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ABSTRACT

Over the past several years, it has been recognized that a new class of solitary waves
can propagate in nonlinear dispersive wave systems if the phase speed of linear waves
attains a local extremum at some finite wavenumber. Near such a point, solitary waves
in the form of small-amplitude wavepackets can be obtained for which the phase speed of
the carrier oscillations matches the group speed of their envelope. Such an extremum is
found in the analysis of water waves when the restoring forces of both gravity and surface
tension are taken into account, and certain kinds of these gravity-capillary solitary waves
have been observed in experiments. While past theoretical studies have focussed mainly
on determining steady solitary wave profiles, very little work has been done on examining
their stability properties which is the thrust of this thesis.

Beginning in the weakly nonlinear regime, an asymptotic analysis of linear stability is
presented and comparison is made with numerical computations. Contrary to predictions
of the nonlinear Schr6dinger (NLS) equation, some free solitary wave types are found to be
unstable owing to exponentially effects terms that lie beyond standard two-scale perturba-
tion theory. Moreover, numerical simulations show that unstable gravity-capillary solitary
waves may decompose into stable solitary waves that have soliton properties. Stability
results are then extended to the fully nonlinear regime to treat both free and forced situa-
tions using numerical techniques to solve the full hydrodynamic equations in steady form.
A dramatic difference is found between the linear stability of free and forced waves in both
weakly and fully nonlinear cases, and results obtained here are compared with laboratory
experiments.

The analysis followed in the free-surface problem is then generalized to examine the
dynamics of gravity-capillary interfacial solitary waves in a layered two-fluid system. Here,
the linear stability and limiting wave forms of free solitary waves are determined over a range
of system parameters using the full hydrodynamic equations. Finally, a related problem
of gravity-capillary envelope solitons is considered under the general situation of unequal
phase and group speeds. By asymptotic and numerical techniques it is found that envelope
solitons are generally nonlocal-tails are radiated owing to a resonance mechanism that is
beyond the NLS equation.

Thesis Supervisor: Triantaphyllos R. Akylas
Title: Professor of Mechanical Engineering

2



ACKNOWLEDGMENTS

I would foremost like to thank Professor Akylas for introducing me to the beautiful and

fascinating subject of wave propagation which I have enjoyed immensely. I feel fortunate to

have had his enduring support and guidance over the years, and I like to think that many

of his good qualities have rubbed off on me. I would also like to thank Professors Mei and

Mahadevan for serving on my thesis committee. Their comments and suggestions helped

to improve this work.

Over the years, my parents and my sister provided me with a constant source of en-

couragement for which I have been grateful. I have also been very fortunate to have made

some good friends while at MIT particularly Debbie Blanchard, Matt Lim, Kevin Davis,

Julie Eisenhard, Dilip Prasad, and Missy Allen. In addition to providing an ear when I

needed one, Debbie was also extremely helpful with typesetting advice. Chapter 5 was in

fact typed by Debbie. I am also thankful for the encouragement and levity provided by

my long-time friends William Ouyang, Daniel Kammerer, and Matthew Campbell over the

course of graduate school.

This work was supported by the Air Force Office of Scientific Research, Air Force

Materials Command, USAF, under Grant Numbers F49620-98-1-0388, F49620-95-1-0047,

F49620-95-1-0443, and by the National Science Foundation Grant Number DMS-9701967

and INT-9512852. This work was partially supported by National Computational Science

Alliance under a start-up allocation and utilized the NCSA SGI/CRAY Origin2000.

3



CONTENTS

Abstract 2

Acknowledgments 3

Contents 4

List of figures 8

List of tables 11

1. General Introduction 12

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Stability of small-amplitude solitary waves with decaying oscillatory tails 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Steady wave equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Time-dependent wave equations . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Fifth-order Korteweg-de Vries equation . . . . . . . . . . . . . . . . 22

2.3.2 Bernoulli-Euler beam on a nonlinear elastic foundation . . . . . . . 23

2.3.3 Axially-compressed nonlinear beam equation . . . . . . . . . . . . . 24

2.4 Solitary-wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Time-dependent simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Stability analysis of gravity-capillary solitary waves . . . . . . . . . . . . . 28

2.6.1 Eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Unstable modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4



2.6.3 Modified fifth-order KdV equation . . . . . . . . . . . . . . . . . .

2.6.4 Comparison with numerical results . . . . . . . . . . . . . . . . . .

2.7 Stability of solitary waves of the nonlinear Bernoulli-Euler beam equation

2.8 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Stability of steep gravity-capillary solitary waves in deep water

3.1 Introduction. . . . . . . . . . . . .. . . . . . . . . . . . . . .

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1 Governing equations and steady solutions . . . . . . .

3.2.2 Linear stability . . . . . . . . . . . . . . . . . . . . . .

3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Numerical method . . . . . . . . . . . . . . . . . . . .

3.3.2 Free solitary waves . . . . . . . . . . . . . . . . . . . .

3.3.3 Forced depression solitary waves . . . . . . . . . . . .

3.4 Weakly nonlinear forced dynamics . . . . . . . . . . . . . . .

3.4.1 Forced NLS equation and localized steady solutions

3.4.2 Eigenvalue problem . . . . . . . . . . . . . . . . . . .

3.4.3 Initial-value problem . . . . . . . . . . . . . . . . . . .

3.5 Viscous effects . . . . . . . . . . . . . . . . . . . . . . . . . .

3.5.1 Model for viscous dissipation . . . . . . . . . . . . . .

3.5.2 Competition between unstable and dissipative effects .

3.6 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Dynamics of gravity-capillary interfacial solitary waves in a layered

two-fluid system 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5

39

40

42

45

48

. . . . . . . 48

. . . . . . . 51

. . . . . . . 51

. . . . . . . 54

. . . . . . . 56

. . . . . . . 56

. . . . . . . 59

. . . . . . . 60

. . . . . . . 62

. . . . . . . 62

. . . . . . . 65

. . . . . . . 66

. . . . . . . 67

. . . . . . . 68

. . . . . . . 70

. . . . . . . 72



4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Weakly nonlinear solitary wave dynamics . . . . . . . . . . . . . . . . . . . 79

4.3.1 Benjamin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Solitary waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Fully nonlinear interfacial solitary waves . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Wavepackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 Formulation of steady problem . . . . . . . . . . . . . . . . . . . . . 90

4.4.3 Comparison of solitary wave profiles . . . . . . . . . . . . . . . . . . 92

4.4.4 Limiting wave forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Exchange of stabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Formulation of stability problem . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5. Radiating gravity-capillary envelope solitons 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Wave pulse with solitary envelopes . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Resonance conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Numerical evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Tail amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6. Concluding remarks 125

A. Time-dependent numerical solution of the fifth-order KdV and Benjamin

equations 128

6



B. Solution of forced problems arising from perturbation expansions

of Chapter 2 131

C. Calculation of eigenvalues and unstable modes 133

D. Details on computations performed in Chapters 3 & 4 135

References 137

7



LIST OF FIGURES

1-1. Linear phase speed relation for gravity-capillary waves in deep water............ 15

1-2. Free-surface profiles of small-amplitude depression and elevation

gravity-capillary solitary waves....... .................................. 16

2-1. Numerical solution of the fifth-order KdV equation showing the evolution of

an elevation wave with c = 0.1.................................................. 29

2-2. Numerical solution of the fifth-order KdV equation showing the evolution of

an elevation wave with E = 0.3 .................................................. 30

2-3. Numerical solution of the fifth-order KdV equation showing the emergence of

depression solitons from a Gaussian depression initial condition.................. 31

2-4. Comparison of the asymptotic result (2.54) against numerically computed

instability growth rates of elevation solitary waves of the fifth-order KdV

equation for various values of the wave steepness E............................... 41

2-5. Comparison of the asymptotic result (2.59) against numerically computed

instability growth rates of elevation solitary waves of the modified fifth-order

KdV equation for various values of the wave steepness E ......................... 42

2-6. Comparison of the asymptotic result (2.79) against numerically computed

instability growth rates of elevation solitary waves of the nonlinear beam

equation for various values of the wave steepness E............................... 46

3-1. Representative free-surface profiles of gravity-capillary solitary waves in

d eep w ater .............. ....................................................... 49

3-2. Solution diagrams for free and forced deep-water gravity-capillary solitary

w av es. .......................................................................... 50

3-3. Eigenvalue convergence as the grid size is decreased for an elevation-wave

in stab ility ............... ....................................................... 58

8



3-4. Instability growth rates of small-amplitude elevation solitary waves in deep

water as the bifurcation point a = is approached.............................. 59

3-5. Comparison of response curves predicted by the forced NLS equation with

response curves obtained by solving the water-wave equations .................. 65

3-6. Comparison of growth rates and damping rate for free elevation solitary

w aves. .......................................................................... 7 1

3-7. Ratio of growth rate of forced depression solitary waves with damping rate

of free depression waves with the same maximum surface steepness ............. 72

3-8. Approximate evolution of an unstable elevation wave shown at different times. .. 75

3-9. Comparison of theoretical steady state limit curves with experimental

measurements obtained in the forced part of the experiments of

Longuet-Higgins & Zhang (1997) ........... ......................... .. 75

4-1. Elevation and depression solitary-wave solutions of the steady Benjamin

eq u ation . ....................................................................... 83

4-2. Numerical solutions of the Benjamin equation showing the stable evolution

of an elevation solitary wave..................................................... 84

4-3. Numerical solution of the Benjamin equation showing the unstable evolution

of a depression solitary wave ................................................... 85

4-4. Numerical solution of the Benjamin equation showing the collision of two

elevation solitary waves .................................................... 86

4-5. Numerical solution of the Benjamin equation (4.7) with -y = 0.97 using

a Gaussian initial condition u(x, 0) = exp(-0.5 x2).............................. 87

4-6. Curves relating the critical values of F*2 and W* at which solitary

wavepackets bifurcate from infinitesimal periodic waves........... ........... 89

9



4-7. Comparison of solitary-wave solutions of the full equations with solutions of

the steady Benjamin equation.................. ....................... 94

4-8. Change in the limiting forms of elevation and depression interfacial solitary

waves as the density ratio R is varied............................................ 95

4-9. Instability growth rates A of elevation and depression solitary waves near

the bifurcation point as R is varied.............................................. 99

5-1. Dominant resonant wavenumbers plotted as a function of the carrier

wavenumber over the two intervals over which the NLS equation accepts

envelope solitons.................................................... 111

5-2. Pulse evolution demonstrating the n = 2 resonance for gravity-capillary

w avepackets.................................................................... 112

5-3. Pulse evolution demonstrating the n = 1 resonance for gravity-capillary

w avepackets.................................................................... 115

5-4. Pulse evolution demonstrating the n = 0 resonance for gravity-capillary

w avepackets.................................................................... 116

10



LIST OF TABLES

3-1. Instability growth rates A of free elevation solitary waves as the speed

param eter a is varied .......................................................... 60

3-2. Instability growth rates A of forced depression solitary waves located

on the higher-amplitude branches of the response curves in Figure 3-2........... 61

3-3. Integral quantities for elevation solitary waves in deep water .................... 69

5-1. Numerically determined residues D, and parameters appearing in (5.28) for

the dominant n = 0, 1 and 2 resonances ....................................... 120

5-2. Comparison of asymptotically predicted and numerically determined tails

amplitudes for the n = 2 and n = 0 resonances................................. 122

11



CHAPTER 1

GENERAL INTRODUCTION

1.1 Background

Remarkable strides have been made in understanding the effects of finite wave amplitude

on dispersive wave phenomena over the past few decades. Much of the progress in this area

of dispersive wave propagation has occurred in the study of water-wave dynamics where the

effects of nonlinearity and dispersion are easily observed. For example, the self-steepening

and eventual breaking of an ocean wave as it approaches a beach is a nonlinear effect with

which most everyone is familiar. A careful observer who has ever tossed a pebble into a

deep body of water and noticed that longer waves advance faster than shorter waves is also

familiar with the effect of dispersion. An interplay between these two effects gives rise to a

special phenomenon known as a solitary wave which can be observed in a variety of wave

systems and is the general topic of this thesis.

More than just a simple pulse, a solitary wave exhibits an unusual amount of stabil-

ity and propagation duration in comparison with smaller amplitude waves which disperse

rapidly in the absence of nonlinear effects. These stable qualities first caught the eye of

John Scott Russell in 1834 while observing a heap of water set into motion by an impul-

sively started carriage that was being pulled through a shallow canal. So impressed by the

solitary wave's endurance, he followed it on horseback for some distance and also conducted

a series of experiments to generate solitary waves. In modern times, it is now recognized

that, in some instances, solitary waves may evolve out of general initial conditions, emerge

intact from collisions with each other, and can be resonantly generated by moving forcing

disturbances. Solitary waves possessing these attributes are popularly known as solitons

(Newell 1985).

Much of the progress in theoretically analyzing solitary waves has centered on studying

the weakly nonlinear and weakly dispersive propagation regimes in which approximations

to the full and often complicated governing equations can be made to obtain simpler model
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equations. The two most famous model equations which form the pillars of modern non-

linear dispersive wave theory are the Korteweg-de Vries (KdV) equation and nonlinear

Schrddinger (NLS) equation. As these equations will be referred to throughout this thesis,

a presentation of some general background is warranted.

In water-wave theory, the KdV equation governs the free-surface profile of a uni-

directional wave that is very long in comparison with the water depth (a weakly dispersive

condition) with an amplitude that is small in comparison with the depth (a weakly nonlin-

ear condition). Under these circumstances, the waveform essentially propagates with the

characteristic long-wave speed and is slowly modified by weak dispersion and nonlinearity.

Whereas the KdV equation governs disturbances with very long wavelength, the NLS

equation governs the amplitude and phase of a wavetrain with an essentially uniform and

finite carrier wavelength. The condition of weak dispersion is satisfied on account of a

small amount of modulation about the dominant wavelength, and therefore does require

the water depth to be shallow. Weak nonlinear effects again require the amplitude to be

small in comparison with some finite length (the carrier wavelength, say). Under these

conditions, the wavetrain propagates at the group velocity corresponding to the carrier

wavelength and is slowly modified by weak dispersion and nonlinearity.

Based on these two model equations, a great deal of rigorous work has been done in ex-

amining mathematical solutions to their initial-value problems using the inverse-scattering

transform (Ablowitz & Clarkson 1991). It is now well established that both equations

possess a solitary wave solution and their soliton dynamics can be precisely described. A

key difference between the significance of each solution, however, is that the solitary wave

of the KdV equation, a sech 2 (x) function, physically represents the displacement of the

water surface, while the sech(x) solution of the NLS equation only represents the envelope

of a wavepacket. In other words, if one adopts a reference frame moving at the envelope

propagation speed (the group speed), one sees crests passing by at the phase speed which

is generally different from the group speed. Hence, the wave group as a whole is unsteady

and is usually termed an envelope soliton instead of a solitary wave to distinguish it from

a solution which can be made steady in a reference frame moving with the wave speed.

13



As indicated above, KdV solitary waves can propagate in water of finite depth only.

Only over the past decade, however, a new class of solitary wave has been discovered which

can propagate on deep water. The origin of this new class of solitary waves can be intuitively

understood by examining the consequences of the phase speed c = w/k being stationary at

some finite wavenumber:

d (w) = w - (1.1)
dk k k dk k

From (1.1) it is clear that at an extremum of the phase speed, the group speed W' equals the

phase speed w/k, and so if one adopts a reference frame moving with the envelope of a slowly

varying wavetrain the crests do not appear to translate. Furthermore, in the special case

of a small-amplitude narrow-band wavepacket, the localized envelope is expected to satisfy

the steady NLS equation, so as a whole the envelope soliton is truly a solitary wave in this

instance (Akylas 1993). Because this argument is fairly general, it is expected that solitary

waves belonging to this new class may arise in dispersive wave systems with local extrema

in their phase speed relations (so that k is finite); two such systems will be considered in

detail in the next chapter. In addition to having an extremum in the phase speed relation,

the sign of the nonlinear term must be the same as the sign of the dispersive term in

the NLS equation; this is the so-called anomalous dispersion regime and is necessary for

sech(x) to be an acceptable solution of the steady NLS equation. This thesis is dedicated

to examining the dynamics and stability of this new class of solitary waves with a focus on

gravity-capillary waves arising in the water-wave problem with surface tension which will

now be discussed.

The phase speed relation for gravity-capillary waves in deep water reads

c 2 = g + - k, (1.2)
k p

a plot of which is shown in Figure 1-1. Here, g is the gravitational acceleration, p is the

liquid density, and T is the coefficient of surface tension. It is customary to refer to the

14
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FIGURE 1-1. Linear phase speed relation for gravity-capillary waves in deep water. The square of
the dimensionless phase speed c2 (p/gT) 2 is plotted on the vertical axis against the dimensionless

wavenumber k(T/pg)2.

phase speed relation as having two branches: a gravity branch for (k < 1) and a surface

tension dominated capillary branch for (k > 1). These branches merge at cmin = (4gT/p) 4

where k = (pg/T) 2; both gravity and surface tension effects are equally important there.

For physical reference, these quantities translate to a speed of 23.1 cm/s and a wavelength

of 1.72 cm for typical conditions. It is clear from (1.2) that a minimum, and hence this new

class of solitary wave, cannot be obtained without including the effect of surface tension.

In addition, a locally confined solitary wave is only possible if the wave speed is below the

minimum phase speed, for if the solitary wave speed is used in (1.2), the corresponding

roots k must have complex parts signifying the decaying oscillatory behavior of the small-

amplitude tails of a wavepacket.

Historically, gravity-capillary solitary waves in deep water were first computed numer-

ically by Longuet-Higgins (1989) using the full water-wave equations; the connection with

small-amplitude envelope solitons as described by the NLS equation was not recognized un-

til later (Akylas 1993; Longuet-Higgins 1993). The initial calculations of Longuet-Higgins

revealed a symmetric (about a vertical plane) wave of depression with a steep trough and

relatively flat crests. Further numerical work by Vanden-Broeck & Dias (1992) revealed

a symmetric elevation solitary wave for which a crest lies on the plane of symmetry. An

15
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FIGURE 1-2. Free-surface profiles of small-amplitude depression (left) and elevation (right) gravity-

capillary solitary waves with normalized speeds c(p/gT)" = 1.4045. The length scale is T/pc2

example of both elevation and depression waves is shown in Figure 1-2.

When followed to large amplitude, the elevation wave turns into a solitary wave consist-

ing of pair of overlapping depression waves. In fact, there is sufficient numerical evidence

that there may be an infinity of gravity-capillary solitary waves that exist only at finite

amplitude which resemble multi-packet waves (Yang & Akylas 1997). On the experimental

side, steep gravity-capillary solitary waves have been observed experimentally in natural

settings and in the laboratory (Zhang 1995; Longuet-Higgins & Zhang 1997; Zhang 1999).

Apart from the free-surface problem, solitary waves of this new kind have also been the-

oretically identified in a layered two-fluid system (Benjamin 1992; 1996) and also in solid

mechanics problems (Chen & McKenna 1997).

Early in the study of gravity-capillary solitary waves, it was observed that two important

aspects revealed by numerical computation could not be explained solely on the the basis of

the NLS theory. First, viewing the solitary wave as an envelope soliton, it would appear that

generally asymmetric solitary waves with a 'sech' envelope should exist as these waves would

correspond to shifting the carrier oscillations of the wavepacket relative to its envelope.

This hypothesis could not be supported by numerical findings, however, as only two kinds

of symmetric solitary-wave solutions could be found, also consistent with rigorous existence

proofs (Zufiria 1987; Iooss & Kirchgassner 1990; Vanden-Broeck & Dias 1992; Champneys

& Toland 1993; Buffoni et al. 1995 ). Second, based on the fifth-order KdV equation-a

model for gravity-capillary waves in finite depth when the Bond number is close to 1-

16
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elevation solitary waves appear to be unstable, but depression waves are stable contrary to

the predictions of the NLS theory which views both of these solutions as the same (stable)

envelope soliton (see Chapter 2).

The cause of these discrepancies is that the NLS equation and its higher-order extensions

only govern the wavepacket envelope which is uncoupled from the phase of the carrier

oscillations. Based on the fifth-order KdV equation, Yang & Akylas (1997) carried the

two-scale expansion underlying the NLS equation beyond all orders and showed that only

symmetric elevation and depression waves bifurcate at the minimum value of the linear

phase speed relation consistent with previous findings. The exponentially small effects

they found which preclude the existence of asymmetric singe-packet solitary waves turn

out to influence the stability properties of elevation and depression waves, and this will be

discussed in Chapter 2.

1.2 Outline of this thesis

The dynamics and stability of this new class of solitary wave will be examined mostly in

the gravity-capillary free-surface problem using both the fifth-order KdV equation (Chap-

ters 2 & 5) and the full water-wave equations (Chapter 3). The goal of Chapter 2 is to

clarify how exponentially small terms affect the stability of small-amplitude elevation and

depression wave solution branches near the bifurcation point. The stability analysis pre-

sented there will also be applied to the case of solitary waves propagating on a beam with

a nonlinear elastic foundation. In addition, a related problem on the stability of localized

buckling states will be discussed as the equilibrium solution arising in this case satisfies the

same equation found in the small-amplitude wave problems yet the stability properties are

entirely different.

As the experimental measurements of gravity-capillary depression solitary waves have

found them to be quite steep, the stability analysis in Chapter 2 is extended to large

amplitude solving the full water-wave equations using numerical methods. Two cases of

steep solitary waves will be considered: a free problem in which there is no external forcing

17



and a forced problem in which a localized pressure distributions acts on the free surface.

This latter case corresponds to the experimental situation considered in Longuet-Higgins

& Zhang (1997).

In Chapter 4, the general case of gravity-capillary solitary waves in a layered two-fluid

system will be studied in a manner somewhat parallel to the free-surface case. In the

small-amplitude limit, interfacial gravity-capillary solitary waves will be computed on the

basis of the Benjamin equation-a model equation for weakly nonlinear long waves when

interfacial tension is relatively large and the fluid densities are close. The possibility of

soliton behavior will be considered by direct time-dependent integration of the Benjamin

equation. In the more general case of moderate interfacial tension and general density ratios,

the full hydrodynamic equations in steady form will be numerically solved to extend the

qualitative picture of gravity-capillary interfacial solitary waves predicted using Benjamin's

equation. As it turns out, additional parameters in the two-fluid problem not arising in the

free-surface problem can dramatically change which kinds of solutions are stable.

Finally, in Chapter 5, the free-surface problem is again considered with the goal of

determining the stability of gravity-capillary envelope solitons in the general case when

there is a mismatch between the phase and group speeds. Using the fifth-order KdV

equation, it is found using both numerical and asymptotic methods that envelope solitons

are generally nonlocal: special resonance conditions can be found for which linear waves are

radiated by the soliton with an amplitude that depends on the bandwidth of the wavepacket.

18



CHAPTER 2

STABILITY OF SMALL-AMPLITUDE SOLITARY WAVES WITH

DECAYING OSCILLATORY TAILS

2.1 Introduction

Under the condition that the solitary wave speed is close to the local extremum of

the linear phase speed relation, solitary waves belonging to the new class have small peak

amplitudes and decaying oscillatory tails. In this wavepacket regime, the envelopes of these

solitary waves may be interpreted as solitons of the nonlinear Schr6dinger (NLS) equation

and so both elevation and depression wave types would appear to be stable. In this chapter,

it will be shown that contrary to the predictions of the NLS theory, elevation solitary waves

are in fact linearly unstable. As it turns out, the instability growth rates are exponentially

small in the small-amplitude limit and hence the instability mechanism lies beyond the

standard two-scale expansion underlying the NLS equation.

The role of exponentially small terms in deciding stability is closely related to the fact

that the elevation and depression symmetric-wave types, which belong to a more exclusive

class than that predicted by the NLS theory, can only be identified if these terms are

taken into account. Specifically, the terms derived by Yang & Akylas (1997) to identify

the conditions for a localized steady solution of the fifth-order Korteweg-de Vries (KdV)

equation turn out to be crucial in determining the conditions for a localized (unstable)

eigenfunction in the stability problem. Here, an asymptotic analysis of the eigenvalue

problem that draws on the exponentially small terms derived in the steady problem will be

presented which is valid if the instability growth rate is small-a condition which is expected

to be true near the bifurcation point at zero amplitude. Although these exponentially small

terms translate to dimensionless growth rates that are extremely small near the bifurcation

point, they appear to decide the stability of much of the elevation and depression solitary
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wave branches over a range of speeds where the wave amplitude is moderate to large. This

will be considered further in the next chapter.

The stability of this new class of solitary wave will first be demonstrated in the context

of the gravity-capillary water-wave problem based on the fifth-order KdV equation which

will be briefly derived. After presenting results of a numerical simulation showing the stable

and unstable dynamics of gravity-capillary solitary waves, the asymptotic analysis of the

stability eigenvalue problem will be described in detail and comparison will be made with

numerical results.

In addition to applying the stability theory to the gravity-capillary wave problem, an

example will be drawn from wave propagation in solid mechanics in which a phase speed

minimum arises and solitary waves of the new class can be obtained. In particular, the

propagation of solitary waves on a Bernoulli-Euler beam resting on a nonlinear elastic

foundation will be considered. Again, it is found that elevation solitary waves are unstable

with exponentially small growth rates. A closely related problem of localized buckling will

also be considered which has received attention in the literature over the last few years

(Champneys et al. 1997). As it turns out, finite-amplitude localized buckled states satisfy

the same governing equation that arises in the wave propagation problems, but instability

growth rates in this case turn out to be algebraic and can therefore be captured with

standard multiple scaling techniques.

2.2 Steady wave equations

Although there are differences between the time-dependent wave equations arising in

the fluid mechanics and solid mechanics problems as will be discussed, in both cases steady

solitary waves satisfy the same nonlinear ordinary differential equation which reads (after

a suitable rescaling of variables)

--cu+u +u + 3u2 =0 - oo < < oo, (2.1)

20



subject to the boundary conditions

u -+ 0 ( - t±oo), (2.2)

where the parameter c represents a dimensionless speed. By linearizing (2.1) and looking

for solutions oc exp(ik ) it may be shown that the transition from pure real roots to mixed

roots, which describes the bifurcation of solitary waves with decaying oscillatory tails from

infinitesimal periodic waves, is obtained when c is slightly below the value of - 1

While an exact nonlinear solution of (2.1) is not known, Champneys & Toland (1993)

and Buffoni et al. (1995) proved the existence of an infinite number of homoclinic orbits

corresponding to solitary waves. Asymptotic approximations of solitary waves near the

bifurcation point were first obtained by Grimshaw et al. (1994) using the higher-order

nonlinear Schr6dinger (NLS) equation. The expansion was then extended beyond all orders

using techniques of exponential asymptotics by Yang & Akylas (1997) who showed that

only elevation and depression solution branches are possible. In the latter study, it was also

shown that (2.1) admits multi-packet solitary waves that exist only at finite amplitude, but

our interest here centers only on the stability of single-packet solitary waves.

A modified form of (2.1) in which the quadratic nonlinearity is replaced by cubic non-

linearity will also be considered:

-Cu + u + uw - 2u 3 = 0. (2.3)

In contrast to the problems with quadratic nonlinearity, solitary waves bifurcate from zero-

amplitude only if a minus sign is present in front of the nonlinear term. In addition, there

is no longer any distinction between elevation and depression solitary waves because of the

invariance under the change u -+ -u. Instead, using an analysis taking into account expo-

nentially small terms, Wadee & Bassom (1999) found that symmetric and anti-symmetric

solitary waves are possible. In this problem, it will be found that the former solution type
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is stable while the latter is unstable.

While the solitary waves to be discussed in this chapter satisfy (2.1) or (2.3), the specific

forms of the stability eigenvalue problems depend on the time-dependent wave equations

from which these steady equations are derived. In the gravity-capillary water-wave problem,

(2.1) is derived from the fifth-order Korteweg-de Vries (KdV) equation which features a

first-order time derivative along with third and fifth-order dispersive terms. The modified

version of the steady fifth-order KdV (2.3) arises under special conditions in the layered

two-fluid interfacial-wave problem for special depth and density ratios (Laget & Dias 1997).

In the solid mechanics problem, (2.1) is derived from the governing equation for a Bernoulli-

Euler beam resting on a nonlinear elastic (quadratic hardening) foundation. The dynamical

equation differs from the fifth-order KdV in that it features a second-order time derivative

and an even-order dispersive term. In this beam problem, the modified equation (2.3) is

related to the fact that the beam rests on a cubic softening foundation.

2.3 Time-dependent wave equations

2.3.1 Fifth-order Korteweg-de Vries equation

The description of small-amplitude gravity-capillary waves in this chapter as well in

Chapter 5 will be based on the fifth-order KdV equation; a short derivation is provided

here. A full derivation can be found in Hunter & Scheurle (1988).

The dispersion relation for linear gravity-capillary surface waves propagating to the

right in water of finite depth h reads

o= [(1 + Bkh 2 ) kh tanhkh] , (2.4)

where co = Vg5 is the long-wave speed and B = T/pgh 2 is the Bond number; the surface-

tension coefficient is given by T, the liquid density by p, and the gravitational acceleration

by g.

22



By considering waves that are long in comparison with the depth (kh < 1), (2.4) may

be expanded as

w = cok [1 + !(B - 1)(kh)2 + 1 ( - B 2 ) (kh)4 + 0[(kh) 6 ]]. (2.5)

It is easy to see that if B is slightly below 1 (B - } O[(kh) 2]), then a balance between

the third and fifth-order dispersive terms can be obtained. The minimum of the phase

speed relation is then obtained for kh < 1 and so this balance translates physically to a

balance between gravity and surface tension effects. Using this condition on B, and taking

into account the leading-order effects of self-steepening in shallow water, one may infer the

fifth-order KdV equation

7t + co 7x + 3c7 + 1coh2 (1 - B) ?lxxx + 1coh 4 (L - B 2) 7XXxxx = 0. (2.6)
2h 2 2 9

Adopting a reference frame moving with the long-wave speed, and adopting a 'slow' time

and 'stretched' space variable, the following dimensionless form can be obtained

ut + uxxx + uxxxxx + 6uuX = 0. (2.7)

By seeking localized travelling wave solutions of the form u = u(x - ct), (2.1) can be

obtained after one integration.

In the more general case of a layered two-fluid system, an equation analogous to (2.6)

can be obtained with more complicated coefficients owing to additional physical parameters

(Laget & Dias 1997). The additional freedom due to these parameters has some interesting

consequences on stability as will be discussed in Chapter 4.

2.3.2 Bernoulli-Euler beam on a nonlinear elastic foundation

In solid mechanics problems involving flexural waves on a beam supported by a quadratic-

hardening elastic foundation, the vertical displacement of the beam is governed by the
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dimensionless equation

Wtt + wxxxx + w + 3w 2 = 0, (2.8)

where in the derivation it is assumed that the slope of the vertical displacement is small

(see, for example, Lindberg & Florence 1987). The nonlinear effects are then confined to

the elastic foundation which is reflected by the last two terms in (2.8). It can be shown

by standard methods that the linear phase speed relation has a local minimum and hence

solitary waves akin to the gravity-capillary type are possible in the neighborhood below the

minimum phase speed. By seeking travelling wave solutions of the form w = CV(rq) (,q =

X - VOt) equation (2.1) directly follows after using the transformation = i, u = v- 4 i and

C = -_V- .

Numerical simulations of an evolution equation very similar to (2.8) performed by Chen

& McKenna (1997) indicate that, as found in the gravity-capillary wave problem, elevation

solitary waves are unstable in this instance while depression waves are stable. This result

will also be confirmed in this chapter using the asymptotic analysis.

2.3.3 Axially-compressed nonlinear beam equation

A modified form of (2.7) which can be used to model localized buckling reads

wtt + Pwxx + wxxxx + w + 3w 2 = 0, (2.9)

where the second-order spatial-derivative term derives from an axially compressive load

placed on the beam when P > 0. Localized equilibria can be obtained by setting wtt equal

to zero. Upon using the transformation ( = P2X, u = P--i, and c = -P 2 equation

(2.1) is once again obtained. For P < 2 (c < -1) it has been proven by Sandstede (1997)

that the primary 'single-packet' buckling mode (which represents both an elevation or a

depression wave) which bifurcates from zero amplitude is unstable under the condition of

dead loading in which P is constant and w adjusts according to (2.1). While the stability of
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this case is a settled problem, the instability growth rates obtained in the buckling problem

provide an interesting contrast with those obtained in the solitary wave problems and so a

small-amplitude treatment of the localized buckling problem will be discussed.

2.4 Solitary-wave solutions

The two-scale expansion of Grimshaw et al. (1994) of a solitary wave solution u = i()

in which the speed is defined as c = 1 - 2,2, (0 < E < 1) reads

= E cos(kmn + 0) sechX + E { 7 sin(km + #o) sechX tanhX

- 4 (3 + cos 2(km + qo)) sech 2 X + O(E3),

(2.10)

where X = c , and km= . Although to polynomial order (2.10) appears to be locallyvf2.

confined, a revised perturbation theory which takes into account exponentially small terms

can reveal the presence of nonlocal terms. Specifically, assuming that U decays exponentially

far upstream so that

i ~ E ex cos(km + #o) (-4 -oo), (2.11)

the analysis of Yang & Akylas (1997) shows that both exponentially growing and decaying

oscillatory tails generally appear downstream

-16rD 7 rkm Xr8 -
-E~ 3 exp (- 2E) sin 0 e cos(k, +# 0) + q e-- cos(km +#Oo) (( -+ oo),

(2.12)

where D = 0.0023. From this expression it is clear that localized solitary waves can only be

obtained for sin #o = 0 (#o = 0, 7r) in which case the solitary wave is symmetric. Elevation

solitary waves are then obtained for 0 = 0 while depression waves are obtained for 0 = 7r.
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It is important to note that (2.12) is the leading-order result of the analysis using

exponential asymptotics. In fact, for a fixed value of the upstream phase constant 00 in

(2.11), the downstream carrier oscillations in (2.12) undergo an O(E) phase shift due to the

O(c) correction to the fundamental oscillation appearing in (2.10). Therefore, in addition to

the growing term proportional to cos(km + 0) appearing downstream, a relatively smaller

amount of growing oscillations proportional to sin(km + #o) is expected to appear but the

precise amplitude of this term would require carrying the exponential asymptotics to higher

order. For later purposes, however, this higher-order term may be written as

or exp ( r- ) sin 00 eX sin(km + #0), (2.13)
C2 2c

where a = 0(1).

As the numerical constant D will play a crucial role in deciding stability, its significance

is worthy of discussion. To capture the exponentially small terms, the expansion (2.10)

must be extended beyond all orders in E. This task can be performed most efficiently by

working with the Fourier transform of ii with respect to X. In the wavenumber domain, the

expansion becomes nonuniform near its singularities near the real axis which correspond

to exponentially growing far-field solutions. The residues of these singularities is partly

determined by solving an integral equation in which all harmonics are strongly coupled.

The asymptotic behavior of the solution of this integral equation near the singularities is

proportional to D and so this constant contains information from all harmonics in (2.10).

A small-amplitude localized solution u = ii( ) of the cubic equation (2.4) was con-

structed in a similar way by Wadee and Bassom (1999) who found that for c = - 2 2

44
t = C cos(kmn + 0) sechX + 2V 3 2 sin(km6 + 0) sechX tanhX

+ cos 3(kmr + #o) sech 3X + O(C3 ).

(2.14)
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By using techniques of exponential asymptotics in a manner similar to Yang & Akylas

(1997), it can be shown that by requiring ii - 0 as x -+ -o both exponentially growing

and decaying oscillations appear downstream:

16~rD' exp - -- sin 2#0 ex cos(km + 8)+ E e X cos(km + #o) (c -+ oc),
Sexp6

(2.15)

where the constant D' = -0.32. From (2.15) it is clear that a localized solitary wave is only

obtainable when sin 20 vanishes. The possibilities of #o = 0 and o = 7r correspond to

symmetric states while 0 = +2- corresponds to anti-symmetric states. Again, (2.15) is only

the leading-order result; a relatively smaller amount of growing oscillations proportional to

sin(km( + #o) are also expected to appear downstream.

2.5 Time-dependent simulations

In this section, results of a numerical time-dependent integration of (2.7) is presented

using elevation solitary waves as initial conditions. These initial conditions are obtained by

numerically solving (2.1) in the following way. Working on the half-domain 0 < ',

where 6. is a sufficiently large value, (2.1) is numerically integrated using a fourth-order

Runge-Kutta method starting with the approximate downstream behavior

u ~ a+ e-K cos(kc6 + #+) (6 +oc),

where

k =-(I + (1 + 8E2) 2
2

and

- (-I + (I1+8E 2 ) 2
2E

until the origin is reached and the symmetry conditions u6 = u666= 0 are imposed. In the

case of equation (2.3), anti-symmetric solitary waves may be obtained used the conditions
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u = u = 0 instead. Using initial guesses for a+ and #+ suggested by the expansions

(2.10) or (2.14), Newton iteration is used to adjust a+ and #+ until the two conditions at

the origin are met.

The numerical solution of (2.7) is performed using a split-step Fourier spectral method;

the algorithm is described in Appendix A. Figure 2-1 shows the gradual instability of an

elevation wavepacket with c = 0.1 as it evolves towards a stable depression wavepacket.

As the steepness of the wave is increased to e = 0.3, Figure 2-2 shows that the instability

is more dramatic: a fairly steep depression wave emerges along with a dispersive wave

component. To explore whether the fifth-order KdV has soliton-like solutions, the evolution

of a Gaussian depression of the free surface is shown in Figure 2-3. The depression evolves

to two stable depression solitary waves with different amplitudes along with very little

dispersion. If a Gaussian elevation is used instead as an initial condition, the resulting

evolution is much more dispersive. Qualitatively, the results resemble a radiating KdV-like

wave.

2.6 Stability analysis of gravity-capillary solitary waves

The asymptotic technique used to analyze the stability of solitary waves will first be

demonstrated using the fifth-order KdV equation. After a comparison of asymptotic and

numerically determined growth rates, results will then be obtained for symmetric and anti-

symmetric solitary-wave solutions of the modified fifth-order KdV equation and comparison

with numerical results will again be made.

2.6.1 Eigenvalue problem

Assuming small perturbations to the basic state ii we write

u(x, t) = ii ( ) + Re U( ) eAt (2.16)

28



U
0.05

0
-0.05 -

150
0.05

0 0
-0.05 -

150
0.05

0

-0.05

00

-0.05

1

0.05

C) 0
-0.05

0.05
00

0
-0.05

1
0.05

0
-0.05

1

2
- -

50

50

50

50

50

50 200 250 300 350

x

FIGURE 2-1. Numerical solution of the fifth-order KdV equation. The initial condition corresponds
to an elevation solitary wave with E = 0.1. Because of an instability, the profile evolves to a stable

depression wave.

where = x - ct (c = - - 2E2). Upon substitution into (2.7) and linearization the mode4

shape U is found to satisfy

(-cU +6W + U+ + Ug)+ AU = 0. (2.17)

To determine the boundary conditions that U must satisfy in the case of an instability, the

far-field behavior can be examined by seeking linearized solutions of the form U ~ exp (ip )
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FIGURE 2-2. Same as Figure 2-1 but here c = 0.3 and the instability is

depression wave emerges but with more dispersion than before.

for 11 -+ oc thereby obtaining the characteristic polynomial

p(-c -p 2 + p4 ) - iA = 0.

stronger. Again, a stable

(2.18)

In the limit A -+ 0, one of the roots of (2.18) approaches zero; its value is given approxi-

mately by

p ~ 4iA. (2.19)
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FIGURE 2-3. Numerical solution of the fifth-order KdV equation
sion solitons from a Gaussian depression initial condition.

showing the emergence of depres-

The remaining roots can be found approximately by the expansion

p= po + Api + A2 P2 -, (2.20)

where it is found that

W en1) A s t ttp 7= = + i i -- .(221

While the four roots given by (2.21) correspond to far-field solutions that can decay expo-
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nentially for 1 1 -+ oc, an exponential decay of the fifth far-field solution corresponding to

(2.19) requires Re A zA 0. Because both U(±) are solutions of (2.17) for ±A, Re A z 0 is a

sufficient condition for instability; the unstable mode therefore satisfies

U - 0 (|1 -+oo). (2.22)

Making the choice Re A > 0 with no loss, the upstream behavior of U can then be

written approximately as

U - C1 e'cos(km6 + #o) + C2 e'Esin(km + 0o) (6 -+ -oo), (2.23)

while the downstream behavior is given by

U C3 e-'Ecos(km6 + 0) + C4 e-' sin(km6 + q0) + C5 e-4A (6 - +o). (2.24)

If the solution of (2.17) is now viewed as a one-way marching problem in 6 starting far

upstream with the behavior (2.23) then the problem of finding an instability is equivalent

to determining a ratio C1/C2 and A such that U -+ 0 as -+ 00 in accordance with (2.22).

This idea motivates the remainder of the stability analysis.

2.6.2 Unstable modes

It is expected that if an instability exists its growth rate tends to zero as e -+ 0; the limit

in which neutrally stable periodic waves are approached. A natural starting point then is

to examine the behavior of the mode shape corresponding to A = 0 which is associated with

the translational invariance of the governing equations.

Based on the asymptotic analysis of (2.1), the leading behavior of (2.10) is a modulated

wavepacket with an envelope A(X) = sechX that satisfies the steady NLS equation

A - Axx - 761A12A = 0. (2.25)

It can be seen that (2.25) is invariant under translations of the origin of X as well as

translations of the phase of the complex amplitude A. Thus, if A(X) is a solution so are
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A(X + 6) and A(X)e'6. In the case that 6 is infinitesimal, the disturbances to the basic

state can be expressed as

A(X +6) = A(X)+ , (2.26)
dX (=o6

and

A(X)e" - A(X) + 6 iA(X). (2.27)

Based on the NLS equation then, there are two independent neutral eigenfunctions Ax

and iA. The significance of these eigenfunctions in terms of the carrier oscillations can be

brought out by rewriting i = i(E; ) as ii = fi(c, ; #o, Vo)

E cos 6 sechX + E 2{187 sin 0 sechX tanhX

- j(3 + 1cos 26)sech2X + O(E3),

where

0 = k + #o, X = C(i + 0o).

In terms of the shifts #o and 40, the eigenfunction iA corresponds then to UP4 while Ax

corresponds to tii if 0 and 7PO are treated as the independent variables.

While the NLS theory indicates that both these modes are locally confined approximate

solutions of (2.17) for A = 0, revised perturbation theory shows that U00 and UVpO are in fact

not locally confined. Specifically, taking into account the shifts 0 and VO the downstream

behavior of U is

U -167rD exp -_ sin ex cos 0 + E e-X cos 6 (2.28)

6exp 19 )

+ exp(- ) sine sin (-+oo),

where 5 = #o - kmfo. A locally confined solution is then obtainable when q = 0 or 7r.

Under either of these conditions, the mode fipo behaves as
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j0~- E ex sin9 (0 -+ -o), (2.29)

l67rD K7fk m\ X 8 X
~- 7rD exp - cos(a + ±) e - E e- sin 0

o- 7rkm.
+ exp 2) sin(q + 0)e (- oo),

(2.30)

while iik0 /E behaves as

~ - e8e cos9 (0--oo), (2.31)
E 19

___~ -167rD exp k cos 0 (6sin - kmcos ) e - 8 e-X cos O

+o exp - sin 0 (csin - kmcos ) eX ( ).

(2.32)

It can then be seen that when j = 0 or 7r, iapo and ilo are not locally confined even though

ii is. The linear combination

du= km~o + iio (q = 0, 7r), (2.33)

however, is locally confined since this is an exact eigenfunction of (2.17) when A = 0 owing

to the translational invariance of (2.1).

Returning to the general upstream solutions of (2.17) shown by (2.23), it is then ap-

parent that fio provides the main structure of U if the upstream behavior consists mostly

of a growing term proportional to sin 6, while fip provides the main structure of U if the

upstream behavior is mostly a growing term proportional to cos 0. It is then suspected
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that for A z 0, but small, U is possibly a linear combination of two expansions U1 and U2

with

U- = + AU M + A2U-2 ) -- , (2.34)

2 = 4 1 + U + A2U- 2) -- , (2.35)

so that

U = U1 + C U 2. (2.36)

The strategy then is to require that U -* 0 as -+ -oo and to seek values of C and A

so that U -+ 0 as -+ oc. One simple solution is of course A = 0 and C = km/6, according

to (2.33). In this case, the dominant behavior upstream comes from 64p since iio is O(E)

when i40 is 0(1). The approach for A $ 0, however, is to assume that if exponentially

growing terms appear downstream in U) U(, U0) or U(2) that they are cancelled by the

exponentially growing downstream tails of iio and iip /C. As this cancellation will then

require that the growing tails of the leading expressions are at most O(A), it is sufficient to

treat the leading terms in (2.34) and (2.35) as being locally confined in the perturbation

theory.

If this approach is carried out, the unknowns C and A can be determined by setting the

coefficients of the downstream growing terms proportional to cos 0 and sin 0 in (2.36) to

zero. The resulting system of two equations can be solved for C and A. When the growing

behavior downstream is cancelled, it will be found that A is indeed exponentially small as

E -4 0.

To demonstrate how growing terms in U can arise in either of the expansions (2.34) or

(2.35) one may write

U = U(0 ) + AU(O1 + A2 U(02 ... (2.37)

and assume, to be verified later, that A is smaller than any power of E.

Upon substitution into (2.17) it is found that at 0(1)
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(-cU(0 ) + 6iU(0 ) + + U ) = 0. (2.38)

For the sake of demonstration, the locally confined part of 'iio is selected as the approx-

imate solution to this equation. Again, this corresponds to the neutral mode iA associated

with the NLS equation.

At 0(A) it is then found that

(-cU(1 ) + 6 U) + U + UM) = -U). (2.39)

The right-hand side, being odd, is orthogonal to ii which is the solution of the adjoint

problem. Therefore, if UM1 -+ 0 as -+ -oo, it can be shown by integration by parts that

U - 0 as --+ oo provided that the orthogonality condition

-U()N d = 0 (2.40)

is satisfied. This condition is automatically met.

Proceeding to O(A2 ), it is found that

(-cU() + 6nU) + U + U ) =US). (2.41)

In this case,

jU1)t d $ 0, (2.42)

since U) is an odd function, and so if U(2) -+ 0 as - -cc it is expected that U(2) will

have a growing tail as -+ oo.

Upon substitution of (2.36) into (2.17), the forced problems for U(, U(, UY, and U(

are found to have the general form

(-cQ + 6UQ + Q + QC CC) = F, (2.43)
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which can be solved approximately by multiple scales using the expansions

F = c(f (X) e'0 + c.c.) + E2 fo(X) + E2(f 2 (X) e2iO + c.c.) ± -, (2.44)

U = E(A(X) e'0 + c.c.) + E2 Ao(X) + E2 (A2(X) e2iO + c.c.) + - (2.45)

Q = (q(X) eiO + c.c.) + qo(X) + (q2(X) e2M + c.c.) + (2.46)

This lengthy procedure is carried out in Appendix B; the results will only be stated here.

The first-order corrections are found to be

1 (X sechX tanhX - S) cos 6, (2.47)

U = 1 X sechX tanhX sin 6. (2.48)

At the next order, requiring that both U ( and U2  go to zero as ( -+ -oo it is

subsequently found that

U ~- 1 eXcos 0 (( -+ 00), (2.49)

and

U - 1 exsin 0 (( -+ o), (2.50)
8V3- E3

which are the exponentially growing tails as expected. It should be noted that the secu-

lar terms appearing in (2.47) and (2.48) are consistent with the O(A) corrections to the

wavenumber of the oscillatory tails of U as shown in (2.21) and are not troublesome.

Having determined U1 and U2 , it remains to cancel the growing downstream behavior

of U in (2.36). When this is carried out, the following system of two equations is obtained
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A2  7rkm -km
fo-cos -- A2 exp =km ) cos s. (2.52)

38 i 2E) C

Eliminating A2 and solving the resulting quadratic for C it is found that

C = km km /+ 2o-e2 + O(E4) (2.53)
2e 2c km /

When the negative sign in (2.53) is taken, it is found that C = O(e) and

A2 = 128/i 7r D Eexp (_rkm) cos (2.54)

to leading-order in e. Noting that D > 0, it follows that when j = 0 which corresponds

to elevation solitary waves, A is real and elevation waves are therefore unstable. The

eigenfunction in this case is given by

U ~iv)0/c ~ E cos(km ) sechX tanhX (E -+ 0). (2.55)

When q =r, which corresponds to depression waves, the analysis yields that A is

imaginary. In this case, the last term appearing in the downstream behavior (2.24) repre-

sents a purely oscillatory term and hence the analysis is inconclusive although it suggests

that depression waves might be stable which is confirmed by the numerical results to be

presented.

When the positive sign is taken in (2.53), it is found that C = km/E + O(E) and A2

O[c exp(-1/e)]. Thus, to leading-order in e, U - 'io, and by comparison with (2.33) this

case tends to the neutral mode when e -+ 0. The dominant growth rate is therefore given

by (2.54).
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2.6.3 Modified fifth-order KdV equation

The stability analysis can also be applied to the modified fifth-order KdV equation given

in time-dependent form by

ut + uxxx + uxxxxx - 6u 2 u = 0, (2.56)

which has a steady solitary wave solution u = U(X - ct) given by (2.14) that approximately

satisfies (2.3).

The eigenvalue problem associated with (2.56) reads

(-cU - 6ii2 U + U 6 + U )6 + AU = 0, (2.57)

U - 0 (KI| -+ o0). (2.58)

The only difference that appears in carrying out the stability analysis as before is that

the general forced problem (2.43) is solved by expansions in odd harmonics. When this

procedure is carried out, it is found that exponentially growing terms again appear in

U() and U(2) By cancelling the growing behavior of U downstream it is found that the

dominant growth rate is given to leading-order in e by

A21 7rkm,
A2 = 128v3'7rD' cos 2q exp(- ), (2.59)

while the eigenfunction is given by

U ~ i'oP/c ~ - E sin(km,) sechX tanhX (e -+ 0). (2.60)
6

As D' < 0 in this case, A is real when ± = i/2 which implies that anti-symmetric solitary

waves are unstable. The eigenfunction U is again given to leading-order by a 0 /e. When

= 0 or 7r, A is imaginary and therefore a localized mode shape is not obtained.
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2.6.4 Comparison with numerical results

The stability calculations are first performed by discretizing either (2.17) or (2.57) using

fourth-order accurate finite-difference approximations over the domain -(o < (, and

expressing the resulting system as a matrix eigenvalue problem

[L] U = A U. (2.61)

After a global eigensolver was used to detect the presence of unstable modes, a shooting

procedure was used to refine the eigenvalue A and the mode shape U.

The shooting procedure is to decompose U as

U(() =C1 S1( ) + C2S 2() (-S2 _ 0), (2.62)

and

U(() = 03 S3( ) + C4 S4( ) + C5 S5(() (0 ( ) (2.63)

where the far-field behavior of each Sn (n = 1...5) corresponds to a homogeneous solution

appearing in either (2.23) or (2.24). The point of continuity is taken as = 0 for simplicity.

By imposing continuity of U, U , U , U , U 66 at = 0 a homogeneous 5x5 system of

equations can be obtained. Solvability of this system requires that the determinant of

the coefficient matrix vanishes which only occurs for special values of A. Once a correct

eigenvalue is obtained, one of the C may be normalized to 1 and the remaining C can be

obtained by solving the reduced 4x4 system of equations.

The functions S, are obtained by solving (2.17) or (2.57) numerically using a fourth-

order Runge-Kutta method starting with the independent far-field solutions (2.23) and

(2.24) and integrating to ( = 0. Accurate growth and oscillation rates in the far-field can

be obtained by solving the characteristic polynomial (2.18) numerically. Note that in (2.62)

and (2.63) it has again been assumed that ReA > 0 with no loss.

When the numerical procedure was carried out for the fifth-order KdV problem, it

was confirmed that elevation waves are linearly unstable owing to the presence of a single
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FIGURE 2-4. Comparison of the asymptotic result (2.54) (-) against numerically computed (o)
instability growth rates for elevation solitary waves of the fifth-order KdV equation for various
values of the wave steepness c.

trapped mode with a corresponding eigenvalue that is real. The eigenvalue spectrum of

depression waves on the other hand possesses no unstable modes; depression waves appear

to be linearly stable. The numerical procedure was also applied to the modified fifth-order

KdV problem which showed that anti-symmetric waves are indeed unstable in agreement

with the analysis; the eigenvalue spectrum again possesses a single pair of real eigenvalues.

No unstable modes were found in the eigenvalue spectrum of symmetric waves and so they

appear to be stable.

A comparison of the numerically determined growth rates for both cases are compared

with the asymptotic values given by (2.54) and (2.59) for a range of E as shown in figures

2-4 and 2-5 for the quadratic and cubic fifth-order KdV equations, respectively. As can be

seen, A is exponentially small as E -4 0 in both cases with A approaching zero faster in the

cubic case. Overall the agreement with the analysis is excellent. In addition, the unstable

eigenfunctions are in excellent agreement with the asymptotic predictions.
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instability growth rates for elevation solitary waves of the modified fifth-order KdV equation for
various values of the wave steepness c.

2.7 Stability of solitary waves of the nonlinear Bernoulli-Euler beam equation

In this section, the stability theory is applied to solitary waves propagating on the

Bernoulli-Euler beam supported by a nonlinear elastic foundation. The analysis of this

section differs somewhat from the previous one in that a multiple scales approach is adopted

from the start. As will be seen, this simplifies the analysis.

The eigenvalue problem for unstable modes in the form W(r)exp(At) associated with

(2.8) reads

A2W - 2vAW +v 2 Wq + W + Wrnm? + 6WW = 0, (2.64)

W -- 0 ( I -+ oc), (2.65)

where fv is the steady state that satisfies (2.1) when the proper transformation is used.

Instead of expanding W in powers of A, a reduced form of (2.64) is obtained by expanding
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W and i in harmonics

fi, = E(A(X)eio + c.c.) + E2 (A2 (X)e2iO + c.c. + Ao(X)) , (2.66)

W = (a(X)eio + c.c.) + E(a2 (X)e2iO + c.c. + ao(X)) ... (2.67)

where X = v/-,Er, v v/2(1 - 2E2 ), and 0 = qr + q5 which is equivalent to a stability

approach based on the NLS equation thus far. Collecting the mean, second harmonic, and

fundamental terms yields

ao = -6(A a* + A*a) + O(E), (2.68)

2-
a2 = Aa + O(e), (2.69)

3

-iA a - axx + a + (A*a 2 + A2 a* + Aoa + Aao) = 0(c), (2.70)4

where = . By using Ao = -61A1 2 and A 2 = -!A 2 it is then found that a satisfies

a - axx - JAI a--A - iAa = 0. (2.71)
2 4

Upon using the leading behavior of the steady state A = 2 1 sechX it is then found

that a satisfies

a - axx - 2 sech 2X(a* + 2a) - i~a = 0. (2.72)

From the analysis of Section 2.6, it is expected that by assuming A j < 1 and expanding

a in powers of A that exponentially growing terms will appear downstream if a -+ 0 as

X -+ -oo. The strategy then is to once again cancel any growing terms arising downstream

with the exponentially growing tail of the leading-order behavior.

In the present approach, however, (2.72) can be solved exactly by using the transfor-

mation

a = -fxx + 2 tanhXfx - tanh2 Xf + sech 2Xf*, (2.73)

43



which reduces (2.72) to

f - fxx - i f = 0 (2.74)

and so it is not necessary to expand a from the outset. Requiring that a -+ 0 as X -+ -oc

it is found that

a R(-s2 + 2 s tanhX - tanh2X)eX + P*sech2Xes*X (2.75)

where s = (1 - iA)2 and R is a complex constant. In the limit A -+ 0, (2.75) may be

expressed as

a ~ sech 2 X (-Pe-X + P*eX) + 0(A). (2.76)

It can be verified that if P is imaginary, then a - iA, while if R is real, a - Ax. Based

on the arguments presented in Section 2.6, the dominant unstable eigenfunction is obtained

when R is real as this possibility corresponds to W - i~po/c. The eigenfunction U may

then be normalized to upo/c by taking R = - 0-. With this normalization it is found

that

a ~ -138A ex (X -+ oo). (2.77)

However, from Section 2.6 it is known from revised perturbation theory that Ax is not

locally confined. Specifically, when = 0 the refined downstream behavior of a is

327r D irk
a ~ exp(- m) cos ex (X -+ oo). (2.78)

Cancellation of (2.77) with (2.78) then requires

A2 = 512v'l97rD exp(- ) cos (2.79)
C2,E
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in which case elevation waves (q = 0) are unstable.

The numerical procedure described in Section 2.6 can be easily modified for use with

the beam equation. It was confirmed that elevation solitary waves are again unstable in

this instance, while depression waves are stable. Figure 2-6 shows a comparison of the

predicted instability growth rates given by (2.79) with the numerically computed growth

rates. The agreement is again very good and the corresponding eigenfunctions are also in

good agreement.

2.8 Discussion

In the actual gravity-capillary water wave problem, viscous effects cannot be entirely

neglected. In fact, the dissipation rate of gravity-capillary wavepackets is 0(1) and over-

whelms the exponentially small effects of instability. It is expected that for large-amplitude

solitary waves, the growth rates increase to be on the level of dissipation rates and this

will be explored further in the next chapter. The findings here are at least consistent with

the observation of depression solitary waves by Zhang (1995; 1999) and Longuet-Higgins &

Zhang (1997).

As described in the introduction, the localized equilibria of the buckling model (2.9) also

satisfy (2.1) after rescalings. In contrast to the solitary wave examples, an instability can

be readily found by straightforward expansions in the amplitude parameter. Specifically,

for subcritical loads P = 2 - 82 (0 < c < 1) the expansion reads

w(x, t) = c(B(X, T)eikx + c.c.) + 62 (B 2(X)e 2ikx + c.c. + Bo(x)) ... (2.84)

where T = id, x = Ex and k = 1 - E2 + O(E4). By substituting (2.84) into (2.9) it can be

shown that B satisfies

BTT + 8B - 4BXX - 381B12B = O(E). (2.85)
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By setting BTT to zero, the leading behavior of the localized equilibrium reads B

- 4
03= 8 sechVx. (2.86)

The stability of this solution to small disturbances can determined by writing B(X, T) =

B(X) + (h(X) + ig(X))exp(oT) where h and g are real functions. Upon substitution into

(2.85) it is found that the eigenvalue problems for h and g read

hyX + (12 sech 2 v' - 2 - O.2 /4)h = 0, (2.87)

gxx + (4 sech 2 Vy - 2 - O. 2 /4)g = 0, (2.88)

to leading order in E, and both h and g -+ 0 as x| -- oo. Exploiting the transformation

Z = tanhX reduces (2.87) and (2.88) to Legendre form after which it is straightforward to

show that there is an unstable eigenfunction h oc sech 2 V2x with a growth-rate A = 2v/.

The unscaled growth-rate is therefore 2V'6E which is algebraically small in the amplitude
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parameter in contrast to the solitary wave examples. Although revised perturbation theory

shows that only elevational or depressional equilibria are possible, this clearly has no bearing

on the stability in this case.

In the solitary wave examples discussed involving systems with quadratic nonlinearity,

it was always the case that elevation waves were unstable. If the signs of the nonlinear

terms are reversed though, it can immediately be concluded that depression waves would

instead be unstable. In the solid mechanics problem, this would simply amount to using a

quadratic-softening nonlinear foundation. Although in the surface wave problem there is no

way of changing the sign of the nonlinear term in the fifth-order KdV equation by varying

physical parameters, it is possible in a two-fluid system to make this change by varying the

density and depth ratios (see Laget & Dias 1997). Hence, in the interfacial-wave problem,

the stability of elevation waves is likely to depend on system parameters. This hypothesis

will be explored further in Chapter 4.
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CHAPTER 3

STABILITY OF STEEP GRAVITY-CAPILLARY SOLITARY WAVES

IN DEEP WATER

3.1 Introduction

Thus far, the analysis of gravity-capillary solitary waves has only considered the small-

amplitude limit in which the wave profiles resemble modulated wavepackets. In field ex-

periments, however, observations of gravity-capillary solitary waves have reported profiles

that resemble steep depressions in the free surface with maximum surface steepnesses ap-

proaching 50 degrees (Zhang 1995, Zhang 1999). While forcing by wind was involved in

the original observations, Longuet-Higgins & Zhang (1997) were able to excite such depres-

sion solitary waves on deep water more directly in the laboratory by applying a localized

pressure distribution to a stream moving below the minimum phase speed of infinitesimal

gravity-capillary waves; once excitation was removed, a free depression wave propagated

with speed and profile consistent with theory taking into account viscous dissipation. In

light of these experiments, it appears that an analysis of solitary wave dynamics would be

incomplete without considering the large-amplitude limit which is examined in this chapter.

Experimental studies have so far only reported solitary waves with single-depression

profiles on deep water. Potential-flow theory, on the other hand, suggests a wide variety

of other possible solitary-wave solutions. Specifically, the computations of Vanden-Broeck

& Dias (1992), apart from depression waves, revealed an elevation-wave solution branch as

well. This branch was later studied in detail by Dias, Menasce & Vanden-Broeck (1996) who

discovered solitary waves consisting of a series of depression waves by numerically tracing

the elevation branch past successive limit points. Representative depression and elevation

wave profiles for certain values of the speed parameter a = gT/pc4 are displayed in Figure

3-1; here, as in Vanden-Broeck & Dias (1992), dimensionless variables are used throughout
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FIGURE 3-1. Representative free-surface profiles of gravity-capillary solitary waves in deep water.
Depression waves are shown in (a) and (b) with speed parameters a = 0.257 and a = 0.4, respec-
tively; elevation waves are shown in (c), (d) and (e) for a = 0.257, a = 0.38 (upper branch) and

a = 0.38 (lower branch), respectively.

with T/pc2 as unit length and the wave speed c as unit speed, T being the coefficient

of surface tension, p the fluid density and g the gravitational acceleration. The elevation

and depression solution branches are shown in Figure 3-2 along with the locations on these

branches of the particular profiles displayed in Figure 3-1. All solutions have a > , implying

that wave speeds are less than the minimum phase speed cmin = (4gT/p) 4 of infinitesimal

gravity-capillary waves. As the solitary-wave speed approaches Cmin (see Figures 3-1(a)

and 3-1 (c)) the small-amplitude limit is obtained, and these wavepacket solutions bifurcate

from infinitesimal periodic waves at a = 1 (see Figure 3-2).

The stability results obtained in Chapter 2 are interesting from a theoretical viewpoint
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FIGURE 3-2. Solution diagrams for free and forced deep-water gravity-capillary solitary waves.
The free-surface amplitude q(0) is plotted against the wave speed parameter a = gT/pc 4. The
dimensionless amplitude of the pressure distribution is f = Pmax/ pC

2 , Pmax being the pressure peak
amplitude.

but their relevance can be questioned on physical grounds, given the rather limited validity

of the fifth-order KdV equation-for the Bond number to be close to }, the water depth

is restricted to a few mm so neglecting viscous dissipation cannot be justified (Zufiria

1987). Accordingly, in the present work, having in mind the relatively steep gravity-

capillary solitary waves observed experimentally, we shall work with the full deep-water

wave equations using numerical techniques. Moreover, while our stability analysis will be

based on potential-flow theory, we shall assess the effects of viscosity following the approach

proposed by Longuet-Higgins (1997).

The same numerical procedure also proves useful in the stability analysis of forced

gravity-capillary solitary waves generated by a localized pressure distribution on the free

surface of a stream with speed less than cmin; this case corresponds directly to the ex-

perimental set-up of Longuet-Higgins & Zhang (1997). Steady inviscid solutions to this

problem have already been computed by Vanden-Broeck & Dias (1992) who found, in ad-

dition to Rayleigh's linearized solution, a finite-amplitude branch of solutions connected to
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Rayleigh's solution branch by a limit point; the geometry of these forced solution branches

is shown in Figure 3-2 for blowing on the free surface with two different peak pressure

amplitudes. Our numerical stability results for the forced problem are supported by an

asymptotic analysis in the weakly nonlinear regime when the pressure amplitude is small

and the current speed is close to cmin. Finally, based on our findings, we shall comment

on the observations of forced dynamics reported in the experiments of Longuet-Higgins &

Zhang (1997).

3.2 Formulation

It is convenient to present the formulation in the context of the forced problem where

a stationary localized pressure distribution is applied on the free surface of a fluid stream;

the case of a free solitary wave then follows by simply setting the pressure amplitude equal

to zero. For computing nonlinear steady solutions to the governing equations, we shall use

the boundary-integral-equation method described in Vanden-Broeck & Dias (1992). The

stability of these solutions then is tackled following a procedure similar to that devised by

Tanaka (1986) for studying the stability of steep gravity solitary waves of the KdV type

on water of finite depth, the essential difference being that here the additional effects of

surface tension and forcing are included.

3.2.1 Governing equations and steady solutions

In the frame of the pressure distribution, the flow at large depth is a uniform stream moving

to the right at constant speed c < cmin. The y-axis points upward, y = 0 corresponding

to the undisturbed level of the free surface. The pressure distribution is taken to be sym-

metric about x = 0, x being the streamwise coordinate. The flow, which is assumed to be

incompressible and irrotational, is described by the velocity potential <$, and the free-surface

elevation is denoted by r.
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The governing equations in dimensionless form read

#XX + yy = 0 (-o0 < X < o, -oo < Y < y ) (3.1)

t + ) + -+p(x) = (y = r) (3.2)
(1 +r2)2

rt + #7r7X = O (y = q) (3.3)

(#X #O) -+ (1, 0) (VX/2 +y 2 -+ 0), (3.4)

where p(x) represents the externally applied pressure. Two dimensionless parameters arise:

the speed parameter a = gT/pc4 , introduced earlier, and E = Pmax/PC2 which controls the

amplitude of the applied pressure, pmax being the pressure peak amplitude.

For obtaining nonlinear steady solutions of (3.1)-(3.4), it is convenient to use the ve-

locity potential q and stream function V), rather than x and y, as independent variables.

Specifically, ip = 0 is chosen to define the free-surface streamline and q = 0 to define the

line of symmetry; the fluid region then lies in b < 0. Moreover, the horizontal (u) and

vertical (v) velocity components may be expressed in terms of f = q + i'O and z = x + iy

by using the fact that

U-iv= (d- = 1 (3.5)
(df XO + iy4

The method of solution then is to seek xO + iy 4 as an analytic function of f in 4 < 0.

To this end, applying Cauchy's integral theorem to xp + iyo - 1 using a path including

4' = 0 and a large semicircle that encloses the fluid region, the integrand along the semicircle
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vanishes on account of (3.4). Setting 0 = 0 and taking the real part of the resulting

expression then yields the following relation between xO and 94 = y4:

XO = - fd (V = 0), (3.6)
7r _-o - #

the integral being of Cauchy's principal-value form. Furthermore, by considering only

symmetric waves and working in the half-domain (0 < # < oc), (3.6) reduces to

1 0 1 1
O = 1- - q + - d (,=00). (3.7)

7r fo - 0 + 0

The kinematic boundary condition (3.3) is automatically satisfied by the choice of in-

dependent variables and, making use of (3.5), the steady version of the dynamic boundary

condition (3.2) transforms to

1 + -+ + Ep()= (W = 0); (3.8)

the pressure distribution is now a function of the velocity potential on the free-surface and

is taken in the form

PIJ{ expQ( 0 2
1  (kI1

0(k# > 1)

as in Vanden-Broeck & Dias (1992).

Equations (3.7) and (3.8) define an integro-differential system for qp and xO on the

free-surface. Solving this system, the free-surface profile 9(x) can be readily determined.
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3.2.2 Linear stability

We denote the steady free-surface elevation, velocity potential and stream function by

H(x), 4(x, y) and J(x, y), respectively, and consider small disturbances to these quantities:

r(x, t) = H(x) + i(x, t), (3.9)

#(x, y, t) = 4(X, y) + (x, y, t), (3.10)

)(X, y, 0) = F(X, y) + (X, y, 0), (3.11)

with qX = ?y and qy = - x so as to satisfy Laplace's equation.

In preparation for the ensuing linear stability analysis, both the dynamic condition (3.2)

and kinematic condition (3.3), that apply along the free-surface streamline y = H + i, must

be expanded about y = H and then linearized. Carrying this out, the linearized dynamic

boundary condition is

3lx
Ot + 'J'XO5 + ,YYq (XDy + 41NM+a ,ply (1 + H 3

+ 3 Hx x - =0 (y = H),
(1 + H)

(3.12)

and the linearized kinematic boundary condition is

it + 4DIx + Hzxq + 5xy = 4, + 45yy (y = H). (3.13)

It is convenient to use the arclength s of the undisturbed streamline as an independent

variable, s = 0 being the point of symmetry, and to represent the steady state in terms

of the magnitude of the velocity on the free-surface, q - (I + 2 , and the angle the
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velocity vector makes with the horizontal, 0 = arctan (dH/dx). Assuming normal-mode

perturbations oc exp(At) and making use of #D = q cos 0, dx = ds cos 9, (3.12) then

transforms to

d#5 d(q sin 9) 1 d co2dif dp
A q -q d + - Cos2 + E sin 07. (3.14)

ds ds cos0ds ds ds

By similar manipulations, (3.13) becomes

d- 1 d 1 d(q cos 0) -
ds cos 0ds cos0 ds (.5

Clearly, solutions of the linearized system (3.14) and (3.15) that are bounded and oscil-

latory as 1I) -+ oc (T = 0) correspond to linear waves superposed on a uniform stream at

infinity and have neutral stability. If unstable modes exist, therefore, they must decay to

zero at infinity. Using this condition, Cauchy's theorem can again be applied to the function

+ ii/ using the same semicircular contour as before in the (4, T) plane. After taking the

imaginary part of the resulting expression, we find that q and V) form a Hilbert-transform

pair:

f =(s) ds = 'W() (T' =0). (3.16)
7r _ s - D

Making the change d /ds = q d /dl, the eigenvalue problem (3.14) and (3.15) then

takes the final form

2 di d'() - d(q cos 0)
A= ( -- q q ) dd(3.17)

-q2 do 2 d(q sin 0) +1?-q d qcs2 od dp .i ,(.8
AN -qd5 d4) +)0 cos 0 dD q &Ps ) + &gD s ,(.)
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where both i/ and q decay to zero as JJ -* oc. Apart from a difference in normalization

scales, this eigenvalue problem agrees with the deep-water limit of the problem solved by

Tanaka (1986) if the effects of forcing and surface tension, which contribute the last two

terms in (3.18), are neglected. It is noted that if 0 -+ }7r, a case that can occur for steep

depression waves when the wave speed is low enough, the coefficient of the surface-tension

term in (3.18) becomes singular, and a modified stability analysis is necessary to treat

this case. We shall only consider the stability of solitary waves with single-valued surface

profiles.

3.3 Numerical results

3.3.1 Numerical method

The numerical procedure for computing nonlinear steady wave disturbances is along

the same lines as that presented in Vanden-Broeck & Dias (1992) and Dias et al. (1996):

xz and ql, and thereby ?(x) are determined using finite-difference approximations of equa-

tions (3.7) and (3.8). Truncating the domain at a sufficiently large value 4) = Gmax, N

uniformly spaced mesh points 4i = (i-1)A4 i =1,..., N are introduced and the boundary

conditions 71(0) = gb(Dmax) = 0 are imposed. To reduce the size of matrices that arise

in the stability problem, it is advantageous to use high-order centered finite-difference ap-

proximations to represent the spatial derivatives. To handle the boundaries, intermediate

centered-one-sided difference approximations were used (Fornberg 1995, Appendix C). The

principal-value integral was computed using a nine-point Legendre scheme to interpolate

the integrand at the mid-points. The integral was then computed just as an ordinary

integral using the trapezoidal rule (Vanden-Broeck & Dias 1992, Tanaka 1986).

Starting with an initial guess for q4 (which in the small-amplitude limit can be found in

Dias et al. 1996), the iteration procedure is as follows. First, equation (3.7) directly yields
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a compatible xj after integration, both x, and rp4 are then differentiated to evaluate (3.8).

The N - 2 unknowns 7, are then updated by Newton iteration until (3.8) is satisfied at the

N - 2 interior points. Typically, the free-surface amplitude r(0) was well converged when

A4) = 0.1, though more resolution was needed near limit points. Generation of solution

curves, such as those shown in Figure 3-2, can be made by slowly varying a (or E in the case

of forced waves). While limit points can be traversed by well known continuation methods,

often a jump to a new solution branch can be made by chance in the vicinity of the limit

point if, say, the increment in a is large.

In the case of depression waves, which can have high curvature in the trough regions,

a non-uniform grid was introduced, in terms of a new independent variable Y, via the

transformation <) = 3-y + -y", where # is a small positive number and m is an odd integer.

This transformation is identical to that used by Tanaka (1986) for handling steep solitary

gravity waves which have high curvature in the crest regions. In the problem of interest

here, when # is small, the transformation stretches out the steep trough region and brings

the tails closer to the origin; this proves especially useful for treating solitary waves in deep

water which feature algebraically decaying tails (Akylas, Dias & Grimshaw 1998). The

values m = 3 and / = 0.1 were found to be sufficient for most computations.

The discretization of the eigenvalue problem (3.17) and (3.18) was carried out in a

manner similar to that followed in the steady nonlinear problem, resulting in a standard

matrix eigenvalue problem of the form [C]x = Ax. For ease with matrix manipulation and

sparse matrix storage, all stability calculations were performed using MATLAB v5.3. The

d/ds and 7 operators were first represented in matrix form. Next, the matrix [C] was

assembled taking x = {o/ q}t. The eigenvalues in fact appear in quartets [A, -A, A*, -A*]

owing to certain symmetries of the eigenvalue problem; these symmetries can be used to

reduce the dimension of the eigenvalue problem, treating A2 as the eigenvalue parameter,

but, as it turned out, at a great increase in the required resolution, so the eigenvalue problem

for A was solved instead.
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FIGURE 3-3. Eigenvalue convergence as the grid size is decreased for an elevation-wave instability

(a = 0.30)

The procedure for solving the eigenvalue problem was to first use a moderately fine grid

and the QR algorithm to detect possible candidates for eigenvalues; the grid was then refined

and the inverse-power method with shifting was used to obtain fully converged eigenvalues

(see Appendix C). The spectrum, which obeyed the symmetries mentioned above, contains

an array of imaginary eigenvalues which approximate the continuous spectrum of the actual

problem. When an instability was present, in addition to these neutral eigenvalues, a pair of

real eigenvalues was found with eigenvectors decaying to zero at the tails of the solitary wave,

as required for eigenfunctions corresponding to unstable modes of the original continuous

problem.

A typical case of convergence of the eigenvalue computations for free solitary waves as

the grid size A<> was decreased, is illustrated in Figure 3-3 for an elevation solitary wave

with a = 0.3. Generally, the eigenvalue computations in the forced problem converged

much faster than those for free solitary waves, and more resolution was needed in both

cases as the wave steepness was increased. Details on code performance and compilers can

be found in Appendix D.
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FIGURE 3-4. Instability growth rates of small-amplitude elevation solitary waves in deep water as
the bifurcation point a = is approached.

3.3.2 Free solitary waves

Based on the fifth-order KdV equation, in the small-amplitude limit, elevation solitary

waves are unstable with exponentially small growth rates, but depression waves are sta-

ble (Calvo et al. 2000). We begin by presenting numerical evidence that small-amplitude

solitary waves in deep water behave similarly.

In Figure 3-4, the instability growth rate of elevation waves is plotted on a logarithmic

scale against the inverse of the parameter (a - 1). The growth rates begin to fall on a

straight line as the bifurcation point is approached (a --+ ), consistent with the behav-

ior found using the fifth-order KdV equation. Since the wave profile spreads out into a

wavepacket in this limit, however, it is computationally difficult to extend the numerical

results further. Nevertheless, employing this interpretation in terms of a wavepacket it

was confirmed that the computed instability mode shape agrees approximately with the

derivative of the solitary-wave profile with respect to the envelope variable, as predicted by

the asymptotic theory for the fifth-order KdV equation (Calvo et al. 2000). No unstable

modes were found for small-amplitude depression waves, in agreement with the fifth-order

KdV theory as well.
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a 7(0) Omax A a 71(0) (max A
(deg.) (deg.)

0.253 0.2077 7.03 0.0016 0.30 0.3782 24.1 0.0153
0.254 0.2275 7.91 0.0033 0.32 0.3729 28.7 0.0148
0.257 0.2669 9.90 0.0069 0.34 0.3576 32.8 0.014
0.26 0.2924 11.4 0.0089 0.36 0.3477 36.5 0.012
0.27 0.3411 15.4 0.012 0.38 0.3106 39.8 0.0098
0.28 0.3647 18.6 0.014 0.40 0.2802 42.9 0.0077
0.29 0.3761 21.5 0.0145

TABLE 3-1. Instability growth rate A of free elevation solitary waves for various values of the speed
parameter a. The free-surface elevation at the point of symmetry 7(0) and the maximum surface
steepness Omax are listed for reference.

As the elevation-wave steepness increases, the instability growth rate increases as well,

attaining a maximum when a = 0.30, as shown in Table 3-1. Beyond this value of a,

the growth rate decreases as the limit point at a = 0.43 is approached. Near the limit

point, instability could be detected but convergence deteriorated so results are presented

only up to a = 0.40. After the limit point is passed, profiles resembling steep overlapping

depression waves are obtained, an example of which is shown in Figure 3-1(e). For a = 0.38,

no instability could be found for this solution type, suggesting that an exchange of stability

occurs near the limit point. For the depression solution branch, instabilities could not be

found for either small-amplitude or steep solitary waves.

3.3.3 Forced depression solitary waves

Having in mind the experiments of Longuet-Higgins & Zhang (1997), attention was

focussed on forced depression solitary waves. We consider both weak (C = 0.05) and strong

(e = 0.5) forcing amplitudes corresponding to the response curves shown in Figure 3-2.

Starting on the lower-amplitude branch (corresponding to Rayleigh's solution) of each of

these curves far from the limit point, no instability can be detected. As the limit point

is approached, however, instability sets in as a pair of real eigenvalues, and the onset of

this instability occurs closer to the nose of the response curve as the pressure amplitude
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E = 0.05

a Speed rq(0) Omax A a Speed 7(0) Omax A

(cm/s) (deg.) (cm/s) (deg.)

0.279 22.5 -0.612 16.1 0.014 0.368 21.0 -0.840 25.1 0.059
0.320 21.8 -0.928 27.1 0.021 0.447 20.0 -1.203 43.3 0.100
0.368 21.0 -1.127 36.3 0.027 0.549 19.0 -1.343 56.4 0.122
0.447 20.0 -1.296 47.9 0.033 0.681 18.0 -1.395 68.2 0.133
0.549 19.0 -1.386 59.1 0.039
0.681 18.0 -1.416 69.8 0.041

TABLE 3-2. Instability growth rates A for forced depression solitary waves located on the higher-
amplitude branches of the response curves in Figure 3-2. The free-surface elevation at the point of
symmetry rq(O) and the maximum surface steepness Omax are listed for reference.

is decreased. As the limit point is passed and transition is made to the higher-amplitude

branch, the growth rate increases monotonically with a (see Table 3-2).

The instability found here is in dramatic contrast with the results for free depression

waves discussed earlier: when the surface steepness is large and C is small, in particular, the

forced response is essentially a free depression solitary wave profile that is lightly forced;

nevertheless, this small amount of forcing is enough to cause instability. Of course, as the

pressure amplitude is increased, the instability becomes stronger; for example, in the range

of speeds considered here, the growth rates corresponding to E = 0.5 and E = 0.05 differ by

a factor of roughly three (see Table 3-2).

These stability results suggest that, under flow conditions for which two steady states are

possible, Rayleigh's solution would most likely be attained, the higher-amplitude solution

being unstable; on the other hand, the flow presumably would remain unsteady when no

stable steady state is available. A detailed description of the dynamics would require a

time-dependent simulation of the full equations which is beyond the present study. Some

insight into the dynamics can be obtained, however, when the pressure amplitude is small

and the forced response resembles a small-amplitude wavepacket. As discussed below, the

flow then is governed by a forced NLS equation, allowing one to explore the evolution of

61

6-=0.5



the induced disturbance in this weakly nonlinear regime.

3.4 Weakly nonlinear forced dynamics

According to linear theory, the steady-state response to a localized pressure disturbance

(Rayleigh's solution) becomes unbounded owing to a resonance phenomenon as the current

speed approaches cmin (Whitham 1974, §13.9). In the weakly nonlinear regime, when

the pressure amplitude is small, this singular behavior may be resolved by an asymptotic

theory. The problem is mathematically similar to the generation of surface waves in a

channel by a wavemaker oscillating near a cut-off frequency (Barnard, Mahony & Pritchard

1977), the excitation of acoustic waves in a duct by a piston oscillating near a cut-off

frequency (Aranha, Yue & Mei 1982), and the forcing of gravity waves by a moving pressure

distribution oscillating at resonant frequency (Akylas 1984). In the latter study, it was

found that weakly nonlinear near-resonant flow is governed by a forced NLS equation and,

not unexpectedly, this turns out to be the case here as well. We shall only sketch the main

points in the derivation of the forced NLS equation.

3.4.1 Forced NLS equation and localized steady solutions

When the forcing amplitude is small (e < 1) and the current speed is close to resonant

conditions (a -+ 1), the weakly nonlinear response is expected to take the form of a mod-

ulated wavepacket with carrier wavenumber kmin corresponding to the minimum gravity-

capillary phase speed; in the present nondimensional formulation, kmin = 1. Moreover

since the phase and group speeds are equal at this wavenumber, the wavepacket envelope

is nearly stationary relative to the carrier oscillations.

1
Accordingly, in terms of the envelope variable X = c2x and the 'slow' time variable

T = et, the appropriate expansions for the velocity potential and free-surface elevation are
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#(x, y,t) = x + E J{A(X, T)e i + c.c.}elY + c{A 2(X, T)ex + c.c.}eY + (3.19)

77(x, t) = 2{S(X, T)e 2 + c.c.} + C{S 2 (X, T)eir + c.c.} + - - (3.20)

where a = + o, = 0(1) being a detuning parameter.

To avoid heavy algebraic details in deriving the forced NLS equation, ignoring depen-

dence on x for the moment we shall first obtain the forcing and nonlinear terms, which will

then be combined with the familiar linear dispersive term to deduce the complete evolution

equation.

Upon substitution of (3.19) and (3.20) into the dynamic and kinematic boundary condi-

tions (3.2) and (3.3), the second-harmonic amplitudes are related to the primary-harmonic

amplitudes by

S2 = s2 A 2 = i S2. (3.21)
2

The equations for the primary harmonic then are

iS - A + 2e (ST + 13 i S 2 S*) = 0 (3.22)

iA + (1 + 2oE)S + 2c (iST + 2 = -2Eip(x)e-i. (3.23)

Eliminating A from (3.22) and (3.23) and combining the result with the linear dispersive

term, as obtained directly from the dispersion relation, yields the forced NLS equation

iST + 10,S -- -IS2*= -_impm6 (X), (3.24)

where the pressure distribution has been replaced by its limiting form

1 X
p-( i exp (-i X -*2rpm(X), (3.25)

E2 2E2
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and

PM = 27r f-p(x)e- dx. (3.26)
-cx

We next look for localized steady solutions of (3.24) for a > 0 which correspond to

forced finite-amplitude steady flow states for c < cmin. To this end, it is convenient to work

in the half-domain (0 < X < oo), using the jump condition at X = 0 imposed by the delta

function in (3.26):

Sm (X = 0). (3.27)

Following Barnard et al. (1977), we write S(X) = R(X) eiA(X) and look for solutions which

decay at infinity

R -* 0 (X - oc). (3.28)

It is straightforward to show that <p is constant and hence S is real by (3.27). Moreover,

S(0) is given by

S(0) { 0,- T ± - . (3.29)

Depending on the sign of fimS(0), two types of responses are possible: when k m S(0) < 0,

the envelope varies monotonically in X > 0 and corresponds to blowing (suction) on a

depression (elevation) wave profile given implicitly by

X = 2 ln 1+(1+11S2/64)1 () (X > 0); (3.30)
0 2 + (1 + 11S(0)2/64a) 1 /

when fimS(0) > 0, on the other hand, S attains a local extremum at some X > 0. This

latter type of response may be interpreted as blowing (suction) on an elevation (depression)

wave and was also found by Vanden-Broeck & Dias (1992) by numerically solving the full

water-wave equations.
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FIGURE 3-5. Comparison of response curves predicted by the forced NLS equation (- -) with
response curves obtained by solving the water-wave equations (-).

In both cases, the ± sign inside the braces in (3.29) implies that two real solution

branches exist for o- > o-* = 1127rpm/4 = 0.1804 and converge to a limit point at a = -*,

where the quantity in the brackets vanishes. The response curves found using the forced

NLS equation (for PmS(0) < 0) are compared in Figure 3-5 with those found numerically

using the full water-wave equations as described earlier, for pressure amplitudes e = 0.05

and e = 0.015. Although agreement between the limit-point locations clearly improves as

e is decreased, the weakly nonlinear solution rapidly loses accuracy away from the limit

point.

3.4.2 Eigenvalue problem

It is most convenient to examine the stability of the localized solutions S = S over

the full domain -oo < X < oc, using symmetry to extend 5 to X < 0. Again, small

disturbances in the form of normal modes are assumed by writing S(X, T) = 9(X) +

{F(X) + iG(X)} exp(AT), and upon substituting into (3.24), linearizing, and separating

real and imaginary parts, the following system is obtained

AF + laG + aGxx + bS 2 G = 0 (3.31)
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AG - jcxF - aFxx - 3bS2 F =0. (3.32)

It may be readily shown that for an instability to be possible (Re A > 0), both eigen-

functions F and G must decay to zero as JXJ -+ oo. This eigenvalue problem was solved

numerically by discretizing (3.31) and (3.32) using finite differences and then using the QR

algorithm to find unstable eigenvalues.

Focussing on solutions with PmS(0) < 0, Rayleigh's solution branch was again found

to be stable. Once o- passes through the critical value a* corresponding to the limit point,

however, a pair of real eigenvalues appears, signalling the onset of instability which becomes

stronger as a is further increased. The asymptotic analysis of weakly nonlinear forced

solitary waves then confirms the results found directly using the water-wave equations and

shows that the instability growth rate of forced solutions is O(E) in the weakly nonlinear

regime, unlike the case of free solitary waves which feature exponentially small growth rates

in this limit.

A quantitative comparison of instability growth rates predicted by the forced NLS equa-

tion with those found using the water-wave equations was made for several values of E

between 0.0125 and 0.05. Although the error between the growth rates was significant for

E = 0.05, agreement improves as e becomes smaller. Finally, we remark in passing that

both branches of the response curves with PimS(O) > 0 were found to be unstable.

3.4.3 Initial-value problem

Based on the stability results presented above, out of the two steady states that are

possible when a > &*, one would expect Rayleigh's solution to be reached from a gen-

eral locally confined initial disturbance. We confirmed this by numerically solving the

forced NLS equation (3.24) on the half-domain (X > 0) using the semi-implicit Crank-

Nicolson method described in Aranha et al. (1982). It was first verified that if a solution

66



on Rayleigh's branch was used as initial condition, the response stayed on this solution,

but if a solution on the higher-amplitude branch was chosen, the envelope disintegrated,

consistent with the previous stability results.

Starting with quiescent initial conditions it was found that two scenarios are possible:

if 0 > a*, Rayleigh's steady-state solution is eventually reached after long enough times

(a decaying oscillation occurs about the steady state). If, on the other hand, o < o*, so

that no steady state is available, the response remains locally confined but is inherently un-

steady and features large periodic fluctuations. Before relating these results to experimental

observations, we shall discuss the role of viscous dissipation.

3.5 Viscous effects

The effects of viscous dissipation cannot be entirely neglected for short water waves in

the gravity-capillary regime, and a steady state cannot be maintained without some type

of forcing. The stability analysis of free solitary waves presented here is therefore most

meaningful if the underlying damped wave is quasi-steady, i.e., from one instant to the

next, the wave profiles agree with steady profiles obtained using potential-flow theory. This

quasi-steady assumption was used by Longuet-Higgins (1997) to compute theoretical decay

rates of solitary waves, in good agreement with experimental observations (Longuet-Higgins

& Zhang 1997). In these studies, a dramatic increase in the dissipation rate was found when

the maximum surface steepness 0 max rose above about 55 degrees. The stability analysis of

free waves presented here then appears to have merit provided that the surface steepness

is not far above this value.

When forcing, as described in this study, is in effect, the assumption of a steady un-

derlying state used in the stability analysis is reasonable. A deviation between the forced

potential-flow solutions and those that might be physically observed is expected though in

proportion to the strength of viscous dissipation. Again, if the wave profile is not too steep
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the inviscid forced solutions appear to be reasonable.

A quantitative comparison must still be made, however, between the effects of instability

and those of dissipation and so we first summarize the essential details of Longuet-Higgins's

theory.

3.5.1 Model for viscous dissipation

Assuming the effects of dissipation are only moderate, the approach is to compute the

rate of external working that must be done on the free surface to balance viscous stresses

at the surface and thereby maintain steady motion. This work is balanced by viscous

dissipation occurring throughout the body of the fluid. It is then only necessary to compute

a single integral for the total rate of working done on the free surface at steady state instead

of a double integral over the fluid volume. This method then provides an estimate of the

dissipation rate of free solitary waves once the applied surface stresses are removed.

For a solitary wave, the total rate of working against surface stresses is defined as

D = j Wds, (3.33)

where W is the rate of working per unit length in the s direction which is the product of

the normal and tangential stresses with the normal and tangential velocities relative to the

stationary reference frame. For a steady solitary wave, the only contribution arises from

the tangential stress in which case D is given by

D = 2p q2 ds. (3.34)

Finally, by energy conservation we have

dE
dE = -D, (3.35)
dt

where E is the total energy of the solitary wave.
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a VG VT T E Dly

0.253
0.254
0.257
0.260
0.270
0.280
0.290
0.300
0.320
0.340
0.360
0.380
0.400
0.410
0.420

0.1249
0.1378
0.1767
0.2128
0.3218
0.4189
0.5050
0.5818
0.7089
0.8082
0.8848
0.9427
0.9851
1.0013
1.0126

0.1270
0.1410
0.1837
0.2243
0.3536
0.4777
0.5962
0.7102
0.9209
1.1126
1.2861
1.4431
1.5845
1.6497
1.7099

0.2508
0.2772
0.3570
0.4314
0.6595
0.8672
1.0555
1.2278
1.5239
1.7688
1.9703
2.1358
2.2699
2.3270
2.3742

0.5027
0.5560
0.7174
0.8685
1.3348
1.7638
2.1566
2.5197
3.1537
3.6896
4.1412
4.5217
4.8395
4.9780
5.0967

1.0746
1.2337
1.6974
2.1752
3.8979
5.8698
8.0899
10.561
16.134
22.569
29.826
37.858
46.619
51.247
55.986

TABLE 3-3. Integral quantities for elevation solitary waves in deep water.

Besides the dissipation integral (3.34), the total energy E of a solitary wave is needed to

compute the rate of dissipation. This energy is the sum of the gravitational potential energy

VG, the surface tension potential energy VT, and the kinetic energy T. These energies are

given by integrals that are described in detail in Longuet-Higgins (1989). We list them here

for reference in terms of the dimensionless variables used in this study:

VG = 1 r 12 dx

VT = f(ds - dx)
-T=

T= 2 _. d~.

(3.36)

(3.37)

(3.38)

The computed quantities for elevation solitary waves in deep water are listed in Table 3-3.

We define the instantaneous damping rate of a free solitary wave as
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1 dOmax 1 dOmax dE (339)

Omax dt Omax dE dt

For small-amplitude gravity-capillary solitary waves for which an asymptotic (wavepacket)

solution is available, the right-hand side can be computed analytically and is equal to a

constant value, -4vk 2 : a linear damping rate that is twice that of a train of infinitesimal

waves with the same wavenumber. When the wave steepness increases though, the right

hand side of (3.39) is no longer constant and the instantaneous damping rate changes with

the wave steepness. For this nonlinear case, we define the average damping rate to be the

inverse of the time required for the maximum surface steepness to decay by a factor of e to

be consistent with time scale of instability 1/A which is the time over which an unstable

mode grows by a factor of e. The damping rate must then be computed by numerically

integrating (3.39). For the forced problem, we compute the damping rate in the same way

but use a free depression solitary wave with the same maximum surface steepness.

3.5.2 Competition between unstable and dissipative effects

The effect of instability on an elevation solitary wave is exponentially in the small-

amplitude limit and is overwhelmed by the 0(1) linear dissipation described previously. The

competing effects are compared in Figure 3-6 which indicates that as the wave steepness

increases, the effects of instability grow to be on the same level as those of dissipation.

An initial decrease in the damping rate is seen due to a decreases in dOmax/dE away from

the small-amplitude limit. The maximum surface steepness range over which the effects

are most comparable is between 7 and 25 degrees. As a approaches the limit point value

(a = 0.43), however, dissipative effects continue to increase and dominate the effects of

instability.

The comparison for forced waves with pressure amplitudes F = 0.05 and e = 0.5 is shown

in Figure 3-7. When forcing is weak, the effects of dissipation and instability are at the
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FIGURE 3-6. Comparison of growth rates (-o-) and damping rate (-) for free elevation solitary

waves.

same level. When the pressure amplitude is increased by an order of magnitude though,

instability begins to dominate over dissipation and so we expect that the instability of

strongly forced solitary waves is physically observable.

We may use these results to comment on the usefulness of the small-amplitude stability

analysis based on the forced NLS equation. For very small pressure amplitudes, the effects

of instability will be overwhelmed by those of dissipation and the forced NLS equation is a

poor model. For moderate pressure amplitudes (c > 0.05), however, where instability begins

to be stronger than dissipation, the forced NLS equation may qualitatively make good

predictions. In a recent theoretical and experimental study of Benjamin-Feir instability

of moderately steep periodic gravity-capillary waves made by Shemer & Chamesse (1999)

using the Zakharov integral equation modified for linear dissipation, it was found that for

frequencies near the one considered in this study (12.9 Hz), the effects of viscous dissipation

only modify inviscid growth rates for long disturbances in a relatively minor way. Moreover,

the theoretical predictions were in reasonable agreement with experimental findings. The

evidence suggests then that the time-dependent simulations discussed in the last section

are not without merit, and we return to the physical implications of the results in the next

section.
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FIGURE 3-7. Ratio of growth rate of forced depression solitary waves with damping rate of free
depression waves with the same maximum surface steepness.

3.6 Discussion

The stability of free solitary waves with a single dip is consistent with reported experi-

mental observations of them in unforced situations (Longuet-Higgins & Zhang 1997). Based

on our results, it appears that a combination of these dips (such as the one shown Figure

3-1 e) are stable as well provided that the dip separation is sufficient and so pairings of

dips might too be physically observable.

On the theoretical side, it is of interest to know how an unstable elevation wave might

evolve if the water-wave equations were solved numerically using an elevation wave as an

initial condition. An approximate evolution over short times may be seen by superimposing

a small proportion of the unstable mode i/ on the underlying free-surface elevation and

monitoring the development over a few instability times 1/A. When this is carried out

for the elevation wave in Figure 3-1(d) the result is shown in Figure 3-8. The instability

initially develops as a slight depression forming in the middle crest and a deepening of the

right trough relative to the left trough. What occurs in the nonlinear stage of development
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would have to be determined by a solution of the full equations, but most likely the elevation

wave splits into two depression waves that propagate at slightly different speeds. This

behavior would be in agreement with what was seen using the fifth-order KdV equation for

moderately steep waves (Chapter 2) and in a similar problem of solitary waves propagating

on a nonlinear Bernoulli-Euler beam (Chen & McKenna 1997). Another possibility may be

that the stable wave profile in Figure 3-1(e) is obtained if the value of speed parameter is

near the elevation branch limit point.

The theoretical findings of this study that can be compared most directly with water-

wave experiments are obtained for strongly forced depression solitary waves. This case

corresponds to the situation in the forced part of the experiment by Longuet-Higgins &

Zhang (1997). Two reported observations that are relevant to the present study are the

persistent unsteadiness of the forced profiles and a substantial discrepancy between the

maximum surface steepness and the theoretical steepness of free depression solitary waves

for a given speed. While the latter disagreement might be expected, we cannot account for

this discrepancy by only solving the steady problem with forcing effects.

Specifically, the theoretical maximum surface steepness of forced steady solitary waves

for typical current speeds considered in the experiment can be computed by renormalizing

variables such that the new pressure amplitude parameter is given by E = pmax/(pgT)! .

Each value of then specifies one in a set of limit curves analogous to those shown in Figure

3-2. The theoretical curve corresponding to experimental conditions therefore depends on

an estimation of Pmax, which represents the stagnation pressure of the air impinging on the

free surface, and can be made based on the geometry and data given in the experiment.

The experimental set-up consists of an air chamber in sequence with a flow straightener

and a converging nozzle which issues an air jet directed downward to the water surface.

The air chamber pressure (assumed to be a stagnation pressure) was reported to be always

less than 3 mm of water. As an approximation, if loss only due to the flow straightener is

accounted for (which turns out to be small), it is found that E = 1.1 (assuming standard
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conditions for water properties). We note in passing that this O(1) pressure amplitude

only creates a small static free-surface deflection when there is no current, consistent with

experimental observations.

The theoretical location of the limit curve is shown in Figure 3-9 along with a highly

conservative curve which assumes an (arbitrary) 50% loss in air chamber pressure (E = 0.55)

due to possible losses outside the flow straightener. The high surface steepness of the

higher-amplitude branch of each curve is undoubtedly exaggerated since viscous effects are

not being accounted for in the forced solutions. On the other hand, the location of the

limit points as well as Rayleigh's solution branches occur for maximum surface steepnesses

below 55 degrees and so potential-flow theory is expected to be a good model.

Comparing the experimental data with the theoretical limit curves, a likely scenario is

that the true theoretical limit curve lies somewhere between the two curves shown since if

Rayleigh's (stable) solution were possible in the high-loss situation (E = 0.55), the scatter in

the measurements would probably not be observed. The observed scatter in the maximum

surface steepnesses is most likely due to the fact that no steady states are obtainable at the

speeds considered. This explanation is in agreement with the qualitative picture provided

by the time-dependent simulations of the forced NLS equation. It should be noted, however,

that the theoretical results predicted here are based on two-dimensional theory while the

unsteadiness observed in the forced experiments had a three-dimensional aspect.
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FIGURE 3-8. Approximate evolution of an unstable elevation wave shown at times t = 0 (- -) and
t = 2/A (-). The initial state has speed parameter a = 0.38 and corresponds to point (d) in Figure
3-2.
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FIGURE 3-9. Comparison of theoretical steady state limit curves with experimental measurements
obtained in the forced part of the experiments of Longuet-Higgins & Zhang (1997). Both stable

(-) and unstable segments (- -) of each theoretical curve are indicated.
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CHAPTER 4

DYNAMICS OF GRAVITY-CAPILLARY INTERFACIAL SOLITARY WAVES

IN A LAYERED TWO-FLUID SYSTEM

4.1 Introduction

When an interface separating two incompressible fluid layers is subject to capillarity, a

local minimum in the phase speed relation for small disturbances is generally obtained, and

therefore solitary waves of the new class are expected to arise here as well. These gravity-

capillary interfacial solitary waves tend to wavepackets in the small-amplitude limit, and are

therefore distinct from interfacial solitary waves of the Korteweg-de Vries and Benjamin-

Ono types that tend to infinitely long waves (Benjamin 1967; Ono 1975). In contrast to

what was found in the free-surface problem, here the presence of additional dimensionless

parameters lead to important differences in limiting wave forms and stability properties

from what was found before. These differences will be demonstrated mainly by numerical

solution of both the weakly and fully nonlinear wave problems which will be based upon

potential-flow theory.

To demonstrate the main differences between the free-surface and interfacial-wave prob-

lems, we will focus (mostly for computational simplicity) on the case in which the upper

fluid is bounded above by a rigid wall and lower fluid is deep. In this geometry, weakly

nonlinear long gravity-capillary waves were studied by Benjamin (1992; 1996) who derived

a model equation and proved the existence and global stability of a small-amplitude ele-

vation solitary wave. These results were latter verified using different methods by Albert,

Bona & Restrepo (1999) who also explicitly computed the elevation solitary wave profile.

Approximations of solitary-wave solutions to the Benjamin equation were obtained by

Akylas, Dias & Grimshaw (1998) using the nonlinear Schr6dinger (NLS) equation. Accord-

ing to their analysis, in addition to an elevation wave, a depression wave type should also
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exist. Moreover, extrapolating the analysis of Chapter 2, it is expected that this solitary

wave type may be unstable. Both the existence and linear instability of the depression

wave is confirmed here by numerical solutions of both the Benjamin equation and the full

hydrodynamic equations.

The nonlinear dynamics of these solitary waves will then be considered by numerically

solving the time-dependent Benjamin equation. Of particular interest from an experimental

standpoint is the possibility that interfacial gravity-capillary solitary waves can evolve out

of general localized initial conditions. Because of a mathematical similarity between the

Benjamin and KdV equations, it is also of interest to know whether Benjamin solitary

waves have other soliton properties: stable emergence from collisions with other solitary

waves for example.

The accuracy of approximate solitary-wave solutions obtained using the Benjamin equa-

tion will then be compared with solutions of the full hydrodynamic equations obtained nu-

merically using the boundary-integral-equation method (Laget & Dias 1997). Using the full

equations, it will be shown that the qualitative picture of solitary waveforms predicted by

the Benjamin equation are obtained over a fairly broad range of parameter space. Finally,

using a linear stability analysis of solutions to the full equations, results will be presented

which support a hypothesis that the stability and limiting wave forms of gravity-capillary

interfacial solitary waves in the case of two fluid layers of finite depth depends critically on

the depth and density ratios.

4.2 Motivation

The geometry of general interest consists of a layer of incompressible fluid of density P2

and thickness h2 which lies above an incompressible fluid of higher density p1 and thickness

hl. Denoting the coefficient of interfacial tension by T and the gravitational acceleration

by g, the phase speed c of infinitesimal waves with wavenumber k is given by
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cg2 9(P1 - P2)+Tk
2

k(picothkhi + P2cothkh2 )

An asymptotic approximation of small-amplitude gravity-capillary solitary waves may

be obtained by either of two approaches analogous to those followed in the free-surface

problem. In the first approach, a two-scale perturbation expansion of solitary wavepackets

can be made using the NLS equation provided that the wave speed is slightly below the

minimum phase speed. As discussed before in the free-surface problem, a shortcoming of

the NLS approach is that it neglects the phase of the wave which is expected to influence

stability.

To obtain insight into stability, a weakly nonlinear long-wave approach may instead be

followed leading to a fifth-order Korteweg-de Vries (KdV) equation as discussed in Laget

& Dias (1997) and shown here in steady form as

1 1 77+ (W* - W)7/XX + I(H H3 + RH 3)nxxxx + 12H 2 = 0,
452H

where

T W (cH2 H 1 R
W =C2 2 = W* -(H1 + RH2) F* -

p1(h1 + h2)c (1 - R)g(hi + h2)' 3 'H, H2'

and

R = P H h2 H1 h1 H2 h2

P1' h1' h1 + h2' h1+ h2

The validity of the fifth-order KdV equation depends on W ~ W* and F 2  F*2. The

presence of additional physical parameters not found in the free-surface problem (R = 0)

lead to an interesting result suggested by the form of the coefficient of the nonlinear term:

keeping the signs of all the linear terms positive, it is possible to make the nonlinear
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coefficient negative which implies that small-amplitude elevation waves would be stable -

a situation opposite to the free-surface case. This condition can be physically obtained if

the thickness of the lower fluid is a few times that of the upper fluid for instance and would

be qualitatively consistent with Benjamin's proof of a stable elevation solitary wave when

the lower fluid is infinitely deep. Furthermore, the profiles of moderately steep gravity-

capillary solitary waves would appear to reverse: the picture of deep troughs and short

crests would flip across the undisturbed free-surface level.

Because the fifth-order KdV equation is valid for restrictive parameter values, it would

be of interest to know if such an exchange of stabilities can be observed over less restrictive

ranges of parameter space. To this end, linear stability analysis will be used in conjunction

with the full hydrodynamic equations. To probe the aforementioned points, it suffices to

consider the case in which the lower fluid is infinitely deep (h, - oo). In this limit, (4.1)

reduces to

2 _ 9(P1 - P2) + Tk 2

p1|k| + p2 cothkh'

where from here on h = h 2 -

4.3 Weakly nonlinear solitary wave dynamics

4.3.1 Benjamin equation

To explore the dynamics of gravity-capillary solitary waves with speeds slightly below

the minimum phase speed, an asymptotic equation can be developed using the long-wave

approximation as described in Benjamin (1992). Specifically, in the limit of very long waves,

c may be expanded in powers of Iklh to obtain
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c~co 1- piT 3 p2E1-c = co 1 - 1 1 klh + [1+ P' (kh)2 (4.3)2 P2 2 g(p1 - p 2 )h 2  4 p( 6

where

co= gh -p 1) . (4.4)

It is essential that the wavenumber kmin at which the minimum linear phase speed is

attained satisfies kminh < 1 which requires a balance between the first and second-order

dispersive terms. This balance can be obtained if the fluid densities are close and interfacial

tension is relatively high:

T1T = (1) (4.5)
9(P1 - p2 )h 2  kh

By consideration of the linear pseudo-differential operator corresponding to (4.3) and

the leading-order effects of self-steepening, one may infer the evolution equation governing

the wave amplitude q* in terms of the normalized variables

77 x C t
77 , X= t=t

where a represents a typical wave amplitude, I a typical wavelength, and the starred quan-

tities are dimensional. Benjamin's equation in normalized form then reads

77t + 77X - 7777x - OH (77 1 1 ) - 77xxx = 0, (4.6)

where

3a l1 h T

2 h' 2p2 l' 2g(p1 - p2) 12'

and R denotes the Hilbert transform,
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7( = ds.
f-_0 s - X

To obtain a balance between weak nonlinear (e < 1) and weak dispersive (p < 1) effects

we must have e = 0(p). In addition, we require p = 0(3) which is equivalent to condition

(4.5). It is noted in passing that as P2 -+ 0, the parameter p -+ oo and so a free-surface

case cannot be recovered from the Benjamin equation.

Under further transformation

= et, ' = (E/)1/3(x - t), q' =

we arrive at a form of Benjamin's equation suitable for time-dependent simulation:

7 t - 29qq - 2-y)-(77) - ?Xxx = 0, (4.7)

where the primes have been dropped and the parameter y = p/2c203 = 0(1).

4.3.2 Solitary waves

A travelling wave solution with speed below the long-wave speed can be sought in terms

of q(x, t) = (-) (x = + Ct). The steady Benjamin equation then assumes the form

C - 2 - 2-77 (i ) - = 0. (4.8)

If the speed parameter C is taken to be 1, without loss of generality (as i and may

be rescaled), a one-parameter family of solitary-wave solutions is expected characterized

by y < 1: -y = 0 corresponds to the known KdV solution lsech( /2) 2 , while in the limit
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-y - 1 the tails of the solitary wave feature decaying oscillations which corresponds to a

small-amplitude wavepacket near the bifurcation point.

Equation (4.8) was solved numerically using fourth-order accurate finite differences for

the spatial derivatives and an evaluation of the Hilbert transform using the discrete Fourier

transform. The nodal values of i were solved for using Newton's method. Both elevation

and depression wave solutions are shown in Figure 4-1 for -y = 0.94 with C = 1. The

elevation wave was obtained by starting at the KdV limit y = 0 and then slowly increasing

y towards 1, while the depression wave was obtained by reflecting an elevation wave with

y 1 across the horizontal.

To confirm the expected stability results for elevation waves and to determine the sta-

bility of depression waves, equation (4.7) was solved numerically using the same spatial

discretization as in the steady problem and a predictor-corrector scheme for time-stepping

(see Appendix A). Time-dependent solutions showing the evolution of the elevation and

depression waves shown in Figure 4-1 are displayed in Figures 4-2 and 4-3, respectively.

While the elevation wave propagates stably as expected, the depression wave is unstable

and eventually decomposes into two elevation waves.

To test for soliton-like properties, (4.7) was again solved numerically this time using two

elevation solitary waves with speeds C = 1 and C = 1.5. As can be seen in Figure 4-4, the

higher amplitude wave passes through the smaller amplitude wave and both waves remain

relatively intact after the collision. In contrast to collisions of stable depression waves

seen in the free-surface problem using the fifth-order KdV equation, here small-amplitude

radiation can be seen in the trail of each solitary wave indicating that the interaction is not

completely conservative.

Finally, a simulation using a Gaussian initial condition, u(x, 0) = exp(-0.5 2), was

performed for -y = 0.97. The results in Figure 4-5 show the emergence of an elevation

solitary wave along with radiation. Generally, as the width of the Gaussian increases an

elevation wave will still emerge but with more radiation.
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solitary-wave solutions of the steady Benjamin

4.4 Fully nonlinear interfacial solitary waves

In this section, a comparison of the steady solitary-wave solutions of the Benjamin

equation will be made with profiles obtained using the full hydrodynamic equations. An

advantage of the latter method is that no restrictions are placed on the values of dimen-

sionless parameters; for instance, the wavelength and amplitude of the solitary wave may

be of the same order as the thickness of the upper fluid.

4.4.1 Wavepackets

In preparation for presenting results of computations using the full equations, it is

first helpful to examine the necessary relationships between critical values of the system

parameters which define bifurcation points about which small-amplitude wavepackets are

expected.
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Using h as a length scale and the solitary wave speed c as a speed scale the linear phase

speed relation (4.2) becomes

(1-R) K 2

D2(R, W, F2- K) = F2  )
DK! + KR coth K

where

R P= P2 W 2 F2 = C, K = kh. (4.10)
Pi p1hc gh

A transition from a speed slightly above to slightly below the minimum phase speed

corresponds to two real roots (wavenumbers) in (4.9) first coalescing and then taking on

imaginary parts. As R, W and F 2 are varied, the condition which defines the minimum

phase speed then is a double root of (4.9). Regarding R and K as parameters the critical

speed then corresponds to critical values W = W* and F 2 = F*2 which are given by the

following relations

= 2 R 1 + R coth K* + , (4.11)F*2 2(1 - R) sinh2K*'

W*= 1 + R coth K* - . (4.12)
2K* I sinh2K*

In Figure 4-6, the relations (4.11) and (4.12) have been plotted in terms of F*2 versus W*

for various values of the density ratio R. The region near the origin of the plot corresponds

to large K*, while in the long-wave limit (K* -+ 0), F*2 tends to F2 = (1 - R)/R which

corresponds to the long-wave speed co.

In terms of the current normalization, the conditions necessary for the Benjamin equa-

tion to be valid can be seen by expanding D in powers of JKJ:

S-R{ KI 1(W (1 - R) + -R) F2 1 ] K2+O(1K13)
1= F2R 2R 2 W 3F2 +F2R2 )1I- R 8R2 K+ (K3
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(4.13)

If the Froude number is slightly less than F0, i.e., F - F2 = O(IKI) > 0, we have then

1 F 2  |K Wo 2
2 \ 2 2R 2R

(4.14)

provided that

(4.15)

where Wo = T/pihco. Condition (4.15) is equivalent to (4.5). Based on (4.14) and com-

parison with (4.6) the steady Benjamin equation in the current normalization reads

(4.16)

89

8

8 . R =0.1

7

6-

5

4

3

2-
R = 0.5

R = 0.9
.' '

0

1 F 2)7_ 377 1 W(7 O 0
2 F02 4 2R 2R x

WO = - 7K0(')



Benjamin's equation is then expected to yield a close approximation to solutions com-

puted using the full equations provided that F2 ~F and W > 1. In preparation for a

comparison of the results of the two computational approaches, the details of the steady

nonlinear computation using the boundary-integral-equation method will first be summa-

rized.

4.4.2 Formulation of steady problem

The full equations for the steady nonlinear interfacial-wave problem read

#1xx + #1yy = 0

#2xx + 02yy = 0

(-o < x < 0o, -oo < y <q),

(-oc < x < oo, 77 < y < h),

P1 [Ol + 1((2X + 02y) + g77] - P2 [02t + (#2X + 02y) + g77] - T XX = (P= - P2)C2
(1 2+ q2 ) 1

(y = q) (4.19)

77t + #ix?7x = 1Oy

?It + #2x7x = #2y

(y = q),

(y = ),

(4.20)

(4.21)

(Oix , qy) -+ (c, 0) (x 2 + y 2 -+ o, y < T),

02y = 0  (y =h),

#2x= C (IxI 00).

(4.22)

(4.23)

(4.24)

To compute nonlinear steady solutions of (4.17-4.24), the boundary-integral-equation

method is used in the same way as before to handle the lower fluid, but now an additional
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integral equation must be included to account for the upper fluid. Using #1 (on the inter-

face) as an independent variable, the unknowns are then x4 i and yp as before, but now

the velocity potential of the upper fluid #2 (on the free surface) may be regarded as the

additional unknown. It is convenient to introduce a link between the two potentials on the

interfacial streamline ( =1 = 02 = 0):

#2 = 9(#1) (N = 0). (4.25)

If the subscript on q1 is now dropped, the normalized and transformed Bernoulli equa-

tion reads

1 ((1 - R) ( = 0).

2 (X2 + 77,) F2 (X2 +,q2)12

(4.26)

Applying Cauchy's theorem to xO + iyp - 1 using a contour enclosing the lower-fluid

region (4 < 0) we obtain as before

(4 = I - fd ('= 0). (4.27)

The solid boundary condition (4.23) which applies at 4 = 1 can be satisfied by defining

an image system (a reflection of the upper-fluid between 4 = 0 and 4 = 1 about the line

4 = 1) and the properties

(#2, 0 = 0) = a(02,4 =2) (02, V = 0) = (02, 0 = 2). (4.28)
09#2 M# 4#2 M#

Applying Cauchy's theorem to X02 + iy42 - 1 using a rectangular contour that encloses

the upper fluid physical region and its image, the following expression is obtained upon

taking the real part of the result and using # as an independent variable

91



-4 1 f' 7_ -< 1 [g( ) - g(#)]gq + 2(x - g )
= r 1 +( -gq$)d(+ 1 d( (4'=O0)90 7r -_ g() g(o) .7 fo [(() - g(o)]2 + 4

(4.29)

where, again, the integral in (4.27) and the first integral in (4.29) are of the principal-value

type. Because only symmetric waves are being considered, the two integral equations can

be rewritten on the half domain q > 0. The numerical solution procedure is along the

same lines as that used in the free-surface problem except here o and g are solved for

simultaneously. Specifically, during the iteration procedure (4.27) directly yields x0 given

some initial guess for qo; equations (4.26) and (4.29) can then be evaluated and o and g

are updated using Newton's method. The boundary conditions that must be applied to

solve for symmetric solitary waves are

Y4(O) = Y4(#max) = 0 xO(qmax) = 1 g$(max) = 1.

For small values of R, initial guesses for elevation and depression waves were provided by

the free-surface computations done in Chapter 3. For high values of R, (4.27) was modified

to account for a lower fluid of finite-depth in which case an initial guess was provided by

the steady KdV equation (Laget & Dias 1997). Once this solution was obtained, the depth

of the lower fluid was increased to infinity. Alternatively, an asymptotic approximation of

solitary waves can be made using the steady NLS equation for interfacial gravity-capillary

waves when the lower fluid is deep. Yet another approach is to use solutions of the steady

Benjamin equation (4.16) when R ~ 1, W > 1 and F2  F0.

4.4.3 Comparison of solitary wave profiles

We have chosen for the comparison a density ratio R = 0.9 and a Weber number

W = 3.4. The latter condition is expected to reasonably satisfy W > 1. For the critical
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value of W* = 3.4, the corresponding bifurcation point value of F 2 is F*2 = 0.1111. By

detuning F 2 below F*2 , the wave amplitude can then be increased. A comparison between

solitary waves obtained by the two different approaches is shown in Figure 4-7. As can be

seen, the error in q(O) decreases as F*2 is approached; the maximum error is 14%, while

the minimum error is 4%. The discrepancy in the shapes of the large-amplitude profiles is

expected given the stronger nonlinearity in the full problem. The discrepancy between the

wavelengths in the smallest amplitude case is expected to decrease as W is increased further

since the dispersion relation of Benjamin's equation then becomes a better approximation

to that of the linearized full equations.

4.4.4 Limiting wave forms

The aim of this section is to demonstrate how the shape of moderately steep gravity-

capillary interfacial solitary waves changes as the density ratio is varied. Specifically, when

R = 0 (the free-surface problem) solitary waves have deep troughs and short crests as was

seen in Chapter 3; this differs from the approximations of elevation waves computed using

the Benjamin equation which feature shallow troughs and a tall center crest. Roughly

speaking, the profiles of moderately steep gravity-capillary solitary waves flips about the

horizontal when the density ratio rises about a certain value which is hinted at by the

fifth-order KdV equation discussed earlier.

To demonstrate this phenomenon and the associated changes in stability to be discussed

in the next section, only the case W = 1 will be considered. As before, for a given value

of R, F 2 can be decreased from its bifurcation point value to a point where the profile

no longer resembles a wavepacket. The qualitative change in the profiles of elevation and

depression waves is shown in Figure 4-8. The change in elevation wave profiles occurs for

R = 0.0325, while that for the depression waves occurs for R ~ 0.065. Based on results

presented in Section 4.3 and Chapters 2 & 3, an exchange of stability is expected to be
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W = 3.4, R = 0.9, and starting from the top down F 2 = 0.04, 0.08,0.098, 0.1017. The bifurcation
point corresponds to F*2 = 0.1111.
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FIGURE 4-8. Change in the limiting forms of elevation and depression interfacial solitary waves as
the density ratio R is varied. Elevation waves are shown in the top row with R = 0.03, F 2 = 3.153
(left) and R = 0.035, F 2 = 2.799 (right). Depression waves are shown in the bottom row with
R = 0.06, F 2 = 2.679 (left) and R = 0.07, F 2 = 2.325 (right).

associated with the change in limiting wave forms. To pin down at what density ratio this

is expected to occur, a logical starting point is to examine the stability of small-amplitude

solitary waves using the full equations.

4.5 Exchange of stabilities

4.5.1 Formulation of stability problem

The stability analysis is along the same lines as that carried out in the free-surface case

except now perturbations to the upper-fluid velocity potential and stream functions must
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be considered:

0 2 (x, y, t) = D2(X, y) + 2 (, y, t), (4.30)

'P2(X, Y, t) = T2(X, y) + 2 (X, y, t), (4.31)

with q2x = b2y and q2y = - 2x so as to satisfy Laplace's equation.

Again, the arclength s of the undisturbed interfacial streamline is used as an independent

variable, s = 0 being the point of symmetry. The steady state of the upper fluid may be

represented in terms of the magnitude of the velocity vector on the interface, q2 = ( +

2Y), and the angle the velocity vector makes with the horizontal, 0 = arctan (dH/dx).

Assuming normal-mode perturbations oc exp(At) and making use of 42x = q2 cos 0, dx =

ds cos 0, the linearized form of (4.19) then transforms to

d_ d5 2  d(qi sin 0) d(q2 sin 0) 1 - R n
A(01 - R052) = -ql1 + R q2 q1 - R q2 + 2 ids ds ds ds F2

+W - cos 2  - . (4.32)
Cos 0 ds ds/

By similar manipulations, the two kinematic boundary conditions become

d 1 d 1  1 d(qi cos 0) -
ds Cos0 ds cos0 ds '

= d 1 dj 2  1 d(q2 cos 0) (
ds cos 0 ds cos 0 ds 7(3
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By similar reasoning as before, the unstable eigenfunctions must be localized and so we

can apply Cauchy's theorem to q1 + i4i as was done in the free-surface problem to yield

the Hilbert-transform pair:

1= 1-~o ~~ds = W(q 1 )
7r f-00 s - 4

(X = 0), (4.35)

where 1 = #1.

A relationship between i 2 and q2 can be obtained in a manner similar to that used to

obtain (4.29) using an image system and the properties

02( 2, T2 = 0) = -02(D2, T2 = 2), '/2 (D2, T 2 = 0) = -#2(D2, p2 = 2).

Using 4) as an independent variable, the integral relation reads

+12+ 2 '#2 9 d( 1 #2 02 d(
r2 +.- f [g( ) -- g(d)]2 + 4 r ( - ( f-00

[g( ) g(I)] # 2 g d.
[g( ) -g(4b)]2 + 4

(4.36)

Making the change d /ds = qi d /dd where q = qi, the eigenvalue problem (4.32-4.34)

then takes the final form

+RgIq 2 d0 2  q2 d(q sin 0)
+ qd(D D

- 2 d(g'q sin 6)
Rg'q d

cos &D

= 2 di q d't(# 1 )

d 1 cos 0 d1

2g, di
Ai -q &dP

q dg($ 2 )

cos 0 d

Cos 2

q d(q cos 0) -

cos 0 d4 9,

q d(q cos9) 0

cos 0 d 77,
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where i/, q1 and 02 decay to zero as I< -+ oc. The operator g represents the linear integral

operator in (4.36), i.e., 4~2 = 9(5 2 ).

4.5.2 Numerical results

After discretizing this problem in a manner similar to the steady problem, we obtain a

generalized eigenvalue problem

[C]x = A)B]x.

For most computations, the inverse power method was used to track growth rates as

parameters were varied starting with growth rates in the free-surface problem (Appendix

C). In some cases, a modified QR algorithm with shifting was used to find a few eigenvalues

scanning a reasonable growth rate range to detect instabilities.

Starting with the known growth rate of elevation waves at a surface steepness of 8.5

degrees, the density ratio was increased and a new growth rate was found by adjusting F 2 so

as to maintain the same maximum surface steepness and thereby maintain roughly the same

distance to the bifurcation point where the eigenvalue is always zero. For depression waves,

an instability was first detected at R = 0.2; the growth rate was then monitored as the

density ratio was decreased holding the maximum steepness at 7.7 degrees. The resulting

growth rates of elevation and depression waves as R is varied are shown in Figure 4-9.

Extrapolating the data, it appears that an exchange of stability occurs at about R = 0.063.

For R less than this value, no instability could be detected for depression waves, while for R

greater than this value no instability could be detected for elevation waves. As can be seen

in the figure, as R increases the instability of the depression branch increases to substantial

values even at the low surface steepnesses considered.
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FIGURE 4-9. Instability growth rates A of elevation and depression solitary waves near the bifurca-
tion point as R is varied. For R < 0.063 depression waves are stable, while for R > 0.063 elevation
waves are stable.

4.6 Discussion

For typical values of h, c, p1/p2, and T which result in values of W ~ 1 it appears that

stable interfacial gravity-capillary solitary waves are of the elevation type, with high central

crests and decaying oscillations in their tails. This stable profile appears to exist over much

of the range of R between zero and one since an exchange of stability for small-amplitude

elevation waves in the free-surface problem appears to occur at low density ratios. This

appears to be the case, however, when a finite upper fluid is present. For two deep fluids,

the growth rate does appear to be decrease as the density of the upper fluid increases from

zero; the solution diagrams in the deep fluids case, however, differs dramatically from the

case of a finite upper layer (see Laget & Dias 1997).

The dynamic picture given by time-dependent solutions of the Benjamin equation ap-
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pears to suggest that elevation waves are stable to even large disturbances and appear to

arise from general localized conditions. Moreover, because of the good agreement between

large-amplitude solitary wave profiles computed using the Benjamin equation and the pro-

files computed using the full hydrodynamic equations, it is expected that the dynamical

picture given by the time-dependent solutions might persist even when system conditions

do not corresponds to the ideal Benjamin situation. This is particularly significant if ex-

perimental observations are attempted since, as was pointed out by Albert et al. (1999), it

may be difficult to satisfy (4.5) with common fluids without using a small value of h. This

would in turn increase the importance of viscous effects which is undesirable. According to

the results presented here, it may be possible to satisfy (4.5) approximately and still obtain

an experimental range where solitons might exist.
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CHAPTER 5

RADIATING GRAVITY-CAPILLARY ENVELOPE SOLITONS

5.1 Introduction

In the small-amplitude limit, gravity-capillary solitary waves belonging to the new class

may be interpreted as wavepackets with equal phase and group speeds; a condition attained

when the carrier wavenumber corresponds to the minimum value of the linear phase speed.

Under this condition, it may be shown that the envelope of the solitary wave is locally

confined provided that enough accuracy is used in an asymptotic analysis and certain

phase restrictions are accounted for (Yang & Akylas 1997). In this chapter, a more general

situation will be considered in which the solitary wave speed lies above the minimum value

of the linear phase speed where the phase and group speeds are unequal. In this situation,

solitary waves are unsteady and are more precisely described as envelope solitons. Because

of a resonance mechanism that is beyond the narrow-band approximation used to derive the

nonlinear Schr6dinger (NLS) equation and its higher-order counterparts, it will be shown

that envelope solitons are generally nonlocal: oscillatory tails of non-decaying amplitude

accompany the main wavepacket core. Although the amplitude of these tails is formally

exponentially small, the tail amplitude turns out to be considerable when the steepness of

the envelope soliton is large.

In deriving the NLS equation for the envelope of a narrow-band small-amplitude wave

pulse, only the dominant nonlinear and dispersive effects are included. This approximation

is bound to fail eventually, however, when higher-order effects come into play after a number

of cycles depending on the steepness and the duration of the pulse. For example, according

to laboratory observations of deep-water gravity waves in a tank, an initially symmetric

pulse with uniform frequency becomes asymmetric after propagating for some distance

along the tank (Su 1982), whereas the same pulse would remain symmetric based on the
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NLS equation. This discrepancy can be explained theoretically by a more accurate envelope

equation than the NLS that includes certain nonlinear modulation terms (Lo & Mei 1985,

Akylas 1989), and the same theoretical approach has also been used to study higher-order

effects in optical solitons (Hasegawa 1989).

In contrast to these prior studies, here we wish to explore a phenomenon that cannot

be discussed within the narrow-band approximation, namely the radiation of tails by NLS

solitary wave pulses. As it turns out, these tails comprise wavenumbers that, in general,

are not sidebands of the carrier wavenumber so they cannot be properly described using an

evolution equation for the wave envelope.

The first indication that NLS solitons may radiate tails was revealed by a numerical

study of a modified NLS equation with a third-order-derivative dispersive term (Wai et al.

1986); this third-order NLS equation replaces the standard NLS in the vicinity of caustics

(Akylas & Kung 1990), such as the zero-dispersion wavelength in optical fibers. Using

an NLS soliton as initial condition, radiation manifests itself as small-amplitude periodic

waves travelling with the same phase speed as the solitary-wave main core. Consequently,

NLS envelope solitons become nonlocal - they develop oscillatory tails of non-vanishing

amplitude - near caustics (Klauder et al. 1993, Calvo & Akylas 1997), and solitary waves of

the KdV type also turn out to be nonlocal in certain instances owing to a similar resonance

mechanism (Pomeau et al. 1988, Akylas & Grimshaw 1992).

In general, however, when the carrier wavelength of a solitary wave pulse is not close to

a caustic, the tails implied by the third-order NLS equation have comparable wavelength to

the carrier, violating the slowly-varying-envelope approximation. Therefore, the distinction

between the carrier and its envelope is blurred at the tails of the pulse and one has to use

the full governing equation rather than an envelope equation to investigate the form of the

disturbance there. For this purpose, we shall work with the fifth-order KdV equation as a

simple example of a dispersive wave system that supports solitary pulses of the NLS type.

On the basis of a purely kinematic argument, it is deduced that the wavenumbers that
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partake in the tails satisfy certain resonance conditions that depend on the dispersion

relation of the problem at hand. Hence, given the carrier wavenumber, these resonant

wavenumbers can be readily determined, suggesting that solitary pulses radiate tails in

general. The tail amplitude cannot be found so easily, however, as it turns out to be

exponentially small with respect to the steepness of the main pulse. To calculate the tail

amplitude asymptotically, it is necessary to carry beyond all orders the usual multi-scale

expansion underlying the NLS equation, and details are worked out here for solitary pulses

governed by the fifth-order KdV equation.

Despite the fact that the tail amplitude is exponentially small in the asymptotic sense,

numerical simulations of the long-time evolution of solitary pulses of the fifth-order KdV

equation indicate that the radiated tails often form a significant part of the overall signal,

causing considerable distortion of the main pulse. This suggests that radiation could be an

important issue when dealing with solitary pulses of relatively short duration.

5.2 Wave pulses with solitary envelopes

In describing a wave pulse with an envelope of permanent form, rather than the space

and time variables x and t, it is convenient to use the two phases

0 = ko(X - ct), C(x - Ct) (5.1)

which move with the carrier and its envelope, respectively, c and C being their corresponding

speeds. Also, to bring out the fact that the envelope is varying slowly relative to the

carrier, has been scaled with 0 < E < 1, the ratio of the carrier wavelength 27r/ko to a

characteristic lengthscale of the envelope.

In terms of 0 and , then, a solitary wave pulse

u(x, t) = U(0, ; 1) (5.2)
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is such that U is 2-r-periodic in 0 and locally confined in :

U -+ 0 (| (| -+ COo) . (5.3)

Generally, the wave profile U satisfies a nonlinear partial differential equation, how-

ever, and is analytically intractable. In the small-amplitude limit, on the other hand, the

standard solution procedure is to expand U

U = E {A( ) e'9 + c.c.} + E2Ao( ) + E2 {A 2 ( ) e2iO + c.c.} + . - , (5.4)

as well as

C CO + E2 C2 +-, (5.5a)

C C go 62 C2 + , (5.5b)

here, consistent with the linear theory, co = wo/ko denotes the linear phase speed at the

carrier wavenumber ko and cglo = dw/dklo the corresponding group speed as obtained from

the linear dispersion relation w = w(k).

Upon substitution of these expansions into the equation governing U, the fact that the

higher harmonics in the Fourier series (5.4) are of progressively smaller amplitude allows

one to solve for AO, A 2, ... in terms of A, the envelope of the primary harmonic which turns

out to satisfy an evolution equation of the NLS type. Solitary wave pulses, consistent with

the condition (5.3) that they remain locally confined, then correspond to solutions of this

evolution equation such that

A -+ 0 ((-+o).(5.6)

Although it is straightforward, the perturbation procedure outlined above typically

involves a considerable amount of algebra. In the interest of brevity, here we shall work

with a relatively simple example of a dispersive wave system, namely the fifth-order KdV

equation in the normalized form

ut + 6uux + uxxx + uxxxxx = 0 (5.7)
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In this case, the linear dispersion relation is

w(k) = -k 3 + k , (5.8)

and the details of deriving the evolution equation governing A have already been worked

out in Grimshaw et al. (1994). Specifically,

AO = 6 Al2 + O(E2) (5.9a)
Cglo

A 2  1 - 10k 2

A2 +2iE 0 A A ~ 2 (5.9b)A 2  k2(1 - 5kg) k 3(1 - 5k2) 2

and A satisfies the evolution equation

-kOc 2A + pA 2 A* + AA + ic A + C2A - (A2 A*) + vlA12 A = 0(E2 ) (5.10)

where
6 3 - 25k2

ko (1 - 5k2)(5k - 3) ' ko(3-10k2)

2 ~12 1 - 10k 2
y = 10k - 1 - - 0 .

0 '- k2 (1 - 5k )2

In looking for solitary-wave solutions, it is convenient to introduce the polar form

A = S(s) e'o( . (5.11)

Upon substitution into (5.10), it is found that S and q satisfy

AS" - koc 2 S + pS 3  O(E2 ) , (5.12a)

'[ =(- + C2 + (V - )S2 +0(c2). (5.12b)

Hence, locally confined solutions for S consistent with (5.6) can be obtained only when

Ap > 0 which occurs in the ranges V3/25 < ko < i/5 and V3/10 < ko < 3/5.

Taking ko so that this condition is met and normalizing the peak amplitude of the primary

harmonic in (5.4) to be equal to E, the appropriate solution of (5.12a) is

S = sech 0 + 0(E2 ), (5.13)
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where

2= } , c2 =

Having determined S, the phase q( ) can be found from (5.12b). Before doing so,

however, to avoid secular terms in expansion (5.4), we fix the carrier wavenumber to be

equal to ko at the tails of the pulse:

0' -+0 (||-+ 00);

making use of (5.13) and (5.12b), this condition then specifies C2:

C2 =7-

and #( ) is given by

0 = 00 +E tanh /k+O( 2 ) , (5.14)

#o being an arbitrary phase constant and

Finally, combining (5.4), (5.9), (5.11), (5.13) and (5.14), the following expression, correct

to O(E2), for a solitary wave pulse is found

U = E sech/#3 cos(O + #o) + 2 - sech O3 tanh O sin(O + #0)

3 cos(20 + 2#o)
2cgo + 2kc(1 - 5k)

(5.15)

While the expansion procedure outlined above can be carried to higher order with no

apparent difficulty, previous experience indicates that it may still not be justified to conclude

that the fifth-order KdV equation admits solutions in the form of locally confined solitary

pulses: solitary waves that are seemingly locally confined based on approximate theories

may in fact feature tails that do not decay at infinity (Akylas & Grimshaw 1992, Yang &
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Akylas 1996); the amplitudes of these tails happen to be exponentially small with respect

to that of the main solitary-wave core and cannot be captured by standard perturbation

expansions in powers of E, like the expansion (5.4) used here.

Of course, for such tails to appear, it is necessary that they are kinematically compatible

with the main solitary-wave core. In the case of nonlocal solitary waves of the KdV type, for

example, the tail wavenumber is such that the corresponding phase speed matches the speed

of the main disturbance. But in the present situation where the main pulse cannot be made

steady - the carrier and its envelope move at different speeds - this resonance condition

is not appropriate. Accordingly, before revising our perturbation procedure to account

for possible exponentially small terms, we shall derive, based on a kinematic argument,

the conditions that determine whether tails can accompany a solitary pulse in the present

setting.

5.3 Resonance conditions

For the purpose of understanding the generation of tails intuitively, it is helpful to think

of the main solitary pulse as a known forcing disturbance; out of all possible waves that

this disturbance can excite, only those that are forced resonantly and would appear in the

steady-state response can form tails.

More specifically, according to expansion (5.4), a solitary pulse may be written as

00

U = 1E Un (; c) e"' (5.16)
n=-oo

with U-n = U*. In this Fourier series, all harmonics other than the primary (n = 1) have

carriers that, in general, do not satisfy the dispersion relation (5.8),

w(nko) $ nkoc (n k 1), (5.17)

and, hence, are not resonant.
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To see how resonance may arise, we decompose the envelope of each harmonic into

Fourier components by taking its Fourier transform with respect to (:

1f
Un(K; c) = Un ( ; c) ei d;

27r .o

combining then each of these Fourier components with the corresponding carrier in (5.16)

using (5.1), U is seen to comprise terms of the form

UO(K; c) exp {i [(nko + EK) x - (nkoc + eKC) t]} . (5.18)

From this expression, it is now clear that resonance is possible if for some wavenumber(s)

K = K, say, the following condition is met

W* = w(k*) , (5.19a)

where

k* = nko + EK* , w, = nkoc + EK*C . (5.19b)

For a given carrier wavenumber ko and each harmonic n, condition (5.19a) provides an

equation to determine EK*; the wavenumber k, and frequency w, of the tail corresponding

to each real solution of this equation are then given by (5.19b). For n = 0, in particular,

the mean harmonic in (5.16) is a long-wave disturbance moving with speed C and (5.19a,b)

imply that the tail wavenumber k* is such that the phase speed of the tail matches C,

consistent with the resonance condition that applies to the tails of solitary waves of the

KdV type.

The values of the resonant wavenumbers k* that partake in the tails of a solitary wave

pulse depend on the linear dispersion relation of the particular problem at hand and can

be computed numerically as will be discussed in the next section for the fifth-order KdV

equation. From (5.19), however, it is clear that, in general, the tail wavenumbers are not

sidebands of the carrier wavenumber ko so the tails cannot be described by an evolution

equation, like (5.10), for the envelope of the primary harmonic.
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Moreover, in view of (5.17), conditions (5.19) indicate that generally CK. = 0(1);

hence, the tail amplitude, being proportional to IUn(K,; E)I according to (5.18), is expected

to be exponentially small with respect to E - the Fourier transform of a smooth function

decays exponentially as IKI -+ oo. This, in fact, suggests a criterion for determining the

asymptotically dominant contribution to the tails: out of all k. that satisfy the resonance

conditions (5.19), the one corresponding to the smallest value of IK, I gives the tail with the

relatively largest amplitude. On the other hand, to obtain a precise asymptotic expression

for the tail amplitude as E -+ 0 is not a straightforward matter and requires techniques of

exponential asymptotics (see Section 5.5).

Before proceeding with the asymptotic analysis, we turn to numerical simulations of the

evolution of solitary wave pulses of the fifth-order KdV equation, in an effort to confirm

the resonance conditions (5.19) and to gain further insight into the generation of tails.

5.4 Numerical evidence

We shall solve the fifth-order KdV equation (5.7) numerically using as initial condition

expansion (5.15) correct to O(E2) which includes only the fundamental, mean and second

harmonics (n = 1, 0, 2 respectively) in the Fourier series representation (5.16) of a solitary

wave pulse. Thus, attention is focussed on the generation of tails by resonances associated

with these three harmonics.

The numerical scheme used in integrating the fifth-order KdV equation is the split-step

Fourier method (see Appendix A). To accommodate radiated waves, the computational

domain was expanded once a threshold value near the boundaries was reached. For most

of the computations the step sizes At = 0.0087, Ax = 0.6 were used; it was verified that

increasing this resolution did not change the results significantly. Also, as a further check,

the conservation law

- 0 U2dx = 0
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was satisfied within 0.5%.

As a preliminary step, it is straightforward to find the values of the tail wavenumbers

k (n = 1, 0, 2) predicted by the resonance conditions (5.19). Using the dispersion relation

(5.8), it follows that they are the real roots of the polynomial

ki -- k' - Ck* + nko(C - c) = 0 ,(5.20)

where c and C are given by (5.5). Also, based on the resonance mechanism proposed earlier,

the wave with the largest amplitude at the tails is induced by the harmonic n which yields

the smallest value of envelope wavenumber |K n) . The wavenumber k (n that, according

to this criterion, makes the dominant contribution to the tails is plotted in Figure 5-1 as

a function of the carrier wavenumber ko (using the lowest-order approximations c ? co,

C ~ cglo).

In interpreting the results of the numerical simulations against the quasi-steady state

envisaged in deriving the resonance conditions (5.19), the group speed, being the energy-

transport speed, plays an important part. Specifically, the front associated with each

resonant wavenumber k is expected to propagate with speed cg(k ")) - C relative to

the main pulse. As a result, it is possible for a resonant wavenumber having a relatively

large value of Icg(k ()) - Cj to generate a tail faster, and be more apparent during the

early stages of the pulse evolution, than the asymptotically dominant wavenumber which

ultimately contributes the tail with the largest amplitude. Also, since the main pulse has

finite energy, the radiation of tails will eventually lead to some loss of form of the wavepacket

envelope, this effect being more pronounced as the wave steepness E is increased.

We begin by considering the evolution of a pulse with carrier wavenumber ko = 0.4

and steepness E = 0.01. In this instance, the dominant resonant wavenumber according to

the theory is provided by the second harmonic n = 2 (see Figure 5-1) and, from (5.19),

k = 0.8971.
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FIGURE 5-1.Dominant resonant wavenumbers k(") plotted as a function of carrier wavenumber ko
over the two intervals V3/25 < ko < V1/5 and l3/10 < ko < 3/5 where the NLS equation
associated with the fifth-order KdV equation accepts locally confined envelope soliton solutions.

Also since cg(k = 0.82 > 0 and cg(ko) = -0.35 < 0, one expects radiation to be

emitted towards the positive x-direction, opposite to the propagation direction of the main

pulse. Figure 5-2 shows snapshots of the pulse at t = 0, t = 500 and t = 750 along with

the corresponding spectra in the wavenumber domain. The initial profile (Figure 5-2a) is

in the form of a packet with approximately 18 cycles within the envelope and, as expected,

its spectrum comprises three peaks associated with the fundamental, mean and second

harmonics. At t = 500 (Figure 5-2b), however, a front has developed ahead of the pulse

in physical space and a peak is apparent in wavenumber space at k ~ 0.9, very close to

the theoretically predicted resonant wavenumber k* . At the later time instant t = 750

(Figure 5-2c), this peak is even sharper and its attendant radiation more pronounced, with

nearly uniform amplitude away from the front. As a second example, we discuss a pulse

with ko = 0.6 and c = 0.02. For this carrier wavenumber, conditions (5.19) predict that the

dominant resonant wavenumber (corresponding to the smallest value of IK 1) is
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FIGURE 5-2(A). Pulse evolution shown at the instants (a) t = 0, (b) t = 500 and (c) t = 750.
Expression (15) is used as the initial condition with parameters ko = 0.4, f = 0.01, and 40= 0.
The pulse is displayed in both physical (top portion) and wavenumber (bottom portion) spaces.
The origin of x has been chosen to coincide with the pulse center. The magnitude of the spectral
amplitude Ifil is computed by a base-2 FFT routine using N = 4096 pints.

k(l) = 0.4410 for n = 1, while the next dominant one (corresponding to the second smallest

value of IK*I) is k = 0.8939 for n = 2. A snapshot of the pulse at t = 1100 and

the corresponding spectrum are shown in Figure 5-3. Although a peak is seen in the

wavenumber domain at k 0.37 in rough agreement with k l, the most striking feature

is the dominance of the peak at k ~ 0.88 which is close to k (. Note, however, that

c,(k*Wl) - c,(ko) = 0.038 while c,(k(2 )) - c,(ko) = 1.23. Hence, the n = 1 front is very slow

and naturally it takes a long time for the corresponding tail to develop relative to the
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FIGURE 5-2(B). t = 500

n = 2 front. Also, as these front speeds are positive, both radiated tails appear ahead

of the main pulse, leading to the complicated pattern seen in Figure 5-3. Finally, we

wish to explore a case in which the n = 0 harmonic in the initial condition furnishes

the dominant resonant wavenumber. For n = 0, equation (5.20) in fact reduces to a

biquadratic and real roots corresponding to propagating waves can be found only when

1/V2 < ko < v/3/5. Accordingly, we consider a pulse with carrier wavenumber ko = 0.75

and steepness f = 0.025. For this choice, it turns out that n = 0 yields both the dominant

resonant wavenumber k -O) 0 4347 and the next dominant one k -= 0 9006 according to

the resonance conditions (5.19).
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FIGURE 5-2(c). t = 750

These predictions are confirmed by the results of the numerical simulation at t = 750

shown in Figure 5-4: there are sharp peaks in the wavenumber domain at k ~ 0.44 and at

k ~ 0.9, in excellent agreement with the theory. Moreover, the radiated tail with the longer

wavelength is found behind the main pulse (since c*(k1 ) < cg(ko)) and has larger amplitude

than the other tail which appears ahead of the main pulse (since cg(k*) > cg(ko)). The

numerical results presented thus far certainly support the resonance mechanism proposed

earlier; the radiated tails comprise wavenumbers in agreement with those predicted by the

resonance conditions (5.19). More detailed comparisons between analytical and numerical

results will be made later, after obtaining an asymptotic expression for the tail amplitude
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N = 8192.

in the weakly nonlinear regime e < 1.

5.5 Tail amplitude

On the basis of a heuristic argument, it was deduced in Section 5.3 that the tails emitted

by a small-amplitude solitary wave pulse have exponentially small amplitude with respect

to E. This suggests that, in order to capture these tails, it is necessary to carry expansion

(5.20) beyond all orders in e using techniques of exponential asymptotics. The procedure

for calculating the tail amplitude asymptotically closely parallels that followed in a previous
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study (Yang & Akylas 1997) of steady solitary-wave solutions of the fifth-order KdV equa-

tion in the vicinity of the special carrier wavenumber ko = i/V2 where the phase speed co

matches the group speed cglo.

Here, this asymptotic procedure also provides formal justification of the resonance con-

ditions (5.19) that determine the tail wavenumbers.

The fact that a solitary pulse is accompanied by tails in physical space implies the

presence of pole singularities on the real axis at the tail wavenumbers in the wavenumber

domain, and the goal is to compute the corresponding residues which determine the tail

amplitudes. To this end, it is convenient to work in the wavenumber domain.
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We begin by returning to expansion (5.15) for U(O, ; E) and taking its Fourier transform

with respect to the envelope variable :

= sech -cos( + #o) + i
2,3 L203 2 3 EK sin(O + o)

EK 3
+ - 2C

2#22c0o

cos(20 + 20) coth
2k2(1 - 5kg)

This expansion becomes non-uniform when cK = 0(1) and suggests the uniformly valid

two-scale expression

7rK-
U = E sech 2r U(0, r; 6),

2/3
(5.21)

where r, = EK and

U ~ cos(O + #o) + i 2r r sin(O + o)
2/3 23 A

+ [2C 3
2#2 [2cglo

cos(20 + 20o) 1 I
+ + ... -

2k2 (I - 5k')

Next, U(O, r.; e), being 27r-periodic in 0= 0 + 0, may be expanded in a Fourier series

00

U = A,(r; e) e " , (5.23)
n=-00

where, from (5.22),

Ao ~ 3 8 + ---
4/32cg lo

1 -

4A T ~ 41 r +

I
A2 ~ 8,3 2 k2(1 - 5kg) IKI +...

and A, = O(KIl--1) for Inj > 2.

(5.24a)(; -+ 0)

(-+ 0)

(r - 0)

(5.24b)

(5.24c)
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In view of (5.21) and (5.23), attention is now focussed on the coefficients An and their

possible singularities on the real n-axis. Upon substitution of (5.21) and (5.23) into the

fifth-order KdV equation (5.7) after having taken its Fourier transform with respect to (,

it follows that the An are governed by

{w(r + nko) - C' - nkoc} An

00rp
0 An~p( - A) Ap(A)

+ 3(K + nko) cosh 7 -' o cs A - A) cs (A dA = 0
2,3EE _00 7r (K - A) 7rA

P=0 cosh cosh23c

(5.25)

w(k) denoting the linear dispersion relation (5.8). However, in the limit E -+ 0, the main

contribution to the convolution integrals above comes from the ranges 0 < A < K (r. > 0)

and K < A < 0 (K < 0). Also, since U is real, A_n(K) = An(-K) on the real r,-axis so it

suffices to consider An (n > 0) only, and using the leading-order approximations to c and

C in (5.5) the equation system (5.25) is replaced by

{w(i. + nko) - cglo K - nkoco} An + 6(K + nko) E sgn K ] Ap(A) An_, (r, - A) dA

p00

+12(n + nko) sgn j Ap(-A) An+p (n - A) dA = 0 (n 0).
P=1 fo

(5.26)

In spite of the fact that it appears more complicated than the original partial differen-

tial equation (5.7), the integral-equation system (5.26) is most suitable for analyzing the

singularities of An(ri) on the real n-axis that are of interest here. These singularities are

expected to occur at , = r "), say, where the coefficient of An in (5.26) vanishes. Recalling

that K = EK, it is clear from (5.8) and (5.19) that this happens at the real roots of the

polynomial (5.20) which in turn correspond to the resonant wavenumbers k_ = _ + nko
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(in the limit E -+ 0 so c ~ co and C ~ cglo). Hence, the formal asymptotic theory is

consistent with the resonance conditions obtained earlier on physical grounds.

The next task is to examine the local behavior of A, close to each singularity at K = ,Kn)

according to the equation system (5.26). Using the asymptotic behavior of An as r, -+ 0

noted in (5.24), dominant balance suggests that

(n(nAn ~ n" (K -+ r.*) n > 0) ,(5.27a)

(0)0)

h* Tr

where Dn (n > 0) are constants to be determined.

To verify these simple-pole singularities and compute the residues Dn, we pose the

solution to the system (5.26) in the form of power series as suggested by expansions (5.24):

00

AO = S bo,p J|nP-1
p= 2

0C

A = b, KP-1 (K O,n > 0),
p=n

with

b 3 b± - 1 b±0,2 4p2 Cg1 ' 1,1~ 48 ' 1,2  4,83 A

1b+ _ b- =
2,2 ,2 8/2 k2(1 - 5kg)

etc. Substituting then these series into (5.26), it follows that bo, 2p+ 1 = 0 while the rest of

the coefficients satisfy certain recurrence relations similar in form to those found in Yang

(1996) (Appendix F) that can be readily solved, given the carrier wavenumber ko. Based on

the asymptotic behavior of bn,p as p -+ oc, one may thus infer the nature of the singularity

of An at K = K* and compute the corresponding residue as well. Implementing this

procedure, the presence of simple-pole singularities at r, = K , ,1) and r,* , respectively,
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k 0  ri(n)ko n Dn s"*
0.4 2 0.358 0.0965 2.76
0.6 1 -0.128 -0.170 4.66
0.75 0 -0.369 0.346 4.07

TABLE 5-1. Numerically determined residues D, and parameters appearing in (5.28) for the dom-
inant n = 0, 1 and 2 resonances.

was verified for the three choices of ko = 0.4, 0.6 and 0.75 considered in Section 5.4, and

the results are given in Table 5-1.

Combining (5.21) with (5.23) and (5.27), each singularity of A, at K = Kn) translates

into a singularity of U at K = r,)/E Moreover, since An() = A-n(-K) on the real

n-axis, there is an additional simple-pole singularity at -K* . Hence,

(n)
U ~ 4E Dn sch 20 ed"* (K /E, n > 0). (5.28)

u sF eK ch

Note that all these singularities have exponentially small residues and, upon inverting the

Fourier transform, the one that contributes the tail with the relatively largest amplitude

corresponds to the smallest value of 1 n "), consistent with the heuristic reasoning presented

in Section 5-3.

More specifically, inverting the Fourier transform, we write

U=j U(0, K; c)eiK dK,

and, since U has simple poles on the real K-axis according to (5.28), the contour C is

chosen so as to satisfy causality: C is indented to pass below (above) K = ± ()/, when

C9(k( )) is greater (less) than c9 (ko), k = 1 nk) + rko being the tail wavenumber and

W (n)= Cg loa rn) + nkoco the corresponding tail frequency. Hence, the induced tail

u - 87rs Dn exp sin (k* x - w t + no) (5.29)

is found in ( > 0 ( < 0) when s > 0 (s < 0) where s = sgn (cg(k!")) - cg(ko)). This

criterion for determining the position of the tail relative to the main pulse is in line with
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the results of the numerical simulations in Section 5-4.

5.6 Discussion

Using the fifth-order KdV equation as a simple example, we have presented analytical

and numerical evidence that solitary wave pulses of the NLS type are generally accompa-

nied by oscillatory tails owing to a resonance mechanism: each of the harmonics that make

up the main pulse, acting as a forcing disturbance, can induce small-amplitude dispersive

wave tails of the form (5.29) either ahead or behind of the main pulse. While the resonant

wavenumbers that appear in the radiated tails are determined by this essentially linear pro-

cess, the precise values of the tail amplitudes are controlled by a fully nonlinear mechanism

in which all harmonics are coupled.

The radiation of tails, of course, eventually leads to a decay of the main pulse but the

asymptotic analysis of Section 5-2 clearly neglects radiation damping. To estimate the time

scale over which this approximation is expected to be valid, we recall from basic linear wave

theory that the energy flux through an oscillatory tail of constant amplitude is proportional

to the square of the tail amplitude. Given that the main pulse has O(E) energy, conservation

then implies that radiation damping becomes important when t = O(eexp(7rl #)

where n corresponds to the dominant radiated tail. For times less than this exponentially

long time scale, the pulse envelope is quasi-steady and the radiated tails extend over a long

distance in comparison with the envelope lengthscale 1/f, as assumed in the asymptotic

theory.

In the weakly nonlinear regime (E < 1), we may then attempt a comparison of the

asymptotic result (5.29) with the tails radiated by a pulse, initially in the form of an

NLS solitary wave group given by expansion (5.15), as it evolves towards the quasi-steady

state that the analysis predicts. For this purpose, the carrier wavenumbers ko = 0.4 and

ko = 0.75 are chosen again so the n = 2 and the n = 0 resonances, respectively, contribute
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resonance f predicted numerical
n = 2 0.0050 1.5E - 4 9.OE -5

0.0045 4.5E - 5 3.5E - 5
0.0040 9.8E - 6 9.8E - 6

n = 0 0.0140 6.6E - 4 2.OE - 4
0.0113 6.7E - 5 4.5E - 5
0.0100 1.4E - 5 1.2E - 5

TABLE 5-2. Comparison of asymptotically predicted and numerically determined tail amplitudes
for the n = 2 and n = 0 resonances.

the dominant tails. The numerically determined tail amplitudes are averages over 300

cycles in the n = 2 case and 100 cycles in the n = 0 case; this averaging was done after the

tails had formed clearly, specifically at time t = 6000 - 7000 for the n = 2 resonance and

t = 8000 - 9500 for the n = 0 resonance. For the relatively small values of E considered

here, only one peak corresponding to the dominant radiated wavenumber according to the

resonance conditions (5.19) was visible in the wavenumber spectrum. The comparisons are

summarized in Table 5-2.

As expected, agreement between the asymptotic and numerical results improves as E

is decreased. On the other hand, for larger values of E, like those used in the simulations

depicted in Figures 2 and 4, the asymptotic expression (5.29) grossly overpredicts the tail

amplitude.

Although radiation damping of the main pulse occurs on an exponentially long (with

respect to E) time scale, it is worth emphasizing that the radiated tails develop on a much

shorter time scale: as discussed in Section 5-4, the spatial extent of a radiation front

with wavenumber k is controlled by the relative group speed cg(k ")) - c,(ko) which is

essentially independent of E. This fact must be kept in mind when assessing the usefulness of

the NLS approach for modelling the long-time dynamics of weakly nonlinear pulses which,

according to the NLS theory, evolve on an 0(1/c2) time scale. For instance, if we consider

the example with carrier wavenumber ko = 0.4 discussed in Section 5-4 in which the pulse

has moderate steepness (E = 0.01), we find that 1/62 = 10, 000 while it is clear from Figure
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5-2 that after only t = 750 the initial signal has been modified substantially owing to the

radiated tails, and this would be completely missed by the NLS equation. On the other

hand, for a pulse with a very small steepness the radiation amplitude is entirely negligible

and the NLS approach is certainly adequate.

Apart from the fifth-order KdV equation, the mechanism explored here for the gener-

ation of tails is expected to be applicable in general to nonlinear dispersive wave systems

that admit NLS envelope solitons to leading order. From the resonance conditions (5.19)

it is relatively straightforward to predict the wavenumbers that will be radiated by a pulse

in a given system but there is no simple criterion, besides direct numerical simulation, to

decide whether the radiation amplitude will be significant for moderate values of the pulse

steepness. A relative measure, however, may be developed using the current study as a

guideline. In particular, it may suffice to determine the form of the exponential factor ap-

pearing in (5.29) which is the dominant controlling factor of the radiation amplitude; this

requires carrying the asymptotic analysis as far as (5.21) and computing the values of r"

which are easily related to the tail wavenumbers k n).

Theoretically, the fact that an initially locally confined solitary wave pulse of the NLS

type radiates tails of non-decaying amplitude indicates that nonlinear wave pulses with

envelopes of permanent form, as predicted by the NLS equation, would fail to be locally

confined in general owing to exponentially small terms. Evidence of this nonlocal behavior

has also been presented in a study by Bryant 1984 who investigated oblique wave groups

in deep water numerically without invoking the narrow-band assumption. Starting with

periodic wave groups, he approached, in the large envelope length-to-carrier wavelength

limit, a wave group close to an NLS envelope soliton but with additional small resonant

peaks in the wavenumber spectrum. These resonant components satisfied the dispersion

relation for deep water waves and amounted to small-amplitude waves outside of the main

group.

Nevertheless, it is now known that there exist special circumstances under which locally
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confined pulses can be obtained. In the case of the fifth-order KdV equation for instance,

steady locally confined wavepackets in the form of solitary waves are possible near the

minimum of the phase speed (at ko = 1/V/2) where the phase speed and the group speed

can be made equal, and the same is true near the minimum of the gravity-capillary phase

speed in the water-wave problem.
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CHAPTER 6

CONCLUDING REMARKS

In this thesis, the dynamics and stability of gravity-capillary solitary waves in both

the small and large-amplitude regimes of the free-surface and interfacial-wave problems

have been studied. In addition, the stability of small-amplitude solitary waves was briefly

discussed in the context of solid mechanics using a nonlinear Bernoulli-Euler beam equation.

In Chapter 2, it was demonstrated how instability of this new class of solitary wave

cannot be captured without accounting for exponentially small effects: an analysis using

the NLS equation, derived using straightforward two-scale perturbation theory, is inade-

quate. In all three problems, it was found that of the two types of solitary wave solutions

that bifurcate from zero amplitude, only one is stable: depression waves in the free-surface

problem, depression waves for the quadratic-beam problem, symmetric waves in the mod-

ified KdV case, and elevation waves in the interfacial-wave problem (provided the density

ratio is high enough and the depth of the lower fluid is many times that of the upper

fluid). Moreover, direct simulation of weakly nonlinear model equations indicate that sta-

ble gravity-capillary solitary waves have soliton properties, and it would be interesting to

see if this situation is obtained in the fully nonlinear case. To probe this point further

would require time-dependent simulation of the full hydrodynamic equations with surface

tension.

Although exponentially small effects translate to very small growth rates near the bi-

furcation points, they tend to decide the stability of much of each solitary wave solution

branch emanating from zero amplitude. Furthermore, as was seen in Chapter 3, a large-

amplitude (stable) elevation wave solution was obtained after passing a limit point which

resembled a pairing of two (stable) depression solitary waves and so effects which influence

stability near the bifurcation point at zero amplitude appear to propagate through solution
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diagrams even at large amplitude.

In contrast to the exponentially small growth rates found in the small-amplitude free-

wave problem, growth rates found in the forced-wave problem scale algebraically with the

wave amplitude and can be captured by the forced NLS equation. This difference in growth

rate order appears to be tied to translational invariance. Specifically, in the forced problem

the crests of the solitary wave solution cannot be shifted relative to their envelope due to the

presence of the localized pressure distribution. The phase of the solitary wave is therefore

fixed by the pressure distribution: for a symmetric pressure distribution, either depression

or elevation wave types are possible depending on the sign of the pressure, and so it is not

necessary to resort to exponential asymptotics to resolve the phase. Given the apparent

connection between the accuracy needed to resolve phase details in the steady free-wave

problem and the accuracy needed to determine instability (as was shown in Chapter 2),

this interpretation seems plausible.

The instability of forced solitary waves found in Chapter 3 have interesting physical

implications. Although experiments have indicated that some solitary depressions in the

water surface can be found that are in good agreement with free-wave profiles (Zhang

1995;1999), albeit in the presence of wind forcing, these depressions do not appear to be

generated as resonantly as other short-scale features such as parasitic capillary waves. In

particular, at low wind speeds before parasitic capillaries riding on gravity waves begin to

appear, one might expect the free surface to be populated with depression solitary waves

initiated by pressure fluctuations in the air but this is not observed. The instability that

has been found in the forced problem may play a role, but a precise explanation would need

to account for the details of the often complicated and unsteady wind field.

From the analysis of Chapter 3, it is clear that viscous effects can be very important in

describing the dynamics of steep solitary waves; although, when the pressure amplitude is

large unstable effects do tend to be larger than viscous effects. Nevertheless, a formulation

that takes into account viscosity and forcing in a coupled manner would be desirable for
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predicting steady-state response curves and stability when the pressure amplitude is only

moderate. This type of formulation has been carried out for the steep periodic gravity-

capillary water-wave problem by Fedorov & Melville (1998).

In Chapter 4, it was demonstrated that gravity-capillary interfacial solitary waves of the

elevation type appear to be stable over a wide range of density ratios and Weber numbers

provided that the depth of the lower fluid is many times that of the upper fluid. The results

presented here may be helpful in planning experiments on interfacial solitary waves of this

new kind. The effects of viscosity, however, are expected to be important and an evaluation

of dissipative effects similar in spirit to that performed in Chapter 3 would be helpful.

Finally, in Chapter 5 it was demonstrated that the existence of wavepackets with solitary

envelopes appears to be the exception more than the rule: resonances which lie beyond the

narrow-band approximation lead to nonlocal envelope solitons. Gravity-capillary solitary

waves appear to be the exception; in this case, a wavepacket with a solitary envelope can

be obtained to all orders of approximation.
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APPENDIX A

TIME-DEPENDENT NUMERICAL SOLUTION OF THE FIFTH-ORDER KDV

AND BENJAMIN EQUATIONS

Here, the key details of the numerical methods used to solve the time-dependent fifth-

order KdV equation (used in Chapters 2 and 5) and the time-dependent Benjamin equation

(used in Chapter 4) are presented.

A.1 Fifth-order Korteweg-de Vries equation

A split-step Fourier pseudospectral method (Tappert 1974) was used that is similar

to the technique presented in Lo (1986) to solve a higher-order NLS equation. A review

of split-step schemes for the KdV and NLS equations can be found in Taha & Ablowitz

(1984). General background on pseudospectral methods can be found in the book by

Fornberg (1995).

The split-step algorithm to solve the fifth-order KdV equation

ut + uxxx + uxxxxx + 6uux = 0 (A.1)

consists of advancing the initial condition a full time step by first using only the nonlinear

part of the equation (by a predictor-corrector method in this case), and then modifying

this result using the linear part of the equation (exactly in Fourier space).

Labelling the spectral representation of u(x) (which is collocated on a uniformly spaced

grid) at time level n as u', the discrete Fourier transform of u" may be represented sym-

bolically as F{u"} (see Fornberg 1996, Appendix F). The sequence of numerical steps to

propagate from level n to level n + 1 separated by a time step At reads:
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Nonlinear step - a half step (predictor of u at n + 1/2):

in+1/2 =n At UnF {ik.F{un}}, (A.2)
2

Nonlinear step - the full step (derivative based on the estimate of u at n + 1/2):

n+1 un - At in+1/27-1{ikJfn+1/2}}, (A.3)

Linear step:

Un+1 =7- 
1 {exp[i(k3 - k5)At].F{ ii+1}}. (A.4)

The sequence then repeats in the same order. This scheme is accurate to second order

in At and to all orders in Ax since the differentiation step is exact given a finite number

of Fourier modes. A large enough computational domain (typically 7 pulse widths) must

be used, however, so that the wave disturbance does not reach the boundaries. Given

this domain size, a large enough number of modes must be used such that any high-

frequency information lying above the Nyquist frequency which might be present in the

actual continuous problem is small.

A.2 Benjamin equation

From Chapter 4, the Benjamin equation reads

ut - 2uux - 2y7(uxx) - UXXX = 0. (A.5)

The spatial derivatives on a uniform grid were approximated using the fourth-order

accurate finite-differences (Chapra & Canale 1988):

U=i = (-Ui+2 + 8ui+1 - 8ui_ 1 + ui- 2 )/(12Ax), (A.6)

129



UX=i = (-ui+2 + 16ui+1 - 30ui + 16ui- 1 - U(-2)/[12A(A)2)],

uXXXi = (-ui+ 3 + 8ui+2 - 13ui+1 + 13ui- 1 - 8ui-2 + Ui-3)/[8(AX3)], (A.7)

while the computation of the Hilbert transform was performed using a discrete Fourier

transform implemented in MATLAB. Alternatively, a completely spectral approach can be

taken but using finite-differences provides better flexibility in adjusting the domain size.

Rewriting (A.5) as

Ut = S"(u"), (A.8)

the explicit time stepping scheme applied at each node i reads

iin+1/2 - Un + AS" (A.9)
2

Un+1 - Un + At~n+1/2 (A.10).

This scheme is O[(At) 2 ] accurate and is stable provided that At < 0.05(AzX) 3 . Note that

because the highest derivative is only third order in this case, stability requirements are

not unreasonable (especially using fourth-order spatial differences). In the fifth-order KdV

case, however, stability requirements imposed by a finite-difference spatial approach would

render the time step size impractical.
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APPENDIX B

SOLUTION OF FORCED PROBLEMS ARISING FROM PERTURBATION

EXPANSIONS OF CHAPTER 2

Upon substitution of expansions (2.44), (2.45) and (2.46) into (2.43) and collecting

terms proportional to eWo, ei2O and 1 it is found that

i
-[q - qxx ± 3(Ao q - 24(A 2 + JA12q) - 8A12 q + A2q*)] f(X),3

q2 = Aq + 0(E),

qo = -24(Aq* + A*q) + 0(E).

Using the fact that Ao = -241A1 2 and A 2 = -A 2, q is then found to satisfy

3i

q - qxx - 76(A 2q* + 21A12 q) - (X),

with

- 1
A = sechX.

Considering first the O(A) problems, the forced problem for U(1) reads, using the nota-

tion S = sechX and R = tanhX,

1
q - qxx - 6S 2 q =- S,

07i6
(2.52)

which has the solution q = - 1 (XSR - S). The forced problem for U reads

q - 22(2q + q*) = SR

which has the solution q = - XS. The solutions for U 1 ) and (0) are then given by
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1 (XSR - S) cos 6,

U~) = 1 XSR sin 0.

Proceeding to the O(A 2 ) problems, it is found that the forced problem for U(2) reads

q - qxx - 2S 2 (2q +q*)
1- I-xs,

= -4 38 2

and has the general solution

q =0 SR + C2 (XSR+ 1s
E2 f2 3S

The forced problem for U(2 reads

-S)+ 1 (X2SR-2XS- R
16\/3-8 F3 S

q - qxx - 2S 2 (2q + q*) = 4 E24v/-382

and has the general solution

02 R
S+- C(XS+-)+

62 S
i

35(X2 -_S_
16v/3-8-s

Requiring that both U(2)and U(2 ) go to zero as x -* -oo it is found that

U (2) - 1 eXcos 0

U (2) - 1 exsin 0
2 8/5 V3E3

(x -+ 00),

(x -+ oc),

which feature the growing tails as expected.
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APPENDIX C

CALCULATION OF EIGENVALUES AND UNSTABLE MODES

Discretizations of the linear stability problems encountered in this thesis result in gen-

eralized matrix eigenvalue problems:

[C]u = A[B]u.

Except in the case of the interfacial-wave problem in which there is coupling between #lt

and 02t stemming from the Bernoulli equation, [B] = 1.

The eigenvalue problem was first solved on a coarse grid using a global eigenvalue solver

(EISPACK routines implemented on MATLAB). Based on estimates of the eigenvalues cor-

responding to unstable modes, the inverse power method with shifting (inverse iteration)

was employed on a finer grid to improve the eigenvalue accuracy and mode shape resolu-

tion. The method (Fr6berg 1965) is as follows. Provided that a random vector xo can be

represented as a linear combination of the eigenvectors, it follows that

xo = ao uo + a, ul +... + an un.

Repeated multiplication by [C] k-times yields

xk - [C]kxo = [B]k[ao Aku 0 + a1 A)ui +... + an Akun].

As k -+ oo, the term involving the largest eigenvalue dominates. If each time Xk is normal-

ized by 11 xkIIoo then II[B]-xk+l|lo tends to |Amaxi and xk+l tends to the corresponding

eigenvector.

To search for the smallest eigenvalue, the inverse problem can be considered

[C]'u = A [B]-lu
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so

Xk = ([C]-1)kxo = ([B] -)k[ao (A 1 )kuo + al (A11)kui ± ... + a, (Anj)ku,].

and the smallest eigenvalue dominates. Because finding [C-1 is costly we may instead

solve

[C]xk = [B] Xk-1
IIXk-1coo

repeatedly. Since [C] does not change, this requires only one LU decomposition. Finally,

we may locate any eigenvalue At of [C] by shifting the eigenvalues by a quantity At' which

is the initial guess for At. Provided that At' is close to At then the smallest eigenvalue of

[C]' = [C] - [B]At' will be At - At' which can be found by the inverse power method. The

eigenvalue of interest can then be found from

1
lim Xkjmax

k-+oo At - At

where imax corresponds to the index of Ilxklfo. In this study, when one LU decomposition

was performed on [C]', convergence was usually obtained within seven iterations. The rate

of convergence could be increased by reshifting [C] by an improved value of A1' found after

three or so iterations. This caused 1/(At - At') to dominate even faster and so convergence

could be obtained within five iterations.
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APPENDIX D

DETAILS ON COMPUTATIONS PERFORMED IN CHAPTERS 3 & 4

Here details on software used, computational resources, and code performance are listed

with a slant towards the more demanding computations performed in Chapters 3 and 4.

The code to compute solitary-wave solutions was written in FORTRAN 77 and utilized

LAPACK linear algebra routines available on Athena. The compiler command taking into

account compiler optimization and linking to libraries reads

f77 -05 codename.f -L/mit/lapack/sun4lib -liapack -iblas

for the Sun workstation platform. Compiler optimization (-05) was extremely important

as it nearly doubled execution time.

To compute a well converged solitary wave solution for the free-surface problem on a

Sun Ultra 10 workstation using a good initial guess, N = 650 grid points, and going through

5 iterations took about 6.5 minutes. This resolution was more than adequate to explore

solution diagrams which was usually done with N = 400 points. To obtain well converged

stability results, however, the underlying solitary wave solution had to be refined further.

For N =1200 for instance, a solitary wave refinement can usually be performed on a Sun

Ultra 10 in about 42 minutes.

Computations first become mostly costly for the stability problem. For N > 600 for

example, a Sun Ultra 10 does not have enough free RAM to perform the computation

without using the hard drive for memory which slows the computations to an impractical

speed. For these larger problems the NCSA SGI/Cray Origin2000 supercomputing array

was used where large blocks of memory were easily available. Further information on this

resource can be found at the NCSA web page http://www.ncsa.uiuc.edu/.

If solitary wave profiles had to be further refined, this could be done on the Origin2000
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in a matter of minutes (typically using 8 processors). For the stability calculations, the

MATLAB compiler and MATLAB C/C++ software library (available at NCSA) were used

to compile the MATLAB .m files into stand-alone C language executables which could be

run on the Origin2000.
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