
Spectral Sparsification and Spectrally Thin Trees

by

Rafael Oliveira

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

MASSACHUSETTS INST E
at the OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY r 022013

September 2012 LIBRARIES

@ Massachusetts Institute of Technology 2012. All rights reserved.

Signature redacted
Author

Department of Electrical Engineering and omputer Science
August 25, 2012

Signature redacted
Certified by.. .

Michel Goemans ~
Leighton Family Professor of Applied Mathematics

Thesis Supervisor

Signature redacted
Accepted by...............

Dennis Freeman
Chairman, Department Committee on Graduate Theses

2

Spectral Sparsification and Spectrally Thin Trees

by

Rafael Oliveira

Submitted to the Department of Electrical Engineering and Computer Science

on August 25, 2012, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

We provide results of intensive experimental data in order to investigate the existence

of spectrally thin trees and unweighted spectral sparsifiers for graphs with small

expansion.
In addition, we also survey and prove some partial results on the existence of

spectrally thin trees on dense graphs with high enough expansion.

Thesis Supervisor: Michel Goemans

Title: Leighton Family Professor of Applied Mathematics

3

1. Introduction

A sparsifier of a graph G = (V, E) is a sparse subgraph H = (V, E') of G that is

similar to G according to some set of criteria. The criterion that defines a spectral

sparsifier is the following: H is an E-spectral approximation of G, if for all x E RY7

(1 - E)xTLG < XLH _ (1 + E)XT LGx (1)

where LG and LH are the combinatorial Laplacian matrices of the (weighted) graphs

G and H. This notion of sparsification was introduced by Spielman and Teng in [6, 7].

Another notion of sparsification, given by Benczur and Karger in [3], is the notion of

cut-sparsifiers, where the weight of each cut in H is approximately the same as the

weight of the same cut in G, for every cut of the graph. From both definitions, it

is easy to see that the notion of spectral sparsification is strictly stronger than the

notion of cut sparsification, since the latter notion is equivalent to satisfying condition

(1) only for vectors x E {0, 1 }V.

A spanning tree T = (V, F) of a graph G = (V, E) is said to be a-thin, where

a < 1, if for every partition (S,9) of the graph, we have 1F(S,S)I aI6E(S,S)J,

where 6 E(S, 5) is the set of edges in the cut (S, 5) in G (we define 6 F(S, 5) similarly).

Thin trees are important combinatorial objects, and their existence for highly edge-

connected graphs imply important results in combinatorics and in approximation

algorithms. For instance, Goemans et al. [1] showed that if there is always an a-

thin tree for k-edge-connected graphs, then the integrality gap for the Held-Karp

relaxation for the Asymmetric TSP is bounded above by a constant, which would

close the integrality gap for this problem. We can also formulate the definition of

thin trees in the spectral sense. We say that a tree T = (V, F) is spectrally a-thin

with respect to G = (V, E) if for all x E RV, we have XTLTX < aXTLGX-

While it is again clear that the definition of spectral thinness is stronger than the

cut definition, it is much easier to check for spectral thinness than to test whether a

spanning tree is cut thin, for the latter is NP-hard, whereas the former can be easily

done in polynomial time, by checking whether aLG - LT is positive semidefinite.

4

Therefore, it is natural to try to characterize which graphs have spectral thin trees

and to construct these trees for these kinds of graphs. In 2009, Batson, Spielman

and Srivastava provided a deterministic algorithm in [2] which, given an input graph

G = (V, E), produces a weighted spectral sparsifier H = (V, F) where IFl = O(1V 1).

With their algorithm, Goemans was able to show that any graph G = (V, E) has a

4-spectrally thin subgraph H = (V, F) with IF = n (not necessarily connected).

It is also known that there exist k-edge-connected graphs (even for non constant k =

VI) that have cut thin trees but which have no spectrally thin tree. Nevertheless,

the categorization of which kinds of graphs have spectrally thin spanning trees is still

an open problem, and the construction of spectrally thin trees for graphs where they

exist is also an open and important problem. We consider the existence of spectrally

thin trees to be an easier problem than to check the existence of spectral sparsifiers

in which the weights of all the edges selected are all the same.

In this thesis, we present the results of a computationally intensive experimental

investigation based on simulations done for random graphs with a number of vertices

ranging from 200 to 600, and varying edge probability. More details will be presented

in section 4.

2 Background

From this section on, we will assume that all graphs are connected, undirected, with

no self loops and have n vertices, unless stated otherwise. We also assume that all

matrices are square matrices and have dimension n, unless otherwise noted.

In this section we will define some technical terms and state some properties that

will be used thoroughly in this thesis, such as the properties of the Laplacian matrix

of a graph, describe the algorithm by Batson, Spielman and Srivastava (BSS), and

define a special class of graphs called expander graphs, which will be a central object

in our investigations.

5

2.1 Definitions and Properties of the Laplacian

Definition 1. The Laplacian matrix LG of a weighted graph G = (V, E, w) is defined

as follows:

wik, if i =j
kEF(i)

[LG]ij = -wij, if (ij) E E(G)

0, otherwise

where I'(i) is the set of neighbors of vertex i in G and w : E - R+

With this definition, it is easy to see that LG wijLij, where Lij is the
(i,j)EE(G)

Laplacian of the restriction of G to the graph on V(G) having only the edge (i, j)

with weight wij. With this observation, we can now show how to obtain cuts from

the Laplacian matrix of G.

Proposition 1. If G = (V, E, w) is a graph and S C V(G), then we have that

|6E(S, XsLGXS

where Xs E RV is the characteristic vector of the set S.

Proof. From the observation above, we know that XsLGXs = wijXTLijXs =

(i,j)EE(G)

wij(Xi - Xj) 2 , where Xi is the ith coordinate of Xs. Since Xi E {0, 1}, for all
(i,j)EE(G)

i E V, and since Xi = 1 if and only if i E S, we have that (Xi - Xj)2 = 1 if and only if

Xi # Xj, which is equivalent to saying that exactly one element of {i, j*} is an element

of S, which is equivalent to (i, j) being an edge across the cut (S, S). Therefore the

sum above is equal to Wij = I6Ew(S,) , as we wanted.

(i,j)EJE(S,s

The proposition above formalizes the fact that the spectral condition defined in

the previous section is stronger than the cut condition. Now, let's talk about positive

semidefiniteness and the spectrum of a Laplacian matrix.

Definition 2. A real symmetric matrix A is positive semidefinite if:

6

1. the quadratic form vTAv is greater than or equal to 0 for all v E R", or,

2. the eigenvalues of A are nonnegative real numbers, or,

3. A is a nonnegative linear combination of matrices of the type vvT,

the three conditions above being equivalent to one another.

From now on, we also make the following definition: we say that A - B if and

only if B - A is positive semidefinite.

Proposition 2. Laplacian matrices are positive semidefinite.

Proof. Since xT LGX = = ij(i - x) 2 and 0 for
(ij)EE(G) (ij)EE(G)

all (i, j) E E, we have that the last quantity is always greater than or equal to zero,

which implies positive semidefiniteness, by the definition above. 0

Hence, if LG is the Laplacian of a graph G, we know that LG is real symetric

positive semidefinite and we obtain the following property:

n

Proposition 3. We can write L in the following form: L = Aiviv, where the
i=2

Ai's are the nonzero eigenvalues of L and the vi's are its corresponding eigenvectors.

Moreover, the vi's form an orthonormal basis of vectors in the space orthogonal to

v 1 , where v, is the eigenvector corresponding to A, = 0 (the all l's vector).

If the graph G is connected, as we are assuming throughout this thesis, we also

know that all Ai's are strictly greater than zero, for i > 2. Now we can define the

pseudoinverse of a Laplacian.

n n

Definition 3. For a Laplacian L = E Aivivy, the matrix Lt = vivT is the
i=2 i=2

Moore-Penrose pseudoinverse of L.

n

From the definition above, it is easy to see that LLt = LtL = I v. Based on
i=2

the fact that Ai > 0 for all i > 2, we can define the square roots of both matrices L

and Lt.

7

n
Definition 4. The square root of LG = EAvivi is defined as:

i=2

n
(LG) 11 2 V . VVT

i=2

the definition is analogous for the pseudoinverse Ll.

With these definitions, we can now describe and analyze the BSS algorithm.

2.2 BSS Algorithm and Analysis

In [2], Batson, Spielman and Srivastava give a deterministic method to find weighted

sparsifiers H = (V, E, zij) with O(IVI) edges of any weighted graph G = (V, E, w).

Their algorithm is as follows:

Algorithm 1: Batson, Spielman and Srivastava's algorithm

Input: Vectors v 1 , v 2 , ... ,Vm E R" such that ZVkV = In and d > 1.
k

Output: Vector s E RT with < [d(n - 1)J positive entries, such that
M T d + I + 2vdI'

I1 d + I - 2
Initialize A 0 = 0. Set parameters uo, lo, 6 L and 6U as in [2] and T = [d(n - 1).

Define potential functions 4Iu(A) = Tr(uIn - A)- 1 and 4D,(A) = Tr(A - 1In)-l;

for t = 1,2,...,Tdo
Find a vector ve and a weight s, > 0 such that:

Ama(At_1 + Seveve) < ut and Amin(At_1 + SeVeVe) > ,

<bPut(At_1 + seVeV) <ut1(At_1) and <I4(At_1 + seveV) <bi,_(At_,);

At t- 1 + SeVeV.

Ut <Ut-1 + 6 u;

li - it-i + 6 L;

end
1

return A = -AT
iT

8

In the preprocessing stage, they compute the edge vectors given by

Vij = (L_)'I/ 2 (ei - ej), for all (i,j) C E(G). Note that with these vectors, we have

v v = 3 (L')1/2(ei-ej)(ei-ej)T(Lt)1/2 - t -1/2L(Lt i/2

(ij)EE(G) (ij)EE(G) (ij)EE(G)

- (LG) 1 /2 Lij (Lt)1/2 - (Lt)1/ 2 LG(L)1/ 2 = Im(LG)-

((i,j)EE(G)

After precomputing these vectors, they pass these precomputed vectors to algorithm 1

above, along with a constant d > 1.

They can pass the precomputed vectors as the input to the algorithm because the

vector space given by Im(LG) is isomorphic to Rivi-1. They initially start with the

zero matrix AO, which will be updated at each step by the chosen vector multiplied

by its proper weight sevev T as the algorithm goes on.

To show that they can always choose a vector ve and a weight se at each iteration,

they prove the following lemmas and combine them, as will be explained:

Lemma 1. (Upper barrier shift) Suppose Amax(A) < u and v is any vector. If

1 >VT((u+u)In -A) 2 V +v T((u + Su)In - A) 1 lv = UA(v)
s - 4u(A) - Du+6u(A)

then Amax(A + svvT) < u + Ju and u+6u(A + svVT) Iu(A).

Lemma 2. (Lower barrier shift) Suppose Amin(A) > 1, 4 1 (A) 1/ 6 L and v is any

vector. If

1 V T(A - (1 + L)ln -2V T -V0 < - < (- v (A - (1 + 6 L)I)V = LA(v)
s - l+JL(A) - 1(DA)

then Amin(A + svvT) > 1 + 6 L and D+JL(A + svvT) < 4D(A).

Based on the lemmas above, they need to show that there is a vector ve for which

0 < UA(Ve) < LA(Ve), because only with this condition satisfied will they be able to

choose a weight se for which 0 < UA(ve) 1/se < LA(Ve) is satisfied, which would

imply that they can shift both barriers and make progress in the algorithm.

9

The way they prove that there is always an edge e for which 0 < UA(ve) 5 LA(Ve)

is by showing that, under a proper setting of the initial parameters uO, 10, 6u and 6 L,

the following inequality holds (lemmas 3.5 and 3.6 in [2]):

Z UA(Ve) 1 + ni1 + n< LA(Ve).
eEE(G) U UO L 0 eEE(G)

In the end of the for loop, they will have that ITIn - AT d UTIn. Hence, by

dividing this inequality by 1T (which will be positive at the end of the algorithm),
1 UT UT d+1+2v2

they obtain I , - AT - -I. Since - + , by their choice of the
iT 1T 1T d + 1 - 2V bc

1
initial parameters, they obtain the desired output. From the output matrix -AT,

they can obtain the graph sparsifier, since by multiplying the inequality

1 1 seVT UT InI,, -<-AT =j-* Z e evT<~~
eEE(G)

by (LG) 1/ 2 on the left and on the right, they obtain that LG - LH(,F) U In,

where the weights are defined as Se = , which implies that 6e >0 for at most
1T)

[d(n - 1)J = O(jVj) edges e E E(G). This finishes the analysis.

2.3. Expander Graphs

In this section we define a special class of graphs called expander graphs. Expander

graphs are very important objects in Computer Science and Mathematics, having

important applications in many areas of both fields. For a more complete view on

expander graph properties, see [5].

Before we define what an expander is, we need to define the (edge) expansion of

a graph.

Definition 5. The (edge) Expansion Ratio of G, denoted h(G), is defined as:

16E (S,3)Ih(G)= min .
{S IIISI:<n/2} S

10

With this definition of expansion, we can now define families of expander graphs.

Definition 6. A sequence of graphs {Gi}iEN of size increasing with i is a family of

expander graphs if there exists E > 0 such that h(Gi) > e for all i.

An easy (and uninteresting) example of a family of expander graphs is the family

of complete graphs. It is easy to see that a complete graph with n vertices is an '-

expander (and therefore it is easy to obtain the lower bound c for this family). This

example is not very interesting because every vertex in each graph of the family has a

very large degree. More interesting examples of expander graphs are ones where the

maximum degree of the graph is bounded. Some interesting examples of expander

graphs are given in [5], page 453.

It turns out that one can derive bounds on the expansion of a graph G based on

the maximum degree of the graph and also on the second smallest eigenvalue of LG

(A2). The precise statement of this fact is given in the following theorem:

Theorem 1. If G = (V, E) is a graph where dma is the maximum degree in G and

0 = A, A2 _ ... < An, then

A < h(G) VT2dmaxA 2 .
2

Therefore, to get a lower bound on the expansion of a graph, it is enough to

evaluate its second smallest eigenvalue.

3. Implementations of BSS's Algorithm, Simula-

tions and Analysis of Results

In this section, we present our implementations of the adaptations of the BSS algo-

rithm, and the results of our simulations for random graphs with large expansion.

Our simulations were done mainly on random graphs G(n, p) with 200 < n < 600

(n being the number of vertices of G), based on the Erdos-Renyi model of random

graphs, where each edge is independently included in the graph with probability p.

11

The values of the probability p that we chose for our simulations lie between 1/10

and 1/20. From now on, we denote by G(n,p) a graph on n vertices that was con-

structed by using the Erdbs-R6nyi model with probability p. The code used for the

experiments, with proper comments and details of implementation, is available at

web. mit. edu/rmendes/www/masters.

3.1 Simulations

The simulations investigate four major questions. The first question is concerned with

the range of values for the upper bounds (LA(ve)) and the lower bounds (UA(ve))

at every step, for all edges of the graph. Since Batson, Spielman and Srivastava

proved that they can always take another step in their algorithm by proving that

E UA(Ve) E LA(Ve), it is natural to ask whether we have UA(Ve) LA(Ve)
eEE(G) eEE(G)
for many edges in the graph, or in which cases this inequality fails for many edges.

In addition, it is also natural to ask if many of the intervals [UA(Ve), LA(Ve)] have a

common nonempty intersection at each iteration of the algorithm.

Our second question is related to their choice of potential function. A standard

potential/barrier function that has been widely used and studied in the literature is

- log(det(uI - A)), but in their paper, they chose to use Tr(uI - A)- instead. Can

we find a set of examples in which the latter works much better than the former?

What empirical differences can we notice between these functions?

The third question that we investigated is related to the existence of spectrally thin

trees. Goemans showed that graphs G having a spanning tree of maximum degree 3

(which is the case for d-regular d-edge-connected graphs) have a spectrally a-thin tree,
_3 + 2Vd

with a - [4]. Hence if A2(G) > 3+ 2v/, then such graphs have spectrally

thin trees. Therefore, it is natural to ask whether one can obtain counterexamples

with high probability for graphs with A2 < 3 + 2-'F, or if one can obtain spectrally

thin trees with high probability for some graphs with c < A2 < 3 + 2V/2, for some

constant c > 0. We investigate this fact in our simulations. Another fact that we

investigate is how to construct such trees. We devised two distinct algorithms to try

12

to construct a thin tree from an input graph, and we want to see how often each of

them succeeds in constructing a spectrally thin tree for a given input graph. The

details of each algorithm will be explained in the next section.

The fourth question that we investigated concerns the existence of unweighted

spectral sparsifiers in highly connected graphs. In section 5 of [2], Batson, Spielman

and Srivastava suggest that if one could prove the existence of a constant r. > 0

(dependent on the input) such that at every main step of algorithm 1 there would

exist an edge e C E(G) for which UA(ve) r < LA(Ve), then we could choose the

weight s, = r. at each main step of algorithm 1, adding e to our sparsifier H, and in

the end we would obtain the following inequalities:

lT'n -< AT = > SeVeVe = 3 KVeV -< UTIn *

eEE(G) eEE(H)

1 In UVevT T In * LG UT L LG
K E e K K K

eEE(H)

Hence, if K > UT, we will obtain an unweighted spectral sparsifier for G. In

addition, we would not allow edge repetitions in this new algorithm, since we want

to obtain an unweighted graph in the end (and allowing edge repetition would add

multiplicities to edges of the graph, which we do not want).

3.2 Implementations

Due to the slow runtime of BSS's algorithm (O(dIVI 3IEI)), and the amount of matrix

multiplications involved in it, we had to precompute matrices whenever possible, in

order to significantly decrease the constant factor of the runtime. In addition, we

could not afford to precompute and store all the edge vectors ve, because whenever

we get a dense graph and 200 < lVi < 600, these edges would require too much

space to be stored and therefore MATLAB would run extremely slowly or not run at

all. Therefore, we precomputed and stored (Lb)2 in the beginning of our algorithms,

since this matrix is used to obtain the vectors vi,, for they are equal to (L') (ei -ej).

13

Algorithm 2: First Implementation For First Question
Input: LG, d > 1 filename'

Output: A file named 'filename', containing the details of the ranges of

UA(ve) and LA(ve) at each main step of BSS for the input graph G.

Precompute edge list E and (LG)1/2. Initialize an array C of length equals to

the total numbers of edges of G and having all entries equal to zero. Set

parameters uo, 10, 6 and JU as in [2], T = [d(n - 1)] and A0 = 0. Define

potential functions 4V"(A) = Tr(uI - A)- 1 and DI1(A) = Tr(A - 1In)-1;

for t =1, 2, ... , T do

R +-[]; X <-- [];

for each edge e E E do

if UA(Ve) LA(Ve) then

C[e]+= 1;

add tuple (e, [UA(Ve), LA(Ve)]) to array R;

add tuples (UA(Ve), 0) and (LA(Ve), 1) to array X.

end

end

U UA(ve);
IE(G)I eEE

L ELA(ve);IE(G)l eEE
Get the fraction of pairs of intervals that intersect one another from array

X (details and explanation in next page).

Through a linear scan over array R, check how many elements of R

intersect interval [U, L].

Save all the information in 'filename'.

Get a random element (e, [UA(Ve), LA(Ve)]) e R and set
1 _ UA(ve) + LA(Ve)

se 2

At At 1 + ± SeVeVe

Ut Ut-1+ 6 U; it +- it-1 + 6 L;

end
1

return A = -AT and write C to 'filename'.

14

In algorithm 2, array C is created to keep track of how many times an edge e has

UA(ve) < LA(Ve) throughout the run of the algorithm - the number of times being

given by C[e]. Array R is the array that keeps track of which edges at step t satisfy

the inequality UA(ve) LA(ve), and therefore can be chosen in order to choose a

weight se that allows us to progress with the algorithm. Array X is created to obtain

the number of pairs of intervals that intersect at each step t of the algorithm. The

way we count the number of intersecting pairs of intervals is the following: sort the

elements of X, which are tuples of the form (UA(ve), 0) or (LA(Ve), 1), by their first

coordinate - breaking ties with the second coordinate, so that when we break ties, we

make sure that all ending times appear after the tied starting times. After performing

this sorting, which takes O(IEI log lEt), we set up two counters: a counter ci, which

keeps track of the number of open intervals that we have so far (initially c1 = 0) and a

final counter int (initially int = 0), which will return the total number of intersecting

intervals. We perform a linear scan over the entries of X, increasing ci by 1 if we

find an entry of type (UA(Ve), 0) - because this means that we hit the beginning of

an interval - or (if we find an entry of type (LA(Ve), 1)) decreasing ci by 1 and then

setting int+ = c1, since the latter condition means that we hit the end of an interval,

and therefore this interval that just ended must have intersected the cl - 1 intervals

that are still open (that is why we need to decrement ci before adding it to int). This

procedure counts the number of intersecting intervals in O(IE log El) time, which is

the best we can hope to achieve, since we need to sort the intervals' endpoints, and

that takes O(IEI log El) time. (A good geometric description of this algorithm is the

following: we put the intervals in the real line, and then scan the line counting the

number of intersections).

Hence, for each step t, we loop through each edge e of the graph, and if UA(ve)

LA(Ve) then we increase the counter C[e], add the interval [UA(ve), LA(Ve)] to R, since

we can choose a good weight se from this interval, and update X as above. After

counting the number of intersecting intervals (both with R and X), we get a random

interval [UA(ve), LA(Ve)] from R (since R contains only intervals [UA(Ve), LA(Ve)]

that have UA(ve) LA(ve)) and update the matrix At, so that we can proceed.

15

Algorithm 3: Second Implementation For First Question
Input: LG, d > 1 'filename'

Output: A file named 'filename', containing the outcome of the algorithm

Precompute edge list E and (LG)1/2. Initialize A0 = 0. Set parameters uo, lo,
6 L and 6 u as in [2] and T = [d(n - 1)]. Define potential functions

<bu(A) = Tr(uIn - A)- 1 and <b1(A) = Tr(A - lI)-1

for t = 1, 2, ... ,T do

for i = 1, 2,...., 30 (that is, we will try a constant number of times) do
Choose a random edge e from edge list E

if UA(Ve) <; LA(Ve) then
1 UA(ve)+ LA(Ve)

se 2
At+ At 1 + seVeVe

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename'that the algorithm did not succeed;

return fail
end

end

ut <- u1 + 6u;

t+- t_1 + 6JL;
end

1
return A = --AT and write the eigenvalue gap of matrix A on 'filename'

lT

16

We devised algorithm 3 in order to address the following part of the first question:

"at each step t of the algorithm, do we have UA(ve) LA(Ve) for many edges e in

the graph?" If the answer to this question is yes, then we should expect algorithm 3

to return a correct answer at almost all times, and also to exhibit a runtime on the

order of e(djV13), since now we are only attempting to find an edge e (for which

UA(ve) LA(Ve)) in a constant number of random trials at every step t. If we fail

in these constant number of attempts, then the algorithm will return that it failed,

otherwise it will return to us a valid matrix, together with the eigenvalue gap of this

matrix, so that we can compare this eigenvalue gap to the desired upper bond on the

eigenvalue gap, which is deigenvale gap, 1ich is Algorithm 3 differs from algorithm 2, since
d +1 - 2d

the former does not look at all the edges of the graph to try to find an edge which

allows the algorithm to succeed, whereas that is the main point of algorithm 2.

Algorithms 2, 3 and 4 were devised in order to investigate the first two questions

of the previous section, which are: to investigate the range of values of the upper

bounds (LA(ve)) and the lower bounds (UA(ve)) given by the BSS algorithm, and

also to inquire whether changing the potential functions to - log(det(uI - A)) and

to - log(det(A - 1I)) will have a different effect on the outcomes.

In these implementations, we precomputed the edge list, since we will need to look

at elements of this list at every main step of the algorithm, when we want to add a

new edge to the subgraph. Because we want to sample an edge from the graph, an

edge list is much more efficient than trying to sample an edge from the Laplacian of

the graph.

17

Because we have to look at all the edges at each main step of algorithm 2 and we

had to sort list X, we are bound to the runtime of e(dV13IE I logI E). Therefore,

this is the best one can hope to achieve. However, we cannot afford the slow runtime

of the BSS algorithm (E(dV13IEI)) for algorithms 3 and 4 - since we want to run

them multiple times to produce relevant statistical data. Hence, at each main step,

instead of looping through all the edges trying to find one edge which allows us to

continue with the algorithm, we proceed as follows: we choose a random edge e of the

edge list, check if we can choose a proper weight se which allows us to make progress,

and in case this edge succeeds we proceed, else we try again. At each main step,

we attempt to make progress only a constant number of times (30 in the algorithms

above). If there are indeed many possible choices for an edge, then we should almost

always be able to find an edge in a constant number of trials, which would reduce

the running time of the algorithm to O(dVj3) in practice and our algorithm would

return a good sparsifier in almost all the times we run the algorithms. Moreover, we

would be able to produce different spectral sparsifiers of G, in case we decide to run

multiple experiments with the same graph.

Algorithm 4, which was designed to investigate the second question - concern-

ing the choice of potential function - is very similar to algorithm 3, except that

now the potential functions are given by Du(A) = - log(det(uI - A)) and <Di(A) =

- log(det(A - 1I)). This also causes the formulas for the upper and lower barrier

shifts (UA and LA in BSS) to change. Therefore the difference between algorithms 3

and 4 lies only in the initialization of the algorithm, where we choose our potential

functions and hence define what the upper and lower barrier shifts (UA and LA for

algorithm 3 and UA and L' for algorithm 3).

18

Algorithm 4: Implementation For Second Question
Input: LG, d > 1 'filename'

Output: A file named filename', containing the outcome of the algorithm

Precompute edge list E and (L)I1/2. Initialize A 0 = 0. Set parameters uo, lo,

6 L and 6u as in [2] and T = [d(n - 1)]. Define potential functions

<Du(A) = - log(det(uI - A)), <D1(A) = - log(det(A - 11)) and define

det((u +6)I -A) ,
U.A(Ve) = e(u+J) -A) __ ((u + Ju)In - A)-lv,

det((u + 'U)I - A) - det(uI - A))

det(A - (+ 6 L)I) T
A det(A - 1I) - det(A - (1 + L)I)

for t = 1, 2, ... , T do

for i = 1,2,. .. , 30 (that is, we will try a constant number of times) do

Choose a random edge e from edge list E

if UA(ve) <; L' (Ve) then
1 _ UA(Ve) + L' (Ve)

se 2

At <- At- 1 + seve);

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename'that the algorithm did not succeed;

return fail

end

end

ut - ut-1 + 6 U;

it - it-1 + 6 L;

end
1

return A = -AT and write the eigenvalue gap of matrix A on 'filename'
IT

To investigate the third question, we devised two distinct algorithms (algorithms 5

and 6). Algorithm 5 was very similar to the implementation of algorithm 3, with the

19

exception that we now select an edge e to make progress if and only if e decreases

the number of connected components and if UA(ve) < 1. This allows us to try to

obtain a tree in n - 1 steps. To check whether the candidate edge e will decrease

the number of connected components, we compared the number of zero eigenvalues

of A_ 1 + VeVT to the number of zero eigenvalues of At- 1 . If the number of zero

eigenvalues is different, than it means that edge e indeed decreases the number of

connected components. This is true because the multiplicity of the zero eigenvalue in

a Laplacian matrix counts the number of connected components of the graph defined

by this Laplacian matrix.

Algorithm 5: Randomly Constructing Spectrally Thin Trees
Input: LG, filename', uo, 6U

Output: A file named 'filename', containing the outcome of the algorithm

Precompute edge list E and (Lt)1/2. Initialize A0 = 0 and T = n - 1. Define

the upper potential function D'(A) = Tr(uIm(LG) -

for t = 1, 2,. .. , T do

for i = 1, 2,..., 30 (that is, we will try a constant number of times) do
Choose a random edge e from edge list E

if UA(ve) <; 1 AND e decreases the number of connected components of

our current forest then

At +- At- 1 +vevT

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename' that the algorithm did not succeed;

return fail

end

end

ut 4- ut-1 + JU;7

end

return AT and write the input and AT on filename'.

20

Algorithm 6: Finding Thin Trees By Growing One Connected Component

Input: LG, 'filename', uo, cU

Output: A file named 'filename', containing the outcome of the algorithm

Precompute adjacency list AL and (LIG)1/2. Initialize A 0 = 0, C = {w}, where

w is a random vertex of G, and T = n - 1. Define the upper potential function

4u(A) = Tr(uIm(LG) -

for t = 1, 2, ... ,T do

for i = 1, 2,..., 30 (that is, we will try a constant number of times) do

Choose a random vertex v from C and a random edge e E AL(v)

if UA(Ve) < 1 AND e E OG(C) then

At +- At 1 + VeVe

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename' that the algorithm did not succeed;

return fail

end

end

ut +- ut-1 + 6U

end

return AT and write the input and AT on 'filename'.

21

Algorithm 6 was devised in order to try to obtain a tree by growing only one

connected component. That is, in the first step we choose an arbitrary edge that

allows us to make progress - forming our first non-trivial connected component, call

it C - and from the first nonempty instance of C on we try to make progress only

with edges of %O(C). In order to gain easy access to the edges in aG(C), we created

an adjacency list of the graph in order to find these edges more easily. This way,

we only loop through the vertices in C, checking which of their neighbors across the

boundary allow us to make progress.

Algorithm 7 below was devised to test the construction and existence of spectral

sparsifiers, following the approach from the pervious section. To choose the constant

n in the beginning, we decided to choose a random vector ve from the edge vector

list and calculate its upper and lower barrier. Then, we try to proceed with this

value of K until the end of the algorithm. We decided to approach this experiment as

described in the pseudocode below in order to test the robustness of the algorithm,

since the value of K can vary according to the magnitude of ve. Hence, if we can often

finish the algorithm with a good sparsifier, when we run this algorithm multiple times

(sometimes even with the same input graph), this fact would suggest that there is a

range of values for which the conjecture that there are spectral sparsifiers is true, in

the case of random graphs.

And algorithm 8 is the variant of algorithm 7 when we change the potential func-

tions from Tr(uI - A)- 1 to - log(det(uI - A)). (with the adjustments in the upper

and lower barrier shift functions - i.e. UA and LA) We decided to test this variant

in the case of spectral sparsifiers as well, in order to compare the efficiency of both

potential functions in the task of finding spectral sparsifiers in which the weights of

all the edges selected are all the same.

22

Algorithm 7: Randomly Constructing Spectral Sparsifiers

Input: LG, d > 1 'filename'

Output: A file named 'filename', containing the outcome of the algorithm

Precompute edge list E and (L)1/. Initialize A 0 = 0. Set parameters uo, lo,

5L and 6 U as in [2] and T = Ld(n - 1)]. Define potential functions

<DU(A) = Tr(uIn - A)- 1 and <b 1(A) = Tr(A - lIn)-1

Choose a random edge eo from edge list E and set

1 UA(Ve.) + LA(Veo)

K 2

for t = 1, 2, ... ,T do

for i = 1, 2,..., 30 (that is, we will try a constant number of times) do

Choose a random edge e from edge list E

if UA(Ve) < 1/K < LA(Ve) then

At <- At 1 + KVeVe

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename'that the algorithm did not succeed;

return fail

end

end

ut <- ut1 + 6U;

lt <- l-1 + 6L;

If ut > 0.9,, break;

end
1

return A -AT and write ,, the step t in which the algorithm ended, lt and
- lT

ut on filename'

23

Algorithm 8: Randomly Constructing Spectral Sparsifiers With - log det Po-

tential Function
Input: LG, d > 1 filename'

Output: A file named filename', containing the outcome of the algorithm

Precompute edge list E and (Lt)1/. Initialize Ao = 0. Set parameters uo, io,

6 L and 6 U as in [2] and T = Ld(n - 1)]. Define potential functions

4u(A) = - log(det(uI - A)), <b'(A) = - log(det(A - 1I)) and define UA(ve) and

L' (ve) as in Algorithm 4. Choose a random edge eo from edge list E and set

1 UA(Veo) + L'(Veo)

K 2

for t = 1, 2, ... ,T do

for i = 1,2, ... , 30 (that is, we will try a constant number of times) do
Choose a random edge e from edge list E

if UA(Ve) < 1/r, < L' (ve) then
At +- At- + hVeVe'

break;

end

if i = 30 (this means we have found no edges in our attempt) then

Write to 'filename' that the algorithm did not succeed;

return fail

end

end

ut <~ ut-1 + 6U;

it It-, + 6L;

If ut > 0.9,, break;

end

1
return A = -AT and write ,, the step t in which the algorithm ended, it and

iT
ut on filename'

24

3.3 Analysis of Simulations and Conjectures

From the simulations that were done over the course of this year, we randomly gen-

erated 1000 examples of each random graph G(n, p) that we present in tables 2, 4

and 5, and we ran each algorithm that we described above on these 1000 examples.

The results suggest the following:

For the first question, as we ran Algorithm 2, we observed that a significant

fraction of pairs of edges (ei, e2) have intervals where UA(vei) < LA(Ve,), for i E {1, 2},

and also have nonempty intersection, that is,

[UA(vei), LA(Ve) f [UA(Ve 2), LA(Ve 2)] / 0-

From now on, we will call a pair (el, e2) a good pair whenever (el, e2) satisfies the

conditions above. This observation was true in all of our test cases, as we can see

some examples of our simulations in table 1. In addition, as we can also see in table 1,

as we increase parameter p, the percentage of good pairs tend to increase.

We also noticed that the average values of the UA's, which we denote by UA, tend

to stay in a very limited range throughout the algorithm (and similarly for LA), as

we can see on table 1 below. Moreover, we observed that the maximum value of

UA tend to always be less than the least value taken by LA throughout the run of

algorithm 2. Notice also that in this table, the fraction of good pairs - calculated over

all pairs of edges - is always around the square of the fraction of edges e that have

UA(Ve) < LA(ve) and nonempty intersection with [UA, LA]. This last fact implies that

a significant fraction of good pairs (el, e2) occur when both intervals [UA (Ve), LA (Vej)],

for i C {1, 2}, intersect [UA, LA]. Hence, all the facts in this paragraph suggest that

we should expect a high success rate of algorithm 7, since the intervals [UA, LA] tend

to overlap during the whole execution of the algorithm and also we have many edges

e for which UA(Ve) LA(Ve) and [UA(Ve), LA(Ve)] n [UA, LA] $ 0.

Conversely, another fact that suggests the behavior that we see in table 1 is the

high rate of success of algorithm 7 on table 5, since this algorithm only succeeds if at

every main step we are able to find an edge e for which UA(Ve) r < LA(Ve) in less

25

than 30 random attempts, where n is a constant that is precomputed in algorithm 7.

Since the success rate is high, this implies that there exists a range of values of r, for

which at every step t of the algorithm, there is a significant fraction of edges whose

intervals contain r,, and therefore have nonempty intersection.

Table 1: Statistics for First Investigation
G(n, p) ranges of UA ranges of LA num of intersecting intervals intersections with [UA, LA]

_ _ 10-4 __ _ 10-4 at 90% of the rounds at 90% of the rounds
G(200, 1/10) [2.06, 2.07] -0- [2.10, 2.11] -0 4 between 20% and 60% between 40% and 80%
G(300, 1/20) [1.88, 1.89] 10- 4 [1.90, 1.92] _ 10-4 between 21% and 29% between 35% and 50%
G(300, 1/20) [1.94,1.96] 10- 4 [1.98, 2.00] .10-4 between 18% and 24% between 30% and 45%

If we look at the runtimes that we observe in table 2 and compare them to the fact

that it took longer than one day to finish running the naive implementation of BSS

(given by algorithm 2) on a graph G(300,1/20), and if we also take into account the

success rate of the algorithm 3 shown on table 5 (it always returned a spectral weighted

sparsifier) we conclude that the runtimes of the two implementations (algorithms 2

and 3) also suggest that there are many edges available at every main step of the

algorithm. For if this were not the case, then algorithm 3 would halt early and fail for

some instances, since at each main step of algorithm 3 we are only allowed 30 random

attempts to try to add an edge to the sparsifier and make progress - otherwise we

halt.

Table 2: Running Times of algorithm 3
G(n,p) Average Runtime (in seconds)
G(200, 1/10) 110
G(300, 1/20) 250
G(400, 1/20) 720
G(500, 1/20) 1490
G(600, 1/20) 2750

The significant amount of edges e for which UA(ve) LA(ve) at most steps of

algorithm 2, as we can see in table 1, causes us to ask the following question: how

many times does a specific edge e has UA(ve) LA(Ve) throughout algorithm 2? The

answer to this question can give us a better sense on the distribution of the edges

that have UA(ve) LA(ve) at each step of algorithm 2.

26

According to table 3, which shows some common examples of our simulations,

every edge tends to have UA(ve) 5 LA(ve) at least once throughout the algorithm

(and usually all of them satisfy UA(ve) LA(Ve) in the first round). From the second

column of table 3, we see that most edges satisfy UA(ve) < LA(Ve) in more than 10%

of the steps of algorithm 2. From the third column of table 3, we see that at least

half of the edges tend to have UA(ve) LA(Ve) in at least 70% of the steps of the

algorithm. From analyzing the data more closely, we see that the set of all the edges

which have UA(ve) LA(Ve) in more than 70% of the steps is incident on all vertices,

which implies that for each vertex v we often have, at each step of the algorithm, at

least one edge e satisfying UA(Ve) 5 LA(Ve) such that v c e. We also noticed that

the more we increased parameter p - i.e., the probability that an edge is chosen to be

in the graph - the higher the fractions would become, as is evident when we compare

the vales obtained for G(300, 1/20) and G(300, 1/10) in table 3 below.

Table 3: Fraction of steps where each edge is available
G(n,p) edge that appeared least 10 percentile median edge that appeared most

G(200, 1/10) 0.5% 16% 66% 100%
G(300, 1/20) 1.5% 13% 75% 100%
G(300, 1/20) 0.7% 15% 76% 100%
G(300, 1/10) 3% 22% 82% 100%
G(300, 1/10) 5% 26% 85% 100%

As for the second question, algorithm 4 with the new potential functions

(- log det(ul-A) for the upper potential and - log det(A-lI) for the lower potential)

proved to be rather inefficient if compared to the results obtained for algorithm 3. As

we can clearly see in table 4, the output of this modification of the algorithm almost

always returned a matrix with a spectral ratio (that is, the ratio Amax(A)/Amin(A))

d+ 1+2Vd
that would be much larger than our bound. According to table 4,

d + 1 - 2V bl
since we started with the input d = 3, we would expect to find a spectral gap that

d±+1+2Vd
is < < 14. However, in most of the simulations done, where we set

d +1 - 2 V
d = 3, we found that this algorithm would output a matrix with spectral ratio in

the range [20,40]. And as we increased the size of the graph, the spectral ratio of

the output matrix A would increase as well, as we can see in table 4. This result

27

was very surprising, and it suggests that the original potential functions might be

more robust than the ones that we chose above for algorithm 4. Although the reasons

for the observed behavior with the new potential functions are not understood, one

possible explanation for this behavior is based on the fact that with the new potential

functions, we are allowed to have many eigenvalues close to the barriers, without

having a huge discrepancy in the potential function, whereas the same is not possible

with the potential function used in BSS, for they explain it in section 3.2 of [2].

Table 4: Eigenvalue Ranges for Outputs of Algorithm 4, with input d = 3
G(n, p) < UT in [14,20] in [20,40] > 40

G(250, 1/10) 0% 30% 61% 9%
G(300,1/20) 3.3% 29.4% 57.9% 9.4%
G(400, 1/20) 0% 22.5% 56.3% 21.2%
G(500, 1/20) 0% 4.8% 27.4% 67.8%
G(600,1/20) 0% 0% 63% 37%

For the question of constructing a spectrally thin spanning tree, from table 5 we

observe that algorithm 5 (the one that creates a thin tree by randomly trying to

add edges of the edge set E at each main step) almost always returned a spectral

thin tree when we had 2.7 < A2 < 3 + 2Vf and set the initial parameters uo = 1/2

and 6 U = 1/4n. The algorithm would also run fast - a runtime which would be on

average 80 seconds - a third of the average runtime of algorithm 3 on G(300, 15) graphs

(which is = 250 seconds, from table 2). When we tried smaller initial parameters -

UO = 1/3 and 6 u = 1/3n - algorithm 5 would almost never return a spectrally thin

tree. For values of A2 < 2, the algorithm would almost never return a spanning tree,

independently of the initial parameters. Therefore, we conjecture that it is possible

to find spectrally thin trees for graphs with 2.7 < A2 < 3 + 2v'2, given the following

initial parameters: uo = 1/2 and JU = 1/4n. Table 5 shows only the rates of success

of algorithm 5 for initial parameters uo = 1/2 and 6 u = 1/4n.

Whenever algorithm 5 would fail in returning a spectrally thin tree, it would

return a forest with one giant component (of size greater than n/2) and the rest of

the forest would be made out of small components. This behavior is as we expected,

because at each iteration of our algorithm, we have many available edges to add to the

28

Table 5: Rates of Success of the Experiments (in percentage)

G(n, p) Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6 Algorithm 7 Algorithm 8
G(200,1/10) 100 5 90 53 83 68
G(250,1/10) 100 0 96 60 95 59
G(300,1/10) 100 0 93 46 97 68
G(300,1/20) 100 3 76 12 60 43
G(400,1/20) 100 0 92 15 84 45
G(500,1/20) 100 0 94 14 91 54

graph, since for the initial parameters chosen above, we have that E UA(Ve) 5 5n,
eEE(G)

which implies that for any set of 5n edges, we must have one for which UA(Ve) < 1,

and therefore we can add it to our graph. Due to the fact that we have a total of

dn/2 edges in G(n, d), in expectation, at each step of the algorithm we obtain a large

number of available edges. Moreover, the fact that our graphs are good expanders

with high probability implies that we would obtain a giant component - otherwise, by

the expansion property, there would be more than 5n edges going across boundaries

of connected components.

The surprising part of the investigation of the this third question was that when

we tried to grow a tree by forming a single component and taking only edges from

its boundary (algorithm 6), our simulations failed considerably more often than they

failed in algorithm 5, according to the data in table 5. This suggests that the right

way to construct these thin trees is by some sort of load balancing procedure, where

we try to keep the sizes of the components as similar as possible, until we cannot help

but getting a giant component - at which stage all of the remaining components will

be of a large enough size. And at this stage, due to the expansion properties of the

graph (if the components all have sizes > 5n/A2), we would always be able to connect

all of the components, forming a spanning tree. Unfortunately, we were not able to

prove any positive result in this approach.

For the question concerning the construction of spectral sparsifiers, from table 5 we

can observe that algorithm 7 returned in most cases an unweighted spectral sparsifier.

However, from the data in table 4, algorithm 8 (where we used the log det barrier

functions) was not as efficient in returning an unweighted sparsifier for the same set of

29

graphs. In both algorithms 7 and 8, the average runtime was similar to the runtime

found for algorithm 3 in table 2. Since algorithm 7 chooses the candidate edges

randomly at each main step, we can also infer that it should be relatively easy to find

an instance of a spectral sparsifier for a random graph, otherwise our implementation

would halt for a significant fraction of our simulations, which is not what we observed

in table 4.

4. Conclusion

Throughout this year, we performed extensive numerical simulations in order to em-

pirically investigate the existence and frequency of unweighted spectral sparsifiers and

of spectrally thin trees among random graphs. Although the results of the experi-

ments seem to indicate that most sufficiently dense random graphs have unweighted

spectral sparsifiers (and hence spectrally thin trees), it still seems very difficult to

directly prove, by using the methods introduced by Batson, Spielman and Srivastava,

that we can even obtain spectrally thin spanning trees when we assume that the graph

has large enough expansion.

30

Bibliography

[1] Asadpour, Arash and Goemans, Michel X. and Madry, Aleksander and Gharan,

Shayan Oveis and Saberi, Amin.

An O(log n/ log log n)-approximation algorithm for the asymmetric traveling

salesman problem. In Proceedings of the Twenty-First Annual A CM-SIAM Sym-

posium on Discrete Algorithms, 2010, 379-389.

[2] Batson, Joshua D. and Spielman, Daniel A. and Srivastava, Nikhil.

Twice-Ramanujan Sparsifiers. In Proceedings of the 41st annual A CM symposium

on Theory of computing, 2009, 255-262.

[3] Benczn'r, Andras A. and Karger, David R.

Approximating s-t minimum cuts in O(n 2) time. In Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing, 1996, 47-55.

[4] Goemans, Michel X. Personal communication.

[5] S. Hoory, N. Linial, and A. Wigderson.

Expander graphs and their applications. In Bulletin of the American Mathemat-

ical Society, 2006, 43:439-561.

[6] Spielman, Daniel A. and Teng, Shang-Hua.

Nearly-linear time algorithms for graph partitioning, graph sparsification, and

solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium

on Theory of computing, 2004, 81-90.

[7] Spielman, Daniel A. and Teng, Shang-Hua.

Spectral Sparsification of Graphs Available at http://ariv.org/abs/0808.4134.

31

