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Abstract

A Hall effect plasma thruster with conductive acceleration channel walls was numerically
modeled using 2D3V Particle-in-Cell (PIC) and Monte-Carlo Collision (MCC) methodolo-
gies. Electron, ion, and neutral dynamics were treated kinetically on the electron time scale
to study transport, instabilities, and the electron energy distribution function. Axisymmet-
ric R-Z coordinates were used with a non-orthogonal variable mesh to account for important
small-scale plasma structures and a complex physical geometry. Electric field and sheath
structures were treated self-consistently. Conductive channel walls were allowed to float
electrically. The simulation included, via MCC, elastic and inelastic electron-neutral colli-
sions, ion-neutral scattering and charge exchange collisions, and Coulomb collisions. The
latter were also treated through a Langevin (stochastic) differential equation for the particle
trajectories in velocity space. Ion-electron recombination was modeled at the boundaries,
and neutrals were recycled into the flow. The cathode was modeled indirectly by inject-
ing electrons at a rate which preserved quasineutrality. Anomalous diffusion was included
through an equivalent scattering frequency. Free space permittivity was increased to allow
a coarser grid and longer time-step. A method for changing the ion to electron mass ratio
and retrieving physical results was developed and used throughout. Results were compared
with theory, experiments. Gradients and anisotropy in electron temperature were observed.
Non-Maxwellian electron energy distribution functions were observed. The thruster was
numerically redesigned; substantial performance benefits were predicted.
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Title: Professor, Department of Aeronautics and Astronautics
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"We ought then to regard the present state of the universe as the effect of its
anterior state and as the cause of the one which is to follow. Given for one
instant an intelligence which could comprehend all the forces by which nature
is animated and the respective situation of the beings who compose it - an in-
telligence sufficiently vast to submit these data to analysis - it would embrace

in the same formula the movements of the greatest bodies of the universe and

those of the lightest atom; for it, nothing would be uncertain and the future, as
the past, would be present to its eyes. The human mind offers, in the perfection

which it has been able to give to astronomy, a feeble idea of this intelligence. Its

discoveries in mechanics and geometry, added to that of universal gravity, have

enabled it to comprehend in the same analytical expressions the past and future

states of the system of the world. Applying the same method to some other

objects of its knowledge, it has succeeded in referring to general laws observed

phenomena and in foreseeing those which given circumstances ought to produce.

All these efforts in the search for truth tend to lead it back continually to the

vast intelligence which we have just mentioned, but from which it will always

remain infinitely removed."

-From "A Philosophical Essay on Probabilities" by Pierre Simon, Marquis de

Laplace [27]
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Chapter 1

Introduction

This thesis describes the fully kinetic numerical simulation of a 50 Watt Hall thruster.

This introductory chapter describes the problem and presents a brief overview of the so-

lution. Chapter 2 covers the theory behind the simulation. Chapter 3 describes many

portions of the numerical method in detail. Chapter 4 is about validating the code. Chap-

ter 5 presents and discusses various numerical results, while Chapter 6 concludes the thesis

and recommends future work. Following all this is an Appendix.

1.1 Electric Propulsion

Spacecraft require on-orbit propulsion systems for tasks such as station-keeping, orbit re-

phasing, and orbit transfer. Satellite propulsion systems have typically relied upon chemical

rockets, which are limited in exhaust speed by the internal energy stored in their propellant.

Even the most advanced cryogenic Hydrogen-Oxygen systems achieve only about 470-sec

of specific impulse, Ip, defined as the ratio between exhaust speed, < v >, and go, the

gravitational acceleration of the earth's surface. Recently, satellites have begun to rely

upon electric rockets (collectively known as "Electric Propulsion" or E.P.), which bypass

the internal energy limit by using an outside energy source to accelerate the propellant.

Almost unlimited exhaust speeds can be obtained.

The amount of propellant required for a given velocity increment, M,, is a function of

the satellite mass before the maneuver, Mi, and the specific impulse, according to the rocket

equation:

M, = Mi[1 -- exp( )] (1.1
< V >
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Thus, specific impulse can be regarded as a measure of fuel efficiency. In this sense, high

Ip electric thrusters are far more economical than low I, chemical thrusters. Of course,

there is a tradeoff between the thrust of a rocket and the amount of power it draws. Given

limited power as supplied by a satellite bus, spacecraft designers sometimes choose high

thrust systems over high specific impulse systems.

Electric rockets come in all shapes and sizes. The most commonly used electric rockets

may be roughly separated into two groups: Electro-thermal and Electrostatic. Electro-

thermal thrusters include resistojets and arcjets. Electrostatic thrusters include ion engines,

Hall thrusters, FEEP and colloidal thrusters. Other electric propulsion devices include the

Pulsed Plasma Thruster (PPT) and Magnetoplasmadynamic (MPD) thruster. Figure 1-1

shows some standard thruster geometries.

1.2 Hall Thrusters

With higher thrust densities than ion engines and specific impulses between one and two

thousand seconds, Hall thrusters are considered ideal for many on-orbit applications includ-

ing station-keeping, orbit re-phasing, and orbit transfer. Originally developed in the 1960's,

the first successful on-orbit test was completed in 1972. For over a decade, Soviet/Russian

spacecraft have used Hall thrusters for station-keeping and on-orbit maneuvering. Western

interest in Hall thrusters has grown with the commercial satellite business; their high effi-

ciencies promise to increase payload mass fractions and operating lives, thereby increasing

profits.

Typical flight tested Hall thrusters operate in the 1-kW power range. However, space-

craft come in different sizes. Some missions are optimized with 1-kW thrusters, while others

are optimized with relatively diminutive 50-W thrusters. Hence, a market exists for new

Hall thruster designs. Computer simulations are one way to develop and test these new

designs, as well as understand old ones.

1.2.1 General Theory

Hall effect plasma thrusters are essentially rockets in which the working fluid is a plasma

and the means of acceleration is an electric field. The "acceleration zone" of a Hall thruster

is shown in Figure 1-2. This region is usually comprised of two concentric cylinders ("walls")
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Figure 1-1: Four types of electric propulsion: Resistojet, Arcjet, Ion Engine, Hall Thruster

(Stationary Plasma Thruster) [37].

which are either metallic (TAL type thrusters) or dielectric (SPT type thrusters). At one

end of the annulus sits a highly biased (300 Volts is typical) hollow anode which produces

a nominally axial electric field. The other end of the annulus opens to free space. Neutral

gas is injected through the anode, ionized through inelastic collisions with electrons, and

accelerated out the other end of the annulus by the electric field. An external cathode

supplies electrons to neutralize the beam and sustain the discharge. Electrons are impeded

in their motion toward the anode by a radial magnetic field. Trapped in cyclotronic motion,

they spend most of their time drifting azimuthally due to the Hall effect (which gives these

thrusters their name), allowing them time to ionize the neutrals.

The special role of Soviet researchers and engineers in developing Hall thrusters should

be acknowledged. They developed much of the theory, they were the first to create efficient

engines, and they were the first to fly them on spacecraft. The very names applied to these

thrusters, ("Stationary Plasma Thruster" and "Thruster with Anode Layer") were coined

in the Soviet Union.
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Figure 1-2: The acceleration zone of a Hall thruster. Electrons are drawn from the cathode

to the highly biased anode. Along the way, they drift azimuthally (the Hall current) and

ionize the propellant. Coordinate system used is (r, z, 0).

1.2.2 Types of Hall Thrusters

Most flight Hall thrusters have been "Stationary Plasma Thrusters" (SPT's). In an SPT,

the walls of the acceleration channel are made of an insulating (dielectric) material. The

length (in the axial direction) of the acceleration channel is usually greater than the width,

and the magnetic field is usually structured such that the primary ionization zone is located

near the channel exit. The "Thruster with Anode Layer" (TAL) is similar in construction,

but the walls of the acceleration channel are conductive. (They are either held at the

cathode potential or allowed to float.) In a TAL, the length of the channel is usually short

(or even non-existent), and the field is often constructed such that the primary ionization

zone abuts the anode, giving these thrusters the name "Anode Layer". It is also possible to

extend the acceleration zone of a TAL downstream some distance, although such thrusters

are reported to have lower efficiency [12]. In general, TAL's and SPT's offer comparable

performance.

SPT's have been successfully modeled at MIT and elsewhere using one and two di-

mensional Hybrid PIC methods. Such models typically assume the plasma is quasineutral

(ni ~ ne). These models may not be applicable to TAL thrusters. Because metals have

much less secondary electron emission than the dielectrics, TAL's lose less heat to the accel-

eration channel walls than do SPT's, yielding, in general, higher electron temperatures and
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more abrupt ionization layers. Equally important is the location of the ionization layer; it

is usually, as the name suggests, next to the anode and may be just a few electron cyclotron

radii wide (see Section 2.11)[12]. To model such a layer, the numerical model must allow

for non-neutrality and non-Maxwellian electron energy distributions. Such a model is the

subject of this thesis.

1.3 Statement of Technical Problem

Hall thrusters are, despite years of development, still poorly understood. They are designed

based of a set of generalized assumptions regarding the energy in the discharge, the influence

of the magnetic field, and methods of electron transport. Unfortunately, measurements of

the discharge are hard to obtain and must be interpreted based on the same assumptions.

A self-consistent numerical model of the discharge region is needed to validate and refine

the assumptions. Were such a model applicable to non-idealized thrusters, it would enable

a new generation of thruster designs which address issues such as erosion, beam divergence,

and doubly charged ions directly by tailoring the discharge.

1.4 Literature Survey/Brief Summary of Previous Work

Relevant research performed by others includes Hall thruster modeling efforts at MIT and

elsewhere, the building of a mini-TAL at MIT, and measurements of the electron energy

distribution function (EEDF) taken in France.

To date, most modeling efforts have been too general to resolve features of the discharge

such as charge separation, boundary layers, and high frequency oscillations. A fully kinetic

simulation of a real thruster is needed.

Hall thruster are nominally axisymmetric in construction, although azimuthal oscilla-

tions may play an important role in electron diffusion. Most modeling efforts have been 1

or 2 dimensional. In the latter case, the RZ plane is usually modeled. Hirakawa has also

modeled the R8 plane [17]. A 3 dimensional model would be ideal, but this is beyond the

capabilities of a current workstation.
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1.4.1 1-D Modeling

Lentz used a one-dimensional numerical model to accurately predict the operating charac-

teristics and plasma parameters in the acceleration channel of a Japanese Hall thruster [28].

His model uses kinetic conservation equations and the method of characteristics to solve the

Boltzmann equation for electron and ion distribution functions. The electron distribution

function was assumed to be Maxwellian (the normal distribution).

More recently, Noguchi, Martinez-Sanchez, and Ahedo performed a linear (analytic) 1-D

analysis of oscillations in Hall thrusters. This model aids in analyzing low frequency axial

oscillation instabilities found in SPT's [32].

2-D Hybrid-PIC Modeling

MIT's "hybrid PIC" SPT simulations rely upon Maxwellian electron distributions, assumed

levels of Bohm diffusion, and wall effects based on the local electron temperature [9] [8] [52].

Fife built a 2-D model of the SPT-100 which included detailed wall effects [9] [8] [10].

This "Hybrid Particle-in-Cell" (Hybrid PIC) simulation treats ions and neutrals as particles,

and electrons as a fluid. It assumes a Maxwellian Electron Energy Distribution Function

(EEDF) centered about some electron temperature, Te, which is assumed to be constant

along any given magnetic streamline. This model successfully predicts overall Stationary

Plasma Thruster performance. It also predicts experimentally observed ionization oscilla-

tions to within a factor of ~~ 2 in frequency. This success relies upon Bohm diffusion of

electrons and associated adjustable coefficients.

A modified version of Fife's Hybrid-PIC numerical model was used to simulate the Busek

BHT-200-X2 SPT type Hall thruster (The author's previous research, [52]). Predicted

performance agreed well with experimental measurements when Bohm diffusion coefficients

of ~ .25 - .3 times the classical Bohm coefficient (1/16B) were used. High frequency

oscillations and electron transport were found to be sensitive to wall boundary conditions.

Correction factors to predict and account for doubly charged ions (XeIII) were introduced.

The predicted XeIII fraction was about half that measured in the laboratory for similar

thrusters. Fife modified the SPT-100 code to account directly for XeIII, but achieved a

similar result. It was supposed that the assumed isotropic and Maxwellian electron energy

distribution was incorrect.
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2D Full PIC Modeling

To correctly model the thin ionization layer present in a TAL, a numerical simulation

should not require quasineutrality or an isotropic Maxwellian Electron Energy Distribution

Function (EEDF). Instead, the simulation should allow the EEDF to evolve. To predict

the correct rate of electron transport, the simulation should include mechanisms for both

classical and anomalous diffusion. A full PIC simulation fulfills these requirements.

The PIC/Monte-Carlo/DSMC Hall thruster simulations performed by Hirakawa are the

most relevant to the simulation we construct [16][17] [15]. Hirakawa studied transport and

charge separation. Most significantly, she modeled the effects of azimuthal electric field on

electron transport The following should also be noted:

" The geometry was not that of a real thruster.

* An artificial mass ratio was assumed.

" No ion-neutral collisions were modeled.

" Hirakawa pre-simulated neutrals using DSMC and applied a 1-D density gradient due

to ionization of the form n,/nn,, = exp(-fln(1 - Th)), where nn,0 is the density in the

case of no ionization, and q, is propellant utilization.

* Charged particles re-combined at surfaces, but neutrals were not re-introduced into

the flow.

The EEDF in Hirakawa's simulation started out Maxwellian, but a non-Maxwellian was

allowed to develop as elastic and inelastic (excitation, ionization) collisions with neutrals

and ions were accounted for.

At MIT, Beidler developed a 2D3V PIC model of an Argon Hall thruster [3]. This

model used an idealized geometry, idealized cross sections, a uniform mesh, and imposed a

constant potential at the downstream boundary. The cathode current was limited by the

equation Ic = Ia. This simulation implemented many concepts essential for modeling a real

Hall thruster.

1.4.2 Measurements of the EEDF

Measurements of the EEDF in SPT type Hall thrusters show multiple populations of elec-

trons and gradients in temperature along magnetic streamlines. Interpreting most data,
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however, requires knowledge of the EEDF.

Guerrini, et.al. have measured the plasma inside SPT's by inserting probes through

the channel wall [13]. The second derivative of probe data was then used to estimate the

EEDF under the assumption that the EEDF is isotropic. They found a single population

of electrons near the anode and at the exit plan. In between, they found three different

populations (0-20, 20-35, and 35-55 eV) of electrons. These populations were affected by

voltage and flow rate. Three higher energy populations were found near the (insulating)

walls everywhere.

Emission spectroscopy shows the presence of XeIII, but electron density and temperature

measurements are needed to interpret the data. Knowledge of the EEDF will help further.

1.4.3 The mini-TAL

The thruster chosen for this simulation is the miniaturized 50-Watt TAL thruster (Hall

effect plasma thruster with conductive acceleration channel walls) built at MIT by Khayms

and shown in Figure 1-3. This thruster has been tested in the laboratory [25]. Design

characteristics of the mini-TAL are shown in Table 1.1, along with a summary of actual

performance measurements. Experimental performance date collected by Khayms are plot-

Table 1.1: The design performance of the mini-TAL is presented in the left column. The

design mass flow rate was .13 mg/s. Actual performance linearly interpolated to the same

mass flow rate is presented in the right column. Propellant: Xenon; Diameter: 4.8 mm;

B-field: .5 T; Mass flow rate: .13 mg/s; Anode Potential: 300 V.

ted in Figure 5-1 [25]. (Note: These results differ from those reported in [51], which were

preliminary). The actual variables measured were thrust, anode current, and mass flow

rate. The thrust efficiency is calculated from the thrust, T, anode current, Id , and mass

flow rate, rK;

77th = (1.2)
2rnnIdVd
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Design Actual

Anode Current(A) .17 .20
Anode Power(W) 50 60
Thrust (mN) 2.2 .86
Is, (sec) 1600 670
Efficiency .32 .048



The utilization efficiency is calculated assuming all of the ions exiting the system have

kinetic energies equal to the anode potential. That is,

rlu - .n - T v (1.3)
mn Mn

where vi = "- and (<I - I) = Vd = 300V.

The thrust efficiency of this thruster is quite low due to leakage of electrons to the

cathode. This suggests a magnetic field that is too weak or improperly aligned. Khayms

states "with a certain degree of confidence" that the permanent magnets experienced only

minimal damage due to heating [25]. Therefore, he concludes, heating of the center pole

is the most likely cause: Improper cooling may lead to high temperatures at which the

magnetic permeability of iron sharply approaches zero. Such a reduction in permeability

would increase fringing of the magnetic field inside the channel, possibly changing field

strength or allowing some field lines to cross directly to the anode, en effect "short circuiting"

the discharge.

A mean free path analysis indicates that both electron-neutral and Coulomb scattering

should be important to this thruster's operation, and that the length L of the simulation

region will be about 150 nominal Debye lengths.

1.5 Thesis Topic

The subject of this thesis is a PIC/Monte-Carlo numerical simulation of a Hall effect plasma

thruster with conductive acceleration channel walls. All particles are treated kinetically;

none are pre-simulated. Because the Debye length in this thruster is large in comparison

to geometrical scale lengths, the simulation can be run on an ordinary workstation. The

simulation includes elastic and inelastic (exciting and ionizing) electron-neutral scattering

collisions. It also includes electron-electron and electron-ion collisions, as well as ion-electron

recombination at the boundaries. Other interesting kinetic effects such as charge exchange

collisions and ion-neutral scattering are also included.

Both an artificial mass ratio and an artificial permittivity are assumed. Other modifica-

tions to the physical parameters are introduced in order to retrieve physical results despite

the modified mass ratio (see 2.6.2). The magnetic field is pre-computed, while the electric
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Figure 1-3: Diagram of Khayms mini-TAL.

field and sheath structures are computed self-consistently using a finite difference method.

The simulation proceeds on the electron time-scale to capture high frequency dynamics and

the EEDF.

Objectives of Research

Specific goals of the simulation include:

" Predict performance of a real thruster.

" Predict particle moments such as electron temperature and density.

" Predict the electron energy distribution function.

" Examine methods of electron transport.

" Examine oscillations.

" Predict particle moments.

" Create a design tool.
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In short, we wish to understand the plasma in a microscopic sense. This will help en-

gineers predict and design around oscillations, electro-magnetic emissions, efficiency loss

mechanisms, plume divergence and channel erosion. It will also aid in spectroscopy.

1.6 Methodology

The first formal step in solving the thesis problem was to devise and write a 2D-3V PIC

algorithm to handle the charged particle dynamics, and embed a Monte-Carlo algorithm to

handle heavy particle dynamics. The next step was to adapt the algorithm to the specific

thruster, and to account for all possible relevant effects such as: electric potential boundary

conditions; cathode emission; heavy particle collisions with the walls; scattering collisions;

ionization collisions; multiply charged ions; Coulomb collisions; excitation collisions; charge

exchange collisions; Bohm diffusion; azimuthal waves; and secondary electron emission.

(The last two effects are not modeled in the simulation). These steps were described in pa-

pers, along with preliminary results [50] [51). The final phase of the research was to validate

the results through parametric studies and comparison with experimental measurements.

1.7 Summary of Theory (Chapter 2)

To simulate the mini-TAL, we use a fully kinetic model which includes both Maxwell's

equations and collision terms.

1.7.1 Dimensions

Hall thrusters are nominally axisymmetric. Therefore, an axisymmetric numerical model

should be sufficient to reproduce most features observed in the laboratory. Here, we model

two dimensions in space, the R (radial) and Z (axial) directions (See Figures 1-2 and 3-21

for visualization). To track the particles, we model three dimensions in velocity: R, Z, and

0, the azimuthal direction. However, particles are not permitted to move out of the R-Z

plane; they are moved in three dimensions at each time-step, but their final positions are

always "folded back" into the R-Z plane. For these reasons, we term this a 2D3V simulation.
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1.7.2 Equations and Units

The unit systems used in this thesis are discussed in Section 2.5. Maxwell's equations may

be normalized using the natural units shown in Table 1.2. This enables easy interpretation

of results. The normalized unit system is derived in Section 2.5.2. In this system, the unit

of distance is the nominal Debye length, the unit of time is the nominal inverse plasma

frequency, the unit of potential is the nominal electron temperature in eV, and so on.

Nominal values are estimated at program initialization. For the cases presented, the nominal

temperature was Te = 50 eV. Other nominal values can be read from Table 1.4.

Table 1.2: Normalization
and ne are pre-computed

Constants. Note that [v] - x, [E] = , and [B] = i . Te
nominal estimates. System is ased on tIGS units.

1.7.3 Mean Free Path Analysis

A mean free path analysis is presented in Section 2.8. Particles gain and lose energy and

momentum during elastic and inelastic collisions with other particles. A mean free path

analysis helps decide which collisions to include in the simulation, and which to ignore.

Table 1.3 lists the types of collisions we considered and those we included.

The reaction rate between two species can be expressed as a function of their densities

(ni, n 2), relative velocities (v 12 ), and a cross section Q12;

R12= nin 2v 12 Q 12 . (1.4)

The mean free path of a particle of species 1 interacting with a background of species 2 is

__1

A12 = 1
Q12n2

(1.5)
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units base
charge [q] e
mass [m] me
temperature [T] Te
distance [x] AD
time [t] W-
velocity [v] vth,e/v
electric field [E] [v] 4,7rneme
magnetic field [B] c 47rneme



Table 1.3: Types of collisions in a Hall thruster. Based on the mean free path analysis, only
certain types of collisions are included in the simulation. Table reappears as 2.11.

where Q12 is the cross section for the interaction. Electron-neutral scattering cross sections

gathered from the literature are presented in Figure 2-7. Third and Fourth order polynomial

fits to the data are used in the code. These are shown by solid lines in Figure 2-7

Some of the expected mean free paths are listed in Table 1.4. The large Knudsen number

(Kn = Amfp/L where L is an expected path length) for heavy-heavy particle interactions

justifies the collisionless approximation. Electrons are magnetized (trapped on magnetic

streamlines) which extends their path lengths such that each is expected to undergo many

collisions. Indeed, the thruster wouldn't work otherwise. Coulomb collisions should only

be important for low energy electrons. Charge-exchange collisions are included; they are

of special interest to plume modeling and erosion studies. Ion-Neutral elastic scattering is

also included since the cross section is similar. Neutral-neutral scattering is ignored; the

effect should be minor, and doing otherwise would require using a more computationally

expensive Direct Simulation Monte Carlo (DSMC) methodology.

1.7.4 Diffusion

Diffusion is discussed in Section 2.10. Possible mechanisms for electron transport toward the

anode include classical diffusion, Coulomb scattering, wall effects such as secondary electron

emission, azimuthal plasma waves, and E x B drift associated with the E fields of azimuthal

plasma waves. Since the walls of the acceleration channel are metallic, we ignore secondary

emission (thought to play an important role in SPT electron transport). Furthermore, since
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Type Included
Electron-Neutral Elastic Scattering X
Electron-Neutral Ionization X
Electron-Neutral Excitation X
Electron-Electron Coulomb X
Electron-Ion Coulomb X
Ion-Neutral Charge Exchange X
Ion-Neutral Scattering X
Ion-Ion Coulomb
Neutral-Ion Scattering X
Neutral-Neutral Scattering
Electron-Ion bulk recombination
Electron-Jon wall recombination X



Table 1.4: Mean free paths for various collision processes along with estimates of various

lengths, velocities, and frequencies in the channel of the mini-TAL. All units CGS unless
otherwise noted. Numbers assume physical free space permittivity. Neutral transit time
L/ < vn >z in terms of (w- 1 ) drops by a factor of 10 with c, increase of 100x. Neutral
transit time is further decreased by adopting an artificial mass ratio. Similar table reappears
as 2.12.
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Parameter Symbol
Electron Temperature (eV) [Te] 30 50
Mass Flow Rate (mg/s) N -13 .13
Neutral Injection Temp (eV) T, .1 .1
Magnetic Field B 5000 5000
Ion Sonic Speed Vi 5e5 6e5
Elec Mean Thermal Vel. Je 3.7e8 4.7e8
Plume area s, .10 -

Neutral Density nn,o 7e14 -

Plasma Density [ne,o] 1e13 9e12
Debye Length Ad .0012 .0018
Characteristic Length L .24 .24

L/AD 199 135
Electron Gyro Radius (mm) rce .0037 .0048
Ion Gyro Radius rci 1.3 1.7
e-n scattering mfp Aen .66 .66
i-n charge exchange mfp Acex,i .25 .26
n-i charge exchange mfp Acex,n .69 .73
i-n scattering mfp Ain .83 1.1
n-i scattering mfp Ani 2.3 3.0
n-n scattering mfp Ann .30 .30
e-e Coulomb mfp Aee 95 320
e-i Coulomb mfp Aei 130 450
Electron Plasma Freq. Wpe 1.9e11 1.7e11
Elec Cyclotron Freq. Wce 8.8e10 -

Ion Cyclotron Freq. Wci 3.7e5 -

Neutral Transit Time (w-1) r 2.1e6 1.8e6



Table 1.5: Effect on reference values of increasing permittivity by a factor of 72.

the model is axisymmetric, azimuthal wave effects are not considered. However, anomalous

Bohm type electron diffusion is included through an equivalent scattering frequency. This

effect may be turned on or off through a numerical switch in the header file.

1.7.5 Speeding up Heavy Particles

Methods to accelerate convergence of the simulation are discussed in Section 2.6. To capture

electron dynamics, we need a time-step on the order of the inverse plasma time. Unfortu-

nately, neutral particles at the real mass ratio will require millions of such time-steps to

cross the simulation region. (The number of time-steps required is the "characteristic time"

in Table 1.4, which assumes T, - .1 eV.). We cannot track billions of particles for millions

of time-steps. To allocate resources more efficiently we do the following:

* We use super-particles (groups of - 106 particles) in lieu of tracking individual parti-

cles.

" We decrease the heavy particle mass such that M/me ~ 100. This speeds up heavy

particles.

" We increase the free-space permittivity constant (c' = co-y 2 ). This increases the

Debye length, allowing a coarser grid, and slows plasma oscillations, allowing a longer

time-step. Effects on some nominal parameters are shown in Table 1.5.

To preserve densities and mean-free-paths when heavy particles travel too fast, the factor

f < 1 is introduced. This is defined by the following:

M = f ; _ = 1- (1.6)
M Vnf
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Parameter Symbol x-Factor
plasma frequency Wpe 1/7
Debye length AD

time [t] I
distance [x] 7
velocity (v] 1



The neutral density n, at the anode exit is preserved by scaling back the mass flow rate.

Since rh = Mnrvn A, holding n, constant requires

rn' M'v
- Vn v7 (1.7)

mh Men f

Relative rates of electron and ion transport are nominally preserved by scaling collision

cross sections according to

S 1 (1.8)
Qtf

This is equivalent to increasing the scattering frequency. As discussed fully in Chapter 2,

this increases the electrical conductivity of the plasma perpendicular to the magnetic field

in proportion to the increase in ion velocity (due to its artificial mass) across the magnetic

field, thus preserving internal scales such as the width of the ionization region. Mass flow

rate, thrust, and I, must be re-scaled at the thruster exit in order to plot the performance.

1.8 Summary of Numerical Method (Chapter 3)

This section introduces the numerical method which is described fully in Chapter 3. The

simulation combines Particle-in-Cell and Monte Carlo methodologies [50]. All particles are

treated kinetically; their trajectories are followed as they move within a computational

grid. All particles move on the same time-scale. Charged particles experience electric

and magnetic forces according to Maxwell's equations. Electrons also experience electron-

neutral and Coulomb collisional forces. Neutrals are subject only to Newton's laws, except

when they encounter boundaries. Ion-neutral scattering and charge exchange collisions are

included. Other heavy particle collisions are ignored; mean free paths justify a collisionless

approximation. Recombination of electrons and ions at the boundaries is modeled, and

neutrals are re-introduced into the flow. However, bulk recombination is ignored.

The simulation region is shown in Figure 1-4. The methodology is visualized in Figure

1-5. In words, the basic structure of the code is as follows:

Pre-commutate B-field, grid, neutral plume

Call "pic"

- Initialize variables

- Load particles from previous run

Iterate in time XX time-steps
- Calculate charge distribution
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Figure 1-4: The simulation region. Preliminary versions of the simulation modeled the

anode boundary as a flat wall [51]. The simulation region was later expanded to encompass
the complex anode and inner magnetic pole boundaries. In contrast, early versions of the
simulation placed the cathode on the free space boundary, while later versions assume it is
beyond the domain of simulation. Dimensions are in millimeters.

- Solve Poisson eqn. for electric potential
- Calculate E-field

- Move neutrals, ions, and electrons v*dt

-- apply fields

-- boundary conditions/particle losses

-- statistics: scatter, ionize, excite

-- create new particles

Post-process data

1.8.1 New Features

This simulation differs significantly from previous full PIC Hall thruster simulations. Unique

features include the following:

" The geometry is that of a real thruster, for which some experimental data is available.

" The numerical grid is non-orthogonal.

" A novel method for accelerating classical diffusion and retrieving physical results is

implemented.
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" The free space permittivity constant is changed to exaggerate sheaths and accelerate

the simulation.

" Anomalous diffusion is included via an equivalent scattering frequency.

" Ion-neutral charge exchange and scattering collisions are modeled.

" The wall potential is allowed to float. It is computed self-consistently.

" Cathode electrons are injected at the rate required to preserve quasineutrality at the

free-space (plume) boundary.

" Coulomb collisions are modeled as a diffusion process in velocity space.

An important (but not entirely unique) feature of this simulation that all particles are

simulated on the same time-scale. Neutral self-collisions are lost, but the result is more

self-consistent. Beidler did this, but Hirakawa pre-simulated neutrals using DSMC. Like

Beidler and Hirakawa, we use an artificial mass ratio and neglect multiply charged ions.

1.8.2 Running the Code

We begin the simulation by allowing a plume of neutrals to expand from the anode with a

long time-step until we approach a steady state. Next we introduce a background plasma

which "ignites" the neutrals. A high density plasma develops in the near anode region

and the ions accelerate toward the free-space boundary under the influence of the electric

potential. Electrons diffuse from the cathode to the anode, elastically and inelastically

interacting with other particles to determine the EEDF. Quantities such as anode current,

thrust, and ionization rate are saved at each time step.

1.8.3 Grid

The numerical scheme requires a grid fine enough to resolve a Debye length, Ad. [5]. For

the mini-TAL, such a grid would require about 800 x 500 nodes. To make the problem

more tractable, we artificially increase Eo by a factor of 72, thereby increasing Ad by 7. This

allows us to use a much coarser grid. If -y = 10, an 87 x 49 grid yields approximately a

Debye length of resolution.
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1.8.4 Time-Step

The stability of typical PIC schemes requires a time-step on the order of the inverse of

the plasma frequency. This means ~ 10-8 seconds for the ions, and ~ 10-11 seconds for

the electrons. The time-step also needs to be short enough to resolve electron cyclotronic

motions. We increase the time-step an order of magnitude by adopting an artificial Ec.

1.8.5 Magnetic Field

The magnetic field is discussed in Section 3.13. The magnetic circuit in the thruster was

designed by Dexter Magnetics, who provided a mapping of the field. This field was bilinearly

interpolated to our numerical grid. The near-anode field is shown in Figure 1-6.
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Figure 1-6: The magnetic field of the thruster in the near anode region. The anode begins at

Z = 0. The centerline is at R = 0. The outer magnetic pole begins at the top of the shown

region. The field mapping from Dexter continues beyond left, right, and top boundaries.

The axes are in nominal Debye lengths, after accounting for e', = Y2C. Nominal field

strength is 5000 Gauss (0.5 Tesla).
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1.8.6 Initial Distributions and Particle Injection

As discussed in Section 3.19, initial Maxwellian particle distributions are achieved by using

the rejection method for position, and the Box-Muller transformation for velocity [7]. A half-

Maxwellian is assumed for neutrals entering the system at the anode and cathode electrons

entering the system at the free space boundary. Neutrals are given an initial temperature

of .1-eV, while cathode electrons are given a temperature of between 0.2-eV and 2.5-eV,

depending on where they enter the simulation region. Low energy secondary electrons are

created in the center of the plasma through ionization events. Likewise, neutrals are created

at the walls through ion-electron recombination.

1.8.7 Interpolation and Computational Coordinates

Interpolation is discussed in Section 3.8. All positions in the computational domain are

assigned two sets of coordinates: Real coordinates, corresponding to the location in Z-R

space, and computational coordinates, which are integers at the nodes. Bilinear interpo-

lation (weighting by areas in computational coordinates) is used to map real coordinates

to computational coordinates, and vice versa, as per Ref. [45]. It is also used to weight

particles to the grid nodes, where the field equations are solved, and to weight the fields

back to the particles.

1.8.8 Calculating the Electric Potential and Field

The method of solving for the electric potential is presented in Section 3.12. The electric

potential is re-calculated each time-step using finite differences and the integral form of

Gauss's Law (CGS): f V# - ds = 47rf e(ni - ne) dv = 47rQ. The left hand side represents

the flux of electric field across a cell boundary, while Q is the charge contained within that

boundary. This equation is solved iteratively using successive over-relaxation (SOR). At

each iteration, the potential #t+1 is calculated from the potential at iteration t according to

kJ k + W k~Jj - q ) (1.9)

where #t. is determined by the potential at the surrounding nodes according to Gauss's

Law. To estimate #t .5, we use a 9 point scheme which accommodates both Cartesian and
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non-Cartesian (e.g.elliptic) grids:

S- 
(1.10)

k~j ~N + S+E +W

where

C = 47rQk,j + Nk,j+1 + Sqkj-1 + Ek+1,j + W k_1,j

+N(#k+1,j + #k+1,j+1 -- 4k-1,j - #k-1,j+1)

+$'(#k+1, + #k+1,j-1 - -j -k-1,j-1) (1.11)

+E (#k+1,j+1 + #k,j+1 -- k+1,j-1 - #k,j-1)

+V (#k-,j+1 + #k,j+1 - k-I,j-1 - #k,j-1)-

The constants N,S,E,W and N,$,Eand W incorporate both areas and derivatives. Con-

vergence is determined by the difference between zero and the largest value of the quantity

Akj, defined by

Akj = -C + # (N + S + E + W). (1.12)

Machine level precision is achieved in less than a thousand iterations (t - 800 is sufficient for

a 50 x 80 grid). Once the potential is determined, the electric field F= -V# is calculated

using finite differences. The field is then interpolated to the particles.

1.8.9 Moving the Particles

The leapfrog method of Boris is used to time-step the particles forward [5]. This involves

separating the Lorentz force into electric and magnetic components. This method can be

shown to produce less than one percent error in angle of rotation for wcAt < .35 [5]. As

particles are stepped forward in real coordinates, they are also tracked in computational

(grid) coordinates, ( and I.

1.8.10 Boundary Conditions

Boundary conditions for particle impact are discussed both in Section 2.12 and in Section

3.18. When particles encounter boundaries, they may be collected, destroyed, or re-emitted.
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Anode

All electrons which hit the anode boundary are destroyed. Ions which hit are partially

accommodated; they are neutralized and re-emitted in a random direction at half their

initial energies. Neutrals which hit are fully accommodated; they are re-emitted according

to a half Maxwellian at the wall temperature.

Conductive Walls

At conductive walls, electrons are destroyed, ions are neutralized and partially accommo-

dated, and neutrals are fully accommodated. No secondary emission is assumed. The center

pole and the outer wall are electrically connected; at any time-step, they have a common

floating potential determined by the net charge collected and a pre-computed capacitance.

Insulators and Gaps

The gaps between the anode and floating walls may be modeled as insulators, magnetic

boundaries, or perfect reflectors. At insulators, particles are accommodated as at the con-

ducting walls, but charge accumulates locally. The sheath is then determined through

Poisson's equation by the electric potential solver (a stand-alone function), which takes into

account the charge collected at the wall. At magnetic boundaries, electrons are reflected ac-

cording to their kinetic energy and magnetic moment; if they have sufficient energy to reach

the conducting walls, they are destroyed. Otherwise they are reflected. Purely reflecting

boundaries are self explanatory.

Cathode

The cathode is not modeled explicitly in this simulation. Instead, electrons which originated

at the cathode are injected through the free space boundary.

Free Space

At the free space boundaries, all particles are deleted. Electrons are re-introduced at a rate

which preserves local charge neutrality. This rate is determined by integrating in space

along the free space boundary to find the net charge (along the entire boundary) at each
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iteration. If the net charge is positive, an equivalent number of electrons are introduced. If

the net charge is negative, no electrons are introduced.

Centerline

Any particle which encounters the centerline is specularly reflected. This is an extremely

rare event; it only occurs for particles with zero angular momentum.

1.8.11 Inter-particle Collisions

The numerical method associated with particle-particle collisions is discussed in Section 3.2,

which describes the Monte Carlo Collision methodology, and Section 3.15, which describes

changes in energy and momentum.

Electron-Neutral Collisions

The dynamics of electron-neutral scattering collisions are discussed in Section 3.15. Electron-

neutral scattering is handled during the electron loop. For each electron at each time-step,

the total scattering cross section is found, which yields an expected collision frequency. This

frequency, the length of the time-step, and a random number are then used to determine

whether a scattering event takes place. If so, cross sections for excitation, ionization, and

elastic scattering are compared to determine what type of event occurs. In all cases, the

electron is scattered isotropically. If the collision is inelastic, energy is subtracted from the

electrons. In the case of ionization, ions and secondary electrons are created at the primary

electron's location. Positions of ionization events are recorded and neutrals are deleted

accordingly when they are moved.

Ion-Neutral Collisions

Ion-neutral charge exchange and scattering collisions are handled using a similar Monte

Carlo methodology.

Coulomb Collisions

Coulomb collisions are discussed in Section 3.16 of the thesis. They are handled using either

a Monte Carlo approach discussed in Section 3.15.4, or a diffusive approach discussed in
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Section 3.16.3. The latter approach uses the Langevin equation [2]. The nonlinear Landau

Coulomb collision term contains both a dynamical friction force component, FO/0, and a
<-+a/0

component of diffusion tensor, D , which is caused by Coulomb interaction of a with

species 3. Both F! 1 and D are given in terms of Rosenbluth potentials. In effect, each

particle collides with the whole ensemble as represented by the Rosenbluth potentials.

1.8.12 Particle Moments

The positions and velocities of the particles are tracked in any PIC scheme. The EEDF

and particle moments such as density, mean velocity, and temperature can be extracted at

any time-step. Section 3.10 presents the method for doing so. Moments are tallied at each

grid point. The EEDF is tallied at several internal points and along magnetic streamlines.

Time averaging provides smooth curves for analysis.

1.9 Facilities

The simulation was performed alternately on a 64 bit SGI Octane workstation

CPUs: 2 175MHz MIPS R10000(IP30)

Main Memory: 256 MB

Operating System: IRIX64 Release 6.5

and on a PC which is over twice as fast.

CPU: AMD 850MHz Athlon

Main Memory: 512 MB

Operating System: Windows 2000

With 20K plasma particles of each species and a simplified anode geometry (a flat wall), the

PC accomplishes about ~ 80K time-steps (iterations) in 35 hours. In Section 2.7, we show

that this is equivalent to the neutral transit time from the anode to the free space boundary

assuming M/m = 96, -y = 10, and wpeAt = .1. With a more realistic anode geometry and

50K particles of each species, the simulation achieves 30K time-steps per day. The time

to reach a "converged" solution on a 50 x 80 grid (-y 10) with - 50K super-particles of

each species and an artificial mass ratio thus ranges from several days at M/m = 96 to

more than a week at M/m = 960. Using -y = 5, which is more physical, requires more CPU
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time per iteration; the simulation then runs about four times slower. The computational

restrictions are frustrating, but the machines we use will soon be superannuated.

Contour and vector plots of results were created using TecplotTM. Additional plots were

generated using MatlabTM

1.9.1 Future Requirements

Using a real mass ratio and co would require much longer convergence times and, hence,

a more powerful computer. Alternately, convergence times might be decreased running

electrons and heavy particles at separate time-steps, or holding heavy particles still while

allowing electrons to equilibrate.

1.10 Summary of Code Validation (Chapter 4)

Chapter 4 describes the tests performed to validate the code. The accuracy of the potential

solver was tested on a function which is periodic in z and r. The leapfrog algorithm was

tested by tracking single particles with electric field only, magnetic field only, and a com-

bination of the two. Cyclotron motion and ExB drift were successfully observed to high

levels of accuracy. A cold plasma was created and oscillations at the plasma frequency

were observed. Momentum conservation, energy conservation, and numerical heating were

observed by creating an initial thermal distribution, closing the boundaries such that no

particles could escape, and letting the plasma oscillate, assuming specular reflection at all

boundaries. Energy conservation of single particles was tested by tracking the energies

and positions in time of a few chosen electrons as the simulation ran, with the electric

potential fixed in time, and with the electric potential allowed to oscillate. Similar tests

showed magnetic bottling and conservation of magnetic moment. The general methodology

of Maxwellian particle injection, the initial particle distribution, and the methodology for

finding the EEDF and other moments were tested simultaneously by analyzing the initial

EEDF. Parametric tests were performed to assure that effects of capacitance, mass ratio,

artificial permittivity, and inclusion or exclusion of various collisions were understood. The

ultimate test was a comparison of predicted results with experimental results.
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1.11 Summary of Results and Conclusions

(Chapters 5 and 6)

Results of the simulation are presented and discussed in Chapter 5. Results are summa-

rized in Chapter 6, which also includes recommendations for improving and extending the

simulation. New numerical results include the following:

" The magnetic field of the mini-TAL was designed incorrectly.

" The mini-TAL was re-designed numerically; thrust efficiency increased by about ninety

percent.

" The mini-TAL's published propellant utilization was corrected.

" The electron distribution is non-isotropic; it is best represented by a two-temperatures,

one each for directions parallel (Tii) and perpendicular (T_)to B.

" The model predicts non-Maxwellian electron populations in the perpendicular direc-

tion near the anode (see Figure 5-17).

Other interesting numerical results include the following:

* Numerical and experimental results are similar. The simulation over-predicts Thrust

and I, by about thirty percent.

" Performance increased with mass flow rate.

" Ionization oscillations were observed at higher mass flow rates.

* The plasma extends to the interior of the hollow anode under certain conditions.

" The simulation predicts gradients in electron temperature along magnetic streamlines.

" Oscillations in plasma density were observed.

" Anomalous diffusion increased performance by ten percent.

" Coulomb collisions changed performance slightly.

* Langevin Coulomb changed the electron temperature and distribution.

In conclusion, we showed that the full-PIC Monte-Carlo method is a viable alternative for

investigating small scale plasma flows in a Hall thruster.
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Chapter 2

Theory

Hall effect plasma thrusters are essentially rockets in which the working fluid is a plasma

and the means of acceleration is an electric field. The plasma acceleration region is usually

comprised of two concentric cylinders which are either metallic (TAL type thrusters) or

dielectric (SPT type thrusters). At one end of the annulus sits a highly biased (300 Volts is

typical) hollow anode which produces an axial electric field. The other end of the annulus

opens to free space. Neutral gas is injected through the anode, electron impact ionized, and

accelerated out the other end of the annulus by the E field. An external cathode supplies

electrons to neutralize the beam and sustain the discharge. Electrons are impeded in their

motion toward the anode by a radial magnetic field. Trapped in cyclotronic motion, they

spend most of their time drifting azimuthally due to the Hall effect (which gives these

thrusters their name), allowing them time to ionize the neutrals. They arrive at the anode

primarily through diffusion.

2.1 Dimensions of Simulation

Figure 2-1 shows both the mini-TAL and the simulation region used to model it. To

simplify the problem numerically, our model neglects gradients in density and field in the

azimuthal (6) direction. Since Hall thrusters are nominally axisymmetric, our model should

nevertheless reproduce most features observed in the laboratory.

This model does not ignore all movement in the azimuthal direction. Particle velocities

are tracked in three dimensions: R, Z, and E. (The coordinate ordering is (r, z, 6).) Fur-

thermore, at each time-step, particle positions are stepped forward in all three directions.
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Figure 2-1: The mini-TAL and an outline of the simulation region. The left side of the

simulation region lies upstream from the anode exit. Thrust is in the Z (axial) direction,
while the magnetic field is nominally in the R (radial) direction.

However, only the radial and axial components of position are maintained; the azimuthal

component of position is discarded. For this reason, we term this a 2D3V simulation. Such

simulations are sometimes called 21 D. For a full description of the "particle pusher", see

Section 3.14.

2.2 Simulation Region

The relationship between the thruster and the space vehicle is shown in Figure 2-2. The

larger control volume encompasses the entire spacecraft. The smaller control volume delin-

eates the boundary of the simulation region. (The thruster shown is only representative; the

biased anode sits inside the floating body of the thruster.) The circuit shown was used to

develop boundary conditions for our simulation. In a steady state, the net current leaving

the control volume around the space vehicle is zero. The anode is biased some discharge

voltage above spacecraft ground (which floats relative to infinity). The cathode is normally

held at spacecraft ground potential. In a TAL, the metallic channel walls are often held

at cathode potential. Here, we let them float as per the mini-TAL. We insert a numerical

capacitor of 1 x 10- 1 0 F in between the walls and spacecraft ground to limit oscillations due

to variations in wall potential. The calculated capacitance of the thruster body modeled as
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Figure 2-2: Circuit diagram of spacecraft and thruster. The larger region encompassing the
entire spacecraft was used to generate boundary conditions for the smaller region, which is
actually simulated. The thruster shown is only representative; the biased anode sits inside
the floating body of the thruster.

an isolated body in free space is about two orders of magnitude smaller.

Any full PIC simulation is computationally intensive. Our simulation is especially cum-

bersome because we track oscillations at the electron plasma frequency; we need to solve

Poisson's equation on a grid with spatial resolution of a Debye length. To maximize re-

sources, we want the simulation region to be as small as possible.

It is possible to simulate the cathode and plume directly, but this requires a control

volume large enough to allow electron transport to occur naturally. Such a control volume

is computationally cumbersome. To save resources, we use a smaller, CPU saving control

volume and simulate the cathode indirectly. Hence, Figure 2-2 shows the cathode outside the

simulation region (the smaller control volume). Details of the region modeled explicitly are

shown in Figure 2-3. It would be inappropriate to model the cathode directly by placing

it inside this smaller simulation region. It would be too close to the thruster body, and

electron transport would be skewed.

The assumption that the plasma is quasineutral (ne = ni) is valid when Xd is much

smaller than other scale lengths of interest. Oh's plume model [33] assumes quasi-neutrality
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Figure 2-3: The simulation region. Dimensions are in millimeters.

and constant electron temperature (Te = 2eV), in which case the Boltzmann relation,

ne = ne,oexp(#A), may be applied to predict the electric potential, <$. Fife's SPT thruster

model [10] uses these same assumptions, but only applies them along magnetic streamlines.

In this simulation, we model sheaths self-consistently, only assuming quasi-neutrality at the

downstream boundaries of the simulation region. This assumption is the basis for a "bang-

bang" electron injection control system; we inject electrons at the free space (simulation

region to plume) boundary at the rate required to preserve quasineutrality, ne ~ ni. An

alternative option is to use the steady state relation Id = Ic to determine the electron

current across the free space boundary. In Chapter 4, we show that this "steady state"

condition is flawed.

Following Oh and Fife, the potential at the free space boundary of our simulation may

be calculated from the Boltzmann relation. Alternately, it may be assumed to be constant

(<> = 0), or it may be calculated from Poisson's equation by assuming Ez = 0. This last

condition is assumed to produce results presented in Chapter 5. The upper right corner of

the simulation region is assumed to be at cathode potential, OV.
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Table 2.1: Symbology used for current balance. A (+) attached to a current means ions,
while a (-) means electrons. For example, I+ is the beam ion current.

2.3 Current Balance

A simplified current balance is visualized in Figure 2-4, where the symbology of Table 2.1

applies. In electrical engineering, current is normally taken to be positive in the direction

of ion motion and negative in the direction of electron motion. For clarity, however, Figure

2-4 shows current to be in the direction of motion for both ions and electrons. Free space,

anode, and cathode boundary conditions are inter-related.

The discharge current is the sum of the anode electron and ion currents:

Id = Ia - Ia (2.1)

The current from the cathode both compensates the beam and sustains the discharge. This

may be written

Ic = Icd + Icb, (2.2)

where Icd is the cathode current which goes to the discharge, and Icb is the cathode current

to the beam. If the ions in the beam are fully charge compensated by electrons, then

I = -Icb + Iaz I= |I. (2.3)

In other words, the beam is compensated by a combination of cathode electrons and elec-

trons which diffuse outward from the acceleration zone through the free space boundary,
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I anode ion current
I- anode electron current

Id discharge (net anode) current

Ic cathode electron current
Is ionization current

Ib.r. loss to bulk recombination
I,+, ion loss to wall recombination
I; electron loss to wall recombination
I beam ion current
I beam electron current

Icd electron current from cathode to the discharge

Icb electron current from cathode to the beam



Iaz.

Ion conservation leads to the next equation. Ions are produced through electron-neutral

impact ionization. They are lost to the beam, and through recombination at the anode,

walls, and in the main body of the discharge (bulk recombination);

I= I +I+I+ Ir =I+IS1 . (2.4)

This equation says the beam current is equal to the ionization current minus losses. In a

steady state, I+ssesl IIiossesl. Of course, II = |I7-.

Electron conservation leads to the last key equation. In a steady state, the electron

current leaving the computational domain at the anode, free space boundary, and through

recombination must equal the electron current being introduced through ionization and

through the cathode;

I;- + az + I, = It + Ic. (2.5)

We have assumed that I+r =Ir 0. Note that double ion production ionization (Xe 2 +)is

accounted for automatically.

By substituting I from Equation 2.4 into Equation 2.5, assuming I, = 1;, and 1 b.r = 0 ,

one obtains the equation

Ib c - I;- =I d - e + Iaz. (2.6)

This equation says the magnitude of the net anode current into the anode is equal to

the magnitude of the ion beam current plus the cathode current required to sustain the

discharge minus those electrons which diffuse through the free space boundary. Thus, in a

steady state,

Id = -Ic. (2.7)

The net current into the anode is equal to the electron flux out of the cathode. In fact, this

is the usual mode of operation for a Hall thruster. Exceptions occur at startup or at other

transients.

Note that the net current across the free space boundary is equal to the cathode/anode

current.
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Figure 2-4: Steady state current balance in a Hall thruster. During startups and transients,

Ic does not equal Ia exactly. The net beam current leaving the spacecraft depends on

external factors such as the overall charge balance between the spacecraft and surrounding

space. For both electron and ions, current is shown to be in direction of net particle motion.

2.3.1 Numerical Implementation

Electrons must be replenished through the free space boundary to produce Icd But at what

rate should they be created? Let us consider two options. First, we consider controlling

the cathode current according to the steady state conditions Ic = Id. Then we consider

letting the cathode current be determined by the beam quasineutrality assumption. In both

cases, we simulate Icd, that portion of the cathode current which enters the discharge, but

implicitly assume Icb goes to the beam somewhere downstream, outside of the simulation

region.

Our first option is to require that the cathode and anode currents exactly balance as

in a steady state: Ic = Id. This allows us to determine IcM, the electron flux at the free

space boundary. Henceforth, this will be called the "steady state current control method

of electron injection". Numerically, we subtract from Ic the beam ion current, I-, and

add the number of electrons which diffuses outward across the free space boundary, Iz, to

determine the number of electrons to be created along the free space boundary:

Icd = Ic + laz - I+ . (2.8)
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This method was used to generate results presented in Reference [51]. The problem with this

method is that at startup the charge distribution is unbalanced. Furthermore, transients

and wall losses further complicate the charge balance. Unless there are no oscillations and

we have exactly guessed the net charge at the beginning of the simulation, the result is a

plasma which is not always quasi-neutral near the free space boundary. In fact, we shown

in Chapter 4 that the entire simulation is unbalanced.

Our second option is more natural: We calculate Icd from the assumption that ne ~ ni

along the boundary and then post calculate Ic. Henceforth, this shall be called "the quasi-

neutral electron injection method". This approach appears to be more effective. It is

implemented as follows: At each iteration, we find the net charge in the volumes along the

boundary, Q = Eiqi = f pedV. If Q > 0, we inject Q electrons, locating them by using pe

as a distribution function. If Q < 0, we inject no electrons. This control system results

in a charge distribution at the free space boundary which is quasi-neutral, the state in the

plume. The cathode current is then a result of the state inside the simulation region,

Ic = I+ + Icd - Iaz ~ I+ + Icd, (2.9)

where the last expression refers to the fact that Iaz is usually small.

More details of the electron injection methods are found in Section 3.20.

2.4 Performance Variables

The total power required to sustain the discharge can be written

P Pdischarge + Pcathode + Pmagnets - (2.10)

The discharge voltage, Vd, is typically applied between the anode and cathode, the cathode

being at spacecraft ground (which is itself sometimes floating). Hall thrusters are typically

operated at constant Vd. Thus, the discharge power used by the thruster is determined

primarily by the net current (electrons minus ions) entering the anode, a.k.a. the discharge

current, Id:

Pdischarge = Pd = VdId- (2.11)
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Discharge current varies with anode potential, mass flow rate, magnetic field strength and

shape, and many other factors.

The mini-TAL can use either a thermionic or hollow cathode. Depending on the cathode

chosen, Pcathode can vary, but an appropriately sized hollow cathode should require less than

10 percent of the discharge power.

Since the mini-TAL uses permanent magnets, the power drawn by the magnets is zero,

i.e. Pmagnets = 0.

A typical measure of efficiency is the "thrust efficiency", Tit, defined by

1 t 2. (2.12)

This figure of merit compares the amount of kinetic energy in the beam to the amount of

energy required to sustain the discharge, considering only the anode. Factors influencing

the thrust efficiency include the propellant utilization, beam divergence, location of the

main region of ionization, and losses due to recombination. The overall efficiency of the

thruster would use P instead of Pd.

The thrust is equal to the mass flow rate times the mean exit velocity,

T = ? < v >= 7-i,b < Vi > +7 n,b < Vn > Thi,b < Vi >, (2.13)

where rni,b is the ion mass flow to the beam, < vi > is the mean axial velocity of ions

entering the beam, and so on. (Thrust predictions presented in Chapters 4 and 5 factor

in both neutral and ion thrust). The specific impulse of the thruster is equal to the mean

exit velocity divided by the gravity at the earth's surface, I, =< v > /g. This takes into

account total thrust and total mass flow rate.

Since T h Ti,b < vi >, the thrust efficiency may be rewritten

T ,1 2 < V, >2

7 t <V2 > (2.14)
rhnIdVd in Id e Vd '

where M is the mass of a Xenon ion, Vd is the discharge voltage, Id is the discharge current,

e is the charge of a singly charged Xenon ion, and rh = rhn is the mass flow rate of neutrals

into the thruster. This last expression for thrust efficiency may be rewritten as the product
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of three other efficiencies;

nt - 77e707u (2.15)

These are the propellant utilization efficiency, 7n, the acceleration efficiency, 77a, and the

electrical efficiency, e. The electrical efficiency is the ratio of ion beam current to electron

discharge current,

?7e = -(2.16)
Ie

This accounts for the electrons required to sustain the discharge. Ideally, this figure will be

close to unity. The acceleration efficiency is a measure of the mean kinetic energy of the

ions entering the beam;
M < v, >2

71 = .d (2.17)

If all ions were created at the anode, then the acceleration efficiency would be one; all the

ions would see the maximum potential drop possible and hence have an energy of eV when

they leave the system. (Khayms used this assumption when calculating the efficiency of his

thruster [25].) The propellant utilization is a measure of the efficiency with which neutrals

are converted to beam ions;

Tiu = , 1 (2.18)
Mn

where rni,b is the ion mass flow rate at the exit plane of the thruster (to the beam), and 7n, is

the neutral mass flow rate at the anode. Propellant utilization may, in turn, be expressed as

the the product of the ionization efficiency, Ti, and what we will call the "beam efficiency",

Tib;

Tiu = Ti77b (2.19)

The ionization efficiency is the efficiency with which neutrals are converted to ions;

mi = Mi,created

7-n

The beam efficiency is the fraction of ions created which actually enter the beam;

ifl b
Tb = . ' . (2.21)

mi,created

Factors which go into the beam efficiency include recombination at the walls and in the
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body of the plasma. Only recombination at the walls is modeled in this simulation. Note

that a neutral produced thus can be re-ionized in our simulation. This is one of the major

differences between this simulation and the simulations of Hirakawa [16][17] [151.

2.5 Maxwell's Equations

Only MKS and English units are commonly used in Aerospace Engineering. Plasma physi-

cists, however, frequently use CGS units. The normalized unit system we derive and use

in the simulation is based upon CGS equations and constants. For reference, Maxwell's

equations in MKS units are provided in the appendix.

2.5.1 Maxwell's Equations in CGS Units

The acceleration channel of the mini-TAL is only .48 cm in diameter. Thus, CGS units

seem more natural than MKS units. In the CGS system, c, = 1 and p,, = 1. Charge is

measured in statcoulombs, voltage in statvolts, mass in grams. (See Table 2.2).

symbol value units

permittivity E, 1 -
permeability o 1 -
light speed c 2.9979e10 cm/s
electron mass me 9.1094e-28 gm
proton mass M, 1.6726e-24 gm
Xe neutral mass Me 2.18e-22 gm
electron charge e 4.8032e-10 statcoulomb
Boltzmann constant kb 1.3807e-16 erg/Kelvin

Table 2.2: CGS Units: E, is the permittivity of free space, , is the permeability of free

space, me is the mass of an electron, My is the mass of a proton, M" is the mass of a Xenon

neutral, e is the charge of one electron, and kb is Boltzmann's constant.

Maxwell's equations are thus written as follows:

aB 1
V x E - -- (2.22)

V x H = + J+ Jext; (2.23)
at

V -5 47r(pe + pe,ext); (2.24)
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V-B =0. (2.25)

The Lorentz force completes the unit system;

F = q($ + ). (2.26)
C

Integrating Gauss's Law and letting e(ni - ne) = pe and f pe dv = Q we get

IV -Edv = 47r e(ni - ne) dv. (2.27)

and

E - ds = 47rQ, (2.28)

where Q is enclosed charge, and ds is an element of surface area. Thus, the flux of electric

field across the surface of a volume is a function of the charge within the volume. Gauss's law

thus leads to a method of solving for the electric potential. First we break the computational

space into many tiny volumes, each of which contains a number of charged particles. Given

boundary conditions and the charge distribution, we can then solve for the electric potential,

defined by F= -V5. Since area is measured in cm 2 and charge in statcoulombs, the units

of electric field are seen to be statcoulombs/cm2 .

2.5.2 Normalized Unit System

Let us now derive a normalized system of units. This unit system is based on scales appro-

priate for the plasma, such as the Debye length and plasma frequency, and makes it easy

to interpret results of the simulation.

First, let the fundamental unit of mass be the electron mass, [m] = me. Electron super

particles will have mass r7n = [m] = 1, while ion super particles will have mass M - me

and neutral super particles will be some integer multiple larger. Next, let [q] = e be the

fundamental unit of charge. Electrons will have charge 4 = -1, while ions will have charge

4 = Z, where Z = 1 in most cases. Furthermore, let the size of electron and ion super

particles be [size]: Each electron super particle with rn = 1 will actually represent [size]

electrons. As already mentioned, neutrals may be some integer multiple larger, such that

the overall uncharged super-particle count is similar to the charged super-particle count.

Now, let the unit of distance be the nominal Debye length, [X] = AD = (k[TI/47r[nele2 )
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and the unit of time be the nominal inverse plasma frequency, [t] = Wp-e = (47r[ne]e2/me)2.

Both AD and -1 are based upon nominal values for electron temperature, [T], and density,

[ne]. The unit of electric potential is the nominal electron temperature, [T], in electron

volts. If we use [m],[q], [size], [x] and [t] to normalize the electric and magnetic fields, E

and B, then we can solve for particle motions entirely within the normalized unit system.

If we have estimated the nominal temperature and density correctly, most quantities will

be of order one. In the normalized unit system, the Lorentz force equation may be written

d [v] - [q] ( ± [v] x B[B]
-(E [E] + - .(2.29)di [t] mr[m] c[c]

The electric part may be rewritten as

d9[v] _ 4E [q] [E] (2.30)
di[t] r7n [m]

or
-Z db r7n [v] [m]
E[E]= - .i4[t q (2.31)

Since [v] = [x]/[t] = ADWpe = VtK/r = VK[T]/me, the units for electric field are

[v][m] .i vite[
[E] - (47rneme) 2 -- = . (2.32)

[t][q] - [x]

Physically, [E] is the voltage drop across a nominal Debye length [x] given as a fraction of

the nominal electron temperature in eV. Note that [<>] = [T] (both are in terms of eV). In

terms of Debye lengths, we find

[E] = 4irene AD- (2-33)

We also find
K[Te]

[E]AD = e (2.34)

so [E] is the field due to thermal voltage across one Debye length. To transform from

normalized units to CGS units, we simply multiply by [E]:

E = E[E]. (2.35)
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We use the same principle to arrive at units for B:

di' [v] _ q[q] i[v] x B[B] (2.36)
di [t] rnm] [c '

[m] [c]1[B] [m][c] (47rneme)2 c. (2.37)
[t ][q]

The unit [B] is such that the gyro radius at velocity [v] = V/K[T]/me is the nominal Debye

length, [X] = AD. To apply the ' x B rotation when we are given B in CGS units, we need

only divide by [B] to arrive at B;

B = B [B]. (2.38)

Some equations in this system differ from standard CGS equations; we cannot always simply

transpose E for $ and so on. In CGS units, Gauss's Law is written

iE -ds = 47rQ, (2.39)

where Q is the charge contained within the control volume defined by the boundary f ds.

Let Ni and Ne be the number of ion and electron super-particles in the control volume. The

total charge in the volume is then Q = Q [q] = (Ni - Ne)[size][e], where Q is the number of

real particles Ni - Ne of charge [q] = e in the volume. Thus we may write

E- ds [E] [x]2 = 47rQ[size][q], (2.40)

which goes to

-ds [neAI] (N - Ne)[size]. (2.41)

(Strictly speaking, Q should be an integer. However, when using the Particle-In-Cell

method, the total charge Q inside a given control volume is determined by weighting each

particle of charge 1 or -1 to four separate grid nodes; Q will be a floating point number.)

Finally we write

E -d = ( - e) [size] (2.42)
[neA ]

The quantity ne,o = [neA]/[size] is the nominal super-particle number per Debye cube

(A- 3 ). Therefore, before solving Gauss's Law for $ (and <I) using only normalized units,

we multiply the charge by [size]/[neA4].
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Table 2.3: Normalization Constants. Note that [] = x, [E] = I , and [B] = [i]

The constants used to normalize the equations are summarized in 2.3. The unit system

can be easily expanded to include other equations. Consider, for instance, the electric field

due to a super-particle point charge: E 4/r 2 in CGS units. In normalized units, we would

write
7 [size] [q] (2.43)

2 [X] 2 [E]

or
- [size] (2.44)

=2[47rneA3 -

The 47r appears in the denominator because there is no 47r in the numerator of the original

equation.

As stated above, the actual simulation is written in normalized units. For clarity, how-

ever, the majority of the theory section of this thesis will use either CGS or SI units.

Useful Results

The normalized unit system simplifies many calculations. In this system, temperature,

energy, and electric potential are given in terms of the nominal temperature, [4] = [T],

where it is most useful to express temperature in electron volts. If [T] = Te = 25eV, then a

kinetic energy of e = 1/21V = 1[T] translates to 25 eV. The local thermal velocity is given

in terms of local temperature, 2h = 2t. The local Debye length (in units of [x]) is given by

AD = , (2.45)
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name units base
charge [q] e
mass [im] me
temperature [T] Te
distance [x] AD
time [t] pe
velocity [v]=[x]/[t] Vth,e/\h
electric potential [4] Tey
electric field [E]=[4]/[x] \47rneme[v]
magnetic field [B] 47rnemec



where ne is the normalized plasma super-particle density, h,, is the nominal normalized

plasma super-particle density, and t is the normalized temperature. Similarly, the local

plasma frequency is given (in units of [t]- 1 ) by

We

ne,o
(2.46)

This last result is useful when choosing a time-step; we need At short enough for stability

across the entire grid. Also, Hockney has shown that we need wpeAt < .5H/AD across

the grid to minimize stochastic (numerical) heating, where H is the local spacing of the

grid nodes [19]. It is easy to show that this requirement reduces to Atki < .5I/ Te in

normalized units, where the subscripts indicate that this must be true across the entire grid.

This will be discussed more fully in Chapter 3.

Table 2.4: Normalized units for various quantities of interest.

In CGS units, oce = . Thus, in normalized units, Cce ._ h [q]cB However, [B] was

defined to be [B] =- [[. Therefore, in normalized units,[t][q]

Wce - B,
(2.47)

This is, perhaps, the most useful result.

2.6 Simulation Requirements

In order to define the model, we must answer some basic questions:

" What is the time scale of the simulation?

" How many grid cells will we need?
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name symbol units
temperature Te [T]
energy e [T]
potential [T]
plasma frequency ipe 1/[t]
Debye length AD [x]



Table 2.5: Empirical performance of the SPT-100 and design performance of the mini-TAL.

* How many particles will we need?

* How can we accelerate the simulation?

These questions are considered in the following sections.

2.6.1 Basic Length and Time Scales

The subject of this simulation is Khayms mini-TAL Hall thruster, which is shown in Figures

1-3 and 2-1. The design performance is shown in Table 2.5 [26], where data from the well

known SPT-100 are shown for comparison. The mini-TAL is, by comparison, a diminutive

device.

We now estimate the basic length and time scales which shape the nature of the simu-

lation. These are collected in Table 2.6. The nominal flow velocity of ions in the ionization

region is estimated to equal the acoustic speed, Vsi = VkbTe/Mn. Choosing the plume

area, sp, to be the total area of the anode, and an appropriate utilization efficiency, c., the

plasma density in the throat, ne,o ~ ni,0 is estimated to be

ne,o M .vTs (2.48)
Mnvis,

The nominal density of neutrals at the anode exit, nn,,, is estimated from the inner exit

area of the anode, sa, the temperature of the anode, Tanode = Tn, and the mass flow rate

through the anode, mht,
271

nn,0 = _ . (2.49)
Mee isa

Here, c-;a/2 is the mean flow speed to the right of a half-Maxwellian entering the simulation
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SPT-100 mini-TAL
Propellant Xenon Xenon
Diameter (mm) 100 4.8
Magnetic Field (T) .02 .5
Mass Flow Rate (mg/sec) 5.3 .13
Anode Potential (V) 300 300
Anode Power (W) 1350 50
Thrust (mN) 83 2.2
I,, (sec) 1600 1700
Efficiency .48 .32



region at the anode exit plane, and c = Vth,n . is the mean neutral thermal speed. The

"neutral transit time" T is the time it will take the average neutral to move a distance

L, equivalent to the radius of the outer acceleration channel wall: T = L/(en/2). Typical

electron temperatures are on the order of 50-eV, while anode temperatures are closer to

0.1-eV. Thus, the neutral density at the anode exit is estimated to be more than 50 times

the plasma density.

The electron density allows us to calculate (in CGS units) the plasma frequency, wpe

4irnee2  and the Debye length, AD - 4 kTe2 . Important length scales include the

electron cyclotron radius, rce = ee the ion cyclotron radius, rci = M , ad collision
meet eB 7ancolsn

mean-free-paths.

Parameter Symbol Nominal Code
Electron Temperature (eV) Te = [T] 30 50 50
Neutral Injection Temp. (eV) T, .1 - -
Magnetic Field (Gauss) B 5000 -

Utilization Efficiency E, .9 - -

Permittivity Factor y2 1 1 100
Permittivity (F/rn) Eo 8.85e-12 8.85e-12 8.85e-10
Anode exit area (cm 2 ) s, .04 - -
Plume area (cm 2 ) s, .10 - -

Neutral Density (cm- 3 ) nn,o 6.9e14 - -
Neutral Velocity to right (cm/s) en/2 22e4 -
Ion Sonic Speed (cm/s) Vei 4.7e5 6.1e5 -
Plasma Density (cm--3 ) ne,o =[ne] 1.1e13 8.8e12 -
Debye Length (cm) Ad [X] .0012 .0018 .018
Characteristic Length (cm) L .24 - -
Characteristic Length [x] i 199 135 13.5
Elec Mean Thermal Vel. (cm/s) ee 3.7e8 4.7e8 -
Electron Gyro Radius (cm) rce 3.7e-3 4.8e-3 -

Ion Gyro Radius (cm) rci 1.3 1.7 -

Electron Plasma Freq.(sec- 1 ) Wpe = 1/[t] 1.9e11 1.7e11 1.7e10
Elec Cyclotron Freq. (sec- 1) Wce 8.8e10 -

Ion Cyclotron Freq.(sec- 1 ) Wci 3.7e5 - -

Neutral Transit Time (w- 1 ) T 2.1e6 1.8e6 1.8e5

Table 2.6: Estimates of various lengths, velocities, and frequencies in the channel of the
mini-TAL assuming a real mass ratio. All units CGS unless otherwise noted. Right column
accounts for artificial permittivity (See next section). Neutral transit time L/ < vn >,, in
terms of (w~ 1 ) drops by a factor of 10 with e, increase of 100x. Neutral transit time is
further decreased by adopting an artificial mass ratio. These values assume rhn = .13mg/s.
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2.6.2 Simplifying and Accelerating the Simulation

The PIC method can be used to predict the electron energy distribution function and the

true state of the plasma. At first glance, however, the computational requirements seem

daunting.

* Particle densities inside the simulation region are on the order of 1013 per cubic

centimeter or greater. Tracking billions and billions of particles is impractical, to

say the least.

* The PIC method requires a time-step on the order of the inverse plasma frequency.

But with Wpe ~ 1011, it would take millions of iterations for neutrals of physical mass

to cross the simulation region. Convergence would be maddeningly slow.

" The PIC method requires a grid with node spacing of about a Debye length. Nominal

density and temperature estimates suggest that 400, 000 grid nodes (a 500 x 800 grid)

or more may be required. The memory and CPU time required to process such a grid

would be phenomenal.

Clearly, we cannot track billions of particles for millions of time-steps on a grid containing

hundreds of thousands of nodes. To use the PIC method, we must simplify and accelerate

the simulation. Ways to do this include to following:

" Use super-particles in lieu of tracking individual particles.

" Change the mass ratio Mn/me to speed up heavy particles.

" Alter the free space permittivity constant to reduce the grid density.

Some of these changes affect densities and mean free paths. To preserve such aspects of the

simulation, we must also change the mass flow rate and collision cross sections.

The effects of introducing un-physical constants into the system must be understood,

and the results of the simulation interpreted.

Super-particles

The first simplification is the use of super-particles, i.e. groups of ~ 106 particles. This

standard practice conserves memory and CPU time.
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To determine the size of a nominal super-particle, we first choose a target number

of neutral super-particles, TARGET, which depends on the number of grid cells in the

simulation, and the degree of error we are willing to accept. Given the finite number of

particles, N, at any grid cell, non-physical density fluctuations on the order of order of

1//N can occur. What N is required for "good" statistics? Results presented in Chapter

4 suggest that counts of N ~~ 20 per cell in the ionization zone produce similar results to

counts of N ~ 40 per cell. However, results presented in Chapter 5 show that it is difficult

to observe modes of oscillations with N ~ 20. We should also note that statistics will be

worst near the axis of the thruster, where the cell volumes are smallest.

This still leaves us with a problem: The neutral density is much higher than the plasma

density. If neutral and plasma super-particles are the same size, the simulation will be

swamped with neutrals. To solve this problem, we let neutral super-particles be some

integral number s times larger than plasma super-particles. We term this the "statistical

weight" of the super-particle. Neutrals are introduced at the anode with, for example,

statistical weight s = so = 50, while ions and electrons always have weight s = 1. As a

neutral undergoes ionization events, s decreases until s = 0 and the particle disappears. By

varying so, we can easily find a value which results is similar numbers of neutrals, ions, and

electrons.

Given TARGET, so, and the total volume of the simulation region, Vot, we calculate

the [size] of each super-particle of statistical weight s = 1;

[size] - nn,oVtot . (2.50)
so x T ARGET'

Thus, each super-particle in our simulation represents s x [size] particles.

Artificial Mass Ratio

The stability of typical PIC schemes requires a time-step on the order of the inverse of

the plasma frequency. This means ~ 10-8 seconds for the ions, and ~ 1011 seconds for

the electrons. Unfortunately, Xenon atoms are about 240 thousand times as massive as

electrons. Thus, the velocities of an electron and ion of the same kinetic energy differ by a

factor of v240e3 ~ 500. Furthermore, neutrals in the simulation have lower thermal energy

than electrons; they are slower still.
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If we use the correct physical values for neutral temperature, T", and mass, M,, it will

take neutrals on the order of a million or more plasma times to cross the simulation region

from the anode to the exit plane. Ions are more energetic than neutrals, but they are still

much slower than electrons. Hence, if we assume correct mass ratios and temperatures and

run heavy and light particles at the same time-step, the simulation will take a very long

time to converge. We will not be able to use an ordinary workstation.

Our modus vivendi is to speed up heavy particles by an order of magnitude by intro-

ducing a variable artificial mass ratio. One such factor is M/M' = 2500, which means that

heavy particles are 2500 times lighter than they should be. Instead of M/m ~~ 240, 000,

this yields M/m ~ 96. Heavy particles now move 50 times faster. The characteristic time

to reach a converged solution thus drops by a factor of 50; the transit time r 2 x 106

shown in Table 2.6 drops to about 40, 000. Such a solution would take about 400 thousand

iterations (at wpeAt ~ .1) to achieve. This is not impossible, although it would take a very

long time on a PC.

Changing the mass ratio is a common trick of plasma physics, where M/m = 100 is often

employed. However, we must take care to preserve the physics of the problem. Quantities

such as the mass flow rate and collision cross sections have to be altered in order to conserve

densities and mean free paths. Also, an artificial mass ratio may also change the floating

potential of the metallic acceleration chamber walls, which could in turn change the EEDF.

These issues are considered in Section 2.6.3.

Artificial Permittivity

To speed up the simulation several additional orders of magnitude, we alter the physics of

the universe. We increase the free space permittivity constant e, by a factor 72:

Co C'y 2  (2.51)

The benefits of using an "artificial permittivity" are twofold. First, sheaths are thicker,

allowing us to use a coarser grid. Second, plasma dynamics are slower, allowing us to use a

longer time-step.

Implementing the artificial permittivity is rather simple. One simply inserts -Y when

calculating the nominal Debye length and plasma frequency, and - when calculating [B]
-y
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and [E]. Poisson's equation in normalized units remains 82q/892 = -(ni - e)/ne,o, but

[x] is longer by a factor of y. The end result is that E = E[E] is smaller for a given

charge imbalance. Since the permittivity does not appear in the Lorentz force equation, the

leapfrog scheme does not have to be modified. As shown in Table 2.7, increasing F, by a

factor of -2 increases sheath thicknesses by a factor of - and decreases the plasma frequency

by a factor of 1/. Also shown in Table 2.7 is the effect of y on [v], [E], and [B].

Since grid spacing scales off the Debye length, the artificial permittivity enables us to

reduce the number of grid cells required to model the domain of interest by a factor of -Y2 .

We may also reduce the number of super-particles in the simulation by -Y2 while retaining

identical statistics (per cell). Both reductions save memory and CPU time. Furthermore,

since the required time-step scales off the plasma frequency, the physical time-step can be

increased by up to a factor of -y, speeding convergence.

Table 2.7: Effect on reference values of increasing permittivity by a factor of -Y2

However, this benefits of this trick are limited. First, the time-step must remain short

enough to resolve electron gyro motion. Unless we alter the strength of the magnetic field,

this limits us to -y2 ~ 100. Also, the Debye length must remain a small quantity with

respect to overall thruster dimensions. If sheaths become too large, they can interfere with

the discharge. Similarly, excessive charge imbalance may occur, altering the efficiency with

which neutrals are ionized.

2.6.3 Modified Estimates of Plasma Parameters

In Table 2.6 we presented some estimates of basic plasma parameters. Now, let us take into

account the use of un-physical constants. We begin with the artificial heavy particle mass

ratio,

M f < 1, (2.52)M
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Parameter Symbol x-Factor
plasma frequency Wpe 1/7-
Debye length AD 7
time [t] y
distance [x] y
velocity [v] 1
electric field [E]
magnetic field [B] 1/ _



where M is the physical mass of a Xenon neutral, and M' is the mass used in the simulation.

The factor f will be less then one. From the neutral and electron temperatures, T" and [Te],

in Kelvin, we estimate the neutral and electron thermal speeds which are, respectively,

2KTn 1
Vth,nF n (2.53)

and

Vth,e = Ke (2.54)
me

Thus, neutrals are accelerated by the factor

o' 1-vn= - (2.55)
n f

The nominal flow velocity of ions in the region where they first appear is estimated to equal

the ion acoustic speed;

Ke (2.56)

Thus, ions are also accelerated by the factor

V j,(2.57)

The acceleration factor of 1/jf is why we introduced the artificial mass ratio.

Nominal Densities and Mass Flow Rate

Choosing an appropriate plume area sp, and utilization efficiency ,e, we estimate the plasma

density in the throat to be
een 1

ne o (2.58)
' M"visp S

Similarly, we estimate the nominal density of neutrals at the anode exit from the area of

the anode, Sa, the temperature of the anode, Tanode = Tn, and the mass flow rate through

the anode, rh,

n'h (2.59)"', Mn < V >z Sa Mnasa 2.N

83



Here, < v >2= c/2 is the mean flow speed to the right of a half-Maxwellian entering the

simulation region at the anode exit plane, and is the mean neutral thermal speed,

8KTn
K = r .(2.60)

Thus, if we run the thruster at the actual mass flow rate, but use M', fM, then both

neutral and plasma densities will be too HIGH. The number of particles introduced per

time-step, dn/dt = rh/M, has a greater effect on the neutral number density then the

increased velocity. To preserve n,, in the anode exit region, i.e. to keep

n ni' Mvh
S- V 1, (2.61)

nn,o mh M''

the required mass flow rate must be scaled by

rn' M
-- - f. (2.62)

Nominal Plasma Frequency and Debye Length

The plasma density allows us to estimate basic plasma parameters such as the plasma

frequency, Wpe,

47rne,0e2  1
Wpe e4 (2.63)

Me V/60M

and the Debye length,
KTe

A d irnee2  M n 4. (2.64)

The scaling effect due to co is why we introduced the artificial permittivity. The Mn factors

on the right disappear after rh is scaled as v/M, such that ne is preserved.

Cyclotron Radii and Frequencies

Other important length scales include the electron and ion gyro frequencies and radii, which

are

rce- MeVtec (2-65)
eB

Mvic
rea =eB v , (2.66)
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oce = , (2.67)
mc

and
eB 1 (2.68)

c =- ~. --. (268

Mc M*

The electron cyclotron radius and frequency will be unaffected by changes in heavy particle

mass or by changes in E,. The same cannot be said for the ion cyclotron radius and frequency.

For instance, as the ion mass decreases, so does the ion gyro radius (rci - vM). As M

approaches m, this becomes a problem. To preserve rei and wcj at their physical values

(with M/m - 240,000), the magnitude of the magnetic field which the ions see, B', should

be reduced by the factor Vi,

B' fB (2.69)

such that
r' M'v' eB B

= ff - = 1. (2.70)
r eB' Mv B'

No factor is applied to B for the electrons.

Mean Free Paths

A mean free path analysis is presented in Section 2.8. There, we show that collision mean

free paths may be estimated according to the formula

A12 = . (2.71)
V12

Here, A1 2 is the mean free path of a particle of species one in a background of species 2,

v12 = r 2v 12 Q1 2 is the frequency with which particle 1 interacts with species 2, v 1 2 is the

relative velocity of the two species, and Q12 is the cross section for this interaction. Since

vn ~ neveQ, and ve ~nVeQ, the mean free path for neutrals traveling in the z direction is

Vz vn~z
An,z- (2.72)

/n neveQ

while the mean free path for electrons is

Ae - - (2.73)
ve nnQ
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Changing M alters the mean free path analysis. If we adjust rh to preserve the neutral

density at the anode exit, then Ae should be the same. However, Az is proportional to

on,z. If we do nothing else, than either the ionization zone will stretch out, or a lower

fraction of neutrals overall will be ionized. In Section 2.11 we estimate the extent of the

ionization zone, finding that on,z is not (at least directly) a factor. This result makes our

latter postulate more likely.

In either case, the solution is to preserve An,, by increasing the ionization cross section

Q by a factor of 1. The electron mean free path will decrease, but as long as electrons

remain magnetized, results should not change much.

Conductivity

What about the overall conductivity of the plasma? If ions move too fast, then the ratio of

ion to electron conductivity is proportionally too large. The solution follows from above. If

we scatter each time we ionize, and also increase the total scattering cross section as above,

then the electron mean free path will decrease by the factor d'. If the Hall parameter

is large (# = wc/nu >> 1, see Section 2.10), then the bulk electron velocity across the

magnetic field should increase as

1
< ve >1~ D 1 ~ ve ~ . (2.74)

Thus, the conductivity in the direction normal to the magnetic field will increase at the

rate required to (nominally) preserve the ratio of ion to electron current normal to B.

This makes sense from an energy point of view. Neutrals are entering the ionization

zone faster than they should be. Thus, the thruster is dissipating energy into ionization

faster. Electron transport must be increased to deliver energy to the ionization zone at the

same proportional rate. This is accomplished by increase overall scattering cross sections

(to get the electrons to the acceleration zone quicker) and inelastic scattering cross sections

(to deposit energy in the zone quicker).

2.6.4 Recovery of Physical Solution

By altering the mass flow rate and collision cross sections, we may preserve neutral, plasma,

and ion densities. The cross section factors are shown in Table 2.8. Also, by altering collision
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cross sections, we may locate energy losses as they would be located in the real thruster,

i.e. we can preserve the features of the acceleration and ionization zone(s).

_M/M' M'|m Vn,'|vn Q'|Q
1 239,000 1 1
250 960 16 16
2500 96 50 50
10,000 24 100 100

Table 2.8: Artificial mass ratios used in the numerical simulation. M is the physical neu-
tral mass. M' is the numerical neutral mass. The ratios M'/m, vo'/v,, and Q'/Q are
approximate. The last ratio is applied to preserve heavy particle mean free paths.

Once the simulation has converged, we can extrapolate backward to recover performance

parameters such as thrust and specific impulse. The kinetic energy of any given ion depends

on the potential field through which it travels according to

K.E. = f< = dl d= E - dl. (2.75)

If the bulk field properties are the same or similar, then the kinetic energy of any given ion

in the flow should be about the same at point (z,r) no matter what M is. Therefore, by

multiplying all final (computational) ion velocities by Vf, we should be able to recover the

"real" ion velocity distribution, e.g.

Vi, ISP\f
,2 _(2.76)

Since ( = and -= = M1 f, the ratio of computational to "real" thrust is'f r '

T' - = 1.(2.77)
T mvi

The thrust predicted by the code will be the same with or without the artificial mass ratio!

Since we preserve densities, the current density in the perpendicular direction jz = en =

enevz will scale with the velocity. As before, multiplication by \ff returns the "real" value,

31 nvz
/ /Ij.f (2.78)
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Here, we note that the azimuthal or Hall current should not be re-scaled at the end of the

simulation. It should not change with M. For further discussion, see Section 5.3.6.

This simple method of recovery assumes the bulk properties (nn , ne, Te, ...) of the dis-

charge remain invariant when an artificial mass ratio is introduced. In practice, this is not

exactly true. For instance, the wall potential varies with the artificial mass ratio. They

can have an effect on plasma density, as will be discussed in Chapter 4. The recovery can

therefore only be considered approximate. The best way to get the "real" physical perfor-

mance and particle moments is to use physical values for M, and co. Therefore, we make

the constants as close to physical as possible, given the computational power available.

2.6.5 Limits of Artificial Mass Approximation

In Section 2.10, we show that the coefficient for classical diffusion of electrons in a weakly

ionized but magnetized plasma can be written:

DI KT v (2.79)
m v2+W2*m

The ratio # = w/v can be used to describe the degree of magnetization in a plasma. It is

called the "Hall Parameter." If #2 >> 1, the preceding expression is well approximated by

DL ~ 2T . (2.80)

This expression provides the rationale for increasing Q to increase electron transport perpen-

dicular to B (as previously described). However, the expression is not always valid. Figure

2-5 shows its limits. The approximate expression for D 1 is only valid above / ~ 2 - 3.

Below this range, D 1 does not increase linearly with collision frequency. In fact, collisions

may hinder diffusion if # < 1. Even at # = 2, the "approximate" and "exact" diffusion

coefficients differ by twenty percent.

We only want to increase the collision frequency within the range of validity of the

approximate expression D1  - v. That is, we want to keep the computational # greater

than 2, at a minimum. In the acceleration channel of the mini-TAL, the physical value for #

is typically between 100 and 200. Therefore, we should not increase the collision frequency

by more than a factor of 50. This limits us to M/M' = 2500, or Mn/me ~ 96. Even at

this mass, the approximations used to scale the simulation break down and the results can
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(w/v) vs. Classical D (perpendicular) for w=1, KT/m=1

- - - Approximate D (w>>v)
- - Exact D

.. . . . . . . . . . . . . ...................... ...--.. .. .... . I -.-.-.-. - . -.-.--.. . . . . . -. . . . .. . .. .. . . . . .-. .-. .-. .-

- -.. . .. .- . . . . ... . .-. . . . .. . . . .-. . . . .... . . -.. .

2 2.5 3 3.5 4 4.5 5

(w/v) vs. Ratio of Approximate to Exact D
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(w/v)

Figure 2-5: Limits of the approximation D 1 ~ v.
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only be considered approximate. (In Chapter 5, we show that # / 2 - 3 at the anode exit

even with Mn/me a 96!). A better choice is M/M' = 250, or Mn/me ~ 960.

2.7 Characteristic Times for Convergence

How long will the simulation take to converge? In Section 2.6 we defined the "neutral transit

time, T, to be the time it will take the average neutral to move a distance L, equivalent to the

radius of the outer acceleration channel wall. If L = L, = .24cm and < v >z= 21, 600cm/s,

then r 1.1 x 10- 5 sec. At a nominal plasma frequency of wpe = 1.8 x 101 1 (ne,o = 8.8 x 101 2

cm-3, Te = 30eV), the neutral transit time is 2 x 106 w- 1 . Therefore, if WpeAt = .1 and

y = 10, it will take a typical neutral of physical mass M/m = 240, 000 about T = 2 x 106

time-steps to move the distance L.

To see what this means for convergence, we define three additional lengths: Li = .5

cm; L 2 = .13cm; L 3 = .05 cm. These are, respectively, the distance from the end of the

anode to the right hand (free space) boundary, the distance from the end of the anode to

the point where the channel diverges, and the approximate width of the ionization layer.

The last, L 3 , was derived in Section 2.11. For each of these lengths, we can define a transit

time. These times are shown in Table 2.9. The neutral temperature was assumed to be

.1eV. Transit times and characteristic lengths are summarized in Figure 2-6.

> Neutrals (units are 1/o , at physical permittivity)

L reI Mm=~W M/=96 Li
0.5 4166667 263523 83333
0.13 1083333 68516 21667
0.05 416667 26352 8333

L real M/m=960 M/m=96
0.5 104167 6588 2083

0.13 27083 1713 542
0.05 10417 659 208

L2
L3 -

T3
12 -

13 -

ure 2-6: Approximate transit times and characteristic lengths for the mini-TAL in units

/Wpe at physical permittivity.

Ions typically have directed energies of about 150 eV by the time they reach the free
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space boundary. If we assume that ions move 40 times as fast as neutrals, we arrive at the

ion transit times shown in Table 2.10.

ro0

Ti

T2

73

L j

(CM)
.24
.5

.13

.05

M/m=240,000 M/m = 960 M/m = 96
1/vf = 1 1/vf = 15.8 1/Vf = 50
2,000,000
4,200,000
1,100,000
420,000

130,000
260,000
69,000
26,000

40,000
83,000
22,000
8,300

Table 2.9: Neutral transit times. M'/M = f. Times are in

y = 10, m = .1mg/s, WpeAt = .1.
iterations assuming Te = 30eV,

M/m=240,000
1/ff = 1
50,000
100,000
27,000
10,000

M/m = 960
1/Vf = 15.8

3,200
6,600
1,700
660

Table 2.10: Ion transit times.
Y = 10, rh = .1mg/s, WpeLAt =

M'/M f.
.1.

Times are in iterations assuming Te = 30eV,

With regard to the time-scales in Tables 2.9 and 2.10 we note the following.

" For both M/m = 96 and M/m = 960, T2 and r3 are well within the limits of our

computational resources.

" If M/m = 96 and y = 10, eighty thousand iterations (ri) are required to see the

complete flow of neutrals from the end of the anode to the free space boundary. With

fifty to a hundred thousand plasma particles, a fast PC (for the turn of the Millennium)

can do thirty thousand iterations of our code (with -y = 10) in a day. Therefore, such

time-scales can be simulated in 2-3 days.

" If M/m = 960, two hundred and sixty thousand iterations (Ti) are required to see the

complete flow. This is impractically long.

* Ion time-scales are very short compared to neutral time-scales. If neutrals were not

simulated directly, we could conceivably use mass ratios such as M/m = 10, 000 or

even M/m = 100, 000.
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* The time-step is often shorter than wpeAt =.1. More typical is WpeAt = .07.

The time-scales TI, T2 and T3 provide estimates for how long it will take aspects of the

simulation to reach a state of quasi-convergence. In practical terms, the neutral time-scale

T1 is so long that results presented in Chapter 5 for M/m = 960 do not show the correct

neutral flow at the free space boundary. The simulations are never "fully converged."

However, these simulations are run for periods of time longer than T2 and T3, which means

that neutrals in the discharge itself are re-distributed in accordance with the electron and

ion fluxes. Furthermore, time-scales for ions and (by association) electrons are so much

shorter that performance predictions obtained at the free-space boundary should be fairly

accurate, even for M/m = 960.

2.8 Mean Free Path Analysis

Particles gain and lose energy and momentum during elastic and inelastic collisions with

other particles. A mean free path analysis helps decide which collisions to include in the sim-

ulation, and which to ignore. Table 2.11 lists the types of collisions we considered and those

we actually included. Based on the analysis described below, we model electron-neutral elas-

tic and inelastic scattering collisions, electron-electron and electron-ion Coulomb collisions,

and ion-neutral charge exchange and scattering collisions. We also include recombination

at the walls.

Table 2.11: Types of collisions in a Hall thruster. Based on the mean free path analysis,
only certain types of collisions are included in the simulation.
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Type Included
Electron-Neutral Elastic Scattering X
Electron-Neutral Ionization X
Electron-Neutral Excitation X
Electron-Electron Coulomb X
Electron-Ion Coulomb X
Ion-Neutral Charge Exchange X
Ion-Neutral Scattering X
Ion-Ion Coulomb
Neutral-Ion Scattering X
Neutral-Neutral Scattering
Electron-Ion bulk recombination
Electron-Ion wall recombination X



2.8.1 Collisions and Mean Free Paths

The reaction rate between two species can be expressed as a function of their densities

(ni, n 2 ), relative velocities (v 12), and a cross section Q12;

R12= nin 2v 12Q 12 . (2.81)

Thus, the frequency with which a typical particle of species 1 interacts with background

species 2 is

V12= = 2 1212. (2.82)
ni

Let the mean distance a particle of species 1 travels in the laboratory frame between inter-

actions with species 2 be called the mean free path, A12.

If vi >> v 2 , then v 12  v1 such that

V1 = V1  1 .
v 12  n2 vIQ12  Q12n 2  (2.83)

If the velocities of the species are comparable (vi ~ v 2 ), then

2 . (2.84)
Q12r 2 *

If v2 >> v1 , then v 12  v 2 such that

V1 V 1
A12 = V12 n2 v2Q j (2.85)

The Knudsen number is a measure of the degree of rarefaction of a gas. It is the ratio of

mean free path to some characteristic length, Kn = Amfp/L. The Navier-Stokes equations

are traditionally held to be valid for Kn < 0.1. This can be misleading if L is chosen poorly.

L should be the scale length for macroscopic gradients [4], e.g. L = ax. If the locallyeap/r9xIthloay

defined Knudsen number is greater than .1, then the error in the Navier-Stokes equations is

significant. If Kn > .2, the molecular model must be used in place of the continuum model.

In the limit Kn = 0, the Navier-Stokes equations reduce to the inviscid Euler equations. In

the limit Kn -+ oc, the collisionless Boltzmann equation applies.

We assume that a collision event with a mean free path on the order of the path length a

particle can expect to see before exiting the simulation can be ignored without significantly
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affecting the results of the simulation. At higher energies, electron-ion Coulomb collisions

may fall into this category. More frequent events such as electron-neutral scattering must

always be modeled.

2.8.2 Electron-Neutral Scattering

The total cross section for all electron-neutral scattering events is the sum of the cross

sections for elastic scattering, q, excitation, q, and ionization, qi. The last two represent

inelastic scattering. Thus,

Qt = qs + qe + qi (2.86)

Scattering cross sections gathered from the literature are presented in Figure 2-7. Third

and Fourth order polynomial fits to the data are used in the code. These are shown by solid

lines in Figure 2-7.

The total cross sections for electron neutral scattering, Qt, is about 1 - 4 x 10 15 cm 2 for

most energies of interest. Since the neutral density exiting the anode is around 5 x 1014 cm-3 ,

the mean free path for electron-neutral scattering is on the order of 1-cm. This is larger than

the characteristic size of the simulation region in the R-Z plane. Electrons are, however,

magnetized: They spiral around the magnetic field lines, and drift around the axis of the

thruster (the azimuthal ExB drift which gives the Hall thruster it's name) such that the

total path length of an electron traveling from the cathode to the anode is much longer then

the scattering mean free path. Indeed, it must be so for the thruster to operate efficiently.

Ions are produced through inelastic scattering, the cross section for which represents just a

portion of the total scattering cross section. Thus, the model must consider electron-neutral

scattering collisions. As we shall see, cross sections for elastic scattering, ionization, and

neutral excitation are all comparable, hence all three effects must be included.

Total Scattering Cross Section

Early measurements of Qt were performed by Ramsauer [38], Ramsauer and Kollath [39],

and others. Pronounced minima near 1-eV were discovered by Ramsauer, and indepen-

dently by Townsend and Bailey [30]. The Ramsauer-Townsend Effect required quantum

theory to be explained. Ramsauer's apparatus did not distinguish between elastic and in-

elastic scattering. Hence, his measurements represent elastic scattering only up to the first
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X 10-15 Electron Impact Scattering Cross Sections for Xenon
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Ramsauer & Kollath, Qt
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Figure 2-7: Electron-neutral scattering cross sections. Shown is experimental data from

Ramsauer [38] , Ramsauer and Kollath [39], Dababneh (Phys. Rev. A, 22, 1872-77,
1980.), Syage [49], Rapp and Englander-Golden [41], along with cross sections determined

by Hayashi [14]. The solid lines are polynomial curve fits to the total scattering, first order

ionization, and neutral excitation cross sections which are used in the simulation. The curve

fits are found in the Appendix, Section B.
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excitation energy of 8.32-eV. To obtain a curve fit Qt(E), we use Ramsauer's measurements

of Qt up to about 3-eV, above which we use more recent measurements by Dababneh (Phys.

Rev. A, 22, 1872-77, 1980.) (The Ramsauer data points were obtained using a ruler and

the original data points graphed in references [38] and [39].) Above 50-eV, we use values

of Qt compiled by Hayashi [14], who states that this quantity is now known to within an

error of about 5 percent. Data from all these sources is shown in Figure 2-7.

Ionization Cross Sections

Rapp and Englander-Golden have measured total cross sections for Xenon ionization [41].

Hayashi has also recommended values of qj [14]. These data are shown directly in Figure

2-7. Syage has measured electron-impact cross sections for multiple ionization of Xenon

[49]. In Figure 2-7, we show the sum of the first five ionization cross sections from Syage,

also labeled qi. To obtain the shown curve fit for single ionization from neutrals, qii+(E),

we used Rapp and Englander-Golden's data below 20-eV, and Syage's data above 20-eV.

Curve fits to cross sections for higher order ionization (qi, 2+(E), qi,3 +(E)...) were obtained

using Syage's data. Note that the total ionization cross section is noticeably larger than

qi,1+(E); small but significant populations of multiply charged ions are observed in Hall

thrusters.

Total Excitation Cross Section

After selecting recommended values of elastic momentum transfer cross sections and ion-

ization cross sections, Hayashi determined from Townsend ionization coefficients the total

excitation cross section, qe, from threshold to 100-eV. He then connected the result with

high energy values obtained from theory [14]. Hayashi also summed qe with qj and with

recommended values of elastic scattering cross section, qt, and showed that the total (with

roughly estimated errors) was within the error bars of Qt. Hayashi's recommended values

of qe, qj, and q, are shown in Figure 2-7. Hayashi's tabulated qe is used to obtain the curve

fit, qe(E).

Polynomial Fits

In practice, we use the polynomial curve Qt(E) to determine whether or not a scattering

event takes place, and then use the relative magnitudes of Qt(E), qi(E), and qe(E) along
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with a random number to determine what kind of an event takes place. The polynomial fit

for Qt(E) where the relative energy E is given in eV is given by the following:

* E < .1592 , Q = 1.699 x 10-15

" E < 2.8 eV, Qt = 1.0 x 10-13 x (0.07588072747894 x E2 - 0.34475940259139 x E x

v/E + 0.58473840309059 x E - 0.42726069455393 x /IE + 0.11430271021684) cm 2

* E < 24.7 eV , Qt = 1.0 x 1013 x (-0.00199145459640 x E2 + 0.02974653588357 x

E x /I5 - 0.16550787909579 x E +0.40171310068942 x VE - 0.31727871240879) cm 2

* E < 50 eV, Qt = 1.0 x 10-1 3 x (-0.00217736834537 x E x v5iE+ 0.04302155076778 x

E - 0.28567311384223 x vIE + 0.65180228051047) cm 2

* E < 500eV, Qt = 1.0 x 10-14 x (-0.00002249610521 x E x VIE+0.00109930275788 x

E - 0.02071463195923 x ±/+ 0.22876772390428) cm 2

E > 500 eV, Qt = 6.4 x 10-16 cm 2

Functions (written in C) generating the polynomial curve fits for Qt, qe, and qi are found

in the Appendix, Section B.

Temperature Averaged Cross Sections

If the electron distribution is isotropic and Maxwellian at temperature T, then one can

integrate across the distribution to find equivalent electron-neutral scattering cross sections

as a function of T;

Q(T) = Q(e)f (e)de. (2.87)

If we let both energy and temperature be in units of electron volts, we find

dN/N 2 e -ef (e) d T3 exp( T ). (2.88)

The integration can be performed numerically. At each temperature T, we sum across 3000

energy bins of uniform width Aei = 20 x T/3000 such that we capture all the electrons out

to 20 times the temperature;

Q(T) = E Qj(ei)f (ei, T)A e. (2.89)
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For each energy bin of width Aej centered about ei, we obtain Q(ei) from the polynomial

fits already discussed. The results of this integration are shown in Figure 2-8. The total

scattering cross section was assumed to be constant below ~ .16eV, the lowest data point.

Electron-Neutral Scattering Cross Sections for
Maxwellian Electrons at Temperature T (ev)

3E-15

2.5E-15

O
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sqrt(T)
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Figure 2-8: Electron-neutral scattering cross sections as a function of electron temperature.

Starting with a Maxwellian electron distribution at temperature T, we numerically inte-

grated to find Q(T) = f Q(e)f(e)de Shown (in order of nominal size) are total scattering,

elastic scattering, first order ionization, and neutral excitation cross sections.

Multiply Charged Ions

The results presented in Chapters 4 and 5 were obtained modeling only singly charged

Xenon ions. However, multiply charged ion populations on the order of five to ten percent

have been reported in Hall thruster plumes. Multiply charged ions can easily be added to

the model to produce more realistic results. In fact, the code was written with this addition

in mind. In Chapter 6 (Conclusions) we recommend adding multiply charged ions to the

mix.
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Multiple Excitation States

Only one level of excitation was included in the model, 8.32 eV. However, the cross section

used is the total excitation cross section, q, as calculated by Hayashi [143. This means

electron energy losses to excitation are (if Hayashi's qe values are correct) underestimated.

In Chapter 6 (Conclusions) we recommend modifying the method to account for higher

excitation energies.

No metastable neutral excitation states were included in the model.

2.8.3 Ion-Neutral Collisions

Both ion-neutral charge exchange and elastic scattering collisions were considered. The

former type appear to be more prevalent.

For ions interacting with a background of neutrals, we compare mean free paths to the

expected ion path length, i.e. the distance from where ions enter the simulation region to

where they exit. For neutrals interacting with a background of ions, we compare mean free

paths to the expected neutral path length.

Because ions are only weakly magnetized (they escape the acceleration region without

spiraling around the field lines) their expected path length is on the order of the grid di-

mensions, about 5-mm from end to end. Neutrals are unmagnetized. Hence, their expected

path length is also around 5-mm.

Ion-Neutral Charge Exchange Collisions

First, we consider resonant charge exchange between neutrals and singly charged xenon

(charge exchange collisions). In one of these collisions, a neutral and an ion exchange an

electron. The neutral becomes an ion, and the ion becomes a neutral. Oh [33] and Samanta

Roy [43] used the charge exchange cross section calculated by Rapp and Francis [40],

Ocex = (ki ln(cr) + k2 )2 x 10-16 CM2, (2.90)

where ki = -. 8821, k2 = 15.1262, and cr is in m/s. This formula was used in our simulation.

For comparison, we consider the results of Sakabe and Izawa [42], who used quantum

theory to calculate cross sections, compared with experimental results, and tabulated their

estimates. Cross sections from both sources are shown in Figure 2-9, which shows that
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Qcex a 5 x 10-1 5cm 2 for ion energies of interest (10-300 eV). This is about 3 times the size

of the electron-neutral total scattering cross section, to be considered next.

The plasma density in the channel is on the order of ne ~ 1013 cm- 3 Since neutrals are

much slower than ions, let cr = v,,i= vi, the ion sonic speed at the plasma temperature.

At Te = 30eV we then obtain Qce 5.9 x 10- 15cm 2 . Thus, at Ti = .1eV the mean free

path for a neutral between charge exchange events is about

Acex,n a vi .69cm. (2.91)
Qcexniii

The neutral density inside the anode near the exit is about nn,, a 7 x 10- 14 cm- 3 . In this

region, the mean free path for an ion between events is about

1
Acex,i Qex I - .25cm. (2.92)

Qcexnn

However, the neutral density drops by an order of magnitude, within the first millimeter

from the anode exit. This will increase Acex,i proportionally.

Both mean free paths are similar to the expected path lengths of 5-mm. Hence, charge

exchange collisions should affect thruster performance. Furthermore, charge exchange elec-

trons are a topic of interest in the field of Hall thruster plume modeling. Hence, charge

exchange collisions are included in in the simulation. However, this option may be switched

off to save computational time.

Ion-Neutral Elastic Scattering

Let the cross section for ion-neutral elastic scattering interactions be [33]

8.28072 x 10-10 CM2  (2.93)
Qiri = cm , (2.93)_

Cr

where cr is the relative speed between species 1 and species 2 in cm/s. (Note: The cross

section assumed by Lentz [28], Q = 2.145 x 10- 14cm 2 , is an order of magnitude too large.)

Since neutrals are much slower then neutrals, let cr = v,,i = vi, the ion sonic speed at the

plasma temperature. At Te = 30eV we obtain Qin = 1.8 x 10~ 15cm 2 . With Tn = .1eV we

then obtain

A ______ 1 2.3cm. (2.94)
ni~in-i Qcexrn
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Cross Sections for Resonant Charge Transfer
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Figure 2-9: Resonant charge transfer (charge exchange) cross sections from Rapp and Fran-

cis , and Sakabe and Izawa In the energy range of interest, the two methods differ by a

factor of 1-2. Neither is a perfect fit to the data.
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The neutral density inside the anode near the exit is about n,, ~ 7 x 10-1 4cm 3 . Thus,

in this region,
vi 1

Ai,n = .83cm. (2.95)
nnQinvi Qcexnn

Farther from the anode exit, the neutral density drops by an order of magnitude, which will

increase Ai,n accordingly.

The mean free paths for both species are again on the order of the dimensions of the

thruster, meaning Kn ~ 1. They are 3 - 4 times the mean free paths for resonant charge

exchange. Hence, these interactions may not be important. A Hard Sphere model of these

collisions has been included in the simulation, but this option can be switched off to save

computational time.

2.8.4 Neutral-Neutral Scattering

Next we consider neutral-neutral scattering. Let the cross section for neutral-neutral scat-

tering interactions be [33]

Qnn = 2.117 x 10- 14c7. 24 cm 2 , (2.96)

where cr is in m/s. At T = .1eV, we obtain Qan a 4.9 x 10- 15 cm 2 The neutral density

inside the anode near the exit is about n,, ~ 7 x 10 1 4 cm-3. Here, the mean free path for

neutrals interacting with each other is about

1
An,n ~ = .3cm. (2.97)

nn,oQnn

What are the relevant Knudsen numbers? The inner diameter of the anode is about

L = .04 cm. Outside the anode, we find (numerically) that nn,o drops by an order of

magnitude within L = a ~ .05 cm. Using these scale lengths, we find Kn = 7.5 inside

the anode Kn = 6 at the anode exit, and Kn ~ 60 a distance L from the anode (where the

density is an order of magnitude less). Since neutral flow inside the anode is not the topic

of this thesis, we ignore neutral-neutral collisions.

2.8.5 Coulomb Collisions

Let us now estimate the cross sections for charged particle collisions.
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Electron-Ion Coulomb Collisions

The Rutherford differential cross section for Coulomb scattering is

_(b 0/2) 2

I(c, v12) (/2,) (2.98)
sin4(C;/2)'

where ; is the scattering angle, and

bo  Ze 2 (2.99)
47reom 12v12

is the impact parameter. This is the perpendicular distance of the pre-scattered particle

trajectory from (a parallel line through the center of) the target particle for ninety degree

scattering. Note that b, = A/2E, where A - Ze 2 /47rE and E = 1/2m12v 2 is the relative

energy of the two particles. The reduced mass M 1 2 = mIm 2 /(m 1 +m 2 ) ~ me for electron-ion

collisions and M 1 2 = me/2 for electron-electron collisions.

The total scattering cross section is found by integrating over dQ. Assuming azimuthal

symmetry,

Q12(V12) = j I(c, v12 )dQ = 27r jI(, v 12 )sin(g)ds. (2.100)

When considering Coulomb collisions, the momentum transfer cross section,

Qj1(v12 ) = j(I - cos(C))I(C, v 12 )dQ (2.101)

is frequently used. Note that if the differential scattering cross section is not a function of

deflection angle, g, then Q'2 = Q12. For the Coulomb potential [31],

/2rQ1(V12) = 27r (1 - cos(g)I(c, v 12)sin(s)dg, (2.102)

where Cm is a minimum angle below which one assumes no scattering and the potential is

assumed to cut off at the Debye length. The momentum transfer cross section for a single

electron scattering off singly charged Xenon at relative energy E is thus

AD)2]1/2 6 _5 x 10~1 4 c2.
47rboln[1 + ( bnA cm. (2.103)

The term lnA is the Coulomb logarithm.
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The energy averaged cross section for charged particle momentum transfer in a Maxwellian

distributed, singly ionized species is about [31]

ee 6rb~ A =4.34 x 10 1 4lnA
Qr = Qr = 67r 2 1nA = T2 cm2, (2.104)

eV

where b, = e2 /(127reKT) is the average impact parameter. In the mini-TAL, InA ~ 15.

Thus, Q"~ 6.5 x 10- 3 Tycm2 . The inverse dependence on Te2 is important; at low

energies, Q"2 >> Qin. At 5-eV, Q" 2.6 x 10-14 cm 2 , which is still ten times larger than

the neutral scattering cross section. The cross sections don't near parity until about 25-eV.

(Note that this does not mean vei = Ven at 25-eV. The ion density is much less than the

neutral density!).

The cross section Qei must be larger than the atomic cross section, -rr 2 ~~ 3.66 x 10- 16Cm2

(the atomic radius of Xenon is r 1.08 x 10-8 cm, or 1.08 Angstroms). Also, the cross

section should not be less than Qen, the electron-neutral scattering cross section.

The mean ion velocity is much greater than the mean neutral velocity such that the ion

density is between one and two orders of magnitude less than the neutral density. Still, at

low E, the Coulomb cross section is so large that the mean free path is small. Electrons

created at the cathode have energies of only .2 eV, and secondary electrons created during

ionization events may have similarly low energies. For such electrons, Coulomb collisions

are important.

It is possible to model electron-ion Coulomb collisions using a standard Monte Carlo

Collision (MCC) approach described in Section 3.15.4. This model treats both electron-ion

and electron-electron collisions as binary, large angle scattering events.

This is not a physical picture of what happens. Due to the g nature of the interaction

force, most collisions are relatively low angle. Furthermore, most electrons are, at any time,

scattering of many other charged particles (this is the origin of the Coulomb logarithm). To

capture collisional relaxation to equilibrium, it is more appropriate to model electron-ion

collisions as a diffusion process in velocity space. One such model is described in Section

3.16. It is based on the Fokker-Planck equation. Some results obtained using this model

are presented in Chapter 5.

However, if the fact that collisions are not binary is ignored and the cut-off collision

integral (to AD) is used, then the answer for momentum transfer between species should be
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the same as that obtained by using the Fokker-Planck equation [47]!

Electron-Electron Coulomb Collisions

The cross section for electron-electron collisions should be of the same order as the cross

section for ion-electron collisions; these collisions should also be included in the simulation.

An MCC model of electron-electron collisions was implemented (see Section 3.15.4). How-

ever, the MCC method should not really be applied in situations where self-collisions are

important or where collisions have a substantial impact on the distribution function of the

other species [33]. Such is the case with electron-electron Coulomb collisions. Electron-

electron collisions are more appropriately modeled as a diffusion process in velocity space.

One such model is described in Section 3.16. Some results obtained using this model are

presented in Chapter 5.

2.8.6 Bulk Recombination

The bulk three-body electron recombination rate can be written

en, = --anenj, (2.105)
dt

where a is a macroscopic recombination rate [10] [31]. According to Mitchner and Kruger

[31], a can be approximated in MKS units using the formula

a = 1.09 x 10-2 0 neT-9/ 2 [M], (2.106)

which was derived by Hinnov and Hirschberg. Mitchner and Kruger state that this formula

has been shown to agree with experimental measurements for temperatures less than 3000

K.

Sheppard has developed a model for recombination at temperatures on the order of

several electron Volts [46]. For Argon, Sheppard's recombination coefficient is about an

order of magnitude less than that produced by the Hinnov and Hirschberg formula at Te = .5

eV, and one to two orders of magnitude less at Te > 1 eV. At these temperatures (which are

appropriate for the mini-TAL), Sheppard's own predictions matched experimental results far

better than the Hinnov and Hirschberg formula. Since Xenon is a noble gas similar to Argon,
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it seems logical that Hinnov and Hirschberg's formula also over-predicts recombination for

Xenon by at least an order of magnitude.

Given T = 3000K and ne e ni = 1 x 1019 m- 3 , the bulk recombination rate (using the

Hinnov and Hirschberg formula) is - = 2.46 x 1015 cm-3,-1. Let us compare this to a

characteristic ionization rate. Given it = .13mg/s, the ion mass flow rate is Ni ~ N =

5.9 x 101 particles/second. Given a characteristic volume of V = rr 2L i 7rL 3 = .043cm 3 ,

we find ' = Ni/V = 1.4 x 1019 cm-3- 1 . Since the ionization rate is much larger than the

recombination rate, we can ignore recombination. Sheppards results further reinforce this

decision.

2.8.7 Summary of Mean Free Paths

Table 2.12 shows some of the relevant mean free paths along with estimated plasma densities

and temperatures used to calculate them. Mean free paths for Coulomb collisions are from

Mitchner and Kruger [31] and assume Maxwellian electron populations at Te. These are

included in the simulation because of their importance to low energy electrons. Ion neutral

scattering and charge exchange mean free paths use an ion velocity of osi to calculate

Qcex(v), using Oh's approximations [33]. The cross section for electron neutral scattering

assumed in this table was a constant Qt = 2.2 x 10- 15cm 2.

2.9 Simple Orbit Theory

A charged particle is subject to forces by electric and magnetic fields according to the

Lorentz Force,

F = q(E+ v x B), (2.107)

where V is the particle's velocity at any given time. Note that the v x B force always acts

perpendicular to the magnetic field, causing charged particles to gyrate about lines of force.

If the field is mono-directional and invariant, then this gyration is stable and the guiding

center cannot move in the direction perpendicular to B. This is not, however, the situation

in a Hall thruster, wherein the field varies in both magnitude and direction. In the parallel

direction, particles motion is only affected by gradients in B.

The non-periodic effect of electric field and magnetic field gradients can be summarized

as follows[54]:
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Electron Temperature [Te] 30 50
Neutral Injection Temp. Tn .1 .1
Magnetic Field B 5000 5000
Ion Sonic Speed vei 5e5 6e5
Elec Mean Thermal Vel. ce 3.7e8 4.7e8
Plume area s, .10 -

Neutral Density nn,o 7e14 -

Plasma Density [ne,o] 1e13 9e12
Debye Length Ad .0012 .0018
Characteristic Length L .24 .24

LIAD 199 135
Electron Gyro Radius rce .0037 .0048
Ion Gyro Radius rei 1.3 1.7
e-n scattering mfp Aen .66 .66
i-n charge exchange mfp Acex,i .25 .26
n-i charge exchange mfp Acex,n .69 .73
i-n scattering mfp Ain .83 1.1
n-i scattering mfp Ani 2.3 3.0
n-n scattering mfp Ann .30 .30
e-e Coulomb mfp Aee 95 320
e-i Coulomb mfp Aei 130 450
Electron Plasma Freq. Wpe 1.9e11 1.7e11
Elec Cyclotron Freq. Wce 8.8e10 -

Ion Cyclotron Freq. wci 3.7e5 -

Neutral Transit Time r 2.1e6 1.8e6

Table 2.12: Mean free paths for various collision processes along with estimates of various

lengths, velocities, and frequencies in the channel of the mini-TAL. L is the radius of the

acceleration zone. All units CGS except Te and Ts, which are in eV. Numbers assume phys-

ical free space permittivity, rnh = .13 mg/s, v,, = V2KT/m7r, n,, = rih/mAvn. Neutral

transit time, T =L/ < Vn >z, drops by a factor of 10 with E, change of 100x.
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" The magnetic dipole moment, p = 1m /B, is an adiabatic invariant, meaning that

it is nearly constant when the field experienced by the particle changes little during

an orbit.

" The guiding center moves along the magnetic field subject to the acceleration mi 11 =

(eE11 + F11) - pojBj/0x11 , where zg is some distance along the field line.

" The guiding center drifts across the magnetic field with various well known drift

velocities.

2.9.1 Hall Thruster Geometry

A very simple model of the magnetic field in a Hall thruster is shown in Figure 2-10. The

z direction in this figure corresponds to the axial direction. Here, B = B,/r Ir, where

j- is a vector drawn from the axis. In Cartesian coordinates, the magnetic field is 5 =

B o (-F ix ± % + ay). Such a field satisfies the divergence criterion, V - B = 0, although

it is clearly non-physical at r=0.

The gradient of this field is important. In Cartesian coordinates, four terms exist, 9B

,B ,and B. In cylindrical coordinates, only one term exists, oBr, which is parallelDy 'ax ' n 0oodnteol ar

to B. This gradient results in the "magnetic mirror" effect.

2.9.2 Motion of a Charged Particle

Let us consider the motion of a single electron under the influence of such a field. Let the

electron be located at j'= xix + yty (see Figure 2-10).

In the absence of an electric field, the force on a particle will be

0 0 2

V = -Wo 0 0 x 2 +Y2 v, (2.108)
2ZX 0

xy x 0

where wo = eBo/me. The equations of motion are not simple; there are forces in three

directions. What, then, can we expect to see?

To predict the particle's motion, let us use the standard method of considering first the

zeroeth, then the first order movements. If the particle starts at y = 0, then B = Bxix.

Off axis, there is a much smaller component of field in the y direction. To zeroeth order,
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B=B 0/r
r=x+y

r x

x

z
Figure 2-10: Simplified version of the magnetic field in a Hall thruster, B Bo/rir.

V x B Bvzy - Boyiz . This results in the usual cyclotron motion. Adding the y

component of magnetic field, we have i! x B = -ByvzIx + Boozy + (By v - Bxvy)Iz.

However, the term Byv is very small. The significant new force term is Fx = (e/m)ByvzIx.

This represents a motion in the nominal parallel direction. Note that the Byvz always has

the same sign. This means the motion does not average out over a gyration. Instead, the

guiding center moves outward along the field line.

If we place an electron in this field with no kinetic energy in the parallel direction, then

the electron will gyrate about the field line with 'j = c However, the electron is not

stable in the parallel direction. The particle is driven outward by the force due to the

gradient of the field in the parallel direction, O|B|I/or < 0 (this is really the same force we

just discussed). The resulting motion outward along B toward the region of lower IBI is

entirely natural. It occurs because both energy and magnetic dipole moment are conserved.

It is often called the "magnetic mirror" effect.

The addition of electric fields changes the picture. Electric fields (or any other force)

perpendicular to the magnetic field will produce guiding center drifts in the 6 direction.
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2.10 Electron Transport in a Hall Thruster

In a Hall thruster, transport parallel to the magnetic field is driven by the electric field,

diffusion, and gradients in the magnetic field. Transport perpendicular to the magnetic field

comes from diffusion, wall effects such as secondary emission, E x B drift due to the EO in

azimuthal waves, and diamagnetic drift due to density gradients in the azimuthal direction.

All of these mechanisms will be discussed in the following sections.

2.10.1 Secondary Emission and Wall Effects

In an SPT, secondary electron emission at dielectric surfaces is thought to play an important

role in electron transport. In a TAL, where the acceleration channel is metallic, secondary

emission effects are thought to be less important. The secondary electron yield from metals

is much less than the yield from insulators; in metals, the maximum of the yield rarely

exceeds 1, while insulators may show values up to 10 or more [44]. Since this effect is

thought to be small, we ignore it. Secondary emission is not modeled in this simulation.

2.10.2 Classical Diffusion and Guiding Center Drifts

In this section of the thesis, we present a simple theory for electron transport applicable to

the TAL thruster. We start with an un-magnetized plasma, then move on to a magnetized

plasma, and end with a discussion of anomalous diffusion.

Conservation Equations: Unmagnetized Plasma

Electron transport may be described through the momentum equation. Assuming collisions

are isotropic and excluding the magnetic field, the momentum equation may be written

di
mn-- = ±enE - Vp - mnvv. (2.109)

dt!

Here, J is the bulk velocity, p = nKT is the pressure, v is the collision frequency, and d

is the convective derivative, which may be ignored if V' is small (or v is sufficiently large).

This leaves the equation

=- KT Vn. (2.110)
mv my n
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Here, p = ' is termed the mobility and D = KT is the diffusion coefficient. The flux l

can thus be written,

F = nJ = ±PnE - DVn. (2.111)

The first term is transport due to the electric field; p is, essentially, the conductivity of

the plasma. The second term is just diffusion. If E = 0 or the species is uncharged, this

transport equation reduces to

F = -DVn, (2.112)

which is just Fick's law. This describes transport due to gradients in pressure and is a

statement of a fundamental thermodynamic concept, that the system wants to come to

equilibrium.

Meaning of the Diffusion Coefficient

Einstein was the first to mathematically explain the diffusion flux caused by Brownian

motion [11). In his solution, he says the mean square displacement of a particle along x due

to random fluctuations (as by collisions) after time r is given by

< (AX) 2 >= 2DXT, (2.113)

where Dx is the diffusion coefficient. Inverted, this equation says

1
DX = < (Ax)2 >. (2.114)

2 -

For isotropic diffusion in d dimensions (Dx = DY = Dz), < (Ar)2 >= d < (Ax) 2 > such

that

< (Ar)2 >= 2dDxT (2.115)

and

D= < (Ar)2 > . (2.116)
2dT
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Electron Collision Frequency

In a Hall thruster, electron collisional transport arises from encounters with neutrals, ions,

and other electrons. The total electron collision frequency may be written

ve V ven + vei + Vee. (2.117)

The electron-neutral collision frequency Ven is determined by cross sections, Qen, for col-

lisions with neutrals, the neutral background density, and the electron velocity according

to Ven ~ nnveQen. The electron-ion collision frequency is determined by vei ~ niveQej,

where some caution must be used in estimating the momentum transfer cross section Q"ei

(see Section 2.8.5). If neQei >> nnQen, and vee ~ vei, then Ve vei + vee. This is true

in a fully ionized gas, but can also be true in a gas with a low ionization fraction but low

temperature such that Qei is large.

Most Hall thruster analyses assume the opposite case, that ve ~ ven [10] [12]. This

may be appropriate for a Maxwellian plasma with temperatures from 5 to 20 eV. However,

our simulation contains low energy electrons for which the Coulomb cross section is very

large. Such electrons are, for instance, produced through ionization. Thus, we include these

collisions.

Conservation Equations: Magnetized Plasma

We now consider a magnetized plasma[6]. Since B does not effect motion in the parallel

direction, the parallel flux can be written

171 = ±pnEl - DVIjn. (2.118)

In the perpendicular direction, however, electrons are impeded by the magnetic field. A

different momentum equation is required. Letting temperature and collisions again be

isotropic, the perpendicular fluid equation of motion may be written

dv6j
mn dt = ten(Si + 61 x B) - KTVn - mnvv, (2.119)

dt

where

Vi = iX + Y. (2.120)
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Ignoring the convective derivative, separating into x and y components, utilizing the defi-

nitions of p and D, and letting 3 = wc/v, one finds,

or (1+ #2) = kEx -!Q + +#2 E -2 2T19

oY(1 +#2) = i - {x -#2 2  y (2.121)

More generally, this may be written

D in E + 6D
V± = k p15-L D1---/+621 ,(2.122)

ni 1±+1/#32

where
_ p D

Pl ~ D = 2 . (2.123)
1 + #3 1 +,32

The "Hall parameter", 3, determines the "magnetization" of the plasma. Without collisions,

#8 goes to infinity and pU and D1 go to zero. In this case, all transport comes from the

guiding center drifts, yE and 'D.

2.10.3 Perpendicular Transport due to Guiding Center Drifts

The terms 'E and 'D in Equation 2.122 are, respectively, the Ex B drift and the diamagnetic

drift. Let us assume a field geometry similar to that found in a Hall thruster, B = Br, where

the coordinate system is (r, z, 0). Let x correspond to z, and y correspond to 0, such that

V1 =z + %. Then, the velocity terms resulting from these terms may be written,

#2 -. KT 1 dn
z (EOB - ) (2.124)

1+32 eB n rd9

and

#2 -. KT 1 dn
O (-EzB + (2.125)1 +#2 eB n dz

The first equation shows drift in the axial direction. If variations in 0 are not modeled,

then 'Uz = 0. The second equation shows drift in the azimuthal direction. The first term of

the second equation yield the Hall current, jo = -neEz/B. Thrusters with "closed electron

drift" are called "Hall" thrusters. This is why.

Note that if #32 is large, then collisions do not affect the drift velocities. Also, note that

the diamagnetic drift is proportional to KT/eB. This is also the form of "Bohm" diffusion,
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discussed in Section 2.10.5.

2.10.4 The Meaning of Mobility and Diffusion

Without collisions (# = o), the first two terms in Equation 2.122 go to zero. Without

guiding center drifts (-E = D = 0), the particles would be trapped on the magnetic field

lines. With collisions, the particles migrate across B to the wall along the density gradients

in a random walk process; the guiding centers move in collisions and the particles diffuse in

the direction opposite Vn.

If # >> 1, the mobility and diffusion coefficients are well represented by

v2 p2 2  D
piLpg= 3 D = = (2.126)

In this case, transport across B is proportional to the electron collision frequency, ve. The

step length is the magnitude of the Larmor radius. When the magnetic field is increased,

the Larmor radius decreases and the flux decreases, too. When # << 1, the magnetic field

has little effect on transport, which can be described by Equation 2.111.

Note that for v << wce, D 1 = vj . If we let v2 = 2KT/m, this reduces to D 1 =

uvv2/w2. In the next section, we obtain the same result through a simple model.

Simple Model of Diffusion across B

In a magnetic field, the effect of a random scattering event (as from a collision) is to

move the center of gyration in a random direction through a vector distance 6r such that

0 < |6r| < 2 rce, where rce = vI/Wce is the gyro radius. On average, for a 90 degree collisions,

Ar 2 = (Ax) 2 + (Ay >2 = 2r2. (See Figure 2-11).

Let the collision frequency be v. If T is time, the mean square distance diffused after

N = v-r steps is then
2

< |Ar| 2 >= N|6r|2 = N2r2 =:: 2vT v1  (2.127)
ce

For 2D diffusion (d = 2) in the plane perpendicular to the magnetic field, Dx = Dj_=

1/4r < (Ar)2 > such that
12

D_ = -v (2.128)
2 oce
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Figure 2-11: A ninety degree electron-neutral collision, for which Ar 2 = (AX) 2 + (Ay >2

2rce

2.10.5 Anomalous Diffusion

Observed levels of electron transport in SPT type Hall thrusters are not explained by

classical electron-neutral diffusion and mobility alone. To explain reality, theorists have

turned to "anomalous" sources of transport. In the SPT, one possible mechanism for

anomalous transport is secondary electron emission due to electron and ion impacts with

the walls. However, this mechanism should not be important to TAL thrusters, which have

metallic walls. For more discussion of secondary emission, see Section 2.12.5. Other sources

of "anomalous" transport applicable to all types of Hall thrusters are the guiding center

drifts discussed in Section 2.10.3. Anomalous is in quotations because there is really nothing

anomalous about these mechanisms.

Bohm Diffusion

Laboratory plasmas often show diffusion rates not explained by classical diffusion. In nuclear

reactor experiments, Bohm and others observed that D 1 usually has a 1 dependence. Bohm

introduced the following semi-empirical relation to describe the observed diffusion:

DB 1 IKTe 1 lTenm 2

DB = D-= - =e ---- v [ ]. (2.129)
16 eB 16 B s
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The last result comes from KT/e = Tev, which is only true in MKS units. Anomalous

diffusion following this form is often termed "Bohm Diffusion." The factor of 1/16 is only

approximate and may vary by several factors of 2. If we take v2 = 2KT/m, then

1 V 2
DB = = 12 (2.130)

32 wce

Wall effects, convective ExB convective cells, and oscillating electric fields resulting from

unstable plasma waves have been proposed to explain Bohm diffusion [6].

If both anomalous Bohm diffusion and classical diffusion are present, what is their

relative magnitude? The classical result for a weakly ionized gas in a magnetic field is

D 1 
=  T -, while DB =- K1/i such that

~ Ve x16. (2.131)
DR Wce

If ve = nVeQen and Ve, then (in MKS units)

If ~ ~ ~ D nnene m ne n e Ad

D- B - x 26. (2.132)
DB Be

Aside from constants,
_- ~n Te (2.133)
DB B

where we note that Qen is a weak function of temperature and is approximately 2.2 x

10-1 9m 2 for temperatures of interest. In regions where the magnetic field is strongest,

classical diffusion is expected to provide less diffusion proportionally than in areas where

the field is weakest. What range of nn, Te, and B are required in order for these terms to

be comparable? In the anode region of the TAL thruster, nn ~ 7 x 1020 m1, Tev 5,

B ~ .5 Tesla and Qen ~ 2.2 x 10- 19m 2 . Also, in Hall thrusters, DB seems to be better

approximated using the coefficient 1/64 than with 1/16 (see next section). Therefore,

DI/DB ~ 2/5. If Bohm diffusion is present in this region, then it should be comparable

to classical diffusion. Both classical and anomalous diffusion (if present) should contribute

significantly to electron transport!
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2.10.6 Coulomb Collisions and Electron Transport

As stated earlier, this simulation models electrons at all ranges of energy, at some of which

the cross sections for electron-ion and electron-electron collisions are orders of magnitude

larger then the cross section for electron-neutral collisions (the cross sections are estimated

in Section 2.8.5).

Coulomb collisions are not expected to produce much bulk transport precisely because

they occur at low energies, i.e. low electron velocities. However, some transport will result.

Furthermore, Coulomb collisions will influence the electron energy distribution function;

they produce transport in velocity space. Therefore, the simulation must include them.

Coulomb collisions are modeled using both a standard Monte Carlo Collision (MCC)

approach described in Section 3.15.4 and a diffusive model described in Section 3.16. Results

obtained using both models are presented in Chapter 5.

2.11 The Extent of the Ionization Layer

Grishin and Leskov present a simple method for estimating the extent of the anode layer.

Let T be the time of flight of the average electron through the anode layer of thickness L,

T ~ L (2.134)
< V6 >1

If the plasma is magnetized, then the mobility is determined by the classical formula, such

that
L L2

E ~ , (2 .13 5 )

where A# is the potential difference across the layer. If the steady state rate of electron

drift from the layer is equal to the ionization rate, then Tvi ~~ 1, where vi is the ionization

rate. Thus,

L 2 I- - MAO (-e) 2. (2.136)
vi eB 2  Vi

We can rationalize this through the scale length RL, defined by

eA# 1
RL ~1 . (2.137)

71 Wce
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In terms of RL, the extent of the layer is

L ~ RL . (2.138)
V i'

Note that RL takes the form of the electron Larmor radius, but is determined by half the

potential difference across the anode layer; it is higher than the average Larmor radius of

the electrons in the simulation by a factor of RL/ C rL >~ Arb/2T. Also note that this

result is not a function of < vn >z.

Let us now step away from Grishin and Leskov. Figure 2-8 shows temperature averaged

cross sections for electron-neutral scattering. If the temperature of the electrons in the

anode layer is about 25 eV, this figure says the total scattering frequency is about ten

times the ionization frequency, meaning that L should be about twice RL. Also, RLIL ~

V300/50 ~ 2.5. Thus, Equation 2.138 says the anode layer should be 5-10 electron cyclotron

radii wide. Since the electron cyclotron radius is about .005 cm (see Table 2.12), the width

of the ionization zone is on the order of .05 cm.

In an anode layer thruster, diffusion is thought to be determined primarily through

electron neutral collisions. In this case, Ve is well represented by the total electron neutral

collision frequency. In an SPT type thruster, which has dielectric walls, diffusion is thought

to be increased by wall effects, increasing the electron mobility. In this case, Ve may be

thought of as an effective collision frequency. As this effective frequency increases, so should

the extent of the ionization layer. Let us make Equation 2.138 more general:

L RL - (2.139)

We have introduced the Hall parameter, #. Anomalous diffusion may be taken into account

by modifying #. Note that Equation 2.139 does not change if both ve and vi are multiplied

by the same constant 1/v,'f. This means that the method for increasing electron transport

described in Section 2.6.2 should not change the length of the acceleration zone.

2.12 Boundary Conditions for Particle Impact

Following is a brief discussion of the rationale behind the boundary conditions applied in

this simulation. For more discussion of the numerical method, See Section 3.18.
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Many details of gas-surface interactions are still unknown, but models which reproduce

the important features have been developed. Common solutions divide particle reflection

from solid surfaces into two classes: specular and diffuse. Figure 2-12 illustrates the dif-

ference. A given interaction may be described by one of these classes, or a combination of

both [351.

> "Specular Reflection"

- Billiard ball

> "Diffuse Reflection"

Figure 2-12: Reflection off boundaries is specular or diffuse.

2.12.1 Specular Reflection

In specular reflection, a particle bounces off a surface like a billiard ball, but without loss of

energy. The normal component of momentum is reversed, and the tangential component is

unchanged. This is intended to model an interaction with a perfectly smooth (frictionless)

surface. It may also be used to model a symmetry plane.

2.12.2 Diffuse Reflection

In diffuse reflection, the impinging particle is re-emitted without regard to its thermal state.

Thus, a high speed particle gives up a portion of its energy to the surface. In full thermal

and momentum accommodation, the outgoing velocity may be assigned according to a

half-range Maxwellian at the surface temperature. An "accommodation coefficient" may

be defined in terms of the incident and reflected energy fluxes, qi and q, and the energy
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carried away in diffuse reflection at the wall temperature, q,;

ac =7 . (2.140)
qi - qw

A coefficient of ac = 0 implies specular reflection, while qc 1 implies diffuse reflection.

According to Bird, experiments with "engineering" surfaces in contact with gases at

normal temperatures indicate that the reflection process approximates diffuse reflection

with complete thermal accommodation [4]. Bird also states the diffuse assumption must be

"critically reviewed" if the surface is a smooth metal which has been out-gassed through ex-

posure to high vacuum and high temperatures, or if the translational energy of the molecules

relative to the surface is more than several electron volts.

Oh built a hybrid PIC model of a Hall thruster plume. In doing so, he assumed semi-

specular reflection of neutrals at surfaces, stating that the their temperatures were unknown

[33]. This means he retained the magnitude of the neutral velocity (no accommodation of

energy), but scattered the direction (full accommodation of momentum).

Piekos used DSMC methods to model micro-mechanical devices, which often contain

surfaces cut along silicon crystal planes [35]. Such surfaces have accommodation coefficients

less than one. Piekos used a random number generator to describe the accommodation

coefficient; if the random number was less than ac, then reflection was specular, and if

greater, then reflection was diffuse.

2.12.3 Application to mini-TAL

The mini-TAL contains out-gassed metal surfaces exposed to high temperatures. However,

ion bombardment will sputter the surfaces, leaving them microscopically rough. Thus, low

velocity particles should scatter diffusely.

Neutrals

Neutrals rarely impact with more than 1 eV of energy. Therefore, we assume full accom-

modation in both energy (ac = 1) and momentum. Numerically, all neutrals which impact

are re-emitted according to a half-Maxwellian at the wall temperature, assumed to be 700

Kelvin. A thermal model would yield a better estimate of wall temperature.

Note: Charge exchange neutrals are not low velocity, but they are uncommon. In
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Chapter 6, "Conclusions," we recommend modifying the boundary conditions to allow for
partial accommodation of high energy neutrals. Accommodation coefficients less than one
could be simulated by using random numbers as per the method of Piekos [35].

Ions

In contrast to most neutrals, ions may impact the wall with tens or even hundreds of

electron volts of energy. Plasma fusion modeling experience indicates that the ions give up,

on average, about half their kinetic energy to the wall [1]. (During recombination, the wall

gives up energy as electrons are extracted from the lattice, but also receives kinetic energy

and energy liberated during recombination. See the next section for further discussion.)

Numerically, an ion which impacts disappears and a neutral is created with one half

of the ions initial kinetic energy, but in a random direction. The particle is thus partially

accommodated (ac = .5) in energy, and fully accommodated in momentum. This may be

likened to the method of Oh.

2.12.4 Energy Loss to Walls

As stated above, energy is liberated when particles collide with surfaces of the thruster.

This heat flux is of interest to engineers. The wall receives half the ion kinetic energy flux,

4i (recall, ac = 0.5). The wall also receives, for each impacting ion, an additional Ei = 12.1

eV (in the case of singly charged Xenon), liberated during recombination. However, the

neutralizing electron must be extracted from the lattice at an energy cost equal to the work

function, e#. So, the net is e(V - #) per ion. To this, we must add the entire electron

kinetic energy flux, 4e; electrons are entirely absorbed when they impact. Secondary electron

emission, which would give back some of this energy, is not currently modeled. Neutrals also

give up energy to the walls, but this energy will not be statistically significant unless the

neutral gas temperature is much higher than the wall temperature, which is not assumed

to be the case in this thruster. Thus we may write

Qwau J 4 i + (E - e#) n i + 4e ds, (2.141)

where Qwaii is total energy flux to the wall (the power absorbed by the wall), Ej = 12.1eV

is the first ionization energy of Xenon, and ni is the number flux of ions to the wall. In
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addition, metastable atoms or ions also deliver their excitation energy. However, we do not

keep track of these.

Work Functions

Measurements of electron work functions of the elements vary, depending on the source.

The body of the mini-TAL is made of Mo and steel. For Mo, the Handbook of Chemistry

and Physics [20] lists photoelectric work functions of 4.15 and 4.34 eV, for an average value

of < # >-- 4.25 eV. For Fe, the same source lists photoelectric work functions of 3.91, 3.92,

4.72, and 4.77 eV, for an average value of < # >~~ 4.33 eV. Based on the degree of variation

in measurements, it seems reasonable to assume a value of < # >= 4.3 eV for both.

2.12.5 Secondary Electron Emission

Secondary electron emission due to electron and ion impact with the anode and thruster

body is ignored in the numerical model; we assume that secondary emission from ion impact

is insignificant, and that secondary electrons from electron impact do not have enough

energy to overcome the sheath and make their way into the plasma. However, inclusion of

secondary emission would make the simulation more physically realistic. Here, we discuss

some types of secondary emission which could be included.

Secondary Electron Yield due to Electron Impact

The secondary electron yield 6 due to electron impact is defined as the ratio between the

total number of emitted electrons and the total number of primary electrons. Values of the

peak secondary electron yield for Mo and Fe are taken from McDaniel [30] and reproduced

in Table 2.13. At very low and very high energies few secondary electrons are ejected, but

the yield is larger at intermediate energies and may exceed unity there. At low primary

energies the energy of many secondary electrons is less than the work function at the surface;

they cannot escape. At high energies, most secondary electrons are produced deep within

the target; they loose so much energy in collisions with other electrons before reaching the

surface that they cannot escape either. In general, insulators have extremely high yields.

This happens because of quantum effects which keep electrons from dissipating their energy

in collisions with other electrons as they work their way toward the surface [30]. McDaniel
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reports maximum yields as high as 6 max = 24, for NaBr, and as low as 6 max = 1.5 for Al 2 03

and tmax = 2.4 for SiO2 (Quartz).

Since secondary yields due to electron impact are, for high energy electrons, on the

order of 6 = 1, this phenomenon may be quantitatively significant and could be included

to generate a more realistic sheath model. (A more detailed analysis must be conducted to

determine the yield below Ep+.) Elastic backscattering could also be included. A model for

the energy distribution of secondary electrons would be required. According to McDaniel,

for primary energies between 20 and 1000 eV, the energy distribution of the "true" secondary

electrons (those within the range 0-50 eV) is almost independent of the primary energy and

has a common shape. The maximum for metals generally lies between 1.4 and 2.2 eV. The

curve drops off with energy, but is still 25 percent of its peak value at 25 eV. A large fraction

of secondary electrons produced at the wall might escape the sheath. Secondary electrons

produced at the anode, however, seem likely to fall straight back.

Symbol gma, Epo E,+ E,_
Fe 1.3 400 120 1400
Mo 1.25 375 150 1300

Table 2.13: Values of the peak secondary electron yields 6
max and the primary electron

energies Epo at which they occur for different metals. Electron energies Ep+ and E,- at
which the yield equals unity are also included. These values are reproduced from McDaniel
[30], who reproduced them from another source.

Secondary Electron Yield due to Ion Impact

Secondary electron yield for ion impact results from a phenomenon called potential ejection.

This involves electronic interaction between the incoming ion and the conduction electrons

of the metal while the ion is a few Angstroms from the surface. The discussion here is

condensed from McDaniel [30], who, in turn, cites the work of H. D. Hagstrum (references

in McDaniel). Hagstrum collected data on electron yield versus bombarding energy for Xe+

on atomically clean Mo. The data is presented in terms of -y, the secondary electron yield

per primary electron. At energies between 0 and 1000 eV, the yield for Xe+ on Mo is about

7y = .02, while the yield for Xe+ on W is about -yi = .015. Significantly, the yields are

nearly independent of the kinetic energy of the ions! For Xe2+ in the range 0 < E, < 400

eV, yi varies between .3 per ion (near E = 0) and .2 per ion (near E = 400).
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Since only Xe+ is currently modeled, for which 7i = .02, emission of secondary elec-

trons due to ion impact is quantitatively insignificant and can be ignored. However, if the

simulation is expanded such that multiply charged Xenon is modeled, for which '4 ' .25,

then ion impact should be included. A model for the energy distribution of the secondary

electrons would again be required.

2.13 Wall Potential and Sheath Formation

Over most of the simulation region, the sheath near the wall is calculated self-consistently

by the potential solver and particle moving algorithm. The potential of the conducting wall

is determined by the amount of charge collected and a pre-determined capacitance. (The

potential at an insulator may be computed in a similar fashion by simply collecting the

charge along the boundary.) An analytic model is only used to apply boundary conditions

for the potential on the portion of the simulation boundary parallel to and most distal

from the centerline (in the upper right hand corner). An alternative would be to apply the

condition Er = 0 at that boundary.

2.13.1 Insulators, Conductors, and Capacitance

The macroscopic aspects of the response of material bodies to electric fields can be de-

scribed by dividing the bodies into two classes, insulators and conductors. A conductor is

a substance inside which there is no electric field and no polarization, in static situations.

An insulator is a substance in which the polarization at each point is some function of the

electric field at the same point. Of course, these two classes are limiting cases; in between

there is a whole range of bodies with finite conductivity.

In a perfect conductor, in an electrostatic situation, all parts of the conductor will be

at the same potential, since the field inside it is zero. For zero current only, if there are

outside distributions of charge and polarization that would tend to cause different parts of

the conductor to be at different potentials, the electrons in the conductor will move until

the potential produced by them combines with the externally produced potential to give

zero field and a constant potential throughout the conductor [231. In general, this requires

non-uniform distribution of charge over the surface. In dealing with conductors, the charge

is usually treated as a surface charge. Thus, the net charge maintained on a surface may
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be written

QS =Jqgds. (2.142)

The term capacitance may be used in several different ways, but it always refers to

a charge that will produce a unit potential. If a conductor is not isolated, its potential

is influenced by any outside charges or polarization in its neighborhood. However, if a

conductor is isolated, its potential is determined by its own charge only. In the case of an

isolated sphere of radius R, the capacitance is given by

C = 47rcoR. (2.143)

Thus, the surface potential of a sphere holding charge Q, may be written

DS = .S (2.144)
C.

In the case of mutual capacitance (e.g. an electrical capacitor), two conductors are essen-

tially isolated from the outside. In this case, the capacitance is the charge on one conductor

divided by the difference in potential, when the two conductors have equal and opposite

charges [23].

2.13.2 Wall Potential

In the simulation, the potential of the conducting wall at time t with respect to spacecraft

ground, #,(t), is determined by the amount of charge held by the wall and the capacitance

of the wall;
Q(t)

#O() = QM .(2.145)C

(This approach is electrostatic; we assume charges in the wall re-arrange themselves instan-

taneously at each time-step.) The charge in the wall starts at zero at the beginning of the

simulation, but changes over time according to the net charged particle flux into the wall;

Qwau(t) = e J f(i z - fe ) ds dt. (2.146)

The potential of the wall eventually comes to a state of quasi-equilibrium with the plasma.

In this state, 'e ~ Fi such that #w oscillates about some mean, < #0, >, which is constant
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over time.

We used the program MaxwellTM to estimate the capacitance, C, of the thruster body.

This involved entering the geometry of the entire thruster body and assuming that the

thruster was isolated from its surroundings. Maxwell predicted that C ~~ 1.62 x 10-12

Farads (Coulombs/Volt). This is equivalent to the capacitance of a sphere of radius R ~

14.5 mm. The Maxwell estimate seems reasonable, since the outer radius of the main

thruster body is 9.7 mm. To increase stability, we actually use a larger capacitance, e.g.

C = 1 x 10-1 0 F. This is equivalent to placing an additional capacitor between the floating

body of the thruster and the spacecraft. In Chapter 4, we show that the choice of C (within

reason) does not change < <p, > or overall thruster performance if the quasineutral method

of electron injection is applied.

Implementing the wall potential is numerically simple. We merely track the net charge

which has impacted the wall, Q. Each electron which impacts contributes charge AQ = -1,

while each ion contributes charge AQ = +1 (or AQ = +Z, if multiply charged Xenon is

included). No secondary electron emission is modeled. Then, in normalized units,

Q x e x [size]
O C ,Te (2.147)

C [Ted]

where C is in Farads, [size] is the size of a super-particle, e = 1.6 x 10-19 Coulombs, and

e is some multiple of [Tev].
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Chapter 3

The Numerical Method

This simulation employs the Particle-In-Cell (PIC) and Monte Carlo Collision (MCC)

methodologies to simulate a collisional plasma [50]. All particles are treated kinetically;

their trajectories are followed as they move within a computational grid. Charged particles

experience electric and magnetic forces according to Maxwell's equations. Electrons also

experience electron-neutral and Coulomb collisional forces. Various other collision processes

are also modeled. The simulation is nominally explicit (as opposed to implicit), meaning

that most quantities which affect the motion of a given particle are sampled from the

previous time-step.

3.1 The Particle-In-Cell Methodology

The Particle-In-Cell (PIC) methodology is used to apply forces to particles. The general

concept is illustrated in Figure 3-1. In essence, the forces experienced by charged particles

can be modeled via a grid. Forces are calculated at the grid nodes and interpolated to the

particles which reside within. Particles are shielded from other particles beyond the Debye

length, AD; this determines the grid spacing.

Figure 3-2 is a generic flow chart of the method. First, particles are weighted to a

computational grid at time t to determine the charge density and other particle moments.

Next, the electric potential and field are calculated on the grid. Then, both electric and

(pre-computed) magnetic fields are weighted back to the particles, which are time-stepped

forward to t + 1 according to a leapfrog scheme. Then, the cycle begins again. Convergence

of the simulation is determined by the rate at which parameters of interest change.
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This methodology did not spring full grown from the head of Zeus. It is a well known

method in plasma physics. Entire books are devoted to the subject. One of the best known

is Reference [5).

Many PIC schemes are possible. Our modus operandi is nominally momentum con-

serving. The computational grid is structured and non-Cartesian. The coordinates on this

grid are mapped to a set of Cartesian computational coordinates according to the method

of Reference [45]. Particles are interpolated to nodes according to area weighting in com-

putational coordinates. Forces are weighted back according to the same scheme. Other

interpolation schemes are possible. Each has advantages and disadvantages.

3.2 The Monte Carlo Methdology

Systems wherein a time dependent random variable exists are called stochastic. Our thruster

is one such system. Collisions in this simulation are considered Markov processes. This

means that the conditional probability of a collision occurring is determined by knowledge

of the most recent condition only, e.g. the probability of an electron colliding with the

neutral background at time t is determined by the electron velocity v(t) and the background

density n,,(r, z, t - 1). The neutral density at time t - 2 is not relevant. Brownian motion

as derived by Einstein is a Markov process.

Large angle, stochastic, Markov collisions may be modeled with a Monte Carlo method-

ology. The basic idea of the Monte Carlo method is as follows:

" For each particle of species a, the probability of a collision in At with species # is

computed; P,,,3 = fn(n3, vp, Q(v,,)).

" The probability p is then compared to a random number 6 to determine whether

an event takes place.

" If an event occurs, the momentum of the primary particle changes discontinuously by

some (vector) amount which must also be determined randomly.

The result is diffusion not unlike that due to Brownian motion.

Many Monte Carlo methods are possible. Those relevant to this discussion are the

Monte Carlo Collision (MCC) method, and the Direct Simulation Monte Carlo (DSMC)

method. The MCC method assumes that the test particle is traveling at much higher
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Particle-In-Cell (PIC) Method

Electric and Magnetic forces
experienced by particles...

B
E

.can be modeled by tracking
articles on a grid.

orces are calculated at grid
Lodes and interpolated to particles.

Particles shielded from other particles beyond
"Debye length" 4 Grid spacing

Figure 3-1: The general concept underlying Particle-In-Cell(PIC) simulations.

Weight
particles
to grid

Calculate Forces on Grid

A T Weight forces
to particles

Move particles

Iterate to semi-converged solution

Figure 3-2: Flow chart of the PIC method.
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velocity than the background species. Thus, the test particle scatters of the background.

The DSMC method chooses two particles and collides them explicitly. This is required to

model self-collisions (e.g. neutral-neutral collisions) where the collisions significantly affect

the background distribution. Note that the terminology is not well defined; Bird seems to

apply the term DSMC to MCC as well [4].

In this simulation, electron diffusion across magnetic field lines occurs primarily through

a series of large angle collisions. Since electrons are much faster than neutrals, the MCC

method is appropriate for electron-neutral scattering. The MCC method may also be used

for ion-neutral scattering. We also use MCC to model electron-ion and electron-electron

scattering, although the latter especially could be better modeled using DSMC. There is,

however, a alternative approach to Coulomb collisions which is based on the Langevin

equation, described in the next section.

3.3 The Langevin Equation

When Langevin re-derived Brownian motion, he introduced a form of equation now bearing

his name [11]. A Langevin equation, in its simple form, has a steady and a stochastic term.

A simple example is

dt

where ((t) is a rapidly fluctuating random term having the properties < ((t) >= 0 and

< ((t)((t') >= 0, t # t' (there is no correlation between times). The random term is

essentially white noise. A form of the Langevin equation is used to model the diffusion in

velocity space due to Coulomb collisions (see Section 3.16).

3.4 Code and Data Structure

The simulation is written in C. The general methodology is visualized in Figure 3-3. The

basic structure of the code is as follows:

* Pre-computation:

- Calculate time-invariant magnetic field

- Make Grid

" Call "pic"
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- Initialize variables

- Calculate normalization constants based on nominal conditions

- Load grid and normalize

- Assign boundary materials

- Load particles

- Get moments of initial distribution (density, bulk velocity, temperature)

- Interpolate magnetic field to grid

- Iterate

* Calculate charge distribution and other particle moments

* Solve Poisson equation for electric potential

* Calculate electric field

* Save intermediate data (periodic)

* Neutral loop

- create neutral stream at anode

- delete neutrals ionized

- add momentum and energy from ion-neutral collisions

- move particles

- apply boundary conditions

- sweep up excess particles (periodic)

* Ion loop

- make charge exchange ions and neutrals (MCC)

- scatter ions off neutrals (MCC)

- move particles

- apply boundary conditions

- create neutrals due to wall recombination

- collect charge at walls

* Electron loop

- apply electron-neutral MCC collisions

- apply Coulomb collisions

- apply Bohm collisions (if applicable)

- move particles

- apply boundary conditions

- collect charge at walls

- create new ions and electrons

* Sum kinetic and potential energies

- Post-process data

- Save data

- Clear variables

* Post-process data

- Performance
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electric
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escatter electrons
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eapply boundary conditions

Get moments
Post-process

data

Figure 3-3: The full PIC MCC methodology. Particles are weighted to a grid on which the
electric potential and field are calculated. Forces are then weighted back to the particles.
Most collisions are treated using the Monte Carlo method.
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- Moments

- EEDF

Each species of particle (electrons, ions, neutrals) is stored in a separate linked list.

Using linked lists allows flexibility. Particles may be added to or subtracted from the lists

at almost any time. Memory is allocated dynamically, eliminating the memory overhead

associated with an array. The size of a list can grow to the limits of the machine's memory.

Drawbacks to using linked lists may include performance issues associated with trading

memory in an out of the CPU cache [33]. Also, access to the middle of the list is limited,

but this is generally not a problem since we work on one particle at a time. In fact, the code

could be re-written to run on multiple processors at once. This is called "multi-threading."

Each structure in the linked list represents a single particle. The structure looks like

this:

struct charged-particle {
double r; /* radial position */

double z; /* axial position */

struct vectorjj v; /* velocity (v.r, v.z, v.theta) */

float mass; /* normalized mass; 1 or M/m */

short charge; /* normalized charge; 0, 1, or -1

short size; /* statistical weight of particle; 1,2,...10 */

short fate; /* used for manipulating particles */

short tag; /* used to track individual particles */

double xi; /* computational coordinate, nominally axial */
double eta; /* computational coordinate, nominally radial */

double p00; /* interpolation fractions to the 4 corners of */

double p11; /* the cell where a given particle is located */

double p01;

double p10;
struct charged-particle *next; /* memory location of next in list */

The structure contains the particle's position (z, r) , velocity (vr, vz, vo), mass (1 or

M/me), charge (0,1,or -1), statistical weight or size (1-50), computational coordinates on

the grid (xi,eta), and weighting constants to the four corner nodes of the cell in which the

particle resides (Poo, P11, Poi, Pio). The structure also contains room for tags (fate, tag)

which can be use to track, for instance, whether a particle was created through charge

exchange or whether it was created at the wall. The last entry is the memory location of

the next particle in the list. The list is accessed by storing the memory location of the first

particle as a static variable and then following the trail to the next particle until the end

of the list is reached.
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3.5 Initializing the Simulation

Before the simulation begins, we stipulate the mass flow rate, Th, the nominal neutral

temperature, T, the nominal plasma temperature, Te, the nominal number of particles we

wish to follow in the simulation, TARGET, and the initial statistical weight of each neutral

super-particle, s,.

At initialization, the simulation estimates the nominal neutral and plasma densities. The

method is described in Chapter 2. The neutral density, TARGET, and s, yield [size], the

number of particles each super-particle of statistical weight s = 1 represents. The nominal

plasma density and frequency are then calculated, yielding the normalization constants

[x],[t],[E],[B], etc. Then the grid is loaded and converted to normalized units, old particle

data is loaded, and the pre-computed magnetic field is loaded and converted to normalized

units.

Output from the code as it initializes is found in Appendix A.

3.5.1 Important Note on Units

Unless otherwise noted, the nominal temperature used in scaling figures presented in this

chapter was [Te] = 50 eV, the nominal mass flow rate was mh .13mg/s, the nominal

plasma density was [ne] = 9 x 1012 cm 3 , and the free space permittivity constant was 100

times higher than physical. Thus the nominal Debye length for most figures is [x] = .018cm,

while the nominal time-step is [t] = 5.9 x 10-11 sec. Bear in mind that the nominal [x] and

[t] are 10 times larger than their expected physical values. Furthermore, values such as [x]

are only scales; the local Debye length AD may be smaller or larger than [x].

3.6 Time-Step

The time-step At of the PIC scheme must be short enough to resolve all frequencies of

interest. For stability and accuracy, we must resolve both the plasma frequency, Wpe ~ 2 x

10+1Osecl (after accounting for artificial permittivity) and the electron cyclotron frequency,

wc = 1.4x ~ 101 1sec- 1 . It is not enough to resolve the nominal plasma frequency; we must

resolve the local plasma frequency across the entire grid.
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3.6.1 Leapfrog Stability Criterion

The leapfrog method used for particle pushing has error, with the error vanishing as (At)2 .

When applied to a simple harmonic oscillator of radian frequency W, there is no amplitude

error for wAt < 2 [5]. However, for wAt > 2 the explicit finite difference approximation

to Newton's laws of motions is unstable [19]. The time-step must, therefore, satisfy this

leapfrog stability criterion:

wAt < 2. (3.2)

The phase advance for one step is given by [5]:

1
woAt + -(woAt) 3 + h.o.t. (3.3)

24

For reasonably accurate integration of electron orbits, a time-step significantly less than

wAt = 2 is required, e.g. wAt = .7. According to Birdsall, a choice of wAt < .3 is required

to accurately observe oscillations or waves for some tens of cycles.

3.6.2 Gyro Frequency Criterion

The B-field magnitude varies with position. Inside the center pole, the field strength is

as high as 19300 Gauss (1.9 T). Let the field here be Bmax. Over most of the simulation

region, the magnitude is between 1500 and 3500 Gauss (.08 < BiBmax < .18). Near the

poles, the field rises to about to about 5000 - 8500 Gauss (.26 < BIBmax < .44) and even

higher on the last line of nodes.

Corresponding to Bmax there is a gyro frequency, Wmax. By satisfying the leapfrog

stability criterion <maxXt < 2, we ensure that wceAt < .36 over much of the interior, which

limits errors in rotation to about 1 percent (see Section 3.14). Near the center pole, weAt is

as much as 1, and errors can be ten percent. However, this only happens at the boundary;

if electrons reach here, they will probably be destroyed anyway.

Hockney points out that electron drift should still be determined accurately with large

time-steps, e.g. 9 per gyro motion or wceAt < .67 [19].
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3.6.3 Plasma Frequency Criterion

To resolve the plasma frequency across the entire grid, the leapfrog stability criterion re-

quires wpeAt < 2 at each node. The required time-step at each iteration therefore depends

upon the highest plasma frequency Wpe in the simulation region. The local plasma frequency

is (in normalized units)

Wpe = F , (3.4)
ne ,o

where ne is the local density and ne,o is the nominal density. Allowing at least 27r steps per

oscillation, and using the normalized unit system, we require Ai < ne,o/ne everywhere.

For more accurate integration, we require At < .3 nhe,o/ne everywhere. This criterion

is less stringent than the criterion imposed by the requirement to resolve the cyclotron

frequency. After changing co, the nominal plasma frequency is Wpe ~ 2 x 10- 1 0 sec 1 , which

is actually 4-5 times slower than the nominal gyro frequency. This means the time-step is

still (usually) limited by the gyro frequency; we lose half the speed we gained by increasing

EO. On the other hand, we have better resolution of the plasma oscillations and can use

coarser grids.

3.6.4 Numerical Heating Criterion

Another consideration when choosing At is stochastic (numerical) heating, as arises due to

arithmetic rounding, the size of the time-step, the finite-differencing of the equations, and

the use of super-particles. Hockney and others have quantified this heating for Charge-In-

Cell systems like our own [19]. Hockney defines an optimum path to minimize heating;

H
(mp[At)opt = mni2AD , 1] (3.5)(wpeAt~ot = 2AD'

where H is the grid spacing. Again, this criterion must be applied across the entire grid.

Recalling that [v] = ADWpe = vth/V/2, the first term on the right hand side simplifies to

1 = 1 H (3.6)
2 AD Wpe oth V/

Thus, the numerical heating criterion says that the grid spacing should be fine enough to

resolve the motion of a typical particle at the local thermal speed. In normalized units we
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may write

At < min[ H, n (3.7)
2 T' he

where H is the local grid spacing in nominal Debye lengths and t is the local temperature

in normalized units (T = T[T]). To apply this new criterion, we compute the electron

temperature across the grid at each time-step. In practice, we again find that resolving the

gyro frequency is usually the more stringent criterion.

3.7 Grid

A grid is required to perform computational plasma physics over a finite domain. Grid

spacing should be fine enough to resolve a Debye length, in order to measure the charge

density and thus calculate the electric field [5].

3.7.1 Elliptic Grid Generator

The location of the grid points determines a transformation between computational space

and physical space. This transformation can sometimes introduce numerical errors. So

called "grid metrics" can be used to measure the acceptability of a grid. One way to

achieve reasonable grid metrics is by using an elliptic grid generator.

Numerous references discuss elliptic grid generation. Here we apply the method of

Steger and Sorenson [48] as modified by [22] and [21]. First, we specify the locations of

the boundary nodes (Neumann boundary conditions). Next, we generate an algebraic grid.

Finally, we pass the node distribution iteratively through a set of elliptic equations until

appropriate error criteria are met.

In computational fluids, orthogonality is often imposed at the grid boundaries. The

method of [48] was applied to achieve approximate orthogonality at the centerline and on

the top boundaries of all grids used in this simulation. In addition, all grids used to produce

results presented in Chapters 4 and 5 are exactly orthogonal at the left hand boundary

(rk = rk+1) and at the right boundary (rk = rk-).
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Figure 3-4: Details of the simulation region. Preliminary versions of the simulation modeled
the anode boundary as a flat wall at z = 0 [51]. The simulation region was later expanded
to encompass the complex anode and inner magnetic pole boundaries. Dimensions are in
millimeters.

3.7.2 Grids Used in Simulation

Details of the simulation region are shown in Figure 3-4. Two of the grids used to model

this region are shown in Figures 3-5 and 3-7.

Flat Anode Boundary Grid

Preliminary research focused on a simplified simulation region, characterized by a flat anode

boundary. A typical grid for this simplified geometry is shown in Figure 3-5. The anode is

flush with the left hand side at z = 0. This grid required making some approximations at

parts of the left hand boundary through which particles should flow. For instance, electrons

were destroyed and ions were neutralized at the center of the anode, in effect making it a

continuous slab. Gaps between the anode and floating walls were modeled as magnetic

boundaries (conservation of energy and magnetic dipole moment were used to determine

whether a particle would reach the wall or be returned, see Section 3.18.7). A grid like this

was used to produce the results reported in Reference [51].

Grid nodes on the left hand side were spaced uniformly. At simulation initialization,

we found the node nearest to each physical feature in the thruster and made that node's
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25

Figure 3-5: The flat boundary 80 x 50 computational grid.

location the location of the feature in the simulation. For instance, if node (0,19) was the

closest node to the corner of the center pole, the location of the node became the location

of the corner. Consequently, some features were slightly misplaced.

Complex Anode Boundary Grid

Because many plasma particles were impacting the left hand boundary at places other than

the anode, the simulation region was expanded to become more physically realistic. The grid

shown in Figure 3-7 extends 1 mm to the left of the anode exit, encompassing parts of both

the hollow anode and center pole. Plasma can now form inside the anode, and magnetic

boundaries are no longer required. The boundaries of the grid are further clarified in Figure

3-6. Grids of this type are used to produce all results in Chapters 4 and 5 of this thesis.

Physically, the anode continues beyond z = -. 1 mm. However, this grid seems to be

sufficiently large. Almost no plasma reaches the left hand boundary, either inside or outside

of the anode. Inside the anode, backscattered neutrals do reach the left hand boundary.

This boundary was assumed to be part of the anode, i.e. neutrals are accommodated at

the anode temperature. Outside the anode, almost no particles of any species reach the left

139

20

15

10

5

00
z

2D) | 14 Apr 200 l MOMENTS



Non-Orthogonal Grid

-Elliptic grid with orthogonal boundary nodes
-Includes portions of anode, center pole
-Spacing )D

0.5

Metaic wall
Anode 03s

o. TFree space
5 boundaries

Center pole o.1

0.05 centerline
?0. 1 0 0.1 0.2 0.3 0 A

z

Figure 3-6: The computational grid annotated with boundary features.

hand boundary. For simplicity, these regions were modeled as pure reflectors. No magnetic

boundaries were assumed.

This grid's left hand boundary nodes are determined by the physical geometry of the

thruster. This means the node distribution is slightly non-uniform, but features are never

misplaced.

3.7.3 Node Density

In order to achieve a Debye length of resolution using physical permittivity (CO), the grid

should be on the order of 800 x 500. However, if 6' = epsiloney2 where -y2 = 10, then a

87 x 49 grid yields about a Debye length of resolution.

The node density is greatest near the anode, where we expect the Debye length to be

shortest. The node density is least near the free space boundary at large radii, where we

expect the Debye length to be longest.
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Figure 3-7: The complex boundary 87 x 49 computational grid.

center pole are located inside the grid.

0.4

Portions of the anode and

141



k- 1j-1

k+1,j-1

Figure 3-8: Illustration of the grid cell associated with node (k,j). The volume of cell (k,j) is
the volume of the eight sided polygon defined by computational coordinates (k ± .5, j ± .5),
(k, j ± .5),and (k ± .5, j) rotated about r = 0.

Criticism

This simulation attempts to achieve the desired resolution everywhere at all times by making

the grid fine. A better solution might be to use an irregular grid, e.g. Delauney triangles.

Although this would require fundamentally re-writing large portions of the code, it would

enable abrupt transitions in grid fineness, which might speed up the simulation. A further

evolution would be to regenerate the grid at each time-step according to areas of interest;

as the local densities and Debye lengths evolved, the grid would follow.

3.7.4 Geometry of a Grid Cell

Each grid node (kj) defines an integration cell (a finite volume). The cross section of this

cell (at any 0) is an 8 sided polygon defined by the computational coordinates (k ±.5, j±.5),

(k, j ± .5),and (k ± .5, j). This polygon is illustrated in Figure 3-8.

The volume of the cell is obtained by rotating the polygon about r = 0; Vk,j f dV

f dzrdrdO, where 0 goes from 0 to 27r. Vk,j is calculated by judiciously applying the formula

for volume of a right circular cone (see Figure 3-9).

Each boundary line represents a surface. These surfaces are conic sections. The surface

area of such a conic section is easily computed; the outside area of a right circular cone

of radii r1 and r 2 and height h is |sj = ir(ri + r 2 )l = 21rrl where 1 = 1(ri - r 2 )1 + h2
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Figure 3-9: The volume and surface area of the frustum of a right circular cone.

(see Figure 3-9). The projection along the r-axis is 27rfh, the projection along the z-axis is

27rf(r 2 - ri), and the projection along the azimuthal axis is the area of the trapezoid, fh.

3.8 Interpolation

The computational grid has Nz x Nr nodes. Each node has a set of integer valued coordi-

nates, (k, j), where 0 < j < Nz - 1 and 0 < j < Nr - 1. For instance, the lower left corner

has coordinates (k, j) = (0, 0). Each node also has a set of real coordinates, (z, r), which

represent the node's location in Z-R space. (Numerical Note: The simulation is written

in the C programming language, which begins array indices at 0. For instance, the first

element of array A containing 3 elements is A[0]. The last element is A[2].)

All particles travel within the outer boundaries of the grid. Each time a particle moves,

its location on the grid is re-assessed. Therefore, each particle may be assigned a set of

real coordinates and a set of computational coordinates; (z, r) -+ ((, y). The computational

coordinates of a particle are comprised of the indices of the lower left corner of the cell in

which the particle resides, (kj), plus some fractional amounts a1 and a2;

k + ai; j+ a2. (3.8)

On a Cartesian grid, ai and a2 may be determined by linear interpolation. On a non-

Cartesian grid, a mapping must be constructed. This mapping will be discussed in the next
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sections. The method is taken from Reference [451.

3.8.1 The Interpolation Concept

Let us first consider an arbitrary quadrilateral, denoted by the computational coordinates of

its "South-West" corner, (kj). The functional value f at any location ( , r/) = (k+ai,,jf+a2 )

within the cell can always be expressed as the sum of the weighted functional values at the

four corners, (k,j), (k,j+1), (k+1,j), (k+1,j+1) according to

f = Pk,jfk,j + Pk+1,j+lfk+1,j+1 + Pk,j+lfk,j+1 - Pk+1,jfk+1,j, (3-9)

where Pk,j + Pk+1,j+1 + Pkj+1 + Pk+1,j = 1. This is illustrated in Figure 3-10. This concept

kj+1

k+1,j+1

......... t

k,j

k+1j

P kyj+ P k1,j + Pgji+ P k+ij+1 =
,= k+ a-, T1= j+ 2

Figure 3-10: The interpolation method illustrated. Each particle is weighted to four grid

nodes, shown here as the corners of a quadrilateral.

is completely general. Calculating the weighting coefficients is not. We assume the weights

may be expressed in the forms

Pkj = (1 - a1)(1 - a 2 ),

Pk+1,j+1 = ala2,

Pk,j+1 = (1 - a1)a2,
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and

Pk+1, (1 - a2)a1, (3.13)

where 0 < ai < 1 and 0 < a2 < 1 are the computational coordinates within cell (k, j).

Thus, the interpolation method amounts to area weighting in the computational coordinate

system. But how are ai and a2 determined?

3.8.2 Square

Given a particle located with a simple square cell, ai and a2 may be determined through

linear interpolation;

ai zzoO (3.14)
Z1,0 - Z0,0 

3.4

Ti, - TOO
a2 = r - r .,o (3.15)

ro,1 - ro'o

Here, we let k = j = 0 for clarity. In this case, Equation 3.9 amounts to area weighting

in real space. For the square, area weighting has the property that bi-linear functions (i.e.

those of the form f = az+br+czr+d) are approximated exactly in [0,1]x[1,0] (see Reference

[45]).

3.8.3 Arbitrary Quadrilateral

For an arbitrary quadrilateral, ai and a2 are not so easily determined. We must find a

function f which assigns al,a2 E [0,1] to every point (z,r) in (k,j) such that for all linear

functions,

f (z, r) = az + br + c = pk,jfk,j ± Pk+l,j+lfk+l,j+l + Pk,j+lfk,j+l ± Pk+l,jfk+l,j. (3.16)

Restriction to linear functions is required; arbitrary bilinear function cannot be approxi-

mated exactly [45].

The most basic function to map is the location of a particle;

z = zo,o(1 - ai)(1 - a2) + z1,1aia2 + zo,i(1 - ai)a 2 + zi,oai(1 - a2); (3.17)

r = ro,o(1 - ai)(1 - a2) + ri,1aia2 + ro,1(1 - a1)a2 + ri,oa1 (1 - a 2 )

145



This may be rewritten;

z - zo,o =aia2(zo,o - zi,o + z1,1 - zo, 1) + a1(zi,o - zo,o) + a 2 (zo,1 - zo,o);

r - ro,o = aia2(r,0 - r 1 ,0 + ri,1 - ro,) + ai(ri,o - ro,o) + a 2 (ro,1 - ro,o).

(3.18)

The equations may be solved for ai and a2 (see Reference [45]). First the system is trans-

formed. Then, it is solved for a1 and a2. If we multiply through by the transformation

matrix

zi,O - Zo,0

ri,o - ro,o

Z0,1 - Z0,0

ro,1 - ro,o

Aoo

A0 1

Aio

A 11

(3.19)

then we arrive at the following system of equations:

aia 2 (Aziis - 1) + ai = Az,

aia 2 (Ar11s - 1) + a2 = Az,

[Aziis

Ar1 1 8

Az' +4
=A

Ars -

I Azii 1
=A

Ar11

Az +4
=A

Ar]

We can easily solve for a1 in terms of a2

[
[z1, 1 - Z0,0

ri, - ro,o I

(3.20)

(3.21)

(3.22)

(3.23)
z - zoo

r - ro,o

Az'
1 + a 2 (Aziis - 1)

We can then write a quadratic equation for a 2 ;

a2(zii - 1) + a 2 [1 + Az,(Ariis - 1) - Ars(Az11, - 1)] - Ar, = 0.

This quadratic equation may be solved for a 2 :

a2 = (1+Az, (Aru-1))

-p+ip 2iq
a2 = (Aziis-1)

Aziis = 1.0

Azii 8 # 1.0
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where

p = 0.5 [1 + Az8 (Arnii - 1) - Ar8 (Aziu8 - 1)] (3.27)

q = Ar,(Azul, - 1).

The coefficient a 1 is then determined by Equation 3.24.

3.8.4 Computational Implementation

Each time a particle is moved, its computational coordinates must be re-evaluated. However,

the quantities A , Azus., and Ar 18 may be pre-computed for each grid cell. Once we know

which cell (k,j) the particle is in, we need only compute Az8 , Ar8 , p and q to arrive at a 1

and a2, and hence the new computational coordinates (k + ai, j + a 2 ). Immediately, the

weighting coefficients may be calculated and saved in memory along with the particle. This

saves CPU time.

3.8.5 Accuracy of the Interpolation Scheme

The interpolation scheme used is exact for functions linear in real space i.e those of the form

f (z, r) = a + b(z - z,) + c(r - r,). It is only approximate for higher order models. This is

an unfortunate consequence of using an irregular mesh.

3.9 Creating Particle Distributions

To initialize the simulation, the interior of the control volume may be "seeded" with neu-

trals, ions, and electrons. Similar seeding occurs when particles are introduced into the

simulation region across a series of cells. These particles are usually distributed according

to a Maxwellian. Uniform, Maxwellian particle distributions may be created by using the

rejection method for position, and the Box-Muller transformation for velocity [7].

3.9.1 Creating a Distribution in Space

A nearly uniform distribution in space is achieved by using the rejection method. First the

volume of each grid cell as a fraction of the total volume is calculated. This represents a

distribution:

f (k, j) = '; Ekf = 1. (3.28)
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Next, we draw a box around the distribution; the "top of the box" is at the largest cell

fraction, fmax. Then, a position on the computational grid is chosen randomly;

k = (Nz - 1) R(0 -+ 1);
J = (N, - 1) R(0 - 1).

A third random number determines whether position (k,j) is accepted or rejected. If p =

fmax * R(O -+ 1) falls under the distribution, (p < f(k, j)) then the point is accepted. If

the number is above the distribution (p > f(k, j)) then the point is rejected. The resulting

density distribution is nearly uniform.

3.9.2 Maxwellian Velocity Distribution

Particles are typically created according to a Maxwellian velocity distribution function,

me 3 x m([vx- < Vx >12 + [vY- < vy >]2 + [vz- <Vz >12)
fm(V) = (27rK~e )2 exp -- 2KTe (3.30)

If e dfin Vt = 2kbTthIf we defineh v __ = , then this may be rewritten

A3 ([vx- < vX >]2 + [vy- < vy >]2 + [Vz- < Vz >]2)
mWv = 7r- 2V ota -P2 (3.31)

Vth

where
oo J m d 3V =1, (3.32)

which can also be written

fJ Ffr z ff, dV dz d = 1. (3.33)

Each of the three integrals contained therein equals 7FVth.

Note that in the normalized coordinate system, [V] = T, such that for electrons,me sc htfreetos
Vth = V[v] and for ions and other particles, 'th = v [v]. Furthermore, since the ion

sonic velocity v, = K then in normalized coordinates, 'D = F.

The average velocity in any direction can be easily computed for a general distribution

by

< Vz >= vzfzdz. (3.34)
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If we consider only a Maxwellian velocity in the positive direction, then the average speed

in the z direction is

1 vl -00 2-Vz Vth

< ||> 2 z )dz =v.(3.35)
f0 \r VtVh oth

If we have a two sided distribution and a boundary normal to the Z direction, then the flux

across the boundary in each direction can be easily computed from

1 Vth
m = mnvA = m-n A. (3.36)

2 T(3

This says nh= 7, where = is the average speed of the particles in the equilibrium

distribution. Notice that 6 is twice the one sided mean velocity: Z = 2 < |vz I >-

If the distribution is one sided, then

n = mn Vth A, (3.37)

which is equivalent to n = .

3.9.3 Creating a Maxwellian Distribution in Velocity

The Box-Muller method (1958) for generating random deviates with a normal (Gaussian)

distribution may be applied to create a Maxwellian distribution. This transformation is

based on the 2-D cumulative distribution function for the speed, |vi, [5],

jjo) 0" exp(-v 2/vi )dvwdoy
F(6) - exp______) = 1 - exp(-v 2 /V2). (3.38)

fo f exp(-v 2/v2)dvodv

In Equation 3.38, v 2 = v2 + V and vt = 2KT. To obtain the speeds, F(i) is set equal to a

set on uniformly distributed random numbers varying from 0 to 1;

R(0 - 1) = F(f). (3.39)

Such random numbers can be easily created using functions known as "random number

generators." Noting the equivalence of R(0 -+ 1) and 1 -R(O -+ 1), one may invert Equation
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3.38 and take the square root to obtain

Ivl = vt -ln(R(O -+ 1)). (3.40)

This is the magnitude of a 2-D Gaussian distributed velocity vector. Once |vI is determined,

the following may be used to used to extract any two components of velocity along axes

normal to each other:

e = 27rR(0 - 1);

Vi = |vlsin(O); (3.41)

V2 = |Ivcos(E).

This method may be applied over and over to generate a cornucopia of Gaussian distributed

velocities, e.g. v 3 , v 4, v5 , ... However, we only need three at once for any given particle.

Therefore, we apply Equation 3.38 twice and let vr = v1, vz = v 2, vO = v 3 , saving v 4 for the

next particle which must be assigned a velocity according to a Maxwellian at Vth.

3.10 Moments of a Particle Distribution

For each species, we desire to compute the density, momentum, and temperature as a

function of position. In addition, we wish to calculate the electron energy distribution

function along different magnetic streamlines.

Particle moments are found by scrolling through the particles and weighting them to

the grid. Recall from Section 3.4 that each particle is represented by a data structure

which includes the position in real space (2, i), the position in computational space, ((, r)

the velocity (pz', r o), the mass (i = 1 of mi = M/me), the charge (q = 0, 1, -1), the

statistical weight or size (s = 1 - 50), and weighting constants to the four corners of the

cell in which the particle resides, (Poo, P 1i, P0 1 , P1 0 ).

The total number of particles represented by a single super-particle is

Ni = sAjsize], (3.42)

where [size] is the number of particles represented by a super-particle of statistical weight
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s = 1. Thus, the physical mass of a given superparticle is determined by

Mi = ijss[size]me, (3.43)

where me is the mass of a single electron.

3.10.1 Mass Density

If there are C super-particles of a particular species in the simulation, the total number of

super-particles of that species weighted to grid node (k, j) is simply Ckj =E 1pi,kj. Here

Pi,k,j is the weight of particle i to node (k,j). Recall that each particle is weighted to four

(and only four) separate grid nodes according to the following (see Figure 3-10):

Pkj = (1 - a1)(1 - a 2 );

Pk+1,j+1 = 012; ( )

Pkj+1 (1 - a1)a2;

Pk+1,j = (1 - C21-

For an non-Cartesian grid, ai and a2 are determined through Equations 3.24 and 3.26. The

sum of all Ckj is the total number of super-particles,

C = E; EO1O-Ck,j, (3.45)

where Nz is the number of grid nodes in the ( or nominal Z direction, and Nr is the number

of grid nodes in the r or nominal R direction. A more useful measure than C is the total

number of particles size s = 1 this represents, N, determined by

Nk~j = EYi~sipi,k~j. (3.46)

All electrons have charge e = -1. If all ions have charge 4 = 1, the total charge

distribution is simply

Qk,j = (Ni - Ne)k,j, (3.47)

where the index i in this last equation refers to ions. If multiply charged ions are accounted
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for, the charge distribution for each species must be tallied separately, e.g.

Qk,j ~- z=1siPikj- (3.48)

The charge distribution, QkJ, is used to solve Gauss's Law equation for the electric potential.

The number density (number of particles per volume) is just

Nk InkJ = , (3.49)
k,j

where Vk,j is the three dimensional volume associated with node (k, j). Number densities

are used to determine reaction rates between different species.

The mass density is found by multiplying by the mass of the species, which is the same

for all particles of that species,

PkJ = mrnk,j. (3.50)

The total mass, M, of all super-particles of a particular species in the system can be easily

extracted from the particle moments;

M - FXNz1ENr1

kM O = Eo Pk,jVk,j. (3.51)

3.10.2 Velocity and Momentum

Let the absolute velocity of a particle be U = (u, v, w) =(z, Or, 'o). For each species, the

bulk velocity at node (k, j) is simply the average velocity of all the particles which are

weighted to that node:

Zi-l SiPk,jVi
< Vk,j >= ' Nk, (3.52)

The factor si is included to account for super-particles of different statistical weights. The

flux density is then nk,J < Vkj >. The relative velocity of a super-particle of species # with

respect to its bulk velocity may then be denoted (U, V, W), = (u- < u >, v- < v >, w- <

w >)O. Relative velocities determine the temperature of the species.
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3.10.3 Energy

The kinetic energy of a particle is

e = (uV2 + W2) = M[(U+ < U >)2 + (V+ < V >)2 + (W+ < W >)2]. (353)

The mean energy of the flow may thus be written

< e >= M(< (U+ < U >)2 > + < (V+ < V >)2 > + < (W+ < W >)2 >). (3.54)2

Since < U >=< V >=< W >= 0, this may be re-written

< M=(< U2 > + < V2 > + < W2 >) + M(< U >2 + 2 + 2). (.5
2 2

The mean energy of the flow is thus a combination of thermal energy and drift energy,

m < c2 > m 2< e >= 2 + 2 q, (3.56)

where qO is the bulk speed of the fluid, and < c2 >=< U 2 > + < V 2 > + < W2 > is the

mean square relative speed. The thermal energy defines the temperature according to

-M < c2 > = 3 KT. (3.57)
2 2

Temperature may be defined along different directions. For instance, in (r, z, 0) coordinates

one may write:

-m < U2 > = -KTz; (3.58)
2 2

-m < V2 > = I KTr; (3.59)
2 2

-m < W2 > = KTO. (3.60)
2 2

To extract Tz from the particle positions and velocities, we need only find < U2 > from

< e >z and < u >2

In a magnetized plasma, we may find different temperatures in the directions parallel
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and perpendicular to the magnetic field. Let us define Til and T 1 as follows:

1 1
KT = m < cl >; (3.61)2 21 1

2 1 2
2KT1 = m < c1 >. (3.62)
2 2

By transforming coordinates, we are able to extract T and T 1 from the flow:

Tl = <c >= < (v 11- < V11 >)2 >= rn(< i > - < il > 2 )[T]; (3.63)

TJ = < ci nTn( 2 > < (VL- < VL >)2 _- - I b 2)[IT], (3.64)mK 2 K 2

Here, [T] is the nominal temperature. Parallel temperature is obtained by projecting the

velocity in the (R,Z) plane onto the magnetic field, which is assumed to have no azimuthal

component, to obtain < c >. The perpendicular temperature is then obtained easily

through the relation

< c 1 >=< c2 > - < c2 >. (3.65)

Alternately, the perpendicular velocity vector in the (R,Z) plane may be computed and

added to the azimuthal velocity vector to get the total perpendicular velocity vector, and

< cI > may then be computed.

Expressions for temperature may be written in normalized units. For example,

7 , < 2 >
T m= [m][v]2. (3.66)3K

Noting that [v]= AdWpe and [m]I[v] 2 = K[T], this reduces to

-2

T = >[T], (3.67)
3

where [T] is the nominal electron temperature, 7h = 1 for electrons, and fi= Mxe/me for

neutrals and ions.

The pressure may be defined by [37]

P = Inm < c2 > . (3.68)
3
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Substituting < c2 > 3KT we find this is just the universal gas law, P = nKT.

3.10.4 Numerical Implementation of Particle Moments

Moments for a particular species are extracted by scrolling through the list of super-particles

and weighting them to the grid. To find the temperature, for instance, one must perform

the following steps:

" Find the total mass weighted to each node.

" Find the total flux and energy at each node.

" Divide through to get < v > and < e >

" Calculate < c2 >

" Multiply by a constant to get the temperature

Many particle moments are found at each time-step.

3.11 The Numerical Electron Energy Distribution Function

Fife's Hybrid PIC simulation assumed the electron energy distribution was Maxwellian. We

can test whether this is true in our kinetic model by constructing distribution functions from

numerical data, specifically particle velocities. Numerical distributions can be collected at

individual points, or they can be collected along entire streamlines. To do the latter, we

break the magnetic stream function, V@, into bands. (The function 0 is defined in Section

3.13.4.) By interpolating 4 to the electrons, we may categorize them by band (i.e. by

streamline). We can create as many bands as we like, with the understanding that statistics

on each band get worse as the number of bands increases and the particle count per band

decreases.

For each electron, we find the relative speeds c2, c 2, and cI = c2  c . However, instead

of averaging these energies, we allocate them to locally normalized energy bins according to

E= e/Te, where E = 1/2mec 2 . We let each bin be O.lE/Te wide. We then divide by the total

number of particles on each streamline to achieve, for each streamline, g(E') = dN/d(c'). If

the function g(c', Y) varies only through the scale factor Te(s), i.e. if all g(E) have the same

shape, then this procedure should recover that shape.
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3.11.1 Theoretical Distributions

We compare the numerical distribution function with the theoretical energy distribution

for an isotropic Maxwellian at T, and for a two-dimensional Maxwellian at T1 and T. We

start with the three dimensional isotropic Maxwellian velocity distribution

(dN /N Me 3 m(v2 +v2 +V2)
f( )2)Ke exp(- 2 2 Z (3.69)

derdozdvo 2,rKTe 2KTe

where

f J fr f o dr dz dvo = 1. (3.70)

Let us construct g(c'). We begin with the speed distribution, g(c):

dN/N = 4,r( 2KT )2 exp(-j 2 )dc; (3.71)

2 2 2 (3.72)

g(c) - d N j g(c)dc = 1. (3.73)
dc

Next, we define e and E':
1
-= mc 2 ; de = mcdc; (3.74)
2

ede_
' dc' = -. (375)

=T' T (.5

One can easily show that

g(c') d - 2=VIexp(-E') (3.76)

and

j g(E')dc' = 1. (3.77)

This function peaks at c' 1/2. If the distribution is Maxwellian in 3-D, this is what

we find by collecting the electrons into energy bins according to 1/2mc2 /T, as described

previously.

Next we consider only the direction parallel to the magnetic field. By projecting particle

and bulk velocities on to the local magnetic field lines, we get v11 for each electron. As before,
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we construct an energy distribution function, starting with the velocity distribution

f (vI) = dF/dv = (me
2-irKTII

mv2
exp(- 11 )2KTII

where

KT me 'Mf (o )do l

and

J f (v)dvi= 1.

Letting c 1 v 1, E = 1/2mc , and E = EII/TII, we find

dF
g\1) de'

1
- exp(-El)d

I ) =0

The final function we need is an energy distribution for the perpendicular direction. As

before, we start with a velocity distribution,

M e 2
f (viL)=dF/dvi= 2r( )exp(my

27rKT L 2KT1L
(3.83)

where

KT 1 = J O j f (v1)d2 v1 (3.84)

and

f (vi)d2 vi = 1.

Letting cl = yj, e = 1/2mcI, and e' = eI/TL, we find

g W' )= = exp(-e' )

where

g(c')Ei = 1.
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3.11.2 Testing the Algorithm on a Numerical Distribution

To test the algorithm, we generate a Maxwellian velocity distribution of particles and com-

pare it to g(E'), g(cj), and g(e'). The 0 bands used in this section are shown in Figure 3-15

The results are shown in Figures 3-11, 3-12, 3-13, and 3-14. (The method for producing the

Maxwellian distribution is discussed elsewhere.) Overall particle count N varies by band;

the rougher curves were constructed from fewer particles. Particle count in the four bands

shown is listed in Table 3.1.

V) band particle count
2-3 2,195
4-5 10,179
7-8 49,537
8-9 79,346

Table 3.1: Particle count in the four bands of 0 used to analyze the EEDF in this section.

The isotropic distribution is compared to the initial distribution in Figure 3-11. This

parallel distribution is compared to the initial distribution in Figure 3-12. The perpendicular

distribution is compared to the initial distribution in Figures 3-13 and 3-14. Figures 3-11

through 3-14 indicate that the initial distribution is indeed Maxwellian. The figures also

show that the function for determining g(c') works well when considering both an isotropic

(T) and anisotropic (T1 , T1) distribution. The function can therefore be used to analyze

the actual distribution function in the plasma as the solution converges. The figures also

place bounds on the degree of roughness expected with particle count; fewer particles means

more roughness, which is important when analyzing results.

3.12 Calculating the Electric Potential and Field

The electric potential, <I, can be found using finite differences or finite elements. We choose

finite differences. However, instead of solving Poisson's Equation (the usual approach), we

solve an integral form of Gauss's Law.
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3.12.1 Method 1: Poisson's Equation

A usual way to find # is to discretize Poisson's equation, which is derived by combining the

electrostatic approximation, $ = -VCD, with Gauss's Law, V - E = - (n - ne):

V 2  (P - Pe). (3.88)
Eo

In two dimensional cylindrical coordinates, considering only the r-z cross section, we have

V 2 # = 1a(rao) + 2 . (3.89)

The partial derivatives on the right hand side of this equation can be expressed in terms of

computational grid coordinates ( and r/;

D- = - + D 0D0(3.90)
Dr 8 0qr q Drqr

D-- D-- + D'z' (3.91)
Bz 8 09z ar7 09z'

and so on for the second derivatives. The functions (z, r, r/z, and q/r are functions of the

grid geometry which may be pre-computed. Since

(= d + - 2 dy, (3.92)
Dx Dy

dr/= - dx+ dy, (3.93)

dx = dX + dr, (3.94)

and
Dy Dy

dy = d< + -dr/, (3.95)

we know that

-1

yx ' y7_ 1 Y77 -X 7  (3.96)
r/X r/y y6 yq X0Yr - W6 77 -yw Xz

164



and so forth (see, for instance, Ref. [19]). Thus, we can thus fully discretize Poisson's

equation and solve it using one of many numerical methods.

3.12.2 Method 2: Gauss's Law

An alternate approach to finding # is based on the integral form of Gauss's Law. This is

the method used in the code. A more basic form of this method is described in Ref. [5].

We start by integrating V - E over a control volume,

V - E dv - pe dv. (3.97)/ 60

This is equivalent to

E ds = Q. (3.98)

In CGS units, f E - ds = 47rQ. The left hand side represents the flux of electric field across

a cell boundary and the right hand side is the charge contained within that boundary. As

before, the electric field is defined by the potential

aq# Dq# 1D4#$ = -V4h =- z -% r - -o (3.99)
az 09r r 80

where we assume = 0. This equation may be rewritten using the first order approxima-

tions

-- = - -l +(3.100)
ar 8( Br 8qjBr

and

- = --- + rq (3.101)az a( az 8q 0Bz

Again, we pre-compute (z, 6r, qz, and oqr across the grid. Given a computational grid,

boundary conditions and a charge distribution, equation (3.98) can be iteratively solved for

the electric potential distribution across the entire computational domain. When "successive

over-relaxation" (SOR) is used, machine level precision is achieved in approximately 103

iterations.

A test function may be used to test the accuracy of the potential solver. We used a

cosine function. We found that a five point scheme reproduced the function accurately
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when the grid was Cartesian. However, five points were inadequate when the grid was

non-Cartesian. A nine point scheme was found to be more accurate. The method will be

discussed forthwith.

3.12.3 Geometry of the Integral Method

In the schemes discussed here, the quadrilateral defined by the points (k ± .5, j t .5) is used

to calculate surface fluxes in lieu of the polygon discussed previously(compare Figures 3-8

and 3-16). The quadrilateral and the polygon produce extremely similar results.

k-1,j+1

k+1,j+1

9------__ N_ " k+.5,j+.5

(,Er)kj "E

0--_

k-1,j -1"" 
k+5j.

k+1,j-1

Figure 3-16: Illustration of the Gauss's Law scheme at interior node (k,j). The electric

field E across the "N", "S", "E", and "W" boundaries is determined by <p at the central
and surrounding nodes. The potential at node (k,j) is estimated from the E, the boundary

areas, and the charge Qk, 1 .

The assumption of azimuthal symmetry allows us to perform computations in only two

dimensions. This means the two dimensional grid is actually a cross section of the three

dimensional whole. This is illustrated in Figure 3-17. Each particle in the simulation

therefore represents a ring of charge.

The charge inside a given integration cell, Qkij, is assumed to be the total charge in-

terpolated to cell (k,j). If we used simple Nearest Grid Point (NGP) weighting, then all

the particles would lie inside the polygon surrounding cell (k,j). However, we use bi-linear

interpolation. This means some of the particles interpolated to (kj) actually lie outside the

polygon. For instance, ninety five percent of particle close to node (k-1,j-1) in Figure 3-16
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Figure 3-17: A 2-D cross section in which particle moments and forces are calculated and
the 3-D annular region it represents.

may be weighted to (k-1,j-1), but the other five percent is split between the other three

nodes.

We denote each cell surface by the two nodes it splits, e.g. the surface between nodes

(k,j) and (k,j+1) is denoted by sk,j+.5. Surface sk,j+.5 is also called the "North" surface,

sk,j-.5 is the "South" surface, surface sk+.5,j is the "East" surface, and surface sk-.5,j is the

"West" surface. These directions refer to the computational proximity of the surface relative

to the central grid point. Each surface of the quadrilateral in Figure 3-16 is equivalent to

two surfaces of the polygon in Figure 3-8 the North surface is properly composed of the

"North Northeast" surface in the upper right quadrant and the "North Northwest" surface

in the upper left quadrant.

If we take the normal n = to a surface, then S= IsIn'. The projection of a surface

along any line f is .-.

Five Point Scheme (Cartesian Grid)

A five point scheme uses information at(k+1,j),(k-1,j), (k,j+1), and (k,j-1) to update the

potential at (k,j). The terms , r, rlz, and rr across the North, South, East, and West

surfaces are pre-computed.

In the simplest approximation, we use only the two nodes separated by a surface to

calculate the flux across that surface. For example, in the North (+r/ direction), the flux is
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calculated using nodes (k,j) and (k,j+1). We assume 0 across that face. (We will add

this missing "cross term" later.) We then use a first order approximation to calculate the

electric field:

$ = -(#k,j+1 - Ok,j) z (#k,j+1 - #k,j) %r (bk,j - #k,j+1)(?Tzzz + Trr). (3.102)

Here, we have averaged the dielectric constant and the grid constants straddling the face:

#z = ((z)k,j + I(7z)k,j +1;

gr= I(r/r)k,j + (?7r)k,j+1; (3.103)

0= (Co) ,j + j(co)k,j+1-

The dielectric constant may vary if, for example, the grid extends into a wall. However,

the mini-TAL simulation requires solving Poisson's equation only in the plasma such that

Eo is constant everywhere. Now, let n be the unit normal vector to any given surface, taken

such that it always points out of the control volume. In this notation, on the North face,

IOE -ds = (#k,j+1 -- #k,j)(ziz + rir)- (ANEN)Eo- (3-104)

All terms in this expression are invariant with time except for #. Hence, they can be

pre-computed and grouped together:

JCOE -ds = (#k,j+1 - #k,j)N; (3.105)

N = (IEz + Er) - ( ANiN)6 = (Nz~ ±z rir)' (Ann enne nnw nnw .50 (3.106)

We have defined the coefficients to be positive. This last expression shows the approximate

equivalence of the 8 sided polygon and the quadrilateral, where, AN and iN are evaluated

using only the North-East and North-West points.

Equation (3.98) thus reduces at each node to the following expression for the potential:

1
kj N + S + + (#k,j+1 N + #k,j-1 S + #k+1,j E + #$-1,j W + qkj). (3.107)

Here, qk,j is the charge located inside the volume, i.e. at node (k,j).
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Relaxation

Successive over-relaxation (SOR) may be applied to solve equation 3.107 for the electric

potential at each node across the grid. In the predictor step, we find #J. 5 according to

1
5 N + S + E + N + 4 S + # F +& W + qkJ) (3.108)

where the superscripts are appropriate for a forward sweep. Relaxation takes place in the

corrector step,

+1 _ t + J5 - gj), (3.109)

where the relaxation factor w controls the convergence (or divergence) of the solution.

Convergence is determined by re-arranging equation 3.108 as follows:

RHS, = -- (Nk,j+1 + Skj-1 + Eqk+1,j + Wqik_,j + q) + #,J(N + S + E + W). (3.110)

The solution is considered converged when the right-hand-side at all nodes is nearly zero to

nearly machine level accuracy, 0(10-12). Why go this far? To eliminate one more source of

uncertainty.

On a 49 x 87 mesh, SOR with w = 1.96 yields a nearly converged solution in ~ 800

iterations. Initial error growth can theoretically be mitigated by using Chebyshev accel-

eration [20], which introduces a variable w. However, we did not use this. We did find

that values closer to the "optimal" relation coefficient [19] of w = 2/(1 + 1 - pj) where

Pj = .5[cos(7r/Nz) + cos(ir/Nr)] can yield convergence in only ~ 400 iterations.

Nine Point Scheme (Non-Cartesian Grid)

The previously described five point scheme works well on a Cartesian grid, but works poorly

on a non-Cartesian grid. We need to consider the "cross terms"; we must consider a when

considering the +'r7 face, and so on. To correct this fault, we may calculate the other

component of flux using the same five points. However, this modification is inadequate;

the solution still takes on aspects of the computational grid. Using a nine point scheme to

calculate a and 2 on all faces is more accurate.

The simplest nine point scheme is just an extension of the original 5 point scheme. It

uses all nine points illustrated in Figure 3-16. Data from the "Northeast", "Northwest",
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"Southeast" and "Southwest" corners is used to estimate the cross-flux across the bound-

aries. If we consider the +j boundary, we may write

-Er - + (3.111)
Or 8( Or O Or

and

-Ez 400 + .9 O (3.112)
Oz 08( 49z 89 z

The q derivatives are calculated as before:

ao &r (#k,j+1 - #k,j)r; (3.113)

a~b Or~

a 07 (#k,j+1 - #k,j) z. (3.114)

The ( derivatives are calculated by averaging values from the corners:

Oq$O - # Ok+1,j+1 - k-1 )k,1 j+ + 2 k+1,j - #k-j ( )kj (3.115)
Og Or 2 2 dr '+ 2 2 dr (

190 _9 Ik+1,j+1 - Ok-1,j+1( d j+1 +Ik+1,j - #k-1,j (d)kJ. (3.116)
O8 Oz 2 2 dz ' 2 2 dz

As before,

E . A = EznzA + ErnrA (3.117)

where ni = nziz + nrr defines the direction normal to a face and always points outward.

We can simplify even more by taking the average O and 21 and the average 9. In fact,

this approximation makes almost no difference to the final solution. Following though, the

flux over the whole cell E Z - A = - can be approximated as the following:

CoC

# .5 - (3.118)
k~j N + S+E +W '

C = Nk,j+1 + Sbkj-1 + Ek+1,j + Wqk-1,j + qk,j

N (Ok+1,j + #k+1,j+1 -- k-1,j -k-1,j+)+

$}(#k+1,j + 0k+1,j-1 - 1,j -- k-1,j-1)+ (3.119)

E 1(#k+1,j+1 + #k,j+1 -- #k+1,j-1 - #k,j--)-

W(#k-1,j+1 + #k,j+1 - ck-lj-1 - #k,j-1);
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#I + w (#. 5 - gt,

RHS = -C+$ +(N+S+E+W).

We pre-compute the following integration constants:

E (ziz +sr )E- EE

W (-ziz + r )w - w Aw;

N= (ziz +Tr )N -NAN

S =(z +7r )s -' s As ;

E= 0.5 (

W = 0.5 (a k

I( a
N = 0.5 (-

Sz.

$ = 0.5 ( -

0977 -. 977 0n77 .+ )Iz + ( + - )%r - SEAE;
0zk+1 +rk Ork+1

+ )Iz +-( + )IrK-iw A w;
Ozk-1 Ork Ork-1

0cf -~ 0( 0to -
+y)iz +(~ + )Irj - NAN;,

azj+1 Brj B rj+1

a( -. B9 o -

+ )tz + (_ + )I, -sAs.JBzj-i ary B rj-i

Refinements Not Used

Taking the 9 point scheme one step further, we might consider each face of the 8 sided

polygon separately. This means considering two normal vectors and surface areas for each

side (+7,-7,+(,-() of the polygon. The dot products may be pre-computed and saved as

before. However, this is needless detail; it was found to make little if any difference to the

solution.

3.12.4 Testing the Potential Solver

We tested the accuracy of the potential solver by using an analytic function. This test

is discussed in Chapter 4. We also tracked the convergence of the solution. This is also

discussed in Chapter 4.
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3.12.5 The Electric Field

Once the potential, #(z, r), is determined, the electric field at the grid nodes is calculated

from

ao#ay a#8 - g 0#8q ao#8g
E = -VD -(-- + -- ) 2 - + ) ir (3.127)

B' Bz 9(Bz Z 9or &(Br

where the factors , M and a are pre-computed.

3.13 Magnetic Field

The magnetic circuit of the mini-TAL was originally designed by Dexter Magnetics. Dexter

provided us with mappings of the field, B(z, r), and magnetic potential, #B(z, r). These

mappings were calculated with a commercial simulation package and delivered on a Carte-

sian grid.

Prior to any plasma computations, Dexter's field is mapped to the (plasma) computa-

tional grid, allowing us to use identical interpolation constants to weight B and E to the

particles. The magnitude of the field after interpolation is shown in Figure 3-18.

A magneto-static solution is assumed; the magnetic field is assumed to be invariant.

Magnetic fields induced by currents in the plasma are ignored, as is degradation due to

heating of the magnetic poles. We show in Section 5.3.6 that the former assumption is

valid. The latter assumption should be re-examined if work on the mini-TAL is continued.

3.13.1 Solving for B on Computational Grid

With appropriate boundary conditions, we could use Gauss's Law to find the magnetic

potential directly on the computational grid. Let B = V9B where #B is the magnetic

potential. Since V - B = 0, one can write for each grid cell

JV -ds = 0 (3.128)

where ds is the area of a cell wall. This equation says the magnetic flux across the boundaries

is conserved. It is identical to the equation used to solve for the electric potential, except

that the charge inside the cell is set to zero. We can, therefore, use the electric potential

solver described elsewhere to calculate #B and B.

We formulated simple boundary conditions and tested this method, comparing the
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Figure 3-18: Contour plot of the magnetic field strength in normalized units; B= w rad/[t]

where [t] = 11wp, and wp is the nominal plasma frequency. Here, -y = 10 and rh = .1 mg/s

such that 1[B] = 835 Gauss. Field strength in front of the anode is thus about 3300 Gauss.
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results with Dexter's mapping. At the right and left boundaries, we specified no flux

(d = 0). At the axis, we required dB = 0. On the outer magnetic pole, we specified

;B 1.0, and on the inner pole we specified 3B = 0.0. We then solved for #B across the

domain, and took the gradient to arrive at B. Finally, we specified a control point and a

field strength at that control point, and used that to normalize the field.

The resulting field was similar to Dexter's near the anode, but dissimilar near the

boundaries, Evidently, the boundary conditions were too simplistic for the grid. An accurate

solution would require a larger grid or more detailed boundary conditions.

3.13.2 Solving for B using other Algorithms

Fife's hybrid PIC methodology requires pre-calculating #B on a large Cartesian grid and

then interpolating to a much smaller, non-orthogonal grid used to model the plasma [9]. This

is just a more accurate extension of the methodology already described. Unfortunately, the

algorithm as presently constructed does not account for material properties of the permanent

magnets used in Khayms' thruster.

Fortunately, commercial packages which account for material properties such as perma-

nent magnets already exist (e.g. MaxwellT M ). Dexter Magnetics used such a package in

designing the magnetic circuit of the mini-TAL. To model the mini-TAL, we obtained the

field from Dexter on a Cartesian grid.

3.13.3 Interpolation of Magnetic Field

The magnetic field is interpolated from the Cartesian grid to the computational grid using

a bilinear (area weighted) function. Let the four corners of a Cartesian grid cell be (z,r),

(z+6z, r), (z, r + 6r), (z+6z,r +6 r), and let the location of a computational node somewhere

within the Cartesian cell be (z+6z', r+6r') such that 0 < 6' < 6z and 0 < 6' < 6r. Next,

define ai = 6z'/6z and a2 = or'/r. The values of Bz and Br at the four Cartesian grid

nodes may then be weighted to the computational grid node as per Equation 3.9:

B(z, r) = Z B; (3.129)

P(z,r) = (1 - ai)(1 - a 2 ); (3.130)

P(z+Jz,r) = aiC2; (3.131)
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Pz,r+6r = (1 - ai)a 2 ; (3.132)

P(z+6z,r) = (1 - a2)al. (3.133)

This is bilinear interpolation in the real domain, as opposed to bilinear interpolation in the

computational domain.

3.13.4 Magnetic Streamlines

In a magnetized plasma, electrons are trapped on magnetic streamlines. Flux between the

streamlines results largely from diffusion, both classical and anomalous. We wish to analyze

the electron energy distribution function along different streamlines. The magnetic stream

function makes this possible. Since V - B = 0, it is possible (as per Fife, [10]) to define a

magnetic stream function @, the gradient of which is everywhere orthogonal to B

= rBr; (3.134)
az

ao= -rBz. (3.135)
Or

This scalar function is constant along any given magnetic streamline. We may interpolate

to the electrons and thus swiftly categorize them for analysis. (Note that 4 is not the

conventionally defined magnetic stream function A, given by B = V x A. This cross product

results in aA = -rBr and O'A' = rBz. Thus, 0 = -rAo.)

To construct Ok,j, we set 4 = 0 at the lower left corner of the grid; this level is arbitrary.

Since Br = 0 along the axis, 4' = 0 along the axis. Thus, to find 4 in the interior we need only

integrate in the r direction. On a Cartesian grid, we let Ok,j+1 = Ok,j + (rk,j+1 - rk,j) -ok.

On the non-Cartesian grid, we integrate along 7 according to

0'- = -r +00z (3.136)
09, or 49, az 09q

where
Or_

= rk,j+l - rk,j (3.137)

and
Oz_

=9Z - Zk,j+1 - Zk,j- (3-138)
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This simple method provides us with a stream function good enough for diagnostics. Values

of V) which results from -y = 10 and rh = .1 mg/s are shown in Figures 3-19 and 3-20. The

streamlines in Figure 3-19 are equally spaced in 0.

Streamlines equally spaced in @ are shown in Figure 3-19. Streamlines in the near-anode

region are shown in Figure 3-20.
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1 -175

Figure 3-19: Contour plot of the magnetic stream function,
of the magnetic field. Contours are equally spaced in 4.

0. Contours of 4 are streamlines

3.13.5 Divergence of B

The divergence of the Dexter Magnetics magnetic field was tested. This test is described

in Chapter 4.
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Figure 3-20: Vector plot of the magnetic field in the near anode region overlaid by contour

plot of the magnetic stream function, ip. The field is nominally radial near the anode, but

diverges further to the right. Nominal field strength is 5000 Gauss (0.5 Tesla).

177



3.14 Moving the Particles

Particles are moved according to the standard leapfrog method described in Birdsall [5].

The two first order differential equations to be integrated separately for each particle are

d6
m d F (3.139)

and
di-

=t V (3.140)
dt

where F is the force to be applied. The force is, excepting collisions, the Lorenz force. The

leapfrog method replaces these with two finite difference equations:

Vt+1-Vt - -

dt (3.141)
Xt±1 Xt-

dt - Vt+1.

After moving a particle in real space, we transform coordinates (the system is cylindrical),

and move the particle in computational space. Both additions will be discussed below.

3.14.1 Accuracy of the Leapfrog Method

The leapfrog method has error, with the error vanishing as At -+ 0 [5]. When applied to a

simple harmonic oscillator of radian frequency wo, there is no amplitude error for wAt < 2

(the leapfrog stability criterion previously discussed) and the phase advance for one step is

given by
1

woAt + -(woAt) 3 + h.o.t. (3.142)
24

These error terms dictate a choice of woAt < .3 to accurately observe oscillations or waves

for some tens of cycles [5].

3.14.2 Position and Velocity Offset

In the leapfrog method, velocity and position are offset by a half time step. This is why it

is called a leapfrog method. The computer advances i't to 6t+1 and zt to Yt+1 even though

both were not known at the same time.

If we simply create a particle at position 7 with velocity V', then small offset errors will
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occur. In this simulation, these are assumed to be ignorable. However, we recommend in

Chapter 6 that these offset errors be accounted for in the future.

3.14.3 Determination of Newton-Lorentz Force

The force which each charged particle sees is the Lorentz force

d9 [v] 4[q] ([v] x B[B] (3.143)
dt [t] mm] c~c]

or

F = 4(E + f x B). (3.144)

The force at each particle's position is obtained by interpolating from the four nodes sur-

rounding the particle:

$ = Pk,jEk,j + Pk+1,j+1Ek+1,j+1+ Pk,j+1Ek,j+1 + Pk+1,jEk+1,j; (3.145)

B Pk,jBk,j + Pk+1,,j+1Bk+1,j+1 + Pk,j+1Bk,j+1 + Pk+1,jBk+1,j. (3.146)

Let us dispense now with the "hats"; it is understood that all quantities are normalized.

For any locally orthogonal 3-D coordinate system, the cross products are carried out the

same, i.e.

ir tz to

ixB= Vr Vz . (3.147)

Br Bz BO

When Bo = 0, Br f 0, Bz :L 0, this results in forces and velocities in all three directions.

The scale of this simulation is such that the magnetic field bends ion trajectories only

slightly. Electrons, on the other hand, are caught in cyclotronic motion.

Particles are also subject to random collisional forces implemented through Monte Carlo

schemes. Collisions are discussed in Section 3.15 and elsewhere.

3.14.4 Three Dimensional V x B Integrator

The method of Boris [5] is used to integrate (time-step charged particle velocities forward

according to) the Lorentz force. This method applies the electric and magnetic fields serially;
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the particle takes half a time-step in velocity space applying only the electric field, then a

full time-step applying only the magnetic field, and finally another half time-step applying

to the electric field. The details are described below.

First, one half of the electric field is applied according to

(3.148)

where V- is the velocity at time t and

K = .m 2
(3.149)

In normalized units, rne = 1, MI = M/me, and 4 ± t1. The full vector formulation is

Vr

vz-

Vr

vz

+ KEr

+ KEz (3.150)

Next, a full time-step of rotation about B is applied. This step is based on the relation

c= i~ + K~ x B =- v - K+ x$, (3.151)

is the velocity after the full time-step of rotation about B. Equation 3.151 must

for V+. When BO = 0, the solution is

o+ ceK- -

V+ (co + KBzcr -

cr - KBv+

cz + KB .v

KBrcz)/(1 + K 2 B2 + K 2 B2)

This completes the magnetic rotation. Finally, the second half of the electric field is applied

according to

V 4 + KE. (3.153)
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The full vector formulation is

V V+ + KEr
r r

V' V+ + KEz . (3.154)

V/ V+

This is the final particle velocity at time t+1 in the old coordinate system. Next, we step

the particle forward in space and rotate the coordinate system.

3.14.5 Error in Method of Boris

The angle of rotation through which an electron moves should be close to WcAt = qBAt/m.

Birdsall [5] shows that the Boris method produces a rotation through angle

(ocAt)2
E = WcAt[1 - + ... 1. (3.155)

12

Thus, the error in e is less than one percent for wcAt < .35, and 2-7 percent for .5 <

WcAt < .9.

3.14.6 Moving Particles and Transforming Coordinates

The leapfrog method now calls for position to be stepped forward. The coordinate system

is cylindrical. Let the positions at time t and t+1 be given by, respectively,

rt = rtir,t + ztiz,t (3.156)

and

t+1 = (rt + VrAt)Ir,t + (voAt)IO,t + (Zt + z = Xzr,t + Y'o,t + (zt + zat)Iz,t. (3.157)

In all cases z 2i = Iz,t+1 such that Az = v'At. However, if there is a component of velocity

in the 6 direction, the coordinate system rotates about IZ, i.e. Ir,t # Ir,t+1 and Io,t # Io,t+1-

The radial position after the move is the hypotenuse of the right triangle shown in Figure

3-21 such that

= x2 +y2,t+1 + 0 o,t+1 + (zt + JzAt) it+ 1. (3.158)
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r 2 4  = (rt+ vr,' At) 2+ (v'0 At) 2

Figure 3-21: Transformation of coordinates when particle moves in the azimuthal direction.

Thus, the net radial displacement of a particle is

Ar - rt+1 - rt. (3.159)

Once t+1 is determined, the velocity must be transformed to the new coordinate system.

Let the angle of rotation in the 9 direction be equal to a. Then if rt+1 = 0, cos(a) = 1 and

sin(a) = 0. If rt+1 / 0, then cos(a) = x/rt+1 and sin(a) = y/rt+1.. Finally, we arrive at

the new velocity of the particle:

cos(a)v. + sin(a)v'

t+1 = v'.(3.160)

-sin(a)v + cos(a)v,

Note that it is not necessary to call trigonometric functions to find cos(a) = x/rt+1, and

sin(a) = y/rt+1.

182



Numerical Simplification

To first order in At, Ar = vr'At. To second order, after expanding, Ar = vr'At+ I(i, T At 2.

This may speed computation. Also, Vr and vo in Equation 3.160, could be replaced by the

first order expansions

Vr,t+1 Vr' + (v0 ') 2 At-3 (vo') 2 Vr' At2 (3.161)
rt 2 rt

and
'I ' (, ')2Vr V9I V9 ) '(VO 21At2 (.12

VO,t+1 = VO - r At+ (Vr' v2 (3.162)
r-t rt 2

This less accurate expansion requires more mathematical calls, but eliminates the square

root call.

3.14.7 Particle Tracking in Computational Coordinates

As a particle is stepped forward in real coordinates, it is also tracked in computational

coordinates. First, its new computational coordinates are estimated as follows:

= ( + iAz + 2 Ar; (3.163)
o r

77= ro + - A z + 2 q- Ar. (3.164)
Bz Or

The coefficients (z, &r, qz, and qr may be interpolated from the nearest grid nodes. Then,

we verify the estimate. A special function does this each time a particle is moved. First,

the function checks to see if the particle it is actually inside the cell it's supposed to be in,

(k, j) = (int( ), int(r)). If the particle is not found, a search is performed, starting with

cell (k, j) and spiraling outward. If a boundary cell is checked, then a separate function is

called which checks whether the particle trajectory crossed the boundary or boundaries in

that cell. What happens after that depends on the type of particle being simulated, and

the boundary conditions. Particle-boundary "collisions" are discussed more in Section 3.18.

Each time a particle moves, it must be re-weighted to the grid. This means that the

weighting constants to the four corner nodes of the cell in which the particle resides, Poo

Po Pio, and P1 1 , must be recalculated. As shown in Section 3.4, these values are included

in the particle data structure, Thus, they must be calculated only once per position.
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Numerical Test of Magnetic Part of Lorentz Equation

This section describes tests performed to make sure the v- x B was able to correctly track

an electron. Unless otherwise noted, the tests were performed on a cylindrical simulation

region while developing the code.

The magnetic part of the Lorentz Equation is a step in the rotation of the velocity vector

about a magnetic field line. We test the accuracy of the solver by taking the magnetic field

to be entirely in the theta direction, B BO = 1.0. This allows us to see the circular motion

of the electron. For this case, we set E = 0 everywhere. Because B = 1 and wce = B, the

unit of time w- = wce~1. The unit of time is, in effect, the inverse gyro frequency such

that the electron should perform one gyration every 27r.

We place one electron in the center of the domain, giving it velocity f= vz = 1.0. Then

we step the electron position forward by 150 time-steps, at At = .25. Figure 3-22 shows

a trace of the particle position and the associated fast Fourier transform, which shows a

frequency of gyration v = .04. Thus, the period 1/v = 25Ai = 6.25t, which is quite close

to 27r = 6.28.

We also check that the Larmor radius, rL = = is correct. This should be 1.0. The

trace shows a difference from max to min of 1.0077, where the error is easily attributable

to step size, since each step is about 4 percent of the radius.

Figure 3-23 shows the first twenty time-steps of this trace. The electron starts at the

square and ends at the star. In the (r, z, 6) coordinate system, B = 1.0io points into the

page, such that an electron should rotate clockwise. This is observed.

With the electric field solver turned on, and boundary conditions of 4 = 0 on the outer

edges, and Er = 0 at the centerline, the electron experiences a slight electric field. This is

because the electron digs a potential well of fixed depth. By forcing the potential to zero at

three sides, the gradient of <b must be greater at one side or the other. A test particle half

way between the ends of the test computational cylinder indeed experiences no electric field

in the z direction, as can easily be checked. But a particle slightly off center experiences a

small Ez. The measured period does not change, although the maximum deviation in the

Z direction is now 1.0147, and the maximum deviation in the R direction is now 1.0071. A

numerical trace shows the very slight oblongation (see Figure 3-24).

Turning the field solver back off, we test whether the solver works if the B-field is
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Figure 3-22: Electron trace with no field solver. B 1io. Period is 1/.04 * .25t ~ 2rt.
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Figure 3-23: Electron trace with no field solver. Shown are 20 time-steps at Ai = .25 where

B = 1.0io. Since ^ = -1 and ;^ = 1, the frequency of rotation is w = 1.0. B-field is into
the page. Square is the beginning of trace. Star is the end. Electron rotates clockwise, as
expected.
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Figure 3-24: Electron trace with field solver. B = Io. Period is 1/.04 * .25t 21rt.
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oriented along the R axis. First, we turn off the coordinate transformation; the geometry

is, in effect, that of a linear Hall thruster. With ' = vz, we should, and indeed we do, see

a horizontal line as the particle cycles around the field line. Again, we observe a period of

25 time-steps. (See Figure 3-25).

Electron in field of B=1, dt=.25
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63.5 k-

o 63

-0 zbCZ
I5

62 1

61.5 1-
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Figure 3-25: Electron trace with field in R direction. No coordinate transformation. B = ll..
Period is 1/.04 * .25i ~ 27r. Situation corresponds to a linear Hall thruster.

If the coordinate transformation is turned on but the field remains in the radial direction,

then the field must be modified to produce zero divergence. Figure 3-26 shows a particle

trace obtained using the field B = B 0/r, which satisfies V -B = 0. The particle begins with

zero parallel energy, but is accelerated outward. This behavior is expected. As discussed

in Section 2.9, a parallel gradient in field strength produces a parallel force. This is often

called the "magnetic mirror" effect. Both kinetic energy and magnetic dipole moment are

conserved, showing the accuracy of the V x B integrator. This figure was acquired using

the actual simulation (not the cylinder). The time-step used is rather long, reflected in the
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jaggedness of the curve.
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Figure 3-26: Magnetic mirror effect. Electron trace with field in R direction. Coordinate
transformation turned on. b= Bo/rir. Particle is accelerated along || gradient toward
region of lower |BI. Kinetic energy and magnetic dipole moment are conserved.

Putting the field entirely in the z direction yields predictable results; the electron rotates

around B (see Figure 3-27). In this case, the magnetic field is isotropic, so there is no net

drift to the outside, even though the coordinate effect is turned on.

Next, we want to test for the guiding center's ExB drift,

EE xB B 2 (3.165)

We let E = Er = 3.0, and B = Bo = 5.0, and start with an electron initially at rest. The

trace is shown in Figure 3-28. The code shows Az = 22.4950 over 150 time-steps. (Since

the cyclotron radius is small compared to the drift distance, we simply take the difference
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Figure 3-27: Electron trace with field in Z direction. B = 1I. Period is 1/.04 * .25t 2rt
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Electron in field of B=5, dt=.25
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Figure 3-28: Electron $ x B drift. B =

80 F

5I. Period is 1/.18 * .25t ~ 27r/5,

between the maximum and minimum z). Thus, ' ~ 22.4950/(150 * .25)iz = .5999iz. In

theory, the drift should be 'ExB = 0.6. This seems to confirm the drift. A Fast Fourier

Transform of the motion in the radial direction shows a period of 5.6 time-steps, or about

5 times the original cyclotron frequency, as expected. Greater accuracy is expected with a

smaller time step.

3.14.8 Magnetic Dipole Moment

Magnetic bottling and conservation of magnetic dipole moment were demonstrated in a

series of tests similar to the leapfrog tests just described.

description of these tests.

Please see Chapter 4 for a
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3.15 Particle-Particle Collisions

Electron-neutral elastic scattering, excitation, and ionization collisions, and ion-neutral scat-

tering and charge exchange collisions are treated using a Monte Carlo methodology. Cross

section for these events are presented in Section 2.8. Numerical functions for extracting the

cross Sections are listed in Appendix, B.

3.15.1 Electron-Neutral Collisions

Given an electron of velocity i and a slow neutral background of density nn[size], the

frequency with which one electron scatters off the neutrals is

V = iQtin [size] (3.166)

where Qt is calculated at the electron velocity.

Each time we move an electron, we calculate the probability of at least one scattering

event happening in that time-step, p = 1 - e-Atv [34] [3]. We compare this to a random

number. If R(O -+ 1) < p, an event occurs. In this case, we compare another random

number to the cross sections for elastic scattering, excitation, and ionization to determine

which type of event occurs.

This commonly used method is based on the exponential decay law. Let v be the

collision frequency and Amfp be the mean free path. If N identical electrons are present in a

box at time t, and each electron which undergoes a collision is "taken out of the box", then

the probability per unit time for the collision of an electron is v = - (dNdt) or equivalently,

1/Amfp (dN . Thus, N(t) = Noe-At", and the probability that the electron will not

undergo any collisions in time dt (or in distance dx)is p = e-Atv. The probability that it

will is p = 1 - e-tV

If an event occurs, in all cases, the primary electron is reflected in a random direction.

This is a variation of the Hard Sphere (VHS) model of DSMC collisions. The difference

is that DSMC involves choosing two particles and colliding them explicitly. Momentum is

transferred from/to both particles. Here, electrons are scattered of a background species

at a bulk velocity; momentum is transferred to electrons, but not to neutrals. It would be

easy, however, to factor in bulk momentum transfer; we do it for ion-neutral collision. Also,

it would be easy to allow for non-isotropic scattering; we would simply have to find the new
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random direction according to a non-isotropic distribution.

If the collision is inelastic, additional steps must be taken. If the event is an excitation

collision, the primary electron loses energy. If the event is an ionization collision, four things

happen: A secondary electron is created; energy is subtracted from the primary electron;

an ion is created; and mass is subtracted from the neutrals.

The Hard Sphere Collision Model

The Hard Sphere model of a two particle collision is illustrated in Figure 3-29. Let c-; be

the relative velocity vector between two particles in the center of mass frame before they

collide, and let c-7 be the relative velocity vector after they collide. In the Hard Sphere

model, the force acts only when and where the particles hit each other; the particles bounce

off each other like billiard balls. Scattering from such a process is isotropic in the center

of mass frame of reference. During the collision, the magnitude of the relative velocity is

conserved: Cr cr*. However, all directions are equally likely for c'r* [4].

Cr

Cr

b

Figure 3-29: Illustration of hard sphere collision. The relative velocity before the collision

is Cr. The relative velocity after the collision is c*. Scattering from hard sphere molecules

is isotropic in the center of mass frame of reference [4].

Elastic Scattering

For elastic electron-neutral collisions, we assume that the neutrals are infinitely heavy.

Hence, cr = 'e and Ve = |Ve|*. The electron retains its initial speed (and energy), but is
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scattered isotropically in direction. Momentum is not conserved; momentum transferred to

the neutrals is ignored. Energy is not conserved either; there is a recoil energy transferred

on the order of 2re/M times that of the electron.

These collisions produce electron transport across B.

Inelastic Scattering: Excitation

All Xenon excitation is assumed to occur at 8.32 eV, the first excitation energy. If an excita-

tion event occurs, the primary electron loses 8.32 eV of energy and is scattered isotropically

in direction. The total cross section for excitation is used to determine the frequency of

these events, but only the first excitation is modeled. Thus, energy losses are underesti-

mated in the simulation. A better model (recommended as future work in Chapter 5) would

take into account different energy levels; such a model could be obtained by summing cross

sections for various energy levels and making one or several "effective" excitation levels.

The neutrals are assumed to immediately radiate. Hence, no effects on the neutrals are

directly modeled.

Inelastic Scattering: Ionization

If an ionization event occurs, the primary electron is scattered isotropically in direction.

The electron also loses energy, but the amount must be determined.

Only e + Xe -+ 2e + Xe1+ ionization events are modeled (although inclusion of higher

order ions would not be difficult). Since the first ionization energy of unexcited Xenon

is 12.1eV, each primary electron must lose at least 12.1eV of kinetic energy (E, < E, -

12.1 eV). However, a secondary electron is also produced; this also carries away some energy.

We use a probability distribution to find the primary and secondary electron energies. This

will be described in the next section.

At the end of each electron loop, ions and secondary electron are created at the primary

electrons' locations. Initial ion velocities are the neutral background velocity. Locations of

all ionization events are tallied according to the Nearest Grid Point (NGP) in computational

space such that we arrive at AN, (z, r) due to ionization after each time-step. Neutrals are

deleted accordingly during the neutral loop.
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Secondary Electron Emission During Ionization

When an electron ionizes a neutral, a secondary electron is created. The differential cross-

section for ionization by an electron of primary energy Ep with emission of a secondary

electron of energy E, is taken to be of the form

a(Ep, Es) = oE(Ep)C(Ep)f (Es); f o(Ep, E)dEs = (Ep) (3.167)

where cr(Ep) is the total ionization cross section for all Es,

1
C(Ep) = (3.168)

Ejtan-1[(Ep - I|)/2Ej]'

and
1

f (Es) = . (3.169)
1 + (Es /Ej)2

Here, I = 12.1 is the ionization energy for Xe 1 + and E = 8.7. This function is taken

from Opal, et. al. [35], who state it is in fact a poor fit for Xenon due to unaccounted for

excitation lines. We justify its use by stating that excitation is accounted for elsewhere.

In practice, we randomly choose a secondary emission energy: E, = R(0 - 1) x (Ep -I).

We then use the rejection method to determine if this energy is acceptable. (Let R2 =

R(O -+ 1). If R2 < f(E,), then E, is accepted.) Finally, the energy of the primary is

computed exactly; E, = Ep,o - E, - 12.1eV. For higher order ionization, we can either

extend this method, or simply create the secondary electrons at the mean neutral flow

velocity - zero energy, essentially.

Deletion of Neutrals

At the end of each electron iteration loop, ions and secondary electrons are created, and

the positions of all ionization event are tallied. Therefore, we know the number of neutrals

size s = 1 which need to be deleted in each control volume on the grid. Let this quantity

be AN, (k, j). This is just the mass to be deleted. It is an integer quantity. This is not

the number of super-particles which must be deleted, unless s = 1 for all neutral super-

particles. (Recall that neutral super-particles are an integral factor s times larger than

charged particles. This is the statistical weight discussed in Section 3.10 which keeps the

number of charged particles and neutrals roughly equivalent. Ions and electrons are always
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s 1.) We also know the number of neutrals size s = 1 in each grid volume, N,(k,j).

This is just the total mass. As before, this is not the number of super-particles in the

control volume. If 2 electrons experienced ionization events in cell (5,6) during the previous

electron loop, then AN,(5, 6) = 2 and two units of mass (2s) must be deleted. As we move

the neutrals, we calculate for each a probability of ionization, pi = sjANa(k,j)/N, (k,j),

and compare it to a random number to determine whether it will experience a loss of mass.

If so and si > 1, then si - si - 1, while if si = 1, the super-particle is deleted.

The quantity AN,(k, j) is maintained as a static variable (it is not automatically re-

initialized at the end of each neutral loop) such that the number of events is conserved.

Hence, if the neutral mass deleted on a given time-step is less than AN, (k, j), the remainder

is maintained for the next time-step. Thus, mass is conserved overall.

This CPU sparing NGP method is easy to implement.

3.15.2 Ion-Neutral Charge Exchange Collisions

Given an ion of velocity i7 and a neutral background of super-particle density in[size]

moving at bulk velocity v, the frequency with which one ion exchanges charge with the

neutrals is

Vcex = rQcex (r)hn [size] (3.170)

where the relative speed is

cr = 6-- < V-n > |.(3.171)

As per Equation 2.90, the cross section is taken to be Qcex = (ki ln(cr) + k2 )2 X 10-16 CM2.

In addition, we take into account that heavy particles are moving too fast by a factor of

i1/f, which means the cross section should be taken at speed cyfj. Thus, the equation is

modified to

Vcex = crOcex(r\/f)nn[Size], (3.172)

where the additional factors of fT for velocity and V1/f for cross section cancel out.

Each time we move an ion, we calculate the probability of a charge exchange event

happening in that time-step: p = 1 - e--tNc. We compare this to a random number.

If R(0 - 1) < p, an event occurs. In that case, an ion with the neutral bulk velocity is

created at the original ion's location. The original ion loses its charge, is removed from the
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list of ions, and is added to the list of neutrals. Since ion and neutral time-steps may be

unequal by a factor of 10, there is a slight loss of accuracy with regard to position. The

locations of these charge exchange events are tabulated according to the nearest grid node

in computational space. The next time the neutrals are moved, some will be deleted just

as they are for ionization events (see "Deletion of Neutrals", above).

Note that this is a secondary effect which may be "turned off" to speed up the simulation.

3.15.3 Ion-Neutral Scattering Collisions

Ion-neutral scattering collisions are treated as a variant of the Hard Sphere(HS) model.

Ions are treated during the ion loop. First, we find the relative velocity of the ions to the

background neutral bulk velocity, c = Ii'i- < 6' > iv/f. The variable V/f accounts for

the fact that all heavy particles are moving a factor of 1/v'f too fast. As before, we use

cr along with a cross section Qin(cr) and a random number to determine whether an event

takes place. (Since we model both ion neutral scattering and charge exchange collisions, we

lump the collisions together as we did with electron-neutral scattering collisions. That is,

Qtot = Qin + Qcex, and so on.)

When a collision occurs, the magnitude of the relative velocity is conserved (|cr|* =

icr|), but the direction in the center of mass frame is determined randomly. Thus, the ion

leaves along a relative velocity vector drawn from an isotropic distribution. The amount

of momentum (A' = M(v'o - v'f)) and energy (AE = .5M(v - v)) lost to the neutrals is

tallied and applied to the neutrals during the neutral loop.

Rather than picking one neutral randomly, we act upon all neutrals in the cell where

the ion-neutral collision took place (using NGP weighting). We conserve both momentum

and energy. First we calculate the change in bulk velocity required to conserve momentum,

\ < V~n >kj= APkj/Mkj. (3.173)

Again, Agkj is the net momentum lost by the ions, which is to be gained by the neutrals.

This velocity change is applied to all neutral super-particles in the cell according to

<iVn >kj=< Vn >kj +A <v7n >Vn . (3.174)
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The bulk energy of the neutrals is determined by

12
Ebulk - AM < V >2, (3.175)2

where M is the total mass of all particles at (k,j). Thus, Equation 3.174 changes the bulk

energy of the neutrals from Eblk,, to Ebulk,f, but the internal energy stays the same. Let

us calculate the change in internal energy required to conserve energy. To conserve energy

overall, we balance the internal and bulk energies before and after the "collision";

Ebulk,f + Einternalf Ebulk,o + Einternal,o + AE. (3.176)

Again, AE is the kinetic energy lost by the ion in its collision with the cloud of neutrals.

The internal kinetic energy of the i particles in cell (k,j) is just

1
Einternal = -IZM (v- < V >)2, (3.177)2

where Mi is the mass of a single particle, and where v'5 - < V' > is the relative velocity.

Equation 3.176 is balanced by multiplying all the neutral relative velocities by a scaling

factor a. For each of the i particles in cell (k,j), we let

V= E >'k +W(- < Vn >kj), 318

where

a2 Ebusk,o + Einternai,o + AE - Eulk,f (3.179)
Einternal,o

This increases the internal energy of the neutrals, but has no effect on the neutral bulk

velocity. Thus, both energy and momentum are conserved overall.

3.15.4 Monte Carlo Coulomb Collisions

In Section 2.8.5 we stated that electron-ion and electron-electron Coulomb collisions should

be modeled. In Section 3.16.3 we present a diffusive model for these collisions which was

an extension of the Langevin equation. However, this diffusive model is complicated and

computationally intensive. Before the diffusive model was completed, a much simpler Monte

Carlo Coulomb Collision (MCCC) model was implemented. This model was used to produce
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all results in Chapter 4 and many in Chapter 5.

In the MCCC model, the local collision frequency is estimated and compared with a

random number to determine whether an electron experiences a collision. When a collision

occurs, it is treated as a discrete, isotropic, large angle scattering event. Such "hard sphere"

collisions are described in Section 3.15.1. We assume that no momentum is transferred to

the ions in these collisions; they are characterized by random jumps in electron momentum.

At first glance, the method may seem to be invalid. After all, most Coulomb collisions

are small angle and involve many particles at once. However, if the fact that collisions are

not actually binary is ignored and the cut-off collision integral (to AD) is used, then the

answer for momentum transfer between electrons and ions should actually be the same as

that obtained by using the Fokker-Planck equation [48]. Unfortunately, the method is less

valid for like-particle interactions, and collisional relaxation to equilibrium is not correctly

represented.

Two versions of the MCCC model were used to produce results presented in this thesis.

Most of the results in this thesis were generated by Version 1.0. Its most obvious flaws were

corrected in Version 2.0. Results from Version 2.0 are discussed in Chapter 5.

MCCC Model Version 1.0

In Version 1.0 of the MCCC model, the collision frequency is estimated according to

vei = niQ'Ivel; vee = neQ"vel, (3.180)

where Ive I is the absolute speed of the electron. For electron-ion collisions, the momentum

transfer cross section, was defined (see Section 2.8.5) to be

6.5 x 10-- 4 2Qm"c = 47b =2 , cm2. (3.181)
eV

Here, E = 1/2m12V 2 ~ 1/2meve and bo is the impact parameter for electron-ion inter-

actions. The minimum cross section Q" was assumed to be the atomic cross section,

7rr 2 ~ 3.66 x 10- 16cm 2 . Furthermore, if Q"z < Qen, then Qen was used. The energy
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averaged momentum transfer cross section for electron-electron collisions was defined to be,

6.5 x 10- 2
Q' r , cm . (3.182)

eV

There is an error in this equation; the coefficient should be 67r!

Note that Vee is often calculated assuming that Ive| = /8KT/rme. Thus, Ivel is

replaced by a temperature. However, we prefer to use individual electron velocities.

There are two obvious mistakes in this model:

* The energy averaged momentum cross section Q' is a factor of three halves too large.

The coefficient should be 67r.

" Both equations omit the Coulomb logarithm, nA. There was on purpose. For particles

of average speed, the fractional contribution from large-angle collisions is of order

1/lnA [32]. We tried to restrict the model to large angle collisions by setting InA = 1.

Thus, we essentially ignored the effects of small angle collisions.

These errors were corrected in MCCC Model Version 2.0.

MCCC Model Version 2.0

The second MCCC model corrects the most obvious flaws of the first model. In this model,

the collision frequency is again estimated according to

ei = niQeIvel ; vee neQ'evel, (3.183)

where Ivel is again the absolute speed of the electron. However, we now account for all

particles out to the Debye length by inserting the Coulomb logarithm. For electron-ion

collisions, we use (see Section 2.8.5),

6.5 x 102 4
Qei= 47r blnA = E nA cm (3.184)

eV

2

The minimum cross section Q" is still assumed to be the atomic cross section, 7rr

3.66 x 10- 16 cm 2 . Furthermore, if Q' < Qen, then Qen is used. For electron-electron
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collisions, we add the Coulomb logarithm and correct the coefficient, such that

A -4.34 x 10-14lnA 2
u"' = 6 rIli = T cm2. (3.185)

eV

Although this model should produce nearly correct electron momentum transport, it is still

imperfect. It will not predict the correct energy distribution relaxation rates, and should

not really be used at all for electron-electron collisions. Fortunately, Coulomb collisions are

only significant for low energy electrons.

3.16 Diffusive Model of Coulomb Collisions

At any given instant of time, an electron will typically be scattering off many other charged

particles. Thus, it is inappropriate physically (though convenient numerically) to treat

Coulomb scattering as a sequence of Monte Carlo collisions [301. It is more correct to

represent Coulomb scattering as a diffusion process in velocity space. We developed and

implemented a method which does this. The method is similar to that described in Ref.

[2].

3.16.1 The Boltzmann Equation

Evolution of the plasma species is determined by coupled ion and electron kinetic equations

for the time dependent, 3D distribution function f, (t, i', 6). Ignoring source and sink terms,

one may write the Boltzmann equation

___, F 0f
+ - = C (3.186)

where C = (9 ) is the non-linear collision term. For electrons, the collision term formally

has three components, i.e.

Of _ f Of Of
(- ) = ( )en + ( )ei + ( )ee. (3.187)at at at at

A more thorough discussion of the Boltzmann equation is found in the Appendix, Section

C.
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3.16.2 The Fokker-Planck Equation

The Fokker-Planck equation describes the change in f, produced by the small, overlapping,

and almost continuous encounters of electrons diffusing in velocity space [48]. For the

continuous distribution function f, defined as the probability of finding dn particles in the

d6' element of phase space,

dn = f (6,j t)d6- (3.188)

the Fokker-Planck evolution equation (Trubnikov's form [56], summation on repeated in-

dices) is written

( fo)f = (fa F'-"oDik). (3.189)
Ot Ovi m, Ook

The dynamical friction vector, FO/f3, and diffusion tensor, D , may be given in terms of

Rosenbluth potentials, pp and 0p, which describe the distribution of background species #:

F = Lo/3m Dik = L*/Sg21 (3.190)mO Ovi OoViOVk

Here L/0 = (47rqagp/mc,)2 lnA (CGS units), where ln A is the Coulomb logarithm. (In

MKS units, La/1 = (qcqo/Emc,)2 lnA). The Rosenbluth potentials simplify calculations.

They obey Poisson's equation according to

2 fP VU - . (3.191)

(Note: In Plasma Physics texts, one sometimes finds the convention V 2 = V - V =A. For

the sake of clarity, we avoid this notation.) In terms of Rosenbluth potentials, the complete

Coulomb collision operator is written

C ZL = /p (m f cp3a _p - p ). (3.192)
=e,i Ovj mg3 Dvi Ok OVioVk

This equation describes the change in distribution of species a due to collisions with the

whole ensemble of species # as represented by the Rosenbluth potentials, O and 'i.
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3.16.3 Langevin Formulation

Given an arbitrary function of x(t) : f [x(t)], one can use Ito's formula to write an equivalent

stochastic differential equation which the function will obey [12]. This is called a Langevin

equation. For a more general discussion of Langevin equations, see Section 3.3

Applying Ito's formula to the Fokker-Planck equation, one obtains the form

=v Ai + E Big (j (3.193)dvt

which is equivalent to first order. This Langevin equation can be used to describe the

collisional Fokker-Planck step. Here ( is a 6-correlated random vector with zero mean

value,

< (g (t) >=- 0, < (g (t) (y (t') > = ogj 6 (t - t'), (3.194)

where 6ij is the Kronecker delta, and < ... > implies ensemble average [2].

The functions Ai = fn(t, ', ,6) and Bij = frn(t, ', 'U) represent the net probabilistic effect

of many small angle scattering events off the background ensemble as represented by <p0

and #0. Computation of Ai and Bij is discussed in the next sections.

3.16.4 Normalized Units

The Fokker-Planck equation may be simplified through normalization. Let x = og/oO

where vo = 2KTp/mp. Also let, A = ma/m 3 (for self collisions, A = 1). Furthermore,

note that fa = dng/dv. The collisional Fokker-Planck term can then be normalized by the

factor (CGS units)

[VO]3 _ 2 2(kT) 3 Ma[t] - -- A3/2. (3.195)
npLa/1 lnA87r 2 e2e2no

For illustrative purposes, we first consider a 1V (spherical) solution which assumes an

isotropic background Maxwellian distribution. Here, x = v + o2 + v2/v. In this case,

the normalized collision term can be written

&f = 1 2 [. W f 0 (3.196)at z2g gX g 2 X
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One can show that the equivalent stochastic Ito-Langevin equation is [1]

Ox 8p 2020 j930 24

at 8 x 2 +x 3 + 2  C.2 (3.197)

Equation 3.197 describes the change in modulus x of a particle of species a which occurs per

normalized time i = t/[t] due to Coulomb collisions with species 3. The first three terms

represent friction, (Ai in Equation 3.193), while the last term represents diffusion, (Bij in

Equation 3.193). The factor ( is a random number distributed according to

= cos(2wR[O, 1]) -21n(R[0, 1)). (3.198)

Equation 3.197 describes the change in modulus in one dimension, assuming that the change

happens isotropically. The derivatives cp', 0", and 4" are listed in the next section. The

3-D formulation actually used is found in Section 3.16.6.

3.16.5 Isotropic Maxwellian Distribution

For an isotropic Maxwellian distribution fp (t, ',ii) at temperature To (t, j?) and density

ngr(t, f), the Rosenbluth potentials may be written [56]

erf (x)
-(P = x no; (3.199)

47x

-1 1
( = 16[(2x + )erf (x) + erf'(x)]ngl. (3.200)16w X

Here x = vj/v, and v3 - 2KTpl/mp (as before). The normalized Rosenbluth potential

are obtained by dividing through by no. Useful derivatives of the normalized potentials

include the following:
1

p'(x) = [4p]; (3.201)
167r

1
(= 1 [p - 2erf (x)]; (3.202)167

4"'x) 1 -2
/(X) p-]; (3.203)167 x

1 6 4
(x) = 16 p - -erf'(x)]. (3.204)

167 T2 x
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We have used the following functions to simplify:

er f'(x) = 2 _,x2; (3.205)

erf"(x) = -2xerf'(x); (3.206)

WL(X) 0 erf (x) erf (x) - x erf'(x) (3207)
ax X X

p'(x) = 2erf'(x) - 2 (3.208)
x

The functions g(x) = p(x)/2 and erf(x) - g(x) are shown in Figure 3-30.

The energy distribution resulting from application of the Langevin equation to electron-

electron and/or electron-ion collisions may be compared with the energy distribution for a

Maxwellian at T,
dN/N 2

= g(E) = - E e. (3.209)d < z2x

Here x 2 = E = Im < C2 > /T. It is perhaps worth noting that

222

p(X2 j 7e de (3.210)

is the so called "Maxwell Integral" [56]. This is the integral over a sphere of finite radius of

the Maxwellian distribution normalized to unity. The integral may be expressed in terms

of the error function and the function defined earlier, p(x);

P (X 2 ) = erf (x) - xerf'(x) = x2P(x) (3.211)

where

erf (x) = e-- dy. (3.212)

3.16.6 Three Dimensional Form

The simulation implements Coulomb scattering in three dimensions. Both diffusion and

friction act along the relative velocity vector v' = iv- < 0 >= '1. Thus, in time-step

T = At/[t], the parallel velocity increment due to collisions can be expressed

< (AV1) > < (AV)2 
Avg = r + At T, (3.213)
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Figure 3-30: The functions g(x) = p(x)/2 and erf (x) - g(x). These are used to determine
the diffusion coefficients.
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where (I is a random number. Only diffusion acts perpendicular to v' such that

AviL = (2 r.

The mean square velocity shifts can be written as diffusion coefficients:

DX = 1 < (Av,) 2 >
2 At

DY = 1 < (AVY) 2 >
2 At

D2 = 1 < (,AVz)2 > .
2 At

Here, x is the direction of particle motion (Dx = Dj1 ), and directions y and z are the per-

pendiculars (DY = Dz = D 1 ) which define an orthogonal set of axes. Thus, < (Av) 2

(AvY) 2 > + < (Avz) 2 >. For such an orthogonal system, Trubnikov shows that [56]

< (AV2)2 >= -2@"(x);

< (AVY)2 >=< (AVz) 2 >= -2 ;X

where

z =0
v

Using the functions described in Section 3.16.5 for an isotropic Maxwellian, we find

DII = -@)"(z) =- , X)
87r x

0'(x) 1 2erf (x) - p(x)

X 167r

(3.221)

(3.222)
X

What about friction? The mean rate of change of momentum of a test particle of species a1

in a field of species # may be written,

< PC, >= -ma(1 + A)La/v iop.
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Thus, the dynamical friction coefficient (A =< Avil > /At) may (in normalized units) be

written

A = -(1 + A)P(x). (3.224)
47r

For a complete derivation, see Trubnikov [56]. Note that if the field particles are all at rest

and infinitely heavy, the dynamical friction goes to zero, but the mean rate of momentum

exchanged does not. There is still friction.

3.16.7 Defining Coordinate Axes

To apply the 3-D diffusion coefficients, we define a unique set of orthogonal coordinate axes

at each iteration. The parallel direction, ix, is along the relative velocity vector;

I r = . (3.225)

The perpendicular axes, IY and iz, are found by first defining any vector i1  ix. The

functions,

Zy (3.226)
hzi x zx|

and

iz 7= 1 - (3.227)

then complete the orthogonal set of axes.

3.16.8 Implementation

Since Dx = D11, and Dy = Dz = D 1 , the velocity shift due to Coulomb diffusion along the

parallel direction in time r may be implemented as:

Avx = AT + C1 2D|1| (3.228)

where

= cos(27rR[O, 11) -21n(R[O, 1]). (3.229)

In the perpendicular direction the modulus and direction are found separately by

Av1 = 2(2 VD 1 T, (3.230)
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(2 = cos(27rR[0, 1])V 21n(R[0, 1]), (3.231)

and

(3 27rR[0, 1]. (3.232)

Thus,

AvY =cos(C3)|Avil (3.233)

and

AVz = sin(C3 )|Avi|. (3.234)

Finally, AA Av.ix, AV= AvYIZ, and Av'z = Avziz.

3.16.9 Testing

To test the algorithm, we inject a single electron and perturb it 108 times at dt ~ .01.

At each time-step, we record the energy of the electron and use that energy to build a

distribution, which should be Maxwellian. The resulting energy distribution is compared

to g(e) in Figure 3-31. The numerical energy distribution underestimates the peak slightly,

but is otherwise a good fit.

3.16.10 Domain of Integration

Over which ensemble of species # should we integrate to determine T?

Manheimer, et. al. [30] integrate along magnetic field lines, reasoning that the time scale

for electron motion perpendicular to the field lines is much greater than that for motion

parallel to the field lines. They show quantitatively that that the electron distribution can

often be treated as isotropic, even when T 11/T 1 = 2. For multiple distributions, e.g. multiple

humped background distributions, they note that the friction and diffusion coefficients can

be calculated as vector or tensor sums of contributions from several distributions displaced

from each other in velocity space.

In our simulation, we do not assign one TO to an entire magnetic streamline. Along

streamlines, magnetic bottling and electrostatic (sheath) effects limit where electrons can go.

Furthermore, gradients in electron and ion temperature exist. Not all electrons will see the

same ensemble. Therefore, we assume the electrons interact with an isotropic, Maxwellian

background distribution determined by the local moments of density, ny3, energy, To, and

209



iterations = 108

0.4 7 dt= .01

00.3
V

o.2

0.1

0 '
0 2 4 6 8

e=v 2/2T

Figure 3-31: Energy distribution of a single electron for electron self diffusion. A single
electron is injected and perturbed one hundred million times at a time-step of T = .01. This
distribution is a representation of how often the electron has each value of energy. The
resulting energy distribution is compared to g(e).
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momentum, vo. This is easier numerically, and more correct physically; an real electron

interacts with other charged particles in its immediate vicinity (within a Debye length).

Manheimer's results provide some justification for assuming species # is Maxwellian.

3.16.11 Numerical Notes

" The diffusive method is required to capture relaxation to an isotropic distribution

function. However, the much simpler MCC method described in Section 3.15.4, should

capture the correct rate of momentum transfer. It should produce nearly the right

amount of transport.

" If artificial mass ratios are used, this affects the relative velocity vector. For instance,

if species o is electrons and species # is ions, then r = 'La - vI < vp >, where

f = M'/M.

" The normalization constant [t] must be increased by 1/f to account for the decreased

lifetime of electrons.

" Assuming species 3 is Maxwellian is not a very good assumption for ions, where

Tz 40 - 60 eV, Tr ~1 - 5 eV and To .01 ev, numerically.

* In practice, we apply no force if |x11 + AxilI < .01.

* If the argument is very small (x .001), our function can produce D < 0. This

error seems to come from a curve fit we use for erf (x). If this numerical error arises,

we set DI = 0.

3.17 Anomalous Diffusion

Anomalous Bohm type diffusion is included in the numerical model. The rationale for this

was discussed in Section 2.10.

3.17.1 Past Numerical Modeling of Anomalous Electron Transport

Fife found that Bohm diffusion was required to explain the electron transport observed in

an SPT [10]. His simulation included both secondary emission at the walls and classical

diffusion resulting from electron-neutral collisions, but cross field transport due to classical
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scattering (and wall effects?) was only 70 percent of the total [10]. Bohm diffusion was re-

quired to make up the difference between the simulated discharge current and the measured

discharge current.

When modeling a Busek thruster using Fife's Hybrid PIC code, we discovered that

Fife had been using a cross section for electron neutral collisions which was approximately

an order of magnitude too high. After fixing the error, Bohm diffusion dominated [53].

We furthermore found that Bohm diffusion using the coefficient DB = 6 B produced

too much diffusion. A value closer to DR B was required to match the numerical

predictions of the Hybrid PIC code with the experimentally measured performance [53].

Hirakawa attempted to explain the anomalous diffusion observed in a Hall thruster

by modeling azimuthal waves [18]. First she performed a 2D simulation in the rO plane.

Then she applied the observed electric field oscillations to a 2D simulation in the rz plain,

resulting in flux levels comparable to Bohm diffusion. But are such azimuthal waves present

in a TAL thruster? And if so, are they present everywhere between the cathode and the

anode, or only far from the anode?

3.17.2 Present Numerical Modeling of Anomalous Transport

Since we are not sure whether or not "anomalous" diffusion is an important mechanism for

electron transport in the mini-TAL, we account for it using a method which may be turned

on or off at our discretion, allowing us to run parametric tests. Our method is to scatter

the electrons randomly according to a "Bohm frequency", VB. To derive this frequency, we

equate our general result for D 1 with DB ~ _ , which results in the relation

D v 2 (3.235)
2 oc~e 32 oce

Letting v_ = vth, we find VB 1/6Wce. This means that the effective Hall parameter,

= VB/wce, is limited to less than 16. Since Wce = 2 7vce, VB/vce ~ 1/3. In other words,

each electron scatters approximately once every three gyro rotations.

1L KTe -1 r
If we use D ~ 6 , , we simply decrease vR proportionally. In this case, the effective

Hall parameter # is limited to 64. This is numerically friendlier than the previous case

(/~ 16) for reasons which will shortly be clear.

Once the Bohm collision frequency is implemented, the electron scattering rate is deter-
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mined by

v' = Ve + VB. (3.236)

If we model Bohm scattering, we must include the scaling factor f = M'/M < 1 to account

for artificial mass ratios:

l/B 1B/~ f. (3.237)

This changes the effective Hall parameter according to

3'=///7. (3.238)

We must take care to ensure that 3' does not drop below 2 (so that the electrons remain

magnetized). When Bohm shattering is implemented, this requires us to use mass ratios on

the order of Mn/me ~ 960. If only Bohm scattering is modeled (no classical scattering),

this results in #' - 4. In practice, the addition of classical scattering decreases 0' further,

but it should be above #' = 2 everywhere. Mass ratios on the order of Mn/me - 96 are

only marginally acceptable as #' can be less than 2, while lower mass ratios are really out

of the question.

3.18 Particle-Boundary Collisions

In this simulation, particles are specularly reflected off some boundaries (a billiard ball

without any English), and diffusely reflected off others (the normal and/or tangential com-

ponents change). Figure 2-12 illustrates the difference. The rationale behind these boundary

conditions was discussed in Chapter Two.

To actually implement a particle/boundary collision, we first calculate precisely where

and when a particle impacts the boundary. Then we assign the particle a new velocity,

which depends on the species of the particle and the boundary being encountered. Finally,

we step the particle away from the boundary according to the new velocity.

3.18.1 Calculating the Impact Point and Time

To minimize artificial electron transport, one should calculate the particle/boundary inter-

section point precisely. This is also important when testing the simulation for energy and

momentum conservation.
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Each time a particle moves, its new position in three dimensions in space is determined.

This position is then transformed back to the R-Z plane (See Figure 3-21). If the trans-

formed position of the particle is found to be either outside the domain of the simulation

or inside a solid piece such as the anode, then we determine exactly where and when the

particle intersected the boundary. The particle is then reflected from that point. At some

boundaries, such as the free space boundary, the particle may be destroyed. At other

boundaries, the energy the particle gives up is tallied.

Vertical (Radial) Boundary

If the boundary is vertical, the intersection point is simply the intersection of the line

defining the boundary with the line determined by the starting and ending points of the

particle. The time T to intersection is determined by displacement along the Z axis, along

which motion is unaffected by the coordinate transformation. Let z be the position of the

particle and Z be the position of the boundary. Then, T = At(Z - zo)/(zf - z,). Once T is

determined, the particle undergoes two motions. First, it moves T to the boundary, where

it interacts with the surface. Then it steps At - T away from the boundary with its new

velocity.

Horizontal (Axial) Boundary

If the boundary is horizontal (parallel with the centerline) or sloped, then determining the

intersection point is a three dimensional problem: We must find the intersection of the

trajectory, UAt, with a three dimensional surface defining the boundary. Let (r', z') be the

position at which the particle intersects the boundary. Furthermore, let r, be the initial

radial position, and let T be the time to intersection. If the boundary is parallel with the

centerline at radius R, then r' = R, but we don't know either z' or T. However, we do know

that (r') 2 = R2 = (ro + VrT) 2 + (vT)2 (see Figure 3-21). We can thus determine T from the

quadratic equation. It is

-b± P-4ac (3.239)
2a

where a = v2 + V, b = rovr2 , and c = r 2 - R 2 . The (+) solution is for R > ro, while the

(-) solution is for R < r,. The parameter a is never equal to zero because a particle with

Vr = vo = 0 will never cross a horizontal boundary. Finally, we step the particle forward
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T, at which point the particle hits the boundary: (r', z') = (R, zo + vzT). After the new

velocity is determined, we then compute the new trajectory and step the particle forward

an additional At - r.

Sloped Boundary

Finally, we consider the non-vertical boundary with slope s # 0. Here, r' is also undeter-

mined. To find T, we first calculate rz,o, the radial position of the boundary corresponding

to z,: If you draw a line radially outward from (ro, z,), then (rz,o, z") is the point where

you hit the boundary. The intersection point of the particle may then be written

r' = rz,o + s(z' - zo); (3.240)

z' = Zo +VzT.

As before, we solve the quadratic equation to find r:

T = (-b + v'b2 -4ac)/2a;

a = v 2.+ V - s2V2
r -sZ, (3.241)

b = 2 (roVr - vzsrz,o);

c = r 2 - r2

If a = 0, T = -c/b, and if c = 0, r = -b/a. This (+) solution is the only one we need

consider for the given simulation region. As before, we move the particle r and At - T in

two steps, the first with the old velocity, and the second with the new velocity.

3.18.2 Neutral Impact

Neutral-boundary impacts fall into three categories:

* At the free space boundary, neutrals are deleted.

" At the centerline, neutrals are specularly reflected.

* At all other surfaces, neutrals are diffusely reflected according to a half-Maxwellian
at the surface temperature, taken to be .1 eV at the anode, and 700K at the con-
stant potential walls. These values could be changed easily to test the effect of wall
temperature on performance.
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3.18.3 Ion Impact

Ion-boundary impacts are as follows:

" At the free space boundary, ions are deleted from the simulation. A count of the flux
is maintained.

" At the centerline, ions are specularly reflected.

" At the anode, ions lose their charge and are re-emitted as neutrals. Their charge helps
determine the anode current. The velocity magnitude after impact is determined by
the assumption that ions give up 50 percent of their energy to the walls. The velocity
direction is randomized.

" At the constant potential walls, ions lose their charge and are re-emitted as neutrals.
The charge is collected to help determine the wall potential. The velocity magnitude
after impact is determined by the assumption that ions give up 50 percent of their
energy to the walls. The velocity direction is randomized.

" At insulators (when modeled), ions lose their charge and are re-emitted as neutrals.
The charge is collected to help determine the sheath. The velocity magnitude after
impact is determined by the assumption that ions give up 50 percent of their energy
to the walls. The velocity direction is randomized.

" At the cathode (when modeled directly), ions are neutralized and the cathode emits
one less electron.

3.18.4 Electron Impact

Unlike heavy particles, electrons do not bounce when they impact most boundaries. They

are simply destroyed. Electron-boundary impacts are as follows:

" At the free space boundary, all electrons are allowed to pass out of the domain. A
count of the flux is maintained.

" At the centerline, electrons are specularly reflected.

" At the anode, electrons are destroyed.

" At the walls, electrons are destroyed and charge is collected to help determine the
wall potential.

" At insulators (when modeled), charge is collected to help determine the sheath.

" At the cathode (when modeled directly) charge is collected and re-emitted.
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3.18.5 Energy Flux

As discussed in Section 2.12.4, particles give up energy to the walls. This energy is tallied

at each time-step which, in theory, enables a thermal model to be created.

3.18.6 Thrust and Isp

The thrust and specific impulse of the thruster is determined by keeping track of the particles

which leave the simulation through the free space boundary. If the boundary potential where

an ion exits the simulation is not equal to zero, the velocity in the axial direction is adjusted

to account for the additional energy gain (or loss) expected before the particle reaches free

space. The additional AV is considered when predicting the thrust and Isp.

3.18.7 Magnetic Boundary

Before fully modeling the anode region, the left hand boundary of the simulation region was

flat [52]. Particles which intersected the left hand boundary between the center pole and

the anode were turned around if their energy was such that they were magnetically bottled.

We termed this a "magnetic boundary."

A magnetic boundary is easily implemented. Essentially, we determine if the particle

has enough kinetic energy to make it to the center pole. If it doesn't, then we reflect it. If

it does, then we delete it and add it's charge to the wall.

How do we do this? First, we compute the charged particle's energy, KE, and magnetic

moment, p = KE_/IBI. (Both energy and magnetic moment must be conserved.) Next,

we compute the change in electric potential between the current location and the wall:

A# = # - #2au. Then we estimate the KE which the particle would have at the wall, after

accounting for the change in potential

KE' = KE - A#. (3.242)

If KE' < 0, then the particle is electro-statically confined; absent energy adding mechanisms

as through, for instance, oscillations, the particle could never reach the wall. Next, we

estimate the magnetic field strength at the wall. Between the anode and the center pole or
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outer pole (in the region of interest), we say 8B/Oz ~ 0 such that, at the wall,

B' = B ; B' = Bz. (3.243)

Finally, we estimate KE' at the wall given that we must conserve Magnetic moment (P=

P'),

KEL = pf'|B'| = p|B'|; KE11 = KE - KE_. (3.244)

If KE > KE', then there is not enough kinetic energy to both reach the wall and conserve

the magnetic moment: The particle is confined by the magnetic field.

3.19 Particle Injection

Particles are routinely injected into the simulation along the boundaries. The rejection

method is used to locate injected particles in space. The Box-Muller transformation (see

Section 3.9.3) is used to locate injected particles in velocity space.

3.19.1 Neutral Injection

A stream of neutrals is created at the anode. Neutral positions are determined by the

rejection method such that the time averaged density of the stream at the entrance point

is constant. Neutral velocities are determined by assuming a half Maxwellian distribution

about the anode temperature, taken to be .1eV. Neutrals introduced through recombina-

tion at the walls are also given a half Maxwellian velocity distribution, but at a different

temperature.

Number of Neutrals

The number of neutrals created per time-step at the anode, N, is a function of the mass

flow rate according to
dNm=N . . (3.245)
dt mn * so[size](

Here, [size] is the number of particles a super-particle of size s = 1 represents, and so = 50

is (usually) the initial statistical weight of a neutral. These particles are created according

to a half-range Maxwellian [4]. That is, the R and e velocities are calculated according
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to the standard Box-Muller transformation, while the Z velocity of the created particles is

distributed according to

Vz = Vth -ln(R(O -+ 1)). (3.246)

An alternate method to achieve the same injection rate is to create Maxwellian particles

according to the frequency with which they cross an imaginary plane; we can use the

rejection method and the distribution function for flux as a function of velocity. This

is equivalent to having a constant density reservoir of particles to the left of the anode

boundary and entering them as they collide with the wall.

Culling the Neutral Population

Before charged particles are introduced into the system, the simulation is run for a thousand

or so iterations at 6i = 25 (or some large number) such that a neutral plume is created.

This plume is culled by assuming a utilization efficiency of q, = 0.9 to create an initial

distribution.

Assume neutrals are ionized at a rate R = dn,/dt nfniQve. Then,

dnn _ dnn dt _nnniQve (3.247)
dx dt dx Vn

The mean free path for neutrals being ionized (where ne = ni) is just A Vn/niveQ such

that
dn = dx (3.248)
nn A

Integrating with the very crude assumption that A is constant, we obtain

ln( n)= x - X (3.249)
nn,o A

If we assume that some fraction ls of the neutrals has been ionized (utilized) by position

x - xO =L, then

In( )= ln(I - ) (3.250)
nn,oA

In general,

nf = exp[ln(1 - rq) ] = (1 - u)(x x"). (3.251)
nn,o L

This equation was used by Hirakawa to estimate the neutral population in her simulation[18].
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The approximation is too simple because the plasma density is not constant in the acceler-

ation zone. However, we can use this approximation to cull the neutral population before

we introduce plasma into the simulation, thereby speeding up convergence.

3.19.2 Electron Injection

Cathode electrons introduced at the free space boundary are introduced according to a

half or full Maxwellian, depending on whether bulk velocity is assumed. The temperature

of these electrons is between .2 eV and 2.5 eV. A complete discussion of cathode electron

injection will follow in the next section.

Electrons are also created in the center of the plasma through ionization events. This

has been previously discussed.

3.20 Modeling the Cathode

Cathode electrons must be re-introduced into the simulation region. Rather than simulating

a cathode directly, we introduce these electrons at the free space boundary. This allows a

smaller simulation region. To do this, two basic questions must be answered:

" How much charge should be introduced at the downstream boundary each iteration?

" Exactly where should this charge be placed?

As discussed in Chapter 2, we can either control the number of cathode electrons introduced

as per a steady state, starting from Ic = Ia, or we can introduce electrons along the free

space boundary at a rate sufficient to neutralize the plasma along the boundary. Simulations

documented in References [51] and [52] assumed the former. Final results presented in the

thesis assume the latter.

In both cases, charges were allocated by creating a distribution proportional to the

charge density along the boundary. The difference between the two boundary conditions

just discussed is the number of charges introduced each iteration.

3.20.1 Steady State Injection

The amount of charge to introduce may be determined through a steady state current

balance, as described in detail in 2.3, According to this balance, we may determine the
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current from the anode/cathode current, the ion beam current, and the electrons which

pass through the free space boundary. Recall first that in a steady state the cathode

current, I, is equal to the discharge current, Id, such that

Ic = Id. (3.252)

Recall also that some portion of the cathode current, Icb, goes to compensate the beam

ions, while the rest, Icd, enters the discharge, such that

Ic = Tcb + Icd. (3.253)

Assuming that no net charge leaves the thruster (i.e. we only allow as many electrons as

ions to leave the simulation),

Ib I- Icb + Iaz, (3.254)

where Iaz is the electron current that passes from inside the simulation region out the free

space boundary. Thus we can estimate Icd as

Icd = 'Ic - I+ + az. (3.255)

This is the amount of charge which is introduced at any iteration when the steady state

method of electron injection is applied. Note that the net current crossing the boundary is

the cathode current, which is equal to the discharge current,

Icd - Iaz + Ib = Ic = Id. (3.256)

We now know the amount of charge to be introduced at the downstream boundary at

each iteration, dNe/dt = Icd. But where should these charges be introduced? Since we have

ions leaving as well as electrons coming in, the current density j = ene(vi - ve). The net

current across the boundary goes according to I = f jdA ~ jiAi, where the sum is over

the free space boundary, each node of which has an area associated with it. Locally we may

write

Jcd Jb +jaz- (3.257)
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Instead of applying Ohm's Law directly, we allocate the charges according to the quasineu-

tral assumption. If the plasma is quasineutral on the other side of the free space boundary,

then ne should equal ni along the boundary. To make this as true as possible, given Icd,

we use the charge imbalance Q(i) = Ni(i) - Ne(i) as a distribution function in space;

p(i) ~ Q(i). The rejection method can then be used to place electrons along the bound-

ary according to the distribution p(i). In short, the incoming electrons are placed where

they best balance the ions. This method is extended in the next section, which uses the

quasineutrality condition to determine Icd, as well.

3.20.2 Quasineutral Injection

During transients, the steady state method of electron injection is inadequate. Net charge

may be stored in the body's capacitance such that Id # Ic. As discussed in Chapter 4 (see

Section 4.3.2), this results in a region along the free space boundary which is either ion

rich or electron rich, whereas a real plasma bordering the plume should be quasineutral.

Fortunately, quasineutrality may be achieved if we determine Icd by pe along the free-space

boundary.

Essentially, we determine Icd through a "bang-bang" control system. At each iteration,

we sum along the free-space boundary to find the total net charge, Qf;

Qfs = Y=1[Ni(i) - Ne(i)] (3.258)

Here, each i represents one of j boundary cells to be summed across. If Qfs > 0, then

we introduce ~ Qf, cathode electrons (the number must be an integer) such that Qj 8

goes to zero. If Qfs < 0, we introduce nothing. As before, we use the charge imbalance

Q(i) = Ni(i) - Ne(i) as a distribution function in space; p(i) ~ Q(i)/Qfs. Then we use

random numbers to place the electrons according to the distribution function. The cathode

current is then post-calculated and saved.

This method results in a plasma which is indeed quasineutral along the boundary. Fur-

thermore, the cathode current is found to approximate the anode current over time, the

desired steady state result. The quasineutral boundary conditions are further validated in

Chapter 4, where we alter the capacitance of the thruster body but obtain the same basic

numerical results. The same cannot be said for the current-controlled boundary conditions.
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3.20.3 Energy of New Electrons

We assume electrons enter the simulation region with internal energy according to Te <

2.5eV. The internal energy with which electrons are created will be dwarfed by the kinetic

energy they gain from the electric field once within the simulation region. First, recall that

the energy of an electron flow has both bunk and internal components, e =.me < v >2

+.5me(v- < v >)2. The first quantity is the bulk energy, while the second is the thermal

energy, !Te,. If the magnitude of the local potential is less than the cathode temperature

(taken to be .2 eV), then the electrons are introduced according to a half-Maxwellian at the

cathode temperature with no bulk velocity (< v >= 0). If .2eV < # < x 2.5eV then a

half-Maxwellian at T = 2# is assumed. Again, < v >= 0. In # > j x 2.5eV, then electrons

are given a full Maxwellian thermal distribution at Te = 2.5eV, and a bulk velocity along

$ according to .5m < v >2= # - 3 x 2.5. Thus, their average energy equals #.

3.21 Limiting Neutral Counts

The background density of neutrals in the acceleration channel is at least an order of

magnitude greater than the plasma density. For this reason, neutrals created at the anode

are given a master size (statistical weight) of, for example, s = so = 50. Although the

statistical weight of each neutral super-particle decreases as it passes through the ionization

region and mass is deleted, the average value of s is much greater than one. However,

neutrals are also created through ion recombination at the walls, and these begin with

statistical weight s = 1. Over long periods of time, these low mass neutrals can build up in

the system, which is undesirable from a computational standpoint.

In his Hybrid PIC code, Fife solved this problem by creating only large super-particles

at the walls according to the ion flux [10].

Here, we take a different approach. Each SWEEP neutral iterations, the code scrubs the

neutrals, looking for low mass particles. (The number SWEEP is specified in a header file.

Typically, SWEEP is 1000). In areas of good statistics, (high particle count, typically taken

to be 50 or more particles per cell), it combines each Y super-particles with weight s = 1

into two super-particle of weight s ~ Y/2. The new statistical weights, si and s 2 , may be

different, depending on whether Y is odd or even. Normally, we limit Y to a maximum of 10.

In areas of poor statistics (areas of low density, taken to be N < 50), small super-particles
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are not combined.

The center of mass is conserved by placing the center of mass of the two new particles

at the original center of mass. Momentum is conserved by conserving the center of mass

velocity, measured in the laboratory frame. Energy is conserved by giving both particles

a relative velocity with respect to the center of mass. Angular momentum is conserved

by separating the particles by some distance Ar, measured in the radial direction. The

algorithm was tested to ensure that energy and momentum are indeed conserved.

By tagging certain species of particles, e.g. charge exchange neutrals, we avoid combin-

ing them with other particles. Thus, at any iteration, we can isolate and examine only the

extant neutrals due to charge exchange.
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Chapter 4

Code Validation

The topic of this thesis is the numerical simulation of a 50 W TAL thruster. A standard

Leapfrog scheme was used to move all species of particles. A Particle-In-Cell (PIC) method-

ology was used to apply electrostatic and magnetic forces to the particles. A Monte Carlo

Collision (MCC) methodology was used to model most collisions. The methods themselves

are only tangentially in question; others have shown them to be effective plasma simulation

tools. However, each piece of code must be tested and the simulation as a whole must be

validated; it must represent a TAL thruster and not some other imaginary device.

Validation tests described here are categorized. Part level tests involve the smallest

pieces of the code. Component level tests involve much larger pieces of the code and

general concepts. System level tests show that the code as a whole produces realistic and

consistent results.

4.1 Part Level Tests

The most fundamental pieces of code should be tested first. Such pieces include the random

number generators, the potential solver, the gradient and divergence functions, the leapfrog

method of particle pushing, and the magnetic field.

4.1.1 Random Numbers

Random numbers are often required in Monte Carlo simulations. These are usually pro-

duced by functions known as random number generators. Several of these functions were

tested. The first of these, ranO(), is merely the machine's random number generator. The
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second and third, ranl() and ran2(), are taken from "Numerical Recipes in C" [8], which

recommends ran1() for most purposes.

First, we must show that these functions produce numbers between 0 and 1 with a mean

of .5. After calling the functions 108 times we found: < ranO() >= 0.499986, < ranl() >=

0.500005, and < ran2() >= 0.500035. The function ranl() returned the average closest

to 1/2. Hence, we use this function most often. This test also showed that ranO() on the

SGI workstation sometimes produces both zero and 1. This limits the usefulness of ranO().

(The SGI function drand48() is equivalent to ranO() and never produced zero or 1, but is

incompatible with the PC.)

Random number generators are supposed to produce uncorrelated numbers. This is

tested by choosing three random numbers in sequence according to

(1 = Vcos[27rran1()],

(2 = v2cos[27rran1()], (4.1)

(3 = v2cos[27rran1()].

If this is done many times, the following mean values should be obtained:

<( 1>=< (2 >=< (3 >= 0;

<(2 >=< (2 >=< (2 >= 1; (4.2)

< (1(2 >=< (1(3 >=< (2(6 >= 0-

After 10 7 iterations, the following results were obtained:

< (1 >= -. 000 3 7  < (2 >= -. 00017 < (3 >= -. 00083;

>= .99981 <( >= 1.00017 >= 1.00037; (4.3)

< (1(2 >= .00029 < 1(3 >= .0000532 < (23 >= .00049.

4.1.2 Potential Solver

The electric potential at each time-step is related to the charge density by Poisson's equation

in cylindrical coordinates,

V 2 g =k(r I) + 0 -(pi - pe). (4.4)
r r )r E0
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To find (P numerically, we use a finite difference method based on Gauss's Law which works

backward from the charge distribution, Q(z, r), determined by interpolating all of the super-

particles in the simulation to the grid nodes.

Analytic Function

The potential solver was tested using the periodic function F(z, r):

F =Czcos( z ) + CrCOS( ) + C; (4.5)
Lz Lr

ni7rz n 1w n2xrr (n27r
VF = -Czsin(-Lz Lz)iz - Crsin( L L )ir; (4.6)

Lz LzLr Lr

-n . i~rz) niwr)2 C r i27rr) ___)2 n2 r)(n2w1TV VF = -Czcos( )2 - Crcos(n )rn27) 2 - Crsin(Lr (4.7)
Lz Lz Lr Lr Lr Lr r

F(z, r) is plotted in Figure 4-2. The number of maxima and minima in each direction is

controlled by varying ni and n 2 or, equivalently, by varying scale lengths Lz and Lr. The

magnitude is controlled by varying Cz, Cr, and C.

Method

The electric potential solver works backward from the charge distribution, Q(z, r) to find

1(z, r). Let D = F. If the potential solver works correctly, it should be possible to

numerically reproduce the analytic potential, F(z, r) from the analytic charge density,

Pe (z, r) = -V 2F(z, r)

First, the charge distribution on the grid, Qk,j, is estimated by multiplying the analytic

charge density at each grid node by its surrounding volume: Qkj ~ Vk,jpk,j. (This is

inexact, but exact integration is cumbersome when the grid is non-Cartesian). Next, the

potential solver is called using Q((, r/) as input. Dirichlet conditions (1 = F) are applied at

the boundaries. Finally, the resulting numerical potential, 4, is compared to the analytic

function, F.

Comparison of Results

To compare the analytic and numerical potentials, the difference between them is normalized

by the maximum of the analytic function: A = (D-F)/Fmar. The result is shown in Figure

4-2, where the 87 x 49 grid shown in Figure 4-1 was used. The potential solver reproduces
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the analytic potential almost everywhere to within one percent. Larger errors occur where

the grid is highly non-orthogonal or has less resolution. Smaller errors occur when a more

slowly varying function is chosen. The potential is resolved sufficiently to capture most

features of interest in the simulation, although numerical heating as a result of errors is still

an issue.

Sidenotes

The potential solver was tested on grids of different regularity and fineness. Some conclu-

sions were drawn from these tests:

" The method for obtaining the charge distribution from the charge density was found

to be adequate. On a Cartesian grid, the results obtained by using an exact charge

distribution (Qk,j = f Pk,jdv) were compared to the results obtained using an inexact

charge distribution (Qk,j = pk,jVk,j). The difference was everywhere small.

" Grid fineness and, equivalently, sharpness of features to be captured were found to be

important.

" In most cases, the nine-point scheme achieved similar accuracy on both Cartesian and

non-Cartesian grids. Highly non-orthogonal regions could, however, result in errors

of several percent.

Convergence

The convergence of the potential solver is tracked by looking at the largest value of RHSkj

(as per Equation 3.110), where

RHSkg = -(N~k,j+1 + S$k,j-1 + E~k+1,j + W k_1,j + Q) + k,j(N + S + E + W). (4.8)

The logarithm of this value decreases linearly with the number of iterations until machine

level accuracy is achieved at approximately 800 iterations. Convergence of the potential

solver is shown in 4-3, where the test function F was assumed with nr = nz = 5.
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Figure 4-1: The 87 x 49 grid used to test the potential, gradient and divergence functions.
The anode and center pole are outlined; these were "invisible" for the potential, gradient,
divergence, and potential solver tests. The grid is Cartesian to the left of the anode exit
and nominally elliptic elsewhere. Axes are in centimeters.

229



(2D) 29 Aug 2000 ELECTRIC (2D)| 29 Aug 2000 ELECTRIC

anal) tical phi
11 1 11 1
10 0.8 10 0.8

25 - 9 0.6-- 25 - 9 0 -
8 0.4 8 0.4
7 0.2 -- 7 02~

0 0 6

20 20-

12) 0Ao 00 ELCTI 12 -A1900 LCTI

-0..40464592

1 - 12 - -

10 10

5 5

0 0 10 20 6 0 10 20
Z Z

(2D) [o29 Aug 2000 |ELECTRIC (2D) 1 29 Aug 2000 1EECTR C

d,hi0.01
250.005

-0.005 15 -dphi
-0.01 1.1328

-0.015 0.0472

20 -0.02 0.00164592
-0.025 -0.00414527
-0.03 -0.00993646
035 1-00157 7

15 -0-0273

- 13 - -- 0.0446836
10 -- - -

12

5 --- +

0 10 Z20 6 7 8 9 10

Figure 4-2: Test of <k solver for an 87 x 49 grid. Upper left: Analytic potential. Upper
right: Numerically calculated potential. Lower left: Normalized difference. Lower right:

Details of normalized difference showing that errors arise where grid is highly non-regular.

Axes are in normalized units.
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Convergence of RHS vs. Iteration

Figure 4-3: Convergence of the Potential Solution on 80 x 50 grid. The solution is reached

in ~~ 800 iterations.

4.1.3 Gradient and Divergence

The numerical gradient and divergence functions were tested using the analytic function

F(z, r) described in section 4.1.2. Variables in F were nz = nr = 5, with cr = cz = .5,

Ir ~ 13.6, and lz ~ 27.9. The grid used is shown in Figure 4-1.

Gradient

To test the gradient function, -E = VF was computed numerically and compared to

the analytic solution. Errors in the negative gradient are shown in Figure 4-4. Errors

were normalized by the maximum magnitudes of the analytic Ez and Er, e.g. AEz =

(Ez,o - Ez)/max(E,o) where Ez,o = -VzF is the analytic function. Most errors are in $

are small, but some as large as 10 or 20 percent are found on the boundaries.

Divergence

To test the divergence function, V - VF was computed numerically (starting from the

analytic VF) and compared to the analytic solution. Errors are again normalized by the

analytic expression and plotted in Figure 4-4. Errors in divergence are less than 1 percent

over much of the domain, rising to 2-4 percent in some areas near the right hand boundary.
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Discussion

The most obvious source of error is grid spacing; The grid captures Ez better than Er

because 6z S 6r, but 1  ~ 21r. Another source of error is finite differencing on the non-

Cartesian grid; the Cartesian portion of the grid (to the left of the anode exit) reproduces

the function better than the non-Cartesian portion. Another source of error is forward and

backward differencing at the boundaries.

(2D) 29 Aug 2000 ELECTRIC (2D)| 29 Aug 2000 ELECTRIC

Level dE,
Level dE, 11 0120513
11 0218842 10 0.0886269

25 - 10 01738 25 - 9 0.0567405

9 0128404 90%5 8 0.0248541
8 008 31853 7 0

7 (003 79664 65~ -~ -I8 0.0070323
20 6 0 2,- .20 5 -0038918,-

5 -000725244 4 -00708051

4 -00524713 3 -0.102691.- -

3 0076902 6 2 -0.134578 -

2 -0.142909 5 6 1 -0.166464

15 1 -0.188128 1 -

6-- --- 5 
2  

---.- _----
7  8

10 - 10 5

5 -5 -6
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0 10 20 0 10 20
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0
0

Figure 4-4: Gradient and divergence tests on an 87 x 49 grid. Upper left: Difference in Ez:

(Ez,o - Ez)/max(Ez). Error is less than 1 percent over most of domain, jumps to ~ 20

percent at the right hand boundary. Upper right: Difference in Er. Error of - 5 percent is

common. Lower left: Error in divergence of analytically obtained VF. Most errors are less

than 2 percent. Axes are in normalized units assuming rh = .13 mg/s.
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4.1.4 Leapfrog Method

The leapfrog algorithm was tested as it was developed. To summarize results presented

in Chapter 3, the algorithm was tested by tracking single particles with electric field only,

magnetic field only, and a combination of the two. Cyclotron motion and ExB drift were

successfully observed to high levels of accuracy.

Gyro Motion

The magnetic part of the Lorentz Equation is a rotation of the velocity vector about a

magnetic field line. The accuracy of the particle pusher was tested by taking the magnetic

field to be entirely along the different axes. In one such test, the B-field was in one test taken

be entirely in the 0 direction. One electron was placed in the center of the domain, given

an initial velocity ' = vz = 1.0, and stepped forward time-steps. The resulting position

trace was plotted in Matlab, and a fast Fourier transform performed to confirm the result.

Figure 4-5 shows that the particle cycles back on itself 6 times without appreciable error.

E x B Drift

A different test verifies guiding center ExB drift, VEXB = E x B/B 2 , Starting with the

conditions E = E, = 3.0, and B = Btheta = 5.0, an electron was placed in the center of the

domain with zero initial velocity and stepped forward in time as before. The expected drift

velocity of 'ExB = 0.61z was successfully reproduced (Figure 4-6).

QS

6

Electron in field of B=1 df=.25

Figure 4-5: Cyclotron motion of a single
c =

6000

5000

4000
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fit of kinetic energy (150 steps)
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1000 -. .. . . .

f0O fO- fo- 10D
frequency(cycles/timestep)

electron. In normalized units, Wce = B and
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Figure 4-6: ExB drift of a single electron.

4.1.5 Divergence of Magnetic Field (V - B)

The magnetic field solution provided by Dexter Magnetics was tested to ensure that V B =

0 everywhere. The previously validated function was used. Figure 4-7 shows V - B in

normalized units in the region next to the center pole. Clearly, V - E # 0 at the corner.

However, V -B 0 at interior points. The source of error is unknown. It seems too large to

have arisen in the divergence function, or in interpolation from the Cartesian grid on which

the field was provided. However, the field is several thousand Gauss near the corner. The

error may be a result of poor resolution.

In fact, the field shown has been modified slightly to reduce the divergence. Before

modification the divergence was 60 and -30 at the nodes just to the left and right of the

corner. To reduce this, the field at the corner was made the average of the field at the four

surrounding nodes. A similar modification was made to the field at the upper boundary.

A more accurate B field is desirable, as the divergence of B drives magnetic bottling.

However, since V - B 0 at all interior nodes, the field is judged to be adequate for this

simulation. Component level tests showing magnetic bottling and conservation of magnetic

moment validate this judgment.
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Figure 4-7: Divergence of the magnetic field (80 x 50 grid) after modifying B at corner node.

Units are normalized. Also shown are magnetic streamlines, the spacing of which has not

special significance.

4.2 Component Level Tests

Component level tests involve large pieces of code and, more broadly, basic plasma concepts.

Typically, one aspect of the model is examined while another is idealized. Tests are required

to show that magnetic moment is conserved by particles, that mass is conserved in the

simulation, that plasma oscillations can be reproduced, that numerical heating is tolerable,

and that the diffusive Coulomb collision algorithm drives electrons toward a Maxwellian.

4.2.1 Magnetic Bottling

To zeroeth order along a given streamline, the magnetic Dipole moment, p_1L _ 7 is2 B

conserved. In the absence of outside forces such as due to an electric field or collisions, the

kinetic energy of this particle,

12 12
KE = 2mu_ + 2mu11, (4.9)

must also be conserved. Thus, for a charged particle of given kinetic energy, there is, along

any magnetic streamline, a critical value of B beyond which the charged particle is trapped,

or "bottled." At this B, all of the particle's kinetic energy must be in the _L direction in
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order to conserve p. At the critical value, u = 0 and the particle must either stop it's

motion in the || direction, or turn around and return to an area of low B. To the next

order, a particle bouncing in a mirror field undergoes jumps in p which may be regarded as

the result of resonances of high harmonics of the bounce motion and the gyro motion [54].

If B is constructed correctly, magnetic bottling is produced naturally, through applica-

tion of the Lorentz Force, dV/dt = e/m(E + v x $). Consider the case where E=0 and an

electron has some initial velocity in three dimensions. Let the direction of the field at the

guiding center be the Z direction, B = Bz, such that the particle gyrates about B in the

RO plane. If the magnetic field is uniform (B constant), no magnetic bottling should occur.

If the magnetic field varies, 8B/Oz / 0, bottling should occur. But it won't the way the

magnetic field has been specified; we must have zero divergence. In cylindrical coordinates:

1 8 BB
a(rB) + z =0 (4.10)

r or 09z

Because OBz/z # 0, there must exist some B, or B0. The assumption that Br = Bo = 0

is invalid physically! It is these other components of magnetic field which result in bottling.

To show that this occurs, an electron was tracked in the bulk of the plasma, setting

E = 0 and # C (some constant). The resulting trace is shown in Figures 4-8. Bottling

is observed and magnetic moment is conserved, justifying use of the given magnetic field in

the simulation. Other tests showing this "magnetic mirror" effect are described in Section

3.14.

4.2.2 Conservation of Mass

To test mass conservation, neutrals of size s, = 25 are injected at the base of the anode

and allowed to expand to the free space boundary at At = 30. Neutrals which pass through

the free space boundary are logged, along with their momentum. The neutral mass flow

rate and thrust are then plotted verses time. Figure 4-9 shows that, for M/m = 96 and

y = 10, the number of super-particles tops out after between 30-40K nominal plasma

times, and that mass is conserved. Significantly, the neutral mass flow through the free

space boundary is only about 80 percent of the final expected flow after 15K nominal

plasma times, which would take 150,000 iterations to simulate using the typical time-step

of wpeAt = .1. In Section 2.7, we said that a "typical" neutral would cross the simulation
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Figure 4-8: Magnetic bottling of a single electron. Upper Left: Trace of an electron in

the near anode region with # = C. Particle begins at (*), ends at square. Upper Right:

Magnetic field strength seen by the electron. Lower left: Kinetic and potential energy of

the electron. Energy is conserved almost perfectly (sum of kinetic and potential is on top

of the upper boundary; it is invisible in the plot). Lower Right: Magnetic moment of the

electron, showing conservation. Line of symmetry is observed at time ~ 17 - 18. Units are

in nominal AD and wp for the chosen mass flow rate.
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region in T = 83,000 iterations at M/m = 96, -y 10, and wpeAt = .1. That result was,

in some sense, over-idealized. Even at M/m = 96, the simulation must progress for several

hundred thousand time-steps to achieve a completely converged result!
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8 - - - - -

6 - - - -

4 - - - - - -

2- -

10

0.15

0.1

0-.05 - - - - - -

E0 L

050

0.1

neutral super-particles

20 30
Mass Flow Rate

40 ... . 50
40 50 60

Thrust

E 0-05 - - - ---

0
10 20 30 40 50 60

time x 1000

Figure 4-9: Mass conservation in neutral flow. Neutrals are injected at the base of the
anode at T = .1 eV, rh = .13 mg/s and allowed to expand freely toward the free space
boundary. For this plot, M/m e 96 and y = 10. The top plot shows the total number of
neutral super-particles of size 25 entering the system, the middle plot shows the mass flow
rate of neutrals exiting the system, and the lower plot shows the momentum flux in the z
direction exiting the system, i.e. the thrust. It takes ~ 30K nominal plasma times for the
neutral mass flows entering and exiting the system to equalize.

To accelerate the convergence, we start out with the free stream solution and then cull

the neutral population according to nn/nn,o = exp(ln(1 - T.)), where nn,o is the free

stream density (See Figure 4-10), q, is the propellant utilization, and L is a scale length.

In practice, L = .65mm is a good choice.

4.2.3 Boundary Reflection

As the particle pusher was being constructed, it was tested for momentum conservation,

angular momentum conservation, and energy conservation. To minimize wall effects, the

exact boundary intersection point and time was calculated as discussed in Section 3.18, and

boundary reflection was assumed to be specular (perfectly reflecting). When exact boundary

conditions were not implemented, angular momentum and energy were not conserved.
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Figure 4-10: A contour plot of neutral density, nn,O after free expansion for 33K nominal
plasma times (1100 iterations at Ai = 30). Axes are in cm, while density is per cubic
centimeter. Grid is 89 x 49. Values are cell average. Axes are in centimeters.
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In the final version of the simulation, most boundary reflection is diffuse such that

energy and angular momentum are not conserved anyway. But intersection points are still

calculated exactly in order to minimize any artificial electron transport along the wall.

4.2.4 Plasma Oscillations

The simulation solves Poisson's equation to find the electric field. Hence, oscillations at the

plasma frequency should be visible. A component level test was performed to verify this.

First, a plasma distribution was created such that pe(z, r) was exactly zero. Seventy

five thousand zero energy electrons were distributed throughout the simulation region using

the rejection method to achieve a nearly uniform density. A zero energy ion was created on

top of each electron such that the charge at each node summed to exactly zero.

Next, the simulation was perturbed by displacing all the electrons in a certain cell by

A = .5 such that the simulation had potential energy, but no kinetic energy.

Then, the electrons were time-stepped forward. Electric potential and field were re-

calculated each time-step. For this test, ions were assumed to have infinite mass (they

were not allowed to move), and electrons were specularly reflected off all boundaries. After

each time-step, the kinetic and electric (potential) energy densities were calculated. These

should oscillate at twice the plasma frequency. The expected oscillation period, T, is easily

computed from Wpe = 2 'vpe =fn( f;;,). The period for a complete cycle is Tpe = 27/Wpe=

27r[t]. The period we should observe in energy is one half this, r = ir[t]. Of course, if the

density is not nominal, the frequency will be different.

In MKS units, the energy of an electric field per unit volume is given by the formula

e = }eoE 2 (J/m 3 ). In CGS units, the formula reads E = E 2 (erg/cm3 ). Numerically, we

calculate the total energy of the field (the potential energy) according to

2 Nz-1 Nr-l

E.F. = EdV = 8 S (E ± Ez + Vkj [E|21 3 (ergs) (4.11)

where Nz and Nr are the number of nodes in the ( and r1 directions, and [E] and [x] relate

normalized units to CGS units. Note that the artificial permittivity, E, = (c x Y2 must be

taken into account. To convert to electron volts, we divide by 1.6 x 10-12. The kinetic
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energy, K.E., is just
N

K.E. = ( 2 [T] eV.
2=

(4.12)

The kinetic and potential energies are plotted in Figure 4-11. The electron density in this

case was approximately 1 x 1012 per cubic centimeter, a factor of 6.7 less than the "nominal"

density. Thus we should see oscillations with period T ~ ir/6.7 = 8.1. This is observed,

validatin;
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Figure 4-11: Plasma Oscillations observed starting with a cold plasma.

4.2.5 Heating Time

Some non-physical, stochastic heating of the plasma is expected to occur. Such heating is

present in all computer models, to some extent, and cannot be entirely eliminated. It arises

from arithmetic rounding, the size of the time-step, the finite-differencing of the equations,

and the use of super-particles. Hockney and others have quantified this heating for "Cloud-

In-Cell" systems such as ours [19]. (Note: The term "Cloud-In-Cell" (CIC) refers to the

method by which charge is assigned to the mesh. NGP is another possible method.)

Non-physical heating may be observed by creating an initial thermal distribution with
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Ne = Ni, closing the boundaries such that no particles can escape, and letting the plasma

oscillate. This is merely an extension of the oscillation test previously described. If the

simulation is allowed to continue for a long period of time, the energy of the plasma is

observed to rise steadily, even if all boundary reflection is specular.

For a system with approximately 100 thousand particles of each species, particle flow

through the system (a different case), and no energy sinks, we observed heating on the order

of that described in Hockney for CIC systems; The electron temperature doubles every five

to ten thousand iterations.

Sources of heating may be varied, but they are clearly related to the potential solver.

With the potential solver turned off and boundary conditions specular, the simulation con-

serves energy almost perfectly. Some other observations follow:

" Time-step matters. Therefore, the optimum time-step criterion developed by Hockney

and described in Chapter 3 was used [19].

" Transient charge imbalances may be a factor. The mean charge summed over all the

nodes was observed to fluctuate from positive to negative and back, although the

mean was of magnitude 10-13, which is nearly zero to machine precision.

" Tests on Cartesian and non-Cartesian grids showed similar heating rates.

* Increasing particle count (from 100K to 200K) did not seem to affect the energy rise.

" Boundary conditions were most significant. Constant potential boundaries reduced

the heating by approximately one half. In contrast, using second order derivatives

for electric field and grid constants at the boundaries actually tended to increase the

heating.

" Interpolation method was relevant. Different methods of interpolation resulted in

slightly different heating rates.

To test the sensitivity of the heating rate to the interpolation scheme, a volume based

scheme as described by Oh [33] was implemented on an orthogonal grid. Only slightly less

heating resulted. When a Te = 15eV plasma was simulated on a 25x25 grid (with irregular

spacing in the r direction to increase statistics near the axis) along with a common set of

boundary conditions and 200K particles, the volume weighting was observed to result in
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an average electron energy of Te = 16.28 after 500 iterations (at a time-step of 0.2) vs.

Te = 16.30 with "normal" weighting. Using a purely Cartesian grid with normal weighting

also resulted in Te = 16.30. For these three simulations, p = 0 was assumed along the upper

and left hand boundaries, while E, = 0 was assumed along the right hand and centerline

boundaries.

Over time, numerical heating can become a problem. But how long are electrons actually

in the system before they are destroyed? Let us assume that the mean lifetime of the

electrons is similar to the mean lifetime of the ions, which, in turn, depends on the mass

ratio and the time-step chosen. In Chapter 2 (Section 2.7) we found that the transit time

for a typical ion to pass from the anode to the free space boundary with M/m = 960 and

Y = 10 was about 71 = 6,600 iterations. This assumed wpeAt = .1. Let us assume the mean

lifetime of an electron is Ti. This is time enough for the electron temperature to double.

We also found that the transit time between the anode and the point where the channel

diverges was about T2 = 1700 iterations. This is the region where the electron temperature

begins to rise. The transit time for the discharge itself was just r3 = 660 iterations.

Since the electron temperature over most of the simulation region is only a few eV, the

electron lifetimes are such that heating should not be a problem which threatens numerical

divergence in any way. Even without energy sinks (ionization, excitation, recombination),

the temperature rise should be limited to a few eV. Still, numerical heating creates uncer-

tainty in the results. Specifically, stochastic errors would tend to make the electron energy

distribution not only more thermally energetic, but also more isotropic and Maxwellian.

More advanced grid weighting schemes have been shown to decrease numerical heating

by orders of magnitude [19]. In Chapter 6, we recommend that such weighting be considered

if the code is developed further.

4.2.6 Diffusive Coulomb Collision Algorithm

The diffusive Coulomb collision algorithm was tested by moving a single electron many

times subject to the random forces determined by a pre-defined background density and

temperature. Over time, the distribution of particle energies became nearly Maxwellian at

T. This test was described in Chapter 2. The effects of adding diffusive Coulomb collisions

to the simulation are discussed in Chapter 5.
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4.3 System Level Tests

System level tests involve the complete simulation. Typically, these tests are parametric

and address several concepts at once. Results must be consistent above all. Tests in this

category involve electron injection, wall capacitance, electric potential boundary conditions,

particle count, artificial mass ratio, and artificial permittivity.

4.3.1 Performance Plots

Many thruster performance variables are computed and saved at each time-step to a file

called "perf.dat" (perf stands for performance). In order of appearance, these variables are:

" Iteration.

" Number of electron super-particles.

" Number of ion super-particles.

" Number of neutral super-particles.

" Simulation time (normalized units).

" Electron/Ion time-step (seconds).

" Cathode electron current, I-- = - + ICI.u. (Amps).

* Net anode current, Ia = Ia + a- (Amps).

" Ion beam current, I (Amps).

* Ionization current, Ii (Amps).

* Ion thrust (mN).

" Neutral thrust, T (mN).

* Thi at free space boundary (mg/sec).

* Thi, at free space boundary (mg/sec).

* Specific impulse, I, = T/rhg (seconds), based on nominal mass flow rate.

* Wall potential, <,, (Volts).

" Average electron kinetic energy x 2/3, (eV).

" Average ion kinetic energy x2/3, (eV).

" Energy loss to the center pole, (eV).

* Neutral density at control point, n, (cm 3 ).
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" Ion density at control point, ni (cm- 3).

" Total neutral mass in system (mg).

" Total ion mass in system (mg).

" Electron density at control point, ne (cm 3 ).

These variables are plotted and used to validate the simulation. All variables are time

averaged using a sample size of 100 to eliminate noise and make plots more readable. This

reduces the original number of data-points by a factor of 100. The time averaged data set

is created by a separate program called "process.c", which saves the reduced data set into

a separate file, e.g. "perf.dat" - "perfb.dat". The variables are plotted in an (almost)

standard format. In most plots, the specific impulse is based on the thrust at time t and

the nominal mass flow rate, e.g. .1 mg/sec. In some figures (e.g. Figure 4-22), the specific

impulse based on the instantaneous flow rate is also shown.

When the simulation is run, the time-step is usually constant when y = 10, but usually

varies from time-step to time-step when y = 5 as a result of minimum heating criteria

discussed in Chapter 3.

4.3.2 Electron Injection, Wall Capacitance, and Free Space Potential

Electrons are destroyed and injected (re-introduced) into the simulation at each iteration

along the free space boundary. Two methods for injecting electrons were developed. The

first method assumed that the cathode and discharge currents were identical at each and

every time-step. The second method forced the plasma to be quasineutral near the boundary

by injecting (or withholding) however many electrons were needed. These two methods

were tested parametrically. They were judged on criteria related to the capacitance and

floating potential of the acceleration channel walls and thruster body. These tests were

conducted with a simulation containing electron-neutral elastic scattering, exciting, and

ionizing collisions, ion-neutral scattering and charge exchange collisions, and MCC Coulomb

collisions.

Parametric Test Criteria for Electron Injection: A "Gedanken" Experiment

In conventional TAL thrusters, the walls of the acceleration channel are often held at cathode

ground. In the mini-TAL, however, the walls and body of the thruster are nominally
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floating at a common potential. To signify this, the mini-TAL body is shown connected to

a capacitor in the space vehicle circuit diagram (Figure 2-2). The capacitance of the thruster

body modeled as an isolated body in free space was estimated to be about 1.6 x 10- 1 2 F.

The capacitance of a thruster attached to a spacecraft will, of course, be different. The

following questions must be answered:

" What capacitance should be assumed in the numerical model?

" How may the capacitance change numerical results?

To help answer these questions, we perform a thought experiment.

First, let the walls of the thruster have infinite capacitance, C -+ 00. In this case, the

wall potential will never change, no matter how much charge the wall absorbs. Now, let C

be much larger than the physical value, but less than infinity. In this case, electron and ion

fluxes to the walls determine the floating potential, #0, which should oscillate very little

about the mean value, < #,q >. This mean value may be estimated through the simple

sheath theory described in section 4.3.3 . Finally, let C decrease toward the physical value.

As the wall and plasma equilibrate, oscillations in #,w appear, but < #2 > should stay the

same; sheath theory says < #, > is not a function of plasma density. As long as oscillations

are much smaller than the overall potential drop, performance should not change much, if

at all. The thought experiment thus yields two criteria for testing boundary conditions.

First, < #, > should not vary with C. Second, performance should not change much (if at

all) with C.

Steady State Injection

Results inconsistent with the thought experiment result from using the steady state current

condition (Ic = Id) to inject electrons at the free space boundary. Capacitance is found to

strongly influence < #2 > and overall thruster performance.

The different conditions tested are summarized in Table 4.1. The first test listed assumed

mass ratio Mn/me - 24, the free space permittivity factor y = 10, and wall capacitance

C = 1.6 x 10-12 * 10. The electric potential boundary condition # = 0 was imposed at the

right hand free space boundary. This test resulted in a wall potential of < #w >= 60V.

Performance estimates for this case are shown in Figure 4-13. The next two tests varied the

mass ratio, but held C constant. The floating potential changed, but in a pattern largely
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Topic M/m #r, C < #, > Figure
Mass Ratio 24 # =0 1.6 x 10- 1 1 F 60 V 4-13
Mass Ratio 96 # = 0 1.6 x 10-"F 47 V 4-13
Mass Ratio 960 # = 0 1.6 x 10-"F 37 V -
Capacitance 24 # = 0 1.6 x 10- 10 F 18 V -

Table 4.1: Overview of tests used to invalidate steady state method of electron injection.
Nominal physical capacitance of thruster body in free space is 1.6 x 10 1 2 F.

consistent with sheath theory (see discussion in Section 4.3.3). The last test reverted to

Mn/me ~ 24, but assumed C = 1.6 x 10-12 * 100. This resulted in a wall potential

of < #w >~~ 18V. This is not consistent with the Gedanken experiment. Furthermore,

various measures of performance changed by ten percent or more. These results are also

inconsistent.

What happened? The "steady state" method for injecting electrons along the free space

boundary is flawed. Unless the steady state particle count is known ahead of time (e.g.

50K ions, 60K electrons) the system is charge unbalanced. Typically, the simulation is

starved for electrons, which is reflected in the high potential of the floating thruster body.

Examination of particle moments provides further confirmation; the plasma is not always

quasineutral near the free space boundary.

Note: Performance results obtained for the steady state and quasineutral cathode

boundary conditions (presented in the next subsection) are not exactly comparable due

to some small, miscellaneous enhancements to the code only implemented for the latter.

Quasineutral Injection

Results far more consistent with the thought experiment are obtained when cathode elec-

trons are injected at the rate required to maintain quasineutrality along the free space

boundary. This is the "quasineutral" electron injection method discussed in Chapters 2

and 3.

The tests performed to validate the quasineutral electron injection method are summa-

rized in Table 4.2. To begin, the simulation was run with capacitance C = 1 x 10 1 0 F, again

letting Mn/me ~~ 24 and y = 10 (Figure 4-17). As before, the electric potential at the right

hand boundary was frozen at zero, and the potential drop between the constant potential

wall at #, and the upper right hand corner at 4 = 0 V was linear (this is the top free space
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Electron Injection 24 # =0 1 x 10-l F .5 V 4-17
Boundary Conditions 24 = 0 1 x 10- 10 F .5 V 4-18
Capacitance 24 Ez = 0 1 x 10 1 0 F 2 V 4-19
Capacitance 24 Ez = 0 2 x 10- 1 1 F 2 V 4-20

Table 4.2: Overview of capacitance and boundary condition tests performed to validate the
quasineutral method of electron injection. Nominal physical capacitance of thruster body
in free space is 1.6 x 10 1 2 F. The first test assumed a linear drop in potential from the wall
at the upper right hand boundary. All other tests used a sheath equation to determine the
potential at this boundary. The second, third, and fourth tests all began from the dataset
generated by the first set.

electric potential boundary condition). Thus, the set of conditions imposed was in every

sense identical to the set previously imposed, except that the capacitance was different

and cathode electrons were injected differently. But the results from this one change were

striking: Figure 4-17 shows that wall potential dropped to - 0 and performance shifted

dramatically.

The next three tests listed in Table 4.2 are variations on the first test. All three began

with the particle distribution saved at the end of the first test, but all three calculated the

upper right hand boundary potential according to the equation for a sheath, assuming that

#= 0 at the upper right corner. The first of these tests assumed C = 1 x 10-10F with # = 0

at the right hand side. The result, shown in Figure 4-18, is performance almost identical to

that that already shown in Figure 4-17. The electric potential boundary conditions along

the upper free space boundary do not seem to be important to the overall solution. The

next test assumed C = 1 x 10 1 0 F with Ez = 0 at the right hand side (Figure 4-19). The

wall potential changed by couple eV, but performance was almost the same. This verifies

that we can use the boundary condition Ez = 0. The final test assumed C = 2 x 10 1 1 F

with Ez = 0 at the right hand side (Figure 4-20). This test shows the effects of changing

the capacitance. Four observations follow from a comparison of Figures 4-19 and 4-20.

* The magnitude of oscillations in #,, is ~ 5 times greater in Figure 4-20 than in Figure

4-19. This is the same factor by which capacitance changed.

" The frequency of oscillations in #,, is one and a half to two times greater in Figure

4-20 than in Figure 4-19.
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9 < #, > differs by less than a Volt.

* Thruster performance differs by only a few percent.

The first result means that the number of particles absorbed by the wall per cycle is nearly

the same, no matter the capacitance. This suggests that the magnitude of fluctuations in

plasma density is not a strong function of the wall potential; the fluctuations originate in

the plasma itself. The second result indicates a feedback mechanism with the discharge.

The third result (< #,, > is unchanged) is expected from the thought experiment. The

fourth result, also consistent with the thought experiment, confirms that wall oscillations

on this scale are not a strong determinant of thruster performance.

Results

Based on the tests described above, the quasineutral method of electron injection and the

electric potential condition E2 = 0 at the right hand free space boundary were base-lined.

The latter condition was modified slightly after these tests were performed; the simulation

was found to diverge under certain transient conditions. The requirement # ; 0 at the right

hand free space boundary was found to eliminate the problem.

4.3.3 Validation Tests with Ic = Ia

The steady state method of electron injection was developed first. It was later invali-

dated, but not before many parametric tests were performed. Not all of these tests must

be discarded. Many yield useful information. These tests are described in the following

subsections.

Mass Ratio

The mass of a Xenon neutral is 2.18 x 10-22 gm, while the mass of an electron is 9.11 x 10~28

gm. Thus, the physical mass ratio M/me ~~ 239, 000. To accelerate convergence, we changed

the mass ratio by a factor MIM' = 1/f. This means that heavy particles move v'/vn =

VM/M' = V/ f faster than they should.

To preserve ion and neutral mean free paths, the mass flow rate was scaled by m'/rh =

V/f, cross sections were increased by Q'/Q = v/11f, and output was rescaled. If the
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simulation is at all linear, the original physical solution should be recovered. This as-

sumption can be tested parametrically. If we can show that the solutions obtained from

1/f = 10,000 and 1/f = 2500 are the same, then, by induction, the solutions for 1/f

10000, 2500,625, 100, ...1 should all be the same, or similar.

The first option is to change the mass ratio, begin at t = 0, run the simulation until

it is converged, and then compare it to a previously converged solution which assumed a

different mass ratio. However, for this previously converged solution, we already have a

time history and a complete list of particles and their current positions. This enables a

quicker method: If we change the mass ratio, re-load all the particles, and then re-scale

the mass flow rate and all of the heavy particle velocities according to the new mass ratio,

then the particle densities should stay the same and the solution should continue smoothly,

producing very similar particle moments. This amounts to re-scaling the simulation "on

the fly." It enables us to change the mass ratio at will.

Neutral Test of Mass Ratio

Figure 4-12 demonstrates re-scaling on the fly for neutrals. Here we modeled the neutral flow

with two different mass ratios. The simulation was run for 1000 iterations at At = 30 with

M/M' = 10,000 and the results were saved. The mass ratio was then reset to Mn/M,' =

2500, the particles were re-loaded, velocities were re-scaled by v'/v = 2500/10000 = .5

and the simulation was run for another 2000 iterations. (All this is automated; all we do

is change the mass ratio in the header file). Results were re-scaled before saving. The

transition appears smooth. Comparison with Figure 4-9 shows that the neutral flow at

Mn/M' = 10000 converges in half as many iterations as it does at Mn/M, = 2500.

MIM' M'/m = f v'/vn = V1/f Q'/Q
1 239,000 1 1
250 960 16 16
2500 96 50 50
10,000 24 100 100

Table 4.3: Artificial mass ratios used in the numerical simulation. M is the physical neu-

tral mass. M' is the numerical neutral mass. The ratios M'/m, vn'/vn, and Q'/Q are

approximate. The last ratio is applied to preserve mean free paths.
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Figure 4-12: Neutral flow with changing mass ratio. Transition from Mn/M = 10000 to
M,/Mn' = 2500 occurs at t = 30,000. Upper left: The normalized density at an interior

point (sum of super-particles*size where size=25). Upper right: Mass flow through free

space boundary. Lower left: Thrust from neutrals only. Lower right: Total mass in system.

Time is in nominal plasma times with [Te] = 50, rh = .13 mg/s, -y = 100.
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Plasma Test of Mass Ratio

Using an artificial mass ratio with a plasma is more difficult. The following points are

important:

" It is best to keep Q'/Q as small as possible. If the plasma becomes too collisional,

the electron flux across the field lines is no longer proportional to yen.

* The ion flux into the wall changes with M/M,, affecting the wall potential.

* The period of heavy particle ionization (predator prey) oscillations changes with

Mn / Mn

Let us compare two solutions at rh = .lmg/s, setting our nominal temperature to [Te] =

50eV and the wall capacitance to C = 1.6 x 10-11 F. The anode potential is set to 300V.

Charge exchange, excitation, ionization, and Monte Carlo Coulomb collisions are included.

For both solutions, we assume a free space permittivity factor of y = 10. The grid is similar

to that shown in Figure 4-1.

First we expand the neutrals for 2000 time-steps at Mn/Mn = 10, 000 and 6t = 30. Next,

we introduce the background plasma (still at Mn/Mn' = 10,000) and run to a "converged"

solution. This run is shown in Figure 4-13. At first, the wall potential fluctuates by tens

of electron volts, but it then settles down to about 60 eV. After i = 13440.3 (171,696

iterations), the simulation was stopped at declared converged. However, the figure shows

that a semi-converged solution was actually reached by i = 3000. After that point, the

neutral flow evened out, but performance parameters only changed a little. Many neutrals

of statistics weight s = 1 were produced at the beginning of the run as ions impacted

the floating walls, and it takes time for these to work their way out of the system. But

these small neutrals do not seem to effect performance very much. Next, we switch to

M,/M,, = 2500, restart the simulation at t = 13440.3, and allow the simulation to once

again converge. After some fluctuations, performance predictions again even out. The new

performance is also shown in Figure 4-13. The frequency of long period oscillations drops

by a factor of 2, which means that v ~ 1/ M~. (This is consistent with the expected

frequency for "predator prey" oscillations, 27ri = kVvjvi). The wall potential drops by

15eV, which is largely consistent with sheath theory. This potential drop will be discussed

more in the next section.
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of 10 to limit oscillations. Steady state electron injection used.
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Theoretical Wall Potential and Mass Ratio

The wall potential may be estimated using conventional sheath theory. A sheath is expected

to form around a floating conductor placed in the middle of a uniform plasma. The con-

ductor as a whole should acquire a negative net charge, and hence have a negative surface

potential with respect to the ambient plasma potential. This potential is derived below.

Let #, be the plasma potential at the edge of the sheath, #,, be the potential at the

wall, and A# = # - #, be the potential difference somewhere in between. Let n, be the

quasineutral plasma density at the sheath edge. If the electrons are Maxwellian, then the

electron density between the sheath edge and the wall is determined by the Boltzmann

relation,

n(x) = neeA/ (4.13)

Let ions enter the sheath region at Ti = 0 but with some bulk velocity vi,0 . They gain

energy from the potential difference according to

2eA#$
vi(x)2 =v + . (4.14)

By continuity, F. = nsvi,o = ni(x)vi(x). Poisson's equation inside the sheath is therefore

written

_o = e(ne - ni) = en_[eeA#/KT _ (1 _ 2eAo -1/2]. (4.15)0dx2 MVeZe - m

This is the well known nonlinear equation of a plane sheath, which has an admissible solution

only if M 2 > 1, where M = vi,o/V is the mach number of the ions entering the sheath

region. This means that ions must enter the sheath region with a velocity greater than or

equal to the acoustic speed, Va = V/KTe/M [6]. In turn, this requires a pre-sheath of some

sort.

The thickness of the sheath can be estimated. The sheath (not including the pre-sheath)

is on the scale of AD. There is also a region essentially free of electrons next to the wall.

The thickness of this region may be estimated with the Child-Langmuir Law [6].

Now, let n, be the ion density where M = 1. Furthermore, assume quasineutrality in

the pre-sheath (ne ~ ni). Continuity says the ion flux F(x) is constant inside the sheath.
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Thus, the ion flux into the wall is the flux into the sheath;

Fi = nsVa = ns KT/Mi. (4.16)

Assuming the electrons are Maxwellian, the electron flux at the wall is

] se eAIT(4.17)
4

where Ce = V8KT/rme. Here, A# = #. - #., where #, is the plasma potential at the

sheath edge and #,, is the floating wall potential. In a steady state, the electron flux to the

wall Fe = Fi. Thus we may write

A# = #- = In 27rme/M. (4.18)
e

If the ambient potential #5 = 0, then #5 < 0, as expected.

In this classical formulation, Fi is a function only of the electron temperature. If the

plasma temperature remains constant, then Fi (and consequently Fe) should change only

in proportion to \/1/Ma. Since Fi is not a function of #,, ion flux to the wall should occur

at the correct physical rate regardless of the wall potential. The wall potential #" will

change to ensure Pi = re, but this should not greatly affect the plasma properties beyond

the sheath, except that sheath thickness does increase as AD(eA e/kTe)3/ 4 , as follows from

Child-Langmuir.

The theoretical value of #$ as a function of mass ratio M/m is plotted in Figure 4-14

for T = 10eV with #, = ,a = 80eV, which are values obtained by fitting the curve to

the numerical data points. (These values are consistent with a visual inspection of particle

moments near the point of nozzle divergence.) The potential increases as the ratio M/m

decreases. The slope is a function of the electron temperature. The function moves left or

right depending on the ambient potential, but nowhere exceeds the ambient potential. Also

plotted in Figure 4-14 are data points from the simulation for various mass ratios, where

the steady state electron injection method was used. Following the curve to the real mass

ratio, a wall potential of about 10 Volts is predicted.
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Numerical Wall Potential and Mass Ratio

The theoretical solution does not fit the numerically observed data points exactly. As

neutral mass is decreased, the wall potential should increase. This is observed, but not

at the rate expected if ambient plasma properties are constant. Examination of particle

moments shows that the plasma density changes, but even so, the wall potential is not

supposed to be a function of the density. What is going on?

One cause seems obvious: The steady state electron injection method is invalid. The

simulation region is starved for electrons. This explains why the ambient potential to fit

the curve is 80 V when the free space boundary so close to parts of the floating wall is at

0 V.

Of course, some variation from theory is expected, even with correct boundary condi-

tions. The thruster is not a flat plate.

A more subtle error source may be the artificial permittivity. The preceding theory

assumes that sheaths are small. They form as a result of the processes inside the plasma,

but they interact with the primary discharge only on the periphery. However, the free space

permittivity was altered to speed up the simulation. Increasing C, by -Y2 increases sheath

thicknesses by a factor of -y = ' With -y = 10, the sheath at the wall (which is

several AD) begins extending into the plume. The magnitude of the potential drop across

the sheath may too strongly influence the discharge. This effect can be quantified somewhat

through parametric tests of the artificial permittivity.

Particle Count

The statistical accuracy of the simulation is expected to increase according to the square root

of particle count per cell. Ideally, we want thousands of super-particles per cell, resulting

in millions of super-particles total. This is numerically infeasible; to produce results in a

matter of a few days, we can run the simulation with just 20 thousand particles and time

average the results to produce smooth curves. Such results have just been presented. But

do we have enough super-particles to trust the results? To find out, we doubled the number

of super-particles and compared the results.

Figure 4-15 shows that time averaged performance does not change much, if at all, when

particle count is doubled. This figure may be compared with the left portions of Figure 4-13.
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The time averaged wall potential appears to decrease by a little over a volt (# ~ 58.4). The

noise in the simulation is reduced, which means that some of the high frequency fluctuations

we see are just numerical.

Permittivity

Since the steady state method of electron injection fails to satisfy the criteria outlined in the

previously described thought experiment, little value is gained from testing the permittivity

assumption under these conditions. The artificial permittivity assumption is instead tested

with the quasineutral method of electron injection.

Summary of "Steady State" Results

Tests obtained using the steady state method of electron injection at the free space boundary

showed that particle counts of ~~ 25K and ~ 50K (with -y = 10) produced similar results.

Furthermore, variation of the wall potential with mass ratio was largely explainable. How-

ever, performance predictions in an absolute sense were invalidated when wall capacitance

was found to have undue influence. The boundary conditions had to be re-formulated.

4.3.4 Validation Tests with Quasineutral Method of Electron Injection

The quasineutral method of cathode electron injection along the free space boundary pro-

duced results more consistent with experiment. Table 4.4 lists some of the parametric

validation tests performed using this method. All of the tests listed assumed Monte Carlo

Coulomb collisions. This assumption will be re-examined in the next Chapter. All solutions

compared in this section assume h = .mg/s, a nominal temperature of [Te] = 50eV and

an anode potential of 300V.

The wall potential for the first, third, and fourth cases in Table 4.4 is plotted against

the theoretical temperature in Figure 4-16. The wall potential plot differs strongly from

that shown in Figure 4-14, which assumed Ic = Id. In the earlier case, the simulation region

was "starved" for electrons, resulting is a wall which floated artificially high. Here, the

wall floats near 0 V and variation is almost logarithmically linear. The curve was fit by

inspection.
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Figure 4-15: Performance predictions for Mn/me = 24 with approximately 50K plasma

particles. Particle size was halved at t ~ 13,000, allowing twice as many plasma particles to

accumulate. Levels shown are 100 time-step averages. Steady state electron injection used.
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flat plate wall potential at phia=6.5, Te =1.8
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collisions, Capacitance and boundary conditions held constant. Numerically observed oper-
ating points are marked individually with a star, a square, and a diamond. The slope and
intercept of the theoretical curve were determined by fitting the line to the numerical data
points (by inspection). Numerical data points are spaced linearly in log space as predicted
by theory.
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Boundary Conditions 24 10 # = 0 1 x 10- 10 F ;.5 V 4-18
Capacitance 24 10 Ez = 0 1 x 10 1 0 F 2 V 4-19
Capacitance 24 10 Ez = 0 2 x 10- 1 1 F 2 V 4-20
Mass Ratio 96 10 Ez =0 1 x 10- 10 F .7 V 4-21
Mass Ratio 960 10 Ez = 0 1 x 10-1 0 F -1.3 V 4-22
Permittivity 96 5 Ez = 0 1 x 10' 0 F 2 V 4-23
Permittivity 960 5 Ez = 0 1 x 10- 0 F X V N/A

Table 4.4: Parametric tests used to validate final version of simulation. Quasineutral bound-
ary conditions are assumed. Changing wall capacitance made vary little difference in wall
potential or overall performance. Effects due to mass ratio and permittivity were more
marked. The last test was not performed due to computational limitations.

Parametric Test of Permittivity

For numerical reason, the free space permittivity constant was increased by a factor of 72

This decreased the plasma frequency by a factor of 1/y and increased the Debye length by

a factor of -y We argued that the performance would not change much. This assumption is

tested parametrically. If we can show that the solutions for c, = 8.854e - 10 F/m (-y = 10)

and c, = 2.21e - 10 F/m (y = 5) are very similar, then, by induction, they should also be

very similar to the solution for E, = 8.854e - 12 F/m, which is the physical permittivity.

The first solution of interest is that already presented for Mn/me ~ 96 with -y = 10

(Figure 4-21). The second solution of interest is that already presented for Mn/me a 960

with -y = 10 (Figure 4-22). The new solution assumes Mn/me ~ 96, but uses -y = 5 (Figure

4-23). To generate this solution, the simulation was started anew assuming neutrals only

and then uniformly seeded with 5000 plasma particles of each species. Because -y = 5,

the nominal plasma frequency and Debye length change by a factor of 2 with respect to

simulations conducted with y = 10. Particle moments show less charge inequality. Even so,

sheaths are still a factor of -y = 5 too large.

A comparison between Figures 4-23 and 4-21 (both M/m = 96) is discouraging. Perfor-

mance seems to change too much. More encouraging is the comparison between Figures 4-23

(M/m = 96, -y = 5) and 4-22 (M/m = 960, y = 10). These are the two most physical cases

simulated. Neither solution is completely converged simply because the simulations are

very slow. However, these figures show similar performance. Thus, there is a convergence

of solutions when the numerical assumptions are made more physical. Furthermore, the

trend is toward Khayms experimental performance measurements. We compare numerical

261

Topic M/m #rhs C Figurely



and experimental measurements more in Chapter 5.

Unfortunately, the more physical solutions are computationally cumbersome. The sim-

ulation which assumes Mu/me = 96 and y = 5 takes over a week to converge! There are

two main reasons for this. The primary reason the y = 5 solution is so slow is that the

grid must be refined to include four times as many mesh points as it contains when -y = 10.

This means the Poisson solver runs four times slower. This also means four times as many

plasma particles are required to maintain the same level of statistics per grid cell. To save

CPU time, only twice as many particles were used in the -y = 5 case. In Section 4.3.3, we

showed that this should not change the predicted performance much. Unfortunately, this

change is not enough to make the simulation converge in less than a week. The secondary

reason the simulation takes so long to converge is time-step. With -y = 10, the time-step

is (usually) driven by the need to resolve gyro motions everywhere. Hence, it is the same

almost every iteration. However, when y = 5, the time-step is often determined by the At

criteria for resolving the plasma frequency and/or minimizing numerical heating. It is on

average shorter, and it usually varies from iteration to iteration. The number of time-steps

required to reach a converged solution increases, by an additional factor of ~ 1.5.

Why does the performance change with y? The simple answer is the particle distribution

in space is different. When y = 10, there is far more charge separation than with 'y = 5.

As long as charge separation is local, then oscillations should average out such that time

averaged densities are the same. But this does not happen near the anode because there is

an applied potential difference, a component of which is along B. If Y = 10, the electrons

tend to bunch up near the anode; the field resulting from charge separation is not enough

to hold the electrons where the ions are. Naturally, the potential gradient across the anode

layer is affected by the charge density. If there are more ions in the middle of the discharge

than electrons, the potential there is higher than it would be if the plasma were neutral.

Ions produced there would be accelerated to greater energies and the performance would

increase. Of course, the full answer is far more complicated.

4.3.5 Charge Imbalance and the Plasma Approximation

In our simulation we solve Poisson's equation, inherently assuming that ne / ni. However,

in a plasma, it is often possible to assume ne = ni ("quasineutrality") and V - E $ 0 at

the same time. This is called the "plasma approximation" and is used in deriving the fluid
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equation of motion [6]. How close to quasineutrality should our simulation come? Let's

look at a 1-D version of Poisson's equation,

-- 0- ne (4.19)
Ox 2 

-O

In 1 dimension,
dEx -ne (4.20)
dx E

and
-ne

Ex - (x - XO). (4.21)
Eo

A simple way to derive the Debye length is to equate the work (the energy) required for a

particle to go a distance x ,

Exedx ne2 d2  (4.22)
0 Eo 2

with the internal energy of the plasma W = 1KT. This is an easy way to derive the Debye

length, d = AD = EOKT/ne2. But now imagine there is an external energy source in the

form of a potential difference A&, and imagine that this potential difference drops off in

a scale length comparable to the Debye length. We see such a situation in the near-anode

region of the mini-TAL when we modify Eo. Let us call the resulting characteristic length the

anode length, Aa. If W = AD, then d = Aa = / 0 2AD/ne2 such that Aa/AD \2A ''Tev-

What this means is that in the presence of a strong externally imposed potential (e.g

A4D > Tev), a significant charge imbalance on the scale of ne can exist in a region of the

scale length Aa. In the near anode region of our thruster, the external potential difference

across a few AD is - 100 V. Thus, we may see a charge imbalance of ~ ene on the scale of

several AD. The gradient d@/dx is determined, in the absence of charge inequalities, by the

external geometry. If we assume Aa is fixed, then the allowed charge density, q = e(ni - ne),

is proportional to Eo.

In our simulation, we sometimes use an e, which is 100 times larger than the physical

value. In this case, the anode supported charge inequality is 100 times too large! Because

Eo is so large, the internal potential differences created by the charge imbalance are not

great enough to produce quasineutrality on a scale comparable to the anode exit. When a

physical to is used, then the anode potential and internal temperature should support much
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smaller charge imbalances. Thus, if -y is small (but > 1), the artificial c, can be viewed

as exaggerating the existing features of the plasma. If -y becomes too large, the particle

moments change too much to give a reasonable picture of the plasma.

4.3.6 Grid Density

The grid should be fine enough to resolve a Debye length. To test this assumption, we

simply analyze the final (or time averaged) moments of the electron (or ion) distribution.

For each cell, we let 6 v/(6z) 2 + (6r) 2, where (Sz) 2 = (Oz/O8) 2 + (3z/Or/) 2 and (6r) 2 =

(Br/ak) 2 + (Br/0r/)2 . We divide the normalized, local Debye length by 6 to determine

whether we have enough resolution, R, defined by

R = D(4.23)
6

Instantaneous electron particle moments with y = 10 show a resolution as low as R = .64

near the axis close to the exit plane. However, outside of the "mach cone" near the axis,

the resolution is much better, generally greater than R = .8. Along the axes, the resolution

will be on the order of one. That is, since 6 ~ /2z, we see that

Rz = D , 1(4.24)

even near the axis. It would not hurt, however, to use a finer grid.
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Chapter 5

Results and Discussion

This thesis describes the numerical simulation of a 50 Watt Hall thruster. The final

version of the code assumes E, = 0 at the right hand free space boundary and that cath-

ode electrons are injected at the rate required to preserve quasi-neutrality. It includes

electron-neutral elastic scattering, exciting, and ionizing collisions, as well as ion-neutral

charge exchange and scattering collisions, all of which are implemented through Monte

Carlo schemes. The code also includes electron-electron and electron-ion Coulomb colli-

sions, which were implemented through both a Monte Carlo scheme and a diffusive scheme

rooted in the Fokker-Planck equation. Numerical artifices employed to speed up the simu-

lation include super-particles, artificial mass ratios, and an artificial free space permittivity

constant. Collision cross sections are changed to preserve internal scales across artificial

mass ratios. Because the simulation is non-linear, these numerical artifices are visible in

particle moments such as ne and Te. However, parametric tests showed performance differ-

ences which are small.

This 2D-3V, fully kinetic, electron time-scale simulation can be used to predict the

overall performance of the mini-TAL. However, 2D hybrid-PIC models, 1-D models, and

even analytic models can also predict performance. The real strength of our simulation

method is that it is fundamentally kinetic. This enables direct studies of the following:

" The electron energy distribution function.

" Plasma oscillations.

" Electron transport.
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* Coulomb collisions.

Results pertaining to each of these areas will be discussed.

5.1 Normalization Constants

To predict the performance of the mini-TAL, the most physical cases allowable given com-

putational constraints (see Section 2.7) are used. These are (Mn/me a 96, y 5) and

(Mn/me ~ 960, y = 10). Normalization constants for these cases (and all cases) are cal-

culated at the beginning of each run. The following is an edited data stream from the

(Mn/me ~ 96, y = 5) case. Some quantities appear twice, once in CGS units, and once in

normalized units.

Running PIC.C, Version 1.0, 2000
Anode Potential: 300-V

Tev (nominal) of neutrals: 0.1-eV

Tev (nominal) of electrons: 50-eV

neutral velocity to right: 0.00205725-X/T (Debye lengths/w-pe^-1)

nominal ion acoustic speed: 3.03044e+007-cm/s (assumes artificial mass)

nominal ion acoustic speed: 0.10219-X/T

nominal electron thermal velocity: 4.19309e+008-cm/sec

nominal electron thermal velocity: 1.41395-X/T

Nominal neutral density: 5.27464e+014 cm^-3

Nominal plasma density: 6.77565e+012 cm^-3

Nominal Debye length: 0.0100972 cm

Nominal plasma frequency: 2.93695e+010 sec^-1

Nominal gyro frequency: 1.40706e+011 rad/sec

Nominal gyro frequency: 4.79091 rad/T

Nominal gyro radius: 0.00298003 cm

Units of charge: 1 Q = 4.8032e-010 emu
Units of mass: 1 M = 9.1094e-028 gm
Units of distance: 1 X = 0.0100972 cm
Units of time: 1 T = 3.4049e-011 sec

Units of velocity: 1 V = 2.9655e+008 cm/sec

Units of B-field: 1 B = 1669.83 gauss

Units of E-field: 1 E = 16.5062 statvolts/cm (statcoul/cm^2)

Units of Potential: 1 Phi = 0.166667 statvolts = 50 volts

A more extensive data stream is found in the Appendix.

Numerical notes: The nominal magnetic field strength used to create the data stream

is near the center pole; it is much higher here than elsewhere. Also, the acoustic speed

appears high because ions are only about 100 times more massive than electrons.

273



5.2 Thruster Performance

Numerical and experimental performance can be compared. Khayms tested the mini-TAL

at mass flow rates of .1005mg/s, .1676 mg/s, and .2146 mg/s. The code was validated

at a mass flow rate of .1mg/s. This is close enough to .1005mg/s that the results may

be compared directly. The second flow rate, .1676 mg/s, was also simulated exactly. The

third flow rate was not simulated. Unless otherwise noted, all tests described in this chapter

assume that rh = .1mg/s.

Many thruster performance variables are computed and saved at each time-step. Chap-

ter 4 showed a convergence of these variables toward the solutions shown in Figures 4-23

(M/m e 96, y = 5) and 4-22 (M/m e 960, y = 10). Note that these solutions include

Monte Carlo Coulomb Collisions (MCCC VI), but do not include anomalous diffusion. The

effects of changing these assumptions will be discussed later in this chapter. These cases

represent the practical limit of the simulation on a PC; they take about a week to generate.

A more realistic case to run would be with M/m e 960 and y = 5 with more particles.

However, this case would take about a month to converge on our computers.

5.2.1 Experimental Performance

Experimental performance as reported by Khayms [25] is graphed in Figure 5-1. This

performance may be re-analyzed using results from the numerical simulations graphed in

Figures 4-23 and 4-22. Original and re-analyzed experimental performance at is compared

to numerical performance at the lowest flow rate in Table 5.1. Numerical performance

was obtained by averaging over the last 10,000 time-steps of the numerical runs (this is

a 1000 nominal plasma times). The simulation over-predicts most performance parameters

by about twenty five percent.

5.2.2 Thrust and Exhaust Velocity

Khayms measured thrust on a stand inside a vacuum tank. He then calculated specific

impulse from the equation
T

IS,= (5.1)
Thg

where rh is the nominal mass flow rate of neutrals entering the system. In the numerical

simulation, thrust is obtained by summing the momentum loss due to particles passing
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performance improves with mass flow rate.

Figure

?h (mg/s)
M/m

Thrust (mN)
Is, (sec)
r/a

r/t

Khayms
5-1

.1005
240,000

1
.6

612
1.0
.29
.05

PIC/MCC
4-23

.1
96
5

.76
776
.47
.48
.25

300 Volts as reported by Khayms [25]. The

I PIC/MCC | Modified Khayms
4-22

.1
960
10
.73
745
.37
.53
.20

.1005
240,000

1
.6

612
.42
.44
.05

Table 5.1: Comparison of performance measured by Khayms in laboratory tests and nu-

merical performance predicted by full PIC MCC code under conditions outlined previously.

MCC V1 Coulomb collisions assumed. Mass flow rate is .1mg/s. Values are approximate.

Acceleration efficiency = 77 Utilization efficiency=r/7. Thrust efficiency = qt.
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through the free space boundary, and specific impulse is again calculated by I, = T/7g.

The simulation over-predicts thrust and I, by about twenty five percent.

Note that there are two components to thrust: Ion thrust and neutral thrust. If the

simulation has not been run long enough for the neutral flow to converge, then the total

thrust and Ip will be incorrectly predicted. Of course, the neutral thrust predicted by the

simulation is less than ten percent of the total thrust, so the error is not large.

5.2.3 Acceleration Efficiency

The acceleration efficiency, a, was defined to be the ratio of the mean kinetic energy in the

axial direction of ions entering the beam, < ej >, to the potential difference, A# = 300V.

In analyzing data, Khayms assumed the acceleration efficiency was one (< ej >= 300eV,

< vi >z= 20,980 m/s). This means the beam is mono-energetic (T = 0), and all ions are

produced at the anode potential. Numerically, however, we find < ei > is closer to ya = .42

(see Table 5.1). This means the beam does not originate at # = 300 V, which affects the

calculated propellant utilization efficiency, m2. Furthermore, the simulation predicts that

T - 60 eV in the axial direction where most ions pass through the free space boundary.

The beam is far from mono-energetic. This is of interest to the field of plume-modeling.

In Section 5.9.2 we discuss a design error in the magnetic circuit. This error resulted

in a magnetic field which is not parallel to the anode at z = 0. As a result, the discharge

is "short circuited" by about 150 Volts. This explains some of the disparity between the

numerically observed < c > and 300 V.

5.2.4 Utilization Efficiency

To calculate utilization efficiency, q, Khayms assumed that all ions exit with 300eV of

energy in the axial direction, i.e. na = 1.0. The utilization efficiency at neutral mass flow

rate rh = .1mg/s was then calculated;

T .6 x 10'N
m v -- - ~2 .29. (5.2)
Th < V, >z -1 X 10-6kg/s x 20, 980m/.s
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This utilization efficiency is only 50 percent of that predicted numerically. However, we can

use the numerical na to correct Khayms calculated propellant utilization; if 77a = .42, then

T .6 x 10- 3 N
77 - ~ .44. (5.3)

rh < vi >z ViaI .1 x 10 6 kg/s x 20, 980m/s/.42

This is about eighty percent of the utilization predicted by the simulation.

5.2.5 Thrust Efficiency

Khayms measured thrust efficiency is much lower than he predicted, and much lower than

the simulation predicts. Khayms blames this on the magnetic field which, he hypothesizes,

was degraded by heating of the center iron pole piece [25]. He measured the field after

the tests and found that the magnitude had not changed much. Therefore, he concluded,

"fringing" or changes in the shape of the magnetic field were to blame. The new shape

theoretically increased leakage of electrons across the field, increasing the anode current.

Let us estimate how large changes in shape and magnitude would have to be to explain

the anomalously high discharge current of the mini-TAL in actual operation. As a simple

approximation, assume all electron diffusion happens through classical diffusion such that

< Ve >z~ Ven/w . If ion moments are constant, but magnetic field is halved, then we drops

by a factor of 2 and < Ve >z increases by a factor of 4. Thus, to increase Id by a factor of 6

(as suggested by Table 5.1), a reduction in magnetic field strength of only factor y/lF ~ 2.5

is required. Such a reduction certainly seems possible. A decreased magnitude may also

explain the difference between experimental and predicted utilization. If the field weakens

when the poles heat up, then electron density and ion production in front of the anode exit

may decrease.

Changes in shape may also contribute to poor thrust efficiency. If the magnetic field

lines near the anode shift toward the axial direction, then a portion of the discharge can be

short circuited. We validate this theory theory in Section 5.9.2 by re-designing the anode

such that the magnetic field is more parallel to the anode face. Numerical thrust efficiency

increases by ninety percent!

In Section 5.6.2, we show that including anomalous diffusion only changes performance

by about 10 percent. This is not enough to explain the discrepancy between Khayms

measured discharge current and the numerical discharge current.
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5.2.6 Variation with Mass Flow Rate

Both numerical and experimental performance improve with mass flow rate. Table 5.1

compared experimental and numerical performance at the mass flow rate rh = .1mg/s; the

code was found to over-predict thrust and specific impulse by about twenty five percent.

Table 5.2 compares experimental and numerical performance for fn = .1676mg/s, where

the numerical assumptions were M/m ~ 96 and -y = 5. Numerical values were obtained

by averaging over the last 10,000 time-steps of the run shown in Figure 5-2. At this flow

rate, the code over-predicts thrust and specific impulse by about thirty three percent. The

simulation has had time for the discharge to develop; most final values should be similar.

As before, Khayms utilization efficiency, qj, was modified using the numerical value of na to

bring it more in line with numerical predictions.

Most notable about Figure 5-2 is perhaps the presence of ionization oscillations (see

Section 5.2.8). These happen when the electrons do not have enough energy to ionize all

the neutrals. They are not present at rh = .1mg/s when proper boundary conditions (i.e.

quasi-neutral electron injection) are imposed.

Khayms PIC/MCC Modified Khayms

rh (mg/s) .1676 .1676 .1676
M/m 240,000 96 240,000
-y 1 5 1
Thrust (mN) 1.2 1.6 1.2
I,, (sec) 717 960 717
< ei >(eV) 300 171 171
7a 1.0 .57 .57

r7 .33 .55 .44
7t .05 .35 .05

Table 5.2: Performance at rh = .17 mg/s. Comparison of performance measured by Khayms
in laboratory tests and numerical performance predicted by full PIC code under conditions
outlined previously. MCC VI Coulomb collisions assumed. Values are approximate.

5.2.7 Startup Transients

Transients in density, temperature, and other particle moments exist whenever something

significant changes in the simulation. The quasi-neutral method of electron injection allows

the simulation to come to equilibrium. If the simulation starts somewhere far out of equi-

librium, the adjustments may be abrupt. Figure 5-3 shows the ionization current, the ion
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beam current, the net (ion plus electron) anode current, and the cathode electron current

as the simulation comes to equilibrium. This is a most unusual case in that a converged

solution for rh = .1mg/s was the starting point for a new run at rh = .1676mg/s. The

original particle distribution was used, but all particle weights changed abruptly.

Let us step through the plots. The first plot shows that ionization current increased

dramatically a short time after the mass flow was changed. Why? With 4 = .1676,

each super-particle now represented ~ 1.7 times as many particles as it had before. The

ionization rate increased dramatically. The middle left plot shows the resultant deluge of

electrons hitting the anode. The time difference between when the electrons are produced

and when they leave the simulation region is about 2000 of the units used to define T3 , the

time-scale for ion transits, in Chapter 2 (6i = 350 with 'y = 5 goes to about 6i = 1750

with -y = 1). The upper right plot shows the ions exiting through the free space boundary.

The middle right plot shows the cathode attempting to compensate. Some explanation is

required. The cathode current is here taken to be the sum of the ions which exit through

the free space boundary plus the electrons created at the free space boundary minus the

electrons which exit through the free space boundary. Using the symbols defined in Chapter

2,

Ic = Icd + I+ - Ia (5.4)

As the ions approach the right hand side, the net charge along the boundary becomes more

and more positive, and the quasi-neutral injection function compensates by creating many

electrons. However, the ions soon pass out of the simulation, leaving behind an excess

of negative charge. The negative charge and the boundary condition Ez = 0 causes the

electric potential to drop. However, the electric potential at the right hand boundary is

artificially limited to p > 0. Without this limit, a large electron population can cause the

potential to diverge toward negative infinity. The potential limiter give the excess electron

a chance to pass out of the simulation. The cycle continues until the simulation comes to a

state of quasi-equilibrium where electrons are almost continuously created at the free space

boundary.

The plot of Ic - Ia (lower left) shows that the anode and cathode currents are approxi-

mately equal in a steady state. The large jumps show the simulation coming to equilibrium.

The control system is robust.
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The plot of Ic - Ib shows the sum of the electron current created at the free space

boundary minus the electron current exiting through the free space boundary. The sum

dips negative for a period, signifying that more electrons were leaving than were being

created.

5.2.8 Ionization Oscillations

Figure 5-4 shows the simulation shown in Figure 5-2 (rh = .1676) coming to equilibrium.

In this figure, the simulation was started from t = 0. The long time-period oscillations

evident in Figures 5-2 and 5-4 (which we have already remarked upon) may be influenced

by the boundary conditions, but the frequency corresponds well to the expected ionization

("predator-prey") oscillation, expected to occur at a frequency of

1
w = 2irv = - AVn, (5.5)

L

where Vi is the characteristic ion velocity in the acceleration zone, Vn is the characteristic

neutral velocity in the zone, and L is the width of the ionization zone [8]. Visual inspection

of particle moments corresponding to Figure 5-2 indicate that Vi - .22, Vn = .007, and the

width of the ionization zone is about L = 8. Thus, a period of about T = 1/v = 1280 should

be observed. This is almost exactly the period seen in Figures 5-2 and 5-4, suggesting that

the current oscillations are physically induced. This view is further re-enforced by the fact

that, when boundary conditions are correctly formulated, these oscillations only appear at

the higher mass flow rate. At higher flow rates, there is not always enough energy to ionize

all the neutrals. For still more discussion of the ionization oscillation, please see Section

5.5.

5.2.9 Ion Losses to Walls

Figure 5-4 allows us to estimate the fraction of ions lost to the walls. Let us use the peak

of the second oscillation, for which I ~ .082 Amps and Ib a .065 Amps. The fraction of

ions lost to the wall at this flow rate is thus (Is - Ib)/Ib a 25 - 30percent.
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5.2.10 Electrical Efficiency

Figure 5-4 also allows us to estimate the electrical efficiency, e = I/Id. The amount of

electrons from the cathode flowing into the system is on average (by the plot of Ic - Ib)

about .05 Amps. The same number can be obtained by comparing the plots of Ib and

Ia. Thus, e is (numerically, at least) above ninety percent. Experimentally, however, this

number is much lower, which explains why the measured and predicted thrust efficiencies

are so far off.

5.3 Particle Moments

Particle moments from the more physical cases modeled are of special interest. Here we

look at the case M/m ~~ 96 with -y = 5. Other pertinent parameters are: Ez = 0 at right

hand boundary, quasi-neutral electron injection, rh = .1mg/s, MCC Version 1.0 Coulomb

collisions, no anomalous diffusion.

5.3.1 Electric Potential

The time averaged electric potential is shown in Figure 5-5. Most of the potential drop

occurs close to the anode. The walls float near # = 0. The upper right corner of the

simulation region is fixed at # = 0, but the potential along the rest of the boundary is

determined by the boundary condition Ez = 0, and by the local charge density.

5.3.2 Number Density

The time averaged number density of ions and electrons in units of cm- 3 is given in Figure

5-6. Values are close to the nominal values used to normalize our equations. Plasma

density inside the anode exit is lower than this when more physical mass ratios are used,

e.g. M/m ~ 960. See, for instance, Figure 5-31, which plots ni for M/m 960 with -y = 10

and anomalous diffusion. Unfortunately, the case assuming both M/m 960 and y = 5 is

too slow to run on a current PC in less than several weeks.

5.3.3 Charge Density

The time averaged normalized charge density, q = (ni - ne)/ne,o, is shown in Figures 5-7

and 5-8. The charge density is nearly zero over the bulk of the simulation region, showing
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Figure 5-5: The electric potential for M/m ~ 96, y = 5 at rn .1mg/s.
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the success of the quasi-neutral cathode electron injection methodology. Near the anode,

geometrically determined potential drops overwhelm plasma induced potentials, resulting

in significant (and largely spurious) charge separation.

In general, it should be possible to create a quasi-neutral ionization layer downstream

from the anode by selecting an appropriate magnetic field profile [123. In the mini-TAL,

however, the anode layer is so close to the positive electrodes that the plasma cannot be

quasi-neutral.

5.3.4 Temperature

Figures 5-9 and 5-10 show the time averaged electron temperature, assumed to be isotropic.

The first of these plots also contains magnetic streamlines. The temperature is roughly

constant along B near the middle of these streamlines. However, gradients in temperature

occur along the streamlines. Wall losses do not explain this, as they would tend to act

on all electrons on a given streamline equally. Another possibility is that diffusion across

the field is accelerated so much to compensate for the artificial neutral mass ratio, M'/M,

that energy added near the center of the anode does not have time to make it to the edges.

But this seems unlikely, as strong gradients occur no matter what mass ratio is assumed.

Potential gradients are the most likely source.

The electron temperature is high near the anode, as expected. However, another region

of high electron temperature occurs near the axis near the free space boundary. This is due

to the injection of electrons with Te = 2.5 eV, but bulk energies near the plasma potential

at the central portion of the free space boundary. This feature is much less extreme in some

other cases which were run.

The anisotropy of the electron temperature is shown in Figure 5-11. Factors influ-

encing the ratio T11/TL include magnetic bottling, electric potential gradients, wall losses,

scattering frequencies, and diffusion rates. Bottling tends to force parallel energy into the

perpendicular direction. Potential gradients channel energy into the electrons preferentially.

For instance, the electric field near the anode acts largely perpendicular to B, "pumping"

the parallel electron temperature. Likewise, the electric field near the free-space boundary

acts largely parallel to B, pumping parallel energy. Wall losses act preferentially along

B, since parallel energy is required to overcome sheaths. The temperature becomes more

isotropic and thermal through scattering, both elastic and inelastic, which happens at dif-
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Figure 5-7: Normalized charge density: q = (ni - ne)/neo. Shown is the anode region,
where geometrically determined potential drops overwhelm internal potentials. Shown also

are several magnetic streamlines.
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the simulation region, showing the success of the quasi-neutral cathode electron injection
methodology. Shown also are several magnetic streamlines.
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ferent rates for TL and Tii. Temperature mixing also occurs through diffusion (classical,

Bohm, Coulomb) and through oscillations. This is really a very complicated issue.
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Figure 5-9: Electron temperature near the anode. Shown also are several magnetic stream-
lines.

5.3.5 Ion Temperature and Flux

The ion temperature measures the thermal spread of ions from their bulk velocity. In the

azimuthal direction, the temperature is very small, less than 1 eV. In the radial direction,

it is just a few eV. In the axial direction, however, the ion temperature is large, typically

~ 60 eV, as shown in the top part of Figure 5-12. The large temperature just downstream

from the anode means that ions are produced in a zone which is approximately forty to

sixty volts wide. The thermal spread of ions at the exit plane is a valuable parameter since

it is one of the required inputs for numerical thruster plume models.

Another valuable parameter is the flux into the wall as a function of position. The

bottom part of Figure 5-12 is a vector plot of the ion flux, ni at a portion of the wall.

This parameter can be scaled to physical units, averaged over time and used to predict

the erosion rate of the wall material. This is an important design consideration for Hall
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Figure 5-10: Electron temperature across the entire simulation region.
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Figure 5-11: Anisotropy in the time averaged electron temperature across the entire simu-
lation region. Shown is the ratio T'/T 1 . Shown also are several magnetic streamlines.
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thrusters.

5.3.6 Electron Current and Induced Magnetic Field

The electron current density can be post-calculated using the formula j = ene6 and rescaled

to rational units. Figure 5-13 shows the electron current in Amps per square centimeter pre-

dicted by the simulation. To generate this figure, all numerical values were post-multiplied

by the factor -M,/M1. However, it is incorrect to do so for the azimuthal current, jo. The

azimuthal Hall current, given by j0 = -neEz/Bx# 2 /(1+# 2 ) (see Section 2.10.3) is nearly in-

variant with respect to the Hall parameter. If #2 is sufficiently large, jo ~ -neEz/B. Thus,

the simulation predicts something very close to the "physical" jo all the time. When deter-

mining the "physical" j0 from the computational Jo, one should not multiply by VM/Mn.

The Biot-Savart Law provides a convenient means of estimating the magnetic field which

would result from a given current density. In MKS units, the magnetic field strength as a

function of distance would be

Bind = . (5.6)
27rr

From the figure, the Hall current near the anode is about 3 Amps per square centimeter

over an area of about .1 x .1 cm, yielding a current of io ~ .03 Amps. However, this value is

a factor of VM 7 /Mn = 50 too low (see above explanation). The correct current is io ~~ 1.5

Amps. With po = 1.26 x 10-6 H/m, the Biot-Savart Law predicts an induced field strength

of about 30 Gauss at r = 1mm, which is about equivalent to the nominal Debye length.

The importance of the induced field is commonly described by the magnetic Reynolds

number, RB. This can be loosely interpreted as

AB
RB B ' (5.7)

where AB is the induced field and Bo is the nominal field. If RB << 1, the induced field

can reasonably be neglected. If RB >> 1, it will dominate [24]. In our case, Bo ~ 3000

Gauss and RB .-01. Thus, we are justified in ignoring the induced field.

Note that under Khayms' "ideal scaling" (i ~ L, r ~ L and so on) Bind is scale-invariant.

On the other hand, the applied B-field scales as B0 ~ 1/L, and so

Bin~ (5.8)
B0
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Figure 5-12: Top: The ion temperature in the axial direction, Ti,z eV, which shows the

spread in potential across which ions are produced. The temperature in the radial and

azimuthal directions is much smaller. Bottom: The flux into the wall in the channel of the

thruster. Scale vector is length .1, in normalized units. Both plots are instantaneous; they

are not time averaged.
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This explains the small effect seen here, but also says that the induced magnetic field will

be more important at higher power.

5.3.7 Hall Parameter

The Hall parameter # = Wc/ve is a measure of the degree to which the electrons are magne-

tized. To increase electron mobility perpendicular to the magnetic field, the cross sections

for electron neutral scattering are increased by a factor Q'/Q = 1/' 7f where f < 1. For

M/M', = 2500 (Mn/me ~ 96), 1/jj = 50. Is # in this case enough to justify the assump-

tion that electron conductivity perpendicular to the field is proportional to ve? For this to

be true, the modified Hall parameter #' =3#/ should be at least 2 or 3. To estimate #

and 0', the following relations were used:

ven ~ nncQ(c2 ); C =< IveIl > Te. (5.9)
7rm

The electron temperature was averaged over a period of one hundred time-steps (See Figure

5-15). The neutral density used was the instantaneous density at the end the one hundred

time-steps. From Te, c was calculated and used to find the collision cross section Q(c2 )

(which was not averaged over the Maxwellian). The resulting first order approximation to

/3' for M/m 96, and y = 10 is shown in Figure 5-14. Inside the anode, #' < 2. Outside

the anode, /' > 2. Thus, inside the anode, the assumption that conductivity is nearly

proportional to Ven breaks down. Here, the Hall parameter increases primarily because the

neutral density is very high.

Note, however, that this case assumed M/m ~ 96 and -y = 10, for which some plasma

makes its way into the anode. But the electron density in the anode is lower when y = 5.

In that case, the problem is diminished. Furthermore, when M/m ~ 960, there is not

a problem in any case, as the plasma density in the anode is even lower. Later in this

chapter we present more accurate estimates of the hall parameter obtained by counting

actual scattering events.
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Level j,
11 1. 25358
10 1 00043
9 0.74727
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Figure 5-13: The electron current density, j enev, in units of Amps per square centimeter.
Top: jz. Middle: Jr. Bottom: jo x .02; jo is the Hall current.
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Figure 5-14: A first order approximation of the modified Hall parameter /' in the anode
region of the thruster. < Te > was averaged over 100 time-steps with Mn/me ~ 96, y = 10,
MCC V1 Coulomb collisions. Electron density tapers to zero within the anode leading to
poor statistics.
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Figure 5-15: The electron temperature in electron volts in the anode region of the thruster.
One hundred simulation time-steps were used to get < Te >. Results are time averaged
assuming Mn/me ~ 96, y = 10, MCCC Coulomb collisions.
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5.4 Electron Energy Distribution Function

In this section, we analyze the normalized distributions electron distribution functions, g(E'),

g(Ej'), and g(c' ), which were described in Section 3.11 The distributions are time averaged

from the case Mn/me 96 and y = 5. Other pertinent parameters are: MCC V1 Coulomb

collisions, Ez = 0 at right hand boundary, quasi-neutral electron injection, rh = .1mg/s, no

anomalous diffusion.

5.4.1 EEDF by Magnetic Stream Function

The magnetic stream function used for analysis is shown in Figure 5-19. The bands near the

anode are defined by physical features at the exit plane of the anode. The second band of ,

is the region of highest Te, while the third band is the region of highest ne near the anode.

The distribution functions shown in Figures 5-16, 5-17, and 5-18. are averaged over 1000

time-steps. Statistics are worst in the first band. To generate the numerical distributions,

the energy of each electron in a given band of 4 was normalized by the local temperature as

interpolated from the grid and tabulated. Thus, the plots are the shape of the distribution

as if it were constant everywhere with respect to the local T. Figure 5-16 shows a roughly

Maxwellian distribution at Te, but Figures 5-17 and 5-18 show that the distribution near

the anode is better described two temperatures, T1 and T. The parallel distribution seems

to be quite Maxwellian, but the perpendicular distribution seems to be non-Maxwellian.

Since the electric field is in the perpendicular direction, this may reflect gyro energy which

does not have time to thermalize.

5.4.2 EEDF by Point

Points inside the acceleration zone used for analysis are listed in 5.3. The first point is on

the exit plane of the anode. The second point is in the 4 band of maximum Te. The third

point is in the region of greatest ne near the anode. The remaining points are spaced evenly

in computational coordinates to past the point in the channel where the outer wall diverges.

The time averaged distributions f(ez, er, eo, z, r) for four points centered (in the radial

direction) approximately on the anode exit are shown in Figures 5-20, 5-21, and 5-22.

(Since the time-step was allowed to vary, the plots are actually iteration averaged.) Only

distributions at the first four points are plotted. The time (iteration) averaged temperature
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Level psi
50 11 481

10 350
9 200
8 75
7 15

40 6 0
5 -22.1
4 -112.7
3 -166.5

30 - 2 -202
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Figure 5-19: Values of magnetic potential used to define the EEDF. The band between
contours 1 and 2 reaches the anode interior. The bands between contours 2 and 5 define the
main ionization zone. Contours 2 and 3 define the region of highest Te, while contours 3 and
5 define the region of highest ne near the anode. Normalized units with -y = 5, rh = .1mg/s,
and [T] = 50 eV are assumed.

point (,7r) (2,ir)
1 (40, 65 ) (0 , 15.8459)
2 ( 46, 65 ) (1.66097 , 15.9521)
3 ( 52, 65 ) (3.32714 ,16.0804)
4 ( 58, 65 ) (4.99776, 16.2118)
5 ( 64, 65 ) (6.67616 , 16.355)
6 ( 70, 65 ) (8.36679, 16.5199)
7 ( 76, 65 ) (10.0758, 16.7184)
8 ( 82, 65 ) (11.8119 , 16.9673)
9 ( 88, 65 ) (13.5878 , 17.2992)
10 ( 94, 65 ) (15.4209 , 17.7664)

Table 5.3: Locations of points used for analyzing the EEDF. Each point is located on top
of a grid node with computational coordinates ( , r/). The lower left corner of the grid has
computational coordinates (-, ) = (0, 0). Each grid node has location (2, i) in real space,
where normalized units with -y = 5, rh = .1mg/s, and [T] = 50 eV are assumed.
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at each of the four points is listed in Table 5.4.

point ( , r) T T11 T
1 ( 40, 65 ) 23.9 15.5 28.1
2 ( 46, 65 ) 26.2 16.5 31.1
3 ( 52, 65 ) 16.1 11.5 18.4
4 (58, 65) 9.7 6.7 11.2

Table 5.4: Time (iteration) averaged electron temperatures at each of the points used to
create the distributions shown in Figures 5-20, 5-21, and 5-22.

Although a smaller sample size leads to coarser plots, the figures show the same trends

described in the previous section. This means that the electron distribution on the edges is

not significantly warping the plots of f(ez, er, eo, 4).

5.4.3 General Comments on the EEDF

In Section 5.8 we show that the non-Maxwellian shape of the distribution function in the

perpendicular direction is still observed when M/m = 960 and -y = 10, and also when no

Coulomb collisions are modeled. However, the shape is more Maxwellian when Langevin

Coulomb collisions are modeled.

In general, there are many factors driving the distribution toward a Maxwellian. In

addition to Coulomb collisions, there are inelastic collision with other electrons, and also

many types of oscillations, some of which are only statistical. The latter can be minimized

through high particle counts, but can never, as a matter of practicality, be eliminated. An

energy conserving algorithm should probably be used if efforts to estimate the distribution

function continue. We have but lit a candle in the Stygian gloom which surrounds this

topic.

5.5 Plasma Oscillations

Since the simulation proceeds along the electron time-scale, it should capture both high

and low frequency plasma oscillations. Some of these oscillations may be observed by

applying the fast Fourier transform (FFT) to internal density data at various grid points,

i.e. ne(z,r,t), nj(z,r,t), and nri(z,r,t). Other oscillations may be observed through the

discharge current, Id.
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Figure 5-22: g(E ) for points. See Table 5.4 for corresponding temperatures.
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5.5.1 Theoretical Modes of Oscillation

Some well known oscillations are listed in Table 5.5. All oscillations listed are electrostatic.

Species Orientation Frequency Name

Electron K=|$ 2 = + 2K 2v 2  Plasma

Electron KIB oh = op + W Upper hybrid

Ion K|B a = K2[,KTe KTi Acoustic

Ion I15 Q2 -=C + K 2 V 2  Cyclotron

Ion KIB = + Lower hybrid

Ion KI5 Bi = Ionization

Table 5.5: Some well known electrostatic oscillations, from Reference [6]. Capital letters
indicate ion frequency, e.g. Qc is the ion cyclotron frequency.

If evident, electron plasma waves should be parallel to the B, while upper hybrid waves

should be perpendicular to B. The ionization oscillation is usually visible in the discharge

current and is typical for Hall thrusters [8]. It is a density fluctuation which is nominally

perpendicular to B. Electromagnetic electron waves (0,X,R,L) and ion waves (Alfven,

Magnetosonic) will not occur in this simulation because the magnetic field is assumed to be

static.

In the next section, we will look for modes of oscillation in a numerical data-set showing

ne, ni, and n, at a single grid node,((, r/) = (50, 65), over the course of 1000 time-steps.

To predict what frequencies should be seen, the average values of ne, ni, and nn were

used. The average electron density was ne ~ 5.7 x 1012, while the average ion density was

ni ~~ 6.4 x 1012. Other values used to predict frequencies were < Te >~ 19.5 eV, T ~ 10.8

eV, and IBI ~ 3136 Gauss. (The ion temperature was not time averaged). The nominal

plasma density for this case was ne,o = 6.77 x 1012 particles per cm 3 . Because the density

is not nominal, the local plasma frequency in terms of nominal units should be (K = 0)

Wp = ne/ne,o = 5.7/6.77 ~ .92. (5.10)

Other frequencies follow. The ion plasma and lower hybrid frequencies assume n =< ni >=

6.4 x 1012 cm 3 . The ion acoustic frequencies use Ti,, = .95 eV and assume that waves must

be resonating to be seen. To estimate frequencies, several wave numbers (K = 27r/A) were

estimated using the condition nA = 4R, where R is the inner radius of the thruster channel,
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.24 cm. (The ion temperature is highly non-isotropic; the temperature in the axial

direction is Ti,z = 31 eV.) The time averaged electric potential at this point is < < >= 142

V. In this simulation, BI is decreased for ions such that the physical ion cyclotron frequency

and radius should be observed. Thus, Oc may be hard to detect numerically. The ionization

frequency assumes Vi,z= .155 (instant at end of run), Vnz = .0059 (instant at end of run),

and L = 5.

Species Orientation Frequency Name

Electron KZ|| WP = .92 Plasma

Electron KIB wh = 2.1 Upper hybrid

Ion KI|B QP .099 Plasma
Ion Kii| (A = R) a= .0018 Acoustic

Ion KH|B (A = R/5) Qa = .0089 Acoustic

Ion KIB Oc = 7.8 x 10-6 Cyclotron

Ion KIB Q1 = .0038 Lower hybrid

Ion KB Gi = .0060 Ionization

Table 5.6: Predicted electrostatic oscillation frequencies at node ( =, ) (50,65). These
frequencies are defined in 5.5. Ion plasma and lower hybrid frequencies assume n =< ni >=
6.4 x 1012 cm 3 . Electron frequencies assume n =< ne >= 5.7 x 101 cm-3. Averages
obtained over 1000 iterations. Also, Ti,, = .95 is used to predict V for acoustic waves.

5.5.2 Numerical Oscillations

Figures 5-23, 5-25, 5-24, and 5-27, show oscillations in nn, ni, and ne at grid node((, ')

(50, 65), which is ten nodes in front of the middle of the anode exit. The first three plots

come from a single run of the simulation for 1000 uniform time-steps with y = 5, M/m = 96.

There are about 25 electron super-particles per grid node in this area. In the plots shown,

20 charged super-particles corresponds to a density of about 3.9 x 1012, and vice versa.

Over the entire simulation region, the number of particles per cell varies. A more typical

number is 15. Inside sheaths, the count is quite a bit less. (The same particle count would

yield four times as many particles per cell were it applied with 7y = 10). The last plot (of

ion density, Figure 5-27) comes from a much longer period solution where time-step was

allowed to vary. The time period covered immediately preceded the time period shown in

the other three plots.

Figure 5-23 contains three plots which show, in order from the top, nn, ni, and ne vs.
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time. All show higher frequency oscillations than expected. Reasons for this may include:

" Too few super-particles

* A superposition of many waves

The first reason seems most likely. Let's look at the middle plot, ni vs. time. Between

i = 5 and t= 20, there are four peaks, translating to a frequency of w ~ 1.7. However, this

frequency is too high for most ion oscillations. Very short wavelength acoustic oscillations

could produce these fluctuations, but this source seems unlikely. Ionization events in the

cell are also not responsible for the fluctuations; an ionization event would look like a step

function. It seems most likely that the peaks in density are due to ion transits in a sparsely

populated cell. Most peaks seem to have amplitudes between 10 and 20 percent of the

total density. Ions here move at a mean velocity of about < Vi >) z ~~ .155[x]/[t] (about

63 eV of energy), and each cell here is about .28[x] wide. A node sees a particle (through

interpolation) as it passes through 2 cell distances. Thus, if individual transits could be

seen, they would have a characteristic time of T = Az/ < Vi >z~ .56/.155 = 3.6. This

translates to a frequency of about w = 1.7, the same frequency we observe. Let us call this

the "ion transit frequency", Qt = 1.7, where the capital letter signifies that it originates

with the ions. If this explanation is correct, then a higher particle count should diminish

the noise. Similar reasoning explains the oscillations in the neutral density plot. There are,

in this region, nearly a thousand neutrals per cell, which is why most oscillations are much

smaller in amplitude. Since some neutrals are much larger than others, larger amplitude

changes are possible, too. Neutrals here travel much slower than ions, explaining the width

of the peaks. Electron noise can be explained, too. The time averaged T11 is about 14.3 eV

which means that the electrons move (parallel to B) about three to four times faster than

the previously discussed ions. Noise should have similar amplitude, but a frequency three

to four times higher. This is about what we see.

To see oscillations underneath the noise, we filter the data using a simple algorithm:

The density at time t is the average density in the period t t At,

ne(t) = mean[ne(t - At) : ne(t + At)]. (5.11)

This suppresses some of the spikes in the data. The filters at the beginning and end of the
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run are one sided. For instance, near the end of a period lasting tf, we use

ne(t) = mean[ne(t - At) : ne(tf)]. (5.12)

This filter is most valid for constant time-step. The data is produced in terms of nominal

plasma frequency (wp,0 = 1/[T]).

To be effective, the filter should average over many passage times. This makes the filter

marginal when used to detect low frequency ion oscillations.

5.5.3 Electron Density Oscillations

Using only electron density with a filter of At = 5 time-steps (each measurement is the

mean of 11), broad peaks close to .6 - .9[wp] (peaking at .9) and 1.1 - 1.2[wp] are observed

(see Figure 5-24). A smaller peak near w a 1.5 is also observed; perhaps this is correlated

with the ion transit frequency, w = 1.7. The frequency at w = .9 seems to correspond

to the plasma frequency; the peak in the FFT is weak, but the actual plot looks fairly

sinusoidal. A filter of At = 10 time-steps seems to draw out an additional frequency band

near 2 < w < 3 (see Figure 5-25).

To see oscillations more clearly, the function q = ni - ne was constructed and plotted in

Figure 5-26. A filter level of 10 was applied after the vector q was constructed. The peak

near w = .9 (the plasma frequency) is now stronger, which is a positive development. There

are also additional peaks at w = .7 and, again, in the range 2 < w < 3. The small peak at

w = 2.1 corresponds to the upper hybrid frequency (predicted to be a 2.1), but this may

just be serendipity.

5.5.4 Ion Density Oscillations

Ion waves may also be analyzed. Some ion waves are visible in the Fast Fourier Transform of

Figure 5-27, which seems to show a peak in the range .01 < w < .02. This is too low to be the

ion plasma frequency (Q ~ .1) or transit time oscillation, but too high to be anything else

but a short wavelength (R/A > 6) acoustic wave or noise. There is a broad, low frequency

band near .005 < Q < .0064. These could be the ionization oscillation (Qi = .006) or,

again, an acoustic wave. The former assumption is not entirely improbable since the point

chosen is very close to the point of greatest ion density near the anode. Ionization happens
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here. There also seem to be weak peaks at Q ~ .02, Q ~ .035, and Q ~~ .05 and still weaker

peaks at Q = .06 and Q = .07. These could again be short wavelength acoustic waves, but

the peaks are so small it is very hard to draw any conclusions. Of course, a higher particle

count would help the analysis; noise is a problem.

In Section 5.2.8, we discussed the ionization oscillations which are clearly seen at h =

.1676mg/s. We did not see these at h = .1mg/s when the quasi-neutral injection method

was used. However, they were observed at nT = .1mg/s when the steady state (Ic = Id)

electron injection method was used. See, for instance, Figure 4-13. For this case, the

wall potential is observed to oscillate along with the low frequency ionization oscillations.

However, both Fi and Ie are proportional to n such that only a short period oscillation

should be seen. The wall potential < #$, > should not track the density on the time-scale

of the ionization oscillation. This is another demonstration of the invalidity of the steady

state boundary conditions. The plasma far from the wall is not quasi-neutral, and so the

sheath does not behave as expected.

5.6 Diffusion

Mechanisms for diffusion in a Hall thruster include plasma oscillations, inter-particle col-

lisions, and particle-boundary collisions. Electron diffusion resulting from scattering is

termed "Classical." Diffusion resulting from other effects is often called "Anomalous" or

"Bohm" diffusion.

5.6.1 Classical Diffusion

The theory behind classical diffusion was discussed in Chapter 2. Here we observe classical

diffusion directly. Figure 5-28 shows a single electron diffusing across the magnetic field.

This figure was obtained from the full simulation with Mn/me = 960 and -y = 10 (specifi-

cally, the beginning of the run shown in Figure 4-22). The particle is initially trapped on

one field line, but then undergoes a collisions which kicks it to a different field line. Kinetic

energy increases as the particle moves to the left, toward higher potential. (The anode is

located at position z=0). Oscillations in energy occur as the particle spirals about a field

line nominally perpendicular to a strong E field. Magnetic moment on each line is nominally

conserved.
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Figure 5-23: Oscillations in nn, ni, and ne at point ((,r/) = (50,65), just downstream
from the anode. Large increase to the right of nn plot is probably due to a large neutral
super-particle; not all neutrals are the same size.
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Figure 5-24: Oscillations in ne at point ((, r/) = (50, 65), just downstream from the anode.
Filter level of ±5 time-steps is assumed. The almost sinusoidal portion at the right has a
frequency of w ~ 1.67.
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Charge Density vs. T=1/w
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Figure 5-26: Oscillations in the function q = n - ne at point ((, r/) = (50, 65), just down-
stream from the anode. Filter level of t10 time-steps is assumed.
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Figure 5-27: Oscillations ni at point ( , rj) = (50, 65), just downstream from the anode.
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near w = .006 may be ionization oscillation.
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We can do a quick check to see if the observed Larmor radius seen in Figure 5-28 makes

sense. If E 1 is the perpendicular energy of an electron in eV, .5mvI =EIandvI=wcxrL

defines the Larnior radius, then one can easily show that

rL B 3.4 cm,
B

(5.13)

where B is the magnetic field strength in Gauss. For B = 3000G and E = 20 eV, this

formula yields rL = 5.07 x 10-3 cm. To produce the trace shown in Figure 5-28, units were

scaled by [x] .02 cm. Therefore, we should see a radius of about r ~ .005/.02[x] = .25[x].

This is exactly what we see.

Trace

-1 01.2-. .... ... . .

-. -...

- ----. .. -. -. . -.. . . .. ....

B-field
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Figure 5-28:
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E
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7930
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time (o 1)pe

7930

7930

A single electron diffusing across the magnetic field. Particle begins at (*),
collision at diamond, and ends at square.
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5.6.2 Anomalous Diffusion

In SPT type Hall thrusters, "anomalous" diffusion due to azimuthal oscillations and wall

effects is thought to significantly increase electron transport. In TAL thrusters, such dif-

fusion would rely upon azimuthal oscillations not captured by this simulation. However,

"anomalous" diffusion may be introduced through an equivalent scattering frequency (see

Section 2.10.5). The total electron collision frequency becomes, sans Coulomb collisions,

Ve = ven + vBohm- (5.14)

Bohm diffusion is typically assumed to be proportional to In Hall thrusters, diffusion
116

proportional to 1 is a better assumption; similar rates are required by many 1-D analytic

models and by the 2-D Hybrid PIC code to match experimental measurements [52). For

diffusion proportional to 6, a frequency of vBohm = -jwce is appropriate. This means

that the Hall parameter, # = wc/ve is numerically limited to less than 64. To compensate

for artificial mass ratios, VBohm must be increased;

v'Bohm = VBohm M' (5.15)

A mass ratio of Mn/me 960 requires VMn/M' 16 such that #' is numerically limited

to about 4. This is sufficient to ensure that the electron diffusion rate across the field is

still nearly proportional to the collision frequency.

The code was run both with and without anomalous diffusion. The control case is

shown in Figure 4-22. This case assumed m-h = .1 mg/s, y = 10, and Mn/me ~~ 960.

Obviously, the simulation converges with only classical diffusion. The second case, which

includes stochastic Bohm diffusion according to 1/64, is shown in Figure 5-29. Performance

predictions for both cases are summarized in Table 5.7. Unfortunately, neither solution

is fully converged (to the longest neutral time-scale) due to time constraints. Therefore,

thrust efficiency and specific impulse in Table 5.7 are derived from ion thrust. This enables

a more accurate comparison.

The most remarkable thing about Figure 5-29 is that it is, at first glance, almost indis-

tinguishable from Figure 4-22. A closer look reveals that addition of stochastic anomalous

diffusion changed performance predictions slightly. Table 5.7 shows that thrust and specific
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impulse both increased by about ten percent. Wall potential seems to be slightly higher

with Bohm diffusion, reflecting perhaps increased impedance in the direction parallel to the

Magnetic field. The discharge current increases slightly, but because thrust increases, the

thrust efficiency does not change much. The various currents are shown in Figure 5-30.

Coulomb Type No Bohm Bohm
I,, (sec) 690 753
Ion Thrust (mN) .68 .74
r7t .17 .17
TIU .53 .58

.37 .37

Table 5.7: Summary of Bohm diffusion results. All predictions assumed MCCC V1, M/m
960,7y = 10, and r = .1mg/s. Thrust efficiency and I, refer to ion thrust only, which

enables us to more accurately compare solutions which have yet to converge on the longest
neutral transit time scale.

Numerically, then, the addition of anomalous diffusion does not seem to change much.

Performance increased a little, but not a lot. Of course, the mass flow rate and magnetic

field strength are also factors contributing to electron transport. If the magnetic field

were lower in magnitude, then DB would be higher and hence the bulk transport rate due

to Bohm diffusion would increase. Such may have been the case with Khayms thruster

experimentally.

Numerical note: During write-up, a slight error was discovered in the anomalous dif-
fusion algorithm: No electrons to the left of the anode face were being scattered. This
should make very little real difference, since the point of adding anomalous diffusion was to
increase transport across B to the anode.

5.6.3 Mach Number

The mach number of the plasma is of general interest. Let the local acoustic speed be

Va = KTe/M. The Mach number can then be defined

M =|< Vi > |,7 (5.16)
Va

where I < vi > I is the bulk speed of the ions. The Mach number for the parameters just

presented, M/m - 960, y = 10, with anomalous diffusion is plotted in Figure 5-31. The
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electron temperature, Te, was time averaged over 100 iterations, but vi is instantaneous,

the ion velocity at the end of the run. Also plotted is the instantaneous ion density, ni,

which shows the primary zone of ionization to be upstream of the M = 1 streamline.

If we define the ionization zone as being the region before the M = 1 contour, then the

extent of the ionization zone is less than 5 [x]. Given (for y = 5 and Te = 25) the electron

cyclotron radius is about .6[x], Thus, the extent of the zone of acceleration is 5-10 electron

cyclotron radii from the anode. This is consistent with the estimate found in Section 2.11.

For this reason, it is appropriate to term the mini-TAL an "anode layer thruster", as defined

in the Russian literature [12].

5.7 Ion-Neutral Scattering Error

The method for scattering ions off neutrals was discussed in in Section 3.15.3. We conserved

momentum in such collisions by increasing or decreasing the neutral bulk momentum. We

conserved energy by increasing or decreasing the internal energy of the neutrals. We did so

by multiplying neutral relative velocities by the scalar a, given by Equation 3.179. However,

an error in the calculation was discovered after many of the results presented in this thesis

were compiled. Instead of using a 2  Ebulk,oEinernal,oAEEbulk,! the simulation was
2internal,o

computing a according to a2 Eblk, 0+AE-Eblk,f . Thus, it was removing too much energy
Einternal ,o

from the neutrals. To show that this makes little difference to the final results obtained, we

ran the simulation with the error corrected. Results are shown in Figure 5-32. This Figure

should be compared to Figure 4-22. The hoped for result is obtained; performance is nearly

the same.

Numerical note: Simulations which are slightly tainted by the ion-neutral scattering
error include all those presented in Chapter 4, as well as those which assumed y = 5, with
the exception of the high frequency oscillation plots. The anomalous diffusion simulation

was also slightly tainted. Simulations without the error include all of the Coulomb collision

tests, and the test of the new geometry.

Numerical note: After running the fixed simulation for about 130 thousand iterations,
an error flag appeared indicating that a < 0. This error occurs very infrequently; we ran
the simulation for 1000 additional electron/ion time-steps in "debug" mode and failed to

produce the flag. The cause is unknown at this date, but it may be due to a = 0, which is

not necessarily an incorrect result. In any case, it should not change the simulation results
in any noticeable way.
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5.8 Coulomb Collisions

Electron-electron and electron-ion Coulomb collisions are often considered to be unimpor-

tant in Hall thruster models. That assumption is tested parametrically by running the

simulation with both Monte Carlo Coulomb Collision methods, the Langevin Coulomb col-

lision method, and no Coulomb collisions whatsoever. For all these tests we use 7 = 10 and

a high mass ratio, M/m ~ 960. This mass ratio was used to ensure that results from the

Monte-Carlo Coulomb Collision algorithms were not warped by loss of electron magnetiza-

tion. Performance predictions for the various Coulomb collision algorithms are summarized

in Table 5.8.

Coulomb Type None Langevin MCCC V1 MCCC V2
I,, (sec) 675 663 690 736
Ion Thrust (mN) .66 .65 .68 .72
7t .17 .16 .17 .18
71 .52 .52 .53 .57
77a .37 .36 .37 .36
T,/T .08 .09 .08 .08

Table 5.8: Summary of Coulomb collision results. All predictions assumed M/m ~ 960,-y
10, and r= .1mg/s. Thrust efficiency and I, refer to ion thrust only, which enables us to
more accurately compare solutions which have yet to converge on the longest neutral transit
time scale. T/T is fraction of total thrust derived from neutrals, but is very approximate
as simulations are not fully converged on neutral transit time-scales.

5.8.1 Rationale

Most Hall thruster PIC simulations ignore Coulomb collisions altogether. Indeed, the mean

free path for these collisions should be long in the discharge, where electron temperatures

are on the order of 10 - 30 eV or more. However, the electron temperature is much lower

outside the discharge. In areas where Te is less than a few electron volts, the cross section

for Coulomb collisions is actually quite large. Even in the discharge, these events influence

the low energy population.

5.8.2 Monte Carlo Coulomb Collisions

The simulation was validated using a Monte Carlo Coulomb Collision (MCCC) model.

Version 1.0 of this model (see Section 3.15.4) was used to generate the bulk of the results

320



presented in this Chapter. However, the model under-estimated transport by neglecting

the Coulomb logarithm. Figure 5-32 shows results for this model, assuming M/m = 960.

(It is most accurate to use a high mass ratio for this algorithm to keep highly collisional

electrons magnetized). Specific impulse, ion thrust, utilization, acceleration efficiency, and

thrust efficiency derived from ion thrust only are shown in Table 5.8. Instead of converging

this run further, we used it as the starting point for several new runs. Thus, Table 5.8

also shows results from MCCC Version 2.0, as well as Langevin Coulomb collisions and

no Coulomb collisions whatsoever. All predictions are time averaged over the last 10,000

iterations of the respective run.

First, we tested Version 2.0 of the MCCC model (see Section 3.15.4), which includes the

Coulomb logarithm and revises the electron-electron cross section. Results from Version 2.0

are shown in Figure 5-33. The starting distributions were those at the end of Figure 5-32,

at time t = 10, 500. Performance predictions are found in Table 5.8.

5.8.3 No Coulomb Collisions

Figure 5-35 shows both the initial run (t < 10, 500) and an additional 30,000 iterations

without any Coulomb collisions at all. The various currents are shown in Figure 5-34.

Performance predictions are found in Table 5.8. Without Coulomb collisions, performance

drops but so does current such that thrust efficiency actually increases. Thrust and specific

impulse have decreased, although efficiencies are largely unchanged.

5.8.4 Diffusive (Langevin) Coulomb Collisions

An alternative to MCC Coulomb collisions was devised and implemented. The algorithm,

based on a Langevin formulation of the Fokker-Planck collision term, is described in Section

3.16. We also showed in Section 3.16 that this algorithm drives a single electron toward a

Maxwellian at T, where # is the background species.

To see if this "more correct" way of modeling Coulomb collisions changes the results, we

run a parametric test. Starting yet again from the distributions at the end of Figure 5-32, at

time i = 10, 500, we ran the simulation fifty thousand iterations using the Langevin method

to model both electron-electron and electron-ion collisions. Except for the substitution of

the diffusive Coulomb collision algorithm for the old MCC algorithm, the simulations are

identical. Charged particle transit times found in Section 2.7 are much shorter than At;
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effects should be visible by the middle of this simulation. Neutral transit times are much

longer; the discharge should be fully developed, but the far field neutral distribution is still

a work in progress.

Performance results are shown in Figure 5-37. Performance predictions are summarized

in Table 5.8. Currents are shown in Figure 5-38. While the particle count is closer to that

obtained using MCCC Version 2.0, other performance parameters are more similar to those

obtained without any form of Coulomb collisions whatsoever!

A comparison of results obtained with Langevin Coulomb collisions and no Coulomb

collisions indicates that ion thrust and specific impulse changed by only about one percent.

This is statistically insignificant.

5.8.5 Changes in Electrical and Beam Efficiencies

Let us consider the currents once again. In a steady state, Id = Ic = I x Ib/lI -+ (Ic - Ib).

The quantity Ii is the amount of ions created, and the quantity 77b = Ib/li is the percentage

of ions created which actually enters the beam, the beam efficiency. Ions which do not enter

the beam recombine at the walls somewhere. The last quantity, Ic - Ib, is the "leakage",

the amount of additional electrons required to sustain the discharge. This determines the

electrical efficiency, e = /Id.

Figures 5-34 and 5-36 show electrical efficiencies of between 82 and 88 percent and beam

efficiencies of about 90 percent. Of course, we could calculate these numbers precisely by

integrating over time (we do this in Section 5.10.3). Looking back at Figure 5-30, we see

that adding Bohm diffusion did not have much effect on the beam efficiency, but increased

leakage from about 10 percent before to about 18 percent after. This is why, though thrust

and I, increased, the thrust efficiency did not.

5.8.6 Changes in Distribution Function

Figures 5-39, 5-40, and 5-41 show the perpendicular distribution function g(c'() gathered

on streamlines near the anode assuming M/m = 960,-y = 10. Figure 5-39 was obtained

using no Coulomb collisions, 5-40 was obtained using MCCC V1, and 5-41 was obtained

using Langevin Coulomb collisions. The first two plots are very similar to each other and

to Figure 5-21, obtained with M/m = 96,-) = 5, and MCCC V1 collisions. All three show

non-Maxwellian features. The Langevin plot, however seems to show a more Maxwellian
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temperature distribution. This is, of course, expected.

5.8.7 Temperature Isotropy

With the introduction of Langevin collision, the electron temperature appeared to follow /

more closely. Furthermore, anisotropy was less pronounced. Anisotropy assuming Langevin

collisions is shown in Figure 5-42, which may be compared to Figure 5-11, which showed

anisotropy for Monte Carlo Coulomb collisions, and to Figure 5-43, which shows anisotropy

for no Coulomb collisions. Anisotropy changed the most downstream, where the electron

temperature is low; before, we saw ratios T11/T 1 on the order of 2. Now, ratios downstream

are generally between 1 and 1.25.

5.8.8 Recommendation

Because anisotropy and the shape of the distribution are important factors when it comes

to interpreting measurements of the discharge, future versions of this simulation should use

a Langevin formulation for Coulomb collisions.

5.9 Recommendation for Improving the mini-TAL

In a Hall thruster, the magnetic field controls the discharge. Thus, the mini-TAL can be

improved by changing the field, or by changing the geometry of the thruster in relation to

the field.

5.9.1 Magnetic Field and Utilization

The primary problem with the mini-TAL is its low propellant utilization. Khayms estimated

utilization to be between twenty to thirty five percent for the flow rates modeled. Using

modified acceleration efficiencies (qa ~ .5), the experimental utilization was found to be

closer to a .44 at the lowest flow rate. But this is still poor. Utilization should be much

higher.

How can utilization be increased? First, by extending the ionization zone. Second, by

raising the amount of energy available to ionize. The two suggestions are inter-related and

can both be accomplished by making the magnetic field more parallel to the anode. Figure

5-44 shows that some magnetic streamlines near the anode go from # = 300 all the way
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Figure 5-42: Anisotropy in electron temperature when Langevin Coulomb collisions are
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Figure 5-43: Anisotropy in electron temperature when no Coulomb collisions are modeled.
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to # q 0. Furthermore, we notice from Figure 5-6 that the edge of the ionization zone lies

along these same anode-intersecting streamlines. The key point is that electrons have a

direct path from # - 140 eV, where they are produced through ionization, to the anode at

300 eV. This is most inefficient. Over 150 eV of energy goes straight to the anode instead

of being transferred to the neutrals in the form of ionization and excitation. If this energy

were transferred, the utilization might rise by 50 percent or more.

These same figures also help explain why the performance increases as M/m decreases.

To compensate for the artificial M/m, we increased the collision frequency. This decreased

the impedance perpendicular to the streamlines, but increased impedance parallel to the

streamline. This should make little difference if the magnetic field is parallel to the anode,

i.e. if the problem is 1-D. However, it is not. Because of the increased || impedance, some

electrons have time to diffuse further inward toward the neutral source before they run

down the streamlines to the anode. As a result, the predicted thrust, I,,, and utilization

all increase. Again, the shape of the magnetic field is the fundamental problem. It makes

the simulation less linear.

In summary, making the magnetic field more parallel to the anode may improve both the

physical performance of the thruster, and the code's ability to predict it. The most obvious

way to do this is to move the center pole outward in the +Z (axial) direction. Another

possibility is to move all or a portion of the anode inward. Numerical design tools can be

used to re-design the circuit.

5.9.2 A Design Error

The magnetic field obtained from Dexter Magnetics was given in vector form, B = BzIz +

Br~r. This enabled us to construct the stream function @ = -rA0 (see Section 3.13),

which is constant along magnetic streamlines. Figure 5-44 showed that the streamlines (the

contours of 4) are not purely radial near the anode at z = 0, as they should be for optimum

performance.

Turning to Khayms Master's Thesis, however, we find a different magnetic field, one

which is radial at z = 0. To find out why, we contacted Dexter Magnetics, who pointed out

that the vector potential A is often used in early designs of magnetic circuits and that, in

this case, it better matched the figure in Khayms thesis.

To resolve the issue, we constructed the magnetic vector potential, A9 = -0/r, setting
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Figure 5-44: Magnetic streamlines near the anode. This figure (-y = 5, M/m ~ 96), shows

that the magnetic streamlines (the arrowed lines) create a path for the electrons from

< = 140 (the edge of the ionization zone) all the way to the anode.
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it to zero on the axis. Figure 5-45 shows both @ and A0 . The plot of vector potential indeed

matches the picture in Khayms thesis.

Khayms used the vector potential to design the magnetic circuit of the mini-TAL! He

designed the circuit such that contours of the vector potential A 0 were radial at the anode

exit. He should have designed the circuit such that 4 = -rA 0 was radial here. This simple

mistake explains the poor utilization, thrust, and specific impulse of the mini-TAL.

5.10 Simulation of Modified Thruster Geometry

The power of this simulation is demonstrated by the numerical experiment described in this

section. We re-designed the thruster and generated a new series of performance estimates.

5.10.1 Old Design

The old thruster geometry is shown in Figure 5-46. The streamlines were obtained (by

Tecplot) from the original data supplied by Dexter Magnetics.

5.10.2 New Design

We re-designed the anode, moving the lower lip inward by .35 mm. This enabled us to retain

the old magnetic field circuit. The re-designed geometry is shown in Figure 5-47 where the

old geometry is again shown for comparison. Also shown are several magnetic streamlines,

which are now nominally parallel to the anode surface. The magnetic streamlines compared

to the initial potential difference (very low plasma density) are shown in Figure 5-48. To

reach the anode, magnetized electrons must now (in theory) diffuse across an additional

hundred to hundred and fifty Volts of potential difference. Ionization should begin at a

higher potential, resulting in both faster ions and more ions overall. Thrust, Ip, and

utilization should all increase. On the negative side, one would expect that such a re-

designed geometry would result in more erosion at the center pole. But our simulation

predicts that the ion loss fraction to the walls does not change.

5.10.3 Performance Results of New Simulation

At a flow rate of rh = .1mg/s, the new performance is shown in Figure 5-49. MCCC Version

2.0 was used for Coulomb collisions.
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Figure 5-48: Streamlines and potential contours near the anode for new geometry. Electrons
have no easy path to the anode anymore.

Old and new performance time averaged predictions are compared in Table 5.9. Clearly,

the performance of the thruster increases dramatically. Thrust and specific impulse (cal-

culated from ions only) increase by over sixty percent, and thrust efficiency from ions only

increased by over ninety percent! But where did these gains come from?

First, recall that r7t r 9erlar/, where r/, = r/b x r/i. In English, thrust efficiency is the

product of electrical efficiency, acceleration efficiency and utilization efficiency, which itself

the product of beam efficiency and ionization efficiency.

Table 5.9 shows that the utilization efficiency rises by fifty percent, to about eighty

five percent utilization. This seems to be the dominant improvement. The utilization im-

provement comes mostly from an improvement in ionization efficiency; the improvement in

beam efficiency, or the fraction of ions which impacts the wall increases by just two percent.

That beam efficiency does not decrease despite the new anode geometry is somewhat of a

pleasant surprise. The increase in acceleration efficiency is the next largest contributor; r/a

rises by almost twenty percent. This means the ions are produced at a higher potential;

the discharge is less "short circuited" than before. The last contribution is electrical effi-
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ciency. Because the discharge is more efficient, the fraction of current required to sustain

the discharge decreases. All of the currents in Table 5.9 are plotted in Figures 5-51 and

5-38).

Still, this is only a beginning. By trial and error, we may arrive at a geometry geometry

which results in even better performance.

[Caveat: The new estimates are based on a simulation which converged for one hundred

thousand twenty thousand iterations, starting with a previous semi-converged solution for

the old geometry. Because Deltat is less than the neutral end to end transit time, the

neutral flow near the outer boundary is still high, i.e. many of the neutrals flowing through

this boundary left the discharge region before the simulation began. Also, the old estimates

were based on a simulation which only converged for sixty thousand iterations using MCCC

V2. Further converging these solutions will change these results slightly.]

This test shows three things:

" The test validates Khayms theory of why the thruster performed poorly; the B-field

is not shaped as he thought it was.

" The mini-TAL has more performance potential than was thought. A re-design and

subsequent series of experimental measurements may be in order.

" This simulation, or one based on it, can be a powerful tool for Hall thruster design.

5.10.4 Moments of New Design

Numerical particle moments and other quantities of interest with the new anode design

are shown in Figures 5-52, 5-53, 5-54, and 5-55. Figures 5-52 shows ne and ni. Electrons

no longer congregate near the lower anode; in fact, they congregate near the upper anode,

but in the middle of the neutral flow. Figure 5-53 shows ionization and excitation rates

obtained by counting. The ionization zone covers the mouth of the anode. Figure 5-54 shows

the total electron-neutral scattering rate and the numerically obtained hall parameter, p.

The electrons should be fully magnetized. Figure 5-55 shows the electron temperature and

electric potential. The electron temperature appears to track magnetic streamlines well in

the central region.
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Figure 5-52: Results for re-designed anode. Top: Ion density. Bottom: Electron density.
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Figure 5-55: Results for re-designed anode. Top: The electron temperature in units of eV.
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Ip (sec) 740 1200 59
Ion Thrust (mN) .72 1.15 59
cathode current, Ic(Aimps) .0445 .0655 47
anode current, Ia (Amps) .0444 .0653 47
beam current, Ib(Amps) .0378 .0605 60
ionization current, Ii(Amps) .0434 .0643 48

r/t .18 .34 92
r/e .86 .92 9
r/a .36 .43 19
r/a .57 .83 46
r/i .61 .88 43
r7b .92 .94 2

Table 5.9: Numerical performance increase due to re-design of mini-Tal anode. All predic-

tions assumed MCCC V2, M/m ~ 9 6 0,y = 10, and rh = .1mg/s. Thrust efficiency and I,
refer to ion thrust only, which enables us to more accurately compare solutions which have
yet to converge on the longest neutral transit time scale; 77t ~lerlarlu. The neutral flow in
Amps equivalent of I, = .0734 is used to calculate ionization efficiency. Values are averaged
from last 10,000 iterations.

347

Old New Percent Increase



Chapter 6

Conclusions

The Particle-in-Cell method is a powerful tool for modeling plasma thrusters. It lets us

look inside the plasma to see its microscopic properties up close. The effects of many dif-

ferent mechanisms (such as scattering collisions, excitation collisions, anomalous diffusion,

and wall effects, to name just a few) can be studied.

6.1 Summary of Method

The plasma inside a diminutive Hall thruster was simulated using a fully kinetic numerical

model. This simulation differs significantly from previous full PIC Hall thruster simulations.

Unique features include the following:

" The geometry is that of a real thruster, for which some experimental data is available.

" The numerical grid is non-orthogonal.

" A novel method for accelerating classical diffusion and retrieving physical results is

implemented.

" The free space permittivity constant is changed to exaggerate sheaths and accelerate

the simulation.

" Anomalous diffusion is included via an equivalent scattering frequency.

" Ion-neutral charge exchange and scattering collisions are modeled.

* The wall potential is allowed to float. It is computed self-consistently.
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" Cathode electrons are injected at the rate required to preserve quasineutrality at the

free-space (plume) boundary.

" Coulomb collisions are modeled as a diffusion process in velocity space.

After the code was validated, the thruster was simulated under various operating condi-

tions and the results were examined. One such result, the ion density, is shown to approxi-

mate scale with the thruster in Figure 6-1.

Figure 6-1: The mini-TAL thruster along with numerically predicted ion densities for

M/m = 960, y = 5, and rh = .1mg/s.

6.2 Summary of Results

New results from this fully kinetic simulation include the following:

* The magnetic field of the mini-TAL was designed incorrectly. In the near anode region,
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we discovered an axial component which is probably responsible for the mini-TAL's

poor thrust, specific impulse, and propellant utilization.

" The mini-TAL was re-designed numerically; the inner portion of the hollow anode

was shortened by .35 mm. Propellant utilization increased by forty five percent,

acceleration efficiency increased by nineteen percent, and thrust and specific impulse

increased by about sixty percent. Thus, the thrust efficiency increased by about ninety

percent. These results may be verified by re-constructing the thruster and measuring

its performance.

" The mini-TAL thruster's published propellant utilization may be too low. The sim-

ulation predicted acceleration efficiencies of 36-47 percent. When used to re-evaluate

Khayms data, utilization of ~ 44 percent was predicted at both 7h = .1mg/s and

m = .1676mg/s Previous estimates were 29 and 34 percent, respectively.

" The numerical model predicts a non-isotropic electron energy distribution function.

In general, the distribution is better represented by a two-temperatures, one each for

directions parallel (T11) and perpendicular (TL)to B.

" The model predicts non-Maxwellian electron populations in the perpendicular direc-

tion near the anode (see Figure 5-17). We propose the following explanation. The

following explanation is proposed: The electric field (nominally _LS) increases the _L

energy preferentially. Electrons do not have time to fully thermalize, resulting in the

shape seen in Figure 5-17.

Other interesting results include the following:

" Predicted performance was compared to experimental performance. The most physi-

cally realistic cases over-predicted thrust, specific impulse, and utilization by twenty

five to thirty three percent. These cases included classical diffusion and Monte Carlo

Coulomb collisions, but no anomalous diffusion.

" The introduction of anomalous Bohm type diffusion proportional to 6 increased

thrust and specific impulse by about ten percent.

" Thrust, specific impulse, and propellant utilization increased with mass flow rate.
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" The plasma was found to extend to the interior of the hollow anode under certain

conditions, but this did not seem to be an essential feature of the flow for effective

operation.

" The simulation predicts gradients in electron temperature along magnetic streamlines.

" Ionization oscillations were observed at higher mass flow rates.

" Oscillations in plasma density were observed, some of which correspond to theoretical

modes.

" Coulomb collisions changed ion thrust propellant utilization, and specific impulse by

less than ten percent.

" Langevin Coulomb collisions changed thrust and specific impulse by about one per-

cent. This is statistically insignificant. However, the shape of the electron distribution

near the anode was more Maxwellian.

In summary, we showed that the full-PIC Monte-Carlo method is a viable alternative

for investigating small-scale plasma flows as present in Hall or Ion thrusters.

6.3 Recommended Work

Highly recommended follow-up work is discussed in this section.

6.3.1 Additions to Code

In constructing the numerical model, we attempted to capture all essential features of the

plasma. However, some significant and interesting phenomena (e.g. multiply charged ions)

were left out. We recommend adding some of these phenomena to the code and changing

the way other phenomena are modeled. All of the improvements listed here would be easy

to make.

Multiply Charged Ions

The simulation results presented in Chapters 4 and 5 included only one ion state, Xel+.

However, populations of Xe2+ on the order of five to ten percent have been measured.

Therefore, multiply charged Xenon ions should be added to the simulation. At a minimum,
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Xe 2 + produced through electron-neutral collisions and electron-ion collisions should be

included. Both additions are almost trivial; much of the required coding is already in place.

Excitation Levels

Instead of using a single lumped excitation level, several levels of excitation should be in-

cluded. Alternately, cross sections for various energy levels could be added and the effective

level placed at single intermediate value. This would require a more detailed model of

excitation, but the results would be enlightening.

High Energy Neutral Wall Accommodation

In the simulation as constructed, all neutrals experience full accommodation in energy and

momentum when they hit boundaries. However, charge exchange neutrals have kinetic

energies comparable with ion energies. Like ions, therefore, high energy neutrals should

be only partially accommodated at the boundaries. This change would affect the neutral

distribution slightly.

Coulomb Collisions

Electron-ion collisions as implemented in MCCC method Version 2.0 (see Section 3.15.4)

should produce the correct amount of transport. It may be desirable to keep using this

method. However, electron-electron collisions should be removed from the MCCC model

and handled instead using the diffusive model described in Section 3.16.

Secondary Electron Emission

No secondary emission of any kind was included in the mini-TAL numerical model. How-

ever, as discussed in Section 2.12.5, secondary emission due to electron impact may be

quantitatively significant. Secondary emission due to multiply charged Xenon ions may

also be quantitatively significant.

We justified excluding secondary emission from ion impact by noting that we only model

Xe+, for which secondary yield is insignificant. We justified excluding emission from elec-

tron impact by arguing that most secondary electrons will fall back. In any case, secondary

emission is thought to be important in moderating the temperature of the discharge in SPT
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type Hall thrusters. The addition of secondary emission to this numerical model would

allow it to be used for all types of Hall thrusters.

6.3.2 Errors in Leapfrog Scheme

The leapfrog scheme used in this simulation is very good at tracking electron motion in

the electric and magnetic fields. However, small offset errors may occur when particles are

initialized (see Section 3.14). The scheme should be modified slightly to correct these errors.

6.3.3 Static Magnetic Field

The static magnetic field produced by Dexter Magnetics has anomalous features; along the

center pole boundary, V - $ # 0. A field with zero divergence should be obtained.

6.3.4 Thermal Effects

The temperatures of the anode and thruster walls are held constant in the simulation.

However, these values could be easily changed to test the effects of wall temperature on

performance. Furthermore, a thermal model could be developed to actually estimate the

wall temperature.

6.3.5 Simulation Region

The simulation region could be expanded outward to encompass the cathode. This would

probably double the number of grid cells required, slowing solution of Poisson's equation

and many other aspects of the simulation. Still, the added CPU time would be well worth

it.

6.3.6 Electron Injection

The logical electron injection method could be refined to consider local plasma conductivity.

As already mentioned, however, the cathode should be placed inside the simulation region,

which would improve statistics.
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6.3.7 Experimental Measurements

A set of experimental measurements of the mini-TAL thruster in operation should be col-

lected. Such measurements could be compared to numerical predictions. These measure-

ments should include both T_ and T11 . If further testing of the mini-TAL is infeasible, then

the simulation should be re-constructed and applied to some well known device.

6.3.8 Modify mini-TAL Thruster

The anode in the mini-TAL should be re-designed such that B is nominally parallel to the

anode face. Alternately, the magnetic field in the mini-TAL thruster could be re-designed,

again, such that B is parallel to the anode face. New sets of thrust measurements could

then be taken and compared to numerical predictions. This would be an excellent project

for a Master's Degree student.

6.4 General Improvements

The numerical method can be improved in many ways. Here we discuss general improve-

ments, beginning with the easiest and descending, in rough order, to the most difficult.

6.4.1 Particle Count

One of the easiest ways to improve the simulation is to increase the number of particles,

which should improve statistical accuracy. Four hundred thousand particles of each species

on a 100 x 180 grid (as per y = 5) is quite possible. Unfortunately, computational time

increases more or less linearly with particle count. The law of diminishing returns quickly

takes effect. That is why the charged particle counts in the simulations presented in this

thesis are usually less than one hundred thousand of each species.

6.4.2 Grid

A slightly finer grid is another easy way to improve the simulation at next to no cost. A

finer grid would better capture fluctuations in electric field. Producing a finer grid requires

simply adjusting a few constants in the header files and ensuring that the solution does not

blow up. However, a finer grid by itself is not enough. The number of particles per cell
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should stay the same. A much more difficult (but potentially rewarding) task would be to

re-construct the simulation to work on an un-structured grid.

6.4.3 Time-step

Since ions already move much slower than electrons, it should be possible to run them

on a different time-step. We already do this for neutrals. This would require only minor

changes in the code, as it was written with this possibility in mind. Also, convergence might

be accelerated by further de-coupling electrons and ions. We could "freeze" the electron

distribution but step forward the heavy particle distribution for some period of time. This

would require larger changes in the code than the previous suggestion.

6.4.4 Induced Magnetic Field

A first order model for induced magnetic field could be introduced. The induced field should

be insignificant for the mini-TAL thruster, but may be more significant for larger thrusters.

Observable electromagnetic waves may result from this addition.

6.4.5 Dimensions

The simulation should include 3 dimensions in space, including the complete A0 of 27r.

This would be relatively easy to code, but computationally cumbersome. A more palatable

alternative would be to model a "slice of pie", i.e. a grid which includes some fraction of 27r

in the azimuthal direction. Periodic boundary conditions might make this possible. This

would enable direct calculation of diffusion due to azimuthal oscillations, possibly explaining

definitively the so-called anomalous diffusion.

6.4.6 Electric Potential Solution

The electric potential solver and the interpolation method associated with it are responsible

for numerical heating of the plasma. However, higher order interpolation and finite differ-

encing methods (or finite element methods) may be able to reduce heating by 1-2 orders

of magnitude, increasing confidence in results obtained from very long runs such as would

be required for Mn/me = 10,000. Such improvements on Cartesian grids are described in

Ref. [19]. Also, stopping <p iterations at some intermediate accuracy level could cut in half

computation time without affecting overall accuracy.
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6.4.7 Energy Conservation vs. Momentum Conservation

Numerical schemes which conserve energy, but not momentum, have been developed. It is

possible that such schemes might produce different electron energy distribution functions.

This is related to the previous suggestion, improving the electric potential solver.

6.4.8 Physical Constants

An artificial mass ratio and free space permittivity constant were adopted purely for nu-

merical reasons. There is no fundamental reason (aside from numerical heating) why this

simulation cannot be run with both physical mass and permittivity. The price is compu-

tational time. A physical Xenon neutral would move 16 times slower than a neutral at

M/m = 960, and the mini-TAL thruster would need a grid 5 times finer to resolve the

Debye length everywhere. To maintain the same number of particles per cell, 25 times more

particles would be needed. The result would be a simulation which runs hundreds of times

slower. Today, this could only be performed on a super-computer. However, restraints are

relaxing inexorably. Ever faster computers are evolving. Just as the human evolved from

the anchovy, so will the computers of tomorrow evolve from today's desktops. Very soon, it

will be possible to obtain results almost indistinguishable from the physical on a mere PC.

6.5 Last Word

In this thesis, we described the first complete, fully kinetic simulation of a Hall thruster. It

is not perfect, but it is a good beginning.

Centuries ago, Laplace wrote that a mind of infinite intelligence could predict the future

of the universe [27]. We cannot hope for such intelligence. But we can hope for a computer

powerful enough to realistically simulate a small scale plasma flow.
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Appendix A

Running the Simulation

The following is edited output from the simulation for the case where 'y 5 and

Mn/M' = 2500 with [Te] = 50 eV. Several extraneous lines have been edited.

Running PIC.C, Version 1.0, 2000

setting the dielectric constant ...

Anode Potential: 300-V

Tev (nominal) of neutrals: 0.1-eV

Tev (nominal) of electrons: 50-eV

nominal neutral velocity: 1.90695e+006-cm/sec

nominal neutral velocity: 0.00646302-X/T (debye lengths/w-pe^-1)

neutral velocity to right: 0.00205725 -X/T

nominal ion acoustic speed: 3.03044e+007-cm/s

nominal ion acoustic speed: 0.10219-X/T

nominal electron thermal velocity: 4.19309e+008-cm/sec

nominal electron thermal velocity: 1.41395-X/T (debye lengths/wpe^-1)

Nominal neutral density: 5.27464e+014 cm^-3

Nominal plasma density: 6.77565e+012 cm^-3

Nominal Debye length: 0.0100972 cm

Nominal plasma frequency: 2.93695e+010 sec^-1

Nominal gyro frequency: 1.40706e+011 rad/sec

Nominal gyro frequency: 4.79091 rad/T

Nominal gyro radius: 0.00298003 cm
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Units of charge: 1 Q = 4.8032e-010 emu

Units of mass: 1 M = 9.1094e-028 gm

Units of distance: 1 X = 0.0100972 cm

Units of time: 1 T = 3.4049e-011 sec

Units of velocity: 1 V = 2.9655e+008 cm/sec

Units of B-field: 1 B = 1669.83 gauss

Units of E-field: 1 E = 16.5062 statvolts/cm (statcoul/cm^2)

Units of Potential: 1 Phi = 0.166667 statvolts = 50 volts

loading data from structured grid...

matching boundary nodes to geometry...

assigning boundary materials...

calculating 1st order differential grid constants...

getting gauss constants...

checking for consistency

Superparticle size for 150000 neutrals: 1.39707e+006

capacitance of thruster: 22368.2 super-particles/50-eV

load old particle files? (y or n) y

loading sim data...

mass factor for previous run: 2500 current run 2500

epsilon factor for previous run: 5 current run 5

progress=1, wall-charge=1405 previousits=84094 simtime=7674.71, residue=0, re

iduelhs=0,residuetop=0 leftoverxs 0

loading N_n_dot.dat

507 and 0 neutrals to be singly and doubly ionized, 41 charge exchange ions

loading neutrals

loading ions

loading electrons

START: ions: 94469, neutrals: 395374, electrons: 99415

free space charge leftover=0 (int)=0 round-pn(=0
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insulator charge leftover=0

finding initial densities...

Particle moments...

Getting the magnetic field

loading and interpolating master bfield from DEXTER

B_field loaded, 54471 nodes

adjusting anomalous B-field points

r: 70 16 hi -8377.23 low -18484.5

z: 70 16 hi -4275.06 low -10140.2

new -9837.35 r -10757.1

r: 70 48 hi -7195.52 low -6995.17

z: 70 48 hi 3177.32 low -1724.51

new 726.406 r -7095.34

making b zero at axis

interpolating B-field to our grid

zero is master node k=0 j=0 z -34.663 r 0

getting normalized B field...

getting magnetic stream function

maximum gyro frequency to be resolved is 12.626 / T

getting parallel and perpendicular electron moments

phiwall 0.0628123

Initial Neutral moments...

neutral quick moments...

mass 6.27001e+006

mom.z 20271.5 mom.r 2751.73 mom.theta -18.2094

en.z 48.5526 en.r 5.16998 en.theta 1.17915 sum 54.9017

neutraltotal 395374

Scrubbing neutrals: Found 188859 of size 1
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25253 Charge exchange neutrals to be excluded

worst cell to be cleaned has 103 XS neutrals size 1, requires 10.3 iterations

scrubbing 10 times

after scrubbing 10 times, neutral total 393148

Still 186052 neutrals size 1

ke initial: 292.593 final 292.59

quick moments...

Neutral moments...

masstotalo 6.27001e+006 masstotalf 6.27001e+006

mass 6.27001e+006

mom.z 20271.8 mom.r 2751.93 mom.theta -18.0088

en.z 48.554 en.r 5.17006 en.theta 1.17897 sum 54.903

getting and

eedf.psi[0]

eedf-psi[1]

eedf-psi[2]

eedf-psi[3]

eedf-psi[4]

eedfpsi[5]

eedf-psi[6]

eedf-psi[7]

eedf-psi[8]

eedf-psi[9]

saving eedf...

lo=-255.004 hi=-202.025

lo=-202.025 hi=-166.519

lo=-166.519 hi=-112.71

lo=-112.71 hi=-22.1339

lo=-22.1339 hi=0

lo=0 hi=15

lo=15 hi=75

10=75 hi=200

lo=200 hi=350

lo=350 hi=481

enter number of iterations: 1000

delta-spots

spot 0 = 40

spot 1 = 46

spot 2 = 52

spot 3 = 58

6

65 z 0 r 15.8459

65 z 1.66097 r 15.9521

65 z 3.32714 r 16.0804

65 z 4.99776 r 16.2118
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spot

spot

spot

spot

spot

spot

4=

5=

6=

7=

8=

9=

64

70

76

82

88

94

65

65

65

65

65

65

z

z

z

z

z

z

It: 0, T: 7674.829,

It: 1, T: 7674.947,

It: 2, T: 7675.061,

It: 3, T: 7675.176,

It: 4, T: 7675.278,

It: 5, T: 7675.396,

\end{performance}

6.67616 r

8.36679 r

10.0758 r

11.8119 r

13.5878 r

15.4209 r

ions:

ions:

ions:

ions:

ions:

ions:

16.355

16.5199

16.7184

16.9673

17.2992

17.7664

94471,

94472,

94486,

94485,

94494,

94486,

neutrals:

neutrals:

neutrals:

neutrals:

neutrals:

neutrals:

393152,

393156,

393160,

393164,

393173,

393183,

electrons:

electrons:

electrons:

electrons:

electrons:

electrons:

Several of the lines above deserve explanation.

" The normalization constants are re-calculated each time the simulation is initialized.

" The simulation asks the user whether old particle files should be loaded. If not, the

simulation seeds the simulation region uniformly with a pre-set number of particles.

" At the beginning of each run, the neutral population is scrubbed for small neutrals

is regions of high number density. Such neutrals are lumped together. The data-

stream above seems to indicate that energy and momentum are not conserved in

this operation. However, what are shown are only rough estimates. Energy and

momentum are conserved exactly in this operation.
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Appendix B

Cross Sections

The following functions (written in C) return some of the cross sections for electron-

neutral scattering of a particle at relative energy E off a neutral background. Units of

energy are in eV, while the cross sections themselves are in cm 2:

/* ------------------------------------------------------------------- *

/* The total electron-neutral scattering cross section, 3/7/00 */

/* ------------------------------------------------------------------- *

double sigma.total(double E){

double rootE;

double ans;

rootE=sqrt (E);

if (E<=.1592)

ans=1.699e-15; /* not exact -- data is at 1.703,

function evaluates to 1.695 */

else if (E<=2.8)

ans=

1.0e-13 *(

0.07588072747894*E*E

-0.34475940259139*E*rootE

+0.58473840309059*E
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-0.42726069455393*rootE

+0.11430271021684);

else if (E<=24.7)

ans =

1.0e-13 *(

-0.00199145459640*E*E

+0.02974653588357*E*rootE

-0.16550787909579*E

+0.40171310068942*rootE

-0.31727871240879);

else if (E<=50)

ans =

1.0e-13 *(

-0.00217736834537*E*rootE

+0.04302155076778*E

-0.28567311384223*rootE

+0.65180228051047);

else if (E<=500)

ans =

1.0e-14 *(

-0.00002249610521*E*rootE

+ 0.00109930275788*E

-0.02071463195923*rootE

+ 0.22876772390428);

else

ans=

6.400000000000000e-16;

return ans;
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}

/* ------------------------------------------------------------------- *

/* The total neutral to Xe+1 ionization x-section, 3/7/00 */

/* ------------------------------------------------------------------- *

double sigma-n1(double E){

double rootE;

double ans;

rootE=sqrt(E);

if (E<=12.1)

ans=0;

else if (E<=20)

ans =

1.0e-13 *(

0.00135612832973*E*E

-0.02258559839486*rootE*E

+ 0.14035004086532*E

-0.38335664819867*rootE

+0.38736677629904);

else if (E<=44)

ans =

1.0e-14 *(

-0.00061869954583*E*E

+0.01448501832638*E*rootE

-0.13321973517308*E

+0.57375481836921*rootE

-0.92720818547058);
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else if (E<=360)

ans =

1.0e-15 *(

-0.00001627288393*E*E

+0.00103294012446*E*rootE

-0.02400846159171*E

+0.21746827014037*rootE

-0.18814292010734);

else

ans=2.440000000000000e-16;

return ans;

}

/* ------------------------------------------------------------------- *

/* The total neutral excitation x-section, 3/7/00 */

/* ------------------------------------------------------------------- *

double sigma-excite(double E){

double rootE;

double ans;

rootE=sqrt(E);

if (E<=EEXCITE)

ans=0;

else if (E<=11)

ans =

1.0e-12 *(

0.00194724369808*E*E

-0.02261576374741*E*rootE

+0.09807793114366*E
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-0.18808539260191*rootE

+0.13446494003922);

else if (E<=25)

ans =

1.0e-13 *(

0.00069390658261*E*E

-0.01241570210985*E*rootE

+0.08109737428153*E

-0.22730324307635*rootE

+0.23122639784590);

else if (E<=500)

ans =

1.0e-14 *(

0.00000121267639*E*E

-0.00008169557347*E*rootE

+0.00207211887803*E

-0.02409700583197*rootE

+0.11701534311188);

else

ans=3.950000000000000e-17;

return ans;

}
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Appendix C

The Boltzmann Equation

The Particle-In-Cell (PIC) and Monte Carlo Collision (MCC) methodologies described

in this thesis are fully kinetic. They produce, for each species, a particle distribution in

phase space, f(F, V, t), which changes over time. The total derivative of f(,6 i, t) with time

is
df Of of dx of dy Of dz Of a Of dvy Of dvz (C.1)

-= -±+ + +--+ + +(C1
dt Ot Ox dt Oydt Ozdt Ovxdvx Ovy dt ovz dt

or

df + V - Vf+6-V f (C.2)dtat
This leads to a continuity equation, were we note that mv = F:

df F
-+ V- Vf + - -Vef =0 (C.3)

This is just the Vlasov equation, which applies for a collisionless plasma. Adding in colli-

sions, a source term Sa, and a sink term La, we reach the fundamental equation which a

distribution f(?, , t) must satisfy, the Boltzmann equation:

Of F Of Of
+V-Vf-+ .. =(- )c+Sa+La (C.4)

19t M 096 19t

Here, F is the force acting on the particles and ( I)c is the collision term. In a Hall thruster,

collisions drive the discharge. Some collisions (e.g. ion-ion, neutral-neutral) are relatively

infrequent and can be neglected. The most important are electron collisions which excite

and ionize the neutrals, and those which significantly affect the electron energy distribution
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function. Electrons collide with both neutrals and other charged particles; the collision

term for electrons can be expressed,

Of Of Of
( )C= ( a)N + ( )C. (C.5)at at at

Electron-neutral collisions can be treated as discrete events using a standard MCC method.

Electron-ion and electron-electron collisions are better treated as a diffusion process in

velocity space.

Charged particles are also subject (via the potential solver) to non-physical forces which

lead to artificial heating of the plasma. This subject has been treated by Hockney [19] and

is discussed in Chapter 4.
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Appendix D

Maxwell's Equations in SI Units

This simulation uses the CGS formulation of Maxwell's equations. However, the SI

formulation provides a clearer understanding for many engineers. In fact, it is needed to

follow the changes in c, used to accelerate the simulation.

D.O.1 Maxwell's Equations in SI Units

We begin with Maxwell's equations:

a5V x H = + fat

V-D =Pe

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

V -5 = 0

D= CE

B = pH (D.6)

In free space and in a plasma, y p . In free space, the permittivity E ~e,. In a material

D = coE + P where P = e, X E is the polarization per unit volume (the sum over all the

individual moments of the electric dipoles in the material), such that D = co(I + X)E

where X is a non-dimensional tensor called the susceptibility.

In plasma physics, electron energies are temperatures are frequently expressed in electron-
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Volts, or eV. If Boltzmann's constant, K, and electron charge, e, are in SI units, and tem-

perature is given in Kelvin, then KTK = eev.

D.O.2 Plasma Formulation of Maxwell's Equations in SI Units

In plasma physics, we normally use the free space formulation of Maxwell's equations:

85
V X E = (D.7)at

V x N = Co- + J + Jext (D.8)at

EoV - = Pe + Pe,ext (D.9)

V -B = 0 (D.10)

where Jext and Pe,ext are external currents and charge densities, here assumed to be zero.

In free space and in a plasma, p a po. In free space, E = co. For good measure, we include

the Lorentz force equation:

F = q($ + v x 5) (D. 11)

The internal current J and its transform define the tensor susceptibility, X, of the plasma:

J = Co X - (D.12)

f= -ioco x -E (D.13)

(This may be likened to the polarization, P, where we note that an actual polarization

current can only arise if 5 is time varying.) The susceptibility determines the response of

the plasma to the magnetic field and thus describes the physics of the problem. When the

susceptibility is a function of w, the plasma is said to be dispersive in time. When it is a

function of wave number, the plasma is said to be dispersive in space. The dielectric tensor

* * +4 +*
(permittivity tensor) K is defined by the identity and susceptibility tensors: K=I + X.

Thus, the transform of Ampere's Law (D.8) may, in the absence of external currents (Jext

0), be written:

V x H = -ico K -E (D.14)
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The transform of Faraday's Law (D.7) yields:

V x E = iwpOH (D.15)

Taking the curl of (D.15) and substituting for V x H with (D.14), we arrive at a wave

equation for the electric field:

-- 2 " -VXVXE-AOEW K-E=O (D.16)

Noting that pco = c- 2 , and defining k, = 2, we may rewrite this equation as follows:

V x V x E - k 2 K E=O (D.17)
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