
DATA MANAGEMENT IN A DISTRIBUTED DESIGN

MODELING ENVIRONMENT

by

JOHNNY T. CHANG

B.S. Mechanical Engineering
Massachusetts Institute of Technology, 1997

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 2001
@ 2001 Massachusetts Institute of Technology,

All Rights Reserved

Signature of Author...............
Ldepartment of

.......................................
Mechanical Engineering

a yy;20

C ertified by..
David Wallace

Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering
Thesis Supervisor

BARKER
A ccepted by...

- Ain A. Sonin
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 16 2001

LIBRARIES

DATA MANAGEMENT IN A DISTRIBUTED DESIGN
MODELING ENVIRONMENT

by
JoHNNY T. CHANG

Submitted to the Department of Mechanical Engineering
On May 11, 2001 in Partial Fulfillment of the

Requirements for the Degree of
Master of Science

ABSTRACT

This thesis discusses the implementation and future development of data management
tools for a research software system called the Distributed Object-based Modeling
Environment. The management of data in product development has evolved from simple
data storage to the maintenance of complex data relationships. By providing data with
descriptive attributes (metadata) and by describing key relationships between data,
product data management (PDM) systems facilitate the sharing of data within
development environments. However, the inherent information content and value of data
is not shared.

DOME provides a framework by which the intelligence of data can be shared in a
distributed network as published services. Individual data files from different
applications can be encapsulated with defined interfaces, shared in a marketplace of data
objects, and interconnected in design simulation network models. However, DOME
presently has no PDM capabilities; this thesis presents a method of tracking DOME
models, and proposes further PDM improvements to DOME. By enabling corporate data
management capabilities in a tool such as DOME, ongoing development simulations and
analyses can become a more integrated part of the engineering data management process.
In addition, the added descriptive capabilities can make the sharing of this ongoing work
more efficient through more productive searches, and therefore enrich communication
within development environments.

Thesis Supervisor: David Wallace

Title: Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering

Data Management In A Distributed Design Modeling Environment Page 3

ACKNOWLEDGEMENTS

Thank you for everything, Dave. I promise that I will do my best to make all this

worthwhile, and make a real difference in people's lives, as I so want to do. That and

free medical care for you for the rest of your life (if you trust me with a knife).

Page 4 Table of Contents

TABLE OF CONTENTS

A CK N O W LED G EM ENTS ... 3

TABLE O F C O N TEN TS ... 4

LIST O F FIG URES..6

1 INTR O D UCTIO N ... 7

1. 1 PROBLEM STATEMENT .. 7

1.2 OVERVIEW OF THE THESIS DOCUM ENT .. 9

2 BA CK G RO UND .. 11

2.1 RELATIONAL D ATABASES ... 11

2.2 DATA M ANAGEMENT IN PRODUCT DEVELOPMENT ... 13

2.2.1 Conventional data m anagem ent... 13

2.2.2 Product data managem ent systems .. 13

2.2.3 D OM E ... 14

3 D O M E .. 16

3.1 ARCHITECTURE ... 17

3.2 D OM E M ODEL-SERVICE STRUCTURE ... 17

3.3 D OM E DATA M ANAGEMENT ... 19

4 TH E D O M E DA TA M AN A G ER .. 22

4.1 TECHNICAL CONSIDERATIONS... 23

4.1.1 D OM E data types.. 23

4.1.2 D atabase server .. 24

4.1.3 Java and JDBC ... 25

4.1.4 Integration of the D ata M anager into D OM E .. 26

4.2 D OM E DATA M ANAGER IMPLEMENTATION .. 26

4.2.1 M etadata ... 26

4.2.2 Software code.. 27

4.2.3 Data Manager interactions with DOME and the user .. 28

4.2.4 Benefits of data management provided by this implementation.. 31

5 PROPOSED DATA MANAGER FOR IMPROVED PDM.. 32

5.1 PROPOSED SCHEMA ... 32

6 FUTURE DEVELOPMENT AND BENEFITS OF PDM FOR DOME 34

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Data Management In A Distributed Design Modeling Environment Page 5

6.1 BASIC DATA DESCRIPTION AND ORGANIZATION BY A DOME PDM ... 34

6.2 ENGINEERING PROCEDURE MANAGEMENT BY A DOME PDM ... 35

6.3 PROCESS AND WORKFLOW MANAGEMENT BY A DOME PDM ... 35

7 CO N CLU SIO N .. 37

REFER EN C ES..39

A PPENDIX .. 40

A .1 CLASS M ODELDIALOG... 40

A .2 CLASS DATABASE ... 46

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 6 List of Figures

LIST OF FIGURES

Figure 1: Basic structure of a hierarchical database.. 11
Figure 2: Basic structure of a relational database; data is maintained in a loose structure

connected by data relationships.. 12
Figure 3: Creating a DOME interface for an Excel spreadsheet................................... 18
Figure 4: Adding a service to a model in the DOME client.. 18
Figure 5: Excel service as displayed in DOME client ... 19
Figure 6: Sample MDL file for a DOME model...21
Figure 7: Simplified DOME data relationships .. 24
Figure 8: SQL Server's Windows-style interface...25
Figure 9: Microsoft Windows ODBC Data Source administration dialog 27
Figure 10: Interaction between DOME and DOME Data Manager..............................28
Figure 11: DOME Data Manager's Open Model dialog .. 29
Figure 12: DOME Data Manager's Save Model dialog ... 30
Figure 13: DOME Data Manager's Delete Model dialog... 30
Figure 14: Basic components of proposed schema .. 33

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 6 List of Figures

Data Management In A Distributed Design Modeling Environment Page 7

1 INTRODUCTION

1.1 Problem Statement

With the leaps in information technology and computing power over the last quarter

century, there has been a scramble among businesses to utilize these new capabilities. In

the beginning, computers were seen basically as a new way to do old things; corporate

processes remained the same. Rather than using typewriters to produce documentation,

one could use word processors. Rather than drafting engineering drawings by hand, one

could use drafting software. Rather than storing documents in physical file folders, one

could store them in electronic file folders on a computer. In recent years, however, many

have realized that the key to harnessing information technology to increase productivity

is in recognizing how it can transform processes. Williams notes that "the future of

business is not investing in more technology, but embracing new paradigms." [Williams,

1994]

In the late 1980s, companies began to realize that simply warehousing corporate data

electronically would not be sufficient, in light of the sea of data that they generated

[Williams]. Far from increasing productivity, electronic data warehousing could severely

hamper productivity. Information technology had not solved the problem of the data

deluge, and in fact had complicated the matter by rendering the data less accessible,

hidden inside some computer somewhere. However, the advent of the Oracle's relational

database management system around the same time would facilitate the development of

the first product data management systems to help manage the increasing complexity of

electronic data storage [Greenwald, 1999].

A product data management system at the simplest level is a software application layer

that allows a company to truly manage its data, rather than simply warehouse it. By

maintaining data attributes and data relationships in addition to the data itself, a PDM

system provides a view of corporate data as whole, connected, and dynamic, rather than a

disjointed set of stored objects. At a higher level, a PDM system can provide features for

controlling the flow of data throughout a product's life cycle; in this way, information

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 7Data Management In A Distributed Design Modeling Environment

Page 8

technology begins to scratch the surface of a new paradigm. Data becomes more than

simply a stored, stagnant record of what has been done, and becomes the live substance

of the work that is being done.

Nevertheless, according to company sources, even as large and complex a company as

Ford Motor Company still uses its SDRC Metaphase PDM system as not much more than

a glorified data warehousing system. In the face of daunting up-front capital costs, a

company may elect simply to set up a corporate electronic data vault, albeit with a PDM

system as the interface [Williams, 1994]. In addition, even in the best of cases, PDM

systems still treat data in an administrative manner - that is, each document is treated as a

somewhat unintelligent object to be categorized and managed. The actual value of the

data within a document is ignored. For example, a PDM system treats an information-

rich SolidWorks 3D model in basically the same way as a brief departmental memo.

While the two pieces of data may be described by different attributes, and be classified

and used in very different ways, the PDM system extracts effectively none of the data's

inherent value.

A new paradigm is presented by DOME (Distributed Object-based Modeling

Environment), developed at the Computer-Aided Design Laboratory at the Massachusetts

Institute of Technology. DOME goes beyond simply managing data and enables users to

tap into the inherent value of data by allowing individuals to define detailed parametric

relationships between data. It provides a framework within which individual data objects

(e.g., an engineering spreadsheet or a Solidworks model) can be interconnected to

simulate the interactions between conceptual parts of a complex design. These data

objects, or modules, provide their capabilities to other objects in a controlled manner via

defined interfaces. Entire models consisting of many interconnected modules can then be

examined using DOME's analysis tools [Pahng, 1998].

The work behind this thesis involves a marriage between conventional PDM systems and

the DOME framework. While DOME presents a paradigm in how data is treated and

used, and provides tools that can significantly change traditional design processes, it

lacks an integrated method of simply managing the data objects that it uses, as well as the

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Introduction

Data Management In A Distributed Design Modeling Environment

additional information generated by analysis tools. One can consider conventional PDM

systems to be a way of managing relatively raw engineering data, DOME to be a way of

tapping into the intelligence of that engineering data, and a DOME data management

system to be a way of managing the product of that intelligence.

1.2 Overview of the thesis document

This thesis document describes the background of the related research work, the

considerations involved in implementing the DOME data manager, the implementation of

the data manager, and proposed future work on data management for DOME.

Chapter two provides the background of product data management, in more detail than in

Section 1.1. Relational databases and basic database concepts are provided first. A

comparison between the conventional "paper" design process, the product life cycle in

the presence of a conventional PDM, and the potential process change afforded by the

DOME framework, is then presented.

Chapter three describes DOME in greater detail by explaining its architecture, how it

works in practice, and how it can fundamentally affect the design process. DOME's data

management needs are then introduced.

Chapter four covers the implementation of the DOME data manager produced for this

thesis. Basic considerations such as the database system, the programming language, and

the scope of the implementation are discussed. The implementation is then described in

detail.

Chapter five presents proposed future work to provide true PDM capabilities within

DOME. Beyond providing database connectivity and version control, a DOME database

manager should maintain data attributes and relationships. A database schema that would

allow this is suggested, and user interactions are described.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 9

Chapter six delves into the potential benefits of a DOME data manager, in terms of the

additional tools and features that can be developed. Workflow management, distributed

search capabilities, and data markup features are discussed.

Chapter seven presents conclusions made from the study of product data management

methodology with respect to DOME. The feasibility of fully integrating a PDM system

into the DOME framework is discussed, as well as issues to consider in doing so. The

benefits of performing such a task in terms of presenting a new design paradigm are

summarized.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 10 Introduction

Data Management In A Distributed Design Modeling Environment Page 11

2 BACKGROUND

2.1 Relational Databases

Traditionally, the structure of electronic databases reflected that of physical data storage;

data was stored on computers much as one would store contact information in a Rolodex,

or various documents in a filing cabinet. In this hierarchical approach, data templates

were constructed at the database design stage, and a piece of data consisted of several

pre-defined fields; for example, a contact would be stored as a set of fields such as last

name, first name, and home phone number. Pieces of data would be stored in an ordered

hierarchy; for example, "college buddies" and "hockey buddies" would both be organized

under the "buddies" category (see Figure 1). This traditional database model left pieces

of data relatively isolated from one another, provided no significant flexibility in terms of

changing the data template to accommodate the addition or removal of fields, and often

resulted in widespread data inconsistencies because of the lack of data relationships and

the need for data replication [Abbey, 1999]. What if a "buddy" was both a college buddy

and a hockey buddy? The only solution was to duplicate data in more than one location,

resulting in significant synchronization errors.

Figure 1: Basic structure of a hierarchical database

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page I IData Management In A Distributed Design Modeling Environment

Page 12 Background

Figure 2: Basic structure of a relational database; data is maintained in a
loose structure connected by data relationships

In the late 1970s, based on work previously undertaken by IBM, Oracle came into

existence as the world's first relational database management system [Greenwald, 1999].

A relational database consists of sets of two-dimensional tables in which rows and

columns can be linked together in complex networks. These linkages provide

information about the relationships between different pieces of data (see Figure 1). For

example, a "college buddies" table could reference data in a master contacts list. If a

contact belongs in more than one table, each table can refer to the master list; in this way,

a piece of data exists in one and only one location, and the relationships between data in

different tables can be described and maintained.

Relational databases are ideally suited for data management in a complex, integrated

engineering design environment. One engineering document rarely falls neatly into one

spot in a hierarchy. More often than not, the same document is needed by many people

in many different places at many different times. In addition, the engineering and

business relationships between various documents need to be described and maintained

for the warehoused data to be truly useful.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

BackgroundPage 12

2.2 Data Management in Product Development

2.2.1 Conventional data management

In conventional product development environments, data is managed largely without the

benefits of information technology. Product data and documentation are simply

warehoused, and data objects may be embodied in many different forms and formats -

electronic or paper, text or binary, etc. Data relationships and attributes in this situation

are effectively stored in the heads of engineers and managers. The problems that arise

from this rather haphazard mode of data management, or lack thereof, becomes especially

apparent in complex design systems such as those encountered in the aerospace industry

[Tsao, 1993].

2.2.2 Product data management systems

In the deluge of engineering documents and data produced in the design of complex

systems, it becomes obvious that a better system than the filing cabinet, electronic or

otherwise, is needed. Complexity in design systems affects the speed of the development

process and increases the risk of errors, inconsistencies, and productivity loss due to

redundancy [Bourke]. The role of the product data management system is to help deal

with this complexity by maintaining data relationships and facilitating the flow of data

throughout a product's development and life cycle.

For a PDM system to succeed in this role, it is clear that stored data needs to be described

by more than just a filename. In product data management terminology, data that

describes data is called metadata. In addition to warehousing a given piece of data or

document, a product data management system provides the descriptive attributes of that

piece of data or documentation in the form of metadata. With those attributes, the PDM

system is then able to formulate and maintain relationships between different pieces of

data. Altogether, a PDM system should manage engineering data, attributes of that data,

as well as relationships between data and metadata [Hewlett-Packard].

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 13

Page 14 Background

Additionally, PDM systems can provide engineering procedure management by directing

official data releases and other official actions during the development cycle. Beyond

procedure management, some PDM systems provide process management tools, whereby

the systems can have real impact on the fundamental way that the design process itself is

executed, and on the workflow continuously throughout the product development cycle.

By facilitating the distribution of in-progress data and allowing the controlled exchange

and markup of such data, a PDM system can alter design process mentality and control

the progress of the development cycle. In this case, data flow from one person to the

next, or one phase to the next, is regulated by defined rules [Williams]. Process

management features in PDM systems make workflows data-driven, and thus taps more

into the inherent value of the data that it is managing.

2.2.3 DOME

Advancements in object-oriented concepts have taken the role of data tools beyond

simple data management and metadata maintenance. In the object-oriented mentality,

access to the inherent intelligence of an object is controlled and provided by a creator-

defined interface. The interface delineates the inputs that the object requires in order to

function, the outputs that it will provide in return, and the internal details that are visible

to other objects. In the case of object-oriented programming languages such as Java and

C++, this means that code is encapsulated and hidden in objects, and other objects can

access only the data and functionality that make up the objects' predefined public

interfaces. Similarly, in the data realm, data such as an engineering spreadsheet can be

hidden and encapsulated, yet its functionality can be provided through predefined

interfaces. Developments such as the Common Object Request Broker Architecture

(CORBA) and Object Linking and Embedding (OLE) enable the sharing of data

functionality across diverse data formats and applications [Conaway, 1995].

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 14 Background

Data Management In A Distributed Design Modeling Environment Page 15

Riding on this object-oriented wave, the Distributed Object Modeling Environment

(DOME) provides a framework by which the inherent value of data is shared instead of

simply packed away into storage or lost in a sea of complexity. While PDM systems

maintain additional descriptive metadata on top of data itself, they largely disregard the

actual information content of the data objects. With DOME, a design team could relate

the actual functionality of data objects, and not just the attributes of that data. Once a

network of relationships is established, simulations and design analyses could be

conducted to understand and observe interactions between different parts of a design. In

essence, PDM systems pack data objects away in closed, labelled boxes; DOME wraps

the data objects in a way that actually facilitates access to the contents of those boxes.

Massachusetts Institute of Technology - Center for Innovation in Product Development

3 DOME

The Distributed Object-based Modeling Environment (DOME) is a product of the

Computer-Aided Design Laboratory at the Massachusetts Institute of Technology. A

commercial spin-off of the research product is presently being developed by Oculus

Technologies Corporation. The software provides a framework on which the concept of

sharing the inherent informational value of object-oriented data can be tested and further

developed. DOME follows in the prevailing internet philosophy of providing resources

and services that are accessible to users with the least possible need for client-side

customization. Just as web browsers make diverse data and applications available to

clients on different software platforms, DOME makes it possible to provide diverse

product development services to users regardless of platform, via standard Internet

communication protocols. Users can access a wide range of data without abandoning

available applications, or environments familiar to them [Wallace, 2000].

The power of this data sharing, however, comes not from simply the ability to access

individual data documents; rather, DOME enables the connection of distributed data

objects into data networks where the outputs from one data module provide the inputs to

other modules. In this way, complex network simulations can be constructed rapidly and

without the potential difficulties presented by differences in platforms and geographic

locations.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 16 DOME

3.1 Architecture

DOME provides its services using a two-tiered server-client architecture that employs

standard TCP/IP for communication between servers and clients, as well as among

servers. Users communicate through servers via Remote Method Invocation (RMI),

which connects Java applet DOME clients to servers. On the server side, C++ is used in

implementing the DOME core, and communicates with the Java side using Java Native

Interface (JNI). Server interactions with third-party applications occurs through custom

plugins that utilize the individual applications' published Application Programming

Interfaces (APIs). Some custom plugins include ones for Microsoft Excel, SDRC I-

DEAS, SolidWorks, and Matlab.

3.2 DOME Model-Service Structure

A DOME service represents a data object that is available for use by DOME clients. A

service is published, or made accessible to external parties, when an interface is defined

for the data object. For example, an excel spreadsheet that calculates a given output for a

given input can be published as a service by creating an interface with the DOME add-in

within Excel (see Figure 3). Once a service interface is defined, it can be accessed from a

DOME client via the DOME server (see Figure 4). In practice, services would be

displayed in the client as they're being added (see Figure 5).

In addition to custom third-party application services, DOME allows the addition of

certain built-in services as well. These basic types include strings, booleans, containers,

and relations. Essentially, on an interface level, they provide data in the same way that a

custom service does.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 17

Page 18 DOME

A,51 B 'I U

creae Iterfce dt nter Editho Intrfc
B5 1

1 x 1 Name Units Addums Vakwinu/Otu

3 y3 hens$1 reu

7

11Y

ADD D~T eehOe

Figure 3: Creating a DOME interface for an Excel spreadsheet

Figure 4: Adding a service to a model in the DOME client

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Data Management In A Distributed Design Modeling Environment Page 19

Figure 5: Excel service as displayed in DOME client

Once services have been added to the scope of a DOME client, they may be connected

using relations, objects that encapsulate relationships between services ranging from

simple equality statements to complex C++ code. Altogether, the services and the

connections between services comprise a DOME model. These models can then be

analyzed using various tools provided by DOME, and they themselves can be

interconnected as well.

Throughout the process of adding services to a given model, the service user can access

the full functionality and value of the data object behind the service. Yet, the details of

the data object's implementation is securely encapsulated by the service interface, which

allows access to only provider-defined inputs and outputs. As a result, providers can

make the core value of their data objects available, yet retain intellectual property rights

to the models and processes within the data object.

3.3 DOME Data Management

Management of the data produced by DOME is presently minimal at best. Research and

development efforts have concentrated largely on the fundamental principle of providing

distributed service sharing capabilities, and exploring the implications of those

capabilities in terms of encouraging collaboration, integrated design, and the reuse of

engineering services. Management of the data shared and used by DOME models

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 19Data Management In A Distributed Design Modeling Environment

(services), the data synthesized within DOME (models), as well as the data generated by

DOME (specific model states and analysis outcomes) has mostly been ignored. In

addition, integration of the DOME framework with the real-world corporate PDM

environment of most companies has been postponed in order to provide a simplified test

environment for the DOME concept.

In the existing DOME implementation, the data for publication of services for third-party

application data files are not created or stored in a consistent manner. Part of the reason

for this inconsistency is application-dependent; some application APIs allow publication

data to reside in the data files themselves, while others require external text files.

Nonetheless, once the necessary data has been generated, DOME is aware of the services

only as they are requested and located by the user. Furthermore, the only knowledge that

the user can have of the service is the service interface - what inputs and outputs can be

accessed and manipulated. There is no descriptive metadata for the service object, there

is no way to determine relationships between available services, and there is no way of

controlling the creation, modification, deletion, and use of services in the workflow.

Within DOME, data that describes synthesized models is managed in a rather crude

fashion. A model is exported to a plain text file in a predefined directory on the server

hard drive. This text file, called an MDL file because of its 3-letter Microsoft Windows

filename extension, describes the basic components of the as service attributes organized

with a series of square brackets in a hierarchical manner (see

Figure 6). These text files constitute the extent of model data management in DOME;

there is no metadata, and no versioning capability. "Opening a model" amounts to

making sure that the desired MDL file is in the designated directory before the server is

started, and then selecting the proper filename in the client once the server has been

started.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 20 DOME

Data Management In A Distributed Design Modeling Environment Page 21

MDL2 [RelationContainerModule [name Top_LevelModule]
[PRealModule [name A][value 0.000000]]
[PRealModule [name B)[value 1.000000]]
[PCompiledRelationModule [name rel] [independent B] [dependent A]

[pre #include <relationHeader.h>
#include <RelationContainerModule.h>
#include <XLRealModule.h>
#include <MATLABRealModule.h>
#include <IDEASDimensionModule.h>
#include <Catalog.h>
#include <Mat rixModule .h>

#include <Segmented.h>
][value A = B;

Figure 6: Sample MDL file for a DOME model

Once a model has been set up or retrieved, there is yet another layer of DOME-related

data - the analytical data resulting from the model simulation. This data is the model's

raison d'etre in the first place. The point of providing the DOME framework and

enabling data sharing and the creation of service networks is to be able to analyze the

networks and obtain results and observations about particular design relationships. It

would thus be beneficial to be able to record and manage those results, and particular sets

of service input/output values that constitute a model state of interest. In this context, the

"model" is the actual network of services and relationships, while a "model state" is the

model with specific values at the service inputs and outputs.

This thesis project proposes that it is a logical progression for DOME to combine the

advantages of conventional PDM systems with the DOME product development

paradigm. In the case of conventional PDM systems, data is stored with descriptive

metadata, but the data itself is effectively inaccessible, unless a user expressly opens one

specific data file with the specific corresponding third-party application. However, PDM

systems can control engineering procedures such as defined releases, as well as affect

engineering workflow by enabling data to drive and shape development processes. In all

cases, PDMs treat the data objects as discrete, locked boxes. On the other hand, DOME

provides access to the core computational value of data objects, but does not retain

descriptive metadata and data relationships, and therefore cannot yet reach its full

potential to truly affect workflow, processes, and engineering procedures. The natural

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 21

evolution of the DOME framework is the incorporation of data management features with

its powerful data sharing capabilities.

4 THE DOME DATA MANAGER

The ultimate goal of a full DOME data manager is to provide the following capabilities:

* integrated warehousing or tracking of all DOME data (available services,

synthesized models, and resulting analysis data)

* provision of descriptive metadata for all stored data objects to improve data

search and browse functionality

* maintenance of administrative metadata relationships, such as versioning,

ownership, related data objects (e.g., documentation), and related services

* process and workflow control based on DOME-generated simulation and analysis

results

The implementation of the DOME Data Manager developed for this thesis provides a

basic framework for database connectivity, and tests the framework by providing a

mechanism for the versioning of models, and for creating metadata to describe models.

This chapter focuses on the basic technical issues involved in providing database

connectivity, the details of the integration of the Data Manager with DOME, and a

description of the Data Manager user interface and Data Manager API used to access the

database. The next chapter will then explore a possible direction for a future

implementation of the DOME Data Manager.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 22 The DOME Data Manager

4.1 Technical Considerations

4.1.1 DOME data types

As described in section 3.3 above, the types of data objects associated with DOME can

be classified into three major categories. In addition, an administrative data object

category would be helpful:

* Service publication data - the third-party application files, along with

accompanying publication data text files if required, that are define the service

interface and are necessary for use in DOME

* DOME model structure data - data that describe the contents of a DOME model

(services, relations, and containers) and how they are interconnected in a DOME

simulation network

* Output analysis and model state data - data produced by the application of

analysis tools to a DOME model, as well as data describing the values of

independent service input/output variables within a model at a particular point in

time

* Administrative data - data such as DOME users and available hosts that are not a

value-added part of the product development data, but are necessary for the

implementation of proper data management

Figure 7 describes these data types graphically. This implementation of the DOME Data

Manager deals with the management of DOME model structure data.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 23Data Management In A Distributed Design Modeling Environment

Pa2e 24 The DOME Data Manager

Figure 7: Simplified DOME data relationships

4.1.2 Database server

As the pioneer and industry leader in terms of market share, Oracle's relational database

management system is often the default choice of database servers for corporate data

management applications[Abbey, 1999]. Oracle provides a diverse range of tools and

features that enhance the user's ability to manipulate and view data, including recent

additions in Oracle 8i that address the arrival of the internet age [Greenwald, 1999].

However, as in many other areas of information technology, Microsoft has hit the market

with a truly competitive product in SQL Server 2000.

Not only does SQL Server outperform Oracle in certain benchmarking studies

[Transaction Processing Performance Council], but SQL Server carries with it the

advantage of the Microsoft-style application interface (see Figure 8). The ease of use in

terms of installing and using the SQL Server database management system is quite

persuasive in deciding which database server to use, especially in a research situation

where the proof of concept is more important than actual real world performance. That

said, it appears that SQL Server is at least comparable to Oracle in terms of performance,

and may even provide an edge in terms of tool sets; SQL server provides some innovative

tools such as a graphical query analyzer that can help optimize SQL (Structured Query

Language) statement processing.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Pagae 24 The DOME Data Manager

4.1.3 Java and JDBC

The choices in terms of programming languages for implementing the DOME Data

Manager basically come down to a choice between C++ or Java, both by virtue of their

general pervasiveness in software development, as well as because of the DOME server

and client's foundation in C++ and Java code. While C++ using the Microsoft

Foundation Classes (MFC) could provide higher performance in terms of speed and user

interface look and feel, Java was chosen for its ease of use in implementing database

functionality, with a tolerable sacrifice in performance.

Figure 8: SQL Server's Windows-style interface

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 25Data Management In A Distributed Design Modeling Environment

4.1.4 Integration of the Data Manager into DOME

Because Oculus Technologies holds rights to the core DOME implementation, access to

the software guts of basic DOME functionality such as MDL file saving and model

loading is restricted. While these difficulties may be reconcilable, the direction of this

Data Manager implementation was to attempt to work within the boundaries of DOME

source code availability. For example, access to the Java applet client is quite a bit

simpler; so, rather than attempt to completely bypass existing MDL file export and

loading functionality on the part of the server, this implementation simply modifies the

way in which the client works with MDL files presented by the server.

4.2 DOME Data Manager Implementation

4.2.1 Metadata

The DOME Data Manager maintains the following set of information about each version

of each model that is created. Each field is represented by a column in the Models table

in the relational database:

* Model id: a unique identity number generated by the database server for each

new model

* Name: a unique model name

* Version: a unique, sequential version number generated by the Data Manager

application

* Description: a text description of the model

* Author: the user who created the model

* MDLFilename: a unique filename generated by the Data Manager application for

the MDL file from which the DOME server will load the model when requested

* MDLFile: the complete text of the MDL file

Massachusetts Institute of Technology - Computer Aided Design Laboratory

The DOME Data ManagerPage 26

Data Management In A Distributed Design Modeling Environment Page 27

Figure 9: Microsoft Windows ODBC Data Source administration dialog

The MDLFile can be considered to be the physical representation of the model itself. By

storing the MDL file in the database as the model, the Data Manager can work with the

existing DOME server implementation, which loads all model data from MDL files.

4.2.2 Software code

JDBC (Java Database Connectivity) is comprised of a standard package in the Java 1.2.2

API. It provides classes that communicate with any database servers that support ODBC

(Open Database Connectivity) standards. In Microsoft Windows 2000, ODBC databases

are defined via the Data Sources control panel, available in the Administrative Tools

program group in the Windows Start menu (see Figure 9). Once the ODBC data source

has been defined, SQL queries and updates can be communicated from the Java

application to the database via simple method calls.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 2 7Data Management In A Distributed Design Modeling Environment

Page 28 The DOME Data Manager

read MDL files from MDL Files directory in
operation system

J- write MDL files to

Figure 10: Interaction between DOME and DOME Data Manager

The main vehicle for database connectivity resides in a DataBase class. The graphical

dialog in which model data is managed is defined by a ModelDialog class, which utilizes

the DataBase class to pass custom statements to the database server. The Javadoc

documentation for both classes are included in the Appendix.

4.2.3 Data Manager interactions with DOME and the user

Figure 10 illustrates how the DOME server, DOME client, and the Data Manager

interact. Whenever a DOME model is created and saved in the database, an MDL file is

automatically generated in a directory prescribed by the DOME server. When a DOME

model is deleted from the database, the associated MDL file is also deleted. Thus, when

the DOME server starts up and scans the directory for MDL files to load from, it is aware

of all existing models.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 28 The DOME Data Manager

Data Management In A Distributed Design Modeling Environment Page 29

Figure 11: DOME Data Manager's Open Model dialog

The client works with stored models via the Data Manager dialog. The user can select

any version of any model to open (see Figure 1 1).To open a model, the Data Manager

writes the associated MDL file to the prescribed directory so that the DOME server can

load the model properly. If the user then wishes to modify and save the model as a new

version, the DataManager by default creates a new version of the model, although the

user can choose to overwrite the last version of the model (see Figure 12). The Data

Manager then creates an associated MDL file for the DOME server to load from if

requested in the future. The user cannot overwite any version other than the last one

because that would corrupt the model history by violating the version sequence.

Similarly, the user can only delete all versions from a given version to the last version,

inclusive (see Figure 13).

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 29

Page 30 The DOME Data Manager

Figure 12: DOME Data Manager's Save Model dialog

Figure 13: DOME Data Manager's Delete Model dialog

Massachusetts Institute of Technology - Computer Aided Design Laboratory

The DOME Data ManagerPage 30

4.2.4 Benefits of data management provided by this implementation

The functionality provided by the Data Manager benefits DOME in several ways. It

provides basic database connectivity sufficient for development of additional product

data management features in the future. Rather than being a discrete tool as it is now,

DOME can be more tightly integrated into the development process. Data flow within

DOME can prompt events in the development process via product data management,

much as data flow in conventional PDM systems can affect engineering process and

procedures. In addition, this new data management functionality provides basic model

metadata that can allow descriptive searches and model classification in the future.

Lastly, on the simplest level, it provides the ability to warehouse models in an organized

manner by allowing descriptive naming and a strict versioning system.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 31Data Management In A Distributed Design Modeling Environment

Page 32

5 PROPOSED DATA MANAGER FOR IMPROVED PDM

With basic database connectivity implemented and tested via the ModelDialog versioning

and model management class, more complex and beneficial database designs can be

considered. While the lack of access to core DOME source code makes full integration

of a data manager difficult, there is sufficient background in simply working with DOME

models and simulations for considering a database schema that can provide beneficial

product data management functionality to DOME. Essentially, such a schema would

need to enable the storage of data, construction of metadata, and maintenance of

relationships, that would allow the data manager to satisfy the goals listed at the top of

section 4.

5.1 Proposed Schema

Based on the DOME data types described in section 4.1.1, the schema diagrammed in

Figure 14 is proposed. To start, services are stored in the database along with descriptive

metadata. The DOME framework has been described as a marketplace for the exchange

of services [Wallace, 2000]. By facilitating the discovery of and classification of these

services with descriptive metadata, a DOME data manager encourages the growth of such

a marketplace. In addition, proper service versioning within an organization can benefit

the workflow by making service subscribers aware of the "freshness" of services that

they may be using.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Proposed Data Manager For Improved PDM

Data Management In A Distributed Design Modeling Environment Page 33

Administrative

Figure 14: Basic components of proposed schema

In a larger sphere, each model is itself considered a data object that is versioned and

described by metadata. At the same time, however, models are broken down into atomic

components: containers, services, inputs/outputs, and relationships. This enables DOME

to reconstruct saved models via the data manager. While this may appear to be overkill

in light of the simplicity of storing model structures in simple text MDL files, it can

provide benefits beyond what is easily achievable with a largely unformatted, plain text

stream. Models can be categorized and described along additional axes; for example,

being able to easily query for the services in a particular model may hint at the character

of the model.

Lastly, the schema allows for the management of specific model states by saving

specified variables in a model as versions of the model state. By keeping track of this

data, the results of model simulations and analyses gain persistence, and those results can

then be used to drive process and workflow.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Model structure

Service publication

Model state

Data Management In A Distributed Design Modeling Environment Page 33

6 FUTURE DEVELOPMENT AND BENEFITS OF PDM FOR DOME

6.1 Basic Data Description and Organization by a DOME PDM

The existence of an integrated, comprehensive data management system for DOME-

related data objects opens the door to several potential product data management features.

In terms of basic PDM functionality, the ability to describe both atomic and aggregate

data objects within DOME allow for better classification and discovery of those data

objects. Returning to the analogies presented in Section 2 that compare PDM data to

labeled boxes, and DOME data to unlabeled boxes with working interfaces, the simplest

contribution of a PDM would be to label and classify those DOME boxes.

In the complex space that a distributed object-based service marketplace can become, the

lack of adequate data description and control would likely result in a chaotic jumble of

black box data objects. To truly encourage the sharing of distributed expertise, within an

organization or without, users must feel comfortable with their chances of finding useful,

pertinent data when desired. This includes both individual services published by

distributed sources, as well as complex models and model states that a person may decide

to make available to others. Even regardless of the sharing aspects of the DOME

framework, the ability to classify and organize DOME data components presents

immediate benefits.

Furthermore, by breaking down DOME models into rows and relationships in a database,

the inherent intelligence of a DOME model's service network is stored and available for

querying. It can be envisioned that an engineer interested in motor torque outputs could

query accessible databases for services that provide outputs with units in Newton-meters

(Nm). More complex scenarios involving the evaluation of dependencies within a model

by some type of intelligent agent in order to find desirable models or model states are not

at all unlikely.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 34 Future Development and Benefits of PDM For DOME

Ultimately, the data description functionality of the typical PDM system, when combined

with the DOME framework, can result in a truly useful data marketplace, where the

ability to view data classifications can help filter out the noise inherent in widely

distributed data spaces. In addition, the ability to navigate data relationships would

enable a certain degree of intelligence in evaluating the character of services and models.

6.2 Engineering Procedure Management by a DOME PDM

Beyond basic PDM functionality, a DOME data management system can allow DOME

simulations to drive engineering procedures. After a user has defined design

requirements and objective functions, a PDM that can track model states in terms of

changes in designated input/output variables would be able to automatically version,

archive, and potentially request release. In this way, the PDM can help track the complex

changes in model states as a simulation is being run.

In a conventional PDM system, such triggers are generally administrative in nature. For

example, an engineer signing off on a drawing that he is working on may trigger a review

for release by a supervisor. Another example would be the release of a documentation set

once all contributors have checked their work into the corporate vault. In the case of a

PDM system within DOME, design releases can be more purely data-driven, where

engineering procedures such as releases and reviews can be more tightly related to design

specifications and requirements instead of business events.

6.3 Process and Workflow Management by a DOME PDM

While a conventional PDM can affect workflow by enabling the sharing of pre-release

data among collaborators, the combination of PDM and DOME capabilities means that

users can share not simply static data objects, but the visualization of design network

simulations. The ability to archive, share, and version the effects of changes in complex

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 35Data Management In A Distributed Design Modeling Environment

design interactions is invaluable in terms of decreasing the overhead of communicating

design relationships in conventional settings. Such a change in the way that work can be

done may indeed constitute the design paradigm mentioned in Section 1.1.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Future Development and Benefits of PDM For DOMEPage 36

Data Management In A Distributed Design Modeling Environment Page 37

7 CONCLUSION

This thesis presented a product data management system for the Distributed Object-based

Modeling Environment (DOME). Data utilization in a conventional product data

management system as well as in DOME were described and compared. Specifically, the

relational database was introduced as the foundation for PDM application layers in

product development organizations. Such PDMs manage data by maintaining data

attributes and data relationships that are relevant to a product life cycle, but do not allow

the direct use of the data itself. DOME allows users to encapsulate data objects and share

the inherent intelligence of those data objects in design simulation networks, but does not

have PDM capabilities. A DOME data manager is proposed to provide DOME with the

ability to maintain data attributes and relationships.

Microsoft's SQL Server 2000 was selected as the back-end for the DOME Data Manager.

SQL Server has been proven in benchmarking tests to provide industry-leading

performance. In addition, its standard Windows interface makes it an easier enterprise

database application to learn and utilize. As an ODBC-compliant database server, SQL

Server databases can be accessed via software through Java JDBC classes.

A DOME data manager was implemented in order to allow DOME to communicate with

the SQL Server database. Presently, DOME is capable of storing its model structures in

plain text files called MDL files. The files are maintained rather haphazardly, and do not

allow easy searching because the only information that a user has about a model file is its

filename. The implemented data manager allowed archiving, versioning, description, and

retrieval of DOME models. In addition, the DOME data manager's basic database

communication classes provided a basis for the future addition of PDM functionality to

DOME.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 3 7Data Management In A Distributed Design Modeling Environment

A database schema that could provide DOME with PDM functionality was proposed and

discussed. Such a schema would maintain attributes and relationships between several

types of DOME data: service publication data, model structure data, model state data, and

miscellaneous administrative data. At the simplest level, this would allow for persistence

of both model structures and model states - that is, they can be recovered and modified as

desired. However, the schema could also facilitate the sharing of services and models by

enabling metadata searches.

The incorporation of product data management capabilities into a true data sharing

environment such as DOME can truly affect the product development process. Expertise

encapsulated in data objects can be shared in a distributed manner as DOME services.

Available services can be discovered in an efficient way in a marketplace where available

objects can be properly searched and organized. Models built with these services can

also be shared and modified in an organized manner. Even the knowledge gained by

manipulating these models can be maintained and shared.

By moving the management of data beyond mere data storage, PDM systems are capable

of affecting both engineering procedures and engineering process. DOME goes further in

enabling stored data by allowing the sharing of the expertise inherent in data objects

through object encapsulation. By combining these two views of corporate product data

and bringing stored data into an active marketplace, a PDM-enabled DOME can truly

provide a paradigm in product development.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 38 Conclusion

Data Management In A Distributed Design Modeling Environment Page 39

REFERENCES

Abbey, M, Corey, M J, Abramson, I (1999), Oracle 8i: A Beginner's Guide, Osborne
McGraw-Hill, New York.

Ahmed, S (1991), "Transaction and Version Management in Object-oriented Database
Management Systems for Collaborative Engineering Applications," M.S. Thesis,
Department of Civil Engineering, Massachusetts Institute of Technology.

Blouin, G, "Introduction to Virtual Collaboration," PDMIC View & Markup Information
Center, [http://www.pdmic.com/vmic/introvmic.shtml].

Bourke, R, "New PDM Apps Are More Capable at Managing Complex Data
Relationships," Product Data Management Information Center, courtesy of CMstat
Corporation, [http://www.pdmic.com/articles/artcmsta.html].

Conaway, J (1995), "Integrated Product Development: The Technology," Product Data
Management Information Center, [http://www.pdmic.com/articles/artIPD1.html].

Finn, G A (1995), "Event-driven Knowledge-based Design," Ph.D. Thesis, Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology.

Greenwald, R, Stackowiak, R, Stem, J (1999), Oracle Essentials: Oracle8 and Oracle8i,
O'Reilly, Cambridge, Massachusetts.

Pahng, F, Senin, N, Wallace, D (1998), "Distributed Object-based Modeling and
Evaluation of Design Problems," Computer-aided Design, vol. 30, no. 6, pp. 411-423.

Transaction Processing Performance Council, [http://www.tpc.org/].

Tsao, S S (1993), "An Overview of Product Information Management," Product Data
Management Information Center, courtesy of Electronic Data Systems Corporation,
[http://www.pdmic.com/articles/pacis.html].

Wallace, D, Abrahamson, S, Senin, N, Sferro, P (2000), "Integrated Design in a Service
Marketplace," Computer-aided Design, vol. 32, no. 2, pp. 97-107.

Williams, C S (1994), "What Is Product Data Management and Why Should I Care?" The
Sun Observer, November, 1994, pp. 25-27.

Williams, C S, "How Product Data Management Technology Has Evolved," Product
Data Management Information Center, courtesy of Hewlett-Packard Company,
[http://www.pdmic.com/evoltech.html].

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling niomn Page 39

APPENDIX

A.1 Class ModelDialog

data.ui.dialog

Class ModelDialog

java. lang.Object

+-java . awt . Component

+-java.awt.Container

+-java.awt.Window

+-java.awt.Dialog

+-javax.swing.JDialog

+-data .ui. dialog. ModelDialog

public class ModelDialog
extends javax.swing.JDialog
implements java.awt.event.ActionListener

The ModelDialog class provides an interface for working with models in the DOME
database. The ModelDialog object should be provided with a DataBase object that
provides basic database methods at instantiation. Users can save and open models to and
from the database, as well as export and import models to and from text MDL files. The
ModelDialog properly versions new models, and prevents haphazard deletion of versions
from the middle of version series.

See Also:
Serialized Form

Inner classes inherited from class javax.swing.JDialog
javax. swing. JDialog .AccessibleJDialog

Fields inherited from class javax.swing.JDialog
accessibleContext, rootPane, rootPaneCheckingEnabled

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 40 Appendix

Fields inherited from class java.awt.Component

BOTTOMALIGNMENT, CENTERALIGNMENT, LEFTALIGNMENT, RIGHTALIGNMENT,

TOP ALIGNMENT

ModelDialog (javax. swing.JFrame owner, data.util .DataBase db)

Instantiates a ModelDialog object with the given parent frame and DataBase

void ac tionPer formed (java .awt .event .Ac tionEvent e)

boolean deleteo(

Deletes the model selected via the GUI dialog.

boolean exportMDLFile ()
Exports a model to an MDL file.

boolean exportMDLFile(java.io.File mdlFile)

Exports a model to an MDL file.

int importMDLFile ()

Imports a model from an MDL file.

int importMDLFile (java.io. File mdlFile)

Imports a model from an MDL file.

java.io.File openModel ()

Creates a temporary MDL file for the selected model so that the
model can be opened by DOME.

int saveModel(java.io.File mdlFile)

Save a model to the database with the proper version number.

Methods inherited from class javax.swing.JDialog

addImpl, createRootPane, dialogInit, getAccessibleContext,
getContentPane, getDefaultCloseOperation, getGlassPane, getJMenuBar,
getLayeredPane, getRootPane, isRootPaneCheckingEnabled, paramString,
processKeyEvent, processWindowEvent, remove, setContentPane,
setDefaultCloseOperation, setGlassPane, setJMenuBar, setLayeredPane,
setLayout, setLocationRelativeTo, setRootPane,

setRootPaneCheckingEnabled, update

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 41

Methods inherited from class java.awt.Dialog
addNotify, dispose, getTitle, hide, isModal, isResizable, setModal,
setResizable, setTitle, show

Methods inherited from class javasawt.Window
addWindowListener, applyResourceBundle, applyResourceBundle, finalize,
getFocusOwner, getInputContext, getLocale, getOwnedWindows, getOwner,
getToolkit, getWarningString, isShowing, pack, postEvent, processEvent,
removeWindowListener, setCursor, toBack, toFront

Methods inherited from class java.awt.Container
add, add, add, add, add, addContainerListener, countComponents,

deliverEvent, doLayout, findComponentAt, findComponentAt, getAlignmentX,

getAlignmentY, getComponent, getComponentAt, getComponentAt,

getComponentCount, getComponents, getInsets, getLayout, getMaximumSize,
getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,
layout, list, list, locate, minimumSize, paint, paintComponents,
preferredSize, print, printComponents, processContainerEvent, remove,

removeAll, removeContainerListener, removeNotify, setFont, validate,
validateTree

Methods inherited from class java.awt.Component
action, add, addComponentListener, addFocusListener,
addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, addPropertyChangeListener,
addPropertyChangeListener, bounds, checkImage, checkImage,
coalesceEvents, contains, contains, createImage, createImage, disable,
disableEvents, dispatchEvent, enable, enable, enableEvents,
enableInputMethods, firePropertyChange, getBackground, getBounds,
getBounds, getColorModel, getComponentOrientation, getCursor,
getDropTarget, getFont, getFontMetrics, getForeground, getGraphics,
getHeight, getInputMethodRequests, getLocation, getLocation,

getLocationOnScreen, getName, getParent, getPeer, getSize, getSize,
getTreeLock, getWidth, getX, getY, gotFocus, handleEvent, hasFocus,
imageUpdate, inside, isDisplayable, isDoubleBuffered, isEnabled,
isFocusTraversable, isLightweight, isOpaque, isValid, isVisible,
keyDown, keyUp, list, list, list, location, lostFocus, mouseDown,
mouseDrag, mouseEnter, mouseExit, mouseMove, mouseUp, move, nextFocus,
paintAll, prepareImage, prepareImage, printAll, processComponentEvent,
processFocusEvent, processInputMethodEvent, processMouseEvent,
processMouseMotionEvent, remove, removeComponentListener,
removeFocusListener, removeInputMethodListener, removeKeyListener,
removeMouseListener, removeMouseMotionListener,
removePropertyChangeListener, removePropertyChangeListener, repaint,
repaint, repaint, repaint, requestFocus, reshape, resize, resize,
setBackground, setBounds, setBounds, setComponentOrientation,

setDropTarget, setEnabled, setForeground, setLocale, setLocation,

setLocation. setName. setSize. setSize. setVisible. show. size.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

AppendixPage 42

toString, transferFocus

Methods inherited from class java.lang.Object
clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

ModelDialog

public ModelDialog(javax.swing.JFrame owner,

data.util.DataBase db)

Instantiates a ModelDialog object with the given parent frame and DataBase.

Parameters:
owner - the parent JFrame that owns this dialog
db - the DataBase object through which this dialog communicates

importMDLFile

public int importMDLFile()

Imports a model from an MDL file. Filename and other parameters are collected
via the GUI dialog.

Returns:
the database ID number of the new model

importMDLFile

public int importMDLFile(java.io.File mdlFile)

Imports a model from an MDL file. The given MDL file is loaded as the default
one to import, but can be overriden via the GUI dialog.

Parameters:
mdlFile - the default MDL file from which to import
Returns:
the database ID number of the new model

Massachusetts Institute of Technology - Center for Innovation in Product Development

1 clone, equals, getClass, hashCode,
notify, notifyAll, wait, wait,

wait

Data Management In A Distributed Design Modeling Environment Page 43

openModel

public java.io.File openModel()

Creates a temporary MDL file for the selected model so that the model can be
opened by DOME.

Returns:
the file object for the temporary MDL file

exportMDLFile

public boolean exportMDLFile()

Exports a model to an MDL file. Filename and other parameters are collected via
the GUI dialog.

Returns:
true if successful, false otherwise

exportMDLFile

public boolean exportMDLFile(java.io.File mdlFile)

Exports a model to an MDL file. The given MDL file is used as the default one to
export to, but this can be overriden via the GUI dialog.

Parameters:
mdlFile - the default MDL file to which to export
Returns:
true if successful, false otherwise

saveModel

public int saveModel(java.io.File mdlFile)

Save a model to the database with the proper version number.

Parameters:
mdlFile - the temporary MDL file from which to read the model
Returns:
the database ID of the saved model

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 44 Appendix

Data Management In A Distributed Design Modeling Environment

delete

public boolean delete()

Deletes the model selected via the GUI dialog. Prevents deletion of versions in the
middle of version series; i.e., only the latest version(s) of a model can be deleted.

Returns:
true if successful, false otherwise

actionPerformed

public void actionPerformed(java.awt.event.ActionEvent e)

Specified by:
actionPerformed in interface java.awt.event.ActionListener

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 45

Page 46 Appendix

A.2 Class DataBase

data.util

Class DataBase

java. lang.Object

+-data.util.DataBase

public class DataBase
extends java.lang.Object

The DataBase class handles all interactions with the database server. It establishes a
connection with the DOME database and provides methods for executing SQL statements
against that database.

Constructor Summary

DataBase (javax .swing .JFrame owner)
Instantiates a DataBase object for the given owner frame, using the default JDBC

bridge driver and the default dome database URL.

DataBase (javax. swing.JFrame owner, java. lang.String driverString,
java.lang.String urlString)

Instantiates a DataBase object for the given owner frame, using the given driver
string (for a specific ODBC driver) and the given database URL (for a specific
database).

DataBase (javax.swing.JFrame owner, java.lang.String driverString,
java.lang.String urlString, java.lang.String user,
java.lang.String pass)

Instantiates a DataBase object for the given owner frame, using the given driver
string (for a specific ODBC driver) and the given database URL (for a specific
database).

,Method Summary. fJv

int addModel (java. lang. String name,
java.lang.String mdlFile, java.lang.String author,
java.lang.String desc)

Adds a row to the Models table, with the given model
name, related temporary MDL filename (from which the DOME
server reads model information), author, and description.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

AppendixPage 46

Data Management In A Distributed Design Modeling Environment Page 47

boolean deleteModel(int id)

Deletes the model with the given database ID.

boolean deleteModel(java.lang.String name, int version)

Deletes the given version of the model with the given
name.

java. lang. String getMDLFilePath ()

Returns the path of the directory in which temporary
MDL files are placed so that the DOME server can read the
model information.

java. lang. String getModelAuthor (int id)

Returns the author of the model with the given database
ID.

java.lang. String getModelDesc (int id)

Returns the desription of the model with the given
database ID.

int getModelID(java.lang.String name, int version)

Returns the database ID of the given version of the model
with the given name.

java. lang. String getModelMDLFile (int id)

Returns the text of the MDL file that describes the model
with the given database ID.

java. lang. String getModelMDLFilename (int id)
Returns the temporary MDL filename of the model with

the given database ID.

java. lang. String getModelName (int id)

Returns the name of the model with the given database
ID.

int getModelVersion(int id)

Returns the version of the model with the given database
ID.

java.lang.Object [] getRowsArray(java.lang.String table,

java.lang.String column)

Returns all rows of the given column in the given table, as
an array of Objects.

Massachusetts Institute of Technology - Center for Innovation in Product Development

java.lang.Object[] getRowsArray(java.lang.String table,

java.lang.String column, java.lang.String expr)

Returns all rows of the given column in the given table
that match the given expression, as an array of Objects.

java.util.Vector getRowsVector(java.lang.String table,

java. lang.String column)

Returns all rows of the given column in the given table, as
a Vector.

java.util.Vector getRowsVector(java.lang.String table,

java.lang.String column, java.lang.String expr)

Returns all rows of the given column in the given table
that match the given expression, as a Vector.

boolean isModel(java.lang.String name, int version)

Checks whether the given version of the model with the
given name is in the database.

boolean isName (java.lang.String name)

Checks whether a model with the given name is in the
database.

java.sql.ResultSet sqlQuery(java.lang.String sqlQuery)

Executes the given SQL query statement.
boolean updateModelAuthor (java. lang.String name,

int version, java.lang.String newAuthor)

Changes the author associated with the given version of
the model with the given name.

boolean updateModelDesc(java.lang.String name, int version,
java.lang.String newDesc)

Changes the description associated with the given version
of the model with the given name.

boolean updateModelMDLFile(java.lang.String name,
int version, java.lang.String newMDLFile)

Changes the temporary MDL filename associated with the
given version of the model with the given name.

boolean updateModelName (java. lang. String oldName,
java.lang.String newName)

Changes the name associated with all versions of the
model with the given name.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 48 Appendix

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

DataBase

public DataBase(javax.swing.JFrame owner)

Instantiates a DataBase object for the given owner frame, using the default JDBC
bridge driver and the default dome database URL.

Parameters:
owner - the JFrame that will use this DataBase object

DataBase

public DataBase (javax. swing.JFrame owner,
java.lang.String driverString,
java.lang.String urlString)

Instantiates a DataBase object for the given owner frame, using the given driver
string (for a specific ODBC driver) and the given database URL (for a specific
database).

Parameters:
owner - the JFrame that will use this DataBase object
driverString - the driver-specific driver string
uristring - the driver- and database-specific database URL

DataBase

public DataBase (j avax. swing . JFrame owner,
java.lang.String driverString,
java.lang.String urlString,
java.lang.String user,
java.lang.String pass)

Instantiates a DataBase object for the given owner frame, using the given driver
string (for a specific ODBC driver) and the given database URL (for a specific
database). Rather than showing a login dialog, automatically connects to the
database with the given username and password.

Parameters:
owner - the JFrame that will use this DataBase object
driverString - the driver-specific driver string
uristring - the driver- and database-specific database URL

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 49

Appendix

user - username
pass - password

Method Detail

sqlQuery

public java.sql.ResultSet sqlQuery(java.lang.String sqlQuery)

Executes the given SQL query statement. Does not execute DDL (data definition
language) updates.

Parameters:
sqlQuery - the SQL string to be executed
Returns:
the ResultSet object containing the SQL query results

addModel

public int addModel (java.lang.String name,
java.lang.String mdlFile,
java.lang.String author,
java.lang.String desc)

Adds a row to the Models table, with the given model name, related temporary
MDL filename (from which the DOME server reads model information), author,
and description.

Parameters:
name - model name
mdlFile - MDL filename
author - author
desc - description
Returns:
database ID of the newly added model

deleteModel

public boolean deleteModel(int id)

Deletes the model with the given database ID.

Parameters:
id - database ID of the model to be deleted
Returns:
true if successful, false otherwise

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 50

deleteModel

public boolean deleteModel(java.lang.String name,

int version)

Deletes the given version of the model with the given name. Only allows deletion
of the last version(s) of a given model, not a version within a series of versions.

Parameters:
name - name of the model to be deleted
version - version of model to be deleted
Returns:
true if successful, false otherwise

updateModelName

public boolean updateModelName(java.lang.String oldName,
java.lang.String newName)

Changes the name associated with all versions of the model with the given name.

Parameters:
oldName - the original name
newName - the new name to be used
Returns:
true if successful, false otherwise

updateModelAuthor

public boolean updateModelAuthor(java.lang.String name,
int version,
java. lang. String newAuthor)

Changes the author associated with the given version of the model with the given
name.

Parameters:
name - model name
version - model version
newAuthor - new author
Returns:
true if successful, false otherwise

updateModelDesc

public boolean updateModelDesc(java.lang.String name,
int version,
java.lang.String newDesc)

Changes the description associated with the given version of the model with the
given name.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 51Data Management In A Distributed Design Modeling Environment

Parameters:
name - model name
version - model version
newDesc - new description
Returns:
true if successful, false otherwise

updateModelMDLFile

public boolean updateModelMDLFile(java.lang.String name,
int version,
java.lang.String newMDLFile)

Changes the temporary MDL filename associated with the given version of the
model with the given name.

Parameters:
name - model name
version - model version
newMDLFile - new MDL filename
Returns:
true if successful, false otherwise

isName

public boolean isName(java.lang.String name)

Checks whether a model with the given name is in the database.

Parameters:
name - model name
Returns:
true if the name is found in the database, false otherwise

isModel

public boolean isModel(java.lang.String name,
int version)

Checks whether the given version of the model with the given name is in the
database.

Parameters:
name - model name
version - model version
Returns:
true if the model is found in the database, false otherwise

Massachusetts Institute of Technology - Computer Aided Design Laboratory

AppendixPage 52

Data Management In A Distributed Design Modeling Environment

getMDLFilePath

public java. lang.String getMDLFilePath()

Returns the path of the directory in which temporary MDL files are placed so that
the DOME server can read the model information.

Returns:
the path of the directory, as a String

getModellD

public int getModelID(java.lang.String name,

int version)

Returns the database ID of the given version of the model with the given name.

Parameters:
name - model name
version - model version
Returns:
database ID of the model

getModelName

public java. lang. String getModelName(int id)

Returns the name of the model with the given database ID.

Parameters:
id - database ID
Returns:
the name of the model with the given database ID

getModelVersion

public int getModelVersion(int id)

Returns the version of the model with the given database ID.

Parameters:
id - database ID
Returns:
version number of the model with the given database ID

Massachusetts Institute of Technology - Center for Innovation in Product Development

Page 53

getModelAuthor

public java. lang.String getModelAuthor (int id)
Returns the author of the model with the given database ID.

Parameters:
id - database ID
Returns:
the author, as a String

getModelDesc

public java.lang.String getModelDesc(int id)

Returns the desription of the model with the given database ID.

Parameters:
id - database ID
Returns:
the description, as a String

getModelMIDLFilename

public java. lang. String getModelMDLFilename (int id)
Returns the temporary MDL filename of the model with the given database ID.

Parameters:
id - database ID
Returns:
the temporary MDL filename, as a String

getModelMDLFile

public java.lang.String getModelMDLFile(int id)

Returns the text of the MDL file that describes the model with the given database
ID.

Parameters:
if - database ID
Returns:
the text of the MDL file, as a String

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 54 Appendix

getRowsVector

public java.util.Vector getRowsVector(java.lang.String table,

java.lang.String column)

Returns all rows of the given column in the given table, as a Vector.

Parameters:
table - table name
column - column name
Returns:
the Vector containing all requested rows

getRowsVector

public java.util.Vector getRowsVector(java.lang.String table,
java.lang.String column,
java.lang.String expr)

Returns all rows of the given column in the given table that match the given
expression, as a Vector.

Parameters:
table - table name
column - column name
expr - the String boolean expression
Returns:
the Vector containing all requested rows

getRowsArray

public java.lang.Object[] getRowsArray(java.lang.String table,
java. lang. String column)

Returns all rows of the given column in the given table, as an array of Objects.

Parameters:
table - table name
column - column name
Returns:
the array containing all requested rows as Objects

getRowsArray

public java.lang.Object[] getRowsArray(java.lang.String table,

java.lang.String column,

java.lang.String expr)

Returns all rows of the given column in the given table that match the given
expression, as an array of Objects.

Massachusetts Institute of Technology - Center for Innovation in Product Development

Data Management In A Distributed Design Modeling Environment Page 55

Parameters:
table - table name
column - column name
expr - the String boolean expression
Returns:
the array containing all requested rows as Objects

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Page 56 Appendix

