
Protocol design contests

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Anirudh Sivaraman, Keith Winstein, Pauline Varley, Joao Batalha,
Ameesh Goyal, Somak Das, Joshua Ma, and Hari Balakrishnan.
2014. Protocol design contests. SIGCOMM Comput. Commun. Rev.
44, 3 (July 2014), 38-44.

As Published http://dx.doi.org/10.1145/2656877.2656883

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/88918

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/88918
http://creativecommons.org/licenses/by-nc-sa/4.0/

Protocol Design Contests

Anirudh Sivaraman, Keith Winstein, Pauline Varley, João Batalha, Ameesh Goyal, Somak Das,
Joshua Ma, and Hari Balakrishnan

Massachusetts Institute of Technology, Cambridge, Mass.
{anirudh, keithw, paulinev, johnnyb, ameesh, das, joshma, hari}@mit.edu

ABSTRACT
In fields like data mining and natural language processing, design
contests have been successfully used to advance the state of the art.
Such contests offer an opportunity to bring the excitement and chal-
lenges of protocol design—one of the core intellectual elements of
research and practice in networked systems—to a broader group
of potential contributors, whose ideas may prove important. More-
over, it may lead to an increase in the number of students, especially
undergraduates or those learning via online courses, interested in
pursuing a career in the field.

We describe the creation of the infrastructure and our experience
with a protocol design contest conducted in MIT’s graduate Com-
puter Networks class. This contest involved the design and evalu-
ation of a congestion-control protocol for paths traversing cellular
wireless networks. One key to the success of a design contest is
an unambiguous, measurable objective to compare protocols. In
practice, protocol design is the art of trading off conflicting goals
with each other, but in this contest, we specified that the goal was
to maximize log(throughput/delay). This goal is a good match for
applications such as video streaming or videoconferencing that care
about high throughput and low interactive delays.

Some students produced protocols whose performance was bet-
ter than published protocols tackling similar goals. Furthermore,
the convex hull of the set of all student protocols traced out a trade-
off curve in the throughput-delay space, providing useful insights
into the entire space of possible protocols. We found that student
protocols diverged in performance between the training and testing
traces, indicating that some students had overtrained (“overfitted”)
their protocols to the training trace. Our conclusion is that, if de-
signed properly, such contests could benefit networking research
by making new proposals more easily reproducible and amenable
to such “gamification,” improve networked systems, and provide an
avenue for outreach.

CATEGORIES AND SUBJECT DESCRIPTORS
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

KEYWORDS
Design Contest, Protocol, Machine Learning, Congestion Control,
Gamification

1. INTRODUCTION
Research in networked systems is carried out largely by pro-

fessional researchers at academic institutions, industrial labs, and
companies. Opening up research problems to a wider audience can
only benefit the field by increasing the number of useful attempts
at solving a problem. Design contests are one way to achieve this

goal by posing research problems in a manner that anyone with the
right background can attempt them and compare their own solutions
against other participants and the state-of-the-art.

Design contests benefit research in several ways (§5): they pro-
mote reproducible research, publicize research to a wider audience,
and may even provide lasting advances. Other fields such as natural
language processing and information retrieval have benefited from
such contests. Similar efforts have not been adopted in our field,
perhaps because of the perception that the design and implementa-
tion of networked systems is inherently harder to cast into small,
well-defined problems with quantitative goals.

There is no doubt that networked systems are complex and of-
ten involve engineering trade-offs that are hard to justify on purely
quantitative grounds. However, they also often involve components
whose performance is measurable and matters. One such example
is congestion control.

As part of MIT’s graduate course in computer networks, 6.829
(http://mit.edu/6.829), we created and ran a design contest to de-
velop the “best” congestion-control protocol over paths that traverse
cellular wireless networks. Cellular networks are a challenging case
for the many TCP congestion-control variants because link rates
vary significantly with time and because the amount of buffering
inside the network is often much higher than the prevailing (time-
varying) bandwidth-delay product.

We asked students to develop a protocol to maximize the ratio
of throughput to 95% end-to-end delay (defined precisely in § 2.4)
measured over a long-running connection. The evaluation of each
protocol was done over a packet trace we gathered independently.
We provided a training trace to help the students design protocols,
and then after the design was “frozen” and finalized, evaluated each
protocol on a fresh test trace.

From this contest, we learned that:

1. Almost all students submitted protocols that performed com-
petitively on the supplied trace, but . . .

2. . . . for some of the entries, there was a significant decrease
in performance when run on a newly-collected trace used for
the final evaluation (Figure 8), suggesting a degree of over-
training.

3. The set of student protocols traced out an achievability region
in the throughput-delay space (Figure 7). An analytic deter-
mination of the same achievability region is a much harder
task, and our result shows that it might be feasible to esti-
mate such achievability regions through such contests.

4. On the specific metric of log(throughput) −
log(95% end-to-end delay), two student protocols per-
formed slightly better than Sprout [12], a recently published

http://mit.edu/6.829

Contest AMI
on EC2

Datagrump
sender

Cellsim Datagrump
receiver

Cellular
packet-delivery

trace

Output trace

Mininet

Send output trace
 to contest server

Contest Server

Send back URL with
tpt, delay graphs

Figure 1: Block Diagram of Contest Infrastructure

protocol (§3.3). This result indicates that “crowdsourcing”
well-defined components of research problems to a broader
audience can lead to improved solutions.

2. CONTEST DESIGN
Prior to the contest, we taught students the main principles

of congestion control, including the ideas in some TCP variants
(Reno [9], Vegas [6], Compound [11], and Cubic [8]), non-AIMD
protocols (binomial [5] and equation-based control [7]), notions of
proportional and max-min fairness, and active queue management
methods. We also exposed the students to Mininet [10] in a problem
set exercise before the start of the contest.

The two-week contest included some warm-up exercises such
as experimenting with fixed-window, AIMD, and delay-based con-
gestion control to get students started with the process of design-
ing a congestion-control protocol. For the contest, we picked two
baseline protocols: Sprout, from one of our recently published
papers [12], and the transport protocol used by Skype, a popular
videoconferencing program.

Figure 1 shows a block diagram of the contest infrastructure. We
provided students with an Amazon Machine Image (AMI), a disk
image containing a basic impleementation of a congestion-control
protocol (§2.1), an evaluation harness (§2.2), and a packet-delivery
trace from a cellular network (§2.3). Students modify this imple-
mentation as they see fit, and evaluate their protocols using the har-
ness. Once the evaluation has run the duration of the trace, the out-
put trace is automatically uploaded and scored by the contest server
(§2.4). The contest server returns a URL displaying the throughput
and end-to-end delay achieved by the protocol over time, and the
position of the protocol relative to other students on a leaderboard
(§2.5). After the contest, we use an analogous procedure to evaluate
students on the testing trace (§2.6).

2.1 Boilerplate Protocol
To ensure that students focused only on the congestion-control

protocol itself, and not on low-level details such as UNIX sockets,

we provided students with a customizable protocol implementation
skeleton called datagrump (available at https://github.com/keithw/
datagrump). The skeleton defines a Controller class that can be
modified by the student to specify the entire congestion-control al-
gorithm:

1. Controller::packet was sent specifies code that is executed
whenever a packet is transmitted.

2. Controller::ack received specifies code that is executed when
an acknowledgment is received.

2.2 Evaluation Procedure
The packet-delivery process is the random process that deter-

mines the instants at which packets are delivered over a link. A
packet-delivery trace is a particular instantiation of this random pro-
cess. For a fixed-capacity link, any trace is an isochronous sequence
separated by the transmission time. For a variable-capacity link
(like a cellular network), however, the inter-delivery duration can
vary arbitrarily depending on the prevailing link quality. To model
this, we first capture a packet delivery trace from a real cellular net-
work using a tool called Saturatr [12].

Saturatr runs on a laptop, tethered to two phones each with a cel-
lular data connection: the loaded phone and the feedback phone.
We operate a server in the Internet at a location with a low-latency
path to the cellular provider. Saturatr attempts to fully utilize the
cellular link on the loaded phone, by transmitting packets over the
loaded phone between the laptop and the server in both directions
(from the loaded phone to the server and back). Saturatr maintains
a few seconds of queuing delay in each direction without allowing
the queuing delay to grow indefinitely. The larger the queuing de-
lay, the more unlikely that the link will starve for packets if the link
quality suddenly improves. This, in turn, makes it more likely that
Saturatr is fully utilizing available capacity. At the same time, an
extremely large delay can result in the network operator blocking
network access. The feedback phone is used exclusively for feed-
back in both directions between the server and the laptop. Because
it is used only for acknowledgements, it has low queuing delays in
either direction that expedite feedback.

The packet delivery trace from Saturatr is used as input to Cell-
sim [12], a network emulator that relays packets between two net-
work interfaces according to the packet delivery trace recorded by
Saturatr. Whenever Cellsim receives a packet from an application,
it delays it by a user-specified amount (the minimum one-way de-
lay), and then enqueues it into a FIFO. Based on the packet delivery
trace, Cellsim then dequeues an MTU worth of bytes at every in-
stant that a packet was delivered in the original trace. This account-
ing is done on a byte basis so that multiple smaller packets can be
dequeued in lieu of one large packet on every packet delivery event.
For all evaluations in this paper, we set the minimum one-way delay
to 20 ms.

Our complete test harness (Figure 1) consists of three compo-
nents: Cellsim, a datagrump sender, and a datagrump receiver.
Each component runs within a separate Linux Container provided
by Mininet [10], which is also responsible for routing packets from
the sender, through Cellsim, to the receiver. To evaluate student
submissions portably and repeatably, we created an Amazon AMI
containing the test harness (the sender, receiver, and Cellsim all run-
ning within Mininet) to allow each student team to evaluate their
protocol independently during the training period.

2.3 Training Trace
We released a training packet-delivery trace spanning 140 sec-

onds to aid students in developing the congestion-control protocol.

https://github.com/keithw/datagrump
https://github.com/keithw/datagrump

The training trace is a snippet of a Verizon LTE trace used in our
evaluations in [12].

Halfway through the training period, we also released a valida-
tion packet-delivery trace (a snippet of an AT&T 4G link), mimick-
ing the actual evaluation procedure since the testing trace is differ-
ent from the training trace. Using a validation trace allows students
to develop protocols that aren’t attuned to noise inherent in the trace
files.

2.4 Performance Metrics
We measure the long-term throughput of the protocol over the

entire trace, and the “95% end-to-end delay” (defined in the Sprout
paper [12]), which we repeat here. We first record the arrivals of
all packets at the receiver. Then, at every instant in time1, we find
the packet that was sent most recently among all packets that have
arrived so far at the receiver. The time elapsed since this packet
was sent is a lower bound on the playback buffer that a hypothetical
video/audio conferencing system must impose to guarantee glitch-
free playback at that instant. We compute this elapsed time at every
instant in the received trace and call the 95th percentile of this quan-
tity the “95% end-to-end delay”.

We use the 95% end-to-end delay instead of more conventional
metrics such as tail per-packet delay because a clever sender could
choose to hold off sending packets when the network’s delays are
already high. While holding off packets certainly mitigates conges-
tion, it does not benefit the application because the delay simply
builds up at the sender, instead of building up within the network.
Measuring per-packet delay in such cases would be misleading. Us-
ing the end-to-end delay guards against this problem because it rises
by 1 second for every second that the receiver doesn’t receive any
packets. Figure 5 illustrates this effect in a rather extreme case. If
the sender sends exactly two packets: one at the very beginning and
one at the very end of a trace, the end-to-end delay increases lin-
early2, even though the per-packet delay of both these packets is 20
ms.

For every run of a submitted protocol, we upload an output
trace describing the actual packet deliveries from the student’s pro-
tocol to the contest server, where we plot a time series depict-
ing the throughput in Mbits/sec of the student’s protocol in non-
overlapping 500 ms windows and compare that with the link ca-
pacity in the same window. Similarly, we plot a time series of the
end-to-end delay sampled every millisecond. Four examples of the
visualization are given in Figures 2, 3, 4, and 5, one each for
every combination of low and high throughput, and low and high
end-to-end delay.

To compare protocols, we combine these two metrics into a sin-
gle score:

log(throughput)− log(95% end-to-end delay) (1)

This objective captures a preference for both high throughput (for
good quality) and low end-to-end delay (to maintain interactivity).
Unless otherwise mentioned, all further mentions of delay refer to
95% end-to-end delay defined above.

A notable absentee from the evaluation procedure is cross-traffic.
While most congestion-control protocols operate on a link with a
FIFO queue shared among several flows, cellular networks typically
provide per-user isolation preventing one user’s aggressive behav-
ior from adversely affecting another [12]. On networks where this
assumption does not hold, the evaluation procedure would have to
be revised to either include concurrent cross traffic or run several
instances of the submitted protocol concurrently on the same link.

1In practice, we sample this quantity at a constant interval of 1 ms.
2Note that the plot is log scale on the delay axis.

2.5 The Leaderboard
Once each team had submitted at least one protocol, we dis-

played all teams on a leaderboard (Figure 6), ordered by their
log(throughput)− log(95% end-to-end delay) scores. We also dis-
play the throughput and 95% end-to-end delay achievable by an
omniscient protocol: a protocol that utilizes every available packet
delivery, and incurs a fixed per-packet delay of 20 ms on every
packet. Even so, as Figure 6 shows, the omniscient protocol might
have a 95 % end-to-end delay much larger than the minimum one-
way delay of 20 ms because of outages in the trace.

Soon after releasing the leaderboard, the teams started working
harder raising their scores to get to the top of the leaderboard. This
happened despite our telling students that what really matters is
the testing phase, and to guard against overtraining; several teams
ended up training their protocol (§3) to noise, leading to worse per-
formance on the test data.3

Username Tpt (Mbps)95% delay (ms) Score

(omniscient) 3.41 69.00 -3.01

johnnybameesh 2.53 161.00 -4.15

sprout 2.03 139.00 -4.22

dasjoshma 2.52 174.00 -4.23

XXXXX 2.32 184.00 -4.37

XXXXX 1.98 162.00 -4.40

XXXXX 2.21 199.00 -4.50

XXXXX 2.27 222.00 -4.58

XXXXX 2.46 244.00 -4.60

XXXXX 1.86 199.00 -4.67

XXXXX 2.02 221.00 -4.69

XXXXX 1.70 221.00 -4.87

XXXXX 1.65 226.00 -4.92

XXXXX 2.18 360.00 -5.11

XXXXX 2.84 472.00 -5.11

XXXXX 2.72 471.00 -5.15

XXXXX (this trace)2.66 462.00 -5.16

XXXXX 0.97 173.00 -5.19

XXXXX 2.72 595.00 -5.39

XXXXX 3.29 1193.00 -5.89

XXXXX 0.24 150.00 -6.43

XXXXX 3.07 7957.00 -7.86

Figure 6: Screenshot of leaderboard on testing trace showing pro-
tocol’s position relative to others

2.6 Testing Trace
At the end of the training period, we collected a new set of cel-

lular network traces using Saturatr. These traces were used to score
the final submission from each team to determine the contest’s win-
ners. The evaluation was identical for the training and testing traces
except for the choice of the trace itself. To determine the final stu-
dent ranking on the testing trace, we ran each protocol three times
on the testing trace and took the best of the three runs.

2.7 Prizes
3The concept of overfitting captures a similar notion for classifica-
tion tasks. Our solutions, however, are judged by network-centric
metrics such as throughput and end-to-end delay, and so we avoid
using the term overfitting.

 0

 4

 8

 12

 16

 20

0 20 40 60 80 100 120 140

M
bi

ts
/s

ec

time (s)

Throughput

Capacity
Protocol

 100

 1000

10000

0 20 40 60 80 100 120 140

de
la

y
(m

s)

time (s)

Delay

Delay
95th percentile (136 ms)

Figure 2: A protocol with high throughput and low end-to-end delay

 0

 4

 8

 12

 16

 20

0 20 40 60 80 100 120 140

M
bi

ts
/s

ec

time (s)

Throughput

Capacity
Protocol

 100

 1000

10000

0 20 40 60 80 100 120 140
de

la
y

(m
s)

time (s)

Delay

Delay
95th percentile (121 ms)

Figure 3: A protocol with low throughput and low end-to-end delay

 0

 4

 8

 12

 16

 20

0 20 40 60 80 100 120 140

M
bi

ts
/s

ec

time (s)

Throughput

Capacity
Protocol

 100

 1000

10000

0 20 40 60 80 100 120 140

de
la

y
(m

s)

time (s)

Delay

Delay
95th percentile (1054 ms)

Figure 4: A protocol with higher throughput, but much higher end-to-end delay

 0

 4

 8

 12

 16

 20

0 20 40 60 80 100 120 140

M
bi

ts
/s

ec

time (s)

Throughput

Capacity
Protocol

 100
 1000
10000

100000
1000000

10000000

0 20 40 60 80 100 120 140

de
la

y
(m

s)

time (s)

Delay

Delay
95th percentile (131969 ms)

Figure 5: A protocol with low throughput and linearly increasing end-to-end delay

Sprout

Omniscient

Skype
Bet

te
r

0

1

2

3

4

5
T

hr
ou

gh
pu

t (
M

bp
s)

1001000

Delay (ms @ 95th percentile)
200500 50

0

1

2

3

4

5

Figure 7: The 3000 student submissions

What’s a contest without prizes? When we announced the con-
test to the class, we offered modest cash prizes to the 4th, 3rd, and
2nd place finishers, and also announced the grand prize for the first
place: co-authorship on a future paper if they developed a scheme
that beat Sprout. That announcement was met with a moment’s si-
lence, followed by a student’s question asking whether the grand
prize could instead be in the form of cash as well. (In the end, we
did give gift cards to the top four winning teams.)

3. RESULTS

3.1 Achievability Region
Figure 7 shows the performance achieved by the roughly 3000

student submissions on the training trace over the two-week contest
period. The submissions trace out an empirical throughput-delay
“achievability region” shown by the convex hull.

Sprout was on the frontier of this achievability region: other pro-
tocols achieved either lower delay or higher throughput than Sprout,
but not both.

Without the contest to harness the ingenuity of 40 student proto-
col designers, it would have been much harder to form this conclu-
sion because cellular packet-delivery traces do not lend themselves
to an analytical treatment that could estimate the achievability re-
gion in closed form. Of course, we make no mathematical guaran-
tee that the student-drawn achievability region in a two-week con-
test is the true achievability region for this problem, but the shape
suggests that it might be. In any case, these are an inner bound on
the true achievability region.

3.2 Training vs. Testing Results
Despite providing teams with a validation trace to avoid over-

training, some teams created protocols that were highly tuned to the
training trace. The result was degraded performance on the testing
trace. We show this effect in Figure 8. We plot the utilization in-
stead of throughput for both the training and testing traces because
the capacity of the two traces are different. Most student protocols
are close to each other and perform well on the training set. How-
ever, when evaluated on the testing set, these protocols disperse,
indicating that several protocols had trained themselves to noise in
the training trace.

3.3 Winning Entries
On the log(throughput) − log(95% end-to-end delay) metric,

two student submissions did slightly better or about as well as
Sprout. These two protocols are de-anonymized in Figure 8.

“dasjoshma” represents the protocol designed by Somak Das and
Joshua Ma and “johnnybameesh” represents the protocol designed
by João Batalha and Ameesh Goyal.

To understand this improvement, we briefly review Sprout’s pro-
tocol here. Sprout models the evolution of link rate as a random
walk and maintains a probability distribution of the link rates at
every instant. Sprout integrates the link-rate random variable for-
ward in time for the next 100 ms to characterize the random vari-
able representing the cumulative number of packet deliveries. It
then computes the 95th percentile of this random variable, giv-
ing Sprout a cautious forecast for the number of packets that will
be delivered in the next 100 ms, which Sprout uses as its current
window. Sprout’s objective is not maximizing log(throughput)−
log(95% end-to-end delay); instead, Sprout attempts to maximize
throughput while ensuring that the probability of the per-packet de-
lay exceeding 100 ms is under 95%. Sprout places greater emphasis
on delay than throughput, while the objective in our contest accords
equal importance to both quantities. We note that Sprout achieves
close to the lowest delay on both the training and testing traces in
Figure 8.

The two student submissions that improved on Sprout used a sim-
ilar approach:

1. Estimate the received rate using an exponentially-weighted
moving average (EWMA).

2. At the sender, multiply the received rate by a tunable target
queuing delay.

3. Use this as the congestion window for the transport protocol.
The code for the two winning entries is available at https://
github.com/joshma/datagrump (dasjoshma) and https://github.com/
ameeshg/wither (johnnybameesh).

4. RELATED WORK
Data contests aiming to make sense of massive amounts of data

are gaining in popularity. The Netflix grand challenge is a promi-
nent example: Netflix awarded a $1 million prize for an algorithm
that improved its recommendation system by a specified amount on
a well-defined scoring metric. Contests are also common in the area
of natural language processing such as the Knowledge Base Popu-
lation [4] competition, where participants populate existing knowl-
edge bases such as Wikipedia from unstructured text.

Kaggle [2] is an online service that allows data producers to tap
into a community of data scientists through contests. These con-
tests span areas ranging from predicting loan defaults and insur-
ance claims to flight simulation. Our contest also uses real-world
data in the form of a packet-delivery trace, but our goal was not
to develop a predictive algorithm to predict link capacity or mini-
mum one-way delay on the link. Instead, our goal was to develop
a congestion-control protocol measured using standard networking
metrics such as throughput and delay.

Various DARPA grand challenges are other instances of com-
petitions, which have sometimes led to the design of better systems
(autonomous cars) or have demonstrated surprising capabilities (the
balloon challenge). The on-going spectrum challenge [1] takes this
approach toward physical layer radio communication.

Stanford University’s Reproducible Network Research class [3]
takes published research and replicates their results over a semester-
long class. Protocol design contests can take reproducible research
one step further by not only reproducing existing research, but also
improving upon them.

5. OUTLOOK
Design contests such as the one we conducted in MIT’s graduate

networking class have several benefits, which we outline below:

https://github.com/joshma/datagrump
https://github.com/joshma/datagrump
https://github.com/ameeshg/wither
https://github.com/ameeshg/wither

0

0.2

0.4

0.6

0.8

1
U

ti
li
z
a
ti

o
n

 (
fr

a
c
ti

o
n

)

95% end-to-end delay (ms)

dasjoshma
2

3

4

5

sprout
78

9
10

johnnybameesh

12

13
14

15

16

17

18

19

20

21

Training trace (Verizon LTE, September 2012)

10016226443070111401856302149168000

Bet
te
r

(a) Performance on training trace

10016226443070111401856302149168000

U
ti

li
z
a
ti

o
n

 (
fr

a
c
ti

o
n

)

95% end-to-end delay (ms)

dasjoshma
2

3

4

5

sprout7

8

9
10 johnnybameesh

12

13

14

15

16

17

18

19

20
21

Bet
te
r

Testing trace (Verizon LTE, March 2013)

0

0.2

0.4

0.6

0.8

1

(b) Performance on testing trace

Figure 8: Student protocols cluster on the training trace and disperse on the testing trace

1. Crowdsourced Protocol Design. Tapping into a larger pool
of human resources allows us to design better protocols, as-
suming an objective evaluation metric is known a priori.
Crowdsourcing has largely been used for repetitive and te-
dious tasks by previous systems such as Mechanical Turk.
Design contests allow us to use the wisdom of the crowd for
considerably more involved problems.

2. Reproducible Research. Turning a research problem into a
well-specified contest forces the researcher to clearly articu-
late the testing conditions and ensure that her protocol works
reproducibly under those conditions. This, in turn, makes the
protocol accessible to a wider audience of other researchers.

3. Explicitness in problem specification. “Gamifying” a re-
search problem entails setting up a well-defined problem
where the end objective is clearly specified. Several proto-
cols today (for instance, TCP Cubic [8]) try to do something
reasonable under all conditions without specifying their end
goal. Specifying an objective explicitly has several benefits:

(a) It affords a more directed search for the solution.

(b) It forces the designer to think hard about whether the
objective is one that an application truly cares about.
The distinction between per-packet delay and end-to-
end delay, discussed earlier, is a case in point.

4. Achievable Region Estimation. The achievable region (in
our case, all achievable (throughput, delay) tuples) is mathe-
matically intractable in several cases. Turning such problems
into contests allows us to trace out a crowdsourced achiev-
ability region, assuming a large number of submissions.

Such contests have benefited several other fields and we think
they confer similar benefits on Computer Networking as a whole.
They also provide a means to engage students directly in the activ-
ity of research by simplifying a problem down to its essence such
that it can be approached by a student with little domain expertise.
Feedback from students taking the class was overwhelmingly posi-
tive, with several students singling out the contest for praise.

Code for all components of our evaluation infrastructure is avail-
able at http://web.mit.edu/anirudh/www/contest.html. In describ-
ing our experiences running a congestion-control protocol design
contest, we hope to prod others into running similar contests cen-
tered around other classical, well-defined problems within network-
ing such as routing, traffic engineering, and scheduling.

6. ACKNOWLEDGMENTS
We thank the 6.829 students for making this contest possible.

Jonathan Perry, as the teaching assistant for 6.829, gave us valuable
feedback on the design of the contest. We thank the anonymous
CCR reviewers and Amy Ousterhout for feedback that significantly
improved the quality of the paper.

7. REFERENCES
[1] DARPA Spectrum Challenge.

http://www.darpa.mil/spectrumchallenge/.
[2] Kaggle:Go from Big Data to Big Analytics.

https://www.kaggle.com/.
[3] Reproducing Network Research — network systems

experiments made accessible, runnable, and reproducible.
http://reproducingnetworkresearch.wordpress.com/.

[4] Text Analysis Conference (TAC) KBP 2013 Tracks.
http://www.nist.gov/tac/2013/KBP/.

[5] D. Bansal and H. Balakrishnan. Binomial Congestion
Control Algorithms. In INFOCOM, 2001.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New Techniques for Congestion Detection and
Avoidance. In SIGCOMM, 1994.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-Based Congestion Control for Unicast
Applications. In SIGCOMM, 2000.

[8] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly
High-Speed TCP Variant. ACM SIGOPS Operating System
Review, 42(5):64–74, July 2008.

[9] V. Jacobson. Berkeley TCP Evolution from 4.3-tahoe to
4.3-reno . In Proceedings of the Eighteenth Internet
Engineering Task Force, 1990.

[10] B. Lantz, B. Heller, and N. McKeown. A network in a laptop:
Rapid prototyping for software-defined networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets-IX, pages 19:1–19:6, New York,
NY, USA, 2010. ACM.

[11] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound
TCP Approach for High-speed and Long Distance Networks.
In INFOCOM, 2006.

[12] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic
Forecasts Achieve High Throughput and Low Delay over
Cellular Networks. In USENIX Symposium on Networked
Systems Design and Implementation, Lombard, IL, April
2013.

http://www.darpa.mil/spectrumchallenge/
https://www.kaggle.com/
http://reproducingnetworkresearch.wordpress.com/
http://www.nist.gov/tac/2013/KBP/

	Introduction
	Contest Design
	Boilerplate Protocol
	Evaluation Procedure
	Training Trace
	Performance Metrics
	The Leaderboard
	Testing Trace
	Prizes

	Results
	Achievability Region
	Training vs. Testing Results
	Winning Entries

	Related Work
	Outlook
	Acknowledgments
	References

