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ABSTRACT
The deformations characteristic of neutrophils as they pass through the

microcirculation affect their transit time, their tendency to contact and interact with the
endothelial surface, and potentially their degree of activation. In this study I investigate
the effects of capillary entrance geometry and cell activation level on neutrophil transit
through individual capillary segments in the pulmonary microvasculature. The
neutrophil is modeled as a homogeneous viscoelastic Maxwell sphere bounded by
constant surface tension and the capillary as a rigid, axisymmetric contraction of constant
radius of curvature. Cell indentation experiments are simulated using the finite element
method to determine appropriate Maxwell model constants (Gceii and Uceii) for the cell in
its passive and two levels of FMLP-activated states, corresponding to 1E-9 and 1E-6 M.
The flow and deformation of the cells through individual capillary segments is
subsequently analyzed using a fully coupled fluid-structure interaction finite element
method. The indentation results indicate that neutrophil viscosity and shear modulus are
strongly affected by the chemoattractant FMILP, increasing by factors of 3.4 (lE-9 M
FMLP) and 7.3 (1E-6 M FMLP) over passive cell values, which were determined to be
30.8 Pa s and 185 Pa, respectively. Trans-capillary transit time is found to be
approximately independent of cellular shear modulus provided that the shear modulus is
more than about 20 times greater than the effective trans-capillary pressure drop. For this
viscous deformation-dominated regime, the following simple expression,

T* =0.35 (a* )5 [(R*) - ], is derived to relate dimensionless cell transit time, T* =

TApef/pcei, to dimensionless minimum constriction radius, R* = Rnin/Rcei, and
dimensionless constriction radius of curvature, a* = alReii. The relative effects of FMLP
and capillary geometry on neutrophil transit time in the pulmonary microcirculation are
presented and their physiological implications discussed.
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Title: Professor of Mechanical Engineering
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1. Introduction to Neutrophil Modeling and Simulation

1.1 Background
Leukocytes (white blood cells) are divided into three classes based on their

structure and function, designated as granulocytes, monocytes, and lymphocytes. The
neutrophil is one of three sub-types of granulocytes, the other two being basophils and
eosinophils [1]. Neutrophils typically make up anywhere from 50% to 80% of the human
white blood cell population and are important mediators of the inflammatory response.

Upon bacterial infection of the host, chemotactic signals are sent from the site of
inflammation through the tissue and into the blood vessels to attract neutrophils. Upon
arrival the neutrophil engulfs the bacteria and releases toxic oxides from its granules,
thereby destroying both the harmful bacteria and the cell itself.

In order to be effective at fighting microbes in any part of the body, it is important
that neutrophils be distributed throughout the body, both in the blood vessels and
throughout the tissue. In addition, it is important that reservoirs of neutrophils exist in
the body so that large quantities may be called upon at once to fight infection. These
reservoirs are commonly referred to as "marginal pools" of cells and one of the most
important ones exists in the lungs: the pulmonary microvasculature.

While it is well established that the lungs serve as a site of margination for
neutrophils, it is not fully understood why the cells aggregate there. The working
hypothesis that has been verified experimentally and via modeling to some degree [2, 3],
is that neutrophils aggregate in the lungs due to their large average size (8 pm mean
diameter) compared to the smaller pulmonary capillaries, which have an average
diameter of 5.5 pm, and range in size from 2 to 15 gm, and due to their complex
constitution (neutrophils have a multilobed nucleus in addition to a viscoelastic, actin-
based cytoskeleton) compared to erythrocytes, which flow unhindered through the
capillaries. In order to further test this hypothesis, however, it is critical that models be
developed to better understand the effects of mechanical and biochemical factors on
neutrophil transit time. Is neutrophil margination due to biochemical factors such as
adhesion or cell activation level, mechanical factors, or some combination of both?

The essential role that the neutrophil plays in host defense in humans has led to
strong interest in developing accurate mathematical models of these cells. With this aim,
previous researchers have employed both experimental techniques [4, 5] and numerical
methods [6, 7, 8] to understand, model, and predict the cell's response during
micropipette aspiration as well as during its subsequent recovery.

While numerous researchers have concentrated their efforts on developing
accurate neutrophil models applicable to micropipette aspiration experiments, few have
attempted to use more realistic capillary geometries to understand in vivo neutrophil
behavior, taking into account, for example, the effect of a gradually narrowing capillary
geometry with variable constriction radius of curvature.

1.2 Objectives
The objectives of the present study are three-fold. The primary objective is to

simulate the flow of a neutrophil through a mild pulmonary capillary constriction to
quantify the effects of capillary geometry (both minimum constriction radius and
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constriction radius of curvature) and cell activation level on cell transit time. The second
objective is to model and simulate a cell indentation experiment to test the validity of
several previously established neutrophil models under that experimental setting. The
third goal is to use the indentation test to choose new cell model parameters that capture
the passive and FMLP-activated response of the cell under indentation.

1.3 Approach
The three aforementioned objectives of this study are carried out as follows.

First, three existing, well established continuum, passive neutrophil models are selected
from the literature (Newtonian fluid with surface tension, Standard viscoelastic solid
model, and Maxwell model with surface tension). The experimental basis for the
individual models is presented, as well as their mathematical formulations and the
published values of their parameters. The Maxwell model is used in the simulation of a
micropipette aspiration experiment primarily for validation purposes. Subsequently, the
three models are employed in cell indentation and their results compared to experiment.
Due to the poor fit between the model results and experiment, the Maxwell model
constants are then adjusted to best fit the experimental indentation data for a passive and
two levels of FMLP-activated cells, because quantitative data are not available
correlating FMLP-activation level with neutrophil viscosity and elastic stiffness. Finally,
the capillary flow problem is simulated using two separate approaches. In the first,
unsuccessful approach, the Newtonian cell model is employed using a fluid-fluid
interface formulation that will be described in detail in the modeling sections to follow.
The approach is unsuccessful because of its inability to solve the problem for
physiological cell model parameter values. In the second, successful approach, the
Maxwell cell model is employed using a fluid-structure interaction formulation. In this
formulation contact is assumed to occur between the cell and capillary wall during transit,
enabling the solution of the problem for the physiological Maxwell model parameter
values determined in the indentation simulations. Verification of the analysis results is
performed by comparing to analytical results when possible and to the simulation results
of previous investigators when analytical results are unavailable.

Due to the nonlinear nature of the mathematical models employed in this study
(fluid-structure interaction, changing boundary conditions, large displacements and
deformations) and the complex geometries involved, a commercial finite element
program (ADINA, Version 7.4) is used to solve the models.
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2. The Neutrophil Models
Unlike erythrocytes, neutrophils are granulocytes and are thus complex in internal

structure. They contain a multi-lobed nucleus that makes up about 20% of the cell's

volume [9] in addition to a large number of cytoplasmic granules (Fig. la) that make up

another 15%. The remainder of the cell consists primarily of cytoplasm. They are

spherical in their undeformed state (Fig. 1b), with an outer diameter of between seven

and 15 micrometers, and have both a cortex (indicated by the red dashed line in Figure

la) and an outer lipid bilayer that contains a large excess of material (Fig. 1b). Despite

their structural inhomogeneity, the cell interior (cytoplasm and nucleus) is traditionally
modeled as a single, homogeneous medium. Only recently have any attempts been made

at higher order, multi-component models that use separate domains for the cytoplasm and

the stiffer nucleus [10, 11]. In all cases known to the author, traditional continuum

mechanics is used to model the cell, neglecting the specific response of individual actin

filaments in the cytoplasm, for example.

Fig. la A cross-sectional micrograph of a neutrophil illustrating the cell's multi-lobed
nucleus, organelles, and numerous granules.
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Fig. lb Three-dimensional micrograph of a neutrophil in suspension illustrating its
ruffled outer lipid bilayer and spherical undeformed configuration.

2.1 The Experimental Basis for the Models
There are a number of critical experimental observations [12] that have been used

to establish the primary (or first order) model components of a neutrophil. All of the
observations have been made in micropipette aspiration experiments where the cell is
aspirated from a suspending medium into a smaller diameter pipette using a step pressure
loading of varying magnitude. Figure 2 shows results typical of a micropipette aspiration
experiment.

L(t)lRpp

Time

Fig. 2 Typical experimental results of neutrophil aspiration into a micropipette under a
constant driving pressure difference. Rp is the inner radius of the pipette and L(t) is the

protrusion of the cell tip into the pipette.
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The primary findings of the micropipette aspiration experiment are:
1. The cell undergoes an (almost) instantaneous deformation a short distance into

the pipette.
2. There exists a critical pressure drop, Ape,i, above which the cell continuously

flows into the pipette. Furthermore, this critical pressure drop corresponds to
a cell configuration in which the portion of the cell that is inside the pipette
has forms a hemisphere with diameter equal to the inside diameter of the
pipette.

3. If after flowing for some time, the pressure drop is reduced to Apcrit, the cell
recoils slightly but remains extended in the pipette.

4. During the period of continuous, liquid-like flow, the portion of the cell that is
outside of the pipette remains approximately spherical.

5. After the initial elastic response, the rate of entry of the cell scales
approximately linearly with the applied pressure drop.

6. The total volume of the cell is preserved during aspiration.
7. There exists a limit to the increase in surface area of the cell of about 100%

that is imposed by the lipid bilayer. Beyond this increase in cell surface area
lysis of the lipid bilayer occurs.

The corresponding mathematical model parameters/characteristics are:
1. & 3. The cell exhibits a small degree of elasticity that is characteristic of the
response of an elastic solid.
2., 3., and 4. The cell behaves as though it were bounded by a small, constant,
surface tension-like force. An actin-rich layer at the lipid bilayer membrane
surface probably causes this "cortical tension".
2., 3., and 5. The bulk of the response time of the cell is characteristic of that of a
highly viscous, linear Newtonian fluid.
6. The cell is incompressible.
7. The cell surface area may not increase beyond 100%.

The critical pressure drop above which a viscous droplet bounded by a constant
surface tension continuously flows into a pipette is given by the following relationship

1 1

R, Rcell

where y is the constant coefficient of surface tension, Rp is the inner radius of the pipette,
and Rceii is the undeformed droplet (cell) radius, which is used to approximate the radius
of curvature of the cell surface that is outside the pipette. It is important to note in Eqn.
(2.1) that the radius of curvature of the droplet (or cell) external to the pipette is
approximated to be equal to the undeformed droplet radius, and that this approximation
becomes worse as larger pipette sizes are considered, or geometries such as tapered
constrictions are considered (where the critical pressure is assumed to be the maximum
critical pressure, which occurs when the cell reaches the minimum constriction point).
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2.2 The Models
The three more popular or "well-founded" neutrophil models are

1. Standard viscoelastic solid
2. Maxwell material with surface tension
3. Newtonian fluid with surface tension

Although each model has its individual strong and weak points (to be discussed
later), each one has been founded on experimental observations of either micropipette
aspiration or cell recovery after full aspiration or both. For this reason it is not
unreasonable to expect that the models will not perform well when tested under very
different loading conditions, such as in cell indentation. The first two incorporate the
observed initial elastic response of the cell to the step pressure, whereas the last one does
not. All three incorporate the flowing behavior of the cell that is characteristic of a
viscous fluid, although the first does not incorporate the surface tension effect of the
cortex and has a static limit to deformation (when Apcri is exceeded) whereas the other
two do not (they continuously flow). Additionally, all three neglect bending stiffness in
the cortex. Cortical bending stiffness has been shown to be negligible for all but the very
smallest radii of curvature, as would be encountered in cell aspiration into pipettes of
diameter less than two micrometers [13].

2.2.1 Standard Viscoelastic Solid Cell Model
This model is one of the earliest continuum neutrophil models and was pioneered

by Schmid-Schonbein et al. in 1981 [5]. In this model the cell is assumed to be a
homogeneous, incompressible sphere without cortical tension, with its deviatoric
response modeled by a standard viscoelastic solid element, in which an elastic spring is in
parallel with a spring-dashpot series element. The governing constitutive equations for
the bulk and deviatoric responses are [14], respectively,

p = -KEV (2.2)

'+ T' = (k, + k2 )E'+ kk 2 E' (2.3)
172 172

or, using the following definitions of ki and q

k, = 2G,
k2 = 2G2

172 = 2p 2

the deviatoric response can be written as

G 22G,T+ 2 T'= 2(G] + G2 )E'+ 2 E' (2.4)
p2 12
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where T' and E' are the deviatoric Cauchy stress and small strain tensors, respectively,
defined in Appendix A, p and E, are the mechanical pressure and the volumetric strain,
respectively, also defined in Appendix A, k, is twice the elastic shear modulus (2 G1 ) for

the first spring element, k2 is twice the elastic shear modulus (G2) for the second spring

element, 112 is the viscosity of the dissipative Maxwell element and equal to twice the
equivalent Newtonian fluid viscosity (2,u2 ), K is the bulk modulus (and K -+00 for an
incompressible medium), and a superimposed dot denotes time differentiation.

For short time scales, or infinitely fast deformation, (deformation time scales that
are much shorter than r,, defined in Eqn. (2.5) below) the standard viscoelastic solid

responds in shear like a linear elastic solid with shear modulus ( , or simply (G1 +

G2). For long time scales or infinitely slow deformation, it responds as a linearly elastic

solid with shear modulus - or G1. The time constant associated with the relaxation of
2

stress in the solid is given by

Tn _ 172 _-2Y2 .(2.5)
k2  2G2

2.2.2 Maxwell Model with Cortical Tension
Dong et al. pioneered this model in 1988 [15]. In this model the cell is also

treated as homogeneous and incompressible. The difference with the standard solid
model is that here the deviatoric response is modeled using the Maxwell element, in
which there is only an elastic element in series with a dashpot, and the cortical tension is
explicitly accounted for with constant surface tension. The governing constitutive
equations for the bulk and deviatoric responses are [14], respectively,

p-KE, (2.6)

= -- +- (2.7)
k2  112

where again, using the following definitions

k2 = 2G2

72=2,2

we have for the deviatoric response

,T' T'+ (2.8)
2G2

2 p 2
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where all the notation has been previously defined.
Referring to the constitutive form of Eqn. (2.8), it is clear that if G2 is infinite and

p2 finite, then there is zero instantaneous elastic response to an applied stress, and the
Maxwell model reduces to that of a linear Newtonian fluid with viscosity M2 -
Alternatively, if p 2 is infinite and G2 finite, then there is zero deviatoric strain rate
associated with a constant applied stress and the material behaves like an elastic solid
governed by Hooke's law. (Glass is an example of a Maxwell type of material that is
commonly treated simply as an elastic material because it only flows over very long time
scales (centuries).)

For very short time scales (t <<T), a Maxwell material responds in pure shear
like an elastic solid with a shear modulus of / (G2), whereas for longer time scales (t
>> m,) the material flows like a fluid with viscosity "/ (= p 2 ). The time scale of stress
relaxation is the same as in the standard solid model above.

The cortical tension is accounted for explicitly in this model by assuming that a
surface tension force exists on the outer periphery of the cell (the cortex). This surface
tension force can be expressed for a cell with no externally applied tractions as

n-Tn=2Hf onS (2.9)

where S is used to denote the bounding surface of the cell, n is the outward unit normal
to the cell surface, T is the total Cauchy stress tensor, f is the constant coefficient of
surface tension, and H is the mean curvature of the bounding surface and assumed
positive when the center of curvature lies in the direction of the surface normal.

The mean curvature of a surface, H, is found by taking any two orthogonal planes
that contain the normal of the surface at the point of interest (the intersection of the two
planes is coincident with the normal) and averaging the inverses of the radii of curvature
of the two curves formed by the intersection of the orthogonal planes with the surface

H=- -+ (2.10)
2 (R, R2)

2.2.3 Newtonian Fluid Model with Cortical Tension
Evans & Yeung pioneered this model in 1989 [8]. In this model the cell is

modeled as a simple, linear Newtonian fluid with constant surface tension (essentially a
highly viscous liquid droplet with surface tension). The governing constitutive equation
is

T = -pIl+ 2pD (2.11)

where p is the fluid pressure (mechanical or thermodynamic, they are equal for an
incompressible fluid), y is the coefficient of laminar viscosity, and D is the rate of
strain tensor defined by
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1D= (L + (2.12)

L = grad v

where v is the material (fluid) velocity and the gradient operator is with respect to the
current configuration (spatial coordinates). Clearly this model does not contain any
elastic response and therefore entirely neglects the cell's inherent elasticity. The
spherical shape of the cell is nonetheless its equilibrium configuration (in the absence of
external tractions or body forces) due to the cortical tension in the model. The cortical
tension in this model is mathematically equivalent to that of the Maxwell model
described in Section 2.2.2 (see Eqns. (2.9) and (2.10)).
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3 Governing Equations

3.1 Geometry

Micropipette Aspiration
The initial configurations of the rigid, axisymmetric pipette and undeformed

spherical cell are shown in Figure 3. The radius of the cell is Rei, the inner radius of the

pipette, Rpipette, and the thickness of the pipette is denoted by h. The radius of curvature
of the pipette tip is simply h/2. In the results section, d(t) is used to denote the

displacement of the cell from its initial position shown in Figure 3. Numerical values of

the geometric parameters used in the analysis are consistent with the simulation
performed by Dong et al. [15] and are listed in Table I.

h

2 Rpipette

t+ d(t)

Fig. 3 Original configuration of cell and pipette used for small deformation pipette
simulation (pipette is assumed to be a rigid contact surface).

Table I Pipette and undeformed cell dimensions for small deformation cell aspiration
simulation (after Dong et al. [15]).

Rceii 4.27 pm

Rpipette 2.14 pim
h 0.43 pm

Indentation
The initial configuration of the axisymmetric indenter, undeformed cell, and rigid

substrate are shown in Figure 4. The radius of the cell is Rei, the maximum radial

dimension of the indenter is Rindenter, the radius of curvature of the indenter corners is

Pindenter , and the length of the indenter is Lindenter. During indentation the geometry of the

cell evolves due to the deformation imposed by the action of the indenter and support of

the substrate. Numerical values of geometric and other model parameters, such as
indentation rate and maximum indentation depth are tabulated in Table II and consistent
with the simplified analytical models presented by Zahalak et al. [16].

13



2 Rindenter

Rcell

Rigid substrate

Fig. 4 Original configuration of cell and indenter used for indentation simulations
(indenter and substrate are assumed to be rigid).

Table II Indentation simulation parameters (adopted from Zahalak et al. (1990)).
Pindenter Rceii Rindenter Maximum Indentation Rate

Indentation
0.15 pm 4 pm 1 pm 1.5,pm 5.1 pmls

Capillary Flow
Figure 5 shows the idealized axisymmetric capillary geometry and contact surface

used for the fluid-structure interaction capillary flow simulations, as well as the assumed
initial position and configuration of the cell. As usual, the cell was assumed to be
spherical in its initial, undeformed configuration, with radius Rceu. The capillary was
assumed to be cylindrical upstream and downstream of the constriction, with radius
Rcapillary. The constriction varies smoothly from inlet to outlet and is described in cross-
section by an arc of constant radius of curvature. The radius of curvature of the contact
surface is denoted a, and the radius of curvature of the capillary wall is given by the
quantity (a -8), where 6 is the constant gap thickness between the capillary wall and the
contact surface. The gap thickness, 6, was chosen to be constant and equal to 100 nm,
treating the glycocalyx as a rigid layer that is highly permeable to the flow of plasma, and
was a compromise between a more complex model, such as that employed by Feng and
Weinbaum, (2000) and having no layer, in which case the cell would be allowed to
approach within 10 nm of the capillary wall. Choosing the right-handed cylindrical
coordinate system (r, 0, z) shown in Figure 5, where the origin of the system has been
chosen to coincide with the intersection of the capillary axis and the plane that is normal
to that axis and contains the midpoint of the constriction, the contact surface constriction
radius, R(z), can be expressed analytically as

R(z)=(R.n,,+a)- a2 z2 for (-lz:l) (3.1)

14
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where z denotes position along the capillary axis, R.i is the minimum constriction radius,
and 21 is the total axial length of the constriction.

%/

2Rmn 2 Rcapillary

Fig. 5 Geometry for fluid-structure interaction neutrophil-capillary flow model.

3.2 Equations of Motion and Mass Conservation
Solving a boundary value problem involving any of the above neutrophil models

requires a set of partial differential equations (in addition to the constitutive laws)
provided by momentum, continuity, and boundary/initial conditions. In its most general
form, the momentum equation can be written for solids and fluids as

pv =divT+b (3.2)

where the time derivative in Eqn. (3.2) is a material time derivative (i.e. following a
material particle), p is the (constant) material density, b denotes a generic body force

such as gravity, and all other symbols have previously been defined.
Despite the fact that the applications of the methods presented here do not require

the inertia or the body force term in Eqn. (3.2), the terms will be retained for greater
generality of the formulations.

Incompressibility for the plasma and for the Newtonian fluid cell model, which is
formulated using the Arbitrary Lagrangian Eulerian formulation, requires that the
velocity fields be divergence free in the plasma and cell domains, and can be written as

div v = 0. (3.3)

(Mass conservation is automatically satisfied for the viscoelastic cell models because
they are formulated using Lagrangian formulations.)
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3.3 Constitutive Equations
The specific constitutive equations depend upon the particular cell model

employed. In both viscoelastic models, near incompressibility is assumed (v = 0.499)
due to the inability of ADINA to model exactly incompressible viscoelastic media (v =
0.5), so that K = 500G . Furthermore, the shear modulus, G is given in each case by the
model constants k,, k2 , and 712 determined by previous investigators (Table 1II) or from
previous indentation experiments, in this study (Table IV). Viscoelastic material data is
input into ADINA using Prony or Dirichlet Series, given in Eqns. (3.6) and (3.7) below
for the standard solid and Maxwell model shear moduli, repectively, and by Eqn. (3.16)
for the bulk moduli.

An alternative, integral representation of the differential viscoelastic constitutive
equations given in Section 2.2 can be derived as follows. Consider a creep test, in which
a step constant stress is applied to the material, and the resulting strain measured as a
function of time. We then have that

y (t)=rJ(t) (3.4)

where To is the constant, step stress applied to the material, y(t) is the time-dependent (in
general) strain resulting from the applied stress, and J(t) is defined to be the creep
compliance, relating the two (note that the creep compliance is a function which can be
measured experimentally for any given material, and in general is different for different
types of viscoelastic materials). Similarly, we can apply a constant strain, yo, to the
material and measure the stress as a function of time

r (t)= yOG (t) (3.5)

where G(t) is called the relaxation modulus, and is also different for different types of
materials. For the case of the standard viscoelastic solid model, the relaxation modulus is

t
G(t)=G +G2e (3.6)

where G. is termed the environmental shear modulus, representing the effect of the
parallel spring that provides a static limit to deformation (or a finite, non-decaying stress
for any applied strain), G2 represents the Maxwell, series spring, which dissipates its
stored elastic energy through the series dashpot, and r, is the characteristic Maxwell time
constant or decay time, which is equal to u2 G2 or q 2/k2 . The decay time, rn, corresponds
to the time that the stress resulting from a constant step applied strain would relax to zero
if it were to relax at its initial rate of relaxation (in fact the rate of relaxation is a decaying
function of time). For a simple Maxwell material, the relaxation modulus is given as

G(t) = Ge "".(3.7)
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Next, we note that we may express an arbitrary constant stress, TI, that is applied to the
material at time t = 4i, as a function of time r(t) = TrH (t - , ), where H(t) is the

Heaviside function, equal to zero for times less than t, at time t, and 1 for times greater
than t. Using (3.4), we can then express the time-dependent strain resulting from this
constant stress as

y(t)=rJ(t)H (t -d). (3.8)

We now generalize this concept by considering a series of n incremental constant stresses
applied to the material at various points in time, i. The total stress applied to the
material as a function of time is then simply a linear superposition of the stress
increments Ani,

) AH (t - ). (3.9)

Since we are only considering linear viscoelastic materials, in which strain is linearly
related to stress, we may superimpose the separate strains resulting from separate stress
increments to obtain the total strain resulting from the sum of the stresses,

y (t)= y, (t -,)= ArJ(t - )H (t- ). (3.10)
i=1 i=1

If we now consider the continuous limit of Eqn. (3.10), in which we apply infinitely
many small increments in stress throughout time so that the total stress as a function of
time is a smoothly varying, differentiable function, we have

y(t)= J(t - )H (t-)dr(). (3.11)
0

Since the Heaviside function in Eqn. (3.11) is always equal to one because t is always
greater than 4, we can re-write the equation as

) t -) d (3.12)

Employing the exact same arguments for the relaxation test, we can similarly derive the
following expression for the time-dependent stress resulting from an arbitrary time-
dependent strain as

(t)=f G (t - 4)- d4. (3.13)
0
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Eqn. (3.13) can be generalized to three dimensions in a straightforward manner using the
definitions of deviatoric stress, T', and deviatoric strain, E', introduced earlier as

tE'(O
T'(t)=J2G(t- ) d (3.14)

and similarly for the bulk response we have

T. (t)= 3K (t-4) ( (3.15)
0

where G(t) is the shear relaxation modulus given above for the Maxwell and standard
solid models and K(t) is the hydrostatic (or bulk) stress relaxation modulus, related to the
shear relaxation modulus by

K (t)= 2(1+v)G(t). (3.16)
3(1-2v)

Table III: Various published neutrophil model properties.
Model k, (Pa) k2 (Pa) 112 (Pa s) f (pN/[tm) r, (s) Reference

Standard
Viscoelastic 27.5 73.7 13.0 0 0.176 (5)
Solid
Maxwell
with surface 0 28.5 30.0 31 1.05 (15)
tension
Newtonian
with surface 0 0 210 35 o (8, 12)
tension

3.4 Boundary and Initial Conditions
In addition to the surface tension boundary conditions on the Maxwell and

Newtonian cell models, there are boundary conditions that are specific to the particular
problem of interest, i.e. pipette aspiration, cell indentation, or capillary flow.

Pipette Aspiration
In the pipette aspiration simulations a negative pressure is prescribed at the cell

surface interior to the pipette and zero pressure exterior to the pipette. This pressure
loading models the applied pressure drop in the experiments with which we compare the
model results. The reason it is applied negatively from the interior of the pipette vs.
positively from the exterior is to avoid elastic buckling in the viscoelastic cell models.
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Note that due to incompressibility, the nature of the solution is not changed by this
modeling assumption, however the buckling is avoided. In the cases of the models with
surface tension, the stress boundary condition (Eqn. (2.9)) on the cell surface inside the
pipette becomes

n.Tn=2Hf-Ap onSinside (3.17)

where Ap is the experimentally applied pressure drop (assumed positive), whereas the
boundary condition on the cell surface exterior to the pipette remains only that due to the
surface tension force (Eqn. (2.9)). Both boundary conditions are nonlinear due to the fact
that the cell surface evolves in time in the analysis.

In addition to these boundary conditions there is an additional natural, nonlinear
boundary condition that is due to the pipette. The contact boundary condition available
in ADINA was used to ensure that the cell surface slides along the pipette tip and interior
as it is aspirated, with zero friction. A distributed normal force is applied to the cell
surface by this algorithm to ensure that this boundary condition is met (for more
information on the details of the contact algorithm used in ADINA see ref. 16).

Cell indentation
In the cell indentation simulations frictionless contact conditions were assumed

between the indenter and cell, and between the cell and substrate. A constant velocity
was applied to the top center of the indenter and reversed when the indenter reached its
maximum indentation depth of 1.5 pum (achieved in 0.29 seconds, refer to Table II).

Capillary Flow
In the capillary flow simulations each of the neutrophil models was suspended in

plasma that was modeled as an incompressible Newtonian fluid with the viscosity and
density of water. The mixed boundary conditions on the plasma and the interfacial
conditions on the cell-plasma interface are described below.

As previously mentioned, two separate capillary flow models were tested and
employed in this study. In the first, a fluid-fluid interface analysis procedure was
employed, using an Arbitrary Lagrangian Eulerian (ALE) formulation for both the cell
and plasma. Due to the fluid formulation used for the cell, only the Newtonian cell
model could be employed using this procedure. In the second capillary flow model, a
fluid-structure interaction analysis procedure was employed, using a solid (Lagrangian)
formulation for the cell and a fluid (ALE) formulation for the plasma. For this model, the
viscoelastic Maxwell model was employed. In both the fluid-fluid interface model and
the fluid-structure interaction model the following interfacial and boundary conditions
were satisfied, although the kinematic formulations and numerical approaches to solving
the equations of motion differed considerably and will be described in Section 4.

Fluid-fluid Interface Model
Plasma

The natural boundary conditions imposed on the plasma at the inlet and outlet of
the capillary were

Tn -n =0 at the capillary inlet (upstream of the constriction)
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Tn -n = -Ap at the capillary outlet (downstream of the capillary constriction)
And the essential boundary condition imposed on the capillary walls was

v =0 on the capillary walls (no slip).

Cell-Plasma Interfacial Conditions
The cell-plasma interfacial conditions were continuity of velocity and shear stress,

and discontinuity of normal stress due to the surface tension. The velocity condition can
be expressed as

Velocity Continuity (or no slip)
Vcell = '"a Vt (3.18)

and the interfacial normal stress jump has been previously given in Eqn. (2.9).

Fluid-structure Interaction Model
Plasma

The boundary conditions on the plasma are identical to those in the previous
section above.
Cell-Plasma Interfacial Conditions

The interfacial conditions between the cell and plasma are also identical to those
in the previous section.
Cell-Capillary Wall Contact Condition

The primary difference between the fluid-fluid interface model and this one is that
contact was assumed to occur between the cell and capillary wall when the gap thickness
between the cell and wall reached 0.1 pm. This assumption is what allowed the model to
be solved for the physiologically realistic cell viscosities and shear moduli determined via
cell indentation in Section 5.2. When in contact, nonlinearly varying natural boundary
conditions were applied to the cell in order to ensure that the contact surface was not
penetrated. Contact between the contact surface and cell was assumed to be frictionless,
so that only a normal traction was applied to the cell by the contact surface. Both normal
and shear components of the fluid (plasma) traction were applied to the cell throughout
the analysis, however, regardless of whether the cell was in contact or not. For details on
the contact algorithm employed in ADINA, the reader is referred to Reference 17 (Bathe,
KJ) and the ADINA User Manuals [18].
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4. Finite Element Methods
As mentioned earlier in Section 1, all of the problems of interest in this study are

nonlinear and therefore require numerical methods for their solution. The numerical
method that has been chosen in this study due to its flexibility in modeling complicated
geometries, large deformations, multi-physics problems (coupled fluid-structure
interaction), and nonlinear contact problems is the finite element method.

In this section, the general approach of the finite element solution of continuum
mechanics solid and fluids problems will be addressed.

4.1 Discretization of the Governing Equations

4.1.1 The Principle of Virtual Work
The Principle of Virtual Work is the fundamental theorem upon which the finite

element method is based, and is used in developing the discretized form of the governing
fluid and solid equations. The only difference between the two derivations is that the
principle is written on a rate (power) basis for the fluid equations vs. a work (energy)
basis for the solid equations. This is due to the fact that in solving fluids problems an
Eulerian formulation is typically employed in which material velocity is used as an
independent variable vs. solids problems, where a Lagrangian formulation is typically
employed in which material displacement is used as an independent variable.

The Solid Equations
The principle of virtual work is derived from the following "virtual" mechanical

energy statement,

f pb -8ii dV+f t (6) 6ff dS = Increment in Virtual Work (4.1)
Vol S

where SIT is an imaginary (virtual) increment in displacement of the material particles in
the body, the volume integral accounts for the virtual work done onto the body by
externally applied body forces b, and the surface integral accounts for virtual work done
on the body by externally applied tractions, t(n). Clearly this external "virtual" work must
either go into increasing the stored elastic energy in the body, increasing the kinetic
energy of the body, or be dissipated in the body by viscous effects. Using the fact that

t = Tn, (4.2)

and the divergence theorem, Eqn. (4.1) may be recast into the following, equivalent form
(see Appendix B)

f pb -SudV+ ft-(n) *8dS= f (pb+divT T)-S dV+ f T -EdV. (4.3)
Vol S Vol Vol

The momentum equation (Eqn. (3.2)) may then be used to reduce Eqn. (4.3) to its final
form
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T -TSE dV = f p(b -*) .S dV+ t(n) -8(dS
Vol Vol S

where the body force and divergence terms on the right hand side of Eqn. (4.3) have been
substituted for with the inertial term in the momentum equation.

Eqn. (4.4) is the fundamental form of The Principle of Virtual Work. It expresses
the fact that if an arbitrary set of virtual displacements are imposed onto a body at any
instant in time during the motion of the body, then the virtual work done by the external
body forces and tractions onto the body contributes to 1. an increase in the velocity of the
material particles in the body (increased kinetic energy) and 2. the pure deformation of
fibers in the body, resulting in an elastic storage of the virtual work increment in the
body, a viscous dissipation of the work, or a combination of the two. Eqn. (4.4) is a
statement of mechanical energy conservation and holds irrespective of the type of
material the body is composed of.

Eqn. (4.4) is used in developing the discretized form of the governing solid
equations because it has been written using displacements as the primary unknown
variables, and hence lends itself to a Lagrangian description vs. an Eulerian description
which would employ velocities as primary unknowns and will be turned to next.

The Fluid Equations
The governing fluid equations are discretized in the same manner as the solid

equations. The only difference is that the primary unknowns are velocities, so that The
Principle of Virtual Work is written on a rate basis (Principle of Virtual Power) rather
than an energy basis:

T-.DdV = f p(b-v)-VdV+f t,, -TdS (4.5)
Vol Vol S

where all quantities have previously been defined.

4.1.2 Discretized Form of the Governing Equations
Going from the Principle of Virtual Work statement (Eqn. (4.4)) to the discretized

form of the governing equations in the finite element method requires the use of
interpolation functions for the primary unknowns (displacements/velocities). Using
standard notation for the interpolation functions we have for the displacements and the
strains in a typical 2D element

u(x, y)= HG (4.6)

E(x, y)= B (4.7)

where G^ denotes the nodal displacement degrees of freedom for a typical finite element.
Upon substitution into the left-hand side of Eqn. (4.4) we have
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F= fBT TdV (4.8)
Vol

where F is used to denote the vector of forces onto the finite element nodes due to the
internal stresses in the body. Furthermore, upon substitution into the terms on the right
hand side of Eqn. (4.4) we have the following forcing terms

Rt = HTt (n)dS (4.9)
S

Rb= fH T (b - v)dV (4.10)
Vol

where Rs denotes the vector of forces onto the finite element nodes due to external
tractions and Rb is used to denote the vector of forces onto the finite element nodes due to
external body forces. The extension of these equations from a single element to an
assemblage of finite elements simply requires a summation over all elements in the finite
element model.

Thus the continuous form of the Principle of Virtual Work reduces to the
following statement of equilibrium in discretized form

F=Rt+Rb . (4.11)

Eqn. (4.11) is what we want to satisfy such that at every time step in our analysis we
satisfy equilibrium, and next we address how that equilibrium is reached through iteration
on the finite element equations.

4.1.3 Solution of Equations and Newton Raphson Iteration
Eqn. (4.11) can be written in simplified form as

0 = R(u) - F(u) (4.12)
or simply

f(u)=0 (4.13)

where now R(u) is used to denote the sum of the body forces and all external tractions
and their (nonlinear) dependence on the nodal degrees of freedom, u. In order to obtain
the solution, u, to Eqn. (4.13) numerically we first expand f(u) using a Taylor series
expansion

af(u)
f(u + Au)=f(u)+ Au+H.O.T. (4.14)

and set the right hand side equal to zero since our goal is to reach f(u + Au) =0:

af(u)
f(U)+ Au=0. (4.15)
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Assuming that f(u) is a known function and that Au = um,, - u,, , where u,, is a known

value of nodal displacements for the mth iteration, we may solve for u,,n,, the new set of
nodal degrees of freedom from (4.15), as can be seen from the following, rearranged
form

E f (urn )
UM+l= - ' f(Um)+U,'. (4.16)

Iteration is performed on Eqn. (4.16) where the function f is updated at each iteration
taking into account material and geometric nonlinearities, until convergence is reached.
Convergence is measured by ensuring that Eqn. (4.13) is satisfied to within some well-
defined error tolerance. All analyses in this study have been performed using implicit
time integration.

4.2 Fluid-Structure Interaction and Fluid-Fluid Interface Analyses
Two approaches have been investigated in this study for suitability in the analysis

of the capillary flow problem. In the first, the Newtonian cell model is treated using a
fluid (Arbitrary Lagrangian-Eulerian (ALE)) formulation and in the latter it is
investigated using a solid (Lagrangian) formulation. (In the cases of the viscoelastic
models a purely Lagrangian formulation for the cell has been exclusively used.) Both
approaches pose particular challenges and both require the ALE formulation due to the
presence of a moving fluid-fluid interface in the former case and a moving fluid-solid
boundary in the latter. The ALE formulation will be presented next and its application to
the two separate approaches addressed subsequently. Strictly speaking, the ALE
formulation is purely mathematical and hence could have been presented in the previous
section on mathematical models, however its specificity to the finite element method
renders its presentation appropriate at this point in the text.

4.2.1 The Arbitrary Lagrangian-Eulerian Formulation
Introduction

In traditional solid mechanics the equations of motion are formulated expressing
the independent variables (displacements and pressure if analyzing incompressible
media) in material coordinates, herein referred to as x. This is called a Lagrangian, or
material, formulation. In traditional incompressible fluid mechanics the equations of
motion are formulated expressing the independent variables (velocities and pressure) in
spatial coordinates, herein referred to as y. This is called an Eulerian, or spatial,
formulation. In the treatment of fluid flow problems with moving boundaries (such as a
free-surface, a fluid-fluid interface, or a fluid-structure interface) an intermediate
formulation is used in which the equations of motion are formulated expressing the
independent variables (again velocity and pressure) in what are called mesh coordinates,
herein referred to as z.

Preliminaries
Consider a body B, fluid or solid, that in its reference configuration, denoted by

Bo, occupies the set of points in space x. These points are then called the material
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coordinates of the body. Each vector x (in the set of reference body points) refers to a
different material particle in the body throughout the analysis, and is hence a label for
each particle. At time t, the body occupies a different set of points in space, y, and has a
current configuration denoted Bt. These points are called spatial coordinates. Each
vector y (in the Euclidean space) refers to a different point in physical space. At any
given time a material particle of the body may or may not be present at a given point y.

We also introduce the notion of a mesh, which can be considered to be a
continuum, like a body, and also has a reference configuration Mo, the location of which
is denoted by the mesh coordinates z. Therefore, the same way by which the vector x
serves as a label for the particles of the body, the vector z serves as a label for the mesh
points of the mesh.

The following one-to-one (invertible) mappings are assumed to exist:

X (4.17)

z Y y(4.18)

where the motion of the body y(x,t) comes from the solution of the equations of motion,
subject to the appropriate boundary and initial conditions, and the motion of the mesh
y(z, t) is an arbitrarily specified function. We differentiate y and y from y because the
former constitutefunctions which refer to the position in physical space, y, of the labeled
particles x and the labeled mesh points z for all time.

Derivatives
Partial derivatives will be taken with respect to time, holding material, spatial, and

mesh coordinates fixed. It is understood that when we hold a material coordinate fixed
we are following a material particle through space, when we hold a spatial coordinate
fixed we are looking at a single point in physical space as material particles pass by that
point, and when we hold a mesh coordinate fixed we are following a particular mesh
point as it travels through space, independently of the particles that constitute the body.

The Formulation
We assume throughout this discussion that there is one frame of reference and

that it is inertial. All quantities, whether measured at a moving point or not, are measured
with respect to the inertial frame.

Assume the existence of a scalar field variable T, which may represent the
temperature of the body. T can be written in terms of the spatial coordinates, T(y,t), or In
terms of the material coordinates, T(x,t) since there is a one-to-one mapping from x to y
and vice-versa. Because most physical laws (mass conservation, momentum
conservation, energy conservation) are expressed for material particles, in general we
need to take material time derivatives of functions such as T. Additionally, we wish to
use a finite element mesh that can move arbitrarily in space, neither following material
particles in a Lagrangian fashion, nor fixed in space in an Eulerian fashion. In order to
achieve this we will need to be able to work with mesh time derivatives, since our
function T and the independent variables upon which it depends are always expressed at
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the mesh points z, which are really our nodal points in the finite element analysis, i.e. T =
T(z,t).

The total material time derivative of the function T(y,t) is

- dT aT aT ayT - - =--(.9
dt X at ay at (1

where the dependence of y on x has been used. Eqn. (4.19) represents the time derivative
of the function T as it is observed following the material particle x as it travels through
space. The total mesh time derivative of the function T(y,t) is

T- d- = -- + (4.20)
dt z at ay at 1

where the dependence of y on z has been used. Eqn. (4.20) represents the time derivative
of the function T as it is observed following the mesh point z as it travels through space in
a prescribed manner, independently of the material's motion.

Introducing the definitions of particle of velocity, vr, and mesh velocity, vm,

= ay
VP - -(4.21)

at X

ayVm - - (4.22)
at z

and substituting Eqn. (4.20) into Eqn. (4.19) to eliminate the transient term in (4.19) we
have the following expression for the material time derivative of T

aT
T(y,t) = + (v, - v,)VT (4.23)at z

where it is noted that the velocities are measured on the moving mesh with respect to the
stationary inertial frame, and the gradient operator is used to denote the spatial gradient

a
operator a.

Interpretation
Thus the material time derivative of an arbitrary function T, which could have

equally been a scalar, vector, or tensor valued function of space, y, and time, t, has been
expressed in terms of an arbitrarily moving mesh, which is our finite element mesh. The
first term in Eqn. (4.23) is the time rate of change of T following a fixed mesh point z (as
would be measured if we were looking at a single node of a finite element mesh as it
traveled through space) and the second term is the convective term, which accounts for
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the time rate of change of the measured function T due to the combined effect of the
moving mesh and the moving material particles. Clearly if the mesh is stationary
everywhere in the domain then mesh velocity is zero and (4.23) reduces to the familiar
Eulerian formulation

aT
T(y,t)= -+ Vm -VT. (4.24)

at

Whereas if the mesh velocity exactly coincides with the material particle velocity
everywhere in the domain then (4.23) reduces to the simple Lagrangian formulation

aT
f~~)-, (4.25)

z(or x, they coincide)

hence the name the Arbitrary Lagrangian-Eulerian formulation.

4.2.2 Fluid-Structure Interaction: Direct vs. Iterative Approach
The following mathematical requirements must hold for all time in a fluid-

structure interaction analysis to ensure that the analysis is indeed fully-coupled:

Continuity: v -- V solidon the fluid-structure interface

Momentum: tflu - ("o" on the fluid-structure interface

((n)

Where it is noted that in the case of the surface tension model, tid' includes the stresses

due to both the viscoelastic cell and its bounding surface tension.
In satisfying these conditions there are two ways to proceed. The first is termed

The Iterative Approach and the second is termed The Direct Approach. It is to the
discussion of these two approaches that we turn next.

The Iterative Approach proceeds as follows for a typical iteration in the analysis:
1. Given the current (computed from the previous time step or given by the

initial conditions in the problem) fluid domain boundaries and boundary
conditions, compute the fluid flow field.

2. Take the fluid field tractions on the fluid-structure interface from the fluid
solution in (1) and impose them on the solid as natural (forcing) boundary
conditions.

3. Compute the solid response subject to the given boundary conditions (from
the fluid and other externally applied boundary conditions).

4. Take the displacement of the solid on the fluid-structure interface from the
solid solution in (3) and impose that displacement upon the fluid domain's
fluid-structure interface.
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5. Loop until the increments in displacement, velocity, and force on the fluid
structure-interface between the current and the previous iteration are
sufficiently small (i.e. convergence has been attained).

As opposed to the direct method, in which a typical iteration looks identical to
that for a purely fluid flow problem or a purely solid problem:

Solve
O=R-F (4.26)

using Newton-Raphson iteration, where F is the forces on the finite element nodes
coming from the internal stresses in the body and includes both the fluid domain nodes,
the structural domain nodes, and the nodes on the fluid-structure interface. The difficulty
in this approach is that the derivatives of F (which result in the stiffness matrix) must be
taken appropriately and a compatible time-integration scheme must be employed between
the solid and fluid [19].

4.2.3 Fluid-Fluid Interface Analysis
The alternative solution approach for the Newtonian fluid with cortical tension

cell model in the capillary flow problem that was investigated, developed, and found to
be partially successful is that of a fluid-fluid analysis approach. That is, both the
suspending fluid and the cell were treated as incompressible fluids employing the ALE
formulation for both domains.

The fluid-fluid interface was treated using a Lagrangian interface-tracking scheme
similar to that employed by other researchers [20]. The main difference of the scheme
employed in this study was that the solution was fully implicit as opposed to explicit.
The interface was tracked according to

t+Atr = r +(At)t+Atv (4.27)

as opposed to an explicit scheme in which one would have

t+At r = tr +(At) t v. (4.28)

The implicit approach for interface tracking is consistent with the implicit
approach taken in the solution of the finite element equations (see Section 4.1) and means
that for each time step in the analysis, momentum, continuity, and the kinematical
interface condition are met (see Section 3.1). This allows for greater solution accuracy
and a significantly increased minimum time step size.

4.3 Implementation of the Neutrophil Models in ADINA

4.3.1 Newtonian Fluid Model
As can be seen from the following constitutive equation
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T' T' (4.29)
2p2 2

a Newtonian fluid is simply a Maxwell medium with an infinite elastic shear modulus
(G 2 -+ "O). In the indentation study, the Newtonian fluid neutrophil model was

implemented by assuming that the elastic shear modulus was 10,000 times larger than the
average shear stresses in the model. With this assumption, the elastic strains resulting
from the shear stresses were ensured to be (on average) much less than 1%. Given that
the typical strains in the analyses performed in this study were very large (typically
greater than 10%) this modeling assumption is appropriate. In the first capillary flow
model (fluid-fluid interface formulation), however, the exact Newtonian constitutive
relation was used for the Newtonian cell model.

4.3.2 Surface Tension
The surface tension model required a modification to the existing program

features of ADINA. It was implemented in 2D axisymmetric analysis by assuming that
an initial stress is present in the axisymmetric shell element. This initial stress was
constant throughout the analysis, and hence acted like surface tension. The initial stress
can be written mathematically as

Fs = f B VinitialdV (4.30)
tension Vol

where the volume integral extends over the beams on the surface of the cell, always in its
current configuration and anitis is the constant stress vector corresponding to the
principal directions of the shell element, in this case any two orthogonal directions
tangent to the shell mid-surface.

The elastic modulus and thickness of the shell were assumed to be small (0.0001
Pa and 1 nm respectively) so that bending and other deformation-induced effects were
negligible on the response.

4.4 Validation - Micropipette Aspiration
The small deformation aspiration experiment of Dong et al. (1988) is simulated

using the Maxwell model with cortical tension (see Table III, Ref. 15) and the results are
compared to Dong's simulation results using a similar (but not identical) mathematical
model for the aspiration process. The original configurations of the cell and pipette
geometries used in the analysis are illustrated in Figure 7 below and are identical to those
in Dong et al.'s simulation. A step (negative) pressure of 19.6 Pa is applied to the
portion of the cell that is interior to the pipette to simulate the step pressure drop applied
by Dong et al. Small strains and large displacements/rotations are assumed to be
consistent with Dong et al.'s mathematical model.

The Maxwell material properties (k2 and r2) and the cortical tension To were
chosen by Dong et al. to best fit the data from the aspiration experiment they were
simulating. The Maxwell shear modulus of the cell is assumed to be 14.25 Pa with a
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1.05 second decay time constant, or a viscosity of 15 Pa s, and the cortical tension is 31
pNlum.

1.4 --------------------- -- - - - - - - - - - - - - - - -

Dong et al.
0 Present Study

1.2- - ------------ - - - - - - - - - - - - - - - - - -

00

-.. 81 1.5 2
Time (s)

Figure 7: Maxwell model with cortical tension simulation results compared to simulation
results of Dong et al. (1988). Model dimensions are listed in Table I and constitutive

parameters in the text and Table III.

Figure 7 shows the simulation results obtained with ADINA in this study
compared to the simulation results of Dong et al. As can be seen, agreement is good but
not perfect. There are several reasons for the discrepancy between the two results. The
first is that Dong et al. assumed the cell to be exactly incompressible, whereas in this
study a Poisson's ratio of only 0.49 was assumed. The second, is that Dong et al.
approximated the contact boundary condition and the sliding of the cell over the pipette
tip as it enters by applying a ring pressure load on the cell, computing the deformation,
and then translating the cell rigidly to the right by a small increment and subsequently
applying another ring pressure load on the cell etc. as opposed to the analysis in this
study, in which the cell's sliding across the pipette tip as it enters was explicitly
accounted for using ADINA's contact algorithm. The third and last difference between
the two studies is that of the finite element discretization. Dong et al. used eight-node 2D
continuum elements for the cell's interior vs. the nine-node elements used in this study.

In Figure 7 we note the initial, instantaneous response of the cell (due to the lack
of inertial and viscous effects) as it "jumps" into the pipette. This initial jump would not
be captured by the Newtonian liquid droplet model, as there is no elasticity in the cell in
that model.
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5. Cell Indentation Results
Having validated the results from the Maxwell model used to model the cell in the

physiologically relevant capillary flow simulations using the pipette experiment, next we
turn to cell indentation to first show that the three published models presented in the
Modeling Section do not accurately represent the response of the cell during indentation.
Subsequently, the appropriate Maxwell model parameters will be determined by fitting
indentation simulation data to experiment for a passive cell and two levels of FMLP-
activated cells. These models will then be used in the fluid-structure interaction capillary
flow simulations.

5.1 Testing the Published Models
The cell indentation experiment performed by Zahalak et al. [16] on passive

neutrophils is simulated using each of the three models presented in Section 2 and the
simulation results compared to experiment. Large strains and large
displacements/rotations are assumed for all three models. These assumptions are
appropriate due to the large deformations involved in the analysis, however it is noted
that small strains were assumed for the pipette aspiration simulations despite the large
deformations involved in those analyses to be consistent with the previous researchers'
work. The pipette simulations were used for verification purposes and hence the small
strain assumption was the right one, whereas here large strains are assumed to be more
accurate in modeling the physics.

Results from the simulations are presented in Figure 11. The experimental result
represents the downward stroke of the indenter (from Zahalak et al.) and corresponds to
an indentation 'stiffness' of 540 pN/tm. Although this is the only quantitative result
presented by Zahalak et al., two additional qualitative features of the experimental
indentation force vs. displacement curve were presented.

The first is that the indentation curve exhibits hysteresis. The force required to
indent the cell during the downward stroke was significantly greater than the force
required during the upward (recovery) stroke. The second observation was that the
initial, indentation curve was always either linear or concave up, never concave down as
predicted by the Newtonian fluid model with cortical tension (ref. Fig. 1ib).
As shown by Figure 1 a, the indentation force predicted by both viscoelastic models
during the downward (indentation) stroke is considerably less than found experimentally.
Both viscoelastic models predict a cell "stiffness" of about 130 pN/pm (during the
downward indenting stroke) versus the experimentally predicted value of 540 pN/pm.
Additionally, the Maxwell model exhibits very little hysteresis, suggesting that the decay
time constant associated with that model is too long, or alternatively, the viscosity is too
high for the given Maxwell shear modulus.
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Figure 1 a: Passive cell indentation results: Comparison between Maxwell model with
cortical tension (G = 14.25Pa, u = 15 Pa s, and y = 31 pN/pm) and standard solid model
(Gi = 13.75 Pa, G2 = 36.85 Pa, p = 6.5 Pa s) simulation predictions and experimental

results of Zahalak et al. (1990) for indentation force vs. depth.

In contrast with these results are those of the Newtonian model with cortical
tension shown in Figure 1 lb. The stiffness predicted by this model is approximately
4,300 pN/pm, considerably larger than the experimentally determined value of 540
pN/pm. In addition to predicting a considerably greater cell stiffness than was found
experimentally, the Newtonian model predicts that the indentation curve will be concave
down during the downward (indentation) stroke of the cycle, and flat at zero force during
the upward (recovery) stroke, due to the absence of elastic restoring forces in the cell.
This result is consistent with the fact that the droplet has zero elasticity, and the recovery
time scale for the surface tension to restore the spherical shape of the droplet is much
longer than the indentation time scale of about V3 of a second.
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1ib: Indentation results: Comparison between Newtonian model with cortical
(u = 105 Pa s, y = 35pN/pm) simulation predictions and experimental results of

Zahalak et al. (1990) for indentation force vs. depth.

5.2 Establishing New Maxwell Model Parameters for Passive and
Activated Cells

Of the existing, well-established continuum neutrophil models, consisting of the
homogeneous, incompressible Maxwell sphere with constant surface tension (Dong et al.,
1988), the homogeneous, incompressible linear Newtonian fluid with constant surface
tension (Evans and Yeung, 1989), and the homogeneous, incompressible Standard
Viscoelastic Solid (Schmid-Schonbein et al., 1981), the Maxwell model was selected for
use in this study. The Maxwell model incorporates the well-established surface tension-
like effects of the actin-rich cortical layer lining the periphery of the cell, lying just below
the external lipid bilayer, with the ability to capture both the elastic, solid-like short time-
scale behavior of the cell as well as its viscous, fluid-like long time-scale behavior.

As seen by the indentation results presented in Section 5.1, however, new
Maxwell model parameters are required to accurately model the cell. In this section
results are presented for indentation studies that were performed exclusively with the
Maxwell model with surface tension to determine appropriate values for the model
parameters to model a passive, and two levels of FMLP-activated cells. Cortical tension
was assumed to be independent of activation level and equal to 31 pN/um. For this
reason it was only necessary to determine the elastic shear modulus and viscosity for the
different models.

Table IV summarizes the results of the parameter optimization study and Figure
12 presents the indentation results. Due to a lack of quantitative data regarding the force-
displacement relation of the indenter during the upward, retracting stroke of the indenter
for the activated cells, it was assumed that the time decay constant associated with the
Maxwell model (uei/Geeti) was constant. This was a rather ad hoc assumption that was
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made due to a lack of a better alternative, and could have a significant impact on the
results presented in this work.

Table IV Summary of Maxwell model parameters for various levels of FMLP-activated
neutrophils. Model parameters (G, p) were determined by systematic variation to achieve

a best fit between model results and experimental indentation data.
Case # G (Pa) p (Pa s) y (pN/um) Indentation FMLP

Stiffness Concentration
(nN/pm) (M)

1 185 31 31 0.504 0
2 625 104 31 1.65 le-9
3 1,350 225 31 3.48 le-6

6 - - - - - -- - - - - - - - - - - - - - - -- - - -- - - - - - - - - - - - - - - - -

o Case 1
o Case 2

5-- 0 Case3 - - - - - - - - - - - -

E
4 - - - - - - - - - --- - - - - - - - - - - - - - -

z

.0

030
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Figure 12: Maxwell model fit to experimental indentation data for a passive, le-9 M
FMLP-activated, and le-6 M FMLP-activated neutrophil. Symbols represent

experimental data and solid lines represent model results for Cases 1, 2, and 3 (see Table
IV for best-fit Maxwell model parameters).
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6. Capillary Flow Results
The capillary flow simulations were carried out with two separate models. In the

first model (which essentially failed to model the physiological neutrophil-capillary flow
problem of interest), the Newtonian fluid cell model with constant surface tension was
simulated using the ALE formulation for both the cell and the plasma, and the
Lagrangian fluid-fluid interface tracking procedure described in Section 4.2. Contact
between the cell and capillary wall was not assumed, however, and therefore the cell
viscosity determined by Evans and Yeung had to be drastically reduced to obtain a
solution, due to the very small gap thickness present between the cell and capillary wall
during its approach toward the constriction. In the second model, however, the Maxwell
cell models established in Section 5.2 for passive and FMLP-activated cells are simulated
using a Lagrangian formulation for the cell and the ALE formulation for the plasma. For
this model contact is assumed to occur between the cell and capillary wall, and therefore
the realistic cell models can be simulated, using their physiological values of viscosity
and shear modulus.

6.1 Fluid-fluid Interface Model
The capillary flow simulations were carried out using the fluid-fluid interface

analysis approach described in Section 4.2. Verification of the procedure was provided
by simulating the axisymmetric flow of a viscous liquid droplet in a viscous suspending
fluid in a rigid pipe. Analytical results for the axisymmetric flow of a spherical droplet
due to Brenner and Hetsroni et al. were used for comparison. In verifying the numerical
procedure, which clearly allows for deformable droplets, a low capillary number was
chosen (see Appendix D) so as ensure that the droplet remained approximately spherical
during the analysis and the analytical results were applicable for comparison.
Verification

Figure 13a compares the computed dimensionless average droplet velocity to the
analytically predicted value for various droplet sizes and Figure 13b compares the
computed dimensionless added pressure drop due to the droplet to the analytically
predicted value also for various droplet sizes. Two finite element meshes, one coarse and
one fine, were used to verify proper convergence of the procedure. The analytical results
for these quantities are

U
- = 2- f (-) 2 + O(3) (6.1)

V

due to Hetsroni et al. (1970) and

AP* R
Auov= g(o-)Ai + O(1O) (6.2)

due to Brenner (1971), where U is the average velocity of the droplet, V is the average
velocity of the suspension, a is the ratio of the droplet viscosity to the suspending fluid
viscosity, A is the ratio of the droplet's radius to the rigid pipe's radius, go is the viscosity

35



of the suspending fluid, AP' is the added pressure drop due to the droplet, and f(o) and

g(a) are analytically determined functions of a (see Appendix D). Arrows in the figures

denote values of for which the analytical results have less than 5% error.

0

2. - - - - - - - - - - -- - -

1.6 - - - - - - - - - - - -

analytical
result valid

1.42 - - - - - -

o Coarse Mesh
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Analytical

- -- -- --- --

-

I I I

0.2 0.4 0.6
A1

0.8

Figure 13a: Comparison of analytical and computed nondimensionalized average droplet
velocity to nondimensionalized droplet size.

As the droplet becomes small (2A ->0 ) the droplet velocity approaches the
centerline velocity of the suspending fluid (Figure 13a). This value is twice the average
velocity of the flow and the droplet is centered at the centerline of the pipe due to the
axisymmetric flow assumption. As the droplet becomes small the added pressure drop
due to the droplet becomes negligible (Figure 13b), as expected.
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Figure 13b: Comparison of analytical and computed dimensionless added
due to the droplet vs. dimensionless droplet size.
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Application to the Capillary Flow Problem
The fluid-fluid interface analysis procedure, verified above, is next applied to the

simulation of a two-phase Newtonian liquid droplet with surface tension through a
constriction. The constriction is a cross-sectional area reduction of 25% and is intended
to represent a typical constriction found in the pulmonary microcirculation. The
upstream radius of the capillary is six microns. The droplet consists of a highly viscous
interior (0.1 Pa s) and a less viscous exterior (0.01 Pa s) with an outer radius of four
micrometers. The interior highly viscous portion makes up 20% of the total by volume
and is meant to represent the more highly viscous nucleus of a neutrophil. The surface
(cortical) tension between the outer sphere and the suspending plasma is 35 pN/um,
consistent with the values obtained by Evans and Yeung. The surface tension between
the inner and outer droplet fluids is 5 pN/pm and was chosen in the absence of
experimental data as a means of giving the inner fluid a restoring force. The plasma has a
viscosity of that of water (0.001 Pa s). The density of the cell and of the plasma is that of
water so buoyancy effects are absent. Furthermore, due to the very low Reynolds number
of the problem, inertial effects are entirely negligible.

A constant pressure drop of 20 Pa is applied across the capillary segment and the
solution obtained. The average velocity of the plasma is approximately 700 pm/s as the
droplet approaches the constriction. Figure 14 shows the pressure solution at a sequence
of solution times and the deformation and recovery of the droplet as it passes through the
constriction. At the outset of the analysis (Figure 14a), note the pressure jump between
the inner and outer droplet fluids and the outer droplet fluid and the plasma due to the
interfacial surface tensions. Additionally, note that the pressure gradient inside the
droplet drives the inner droplet (nucleus) forward as the droplet passes through the
constriction (Figures 14b and c). Finally, note the rapid recovery to sphericity of the
droplet as it exits the constriction (Figures 14d and e).

It is noted that the viscosities chosen for the outer droplet fluid (0.01 Pa s), meant
to represent the neutrophil's cytoplasm, and the inner droplet fluid (0.1 Pa s), meant to
represent the neutrophil's nucleus, were not chosen to be the physical values determined
by previous investigators (100 Pa s and 1000 Pa s, respectively). Instead, they were
chosen to maintain a large enough gap between the droplet and capillary wall as it flowed
through the constriction so that computational (mesh) difficulties would be avoided. This
shortcoming in the analysis is discussed further in the Discussion section to follow, and
does not represent a shortcoming in the numerical scheme but rather a shortcoming in the
mathematical model of the neutrophil-capillary flow problem.

Due to this shortcoming, the detailed results of this capillary flow model will not
be studied quantitatively, but rather we will move on to the next capillary flow model in
which physiologically relevant cell model parameters are used.
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Figure 14a: Capillary flow simulation with reduced cellular viscosity (frame 1).

Figure 14b: Capillary flow simulation with reduced cellular viscosity (frame 2).
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Figure 14c: Capillary flow simulation with reduced cellular viscosity (frame 3).

Figure 14d: Capillary flow simulation with reduced cellular viscosity (frame 4).
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Figure 14e: Capillary flow simulation with reduced cellular viscosity (frame 5).
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6.2 Fluid-structure Interaction Model
In this section results from the second (successful) neutrophil-capillary flow

model are presented, in which the passive and FMLP-activated neutrophil cell models
determined in Section 5.2 are employed in a fluid-structure interaction analysis assuming
contact between the cell and capillary wall.

The dependence of cell transit time on minimum constriction radius, constriction
radius of curvature, and cell shear modulus is investigated first. Subsequently, average
cell tip velocity during capillary transit is presented for the limiting case of a large
dimensionless shear modulus, and its dependence on constriction geometry is
investigated.

Dimensional Analysis
The transit time, T, required for the cell to flow and deform through the capillary

constriction can be expressed in its most general form as a function of all the dimensional
parameters in the model

T = f (Rceii ,Geii, /ceii ,Y, Rapilary, Rmin, 1 plasma, Ap,a) (6.3)

where the transit time is defined as the time from which the leading edge of the cell
crosses the capillary constriction inlet to the time when the trailing edge of the cell
crosses the capillary constriction outlet. In order to reduce the number of independent
dimensional parameters in Eqn. (6.3) several simplifying assumptions are made. First, it
is assumed that the transit time will be nearly independent of the upstream and
downstream capillary radius, Rcapillary, provided that it is considerably longer than the
convective time scale of the cell when it is freely traveling in the capillary (~ Rcel /V,
where V is the average plasma velocity in the unconstricted capillary). In this limit, the
bulk of the transit time consists of the time spent by the cell squeezing through the
capillary constriction, during which the constant pressure drop is applied across the cell
and is independent of the upstream and downstream capillary radii. Second, it is assumed
that in the same limit, the capillary transit time will be insensitive to variations in plasma
viscosity, pplasa, and gap thickness, 5, between the constriction contact surface and the
wall. The physical reason for this is that as the cell squeezes through the constriction,
there are only two retarding forces balancing the axial pressure gradient: one is due to the
axial component of the normal contact traction applied to the cell by the constriction
contact surface and the other is due to the Couette component of the shear stress in the
gap. As shown in Appendix A, for the parameter ranges explored in this study, the
retarding force due to the Couette flow induced shear stress is entirely negligible. The
third and final assumption is that the effective pressure drop, Apeff, driving the cell
through the constriction is given by

APeff = Ap -2y , (6.4)
Rmin Ren
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consistent with micropipette aspiration studies. This last assumption is probably the most
compromising of the three, considering that in micropipette aspiration the radius of
curvature of the cell interior to the pipette is very well approximated by the inner pipette
radius, whereas in a gradual constriction it is somewhat questionable how well the
minimum constriction radius approximates the cell's leading edge radius of curvature,
which changes during flow into the constriction.

Employing the above arguments, the number of independent variables in the
dimensional transit time equation above (Eqn. (6.3)) is reduced to six

T = g(Rcell ,Gcei, pceu, RinApef ,a) . (6.5)

Choosing pceI/Apeff as the characteristic time scale, the dimensional transit time

equation can be written in dimensionless form as

T* = h(G*, R*, a*) (6.6)

where T* (TApff /9cei ), G* (Gceli /APeff ), R* (Rmin / Rcel ), and a (a/Rceii).
The indentation results can be used with the modeling data to define

physiologically relevant dimensional parameter ranges for the capillary flow simulations.
They in turn can be used to define parameter ranges of interest for the three independent
dimensionless variables in the model, G*, R*, and a*. Using the fact that minimum
constriction capillary radius ranged between 2.5 and 3 tm, constriction radius of
curvature varied between about 4 and 200 pm, trans-capillary pressure drop ranged from
20 to 80 Pa, cortical tension, y, was equal to 31 pN/pm, cellular shear modulus ranged
from 185 to 1,350 Pa, and the cell's undeformed radius was assumed to be 4 pm, the
following dimensionless parameter ranges of interest are determined

2.47 G* 126

0.625 R* 5 0.75. (6.7)

1 a* 50

where it is noted that the upper bound on R* is increased to 0.85 only for the case of G*=
100, to broaden the scope of the study. It is also important to note that the cellular
viscosity, uel, does not appear in the independent dimensionless groups because it is only
used in scaling the transit time, T, to obtain the dimensionless transit time,

T* =[T (Ap - Apcrit )/'cei I -
Complete capillary transit results computed for the dimensionless parameter

ranges indicted in Eqns. (6.7) are plotted in Figures 15a, b, and c for dimensionless
minimum constriction radii of 0.625, 0.6875, and 0.75, respectively. In each figure the
variation of dimensionless transit time, T*, with dimensionless shear modulus, G*, is
shown for three different values of dimensionless constriction radius of curvature, a*.
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For each value of dimensionless minimum constriction radius and constriction
radius of curvature simulated, dimensionless transit time exhibits a clear limiting
behavior as dimensionless shear modulus becomes large compared to 1, the transition
occurring in each case at approximately G* = 20 (Figures 15a, b, and c). The limiting
behavior represents the parameter range in which the shear modulus of the cell is
significantly greater than the effective driving pressure drop, so that the Maxwell model
behaves essentially like a purely Newtonian fluid (i.e. elastic deformation during transit is
negligible compared to total viscous deformation). For the regime G* < 20, however,
elastic deformation of the cell becomes significant and the reduction in transit time grows
sharply as G* 1, particularly in the mildest constriction case (ref Fig. 15a, R* = 0.75).

While dimensionless cell transit time depends strongly on minimum constriction
radius, it is also exhibits a significant dependence on constriction radius of curvature for
all values of minimum constriction radius analyzed. Additionally, we note that the
dependence of dimensionless transit time on dimensionless constriction radius of
curvature appears to be independent of G*, the dimensionless elastic shear modulus,
particularly in the viscous deformation dominated limit of G* > 20. This observation is
quantified in the following section, in which an empirical relationship between
dimensionless transit time and dimensionless minimum constriction radius is presented
for this limit.

Viscous Deformation Dominated (Newtonian) Limit
As stated in the Introduction, the primary aim of this study is to establish an

empirical relationship of the form

44



T* = g (G*, R*, a*) (6.8)

relating dimensionless neutrophil transit time to the three relevant dimensional groups in
the pulmonary capillary model, representing the effects of cell elasticity and capillary
geometry on neutrophil transit time.

In light of the observation that dimensionless transit time becomes independent of
dimensionless shear modulus for values of G* >> 1 (the transition occurring at about G*=
20), we focus on this limiting (Newtonian) case, keeping the limitations of its
applicability in mind, so that the dimensionless transit time relation simplifies to the
following form

T* =g (G* >>1,R*,a*)=h(R*, a*). (6.9)

o R*=0.625
10 o R*=0.6875

A R*=0.75
c R*=0.85

Eqn. 2.69

10

10

100 101

a*

Fig. 16 Dependence of dimensionless cell transit time on dimensionless constriction

radius of curvature and minimum radius for the viscous deformation dominant regime

(G* >> 1). Data points are from simulations and curves are given by Eqn. (6.10).

Figure 16 illustrates the computed dependence of dimensionless transit time, T,

on dimensionless minimum constriction radius, R*, and dimensionless constriction radius

of curvature, a*, where each simulation data point has been obtained using the value of T

computed for G* = 100 and additional data have been generated to represent the case of

R*=0.85. Also plotted in Figure 16 is the following empirical relationship that was fit to

the simulation data

T* = 0.35 (a*)0.58 [(R*) -1 ]. (6.10)
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The above expression is similar in form to the simplified analytical expression presented
by Yeung and Evans, (1989) for the flow of Newtonian droplets into pipettes, only in
their expression there is no dependence on entrance geometry.
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7. Discussion and Conclusions
Effects of Elastic Shear Modulus

Figures 15a, b, and c show that as the elastic shear modulus of a neutrophil
approaches a value of about 20 times the driving trans-capillary pressure drop, the cell's
transit time begins to decrease significantly. This effect is due to the fact that for a given
driving pressure drop, as the cell becomes more compliant, the cell deforms elastically
further and further into the constriction before getting "stuck", necessitating its viscous
deformation. Thus, qualitatively speaking, as the driving pressure drop approaches the
cellular shear modulus, the cell may be unhindered in its passage through the capillary
constriction, particularly for mildly constricted capillaries, with minimum diameters
between 6 and 8 pm. This is an effect that is not captured by the purely Newtonian cell
models that assume infinite cellular shear moduli, and hence those models should be used
with care when predicting neutrophil transit through mildly constricted capillaries.

Effects of FMLP on Transit Time
In looking at the effects of FMLP activation level on cell transit time, it is of

interest to look at the two extremes of minimum capillary constriction radius and
constriction radius of curvature analyzed in this study. In all cases it is expected that the
dimensional transit will be about three times higher in the mildly activated case than in
the passive case, and that the highest activation level cell will have a transit time twice
that of the mildly activated cell, due to the differences in viscosity between the cells
(refer to Table IV).

The dimensional pressure drop of interest is chosen to be 28 Pa, which
corresponds to the low end of the pressures examined in this study, and a typical trans-
capillary pressure drop found in the pulmonary microvasculature [3]. For this pressure
drop and a minimum constriction radius of 2.5 pm, there are six dimensional transit times
of interest. The first three correspond to a dimensionless constriction radius of curvature
of about 40 and the latter three to a dimensionless constriction radius of curvature of 2.
For a constriction radius of curvature of 40 and minimum constriction radius of 2.5 pm,
the passive cell has a value of G* that is equal to 10, whereas the two activated cells have
values that are significantly greater than 20, at about 30 and 70, for the 1E-9M and 1E-
6M cases, respectively. The transit time for the passive cell in this case was computed to
be 1.1 seconds (1.5 s would be predicted using the empirical relationship (Eq. (6.10)),
which is invalid for this case due to the fact that G* is less than 20). This is in contrast to
values of 5.00 and 10.8 seconds for the 1E-9 and 1E-6 M FMILP activated cells,
respectively. It is interesting to note that the passive cell's low elastic shear modulus
reduces its transit time by over 30% relative to the value it would have if it truly acted as
a purely viscous fluid with viscosity 30.8 Pa s. In any case, however, its transit time is
significantly smaller than those of the activated cells, which, are up to an order of
magnitude longer in the 1E-6 M FMLP case.

When the dimensionless constriction radius of curvature is decreased to 2, for the
same minimum constriction radius and pressure drop, the transit times for the passive,
mildly activated, and highly activated cells are increased to 6.39, 25.0 and 54.1 s,
respectively. The strong effect of not only FMLP activation level on cell transit time but
also constriction radius of curvature are made clear by this example, where the passive
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cell transit time increases by about a factor of 6 due to the decreased constriction radius
of curvature, and the activated cell transit times increase by factors of 5 each.

For higher pressures than 28 Pa, dimensionless shear modulus for the passive case
falls well below 20, and due to computational limitations this regime of parameter space
could not be studied. It is worthy of note, however, that even for the FMLP-activated
cells, pressures greater than about 40 Pa in the mildly activated case and greater than
about 70 Pa in the highly activated case correspond to dimensionless shear moduli less
than 20, and hence for these pressures the applicability of the empirical relationship
determined in this study becomes questionable.

Future work would include further experimentation with neutrophils using
indentation and other probing techniques. In particular, it would be of interest to have
experimental indentation force-displacement data on neutrophils for various rates of
indentation, so that the Maxwell constitutive parameters would better predict cellular
response. For very high rates of indentation it is expected that the cell would respond
purely elastically, whereas for slower rates of indentation viscous effects would be
dominant. These indentation tests would test the validity of the predictive capabilities of
the Maxwell models determined in this study.

In addition to further validating the accuracy of the small deformation neutrophil
model used in this study, it would be of great interest to study large deformation capillary
flow to determine whether the dimensionless transit time scaling relationship determined
in this study holds in the large deformation regime. Even if the scaling relationship does
hold, which it very well might since there are no additional effects that come into play in
the model as the constriction radius is reduced, the accuracy of the relationship in terms
of modeling real cells is questionable due to the lack of a nucleus in the model. If a
nucleus were included in the model, the transit time relationship would acquire a different
slope (T* with respect to R*) as the minimum constriction radius is reduced, as long as the
characteristic time scale used is that of the cytoplasmic viscosity divided by the effective
driving pressure.

Another issue that needs to be further studied is the effect of constriction radius of
curvature on transit time. In this study the minimum radius of curvature studied was 2,
corresponding to an approximate taper angle of 260. There is a question as to whether the
scaling relationship (Eqn. (6.10)) will hold as the angle approaches 900, and further
studies are required to resolve this issue (in particular as the radius of curvature goes to
zero the transit time blows up in Eqn. (6.10)).

A final geometric effect that should be studied is the three dimensional effect of a
non-axisymmetric constriction on cell transit time should be studied, as physiological
capillaries are rarely exactly round, and this additional geometric effect is sure to have a
significant effect on cell transit time.

Another significant simplification employed in this study was that of the contact
surface assumption, and the neglecting of the glycocalyx, a glycoprotein rich layer
bounding the inner surfaces of all capillaries (and other vessels) that might play a
significant role in altering cell transit time as it possibly deforms to dynamically alter the
capillary constriction diameter [21, 22].

Several lasting, novel findings have been made in this study. The first is that
FMLP-activation levels strongly affect cellular elasticity and viscosity, explaining the
effects on transit time through pores and pulmonary capillaries previously observed by
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experimentalists such as Worthen et al. (1989). The second is that cell transit time
depends on minimum constriction radius significantly more strongly (a power of -6.5 vs.
-3) than found in previous micropipette models (Evans and Yeung, 1989). The third and
final finding is that cell transit time is significantly affected by constriction radius of
curvature, or entrance geometry, and hence capillary geometry is an important factor in
considering the transit time of neutrophils through the microvasculature.
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9. Appendices

Appendix A: Cauchy Stress Tensor and Small Strain
Tensor

T is defined to be the Cauchy (true) stress tensor of standard continuum
mechanics texts [14]. E is defined to be the small strain tensor, or the symmetric part of
the gradient of the displacement vector u,

E = (Vu+ uT ) (9.1)
2

We wish to define a traceless tensor called the deviatoric stress tensor, T', and its
counterpart the deviatoric strain tensor, E':

1
T'=T--TkkI

(9.2)

3

These deviators can be shown to be traceless by simply taking the trace of both sides of
each of the equations in (9.2). We can further define the mechanical pressure, p, and the
volumetric strain, E, to be

1

3 . (9.3)
E, =Ek

where the volumetric strain, Ey, is equal to the trace of the strain tensor, E, in the limit of
small strains.

Appendix B: Mechanical Energy
The mechanical energy statement

f pb- v dV+f t() -v dS = Power Input (9.4)
Vol S

Where v is the velocity of a material particle at any point in the body, the volume
integral accounts for the work done onto the body by externally applied body forces b,
and the surface integral accounts for work done onto the body by externally applied
tractions, t(n). Substituting the definition of the traction vector, t (n) = Tn, into Eqn. (9.4)

we have
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f pb.vdV+
Vol S

t -vdS= pbvdV+ fJTn-vdS
Vol

which, upon use of the transformation v -Tn =n -TTv , becomes

f pb.vdV+ ft () *vdS= f pb-vdV+ fn-TTvdS.
Vol S Vol S

Using the divergence theorem to transform the surface integral on the right to a volume
integral we have

f pb-vdV+ f
Vol S

t ) *vdS= pb- v dV+ f div(TT v)dV
Vol

(9.7)
Vol

which, upon expansion of the divergence term, becomes

f pb-vdV+ ft(n) -vdS= f pb -v dV+ f (divT T v+T-gradv)dV
Vol Vol

Now if we split the gradient term on the right into its symmetric and skew-symmetric
components

1 Ti
grad v =-(grad v +grad v )+-I(grad v - grad VT )

2 2

or using more compact notation

L=D+W

where L and D were previously defined in Section 2.2.3 and W is simply the skew-
symmetric part of L, and we use the fact that the stress tensor T is symmetric so that

T -L = T -(D+ W)= T -D
then we have

V pb-vdV+ t (n)vdS=
Vol S

f (divT T + pb)-vdV+ fT-DdV
Vol Vol

Upon use of the momentum theorem we have the final form

J pb-vdV+f t(n)-vdS= fp-vdV+ T-DdV
Vol S Vol Vol

52

(9.5)

(9.6)

Vol

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)



which states that the rate of working on a body by external body forces and tractions goes
into increasing the kinetic energy of the body and internal working on the body (either
elastic energy storage by the body or dissipation in the body).

In deriving The Principle of Virtual Work we simply replace the velocity vector, v,
that was used as a starting point in the above derivation with the virtual displacement
vector, Su, and proceed in the same manner. It is interesting to note that the fact that the

body is made of an elastic, viscous, or viscoelastic material does not enter into Eqn.
(9.12) or the theorem until we actually consider the precise constitutive law of the
material. Eqn. (9.12) is simply an instantaneous energy balance and must hold regardless
of the material.
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Appendix C: Gap Thickness
Using order of magnitude scaling analysis, the axial pressure force exerted on the

cell during transit can be approximated as

F, ~ (Ap - Apcrit )R2 (9.13)

where Ap is the constant trans-capillary pressure drop, Apcrit has been previously defined,
and R is either the initial cell radius or the minimum constriction radius, they are
indistinguishable for an order of magnitude analysis. The axial retardation force exerted
on the cell by fluid shear stress can be approximated as

F, ~rR 2 (9.14)

where r can be approximated as the Couette component of the flow field in the gap as

RIT
IYplasma 8 (9.15)

where the velocity gradient in the gap has been approximated as the cell radius, R,
divided by the transit time, T, times the constant gap thickness, 6.

For the transit time to be independent of the gap thickness and plasma viscosity, it
must hold that

F, >> Fr

or

(Ap - Apcr, ) R 2 >> M pasmnR R 2
T(5

(9.16)

(9.17)

which can be written in dimensionless form as

T* >> (9.18)

where

T* T (Ap - Apcrit)

Mcell

p* 1 1 
"asma

Ycell

(9.19)

= - 5

Since we are interested in obtaining the maximum lower bound to T* in Eqn. (9.18), we
can use the minimum cell viscosity utilized in the study to obtain
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T* >>1.3E -3. (9.20)

Thus, as long as the dimensionless transit times in this study are orders of
magnitude greater than 1.3E-3, the effect of gap shear stress on cell transit will be
negligible.

From Eqn. (9.20), we can also determine what the necessary gap thickness would
be in order to have an effect on the transit time results. For dimensionless transit times of
order 1, gap shear stress would significantly affect cell transit time when

y* ~ (5* (9.21)

or, using again the maximum value of u*, we have that the critical gap thickness would
be about 0.13 nm.
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