
Simulation Driven Mass Customization:

by

Edward J. Ferara

B.E., Mechanical Engineering, 1999
The Cooper Union for the Advancement of Science and Art

Submitted to the Department of Mechanical
Engineering in Partial Fulfillment of the

Requirements for the Degree of Master of Science

at the

Massachusetts Institute of Technology.

June 2001

@ 2001 Massachusetts Institute of Technology,
All Rights Reserved

S ign ature o f A u th or
Dep arttifent of Mechanical Engineering

May 11, 2001

Certified by .. David Wallace

Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering
Thesis Supervisor

A ccepted b y ...

Chairman, Department Committee
Am A. Sonin

on Graduate StudentsBARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 16 2001

LIBRARIES

Simulation Driven Mass Customization:

by

Edward J. Ferara

Submitted to the Department of Mechanical
Engineering on May 11, 2001 in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

ABSTRACT

A framework using product design simulations as the basis for product configurators is
presented. Configurators are intended to enable the production of highly mass customized
products by providing customers with selected design capabilities. It is proposed that reusing
design simulations as the logic for configurators will result in configurators that are not only less
costly to construct and maintain, but also provide customers with the power to design.

A richer form of mass customization, known as continuous mass customization, is proposed.
Rather than choosing from predetermined lists of options, customers have the ability to make
continuous changes to a product's configuration. The product design simulations used in the
configurator also provide the customer with real-time performance predictions of the current
configuration.

A product configurator for a road bicycle was implemented as an internal pilot project to
demonstrate the proposed concepts. The Distributed Object-based Modeling Environment
(DOME) was used in the construction of an integrated product model. A website using Java
Server Pages was constructed to provide web access to the product model.

An elementary model backsolver was implemented. The model backsolver allows the user to
adjust both the outputs (performance characteristics) as well as the inputs (design variables) of a
causal model developed for use by product designers. Therefore, customers can interact with the
same product model by adjusting the performance characteristics with which they may be more
familiar.. The model backsolver searches for the set of inputs yielding outputs that best match
the user's desired values. The model backsolver utilized a struggle genetic algorithm
optimization (GAO) and preference functions based on acceptability theory.

Thesis Supervisor: David Wallace
Title: Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering

TABLE OF CONTENTS

Abstract ... 2

Table of Contents .. 3

Introduction ... 4

M ass Custornization. .. 5

Configuration Design .. 7

Rule-based Reasoning .. 8

M odel-based Reasoning .. 9

Resource-based .. 9

Constraint-based ... 10

DOM E ... I I

Example: Ford movable glass system (M SG) .. 12

Vision: A Product Development Service M arketplace ... 17

Continuous M ass Custornization, ... 19

DOM E M odel Configurator .. 21

Implementation ... 21

JavaBeans ... 21

Java Server Pages QSP) ... 22

M Ycycle Example ... 23

M odel Backsolving .. 26

Search Techniques .. 27

Preference Functions .. 28

Direct Specification of Preference Functions ... 28

Parametrically Generated Preference Functions .. 28

Box Design Example .. 30

Caching Techniques ... 31

Indirectly Generated Preference Functions .. 32

Future Considerations ... 32

M ass Custom ized Catalogs .. 34

Conclusions ... 35

Latency ... 35

M odel Backsolving .. 35

References ... 37

Massachusetts Institute of Technology - Computer Aided Design Laboratory 3

Herbert: Every day we're losing ground to the Japanese

and I want to know why.
Advisor: Oh, unfair trade practices?
Advisor: Mushy-headed one-worlders in Washington?

Advisor: Some sort of gypsy curse?
- The Simpsons

INTRODUCTION

In recent years customers have come to expect custom-tailored, or mass customized products.

Mass customization is characterized by dynamic product change and stable process change

(Boynton et al., 1993). The traditional product development process of using marketing research

to make educated design decisions may be too slow to accommodate mass customized products.

While other researchers have sought to make the product design process more responsive to

customers by bringing customers and their needs to the designers (Loosschilder, 1988), the

philosophy behind this research has been to attempt to bring the power of design to the customer.

In this research, tools have been developed to give customers access to integrated product design

simulations through custom web-based interfaces. It is through these interfaces that customers

are able to make parametric changes to the product's configuration. The design simulations then

provide the customers with real-time performance predictions. It is proposed that this will lead

to a new form of mass customization, which we refer to as continuous mass customization.

Rather than customizing products through discrete changes from predetermined options,

customers could make continuous parametric changes to the product's configuration.

Current configuration systems are costly to construct and maintain. The fundamental problem is

that the product and its components must be remodeled in the language of the configurator after

they have been designed. This is often accomplished with rules that must be explicitly encoded.

In addition, the rules must be continuously updated as the components are changed. It is thought

that the reuse of design models as the basis for product configurators will reduce this product

development bottleneck. The goal of this research was to not only develop technologies that

accomplish the previous concepts, but to also identify theoretical issues that would not be

obvious unless an implementation was attempted.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 4

"I want a horn here, here, and here. You can never
find a horn when you're mad And they should all play
'1a Cucaracha!"

"What about those red balls they have on car aerials so
you can spot your car in a park. I think all cars should
have them!"

- Homer Simpson

MASS CUSTOMIZATION

Mass customization is perhaps best conceived of as the ability to serve a wide range of customers

and meet changing product demands by offering one-of-a-kind custom products and services

based upon customer specifications. By tailoring products to the needs of individual customers,

companies have used mass customization as a way to differentiate their products and services

from competitors.

Mass customization has been extensively applied to services, such as banking, brokering, and

Internet portals (The Economist, 2000). More recently, physical products that are highly

modularized, such as personal computers and telecommunications systems, have become

increasingly mass customized. The most prominent firm in the field of mass customization has

been Dell Computer Corporation. The Dell website (http://www.dell.com) offers customers the

ability to specify the components of and options within their personal computer. As users

change the configuration of their computer, they are provided with feedback in the form of a

price quote generated by a simple cost model.

Mass customization has led to a business model that exists as an alternative to large-volume

mass production. "In Henry Ford's day, Ford made the car and the customer paid for it. In

Michael Dell's day, the customer pays for the computer and then Dell makes it." (The

Economist, 2000)

Instead of building a single-product, large-volume focused production process,
the mass customizer builds a dynamic network of potentially infinite numbers of
interchangeable and intercompatible individual unit production processes. Thus,
the challenge of alignment in the dynamic network environment of the mass-
customization design is to make the unpredictable combinations of processing
units function both seamlessly and efficiently. (Boynton et al., 1993)

Massachusetts Institute of Technology - Computer Aided Design Laboratory 5

A company that engages in mass customization is able to gain a competitive advantage by

offering value in the form of individually customized products, and this results in the

establishment of a close relationship with their customers. The competitive advantage

mentioned above is very valuable to a company whose products are facing commodification, as

this provides a mechanism to differentiate their products. However, as an organization allows

customers to customize their products, they are unintentionally allowing customers to influence

the strategic course of the company (Boynton et al., 1993).

Massachusetts Institute of Technology - Computer Aided Design Laboratory 6

If something is too hard, give it up. The moral my boy
is to never try anything.

- Homer Simpson

CONFIGURATION DESIGN

The most popular form of design for mass customization today is configuration design.

Configuration design is the simplest form of design and is based upon creating a system from a

fixed, pre-defined set of components (Mittal and Frayman, 1989). David Brown describes it as

follows:

Configuring = Selecting + Associating + Evaluating

where:

Selecting = Choosing components
Associating = Establishing relationships between components
Evaluating = Compatibility testing + Goal satisfaction testing

(Brown, 1998)

The first step, selecting, requires users to understand what the components are before they begin

the configuration process. The process of selecting components to obtain a desired performance

requires someone that is knowledgeable in the domain. Companies, such as Lucent, have

addressed this problem by designing their configurators to be used by knowledgeable salespeople

(Ambler, 1998).

According to Mittal and Frayman's (1989) definition of configuration design, components

cannot be designed during the configuration process. This leads to a combinatorial configuration

process that resembles the assembling of a puzzle as show in Figure 1.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 7

Fe: oi0tn s o(ution

Figure 1: Configuration Design Process (Yu, 1998)

Theire has been a great deal of previous research in the field of configuration design and artificial

intelligence has yielded a number of specific approaches to solving configuration design

problems. These approaches included rule-based and model-based reasoning, which are

discussed below.

Rule-based Reasoning

Ruled-based systems, otherwise known as expert systems, use production rules as a mechanism

for representing both domain knowledge and control strategy (Sabin et. al., 1998). These rules

are constructed by if condition then consequence rules. For example, if Component A is

selected, then Component B must also be selected. Actions are checked versus these rules, and if

the conditions are met, the consequences act upon global state information. Rule-based

reasoning systems create enormous maintenance problems as components are modified and

introduced to the component library. For example, in 1989 Digital's XCON configuration

system had more than 31,000 components and approximately 17,500 rules, which changed at an

annual rate of approximately 40% (Sabin et. al., 1998).

The explicit encoding of a component's configuration information introduces the product

development bottleneck described in Figure 2. Lucent Technologies has used configurators to

manage the sale and manufacture of products for over 20 years. Consequently, Lucent

experiences a product development bottleneck because engineering specifications must be

translated into a format understood by the configurator (Ambler, 1998).

Massachusetts Institute of Technology - Computer Aided Design Laboratory 8

Design or modify Encode Use configuration
components configuration rules system for sales

Figure 2: Product development bottleneck caused by configuration systems.

Model-based Reasoning

Model-based reasoning addresses the limitations of rule-based reasoning, especially the

maintenance issues. This approach relies on a system model that is decomposed into entities and

the interactions between them. Walter Hamscher expresses the advantages of model-based

reasoning as the following:

" A better separation between what is known and how the knowledge is used.

- Enhanced robustness (increased ability to solve a broader range of problems).

- Enhanced compositionally (increased ability to combine knowledge from
difference domains within a single model).

- Enhanced reusability (increased ability to use existing knowledge to solve
related classes of problems.

(Sabin et. al., 1998)

Some of the more prominent approaches to model-based reasoning are outlined in the following

sections.

Resource-based

Resource-based configuration is best suited for configuration tasks in which a specific

functionality is desired. The requirements of a solution are expressed in terms of the amount of

resources demanded from, or supplied to, the system. The goal is to find a set of components

that bring the overall set of resources to a balanced state, in which all demands are fulfilled. The

process of configuration is as follows:

1. Start with a set of resources demanded by the requirement specifications.

2. Select one resource type that is not balanced.

3. Create a list of components that can supply the resource.

4. Select one component from the previous list and add it to the current configuration.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 9

5. Repeat this process until all required resource amounts are supplied by the components.

6. If a dead-end is found, backtrack to the last decision point.

Constraint-based

The constraint-based approach views the configuration design task as essentially a constraint-

satisfaction problem. The elements of the configuration task are modeled as components. Each

component has one or more ports which specify how the components can be interconnected. The

components and the ports are viewed as the variables of the constraint-satisfaction problem,

while the constraints restrict the way components can be integrated into a solution. Although

this method is thought to reduce some of the maintenance issues, it has the disadvantage of

requiring the user to understand and specify requirements before the configuration process

begins.

A major challenge in traditional knowledge-based configuration systems is the acquisition of the

rules or constraints that form the logic of the configurator (Sabin et. al., 1998). One of the

fundamental difficulties in obtaining the logic for configuration systems it is often implicitly

encoded during the design process. To be used in a product configurator, the logic of a design

must be extracted and explicitly re-encoded. It is proposed that the reuse of existing design

models as the logic of configuration systems will eliminate this problem.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 10

It measures the pitch, the frequency, and the urgency of a baby's
cry, and then tells whoever's around, in plain English, exactly what
the baby's trying to say! Everything from "Change me" to "Turn off
that damn Raffi record!

- Herbert Simpson

DOME

An integrated modeling environment, is essential for a richer form of product configuration

because it can provide the customer with accurate real-time feedback on the performance

characteristics of a product. The DOME (Distributed Object-based Modeling Environment)

project is intended to address the widespread need to predict the characteristics of large complex

products in a dynamic, rapidly changing environment. DOME allows heterogeneous models,

such as geometric CAD models, engineering simulations, and cost models that are

geographically distributed amongst a company's internal divisions and suppliers to be integrated,

via the Internet, to form an integrated system model.

As the margin for improvement within the individual columns of product development has

continued to narrow, system engineering has become an increasingly critical facet of the design

and production processes. Over the past several years, however, numerous system integration

efforts within firms have been attempted with limited success. These endeavors often fail to

meet expectations due to the difficulty of creating an explicit model for a very large system

involving many suppliers, a rapidly changing product, and an evolving organizational

environment (Cooper et. al., 1998). Through DOME, product development participants and

organizations are able to publish their core competencies in the form of models, such as

geometric, CAE, manufacturing, or marketing models that are available as live services over the

Internet. They are able to do this in a effortless manner, without intermediary assistance from

computer programmers or departing from their preferred set of product development tools.

These service interfaces are made accessible on the Internet through a network of DOME

servers, forming a service marketplace. Product developers, small or large, can subscribe to and

flexibly inter-relate these services to build 'integrated' system models that allow the prediction

and analysis of a larger sub-system's performance. In turn, other product developers might be

Massachusetts Institute of Technology - Computer Aided Design Laboratory 11

able to define relationships with the services of subsystems. The result is a distributed network

of service exchange relationships from which the overall system model emerges.

Example: Ford movable glass system (MGS)

The following example, is based upon a DOME project for an automotive door moveable glass

system, deployed at Ford Motor Company in the summer of 1999. This exampled derived from

the work of Wallace and Abrahamson, and will further illustrate the product development service

marketplace concept (Wallace et al, 1999).

Figure 3: The components of a Ford Escort moveable glass system (MGS).

Figure 4 provides screen images of two different pre-existing models used by engineers and

CAD designers at Ford. The Excel spreadsheet model requires a large number of door

parameters to predict the glass velocity and stall force while the SDRC I-DEAS geometric model

provides the overall physical configuration.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 12

Figure 4: Existing models created and used by engineers and CAD
designers for the MGS.

The first goal of DOME is to provide individuals with the ability to conveniently and

independently publish interactive services so that they are widely accessible. Individuals with

particular product development expertise need to be given the capability to create models or

model components with services that can be accessed, understood, and manipulated by those

who do not have additional skills outside of their traditional domain specific tools. Model

owners use simple DOME publishing programs to define interfaces that will mediate how other

users will interact with their models. A publisher is a standalone program or macro specific to a

third party application. For example, in Excel, a wizard-like publishing macro is used to select

cells and define model inputs and simulation outputs as shown in Figure 5.

Figure 5: A macro in Excel is used to define a service interface for
spreadsheet models.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 13

After inputs and outputs are defined, model owners use a web browser to log into a DOME

server and use special wrapper objects to make their published services available over the

Internet. A wrapper is an object written as a software plug-in to DOME for third party

applications. It interprets the meta-data generated by a corresponding publisher to create a

DOME object model that provides a front-end web-based service interface. The wrapper also

manages the back-end communication between these DOME objects and data in the third party

application. This is illustrated in Figure 6 which depicts an engineer logging into a DOME

server and adding an Excel wrapper object. The interface for the Excel wrapper is open and it is

being mapped to the published Excel model.

(a) Log into a DOME server.

C AcaiaA2 * () L hto
I- M mi I v.at.1a1~J~

(b) Add Excel wrapper
object to the DOME
model.

(c) Map Excel wrapper to the
published Excel file.

or F1WK 4UU. UnI 4as4bs1,29E3 mm
UeaVagA 0.05 N/vmm

Miro s5.5 J
Moba~psu 820rpm

-- ' 47 cmJS
AVU 38,74 N

-A~

Figure 6: Adding an Excel wrapper object within a DOME model.

(a) (b)

Figure 7: Wrapper objects for Excel (a) mapped to the engineer's published

spreadsheet and (b) mapped to the published CAD designer's MGS model.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 14

Figure 7 shows two different DOME servers, one providing the door engineer's velocity analysis

services (a), and the other providing the CAD designer's geometric modeling services (b). The

two modeling services are on different DOME servers. Any design participant with permission

to access this DOME server can now use this interface to change inputs to the engineer's model,

which will drive the underlying Excel model on the engineer's computer and return

corresponding predictive services for velocity and stall force.

The second goal of DOME is to create a mechanism for subscribing to published services and

integrating them through relationships that build system models. In Figure 8, a system integrator

has logged into yet another a DOME server and is beginning to define an overall MGS

simulation model. The system integrator has searched the DOME service marketplace and

subscribed to the services provided by the engineer and CAD designer by placing shortcut-like

service references (subscriptions) within their own model.

Gis-ila 1.25E3 mm
6pI.J~W~ 327.0 mm

Figure 8: A system integrator subscribes to the velocity analysis and MGS

CAD model services by creating shortcut-like references within their own
DOME model.

At this point, the system integrator wishes to relate the modeling services of the engineer and

CAD designer. A relationship manager object is added to the MGS model, providing an object

for relating existing services and creating new services as illustrated in Figure 9. It is important

to note that the models remain on the computers of engineers and CAD designers', thus not

Massachusetts Institute of Technology - Computer Aided Design Laboratory 15

requiring the integrator to own the software on which the models run. In addition, the models

and all of the intellectual property they contain are never transferred between servers. Although

DOME allows clients to swap and evaluate suppliers as if their products and services were

commodities, it also allows the suppliers to retain all of their propriety models.

Figure 9: Adding an integration module and defining relationships between
the models of the engineer and CAD designer to create an integrated

system.

Simple equality relationships have been defined using a visual editor so that parameters in the

Excel spreadsheet drive parameters in the MGS CAD model. This particular relationship

manager resolves relations according to directed graph rules. Relations between services can be

arbitrarily complex and different manager objects will offer different types of relation

coordination behaviors.

The third goal of the concept is to introduce product development tools to support the integration

and management of system models. For example, how does one understand the structure or

behavior of the emergent product models? How may one select solutions once a large number of

options become available?

Massachusetts Institute of Technology - Computer Aided Design Laboratory 16

Once a system model has been created, several special DOME objects can be added for purposes

of analysis. In Figure 10, a decision support object has been added (Kim, 1999; Kim et. al.,

1997). This provides the integrator with a real-time view of system-wide tradeoffs as different

participants make local design changes. A spider diagram shows performance assessments on

four axes, while the expanded detail window shows the glass velocity prediction relative to its

design specification. Additionally, an object has been developed using the Design Structure

Matrix (DSM) to visualize service interactions as they evolve (Smith and Eppinger, 1997;

Steward, 1981; Abrahamson et al., 1999). A genetic optimization object has also been

implemented to automatically search for models states that best meet design goals (Senin et al.,

1999a). A full set of papers arising from the DOME project may be found at

http://cadlab.mit.edu.

Sv GS

s Psodsau upe e

lass-radlus

Figure 10: The services of a decision support object are added to visualize
system-wide design tradeoffs.

Vision: A Product Development Service Marketplace

Development of the DOME concept has led to a new vision for product development. In

abstract, when one subscribes to services in the DOME marketplace one is choosing resources

that form the organization responsible for simulating and delivering the product. Thus, the

product development organization becomes a loose affiliation of individuals or organizations

sharing services driven by the needs of a particular product. Individuals have the capacity to

Massachusetts Institute of Technology - Computer Aided Design Laboratory 17

develop complex products by building upon the services of other organizations. Many product

development service capabilities will become commodities, much like many physical

components are today. It will be possible to rapidly interchange equivalent design service

providers so that the detailed development of the product and the definition of the product

development organization will become part of the same process.

DOME's mechanisms for publishing, subscribing, and synthesizing relationships provide the

underpinnings of a service marketplace for the producers and consumers of product development

models and data. The marketplace facilitates the matching of producers and consumers, as well

as the linking and augmentation of services to create new systems. Each participant in the

marketplace brings expertise and formal representations in the form of data and models, ranging

from an individual offering finite element analysis to an application engineer offering a catalog

of electric motor simulations. System integrators are able to flexibly define and alter

relationships between different services in the marketplace on-the-fly, without hard coding

software connections between the applications of service providers.

The DOME is useful to product configuration because it allows product models to be flexibly

and quickly integrated. The ability to construct integrated product models at a reasonable cost

and in a distributed manner is essential to the feasibility of simulation-driven mass

customization.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 18

All my life, I have searched for a car that feels a
certain way. Powerful like a gorilla, yet soft and
yielding like a Nerf* ball. Now, at last, I have found it.

- Homer Simpson

CONTINUOUS MASS CUSTOMIZATION

Current configuration systems are developed after the product's components have been designed.

If customers were given access to DOME-like system models, they could engage in their own

tradeoff analysis while receiving accurate real-time performance predictions. This may lead to a

new form of mass customization, known as continuous mass customization, that is much richer

than today's combinatorial mass customization.

The limiting factor in mass customization is often thought to be the ability to manufacture a mass

customized product once it has been designed. In the past, this problem has been addressed by

intentionally modularizing power supplies and components, such as hard drives, and

motherboards in personal computers. The individual components are mass-produced, while the

final product is mass customized from the components. This leads to products that are not only

constructed, but also designed, in manner that is not much different that playing with Lego*

blocks (The Economist, 2000).

Perhaps the greatest challenge in mass customization is design products in amid a highly

dynamic environment in which the components themselves are designed during the configuration

process. This requires customers to interact with product models that are much more complex

than the simple rules and databases of current configuration systems. By using actual product

models to provide the logic of a configuration system, the product development bottleneck of

encoding engineering specifications into the configurator's language is eliminated.

When companies employ configuration design, in which users select from a fixed set of

components or options, they are aware of the possible combinatorial configurations that

customers can produce. As the relationships of a configuration system are explicitly stated, the

configuration system is limited to the vision of those who encode the configuration rules. In

continuous mass customization, customers are empowered to develop products in a manner that

Massachusetts Institute of Technology - Computer Aided Design Laboratory 19

the company may never have conceived of. Other research efforts, such as the elusive KIKon*

framework, have referred to this type of configuration as explorative design (the * in KIKon*

symbolizes exploration) (Rhamer et al., 1998).

In the early 1980's, a parallel to continuous mass customization occurred in the integrated circuit

(IC) industry. IC products were growing increasingly complex and the costs of correcting errors

in custom designs were very high. LSI Logic was a relatively small venture competing against

the much larger, Fujitsu. LSI Logic surprised Fujitsu when they released their proprietary

software design tools to their customers. Although the tools were difficult to use in the

beginning, they provided customers with the value of knowing that the IC's they designed were

what they actually wanted (von Hippel, 1999).

It is not realistic to expect companies to give customers their proprietary design models. In

addition, companies may want to control the set of parameters with which customers can

interact. There are often valid reasons for this, such as retaining their brand image. For

example, Bose would not want customers to design a speaker that did not meet their conception

of the minimum audio quality requirements for a Bose product. In order to preserve their

corporate integrity, organizations must be able to administrate the parameters that a customer can

change. The architecture of DOME addresses both of these issues by allowing an organization to

flexibly create and publish an interface to the model of their product. Customers can interact

with the product's model through this interface without requiring the organization to reveal the

underlying propriety model structure to the customer.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 20

Advisor: What about a separate soundproof bubble-
dome for the kids with optional restraints and
muzzles?

Homer: Bull's-eye!
- Homer Simpson

DOME MODEL CONFIGURATOR

The use of product simulations in a configurator presents several design challenges. The term

customer is very vague and could range from a automotive OEM engineer that is the customer of

a part supplier, to the person that actually purchases a car. In addition, divisions within a large

OEM may be customers of other divisions within the same company. To accommodate different

types of customers, one of the first tools that's needs to be implemented is the ability to flexibly

create a graphical user interfaces to DOME models.

Implementation

Several technologies were used to construct graphical interfaces to DOME models. While the

following technologies are based on the Java programming language, other technologies could

be used to provide similar functionality.

JavaBeans

The DOME Configurator Module allows a user to construct a graphical interface by choosing

from a library of interface components and then associating these components with DOME
TM

services. The model configurator uses interface components that implement the JavaBeans
TM

standard. By implementing the JavaBeans standard, the Configurator Module can interact with

an unknown interface component to discover its properties and methods. Therefore, any
TM

component that implements the JavaBeans standard can be acquired through the web and used

in the Configurator Module. Once the components are combined into an interface, a customer

can download and use it remotely it as a Java Applet.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 21

Java Server Pages (JSP)

Java Server Pages technology allows the content of web pages to be dynamically generated using
TM

the Java programming language. JavaBeans were developed to allow Java Server Pages to

interface with DOME models. The Java Native Interface was used to interface JavaBeansM with

the C++ kernel of DOME.

Web JavaTMD E
WebSeerBeans Model

Brower t)(TML (Java & (C++)J$P) JNI)

While the interfaces created with Java Server Pages are not as powerful as those created with

Java Beans, they require very little programming experience and no knowledge of how DOME

actually works. In addition, it is a widely used technology that requires no special software on

the part of users.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 22

Herbert Simpson: All a man needs is an idea.
Bum: Then how come you're still a bum?

- The Simpsons

MYCYCLE EXAMPLE

To test the feasibility of a simulation-driven product configurator, an internal pilot project was

prepared. A configurator for road bicycles under the fictitious company MYcycle was

implemented. The customer is assumed to be a cycling enthusiast that is interested in purchasing

a custom bicycle. The product choice and the anticipated sophistication of the user found in this

example are irrelevant to the basic concepts of this research. The following is a list of some of

the simulations used.

Frame Geornetry SolidWork

Cost of Frame Material Excel

Power Required from Rider Excel

Steering Stability Excel

Wheelset Components DOME Catalog

Fork Components DOME Catalog

The simulations were integrated using the conventional DOME model-building tool. A website

was then built and integrated to the DOME model using Java Server Pages. Two interfaces were

constructed on the website. The first is referred to as the beginner configurator and represents

the state of the art. The second is referred to as the advanced configurator and incorporates the

concepts of continuous mass customnization.

The beginner configurator (Figure 11) walks the user through a series of three questions. It

collects information such as the expected use and anatomical dimensions of the user. This

information is then mapped to tables that contain default frame sizes and other settings. This

type of application is often mistakenly referred to as mass customnization; however, the user has

virtually no control over how their inputs are interpreted. The product is not customized by the

user, but is ratherfitted to the user.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 23

1. The user enters their
inseam measurement and
their expected use.

2. The user selects the
components of the bicycle.

3. The user selects the
frame color.

4. The results of cost and
mass models are presented
along with a summary of
the current configuration.

Figure 11: The beginner configurator.

The advanced configurator (Figure 12) gives the user direct control over the bicycle's geometry

and components. Unlike the beginner configurator, which only provides the user with the mass

and cost of the current design, the advanced configurator provides the user with the results of

steering stability and power simulations.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 24

The RealityWave viewer allows the user to examine a
three-dimensional model of the current configuration.

The power simulation estimates the amount of power
required from the user in different situations.

Figure 12: The advanced configurator.

The maximum latency for the system is approximately 10 seconds. Most of the latency,

however, is in the rebuilding of the CAD model. The current implementation of DOME has

many flaws that also contribute to the latency. The kernel of the current implementation of

DOME is single-threaded. Therefore the simulations can not be run in parallel. In addition, the

current implementation is unable to solve the causal structure of the model to efficiently

determine when to execute the simulations. As a result, many simulations are executed more

times than needed. The implementation of a DOME system that automatically solves the causal

structure of the model and efficiently executes simulations will address this limitation.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 25

Herbert: Hey Homer, how's your car coming?
Homer: Oh, fine. They were putting in an onboard

something-or-other and rack-and-peanut
steering.

- The Simpsons

MODEL BACKSOLVING

As discussed earlier, it is not realistic to give customers access to design models and to expect

them the to understand the inputs of the models and how they effect the outputs. In practical

terms, a customer may not understand how the amount of memory in their computer affects the

cost and the performance of a computer, even if they do understand that they want a cheaper

computer. The model backsolver encapsulates a DOME model and allow users to flexibly

change independent and dependant parameters. The marketing demands of translating

engineering tradeoff decisions into language that the customers can understand are reduced by

allowing customers to interact with performance variables.

Current DOME models typically require a model administrator to publish a rigid input/output

interface. A rigid model requires the model administrator to strictly define the inputs and outputs

of the model when a model is published, and therefore only allows a client to change the inputs

of the model. This requires the model administrator to anticipate which inputs a user will be able

to provide and will want to access. By using the model backsolver, a model administrator could

publish a variational model without changing the underlying simulation. A variational model

allows a user to change both independent and dependent parameters of a model. In addition,

product models could be reused without having to rewrite the model for a new interface.

Inputs Sm--+ Outputs
(Independent Variables) - (Dependent Variables)

Figure 13: Rigid Model: User can only change inputs.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 26

Inputs?
Inputs Simulation Outputs

Outputs?

Model Backsolver

Figure 14: Variational Model: User can change both inputs and outputs.

The model backsolver reduces the publishing requirements of model administrators by allowing

the users of the models to flexibly interact with the model. As a result, the model administrator

does not have to anticipate which parameters a user will be able to provide.

The basic premise of this implementation of the model backsolver is to use a search technique to

find a set of inputs to a model that will result in the desired output. When a desired value for an

output is specified, there may be a large set of inputs that result in this output. For instance, if a

box with a volume of 2.0 m3 is desired, there is an infinite set of lengths, widths and heights that

result in a box of this size. Given this infinite set of possible solutions, a decision must be made

on behalf of the user as to which solution, or solutions, the user would be most interested in. In

this implementation, this decision is made using acceptability theory. Acceptability theory is

used to assign preferences to the parameters of the interface. The search technique then

optimizes the aggregation of the preference functions.

Search Techniques

The model backsolver can be incorporated with any search technique. In this implementation,

however, a struggle genetic algorithm (GA) was used (Senin, N. et. al., 1999). Each interface

parameter has a preference function associated with it. The derivation of the preference function

is described in the section below. The search algorithm looks for the set of inputs which

maximizes the aggregate of the preference functions. While any type of aggregation could be

used, in this implementation a summation aggregator was employed.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 27

Preference Functions

Acceptability theory was used because each preference function is constructed on an absolute

scale. Therefore, there is no need for weighting functions in multiattribute decision support.

Although this approach has more restrictive assumptions than utility theory, it was chosen

because it is easier to use and requires less input from the user (Kim et. al., 1997).

The following sections details different methods of constructing the preference functions. Each

method varies in the level of sophistication expected from the users.

Direct Specification of Preference Functions

In this scenario, the user must explicitly specify the preference function for each parameter of the

model. This requires the user to not only understand what each parameter is, but also to have

considerable knowledge about how a preference function works. While direct specification

allows the user the greatest control over how the backsolver works, it also demands the greatest

level of sophistication. The specification of preference functions by customers has been

proposed by other researchers (Tseng et al. 1996). It is doubtful, however, that consumers will

have the required level of sophistication.

Parametrically Generated Preference Functions

In this method, the user specifies sensitivity parameters from which a preference function is

generated. The sensitivity parameter can refer to their willingness to allow the value to increase

or decrease. The preference functions are always generated with an acceptability of 1.0 at the

desired value. If the user has not specified a desired value, the previous value is used, the

rationale being that if the user does not enter a desired value because the user may find the

previous value to be acceptable and therefore has no reason to change it.

I

0

Desired Value

Figure 15: Preference function generated with a greater sensitivity to
increase than to decrease.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 28

In the implementation of the backsolver, the preference functions can be generated using either

the logistic equation or an exponential decay. The user supplies a sensitivity parameter that is a

constant for the given equation. The constant affects the shape of the curve. Since the

sensitivies are different for different equations, they should perhaps be normalized between zero

and one. This however would require the normalized value to be mapped to a bounded range. If

the sensitivity for a value to increase and the sensitivity to decrease were equal, the preference

function would be symmetrical and require only one sensitivity value from the user.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 29

Box Design Example

In this example we consider the model of cube that accepts the length, width and height of the

box as inputs and provides the volume and surface area as outputs.

I1

11

f

The user adjusts
the variables to the

desired values.
U

0 21
Length

0 I
Width

2

I 000

Preference functions
are parametrically

generated. :1

U

U

A search is run to
find the solution that

maximizes the
aggregate of the

preference functions

0 21
Height

0 2
Volume

4

11
I a

I a
I I

0 6
Surface Area

12

The preference functions are generated
about the desired value. If no change is
made, the previous value is used. The
values that have been altered by the

user are made more sensitive to
changes, while those that have not

altered are made less sensitive.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 30

In the previous box example, the variables that the user changed were weighted to be more

sensitive to changes. Correspondingly, the variables that the user had not changed were

weighted to be less sensitive. This is important because the primary goal of the search is to find

solutions based upon the user's desired values. The second goal is to limit the deviation from the

previous solution. The ratio between the weighting of the variables that were and were not

changed determines the relative weighting between these two goals.

If in the previous example, the user only desired the volume to be 2.0 M3, the solution would

likely be less than 2.0 M3 . This is because the length, width, and height would be "holding back"

the solution because their preference functions would prevent them from deviating from their

previous values. Since the surface area is determined exclusively by the length, width, and

height, the preference function of the surface area would be adding to the amount they are

"holding back" the solution. An algorithm to adjust sensitivities based on the number of inputs

that a particular dependent variable depends upon should be developed. This is currently not

possible to implement in DOME however, because it would require the model to be accessible

on both an interface and parameter level.

The previous example required the specification of the range over which the preference function

was generated. During the process of implementation, this was done by taking a percentage of

the current value. If this value is set too low, the search algorithm may miss a reasonable

solution. To find the solution, the user may have to run the backsolver again. While it would

eventually converge to the correct solution, the user may find an iterative process to be

frustrating.

Caching Techniques

A caching system was used to store the state of the model's interface in a relational database.

The database was then used to find the best solutions with which to seed the initial population of

the genetic algorithm. If the cache data were large enough, the solutions in the cache could be

used exclusively, thus greatly decreasing latency. It is thought that this would reduce the search

time to find a solution. The effectiveness of this technique however, was never fully evaluated.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 31

The caching system was implemented using a JDBC compliant relational database. After each

execution of the model, the states of all of the inputs and outputs were stored in the database.

This was difficult in the current implementation of DOME because it only allows access to

individual parameters, not interfaces. Implementing a version on DOME that allows access to

simulations on the individual parameter level and the interface level is a needed development.

Indirectly Generated Preference Functions

The history of the users changes might also be utilized to infer the weights. An algorithm that

determined the preference functions based entirely on the history of the users changes and

desired values would probably be very effective for customers that have little to no

understanding of how the backsolver works. The changes to a parameter and the order in which

these changes occur could be used to infer its sensitivity. The previous method of parametrically

generating preference functions could then be used to construct a preference function with this

sensitivity value.

Future Considerations

The concept of constraints and specifications is often used in the selection of components in

product design. A typical design problem would be the following:

"Select a bolt from a catalog of bolts that can withstand a bearing stress of 15 psi
and has a diameter of 0.5 in."

The problem would then be to find a bolt that satisfies the two constraints. When a model

backsolver is used within a DOME-like system, the question might be instead posed as:

"Search for a bolt and supplier whose simulations predict that the bolt can
withstand the bearing stress specified by the FEA analysis, while having the
diameter specified by the CAD model."

In this implementation, the backsolver can only search by changing the input values that predict

the desired performance. However, it should also be capable of searching by changing the

services and simulations. Currently, the network of simulations can only be made dynamic

through a catalog of predetermined simulations to actively alter the models structure. More

advanced methods should be considered to incorporate unknown suppliers. For example, an

ontology could be overlaid on DOME models so that design services could be autonomously

discovered and integrated into product models.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 32

The current implementation of the model backsolver is a goal-oriented approach. The values of

the outputs are always computed using the actual simulations, and are therefore necessarily valid.

As a result, the notion of the system being over-constrained or under-constrained is irrelevant.

The backsolver will always attempt to find better solutions, and while the solutions that are

generated may not exactly match the desired values, they at least provide the user with a set of

valid options. As the search algorithm continued to search further and new resources were added

to the service marketplace, better solutions could always be found.

Although the implementation of the backsolver was rather elementary, it presented two major

areas of concern worthy of future study. The first area is the development of algorithms to

automatically generate preference functions on behalf of the user. The second area is the

exploration of advanced techniques to actively alter the structure of a model, and their

incorporation into search algorithms.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 33

"People are afraid of new things. You should have just
taken an existing product and put a clock on it or
something."

- Homer Simpson

MASS CUSTOMIZED CATALOGS

The use of engineering simulations as the logic for product configurators produces very powerful

and scalable configurators. However, the difficulties in modeling an entire product may prove

too difficult for some organizations. In addition, the latency costs associated with executing the

entire system model may be too great to provide reasonable, real-time performance predictions.

Instead, the simulation-driven configurators could be used to generate catalogs of predetermined

configurations. The configurator could be a tool used by account managers to generate a catalog

of configurations specially tailored for a particular buyer. While this may appear to defeat the

purpose of simulation-driven mass customization, it represents a practical next step. Given this

situation, the problem of a sales representative promising an undeliverable configuration could

easily be avoided.

In developing mass customized catalogs, the first step would be to decide which configurations

to include in the catalog. These decisions would likely take into account the product portfolio

and other strategic issues. While these decisions are rather subjective and may change often,

new catalogs could be generated relatively quickly.

To implement mass customized catalogs, a means of saving the state of an model is required. A

simple mechanism to do this was implemented in the caching system of the model backsolver.

For each execution, the respective states of the inputs and outputs of the model were saved in a

database. In reality however, a more robust system of distributed version control on each model

server should be considered. The implementation of mass customized catalogs was not explored

because, with the exception of the distributed version control system, such a model does not

represent any interesting technical challenges.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 34

Bart: Dad?
Homer: What is it, boy?
Bart: I thought your car was really cool.
Homer: Thanks boy! I was waiting for someone

to say that.
- The Simpsons

CONCLUSIONS

The MYcycle pilot project revealed several areas of future research, while demonstrating that it

is possible to use design simulations as the basis for a product configurator. A pilot project that

is conducted in conjunction with an industry partner should be pursued to determine the exact

effectiveness of the reuse of design models in reducing the construction and maintenance costs of

configuration systems.

Latency

The model used in the MYcycle project was relatively simple, yet its latency averaged about 10

seconds. The issue of latency can not be assumed to be solved by improved processing power.

As more processing power becomes available, the models will simply grow to be more complex.

The simulation environment must have the ability to efficiently execute simulations. In

additions, simulations should be able to be executed asynchronously. Caching techniques should

also be incorporated on a fundamental level; however, this requires the simulations to be

accessible at the granularity of both interfaces and variables.

Model Backsolving

The implementation of model backsolver was not developed to a level of maturity required to be

included in the MYcycle project. It is thought that a model backsolver would be useful to

product configuration because it would allow customers to alter the performance variables that

they are familiar with. The backsolver presents two areas for future research. The first involves

developing algorithms to determine which solutions the user would be interested in if an exact

solution can not be found. A pilot project should be pursued to determine it customers could

deal with the backsolver's inability to always find the desired values. The second area of

research revolves around the incorporation of dynamic simulation networks into the backsolver's

Massachusetts Institute of Technology - Computer Aided Design Laboratory 35

search techniques. Therefore, the model backsolver could search by not only changing the inputs

of the model, but also by actively changing the structure of the model.

Finally, a simulation-driven product configurator may change the focus and process of product

development. If an organization is able to successfully simulate their products, the goal of the

product development process may become the integrated product model, not the product itself.

The actual products would merely be states of the model, and customers could use the model to

generate unforeseen products with unexpected uses. In addition, difficult tradeoff decisions

encountered during the product development process would be essentially "outsourced" to

customers.

You have joined the Sacred Order of the Stonecutters
who, since ancient times, have split the rocks of
ignorance that obscure the light of knowledge and
truth. Now let's all get drunk and play ping pong!

- The Simpsons

Massachusetts Institute of Technology - Computer Aided Design Laboratory 36

Lisa: So even if a man takes bread to feed his
starving family that would be stealing?

Rev.: No. Well, it is if he puts anything on it.
Jelly, for example.

Lisa: I see.
- The Simpsons

REFERENCES

Abrahamson, S., Wallace D., Senin, N., Borland, N., (1999) "Integrated Engineering, Geometric,
and Customer Modeling: LCD Projector Design Case Study", Proceedings of the ASME DT
Conferences, DETC/DFM-9084, September 1999, Las Vegas, Nevada.

Abrahamson, S., Wallace, D., Senin, N., Sferro, P., (2000), "Integrated Design in a Service
Marketplace", Computer-aided Design, 32(2), 97-107.

Abrahamson, S., Wallace, D., and Borland, N. (1999) "Design Process Elicitation Through the
Evaluation of Integrated Model Structures", Proceedings of the ASME DT Conferences,
DETC/DFM-8780, Las Vegas, NV.

Abrahamson, S., Wallace, D., and Borland, N. (1999b) "Object-based Design Modeling and
Optimization with Genetic Algorithms", GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-17, Orlando, FL.

Ambler, B. (1998) "Improving the product realization process" IEEE Intelligent Systems,
July/August 1998. pp 29.

Borland, N., Kauffman, H., Wallace, D. (1998) "Integrating Environmental Impact Assessment
into Product Design: A collaborative modeling approach", Proceedings of the ASME DT
Conferences, DETC/DFM-5730, Atlanta, GA.

Borland, N., Wallace, D. (1999) Environmentally-Conscious Product Design: a Collaborative
Internet-Based Modeling Approach, to appear in the Journal ofIndustrial Ecology.

Boynton, A.C., Victor, B., Pine II, B.J. "New competitive strategies: Challenges to organizations
and information technology." IBMSystems Journal, 32(1), 40-64.

Brown, D. (1998) "Defining Configuration", Artificial Intelligencefor Engineering Design,
Analysis and Manufacturing. 12, pp. 301-205.

Coates, R. "Mass Customization - Manufacturing Postponement for the Next Century"
Perspectives? CSC Consulting, 1997.

Cooper, R. and S. Kaplan, R. S. (1998) "The promise and peril of integrated cost systems",
Harvard Business Review, July-August, pp. 109-119.

Huffman, C., Kahn, B. "Variety for Sale: Mass Customization of Mass Confusion" Marketing
Science Institute Working Paper Report No. 98-111 June 1998.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 37

Kim, J., and Wallace, D. (1997) "A Goal-oriented Design Evaluation Model", Proceedings of the
ASME DT Conferences, 97-DETC/DTM-3878, Sacramento, CA.

Loosschilder, G. H. "The Interactive Concept Test: Analyzing Consumer Preferences for Product
Design." UT Delft, Netherlands, 1988.

Mittal, S., Frayman, F. (1989) "Towards a generic model of configuration tasks" Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, (IJCAI-89), pp. 1395-
1401. Morgan Kaufmann, San Mateo, California.

Pahng, F., Senin, N, Wallace, D. (1998) Distributed object-based modeling and evaluation of
design problems, Computer-aided Design, volume 30, number 6, pp. 411-423.

Rahmer, J. and Voss, A. (1998) "Supporting Explorative Configuration." Artificial Intelligence
in Design '98, 483-498.

Sabin, D. and Weigel, R. (1998) "Product Configuration Frameworks -A Survey", IEEE
Intelligent Systems. 43-48.

Senin, N., Wallace, D., Jakiela, M.J., (1996), "Mixed Continuous Variable and Catalog Search
Using Genetic Algorithms", Proceedings of the ASME Design Automation Conference, 96-
DETC/DAC-1489, August 1996, Irvine, California.

Senin, N., Wallace, D., Borland, N. (1999b) Distributed Object-based Modeling of Design
Problems, under review by the ASME Journal ofMechanical Design.

Senin, N., Wallace, D., Borland, N. "Object-based Design Modeling and Optimization with
Genetic Algorithms." GECCO99 - Real World Applications, July 1999, Orlando, Florida.

Smith, R. P. and S. Eppinger (1997). "Identifying Controlling Features of Engineering Design
Iteration." Management Science, 43(3).

Steward, D. V. (1981). "The design structure system: a method for managing the design of
complex systems." IEEE Transactions on Engineering Management EM-28(3): 71-74.

The Economist, April 1, 2000 pp. 57-58.

Tseng, M., Du, X. (1996) "Design by Customers for Mass Customization Products", Annals of
the CIRP, Vol. 45/1/1996.

Von Hippel, E. (1994) "Sticky Information and the Locus of Problem Solving: Implications for
Innovation" Management Science, 40(4), 429-439.

Von Hippel, Eric. (1998) "Economics of Product Development by Users: The Impact of "Sticky"
Local Information" Management Science, 44(5), 629-644.

Von Hippel, Eric. (1999) "Toolkits for User Innovation: The Design Side of Mass
Customization" MIT Sloan School ofManagement Working Paper #4058, February, 1999.

Yu, Bei., Skovgaard, Jorgen. "A Configuration Tool to Increase Product Competitiveness" IEEE
Intelligent System 13(4) 1998. pg 34-39.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 38

All material from The Simpsons is TM and 0 (or copyright) Fox and its related companies.

"Brother, Can You Spare Two Dimes?" 8F23 The Simpsons. Writer John Swartzwelder. Dir.
Rich Moore.

"Homer the Great" 2F09 The Simpsons. Writer John Swartzwelder. Dir. Jim Reardon.

"Homer vs. Lisa and the 8th Commandment" 7F 13 The Simpsons. Writer Steve Pepoon. Dir.
Rich Moore.

"Oh Brother, Where Art Thou?" 7F16 The Simpsons. Writer Jeff Martin. Dir. W. M. "Bud"
Archer.

Massachusetts Institute of Technology - Computer Aided Design Laboratory 39

