Stein and Shashua 2000) later developed a direct reconstruction method from three

views by combining trilinear tensor with optical flow constraints. The three-view scheme

reduces ambiguity of the reconstruction. Disadvantage of this method is that it requires

two motions in two perpendicular directions and involves 27 undetermined parameters.

A more popular case is that multiple images are taken from a monocular motion along

one direction, forming a sequence of images. Computational procedures used to

reconstruct the object or surface from these images can be roughly grouped into two

categories (Heel 1991; Heel 1991): incremental and batch algorithms. Incremental

algorithms attempt to estimate the reconstruction incrementally from multiple images.
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When a new image becomes available, reconstruction is updated from previous

reconstruction result. For example, Matthies et al (Matthies, Szeliski et al. 1989) and

Heel (Heel 1991; Heel 1991) developed Kalman-filter based algorithms for scene

reconstruction from a sequence of images. The Kalman-filter technique is a recursive

algorithm consisting of two stages: prediction and update. The prediction stage predicts

upcoming new image based on current estimation and system dynamics. The update stage

updates the estimation by correcting the difference between expected new image and the

actual new image. Such recursive algorithms are very efficient in computation because

only the latest frame of image information is required to be present in memory at any

time. The disadvantage is that the reconstruction is not guaranteed to be the best one

because the estimation is not globally optimized.

Batch algorithms attempt to achieve optimal reconstruction by processing all images

together. For instance, Iu and Wohn (Iu and Wohn March, 1989) modeled each 3D

surface point with a truncated Taylor series. Coefficients of the Taylor series are

estimated from feature locations in all images. The estimation is conducted in a least-

square fashion. Okutomi et al (Okutomi and Kanada 1993) proposed a multiple-baseline

stereo approach in which a cost function, called SSSD-in-inverse-distance function in the

paper, is defined to evaluate the reconstruction. The best reconstruction is chosen to be

the one that minimizes this function. More recently, Fua (Fua 1997) presented a

framework of 3D surface reconstruction from an arbitrary number of stereo views. This

approach introduces a particle-based representation from which a surface patch is

generated locally by clustering and function-fitting. In general, most batch algorithms

require a lot of computation and are not very favorable in real-time applications. The

advantage is that these algorithms usually have a global cost function and the

reconstruction obtained is globally optimized with respect to this function. In other

words, given the available images and defined cost function, the batch algorithms achieve

the best reconstruction.

Even though there is clear distinction between incremental and batch algorithms, there is

no clear-cut criterion on choosing one particular type of algorithm over the other. The
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decision typically depends on several factors, such as computation, type of images, type

of applications, etc. For example, in a navigation system, incremental algorithms are

often preferred because images are obtained sequentially and computation requires real-

time process. On the other hand, a recognition task may need to process all images

together to make a decision. In this case, batch algorithms may be a better choice.

4.1.2 Overview

In this Chapter, we present a new batch algorithm for reconstruction from multiple

images. Similar to other batch algorithms, optimal reconstruction is obtained by

evaluating available images altogether. There is no preference to the order of images. The

proposed reconstruction method consists of two main processes: moving stereo

reconstruction and integration. Moving stereo reconstruction performs reconstruction

sequentially on each image pair. We extend stereo reconstruction developed in previous

Chapter into a volumetric representation. In each reconstruction, a probability volume is

generated by evaluating a multi-feature based correlation between two images. The

probability at each voxel represents certainty of the voxel being an object point. The

integration process determines optimal reconstruction by evaluating all probability

volumes from individual stereo reconstruction. The process is measured by a global cost

function. Optimal reconstruction is the one that minimizes the defined cost function.

Differences between our method and the algorithms discussed in the previous section are

listed below. First and foremost, the imaging system is different. Our method deals with

electron microscope imaging system that adopts a parallel projection model. The

geometric relationship between the object and images are different from the camera

system used in other algorithms. Second, the image sequence is different. In our

algorithm, the image sequence is obtained via a rotational motion while most algorithms

in literature deal with a translational sequence of images. Third, the focus is different.

Most algorithms in computer vision focus on the surface reconstruction of a scene or

object. Our proposed method attempts to develop a volumetric representation of the 3D

object by employing the concepts of projection and backprojection. Finally, the
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application is different. Our algorithm is specially designed for 3D reconstruction of cell

cytoskeleton structure. The specific features of cell cytoskeleton are incorporated into the

algorithm.

4.2 Description of Method

The diagram in Figure 13 illustrates procedures of the proposed method. Besides

alignment, the method includes two other processes: moving stereo reconstruction and

integration. By using the alignment algorithm presented in Chapter 2, we assume all

images have been aligned correctly. This Chapter will focus on the other two processes.

Image Moving Stereo - + Ineatn
Alignment ReconstructionIner

Figure 13 Procedures of the reconstruction from multiple images

4.2.1 Moving Stereo Reconstruction

Stereo reconstruction is the building block of our method. "Moving" means that stereo

reconstruction is conducted sequentially at each image pair. The stereo reconstruction

method proposed here is slightly different from the one discussed in Chapter 3. Instead of

reconstructing object or surface directly, moving stereo reconstruction generates a

volumetric representation of the reconstruction. Moving stereo reconstruction starts with

a pre-defined volume and attempts to determine at each voxel whether the voxel belongs

to the object or not. The evaluation is measured by correlation between two projections

including their associated neighbors. In the correlation, multiple features of each point are

extracted and used. The features include local direction, local phase and intensity. The

algorithm for extracting these features has been presented in Chapter 3.
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4.2.1.1 System Configuration

As discussed in Chapter 3, our imaging system is modeled as parallel projection. The

image sequence that our method considers is obtained from pure rotational motions.

Without loss of generality, let us assume that a 3D coordinate system O-XYZ is placed in

the center of the volume to be reconstructed, and the images are taken at a sequence of

angles (01, 02, ... , 0,) by rotating the object along Y-axis. Figure 14 demonstrates such

configuration. Since rotating the object is equivalent to rotating the position of the image

plane, we may use both concepts interchangeably. Furthermore, we assume the

coordinate system o-xy in each image is the projection of 3D coordinate system O-XYZ to

the image plane. As derived in Chapter 3, the geometric relationship between an object

point and its projection in the image can be given by:

x. sin0 1 - xi sin O(
X = ' (4.2)

sin(i - 0)

Y =y = yj (4.3)

xi cos 0. - xi.cos0.
z = (4.4)

sin(O1 - 0)

where i andj correspond to the images with tilt angles of 0i, 0,, respectively.
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Figure 14 The image sequence is obtained by a rotational motion.

The Equations indicate that the y-coordinate of a point remains the same in every image.

Thus, the geometric relationship can be considered two-dimensional and each XZ slice is

independent to each other. In fact, the same geometric relationship exists in tomography

even though the imaging relationship between intensity value and object value is different

from that of tomography. Let us examine this geometric relationship from a

projection/backprojection viewpoint. Figure 15 plots an object point P and its projection

points pi in each image. R is a ray corresponding to the projection direction 01. If we

know the object point and the projection direction 0i, we can easily calculate the

projection point pi in corresponding image plane. On the other hand, if we have a

projection point, we know that the corresponding object point must lie somewhere on its

projection direction. This is called backprojection. Furthermore, if we have another

projection point in another image and know that this projection point is from the same

object point, we can find out the object point by backprojection of both projection points.

The key here is that two projection points must be from the same object point. They are

often called "matched projection points". For example in Figure 15, the location of the

object point is the intersection of two rays R, and R2 of matched projection points p, and

P2.
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Figure 15 Projection and backprojection of an object point

There are several important observations in this system that we would like to point out:

Observation I: ambiguity property

If only two projection points are given and we don't know whether they are

matched projection points or not, there could be unlimited solutions. For example

in Figure 15, any two object points on ray R, and R2 could have the same

projection points p, and P2. Thus, one of the biggest tasks in reconstruction is to

determine whether two projection points are matched projection points or not.

Observation II: uniqueness property

There is only one, if exist, projection point in each image for a given object point.

In the occlusion situation, some object points may block others so that there are

no corresponding projection points in the image. In the mean time, there is only

one, if exist, object point corresponding to any two matched projection points

from any image pair.

Observation III: neighborhood property

A neighborhood remains as the neighborhood in the projection. In other words, if

some object points are neighbors to each other in 3D space, their projection points

in each image are also neighbors to each other. However, the reverse is not always
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true. A neighborhood in the image may not necessarily be the projections from a

neighborhood in the 3D object. The neighborhood property is demonstrated in

Figure 15 where shade area means the neighbors.

4.2.1.2 Volumetric Representation

With the above analysis of projection and backprojection, the proposed method extends

the stereo reconstruction approach developed in previous Chapter and proposes a

volumetric method of 3D reconstruction. The method starts with a pre-defined empty

volume. Reconstruction of the 3D object is equivalent to determining whether each voxel

in the volume belongs to the object or not. A probability volume is introduced for the

purpose of evaluation at each voxel. Probability at each voxel indicates the certainty level

of the voxel being an object point. It is computed based on the correlation between two

corresponding projections and their associated neighbors.

For each voxel, we first identify the location of its projections in two images by forward

projection. If a voxel is an object point, projections of this voxel should have similar

characteristics in two images, i.e., they should have high correlation. Furthermore,

according to Observation III, neighbors of these projections should also have high

correlation between these two images, except for occlusion situations. Based on this

observation, we employ a multiple-feature based correlation algorithm and compute the

correlation on a neighborhood system. For example in Figure 15, the shaded areas treated

as neighborhood of the projections are used for computing correlation between p, and p2

in images of 01 and 02, respectively.

Multiple features used include local direction, local phase and intensity. The extraction of

these features can be obtained by the method presented in Chapter 3. With multiple

features, each point is represented by a feature vector:

D(

=P ,(4.5)
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where D, is the directional representation. P, is the representation of local phase. (Please

refer to Chapter 3 for more details.) I is the intensity value in an image. Since both D, and

P, are complex-valued representations, a more computable feature vector can be adopted:

Re (D,)
Im(D,)

f= Re (P) , (4.6)

Im(P)

where Re(.) means the real part and Im(-) is the imaginary part of a complex value. This

vector variable will be used for correlation in the practical implementation.

Correlation between two projections is computed on a neighborhood system where

neighbors are considered the sample source of the vector variable. Let us denote the

neighborhood window as N, or nxn, centered at the projection point. Denote foi and fo2

two vector variables corresponding to the feature representations at the projection points

and their neighbors in two images of tilt angles 01 and 02, respectively. Mathematically,

correlation between two vector variables can be obtained by canonical correlation.

Canonical correlation finds the linear combinations foi=fo1T.wo andf 9 2 =f0 2T.w 2 such that

the scalar variablesfoi andfO2 have the maximum correlation41:

E [f - f
p = max E -f 0 1 )(f 2  f 02)] (4.7)

W1,W2E [f -- f E 2
W1 E j[(f ] -[( f02 )

or p =max , E[(. 0 )(f, 2 ] 9 2  (4.8)

where E[.] is the expectation operator and T is the transpose operator. f is the mean of

the variable f woi and w02 are coefficient vectors that maximizes Equation (4.8). The

correlation coefficient p ranges between -1 to 1.

4.1 Note that non-bold font means a scalar variable and bold case means a vector variable.
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Solving Equation (4.8) is not trivial at all. To make the computation simple, we introduce

a compromised approach to calculate the correlation. The basic idea is to convert the

vector variable in Equation (4.6) to a scalar variable. First, each element in the feature

vector is normalized with respect to its own mean and variance. Normalization of a

random variable x is defined as:

x-x
Xnorm = , (4.9)

ox

where x is the mean and ac is the variance of x. After normalization, new variable Xnorm

has the mean of 0 and the variance of 1. In other words, normalization brings variables to

the same scale so that they are comparable. After normalization, we have a new feature

vector fnorm in which each element is comparable to each other. We then reorganize all

feature vectors in the neighborhood into a large one-dimensional vector as illustrated in

Figure 16. Each element of this large vector is considered a sample of some random

variable. Correlation coefficient is then calculated by using normalized cross-correlation

between two generated large vectors from two images. For example, if a neighborhood is

nxn in size and the feature vector has 5 elements as in Equation (4.6), the generated large

vector has the size of 1 x(5n 2). If variables in the large vectors are denoted by u and v for

two images of tilt angles 01 and 02, respectively, the correlation coefficient is computed

by:

5n 2

p 5 (4.10)

S(u1 - )2 2v )
=0i=

where U- and V are the means of the corresponding variables. The coefficient p, ranging

between -1 and 1, reflects the similarity of two projection points. If they have very high

correlation, it gives a very good indication that two projection points may be matched

projection points, and therefore the voxel under consideration may be an object point.
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Figure 16 Illustration of the generation of the correlation between two images

We repeat above computation for each voxel in the volume and obtain a correlation

coefficient p at each voxel. We thus obtain a p-volume which provides a reliable

indicator of whether each voxel in the volume is an object point or not. Furthermore, the

value of the coefficient p in some sense reflects the probability of the voxel being an

object point. The larger the coefficient, the higher the probability. Since the value of the

coefficient ranges from 1 to -1, we map it to a probability value by simply using some

threshold or linear transformation. Therefore, a probability volume (p-volume) is

obtained from a p-volume. Repeating this computation for each pair of images, we obtain

a sequence of p-volumes which will then be used in the integration process.

In implementation, the projection of a voxel is not necessarily on the grid of pixel. We

employ a bilinear interpolation method to accurately locate the projections in the images.

This interpolation is similarly applied to all neighbors as well. The correlation is then

calculated on the interpolated neighborhood windows. Such interpolation process

improves the resolution of reconstruction.
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4.2.1.3 "Moving" volumetric representation

To accomplish the "moving" concept defined earlier, a volumetric reconstruction is

obtained sequentially for each pair of images. The image pair can be chosen arbitrarily.

For example in Figure 15, we could choose image pair from sequential images, i.e., {(O1,

02), (02, 03), ... }, or non-sequential images, e.g., {(01, 03), (02, 04), ... }. There is no clear

criterion on how to choose the type of image pair. The choice may depend on the total

number of images, the tilt angle difference between two images, the reconstruction

resolution, etc.

4.2.1.4 Some Computation Considerations

The computation in the proposed method above is very expensive, especially in the steps

of feature representation and correlation. In order to reduce the computation, some

approximation schemes or fast algorithms can be employed. For example in feature

representation, local direction can be roughly estimated from gradient. If the intensity

value of an image is represented by function I(x, y), the gradient at point (x, y) is given

by:

g = I (4.11)
LOI/8y j

Since the local direction a is perpendicular to the direction of gradient g, it can be simply

obtained by:

K I/ay
a = arctan( - . (4.12)

In comparison to the method discussed in Chapter 3, using gradient to estimate local

direction is computationally more efficient.

The computation of correlation can also be reduced by using a fast algorithm. We simply

adopt the fast algorithm developed by Sun (Sun 1997). In brief, the algorithm uses a box-

filtering procedure for mean calculation (McDonnell 1981), and reorganizes the equation

for fast variance calculation.
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4.2.2 Integration Process

In moving stereo reconstruction, we obtain a p-volume from each image pair. Each p-

volume describes the same object volume. However, the description from different p-

volumes may be different. This is because different image pairs have different angles of

view and contain different information. In addition, ambiguities in stereo reconstruction

from different image pairs may be different too. The goal of the integration process is to

find the best description of the object volume from a sequence of p-volumes.

4.2.2.1 Integration by Average

One straightforward way of integration is to simply take the average of all p-volumes.

The theory behind this integration is as follows. First we assume that the probability

value at each voxel is an independent random variable, i.e., each voxel can be estimated

independently. Then, the value in each p-volume is considered a sample of the random

variable. Thus, the problem of finding the best probability value at each voxel becomes

the problem of finding the best estimation of a variable given some samples. In other

words, we want to estimate the variable p, from samples {p(]), p(2), ... p()}, where

superscript (n) denotes the n-th p-volume obtained from n-th stereo reconstruction. Based

on the least square error method, the best estimation ofp is the mean of the samples, i.e.,

p = argmin (p -p(S) (4.13)

1
or, p = -p(S) (4.14)

n s

The integrated value p represents the best estimation as we consider all images together,

given the error function in (4.13). This probability value indicates the overall certainty

level of a voxel being an object point based on the information from all images. With

some proper threshold on this probability volume, all object points in the volume can be

identified and therefore the object can be reconstructed.
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4.2.2.2 Integration with Local Interaction

The assumption that each voxel is independent to each other is usually not true. In

practice, there are always interactions among voxels. In this section, we introduce a local

interaction model that encourages the continuity or smoothness in a neighborhood.

Let us consider a first order neighborhood system. In other words, for a voxel point (i, j,
k) in the volume, six neighbors are considered, including Nj,k = {(i-1, j, k), (i+1, j, k), (i,

j-1, k), (i, j+1, k), (i, j, k-1), (i, j, k+1)}. We introduce a penality function that measures

the departure from smoothness in the neighborhood:

e, = II I (pi~ -- pN,,k )2 .(4.15)
i j k NA,, 1

This penality function encourages the local smoothness and is minimized when the

neighborhood is uniform. This function is incorporated as an additional constraint into

the overall error function, i.e.,

e=- P 2 (jk PN (j (4.16)
i j k s

where k is a parameter that weights the smoothness penality in the overall error function.

This parameter will be large if we want to enforce the local smoothness. The best

estimation ofpij,k is the one that minimizes this error function, i.e.,

Pi,j,k = arg min (P-jk p- Pk) 2 + Z (Pi,j,k PNj) (
Pi..i,k i j k s Ni~~

It can be obtained by solving

ae_
a = 0, Vi,], k. (4.18)

This results in a set of linear equations:

(n+6_____) 1..

(n + Pi,j,k - Pi-1,j,k , Pi+Pi,k - - Pi,j+1,k - Pi,j,k-1 - Pi,j,k+1 P (s.) V , k .

(4.19)

Equation (4.19) forms large sparse (not band) linear equations. A number of commercial

and non-commercial software packages are available that can solve such linear system
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accurately and efficiently. In our implementation, we use the LAPACK (Linear Algebra

Package) developed at the University of Tennessee (LAPACK ; Anderson, Bai et al.

1999).

4.2.2.3 Integration with Consideration of Object Values

In the dicussions so far, we only evaluate whether a voxel is an object point or not. We

don't know what value the object point may take. Thus, the obtained reconstruction only

tells the presence and shape of the object in the volume. In this sense, the reconstruction

is equivalent to assigning either 0 or 1 to each voxel in the volume where 1 means an

object point and 0 means not. Certainly, this is not good to distinguish different objects

from each other when there are several objects in the volume and each object has a

different value. In this section, we present a model that makes use of object values in the

reconstruction.

Even though we don't know the imaging relationship between the object and its

projections in the images, some assumptions ususally hold true. One of the assumptions

is particularly useful: if different objects take different values, their projections in an

image also exhibit different values. Figure 17 illustrates this assumption. In the

reconstruction, the opposite is more important, i.e., if projections in an image have

different values, it implies that they are from different objects. These assumptions

establish some mapping relationship between values of different objects in the volume

and values of their projections in the images. This relationship is very helpful in

distinguishing different objects in the reconstruction.
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Figure 17 Different-valued objects have different-valued projections in the image

As discussed earlier in moving stereo reconstruction, we generate a probability value at

each voxel based on the canonical correlation of its projections in two images. The

probability value describes the certainty level of a voxel being an object point.

Furthermore, based on our assumption, the intensity value of the projection points map to

some object value. Therefore, we may infer that the probability value actually describes

the certainty of the voxel taking a specific object value. Thus, we have two sets of

information from each stereo reconstruction: a probability value and the object value that

the voxel may take. Both sets of information are useful in determining the object volume.

The goal of the integration process is then to estimate the best object value that each

voxel takes in the volume. Since we have some knowledge of mapping between the

object values and the intensity values of the projection, we don't need to know the exact

relationship function in order to distinguish the different objects in the volume. For

example, if we know large object value maps to high intensity value of the projection

point in the image, we can simply assume that the object value takes the intensity value

of its projection in the image.

Let us denote v as the object value, and v(s) as the object value obtained from s-th stereo

reconstruction. Also denote p(s) as the probability value that indicates the certainty of

corresponding object value v(s). The integration process estimates the best v from pairs
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(ps'), vfs)) obtained by moving stereo reconstruction. If voxels in the volume are

independent to each other, each voxel can be estimated individually. We formulate an

error function given by:

e = p(S) (v - v(S) 2, (4.20)
S

where p(S) is treated as the weighting coefficient. By minimizing this error function, the

best estimation of v is obtained and can be written as:

1 = p~v) . (4.21)
pS

S

Essentially, Equation (4.21) computes the weighted average of v(s).

Similar to the discussions presented earlier, we may bring local interaction into the

integration. If only first-order neighborhood system is considered, a similar smoothness

error function can be employed:

e vN 2e-> X (Vi~jk -vN 1 ).~ (4.22)
i j k jk

The overall error function is given by:

e= P(2k (V=jk-2 + Z ( - V Ni,,k
i j k s N)

The optimal estimation of Vijk is the one that minimizes this error function. This leads to

a set of linear equations:

( .) 6) pV)V(
Vi(,il ZVkA iS~ ~~

S ,j ~A i~ , lVi j k . (4.24)

Equation (4.24) is a sparse system and can be solved by using LAPACK.

4.3 Experiment and Results

In this section, we apply the proposed algorithm to 3D reconstruction of cell cytoskeleton

structures from multiple images. The cell cytoskeleton specimen is prepared by Dr.
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Hartwig (Hartwig and Shevlin 1986; Hartwig 1992). The images are taken on a JEOL

JEM4000FX Intermediate-voltage electron microscope (IVEM) at the Wadsworth

Center I. A sequence of images is obtained with the tilt angles ranging between -60* and

60* at an increment of 2.0'. These images are properly aligned with respect to each other

by using the algorithm discussed in Chapter 2. An area of 256x256 in each image is

selected for reconstruction. The scale in each image is that 1 pixel in the image equals to

1 nm in physical size. Figure 18 exhibits 16 of these images in sequence. The tilt angle is

shown next to each image.

-58*) b54*)

(-48*) (-42*)

(to be continued in next page)

4.2 The Wadsworth Center, located at Albany, New York, is a NIH National Biotechnological Resource

center supported by grant RR 01219 from the National Center for Research Resources (DHHR/PHS). We

also would like to thank Dr. Joachim Frank and Mr. Michael Marko for their generous help and support.

77

. . ... ............... - --- --_- ___



-340)

-160)

M 00)
(to be continued in next page)

78

-26*)

-40)

+40)

. .......... ........ .... ... ............. .....



(+120) +20*)

(+30*) (+42*)

(+520) \ +580)

Figure 18 Selected cell cytoskeleton images taken on IVEM

4.3.1 Reconstruction Result

As discussed in Chapter 2, the markers used in alignment gives a rough range of the

object space. Based on this, we define a volume that the proposed method attempts to

reconstruct. The volume size is chosen to be 201x201x20 1. Before reconstruction, some
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pre-processing operations are employed to enhance contrast and reduce noise in the

original image. Such operations are possible because they won't change the geometric

relationship between the object and the images. The proposed method is then applied to

reconstruct this volume. We conduct moving stereo reconstruction on 21 pairs of stereo

images ranging from -48.0* to 46.00. These pairs are formed from 22 images with tilt

angles {-48.0*, -46.0*, -42.0*, -38.0*, -34.0*, -30.0*, -26.00, -20.00, -16.0*, -10.0*, -4.0*,

0.00, 4.0*, 8.00, 12.00, 16.0*, 20.00, 26.00, 30.00, 34.0*, 42.00, 46.00}. These images are

selected from available images. We try to select the ones that have better alignment and

image quality. Each pair is immediate-sequential images in the sequence, such as i-th

image and (i+l)-th image. Local interaction is included to encourage local smoothness.

Figure 19 shows some slices of the reconstructed volume. Each slice represents a XY-

plane. The Z-coordinate is on the right side of each slice. Z-coordinate is measured with

respect to the origin which is in the center of the volume.
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Figure 19 The Z-slices of the reconstructed volume with 22 images

The reconstructed volume shown in Figure 19 helps to demystify the 3D structure of the

cell cytoskeleton. We can identify and even measure the locations and relationships of the

filaments in the volume. For instance, when we look at slices from (+10) to (+60)

sequentially, we can clearly see how the structure evolves at the right-top corner of each

image (labeled with small red window). The 3D structures and their relationships can also

be observed by using visualization techniques. For example, Figure 20 displays a 3D

visualization of this volume. The technology used for visualization is ray casting

method4 3 .

Figure 20 Visualization of the reconstructed volume by ray-casting method

43 The software package we use for visualization is called VolView, developed by Kitware. An evaluation

version can be downloaded freely from http://www. kitware. com/volview. htm.
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In both Figure 19 and Figure 20, we also see some artifacts in some areas. These artifacts

are caused because of uncertainty in the reconstruction. There are several sources of

uncertainty. One is the poor image quality as observed in Figure 18. Poor imaging

conditions, such as poor contrast, noise, inconsistent focus, etc, lead to ambiguity or even

incorrect reconstruction. Another source is occlusion. Since some areas may move out the

field of view as we rotate the volume, their projections may only exist in some images

not in the others. For example in Figure 19, artifacts are more visible in the areas that are

close to the boundary of the volume, such as slices from (+90) to (+99), or slices from (-

99) to (-90). Objects in these areas have large motions and more likely move out of the

image window when we tilt the object volume. One common to alleviate this problem is

to conduct reconstruction on an extended volume and then crop the volume to a smaller

size (Herman 1980; Suzuki and Yamaguchi 1988).

4.3.2 Number of Images

As presented in this Chapter, reconstruction from multiple images achieves much better

precision and accuracy than reconstruction from two images. It is straightforward that the

more images we use, the better reconstruction we may obtain. However, the addition of

one more image adds additional computation, but may make very little improvement if

many images have already been used. Therefore, a realistic question arises: how many

images are enough in practice? This section attempts to answer this question in an

empirical way.

From the sequence of available images, we select a different number of images to do

different experiments of reconstruction. The images used in each experiment cover the

same range of tilt angles as in Figure 19. Figure 21 plots the quality of reconstruction

with respect to the number of images used. Since we don't know real objects in the

volume, RMSE in Figure 21 is actually a relative measure. We use the reconstructed

objects from 30 images as reference objects in calculating RMSE. It is equivalent to a

shift from zero line, and it won't change the shape of the plot. Figure 21 illustrates that

the reconstruction quality improves as the number of images used for reconstruction
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increases. It also shows that the improvement rate starts to slow down as more and more

images are used, which is quite intuitive. When many images have been used, all

information may already have been told by these images. The addition of an extra image

may not yield any more new information. In this case, the gain from an extra image may

not be worth the extra cost in computation and preparation of images. In practical

implementation, it is useful to have an optimal number of images for guidance. Based on

the plot in Figure 21, we would suggest the use of 10~20 images for reconstruction.

Figure 21 The quality improves as more images are used for reconstruction.

4.4 Discussion and Conclusion

In this Chapter, we presented a reconstruction method from multiple images. The method

explored a volumetric reconstruction. Unlike surface reconstruction, the proposed method

estimates each object point in the volume on a voxel-by-voxel basis. The overall

procedure includes alignment, moving stereo reconstruction and integration. Local

interactions, such as local smoothness, can also be incorporated into the integration

process. Several integration methods that integrate a sequence of 3D reconstruction from
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different stereo pairs are presented. By evaluating certainty values of each stereo

reconstruction, each method achieves a globally optimized reconstruction with respect to

a different cost function.

One important advantage of the proposed method is flexibility. The method can deal with

an arbitrary number of images taken from different tilt angles. The choice for image pair

used in each moving stereo reconstruction can be flexible too. The main drawback of the

method may be its computation cost. One of future work could be to improve

computational efficiency. However, in reality, computation in reconstruction is not the

most time-costly step. Steps, including specimen preparation and marker identification

for alignment, are more time-consuming procedures. It may be necessary to improve the

efficiency of these steps as well.

Finally, we would like to draw some analog between the proposed method and

tomography. It is very interesting to explore similarities between them. In fact, the

proposed algorithm employed some concepts and ideas developed in tomography. As

discussed in Chapter 1, tomography is a technique that reconstructs an image or a volume

from its projections. The reconstruction involves two operations: backprojection and

filtering. Backprojection simply integrates or sums all the values from each projection as

expressed in Equation (1.12). The integration process discussed in section 4.2.2 is

actually very similar to the backprojection operation. It also uses sum or weighted sum to

obtain the best estimation. The only difference between them is that backprojection in

tomography sums the intensity values of each projection while our integration process

performs a probability backprojection that sums the probability values from moving

stereo reconstruction. Intuitively, this backprojection type operation makes sense. First, it

accumulates all the information from each stereo reconstruction. Secondly, it treats each

projection equally, which is a very important property. It means that each projection has

the same influence in determining the final result. And the result is independent to the

order of projections. The other process in tomography is the filtering. In our volumetric

reconstruction method, the integration process can be considered a filtering process. As

indicated in Equation (4.14) or (4.21), the integration process involves an averaging or
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weighted averaging operation. Equivalently, it conducts low-pass filtering which is

contrary to high-pass filtering used in tomography. Therefore, our proposed method

shares a similar computational architecture to that of tomographic reconstruction. This

observation suggests a connection between computer vision based reconstruction and

tomographic reconstruction. More connections could be explored as part of future work.
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As discussed in previous chapters, computer vision based reconstruction recovers 3D

structure based on the geometric relationships between images. The imaging function

doesn't play a role in reconstruction. This type of methods could be a good choice when

the imaging relationship between the 3D object and its images is very complicated or the

imaging function is unknown. In this Chapter, we turn our attention to tomographic

reconstruction in which the imaging function is that the value in each projection is the

integral of the object values along projection direction. In transmission electron

microscopy, the imaging relationship between projection and object can be approximated

to meet this form. Electron tomography has been a fundamental technique that applies

tomographic reconstruction methods to study macromolecular or sub-cellular level

structures, such as virus or ribosome (Frank 1996).

In this Chapter, we will focus on a special case of tomography, namely discrete

tomography. Discrete tomography deals with a set of tomography problems in which the

object to be reconstructed is composed of a discrete set of materials each with uniform

values. In other words, each point in the object space only takes a finite number of

possible values (Herman and Kuba 1999). Such condition or constraint is termed

discreteness in this Chapter. In structural biology, there are many cases that meet this

condition. For example, the specimen that we study often consists of only a few different

objects and each object tends to have one different value. By explicitly modeling this

information, discrete tomography aims to achieve better reconstruction quality and

accuracy even with a fewer projections.

87



Not limited to biological structures, this Chapter studies discrete tomography in a rather

general format. As described in Chapter 1, 3D tomographic reconstruction can be built

upon 2D reconstruction by stacking 2D slices. Similar treatment is applied in discrete

tomography. In this Chapter, we will focus only on 2D case of discrete tomography, in

which 2D image is reconstructed from its projections. The methods should be easily

applicable and extendable to 3D or multi-dimensional reconstruction. To avoid confusion

with the term "discrete tomography", this Chapter will use the term "conventional

tomography" to refer to the tomography that is commonly known to everyone.

5.1 Introduction and Overview

In inverse reconstruction, there are often cases where the volume (3D case) or image (2D

case) to be reconstructed takes only a finite number of possible values. Questions often

arise about whether knowing this information helps to make better reconstruction, and if

so, how this information can be incorporated into reconstruction algorithms. Discrete

tomography is a technique that attempts to address this kind of problems. Recently, it has

drawn great attention in many applications, such as medical imaging and electron

microscopy (Herman and Kuba 1999) due to its high reconstruction quality and accuracy,

even with a small number of projections.

The simplest form of discreteness is the binary field. The reconstruction of binary field

from its projections is often called binary tomography. It is probably the most studied

form of discrete tomography (although the name of binary tomography came much

earlier than that of discrete tomography). Without loss of generality, a binary field can be

represented by a (0,1) field, where pixel values of 1 and 0 correspond to presence or

absence of the object at a specific location. Projections are simply sums of zeros and

ones. For example, Figure 22 depicts a 2D binary field defined on a finite lattice and its

two projections. Reconstruction from these projections has been an interesting subject in

discrete mathematics and geometry (Ryser 1957; Salzberg 1995; Gardner and Gritzmann

1997; Vardi and Lee 1998; Yagle 1998; Herman and Kuba 1999). It has been
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demonstrated that a binary image (or field) can be reconstructed from as few as only two

projections (Kuba 1984; Fazekas, Herman et al. 1998; Vardi and Lee 1998). However,

theories and approaches developed for binary tomography are hardly applicable to more

general discrete tomography problems where the reconstructed objects are composed of

multiple gray levels.

2 1 0 1 0 0
2 1 1 0 0 0
3 1 1 0 1 0
1 0 0 0 0 1

3 2 1 1 1

Figure 22 A binary lattice and its row and column projections

To approach general discrete tomography problem, Frese et al (Frese, Bouman et al.

1998) proposed an iterative coordinate descent (ICD) algorithm that deals with multi-

level discrete tomography. The reconstruction is formulated as a conventional

tomography problem. The discreteness is simply modeled as a constraint to an

optimization criterion. ICD is a greedy algorithm that performs a pixel-wise update. At

each update, current pixel loops through all possible discrete values and chooses the one

that maximizes the optimization criterion with all other pixel values fixed. This process is

clearly very expensive in terms of computation. In addition, since the optimization is

obtained only at a pixel level at each update, the reconstruction is very likely to be

trapped by local maximums, instead of the global maximum. More recently, Chan et al

(Chan, Herman et al. 1999) developed a two-step reconstruction procedure that is capable

of dealing with general discrete tomography. This procedure performs a conventional

tomographic reconstruction followed by a classification (or segmentation) process, i.e.,

discrete tomography is broken into two separate processes: conventional tomography and

segmentation. It allows us to take advantage of rich literature in both well-studied fields.

However, this procedure also loses an integral view about the problem. One common

observation from both papers is that they both treat discrete tomography as a special case

of conventional tomography and use existing models of conventional tomography in

discrete tomography.
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The approach this Chapter will propose, sharing the same theme as (Chan, Herman et al.

1999) and (Frese, Bouman et al. 1998), attempts to develop a framework for general

discrete tomography, but with two key contributions. First, a new and integrated model is

proposed for discrete tomography. This model incorporates discreteness into a Bayesian

formula. A class label variable is defined to denote the probability of each object point

taking one particular gray level. The problem of discrete tomography is then converted

into a Bayesian labeling process, assigning a unique label to each object point. Second,

the relationship between discrete and conventional tomography is derived

mathematically, showing that conventional tomography can be treated as a special case of

discrete tomography. This is quite contrary to what previous studies suggest.

The algorithm presented here is partially inspired by researches in adaptive segmentation

(Wells, Grimson et al. 1996; Kapur, Grimson et al. 1998). In a more general sense,

discrete tomography shares the same roots as segmentation. Both problems attempt to

recover a discrete-valued field from continuous-valued observations. In adaptive

segmentation (Wells, Grimson et al. 1996; Kapur, Grimson et al. 1998), each discrete-

valued label class was modeled by a Gaussian function. An expectation-maximization

(EM) algorithm was developed that treats the underlying label classes as hidden

variables. The computation then alternates between estimating these classes and the

inhomogeneous biases accounting for the offset of the real value to the class value. This

approach has proven to be very successful (Wells, Grimson et al. 1996; Kapur, Grimson

et al. 1998). We take a very similar approach in the development of our EM algorithm for

discrete tomography. Our algorithm also uses continuous Gaussian functions to model the

discrete-valued label variables. Details will be discussed later in the Chapter.

The EM (Dempster, Laird et al. 1977; Lange and Carson 1984; Green 1990) and other

statistical methods (Shepp and Vardi 1982; Lange, Bahn et al. 1987; Mumcuoglu, Leahy

et al. 1994) have been used widely and successfully in conventional tomography. The

advantages are that they offer a great deal of flexibility in modeling and improve the

performance in various situations, such as unusual projection geometry, uneven-sampled
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projections, noisy situations, etc. However, the main drawback is that they have a very

high computation cost due to their iterative nature. In search of an efficient algorithm,

this Chapter introduces some reasonable approximations and relaxations. A linear filter is

derived, with which the reconstruction can be computed efficiently. The process

resembles efficient reconstruction procedures used in conventional tomography, namely

the backprojection and high-pass filtering.

5.2 Review of Statistical Reconstruction

Before proceeding to describe the proposed method for discrete tomography, this section

reviews some statistical reconstruction methods used in tomography. Some ideas

presented in these methods are adopted in our algorithm for discrete tomography.

In Chapter 1, we have reviewed some commonly used tomographic reconstruction

methods, including some efficient algorithms (such as FBP or FABP) and iterative

methods using linear algebraic techniques. Statistical reconstruction methods are a

different set of iterative methods. They formulate and develop the algorithm by

introducing statistical models. Since statistical methods are iterative methods,

computation is typically expensive and convergence may be slow. But on the other hand,

since noises are properly modeled in the methods, statistical methods reduce statistical

noise and artifacts to achieve better reconstruction quality. This property is particularly

appealing to applications in PET or SPECT because these modalities generally produce

low-quality projections with low spatial resolution. Conventional methods such as FBP

don't work well on these situations.

In statistical methods, reconstruction is considered an estimation problem (Shepp and

Vardi 1982; Green 1990). The goal is to obtain the best estimate of the object x from its

projections y. Each projection is modeled by a Poisson process:

Yt ~ Poisson Z atsxs, (5.1)
(S
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where i and t index the object and projections. ai is coefficient representing the emission

contribution of pixel xi on projection point yt. If the Poisson processes are independent for

all i and t. The conditional probability p(yx) is then given by:

exp (-Z ats xs )(Z ats xs)
Xy I x) = H Y-1 (5.2)

tyt!

If x is considered deterministic but unknown parameters, Equation (5.2) is essentially the

likelihood function. As discussed in Chapter 1, we know that the best estimations may be

given by the maximum likelihood (ML) method, i.e.,

. = arg max p(y I x) . (5.3)
x

Solving this equation is not trivial at all because a large number of parameters (all xs)

need to be estimated. The article by Shepp and Vardi (Shepp and Vardi 1982) tackled this

problem by using an expectation-maximization (EM) algorithm:

Zts = ytatsxs (5.4)
1 ats' ats'
S1

z Zts
.s = t (5.5)

Y ats
t

In general, the EM algorithm is an approach for maximizing a likelihood or a posteriori

distribution when some data are "missing" or "hidden" in some sense, and observation of

these hidden data would have greatly simplified the estimation of parameters (Green

1990). The EM algorithm is an iterative method, alternating between two steps: E-step

and M-step. E-step estimates the expectation of the hidden variables using current model

parameters. M-step conducts maximum-likelihood estimation of model parameters given

current hidden variables. In the above formula, Zts is introduced as hidden variables.

Equation (5.4) is the E-step and Equation (5.5) is the M-step. The EM algorithm

alternatively computes one of the two equations (Equations (5.4) and (5.5)), assuming the

other is given. The whole process is often called EM-ML algorithm (Lange and Carson

1984; Lange, Bahn et al. 1987; Green 1990; Ollinger 1994).
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If combining Equations (5.4) and (5.5), the estimation of x from y can be obtained by a

one-step iterative procedure:

kX") = ' s'' (5.6)
1at

where (n) is the iteration number. k "-) is the previous estimation of xs, and <" is the

updated estimate based on previous estimation. This iteration is repeated until apparent

convergence.

When x is considered random variables, the estimation of x can be obtained by maximum

a posteriori (MAP) method based on Bayesian theorem, i.e.,

A(y I X)p(X)x = arg max p(x I y) = arg max . (5.7)
X X p(y)

Similar to the EM-ML algorithm, an EM-MAP algorithm can be developed (Levitan and

Herman 1987; Chen, Johnson et al. 1990; Green 1990; Herman and Odhner 1991; Chan,

Herman et al. 1997). Markov random field (MRF) is often used to model a priori

probability, p(x), in the EM-MAP algorithm.

5.3 Description of Method

In this section, we will describe the proposed method of discrete tomography in details.

The method is developed within a Bayesian framework. Some modeling concepts and

procedures discussed in previous section are adopted in the method.

5.3.1 Notations

As a convention, a variable name without subscript will denote a vector representing a

whole set of the same type of variables if applicable. When a vector is used to describe an

image (i.e. 2D matrix), it refers to its row-wise representation. For example, a pixel (i, j)
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in an image of size wxh corresponds to a variable at the index (i-w+j) in the vector. An

index mapping is given by:

(i,1) *- (i-w+j). (5.8)

This representation applies to both object space and projections. Projections are

organized in an image format, called sinogram. Each row of sinogram represents a

projection at the corresponding direction. If there are h projections and each projection

has w samples, sinogram is an image with size wxh.

The notations are defined as follows and will be used throughout this Chapter:

i orj: an index variable used to index the object points in a vector form. i (or]) =

1,2,.. .,n where n is the total number of points in the object field. For example,

if the object image has size of wxh, n = w-h.

t: an index variable used to index the points in a vector form of the sinogram. t

1,2,.. .,m where m is the total number of points in all given projections. If the

sinogram has size of wxh, m = w.h.

Ui: a random variable referring to the i-th object point or its value (i = 1,2,...,n).

U: a vector variable representing the whole set of object points, {ui}.

vt: a random variable referring to the t-th projection point or its value (t

1,2,...,m).

V: a vector variable representing the whole set of projection points, {vt}, i.e. the

sinogram.

ati: a coefficient relating the i-th object point to the t-th projection point. It is

determined by projection geometry and projection physics. We assume they

are known and accurate.

g: an index variable used to index the class labels. g = 1, 2,...,s indicates there

are s discrete levels in the object field to be reconstructed. s is typically

known.

p(g): the ideal value of the g-th class (g =1,2,...,s), representing each gray level in

the discrete object field. They may not be known but would be very helpful if

known.

94



Fig: a class label for the i-th object point and Fi = g which means i-th object point

takes g-th gray level.

F: a vector representation of the whole set of class label variables, [Flo, ... , Fm1,

F20, ... , Fns]T. The vector has size of nxs.

wig: a posteriori probability of object point i belonging to the class g, given that ui

is known. This is the variable the algorithm attempts to estimate for discrete

tomography.

wi*: a vector formed by wig over all g, i.e., [wi . wis].

P[]: a probability function of some random variable.

(ptg
2 : the variance of i-th object point ui taking g-th class value.

a- 2 : the variance of additive random noise at projection point vj.

As a summary, we have a discrete valued field (the image) with total s discrete levels.

The ideal value of each discrete level is denoted by p(g), g =1,2,...,s. The goal of discrete

tomography is to reconstruct this field from its projections represented as a vector v. We

introduce a new set of variables wig, representing the probability of an object point (e.g.,

i-th point) belonging to one of the discrete classes (e.g., g-th class). Clearly, the sum of

wig over all g is equal to 1, or

L wig = I , Vi . (5.9)
g=1

In an ideal case, any wig should be either 0 or 1, and the vector wi* should be drawn from

the set {[100...0]K, [010...Of ... , [000... 1 ]T'}, indicating each object point belongs to

only one class exclusively. The reconstruction of discrete tomography is then equivalent

to a labeling process, assigning such vector to each object point. However, this ideal case

is difficult to approach in practice. In search of a computable algorithm, we relax wig to

be a variable that may vary continuously between 0 and 1, but still satisfy Equation (5.9).

In this case, the vector wi* will only imply the most likely class that an object point may

belong to. If it is necessary to enforce discreteness, a discrete winner-take-all scheme can

be employed (Elfadel 1993). For example, we can simply set the largest wig to be 1 and

all others to be O's, and the vector wi* will then be one of those unit vectors.
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Along with variable wig, another set of variables, u, is also introduced to describe the

object field. u is a random variable which models a noise-added version of discrete object

field. Both sets of variables are unknown and need to be estimated from projections v. As

described later, we employ an EM algorithm to alternately estimate these two unknowns

at the same time. In the EM algorithm, variables wig are treated as hidden variables.

Details of the EM algorithm will be presented in later sections.

We assume that each class value p(g), g =1,2,...,s, is known in advance. But in practice,

it may not be the case. If so, another level of estimation can be developed and

incorporated into the EM algorithm. Frese et al (Frese, Bouman et al. 1998) presented a

region-based method to estimate the discrete levels concurrently with the reconstruction.

The same idea is adopted in our algorithm when class values are not known.

5.3.2 Models Development

The models are built upon a Bayesian framework. The first model is for object field. Let

us assume that each point in the object field takes one of s (g=1,2,.. .s) discrete-valued

gray levels, i.e., there are s sets of objects in the field and each set of object has the same

value. Due to the stochastic nature of variations, the value at each point is a random

variable. Its probability can be modeled as a Poisson distribution (Shepp and Vardi 1982;

Lange, Bahn et al. 1987; Mumcuoglu, Leahy et al. 1994):

P[ug IFi = g]= ep(Fi) (5.10)

However, since a Poisson distribution is limited to an integer variable and is impossible

to differentiate with respect to the variable ui, a Gaussian approximation is adopted:

P[u1 Fi = g] 2 e (u ())2 Vi (5.11)
2 xpig

where Tpg 2 is the variance of i-th point u, taking g-th class value. To be comparable to the

Poisson model, the variance pg can be chosen close to u(fi). Since ]i7=g (g-1,2,...s) is
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finite, marginal probability can be computed from the sum of conditional probability over

all g:

S

P[u1 ]= P[ui I Fi = g] -P[1F = g], Vi (5.12)
g=1

where P[T,=g] is a priori probability distribution of g-th class. Let us first consider

P[Pi=g] to be known and stationary. Later, we will use a Markov random field (MRF) to

model a more general case. We further assume that the probability function of each

object point is independent to each other. Therefore, the model for the whole set of object

points {ui}, or u, is given by:

n

P[u]= H ( E P[ui | 7i = g] -P[Fi = g]) (5.13)
i=1 g=1

The second model is for projections. The projection is simply assumed to be the integral

(i.e., the sum) of the emission or transmission along a projection path. It accumulates all

contributions from the object points on the path, weighted by coefficient a1. The

projection value is given by:
n

v= a,, -u + P, , t = 1, 2,...m (5.14)

where pt is modeled as additive zero-mean Gaussian noise. The coefficient a't is assumed

to be known. The conditional probability of v is then derived as:

1 -~(vt -- ali ui 2 a20
P[vt | u] = _ e (5.15)22

22where o is the variance of P. Similarly, we also assume P[vtIu] is independent for each

vl. The model for whole set of projection points {vt}, or v, is then expressed as:

P[v | U] =I P[vt |U] (5.16)
t=1
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5.2.3 EM Algorithm Development

With Equations (5.13) and (5.16), the a posteriori probability function is then formulated

and written as:

P~ulv]- P[vlu].P[u] _
P[v]

HP[vt Ju]-H(ZP~uj |Tj=g]-P(Fi =g])
t i g

P[v]
(5.17)

where P[v] is independent of u and can simply be considered a normalization constant.

The log form of Equation (5.17) becomes

in P[u I v] = I InP[vt |u]+ Iln(Z P[ui | Fj = g] -P[(j = g])+const. (5.18)
g

According to Bayesian theorem, the best estimation of u from observation v is the one

that maximizes the a posteriori function. This maximum-a-posteriori (MAP) estimation

is formulated by

u = arg max P[u I v]
U

A necessary condition is that its derivative to any ui equals zero:

a augC9_P[vJU] EP[F=g]- P[Ui IFp g]
)Uj -L ag

P[F i=g]-P1u |1 i=g]
g

U=2

= 0 Vi. (5.20)

Substitution of Equations (5.11) and (5.15) into Equation (5.20) yields:

r (aq -uj -vt)

L- -jati +
t (Tt2

ug -p(g)
-ZP[Fi =g].P[ui JF =g] 2

g 90ig

ZP[Fj=g]-P[ujjF1 =g]
g

=0 Vi. (5.21)

Let us define

P[Fjg=g]-P[ug|i J=g]
wig = P[F =g].P[u\ jF =g]

g

It is easy to verify that:

a -nP[
au1

(5.19)

Z
t

P[vt |u]

(5.22)

S
L wig 1,

g=1

Vi. (5.23)
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wig contains unknown variable ui. If u, is given, wig can be computed by Equation (5.22).

wig actually represents a posteriori probability of point i belonging to the class g. Using

Equation (5.22), Equation (5.21) is rewritten as follows:

wig i+ aua W Wg) ati Vt at u = iVi (5.24)
U2 + 2 Ui 2 2r

g (pig j t at g(Pig t I

Equation (5.24) forms a linear equation about u1 . If wig is known, u can be obtained by

solving this linear equation. Therefore, Equations (5.22) and (5.24) constitute an

expectation-maximization (EM) algorithm. There are two iterative steps: calculating wig

from Equation (5.22) based on the current u, and computing u from linear Equation

(5.24) using current wig. This iteration eventually converges to a solution that maximizes

the a posteriori function in Equation (5.19).

In order to exploit more insights from Equation (5.24), let us consider a simple case

where we assume all q 2=02 for any t and 9ptg
2 =P 2 for any i or g. Thus, Equation (5.24) is

simplified as:

12 1 wigu + 2 Z E(atiaj 1 w p(g) + 2 Z ativt at u = u^,Vi (5.25)
(Pg 9 j t (Pg CY t

Let us denote

cj= jg P (g), Vi. (5.26)
g

Then Equation (5.25) is re-written as:

a2 T a2 T
u+A Au= - c+A v (5.27)

(P 2(P

where A is a mxn coefficient matrix with its element being at. u and v are column

vectors representing the object field and projections respectively. c is a nx1 column-

vector and its element is ci, i.e., [c 1, ... , cn]T.

It is very interesting to see that conventional tomography is actually embedded in

Equation (5.27). If we remove the first terms on both sides of Equation (5.27), it simply

becomes the equation for conventional tomography, ATAu = ATv. It also implies that the

essential difference between discrete and conventional tomography lies in those two first
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terms which account for the effect of discreteness. This observation is very powerful. In a

general sense, Equation (5.27) addresses a generalized tomography problem, explaining

the relationship between discrete and conventional tomography. In this format, discrete

tomography is a more generalized form of tomography and conventional tomography is

merely a special case of such generalization where the discreteness terms are simply

neglected. The variances, c and g, in Equation (5.27) are controllers that can be used to

tune the degree of discreteness in a generalized tomography problem, with ideal discrete

tomography and conventional tomography at two ends, respectively. Figure 23

demonstrates such relationship.

32 2 2 2 2

u=c 2 u+A Au= 2 c+A v AAu =A V

ideal discrete conventional
tomography tomography

Figure 23 The relationship between discrete and conventional tomography

5.3.4 An Efficient Algorithm for Linear Equation

Equation (5.27) is a mxn linear equation with respect to unknown variable u. Solving this

linear equation is generally very computation-costly. By introducing a computationally

efficient filter, this section derives an efficient algorithm to solve Equation (5.27).

As argued in previous sections, conventional tomography is embedded in discrete

tomography of Equation (5.27). Therefore, the solution for conventional tomography may

help to develop an efficient algorithm for Equation (5.27). In Chapter 1, we reviewed

some efficient algorithms such as filtered backprojection (FBP) and filtering after

backprojection (FABP). Both FBP and FABP algorithms involve a filtering process and a

backprojection process but in an opposite order. We also discussed that there exists a

duality between these methods and linear algebraic methods. The duality indicates that

matrix A is equivalent to a projection operator and AT is a backprojection operator. In

addition, (ATA).I corresponds to the high-pass filter used in FBP method while (AAT)-l is

equivalent to the high-pass filter of FABP method.
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We utilize these duality properties to develop an efficient algorithm for discrete

tomography of Equation (5.27). The derived efficient algorithm is very similar to the

efficient algorithm in conventional tomography. By multiplying (ATA)l to both sides of

Equation (5.27), the solution of Equation (5.27) may be given by:

= 'jA TA +I (ATA) 2 c+A vJ (5.28)

where I is an identity matrix. This computation can be considered to contain two

2

processes: a quasi-backprojection operation represented in the last term 2 c+A v , and

a filtering process represented by the first two terms, 2 (A TA +I (A A)

In FABP method, the high-pass filter represented in Fourier domain is given by (Rowland

1979; Toft 1996):

H(Q,,Q,) = Q 2 +Q 2  (5.29)

where Qx and Q, are frequency coordinates in 2D Fourier domain. Therefore, (ATA) in

Equation (5.28) essentially performs this high pass filter. In order to applying this

filtering to Equation (5.28), row-vector representation of object points has to be reshaped

into its 2D form, i.e., u(x, y) where x and y are coordinates in 2D space domain, and with

U(QX , Qy) as its Fourier transform. Substitution of Equation (5.29) into (5.28) gives us:

U(Q,,Q,)= HQ Y B(Q,,IQ,) (5.30)
aH(QX,,Q,) +I

where coefficient a =o2 / 2 is a constant. B(QX, Qy) is the 2D Fourier transform of the

a2 T
term -c+A v). u(x, y) is obtained by taking an inverse Fourier transform of Equation

(5.30). It is interesting to note that coefficient a can be used to control the discreteness.

As coefficient a vanishes, Equation (5.30) simply becomes conventional tomographic

reconstruction by FABP method. This confirms the relationship illustrated in Figure 23.
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Using the filtering method discussed above, computation required to solve Equation

(5.27) is greatly reduced. However, when implementing high-pass filter of Equation

(5.28), some issues arise concerning the quality and performance. To achieve a result

comparable to FAB method, certain measures need to be taken when using FABP method

(Suzuki and Yamaguchi 1988). For example, experiments show that reconstruction

quality improves when filtering is applied on an extrapolated larger size image area. Our

algorithm adopts these measures.

5.4 Algorithm Implementation

As described in previous sections, the EM algorithm iteratively alternates estimations of

wig and u, constituting two steps: E-step and M-step. E-step estimates wig from Equation

(5.22) assuming u is known. M-step estimates u from Equation (5.28) given wig, and may

be computed efficiently by Equation (5.30). They are summarized as follows:

E-step: <_P[ri =g]-P[ug Ir =g] (5.31)
ig P[Fi=g]-P[uijFi=g]

(AT-) 1 T )- C
M-step: u +- A A +I (ATA) c+A v (5.32)

5.4.1 A Priori Probability Model

In E-step of Equation (5.31), a priori probability P[F =g] is assumed to be stationary. In

this section, we employ a Markov random field (MRF) to model non-stationary a priori

probability. As discussed in Chapter 1, MRF models are often used to enforce local

regularity by introducing correlation between a site and its neighbors (Geman and Geman

1984; Li 1995). It has been successfully used in many applications to model various local

properties, such as smoothness, continuity, etc. (Geman and Geman 1984; Geiger and

Girosi 1991; Kapur 1999) Based on MRF theories, the joint probability function is

defined as:
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S-IE(F) 1F)
P[r]= -e T  =-e cEC (5.33)

Z Z

where T is some constant, called the temperature. F is the vector representation of all Fi,

i.e., [F], ... , Fn]T. Z is simply a normalization constant. E(T) is an energy function. C is a

collection of all possible cliques defined upon a neighborhood system N. Ve(F) is a clique

potential function that models the interactions among neighbors.

In our implementation, we limit N to be a first-order neighborhood. In other words, the

neighbors of a pixel (ij) at an image is defined as:

N = {(i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)} . (5.34)

Since we use the vector representation of the image, corresponding neighbors need to be

mapped by Equation (5.8). Furthermore, we only consider single-site and pair-site cliques

discussed in Chapter 1. We define clique potential function at each site and its

neighborhood. The energy function is chosen as:

E(F) = Lg,,-( (Fig) -p(Fi,,,)) ), (5.35)
S=0 i'EN

where i' is a neighbor of i based on the defined neighborhood Ni. g and g' are the class

levels that Fj and Fi, take. Xgg, is called color interaction coefficient. It reflects the

interaction effect between neighboring variables. It may encourage or penalize certain

combination of neighbors. For instance, if we want to encourage uniform neighborhood

and penalize abrupt changes, we may set Xgg, be zero when g=g', and set Xgg, be positive

when gwg'. Usually the color interaction coefficient is defined as a color interaction

matrix (Elfadel 1993). In our implementation, two color interaction matrices are adopted

for class level of 2 and 3, respectively, .

0 1 2~

J2x2 = 1] j 3 ,=[ 1 0 1. (5.36)

2 1 0-

Note that the reason we use the value of class level in Equation (5.35), instead of class

level itself, is because we think the value of each class level is more important. There are

other approaches to define the energy function, such as the ones used in (Elfadel 1993;
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Kapur 1999). In general, one basic rule in defining energy function is that the energy is

smaller when neighbors are more alike and vice versa. Under this definition, the MRF

model will encourage smoothness and penalize discontinuities in the neighborhood.

Solving MRF is usually not trivial. In implementation, we adopt a Mean-Field (MF)

approximation method developed in (Kapur 1999). The basic idea of MF approximation

is that a priori probability is approximated by its mean field at each iteration. The mean

field is estimated from current neighbors' values and their interactions.

5.4.2 Initialization

The EM algorithm is an iterative method. A good initialization not only speeds up

convergence but also helps to prevent the maximization step from being trapped at local

maximums. As discussed earlier, coefficient a (=o-2/p2) can be used to control the

discreteness. At initialization, we start from a = 0, with which M-step of Equation (5.32)

essentially computes u as conventional tomographic reconstruction. In E-step, we start

with an uniformly equal a priori probability P[Pi=g]. wig is calculated based on u from

M-step. As iteration goes on, we gradually increase the coefficient a and estimate a

priori probability using MF approximation at each iteration.

5.4.3 Estimation of Unknown Class Values

As discussed earlier, the class values may be unknown in advance. In this case,

estimation of the class values is necessary. We adopt the region-based method proposed

by Frese et al (Frese, Bouman et al. 1998), and incorporate this process into our EM

algorithm. At each EM iteration, the class values are re-estimated, based on the current

reconstruction result, i.e., wig and u values. The process of estimating class values itself is

an iterative process. It resembles an EM-ML procedure discussed earlier in Equation

(5.6) (Shepp and Vardi 1982; Green 1990). But in this case, the entire set of points

belonging to the same class is treated as one single unit and updated iteratively. Given

projections and current wig, the iterative estimation process can be derived as:
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n)9Sii ti I ig P

p9"I < ' w ig ,for g = 1, 2,..., s. (5.37)

t i

where (n) is the iteration number. The experiment shows that this iterative estimation

process converges very quickly. Therefore, only several iterations are taken in our

algorithm. The initialization of class values can be chosen from the classification of

conventional tomographic reconstruction result.

5.5 Experiment and Results

The experiments are carried out on a synthetic phantom shown in Figure 24. The

phantom contains three gray levels including background level, with intensity values pg =

{0. 11, 0.57, 0.99} where g = 1,2,3, respectively. The projections are calculated at evenly

spaced angles. We conduct three experiments with different number of projections, i.e.,

10, 20 and 30, respectively. The proposed algorithm is applied to obtain discrete

tomographic reconstruction. In all experiments, we assume pg's are unknown but we

know there are three levels of discreteness. In the implementation of the algorithm, we

employ a MRF model to enforce local smoothness and use the color interaction matrix of

Equation (5.36). Results are compared to reconstructions done by conventional filtered

backprojection method. Figure 25 exhibits these reconstructions in parallel.

Figure 26 plots a quantitative measure of the reconstruction quality. It is measured by

root mean square error (RMSE) with respect to the original phantom in Figure 24. The

comparison demonstrates that reconstruction using our algorithm improves the result

greatly, even when a small number of projections are given. In addition, for both cases,

the RMSE error decreases considerably as more projections are used for reconstruction.

Using our proposed algorithm speeds the error reduction. In other words, our algorithm

can achieve even better quality with fewer projections than conventional FBP method

with a larger number of projections.
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Figure 24 A synthetic discrete-valued phantom

(a) (b)

(d)

(c)

(e) (f)

Figure 25 Reconstruction and comparison: (a,b,c) reconstructions using filtered
backprojection (FBP) from projections of 10, 20, 30, respectively; (d,e,f) reconstructions

done by our algorithm from projections of 10, 20, 30, respectively.
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Figure 26 RMSE measure of reconstructions by proposed algorithm and FEB method

5.6 Discussion and Conclusion

We have described an integrated model for discrete tomography. The model incorporates

discreteness into conventional tomography. An EM algorithm has been derived to

accomplish discrete tomographic reconstruction. The algorithm can computed very

efficiently with a derived high-pass filter. In comparison to the results obtained with

conventional tomography, our proposed algorithm demonstrates improvement in the

quality of the reconstruction even when a small number of projections are given.

In the proposed algorithm, discreteness can be controlled through a single coefficient,

i.e., a (=o//). When it vanishes, the algorithm simply degenerates to conventional

tomographic reconstruction. The relationship depicted in Figure 23 has very interesting

and powerful implications.

The proposed algorithm uses Markov random field (MRF) model to encourage local

smoothness in the object field. Its importance may not be obvious when the object field is
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not deteriorated. A MRF regularizer works especially well when noise exists in the field.

Besides modeling local regularity, MRF can also be used to model other a priori

information, such as geometric information, geometric relationship (Kapur 1999), etc.

Generally, the more we know about the object field before reconstruction, the better

results we can achieve.

The proposed models and algorithms resemble an adaptive segmentation process. In fact,

the approach described here can be treated as an integrated version of two separate

processes: tomographic reconstruction and segmentation. Such 2-in-1 processes can

useful in some medical imaging applications.
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In this thesis, we have studied two different types of 3D reconstruction from 2D images:

computer vision based reconstruction and tomographic reconstruction. The main

difference between them is the imaging function that relates the intensity value of the

projection to the value of the object. In tomographic reconstruction, the imaging function

between the object and images is known and its form has to satisfy the projection-slice

theorem. The computer vision based reconstruction, on the other hand, deals with cases

where imaging function is complicated or unknown. The reconstruction is obtained by

using geometric relationships among projections. This thesis has attempted to find both

differences and connections between these two types of reconstruction. In Chapter 4, we

suggested and explored some connections between them from an algorithm point of view.

More studies could be conducted in the future to generalize the relationships.

Different algorithm for each type of reconstruction is developed in the thesis. As

demonstrated in the experiments, specific focuses have been given to the application of

3D reconstruction of biological structures. With these experiments, we hope to bring both

types of reconstruction to the attention of biological community. At the mean time, we

would like to point out that both algorithms developed in the thesis have their

generalities. They should be applicable to applications in other areas as well. Future work

can extend the proposed algorithms to other applications.

Reconstruction provides accurate 3D structure for researches to understand the structure.

It is often the first step in most researches. The next step would be to provide

measurements based on the reconstructed 3D structures. It would be useful to be involved
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with this part of researches in the future so that we may streamline reconstruction and

measurements of the 3D structures.

Finally, we would like to mention that both computer vision reconstruction and discrete

tomography remain largely unsolved problems. The intention of the thesis is not to

provide perfect solutions for these problems, but rather to illustrate some possible ideas to

approach the problem. For these ideas to hold in general applications, a great deal of

research is needed not only in proving mathematical formulas but also in applying

techniques to solve more real-world problems. These should be one of our main efforts in

the future.
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In our cytoskeleton research, we often make measurements from only two images (image

pair). Some procedures become very common in the study. This appendix describes some

Java-based graphic user interfaces (GUI) that we developed to automate or help these

procedures.

A.1 Alignment Program

The alignment method proposed in Chapter 2 requires one manually pick corresponding

markers from each image. This process may be very labor-intensive. The Java program is

developed to alleviate the workload. The program provides a GUI that allows user to pick

markers, modify them, save or load them. The saved marker data is then fed into a matlab

program which implements the algorithm discussed in Chapter 2. The matlab program

computes the alignment and aligns images accordingly.

Figure A. 1 shows a screen shot of this alignment program GUI. Some key features are

summarized as follows:

. save and load markers into/from a file with a defined data structure.

. pick markers by mouse click in a matched order between two images.
. modify marker position by mouse drag or keyboard arrows.
. run animation function (under Function menu) that helps users to identify the marker

more easily. It pops up a separate window in which the images are cyclically
displayed. The scrollbar is used to adjust the speed. Figure A.2 exhibits a screen shot
of such animation window.
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1 (X=53,Y=141) 1 (X=61,Y=141)
2 (X=157,Y=242) 2 (X=154,Y=241)
3 (X=101,Y=334) 3 (X=102,Y=333)

Figure A.1 Screen shot of GUI for alignment program
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Right image

C Auto switch

Figure A.2 a screen shot of animation window
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A.2 Manual Stereo Reconstruction Program

This program is developed to help users who would like to do reconstruction manually. It

was originally developed by Celine Paloc, a visiting student here in 1998. Some new

features and functions are added in the new version. Figure A.3 shows a screen shot of

the main window of stereo reconstruction program. Figure A.4 displays 3D visualization

of the reconstructed filaments. In 3D visualization window, Java3D API is used for

graphics.

23 (X=224,Y=345) (X=251 ,Y=298) 23 (X=223,Y=345) (X=235,Y=298)
24 (X=51,Y=238) (X=9,Y=270) 24 (X=39,Y=238) (X=5,Y=270)
25 (X=51,Y=241) (X=5,Y=301) 25 (X=43,Y=241) (X=4,Y=301)

Figure A.3 a screen shot of stereo reconstruction program

Some key features of the program are listed as follows:

. draw matched lines in each image.

. modify line's position by dragging the end point or using keyboard arrows.

. save and reload matched line pairs into/from the file.
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. compute reconstruction and save reconstructed lines into a file.

. pop up animation window which is the same as in alignment program.

. pop up 3D visualization window which displays and updates the reconstructed
filaments in real time.

. use mouse for rotation, zoom, and translation in 3D visualization window.

Figure A.4 a screen shot of 3D visualization window
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Studies have demonstrated that vascular endothelial cells change their shape when

subjected to fluid shear stress (Dewey, Bussolari et al. 1981; Remuzzi, Dewey et al.

1984; Depaola, Gimbrone et al. 1992). This morphological accommodation reflects the

ability of cells to respond to external forces. Quantitative measurements of such

morphological change are very important for understanding the cell dynamics and

mechanics. This Appendix proposes and describes a statistical approach that offers a fast,

quantitative measurements of two morphological characteristics: cell alignment direction

and eccentricity (elongation ratio).

B.1 Cell Alignment Direction and Eccentricity

The proposed approach assumes that each cell has an ellipsoidal shape and the

distribution of the cell sizes is the same anywhere in the region we consider. The

direction of the cell alignment is chosen from the probability distribution function of cell

directions. The eccentricity (elongation ratio) is obtained by comparing the cell length

along the cell alignment direction (i.e. major axis) to the length along the perpendicular

direction (i.e. minor axis).

The directional representation discussed in Chapter 3 is used to obtain cell directions,

employing four quadrature filters to extract the orientation of each pixel relative to its

neighborhood (local region) (Granlund and Knutsson 1995; Westelius 1995; Cheng,

Hartmink et al. 2000). A probability function is then estimated from the data of cell

directions. The estimation offers a smooth function so that the maximum can be easily
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derived. Details of density estimation will be discussed in next section. In the probability

function, we pick the location of the function maximum as the dominant direction of the

cell alignment. This direction is also considered the major axis and its perpendicular

direction is the minor axis.

Cell lengths are statistically measured from line segments contained between each cell

along major and minor axes, respectively. Similarly, a smooth probability function of cell

lengths is estimated for each axis from cell length data. The maximums are identified

from probability functions and eccentricity (elongation ratio) is then calculated.

B.2 Probability Function Estimation

There are a number of techniques for estimating densities from data. Commonly, they are

categorized into two groups: parametric and non-parametric techniques (Duda and Hart

1973). If we have some general knowledge about the probability function and the

function can be characterized by a few parameters, the problem of estimating this

probability function essentially becomes to estimate the parameter. For instance, a normal

density is parameterized by its mean and variance. Parameter estimation is a classical

problem in statistics, and it can be approached in several ways. Maximum likelihood

(ML) estimation is a widely used method. In ML, the parameters are viewed as fixed but

unknown constants. The best estimation is defined to be the one that maximizes the

probability of obtaining the observed samples (Duda and Hart 1973). In the cases that

these parameters are random variables themselves, Bayesian methods are often used. In a

Bayesian framework, the best estimation is the one that maximizes a posteriori

probability. However, one important limitation of parametric techniques is that the form

of the probability function has to be known. In practice, this limitation does constrain the

use of parametric methods.

On the other hand, non-parametric approaches provide more flexibility than parametric

methods. By assuming a general model of the function, non-parametric methods use
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samples to directly define the model (Viola 1995). For example, Parzen-window density

estimation approach uses a very general form given by:

P(x, a) = I R(x - x, ) (B. 1)
Na xa ca

where a is sample data, Na is the number of sample data, and R is a valid density

function. The model described in Equation (B.1) approximates the actually probability

function. The Parzen window estimation is a local or windowed estimator. The estimation

at a query point, x, is the weighted sum over the samples inside a window. The samples

that fall outside of the window do not contribute. The weighting scheme and window size

are determined by the window function R. Therefore, the quality of estimation is very

dependant on the window function R. A common selection of R is a Gaussian function.

According to the model of Equation (B.1), there is one Gaussian centered at each sample.

The variance of each Gaussian determines smoothness of the estimated probability

function. A thorough study of Parzon window with the Gaussian window function is

given in Viola (Viola 1995).

In comparison to parametric estimation, non-parametric methods are computationally

expensive. Taking the Parzen window method as an example, the computation of

Equation (B. 1) is proportional to the size of samples and complexity of the window

function R.

B.3 Experiment and Results

To demonstrate the proposed approach, an example is examined and discussed as

follows. Figure B.1 exhibits the images of the cells before and after subjected to fluid

shear stress. Figure B.2 shows the corresponding distribution of directions and its

estimated probability function (in red) using the Parzen window estimation method. In

situation A, the distribution of directions is quite flat, which is true because free cells are

oriented randomly. In situation B, cells are shown to align along a dominant direction.

Figure B.3 depicts the distribution of cell lengths along the major and minor axes and
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their estimated probability function (in red). The eccentricity is defined as the ratio of the

length along major axis over the length along minor axis. From situation A to B, the ratio

changes from 1.04 to 1.86, which indicates the morphological changes of cell elongation

as subjected to fluid shear stress.

(a) (b)

Figure B.1 The cells exhibit the morphological changes under different conditions: (a)
situation A without fluid shear stress and (b) situation B with extern fluid shear stress
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Figure B.2 Probability distribution function of cell directions: (a) no dominant direction
in situation A; (b) dominant direction is 30.00 in situation B. (red line is estimated

probability function.)

119

0.015

0.01
~0

C0.005

01
0 150 200

.. . .............
.................

' ' ' '

-

-



0.1

0 0.05
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cell length (major axis) in pixels

0.1
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(a)

50 100 150 200
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0 50 100 150 200
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(b)

Figure B.3 Probability distribution functions of cell size measured in length of major and
minor axes: (a) ratio estimation is about 1.04 in situation A; (b) ratio estimation is about

1.86 in situation B. (red line is estimated probability function.)

B.4 Conclusions

The appendix described a statistical method to offer quantitatively measurements of cell

morphological changes. Two important characteristics, alignment direction and

elongation, are measured. In comparison to previous methods (Remuzzi, Dewey et al.

1984), our proposed method gives more reliable results and computation is significantly

faster.

The success of our statistical method relies on the correctness of statistical assumptions.

The measurements obtained only reflect the behavior of an overall population, not

individual cells. It assumes that characteristic information builds up over the population

and dominate statistically.
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