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A large class of symmetry-protected topological phases (SPT) in boson/spin systems have been recently
predicted by the group cohomology theory. In this work, we consider bosonic SPT states at least with charge
symmetry [U(1) or ZN ] or spin-Sz rotation symmetry [U(1) or ZN ] in two (2D) and three dimensions (3D) and the
surface of 3D. If both are U(1), we apply external electromagnetic field/“spin gauge field” to study the charge/spin
response. For the SPT examples we consider {i.e., Uc(1)�ZT

2 , Us(1)×ZT
2 , Uc(1)×[Us(1)�Z2]; subscripts c and

s are short for charge and spin; ZT
2 and Z2 are time-reversal symmetry and π rotation about Sy , respectively},

many variants of Witten effect in the 3D SPT bulk and various versions of anomalous surface quantum Hall effect
are defined and systematically investigated. If charge or spin symmetry reduces to ZN by considering charge-N
or spin-N condensate, instead of the linear response approach, we gauge the charge/spin symmetry, leading to
a dynamical gauge theory with some remaining global symmetry. The 3D dynamical gauge theory describes
a symmetry-enriched topological phase (SET), i.e., a topologically ordered state with global symmetry which
admits nontrivial ground-state degeneracy depending on spatial manifold topology. For the SPT examples we
consider, the corresponding SET states are described by dynamical topological gauge theory with topological BF
term and axionic � term in 3D bulk. In addition, the surface of SET is described by the chiral boson theory with
quantum anomaly.

DOI: 10.1103/PhysRevB.88.235109 PACS number(s): 73.43.Cd, 75.10.Jm

I. INTRODUCTION

Searching for exotic quantum many-body states is one of
the main goals in condensed matter physics. Physically, all
states (or “phases” interchangeably) are either gapped states
or gapless states, depending on the bulk energy gap between
the ground state and first excitation. Recently, considerable
attentions have been drawn by both kinds of states. Some
gapless states with strong correlations emerge at quantum
critical points without long-lived quasiparticles, in which some
new approaches based on the holographic principle in string
theory are introduced into condensed matter physics. On the
other hand, the notion of “quantum entanglement” becomes
an important viewpoint for understanding gapped states.1,2

By utilizing the well-defined “local unitary transformation
(LU)” suggested by Chen et al., all gapped states are classified
into two categories: “short-range entangled states (SRE)” and
“long-range entangled states (LRE).”3–5

For LRE states, there is no canonical LU to connect
LRE to a trivial direct product state (a state with zero
entanglement range). The well-known fractional quantum
Hall states6 (FQH) are a class of LRE states with highly
long-range entanglement. A LRE state generally admits an
intrinsic topological order (TO) or “topological order” for
short.7–9 A TO state is defined by the following features:
ground-state degeneracy in a topologically nontrivial closed
manifold,7–10 or emergent fermionic/anyonic excitations,11,12

or chiral gapless edge excitations.13,14 If, in addition to a
topological order, the ground state also has a global symmetry,
such a state will be referred to as a “symmetry-enriched
topological (SET) phase.”

In contrast, a SRE state can always be adiabatically
deformed to a trivial direct product state and thus generically

has no TO, which looks quite boring. However, recent rapid
progress indicates that some SRE states are quite special for
the reason that these SRE states can not be adiabatically
deformed to a direct product state unless a certain onsite
global symmetry group (i.e., a global symmetry operation
that is a direct product of the operation on each lattice site)
is broken, unveiling the existence of nontrivial symmetry-
protected properties in such SRE states.3–5 This fact leads
to the notion of “symmetry-protected topological phases”
(SPT), which are currently under considerable investigation.
The well-known three-dimensional noninteracting fermionic
topological insulator (TI) state is a fermionic SPT in which
the surface single massless Dirac fermion is protected by the
symmetry group U(1)�ZT

2 where U(1) is charge symmetry
related to the fermionic particle-number conservation and
ZT

2 is time-reversal symmetry.15–21 The Haldane phase in an
antiferromagnetic Heisenberg spin chain with integer spin and
SO(3) spin-rotation symmetry is a bosonic SPT.22 At each
edge of the spin chain, a free spin- 1

2 degree of freedom arises,
which is protected by SO(3) symmetry group. In the following,
we will only discuss SPT states in boson/spin systems.
In boson/spin systems, interactions are crucial to realize
nontrivial SPT states or TO states. Some useful theoretical
approaches are recently proposed, such as exactly soluble
models,23–30 the fusion category approach,31,32 projective
construction,33–35 K-matrix Chern-Simons approach10,36–40

and other field theory approaches,41–45 the group cohomology
approach,3–5 and modular invariance of edge conformal field
theory (CFT).46 In the group cohomology classification theory,
a SPT state with symmetry group “G” in d-dimensional spatial
lattice is classified by the group cohomologyHd+1[G,U(1)].3–5

The famous Haldane phase is classified by H2[SO(3),U(1)] =
Z2 indicating that there is only one nontrivial Haldane phase in
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addition to one trivial phase. In 3D, the “bosonic topological
insulator” (BTI) with U(1)�ZT

2 are studied by Refs. 34, 35,
41, 47, and 48.

The group cohomology theory49 provides the elements of
the cohomology group to label SPT states, while it is also inter-
esting to build up the connection between the abstract labels
and physical properties (such as electromagnetic response).
The following two general approaches are mainly applied in
the community: response theory and dynamical gauge theory.

For U(1) SPT states in 2D which are labeled by
H3[U(1),U(1)] = Z, an applicable way to understand the
ground states is to add an external U(1) gauge field to
study the response theory. Here, the U(1) gauge field is
nondynamical. The resultant response action is a Chern-
Simons term with a quantized Hall conductance σ = 2k × e∗2

2π

where k ∈ Z and e∗ is the fundamental gauge charge carried by
bosons.33,50–53 This integer k is also the integer label defined
in the group cohomology classification theory as a one-to-one
correspondence.54

On the other hand, a pioneer work by Levin and Gu23 leads
to a breakthrough. They study the 2D Ising paramagnets (SPT
states with Z2 symmetry) by fully gauging the Z2 symmetry,
which results in a dynamical gauge theory where the gauge
field variables become new degrees of freedom. Their gauging
procedure indicates that a trivial paramagnet maps to a dynam-
ical Z2 gauge theory (i.e., Z2 toric code), while a nontrivial
paramagnet maps to a nontrivial dynamical Z2 gauge theory
(i.e., Z2 doubled semions). This correspondence gives Z2

classification which is consistent with the group cohomology
classification H3[Z2,U(1)] = Z2, i.e., one nontrivial SPT state
and one trivial state. In a more complicated symmetry group,
one can partially gauge a normal subgroup of the global
symmetry group of SPT. The resultant dynamical gauge theory
may describe a SET state since some global symmetries remain
in the gauged theory.37,38,55,56

In this work, we will elaborate the two approaches “re-
sponse theory” and “dynamical gauge theory” in many SPT
examples which at least have charge symmetry [U(1) or ZN ]
or spin-Sz rotation symmetry [U(1) or ZN ] in two and three
dimensions. The symmetry groups in this work are more
relevant to realistic physical systems in condensed matter.
More specifically, if both charge and spin symmetry are the
simplest continuous U(1), we apply the response theory to
study the charge and spin dynamics of the three-dimensional
SPT bulk (denoted by �3), the surface (denoted by ∂�3) of
the �3 bulk, and the two-dimensional SPT bulk (denoted by
�2). We stress that, instead of looking into microscopic lattice
models and utilizing sophisticated mathematical techniques or
physical arguments, in the whole discussions of this work we
will attempt to start with the minimal necessary physical input
(such as gauge invariance principle, absence of topological
order, etc.) to extract the response theory. We will also apply
the so-called “top-down approach” based on the “KG-matrix”
Chern-Simons term (a gauged version of K-matrix Chern-
Simons field theory by adding the external electromagnetic
field Ac

μ minimally coupled to charge current and the external
“spin gauge field” As

μ minimally coupled to spin current).
From this response approach, we will construct many variants
of the celebrated Witten effect and also many different versions
of quantum Hall effects, depending on the choice of probe

fields (external electromagnetic field or external spin gauge
field) and the choice of response current (charge current or
spin current). By studying the response phenomena case by
case, we emphasize that, although both ∂�3 and �2 are two
dimensional, the response theory on ∂�3 is realized in an
anomalous fashion in a sense that an extra spatial dimension
(deep into the bulk) is required, in sharp contrast to the
response theory of SPT defined on �2 with the same symmetry
implementation. The above results will be discussed in Sec. II.
A summary of Witten effects and quantum Hall effects is
shown in Table II.

If charge or spin symmetry reduces to ZN by considering
charge-N or spin-N condensate, we change our strategy due
to the “Meissner effect” for charge and spin. Instead of the
response approach, we diagnose the SPT states by gauging
a normal subgroup (i.e., the charge symmetry and spin-Sz

rotation symmetry) of the whole symmetry of SPT, resulting
in a dynamical gauge theory with both gauge symmetry and
global symmetry. In the examples we will consider, each
dynamical gauge theory in �3 describes a SET state in
which ground-state degeneracy is nontrivially dependent on
the spatial manifold topology. More specifically, the generic
form of the dynamical gauge theory in �3 is a topological
gauge theory and consists of two topological terms: topological
BF terms and variants of axionic � terms. In addition, its
surface (∂�3) theory is a chiral boson matter field theory
that admits quantum anomaly and is meant to cancel the
anomaly from �3 due to the existence of topological BF
term. By studying the dynamical gauge theory description of
SPT states, we emphasize that, although both ∂�3 and �2 are
two dimensional, the surface dynamical theory on ∂�3 after
promoting the bulk SPT to a SET state can not be realized in a
dynamical gauge theory defined on �2 after promoting the �2

SPT to a dynamical gauge theory. The strategy of dynamical
gauge theory provides the connection between SPT and SET.
Most importantly, if we gauge a normal subgroup and place
gauge connection on the lattice links,23 we can in principle
study the corresponding dynamical gauge theory with boson
matter put on lattice in a numerical simulation approach, in
order to extract the nature of the underlying SPT state. The
above results will be discussed in Sec. III. Some key results are
collected in Table III for the reader’s convenience. Section IV
is devoted to the conclusions of the paper.

II. CONTINUOUS Uc(1) CHARGE SYMMETRY
AND Us(1) SPIN SYMMETRY

A. General response theory based on gauge invariance

1. �-matrix response theory in �3

Let us begin with a three-dimensional bulk of spin-1 and
charge-1 boson systems where at least Uc(1) and Us(1) are
unbroken. Here, the conserved charge corresponding to Us(1)
symmetry is the spin density Sz. Let us probe the charge
and spin dynamics by gauging these two U(1) symmetries
rendering two nondynamical gauge fields: the “spin gauge
field” As

μ and the usual electromagnetic gauge field Ac
μ. Note

that the spin gauge field As
μ directly couples to spin density

and spin current.

235109-2
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TABLE I. Four different quantum Hall effects.

Quantum Hall effects Hall conductance Probe fields Response current

Quantum charge Hall effect σ c, σ̃ c Ec Jc

Quantum spin Hall effect σ s , σ̃ s Es Js

Quantum charge-spin Hall effect σ cs , σ̃ cs Es Jc

Quantum spin-charge Hall effect σ sc, σ̃ sc Ec Js

According to the general principle of gauge invariance,
the linear response theory obtained by integrating out bosons
should be the following general form in the long-wavelength
limit:

Z
[
As

μ,Ac
μ

] = eiStop , Stop =
∫

d4x L ,

(1)
L = �IJ

8π2
∂μAI

ν∂λA
J
ρεμνλρ,

where the partition function Z is a functional of the two
nondynamical gauge fields. The indices I,J = 1,2. A1

μ,A2
μ

denote Ac
μ,As

μ, respectively. The usual Maxwell terms are not
written explicitly for the reason that their physical effects are
to renormalize electromagnetic parameters (dielectric constant
and permeability) of the bulk systems. The coefficient �IJ

forms a symmetric matrix

� =
(

θc θ0

θ0 θs

)
. (2)

The Lagrangian L can be written in terms of three parts:

L = Lc + Ls + L0,

Lc = θc

8π2
∂μAc

ν∂λA
c
ρε

μνλρ,

(3)
Ls = θs

8π2
∂μAs

ν∂λA
s
ρε

μνλρ,

L0 = θ0

4π2
∂μAc

ν∂λA
s
ρε

μνλρ.

In the following, the “electric field” Ec and “magnetic field”
Bc are constructed from the gauge field Ac

μ in the usual
convention. And, the new notions of “spin-electric field” Es

and “spin-magnetic field” Bs are specified to the gauge field
As

μ.
If the spin current and charge current are well defined on the

surface ∂�3 of the three-dimensional bulk �3 or on a strictly
two-dimensional plane �2, we define four kinds of quantum
Hall effects as shown in Table I. For example, in the quantum
charge-spin Hall effect, the external spin gauge field’s electric
field Es drives a perpendicular charge current Jc. The Hall
conductance is denoted by σ cs (̃σ cs) if the Hall effect is on �2

(∂�3).

B. Uc(1)�ZT
2 in �3

Let us consider the �3 bulk with Uc(1)�ZT
2 symmetry,

where Uc(1) and ZT
2 are charge-conservation symmetry and

time-reversal symmetry, respectively. A bosonic system with
this symmetry in �3 is a bosonic topological insulator (BTI)
which has been recently studied.34,35,41,47,48 By applying Ac

μ to
probe the topological electromagnetic properties, the resultant

response theory gives rise to the topological magnetoelectric
effect with θc quantized at 2π mod(4π ). In the following,
we will study the response theory along two approaches.
First, based on the response current and the definition of SPT
states, we will derive the quantization of θc, charge Witten
effect20,21,57,58 in bosonic topological insulator in �3, and the
quantum charge Hall effect on the ZT

2 -broken surface ∂�3

and ZT
2 -broken 2D plane �2. Partially along the lines of the

physical arguments of Ref. 35, we shall elaborate the derivation
in details in order for the generalization to other symmetry
groups (Table II) in the remaining parts of Sec. II. Second, we
shall rederive these results through the top-down approach by
comparing the KG matrix on �2 and its anomalous realization
on ∂�3 (“KG” will be defined later).

1. Charge Witten effect in �3

BTI admits surface charge Hall effect by breaking ZT
2 on

the surface. The formation of surface can be viewed as an
interface between vacuum and BTI bulk where the derivative
of θc forms a two-dimensional domain wall. Let us study the
response equation of Ac in the bulk θc term

J c
μ ≡ δLc

δAc
μ

= 2
θc

8π2
∂ν∂λA

c
ρε

μνλρ = θc

4π2
∂ν∂λA

c
ρε

μνλρ, (4)

where J c
μ is (3 + 1)D response charge current. The prefactor

2 comes from twice variations with respect to Ac
μ. The zero

component J c
0 denotes the response charge density probed by

external field Ac
μ:

J c
0 = θc

4π2
∇ · Bc, (5)

where Bc is the magnetic field variable. If the gauge field Ac is
smooth everywhere, ∇ · Bc = 0 due to absence of magnetic
charge. However, if singular configuration is allowed, the
divergence may admit singularities in the bulk and its total
contribution in the bulk is quantized due to the Dirac
quantization condition (or more general Schwinger-Zwanziger
quantization condition59,60). In a simplest configuration, let us
consider one magnetic monopole which is located at the origin
of the three-dimensional space:∫

d3x ∇ · Bc = 2πNc
m, (6)

where Nc
m ∈ Z is an integer-valued “magnetic charge” in the

Ac
μ gauge group. Therefore, the corresponding response charge

is

Nc =
∫

d3x J c
0 = θc

2π
Nc

m, (7)

which indicates that a nonzero theta term supports a “polar-
ization charge cloud” in the presence of magnetic monopole.
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TABLE II. Charge and spin response of spin-1 and charge-1 boson systems (the case of �22 is generalized to spin systems of any integer
spin s). qi = s,s − 1,s − 2, . . . and qi > 0 where s is total spin defined by S2 = s(s + 1). The full units of σ c, σ s, σ cs, σ sc are e2

h̄
, h̄, e, and e,

respectively, where e is elementary electric charge and h̄ is reduced Planck constant. Uc(1) and Us(1) denote the U(1) symmetry of charge and
spin, respectively. Z2 symmetry in “Us(1)�Z2” is the π rotation about Sy . ZT

2 is time-reversal symmetry. k ∈ Z, and, “�” stands for “semidirect
product.”

Axionic theta Full symmetry 3D bulk Surface (∂�3) anomalous 2D plane
angle group (�3) response response (�2) response

�11 ≡ θc = 2π + 4πk, Uc(1)�ZT
2 Charge Witten effect: Quantum charge Hall effect Quantum charge Hall effect

charge-1 boson system Nc = nc + Nc
m on ZT

2 broken on ZT
2 broken

∂�3: σ̃ c = (1 + 2k) 1
2π

�2: σ c = 2k 1
2π

�22 ≡ θs = 2π + 4πk, Us(1)×ZT
2 Spin Witten effect: Quantum spin Hall effect Quantum spin Hall effect

spin or boson systems Ns = ∑
i qin

s
i + Ns

m

∑
i q

2
i on ZT

2 broken on ZT
2 broken

with integer spins ∂�3: σ̃ s = (1 + 2k) 1
2π

∑
i q

2
i �2: σ s = 2k 1

2π

∑
i q

2
i

�12 = �21 ≡ θ0, Uc(1)×[Us(1)�Z2] Mutual Witten effect: Quantum charge-spin/ Quantum charge-spin/
= π + 2πk, Nc = nc + 1

2 Ns
m; spin-charge spin-charge

boson system of Ns = ns
+ − ns

− + 1
2 Nc

m Hall effects on Z2 broken Hall effects on Z2 broken
charge-1 and spin-1 ∂�3: σ̃ cs = σ̃ sc = ( 1

2 + k) 1
2π

�2: σ cs = σ sc = k 1
2π

A monopole can also trivially attach integer number (nc) of
charge-1 bosons in the bulk. Therefore, the whole formula
of the so-called charge Witten effect57,58 in Table II can be
expressed as

Nc = nc + θc

2π
Nc

m. (8)

2. Quantum charge Hall effect on ZT
2 -broken ∂�3

and ZT
2 -broken �2

The bulk θc term Lc can be written as a surface term

Lc,∂�3 = θc

8π2
Ac

μ∂νA
c
λε

μνλ, (9)

which leads to the surface response current

J c,∂�3

μ ≡ δLc,∂�3

δAc
μ

= θc

4π2
∂νA

c
λε

μνλ. (10)

The surface charge Hall conductance σ c is defined by Ohm’s
equation J c,∂�3

x = σ̃ cEc
y where Ec

y is the electric field along
the y direction (assuming that ∂�3 is parametrized by x-y
coordinates):

σ̃ c = θc

4π2
. (11)

To understand the quantization of the surface charge Hall
conductance σ̃ c, we need to first understand the quantization
on the θc angle and σ c in a strictly 2D system (i.e., �2) which
is defined as a Uc(1) SPT. Let us write the Chern-Simons term
in ZT

2 broken �2 which describes the response theory of Uc(1)
SPT on �2:

Lc,�2 = σ c

2
Ac

μ∂νA
c
λε

μνλ. (12)

Upon adiabatically piercing �2 by 2π magnetic flux (c =∫
d2x ∇ × Ac = 2π ), the total response charge

∫
d2x J

c,�2

0 =
σ c

∫
d2x ∇ × Ac = 2πσc. In SPT states where topological

order is trivial by definition (at least no exotic fractional
charge), this pumped charge in the center of the vortex core
must be quantized at integer carried by charge-1 bosons of

underlying microscopic model, such that 2πσc ∈ Z. This
condition is enough for the free-fermion system. However,
for the bosonic system [i.e., Uc(1) SPT we are considering],
we need further forbid quasiparticles which carry nonbosonic
statistics (i.e., fermionic statistics and anyonic statistics) in
order to obtain states without topological order. To achieve this
goal, one can spatially exchange two vortex cores of 2π fluxes
each of which traps 2πσc quasiparticles. The quasiparticles in
the first vortex core will perceive a π phase as half a magnetic
flux of the second vortex core, and vice versa. The total
Aharonov-Bohm phase “AB” in the Chern-Simons theory,
however, is only half of the totally accumulated quantum
phases: AB = 1

2 × (2πσc × π + 2πσc × π ) = 2π2σ c.61 In
order to forbid nonbosonic statistics, a new condition should
be satisfied: AB/2π ∈ Z. Overall, 2πσc/2 ∈ Z, i.e.,

σ c = 2k
1

2π
, (13)

where k ∈ Z. After this preparation, let us move on to the θc

angle quantization and its periodicity. Generally, a theta term
is odd under ZT

2 and thus breaks ZT
2 symmetry and thus results

in CP violation in the context of high-energy physics57 be-
cause under ZT

2 , Ec → Ec ,Bc → −Bc, θc

8π2 ε
μνλρ∂μAc

ν∂λA
c
ρ =

θc

4π2 Ec · Bc → − θc

4π2 Ec · Bc. However, if θc admits a periodic
shift such that −θc can be shifted back to θc, the action
eventually is time-reversal invariant. Therefore, the minimal
theta value should be one half of its periodicity (say, P ), and the
symmetry group for the bulk is indeed Uc(1)�ZT

2 as we defined
at the beginning of this section. Physically, the periodicity can
be understood as trivially depositing arbitrary copies of �2

Hall systems onto the surface.35,41 As such, a P shift in θc leads
to an additional term in the surface charge Hall conductance
formula (11):

σ̃ c′ − σ̃ c = P

4π2
, (14)

which is contributed by deposited �2 layers which are
described by Eq. (13). A minimal choice is P

4π2 = 2 × 1
2π

,
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so that P = 4π , and the minimal choice of θc is P
2 = 2π , i.e.,

θc = 2π + 4πk, (15)

where the integer k is the same k defined in Eq. (13).
Substituting Eq. (15) into (11) leads to

σ̃ c = (1 + 2k)
1

2π
. (16)

The most anomalous phenomenon on ∂�3 is that the surface
quantum charge Hall conductance σ̃ c admits a 1

2π
value which

can not be realized in �2 where σ c is always even integer
copies of 1/2π . In addition, substituting Eq. (15) into (8)
leads to

Nc = nc + Nc
m, (17)

where k = 0 is selected for simplicity. θc = 2π is topologically
distinct from θc = 0 trivial vacuum once the symmetry
group Uc(1)�ZT

2 is unbroken. Different choices of k actually
correspond to the same phase.41

3. Anomalous KG matrix on ∂�3

In the above discussion, we obtained the charge Hall
conductance in �2 and its anomalous realization in ZT

2 broken
∂�3 based on the general principle of gauge invariance,
response definition, and the definition of SPT states. In
those derivations, the microscopic degree of freedoms is not
explicitly written in terms of Lagrangian or Hamiltonian. In the
following, we shall start with microscopic degrees of freedom,
which is called the “top-down approach.”

By definition, the fundamental elements of a given 2D
SPT microscopic model are spins or bosonic particles. In
the hydrodynamical approach, however, the low-energy modes
dominating the partition function can be effectively replaced
by a SET of statistical one-form U(1) gauge fields {aI

μ} or
two-form U(1) gauge fields {bI

μν} (I = 1,2, . . .) or higher-form
gauge fields. In the following, these gauge field variables
are dubbed “intrinsic/statistical gauge fields” interchangeably.
Especially in a 2D system, the current operator Jμ of a point
particle can be expressed as Jμ = 1

2π
εμνλ∂νaλ which automat-

ically resolves the current conservation equation ∂μJμ = 0.
What is the generic low-energy theory of the SPT state

in terms of these dynamical gauge fields? If we only focus
on the topological properties of the SPT ground state (or
a general ground state with Abelian topological order), the
renormalization group flows to an infrared fixed-point field
theory in the Chern-Simons form in (2 + 1)D.62 In other words,
the low-energy field theory of the microscopic SPT model is
effectively described by a generic Chern-Simons theory of
{aI

μ} with a K-matrix coefficient: LSPT = 1
4π

KIJ aI
μ∂νa

J
λ εμνλ

where, I,J = 1,2, . . . .
Thus, it is effective to describe the internal microscopic

degrees of freedom of SPT states by a generic K-matrix Chern-
Simons field theory of {aI

μ}. Based on this low-energy field
theory, the response theory is straightforward by adding a
minimal coupling term JμAμ where Aμ is an external gauge
field and Jμ is the current operator carrying gauge charge
(i.e., the Noether current related to a global symmetry before
gauging it) in terms of {aI

μ}.

This top-down approach starts with intrinsic gauge field aμ

to construct SPT with Lagrangian LSPT(a) and then probe it by
external field Aμ. The Lagrangian becomes LSPT+Gauge(a,A).
By integrating out {aI

μ} to obtain the low-energy physics of
external field Aμ, we obtain an effective theory LSPT+Gauge(A).
This is exactly what we would like to do in the following:
to confirm our previous result (response theory of electromag-
netic field Ac

μ which couples to charge current and “spin gauge
field” As

μ which couples to spin current) by comparing with the
top-down approach (starting from the intrinsic {aμ} statistical
gauge fields). It should be noted that the field variables As

μ

and Ac
μ are always treated as nondynamical background fields

in the whole Sec. II due to the standard definition of linear
response theory.

The above procedure is known and applied in the
literature,23,36–40,63 however, to be self-contained and make
this method more accessible to the research community,
in Appendix A we carry out an explicit derivation for the
following steps:

LSPT(a) → LSPT+Gauge(a,A) → LSPT+Gauge(A). (18)

We use the K-matrix Chern-Simons effective field theory
approach to understand this procedure:

LSPT(a) = 1

4π
KS,IJ εμνρaI

μ∂νa
J
ρ (19)

and we end up with

LSPT+Gauge(A) = 1

4π
KG,IJ εμνρAI

μ∂νA
J
ρ . (20)

We denote KS and KG as K matrices for LSPT(a) and
LSPT+Gauge(A), respectively. aI

μ (I = 1,2, . . .) represent a set
of intrinsic fields aμ in a general case. Each of AI

μ (I =
1,2, . . .) represents an external field which couples to the
matter current carrying UI (1) gauge charge. Our inspiration
is from earlier pioneer works. In Ref. 36, Lu and Vishwanath
focus on LSPT(a). In Ref. 39, Cheng and Gu attempt to
apply the braiding statistics in LSPT+Gauge(A) to determine the
classification of SPT. Our approach is analog to the work by
Hung and Wan40 who had carried out the simplest gauging
procedure for ZN SPT in 2D. On the other hand, our key focus
is to bridge Ref. 36 to Refs. 39 and 40 by directly gauging the
global symmetry current and then apply to more complicated
symmetry groups (in Appendix A).

Let us explicitly work out the response theory on ZT
2 broken

∂�3 of 3D bulk with Uc(1)�ZT
2 , and on ZT

2 broken �2. Here,
we save detailed derivations to Appendix A and list key results
directly. We first study the response theory on �2 with Uc(1)
global symmetry. What we start with is the intrinsic SPT’s

KS = ( 0 1
1 0 ). By gauging the U(1) global symmetry current

coupling to Ac, we obtain KG = 2p and response action

LSPT+Gauge(Ac) = 2p

4π
εμνρAc

μ∂νA
c
ρ (21)

with p ∈ Z labeling the Z class of the cohomology group
H3[U(1),U(1)] = Z. The charge Hall conductance as the
quantum feature of the response of this LSPT+Gauge(Ac) is

σ c = 2p
1

2π
. (22)
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This result matches exactly as Eq. (13). On the other hand,
the anomalous KG matrix in ∂�3 is harder to obtain from
the top-down approach because the full classification of
(3 + 1)D SPT from intrinsic topological field theory is not
yet known to be complete (not even fully matching with the
group cohomology). In principle, we should have topological
terms (such as g1ε

μνρτ ∂μaν∂ρaτ + g2ε
μνρτ bμν∂ρaτ+ etc.) to

generate all classes of H3[U(1) � ZT
2 ,U(1)] = Z2

2 (or Z3
2

according to other field theory approaches41). Here, we simply
adopt the result from the previous section to state the effective
KG,∂�3 = 2p + θc/2π , which means

LSPT+Gauge(Ac) = 2p + θc/2π

4π
εμνρAc

μ∂νA
c
ρ (23)

with surface charge Hall conductance

σ̃ c = (2p + θc/2π )
1

2π
. (24)

Therefore, we have Eqs. (22) and (24) written in a consistent
manner as Eqs. (13) and (16). Now, we have two KG matrices:
one is for the surface and one is for the 2D SPT. We dubbed
KG,∂�3 the “anomalous KG matrix” since it has the same
symmetry as the 2D SPT but different response theory. The
matrices in the present example are nothing but a number;
in the example Uc(1)×[Us(1)�Z2], the matrices are two
dimensional.

C. Us(1)×ZT
2 in �3

1. Quantum spin Hall effect on ZT
2 broken ∂�3 and ZT

2 broken �2

Now, let us move on to the bulk θs term which is the response
action of three-dimensional SPT protected by Us(1)×ZT

2 .
Under ZT

2 , Es → −Es , Bs → Bs in contrast to Uc(1) gauge
fields. And, the gauge charge in Us(1) gauge group will
also change sign under ZT

2 due to its nature of pseudoscalar.
As bosons in a realistic material system carry integer spins,
we start with spin-1 boson system in three dimensions with
Us(1)×ZT

2 . For this simplest case, we can derive all quantities
through the same way as in Uc(1)�ZT

2 . In the following, we
shall derive the quantities (θs,σ s ,̃σ s , spin Witten effect, etc.)
through a different way which is helpful for higher integer
spin.

Let us embed Us(1) into SU(2) full spin-rotation symmetry.
Then, we shall only focus on the Lie group representations
labeled by integer spin s, which forms a complete set of
irreducible representations of SO(3) spin-rotation symmetry
group. It turns out that the physical consideration, i.e., “large
gauge invariance,” is sufficient to obtain the results.

SU(2) SPT on �2 admit nonchiral edge states, but the
symmetry group acts chirally. This edge profile is stable under
symmetry-allowed perturbation. For the edge of SU(2) SPT,
the projective Kac-Moody algebra description is

∫
dx 2π

3 (vL :
JL · JL : +vR : JR · JR :) where vL/vR is velocity, and, the
left mover JL is SU(2) doublet and the right mover JR is
SU(2) singlet.33,45 After gauging SU(2), the resultant gauge
theory after integrating out all matter field fluctuations must
be a generic Chern-Simons form in (2 + 1)D space-time, i.e.
(coupling constant g = 1),

Ls,�2 = k

4π
εμνλTr

[
Aμ∂νAλ + 2

3
AμAνAλ

]
, (25)

where k is quantized at integer since it is the winding number
labeling the nontrivial homotopic mapping π3[SU(2)]= Z. Aμ

is the matrix-valued gauge vector defined as Aμ = T aAa
μ

(a = 1,2,3), where T a are the generators of SU(2) in a
given representation (labeled by total spin s), and Aa

μ are
the real-number-valued gauge potentials. The field strength
Fμν = ∂μAν − ∂νAμ − i[Aμ,Aν]. The Lie algebra structure
constant f abc = εabc, i.e., [T a,T b] = iεabcT c. And, most
importantly, the trace Tr[T aT b] depends on the choice of
representation, i.e., the total spin s:

Tr[T aT b] = 1
3 s(s + 1)(2s + 1)δab. (26)

Such a normalization condition as well as the structure constant
leads to the fact that the generators T a are precisely identical to
spin operators Sa of spin s [(T 1)2 = (T 2)2 = (T 3)2 = 1

3 s(s +
1)I with I the (2s + 1)-dimensional identity matrix]. As a
result, the gauge field Aa

μ precisely couples to spin current of
spin s along the a-spin direction in a correct unit.

In order to probe the quantum spin Hall effect of the bosonic
system, it is sufficient to merely consider a U(1) subgroup of
SU(2) in a given representation. For example, let us study the
Hall current generated by A3

μ (which is identical to As
μ):

J s,�2

μ ≡ δLs,�2

δAs
μ

. (27)

For convenience, let us express Chern-Simons action explicitly
in terms of Aa

μ:

Ls,�2 = k

4π
εμνλTr

[
Aμ∂νAλ + 2

3
AμAνAλ

]
= k

4π
εμνλTr

[
Aa

μ∂νA
b
λT

aT b + 2

3
AμAνAλ

]
(28)

since we only consider the response action of A3
μ(≡ As

μ). Let
us drop all terms containing A1

μ,A2
μ:

Ls,�2 = k

4π
εμνλAs

μ∂νA
s
λTr[T 3T 3]. (29)

Therefore, the spin Hall current is given by

J s,�2

μ = k

2π
Tr[T 3T 3]εμνλ∂νA

s
λ. (30)

The spin Hall conductance σ s is readily given by

σ s = k

2π

1

3
s(s + 1)(2s + 1)

= 2k

(
1

6
s(s + 1)(2s + 1)

)
1

2π
= 2k

1

2π

∑
i

q2
i , (31)

where qi = s,s − 1,s − 2, . . . and qi > 0. In the presence of∑
i q

2
i , we find that the

∑
i q

2
i

1
2π

is nothing but the unit of
spin Hall conductance when “spin charge qi” is generically a
number other than 1. For a spin-s boson system, there are
Nf = 2s + 1 flavors of bosons. Each of them contributes
the same even number 2k in total spin Hall response. We
stress that in the present approach, the even integer “2k”
arises naturally as a result of large gauge invariance. As a
simple check, when s = 1

2 , σ s = k
4π

= 2k × ( 1
2 )2 1

2π
. When

s = 1, σ s = k
π

= 2k × (1)2 1
2π

. When s = 3
2 , σ s = 5k

2π
= 2k ×

[( 3
2 )2 + ( 1

2 )2] 1
2π

. The first two results (s = 1
2 , 1) were derived
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by Liu and Wen45 through the principal chiral nonlinear sigma
models in which s = 1

2 and 1 are discussed in SU(2) and
SO(3) SPT states, respectively. Actually, for the response
theory itself, it turns out the different results between SU(2)
and SO(3) actually depend on the trace normalization of
generators (Tr[T aT b]). Indeed, the result that σ s of SO(3) is
four times of σ s of SU(2) originates from trace normalization
(Tr[T aT b] = 1

2δab, if s = 1
2 ; [T aT b] = 2δab, if s = 1). We

comment that a more mathematical exposition on this 1
4 factor

quantization difference between SU(2) and SO(3) is found
in Sec. 4 of Ref. 49 and Sec. 2 of Ref. 64. Here, we use
a rather physical language instead, comparing to the more
mathematically oriented formalism in Refs. 49 and 64.

Let us focus on integer spin s. In the s = 1 case, all results
can also be derived if the method in the derivation of σ c is
adopted. In a generic s case, the even integer 2k directly leads
to the absence of topological order in �2 in a sense that

(i) all spin excitations carry integer-valued spin-Sz quan-
tum number, no fractional quantum number;

(ii) all spin excitations are bosonic with the total Aharonov-
Bohm phase AB = 2πk accumulated by spatially exchanging
two vortex cores. The spin angular momentum does not
contribute fermionic sign since s is integer.

Next, let us consider a SPT with SU(2)×ZT
2 in �3 in the

integer spin-s representation and then only consider the Us(1)
subgroup through which we will obtain the surface Chern-
Simons term Ls,∂�3 . With ZT

2 symmetry, the bulk should be
a non-Abelian theta term. Generically, the bulk non-Abelian
theta action is � × P whereP is the integer-valued Pontryagin
index [the bar in the symbol � is to distinguish the � and �

matrices defined in Eq. (1)]

S = � × P =
∫

d4x �
1

16π2
Tr[FμνF̃μν], (32)

where the dual tensor F̃μν = 1
2εμνλρFλρ . Fμν can be further

written as Fμν = T aF a
μν F a

μν = ∂μAa
ν − ∂νA

a
μ + εabcAb

μAc
ν .

Therefore, the Lagrangian form of Eq. (32) is reformulated
to

Ls,�3 = 2�
∑

i q
2
i

16π2
Fa

μνF̃
a
μν. (33)

The dual tensor for each component is defined as F̃ a
μν =

1
2εμνλρF a

λρ . In Eq. (33), despite that the summation over the
three spin directions is independent, the three spin directions
actually couple to each other due to the last nonlinear term
in Fμν . As a matter of fact, the � term is a total-derivative
term which does not generate topological bulk response if
Aμ is smooth without singularities. Let us consider a material
with a surface. Suppose that the surface breaks ZT

2 explicitly
or spontaneously, the surface has spin-rotational symmetry,
and the response theory is again a non-Abelian Chern-Simons
theory. Mathematically, starting from Eq. (32), we find its
surface action

S = 2�

16π2
εμνλTr

[
Aμ∂νAλ + 2

3
AμAνAλ

]
. (34)

Completion of trace operation leads to

S = 2�

8π2

∑
i

q2
i ε

μνλAa
μ∂νA

a
λ + . . . , (35)

where “. . .” are nonlinear response terms. Let us only consider
the A3

μ ≡ As
μ response theory, so that 2� ≡ θs leading to the

surface spin Hall conductance

σ̃ s = θs

2π

∑
i

q2
i

1

2π
. (36)

To derive the periodicity and minimal value of θs for the
nontrivial phase with Us(1)×ZT

2 in �3, we apply the same
strategy in the derivation of θc. The minimal theta value should
be one half of its periodicity (say, P ), and the symmetry group
for the bulk is Us(1)×ZT

2 . Physically, the periodicity can be
understood as trivially depositing arbitrary copies of �2 Hall
systems onto the surface. As such, a P shift in θs leads to an
additional term in the surface spin Hall conductance formula
(36):

σ̃ s′ − σ̃ s = P

4π2

∑
i

q2
i , (37)

which is contributed by deposited �2 layers which are
described by Eq. (31). A minimal choice is P

4π2 = 2 × 1
2π

,
so that P = 4π . And, the minimal choice of θs is P

2 = 2π ,
i.e.,

θs = 2π + 4πk, (38)

where the integer k is the same k defined in Eq. (31).
Substituting Eq. (38) into (36) leads to

σ̃ s = (1 + 2k)
1

2π

∑
i

q2
i . (39)

2. Spin Witten effect in �3

In order to derive the so-called spin Witten effect in
Table II for generic spin s, by noting that 2�̄ = θs , let us
drop all terms irrelevant to Az

μ (i.e., As
μ) in Eq. (33), resulting

in

Ls = θs

∑
i q

2
i

8π2
∂μAs

ν∂λA
s
ρε

μνλρ. (40)

Once s = 1, we obtain
∑

i q
2
i = 1 and above Lagrangian Ls

is back to the original version of the bulk θs term defined in
Eq. (3). Here, we would like to consider a generic s which
leads to the following response equation for As

μ in �3:

J s
μ ≡ δLs

δAs
μ

= θs

∑
i q

2
i

4π2
εμνλρ∂ν∂λA

s
ρ, (41)

where J s
μ is the (3 + 1)D response spin current. The zero

component J s
0 denotes the response charge density probed

by external spin gauge field As
μ:

J s
0 = θs

∑
i q

2
i

4π2
∇ · Bs , (42)

where Bs is the spin-magnetic-field variable. If the gauge
field As is smooth everywhere, ∇ · Bs = 0 due to the absence
of magnetic charge. However, if singular configuration is
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allowed, the divergence may admit singularities in the bulk
and its total contribution in the bulk is quantized due
to the Dirac quantization condition (or the more general
Schwinger-Zwanziger quantization condition). Let us consider
one magnetic monopole (of As

μ gauge group) located at the
origin of the three-dimensional space:∫

d3x ∇ · Bs = 2πNs
m, (43)

where Ns
m ∈ Z is an integer-valued “magnetic charge” of the

As
μ gauge group. Therefore, the corresponding response total

spin is

Ns =
∫

d3x J s
0 = θs

∑
i q

2
i

2π
Ns

m, (44)

which indicates that a nonzero theta term supports a “polariza-
tion spin cloud” in the presence of magnetic monopole of As

μ

gauge group. A monopole of As
μ gauge group can also trivially

attach integer number (ns
i ∈ Z) of bosons with Sz = qi in the

bulk (as qi > 0, a negative ns
i implies that |ns

i | bosons in the
spin state “Sz = −qi”). Therefore, the whole formula of the
so-called spin Witten effect can be expressed as

Ns =
∑

i

ns
i qi + θs

2π
Ns

m

∑
i

q2
i . (45)

Substituting (38) into (45) leads to

Ns =
∑

i

ns
i qi + Ns

m

∑
i

q2
i , (46)

where k = 0 is selected for simplicity. Different choices of k

actually correspond to the same phase.

3. Anomalous KG matrix on ∂�3

Similar to Sec II B3, let us use the top-down approach
explicitly working out the external field theory on ∂�3 of
Us(1)×ZT

2 global symmetry with ZT
2 symmetry broken, and

the external field theory on �2 of Us(1) global symmetry.
Here, we save detailed derivations to Appendix A and list
key results directly. We first study on �2 with Us(1) global
symmetry: what we start with is the intrinsic SPT’s KS = ( 0 1

1 0 )
and gauging the U(1) global symmetry current coupling to As ,
we obtain KG = 2p. The only difference from Sec. II B3 is that
the spin gauge field contributes a factor of

∑
i q

2
i , which simply

sums over all the spin contribution qi = s,s − 1,s − 2, . . . and
qi > 0,

LSPT+Gauge(As) = 2p

4π
εμνρAs

μ∂νA
s
ρ

∑
i

q2
i (47)

with p ∈ Z labeling the Z class of the cohomology group
H3[U(1),U(1)] = Z. The Hall conductance as the response of
this LSPT+Gauge(Ac) is

σ s = 2p
1

2π

∑
i

q2
i . (48)

This result matches exactly as Eq. (31). On the other hand,
for the anomalous KG matrix in ∂�3, so far the intrinsic
topological field theory of �3 in (3 + 1)D is not yet known
to be completed, we simply adopt the result from the previous

section to state the effective KG,∂�3 = 2p + θs/2π , which
means

LSPT+Gauge(As) = 2p + θs/2π

4π
εμνρAc

μ∂νA
c
ρ

∑
i

q2
i (49)

with Hall conductance

σ̃ s = (2p + θs/2π )
1

2π

∑
i

q2
i . (50)

Therefore, we have Eqs. (48) and (50) written in a consistent
manner as Eqs. (31) and (39). KG,∂�3 is the anomalous KG

matrix of the present surface state.

D. Uc(1)×[Us(1)�Z2] in �3

1. Quantum charge-spin/spin-charge Hall effect on Z2 broken
∂�3 and Z2 broken �2

In the above discussions, we have studied the bulk θc and
θs terms, each of which is constructed by one kind of gauge
field. In the following, we shall consider the bulk θ0 term L0 in
which As

μ and Ac
μ are both involved. The minimal symmetry

requirement of this term is Uc(1)×[Us(1)�Z2], where Z2 can
be viewed as a π rotation about spin Sy . The additional Z2

is required by the following observation. Under Z2 oper-
ation, As

μ → −As
μ, and thus Es → −Es ,Bs → −Bs ,Ec →

Ec ,Bc → Bc, such that L0 = θ0
4π2 ∂μAc

ν∂λA
s
ρε

μνλρ = θ0
4π2 (Ec ·

Bs + Bc · Es) → −L0. However, if a periodicity in θ0 is
allowed, −θ0 will be shifted back to θ0 leading to the invariance
of L0 under Z2 spin rotation. Due to the existence of the
periodicity, we expect that Z2 symmetry plays a similar role
in determining quantization conditions of θ0 and related Hall
effects, in comparison with the role of ZT

2 in the bulk θc and θs

terms. Note that a theta term with only one kind of gauge field
(such as θc and θs terms) in a three-dimensional insulator can
be formally viewed as an expectation value of divergence of
chiral current in the context of the Adler-Bardeen-Bell-Jackiw
anomaly65,66 in a chiral gapless system.

For simplicity, we restrict our attention on a spin-
1 and charge-1 boson system in �3 with symmetry
Uc(1)×[Us(1)�Z2]. Since L0 is a total derivative term, the
bulk response is trivial unless at least one of the gauge field
configurations admits singularities. Let us first consider a
Z2-broken surface ∂�3. The Lagrangian L0 can be written
as a surface mutual Chern-Simons term

L0,∂�3 = θ0

4π2
As

μ∂νA
c
λε

μνλ. (51)

Recently, a mutual Chern-Simons term with dynamical or non-
dynamical gauge fields has been studied in other contexts.67–72

The surface mutual Chern-Simons term (51) leads to the
following two different surface response currents:

J s,∂�3

μ ≡ δL0,∂�3

δAs
μ

= θ0

4π2
∂νA

c
λε

μνλ, (52)

J c,∂�3

μ ≡ δL0,∂�3

δAc
μ

= θ0

4π2
∂νA

s
λε

μνλ. (53)

Here, the surface spin current J s,∂�3

μ is induced by applying ex-
ternal electromagnetic gauge field Ac

μ rendering the quantum

spin-charge Hall effect, while the surface charge current J c,∂�3

μ
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is induced by applying external spin gauge field As
μ rendering

the quantum charge-spin Hall effect. The corresponding sur-
face spin-charge/charge-spin Hall conductance formulas are

σ̃ sc = σ̃ cs = θ0

4π2
. (54)

We note that the two quantum Hall effects share the same
Hall conductance and the same unit “e.” To understand
the quantization of the surface spin-charge and charge-spin
Hall conductance σ̃ sc,̃σ cs , we need to first understand the
quantization on the θ0 angle and σ sc,σ cs in strictly 2D systems
(i.e., �2). The �2 system will be used to determine the
periodicity and the minimal value of θ0 by depositing it onto
the Z2-broken surface ∂�3, so that the minimal symmetry
requirement on �2 is Uc(1)×Us(1). Let us write a generic
topological response theory in �2:

L0,�2 = 1

2

(
Ac

μ,As
μ

)( σ c σ cs

σ sc σ s

)
∂ν

(
Ac

λ

As
λ

)
εμνλ, (55)

which leads to three independent Chern-Simons terms.
Therefore, in general, we need three quantities σ c,σ s,σ cs

(σ cs = σ sc) to label the quantum Hall states in �2. But, the
state we are considering will be applied to be deposited onto
the surface ∂�3 where only the mutual Chern-Simons term
exists as shown in Eq. (51). In other words, we shall consider
the �2 system with σ s = 0 and σ c = 0, rendering a mutual
Chern-Simons term for �2:

L0,�2 = σ scAs
μ∂νA

c
λε

μνλ. (56)

Thus, the response currents are

J s,�2

μ ≡ δL0,�2

δAs
μ

= σ sc∂νA
c
λε

μνλ, (57)

J c,�2

μ ≡ δL0,�2

δAc
μ

= σ cs∂νA
s
λε

μνλ. (58)

Upon adiabatically piercing �2 by 2π magnetic flux
(c = ∫

d2x ∇ × Ac = 2π ), the total spin accumulation∫
d2x J

s,�2

0 = σ sc
∫

d2x ∇ × Ac = 2πσ sc. In SPT states
where topological order is trivial by definition, this pumped
spin in the center of the vortex core must be quantized at
integer since the fundamental spin is carried by spin-1 bosons
(for example, a spin- 1

2 quasiparticle is not allowed), such that
2πσ sc ∈ Z. On the other hand, let us consider the condition
under which all the quasiparticles are bosonic in order to
forbid topological order. To achieve this goal, one can spatially
exchange two vortex cores of 2π fluxes each of which traps
2πσ sc quasiparticles with pure spins and neutral charge. The
quasiparticles in the first vortex core will perceive a π phase
as half a magnetic flux of the second vortex core, and vice
versa. Unlike the Chern-Simons theory, the total Aharonov-
Bohm phase “AB” in the mutual Chern-Simons theory is
the totally accumulated quantum phases AB = (2πσ sc ×
π + 2πσ sc × π ) = 4π2σ sc. In order to forbid nonbosonic
statistics, AB/2π ∈ Z. Overall, combining the “absence of
fractional spin” and “absence of nonbosonic statistics” leads
to, still, 2πσ sc ∈ Z, i.e.,

σ sc = σ cs = k
1

2π
, (59)

where k ∈ Z and the unit is the fundamental electric charge e.

After this preparation, let us move on to the θ0 angle quan-
tization and its periodicity P . As mentioned, the periodicity
can be understood as trivially depositing arbitrary copies of �2

Hall systems onto the surface ∂�3. As such, a P shift in θ0 leads
to an additional term in the surface spin-charge/charge-spin
Hall conductance formula (54):

σ̃ sc′ − σ̃ sc = P

4π2
, (60)

which is contributed by deposited �2 layers which are
described by Eq. (59). A minimal choice is P

4π2 = 1 × 1
2π

,
so that P = 2π . And, the minimal choice of θ0 is P

2 = π , i.e.,

θ0 = π + 2πk, (61)

where the integer k is the same k defined in Eq. (59).
Substituting Eq. (61) into (54) leads to

σ̃ sc = σ̃ cs =
(

1

2
+ k

)
1

2π
. (62)

The most anomalous phenomenon in the surface charge Hall
effect is that the σ̃ sc and σ̃ cs admit a 1

4π
value which can not

be realized in �2 where σ sc and σ cs are always integer copies
of 1/2π .

2. Model construction on �2

The quantum charge-spin/spin-charge Hall effects can be
modeled as a similiar two-component boson model proposed
by Senthil and Levin,50 but with slight modification as follows.
The first-component bosons are charge neutral but carry spin-1,
while the second-component bosons are spinless but carry
electric charge-1. Then, an external “spin-magnetic field” Bs

and an external real “magnetic field” Bc are applied to the first-
and second-component bosons, respectively, each of which
forms a bosonic Landau level with filling ν = 1. It implies
that the gauge fields As and Ac play the roles of A1 and A2

defined in the Senthil-Levin paper, respectively.
Therefore, by using the flux-attachment Chern-Simons

theory, one can realize a many-body state which has quantum
spin-charge/charge-spin Hall effects with σ sc = σ cs = 1

2π
.

3. Mutual Witten effect in �3

In order to derive the so-called mutual Witten effect in
Table II, let us write the response equation in the bulk �3:

J s
μ ≡ δL0

δAs
μ

= θ0

4π2
εμνλρ∂ν∂λA

c
ρ, (63)

J c
μ ≡ δL0

δAc
μ

= θ0

4π2
εμνλρ∂ν∂λA

s
ρ, (64)

where J s
μ and J c

μ are (3 + 1)D response spin and charge
currents, respectively. The zero components J s

0 and J c
0 denote

the response spin and charge density probed by external spin
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gauge field As
μ and external electromagnetic field Ac

μ:

J s
0 = θ0

4π2
∇ · Bc, (65)

J c
0 = θ0

4π2
∇ · Bs . (66)

If the gauge fields Ac and As are smooth everywhere,
∇ · Bc = 0, ∇ · Bs = 0, due to absence of magnetic charge
and spin-magnetic charge. However, if singular configuration
is allowed, the divergences may admit singularities in the
bulk and the total contribution in the bulk is quantized due
to the Dirac quantization condition (or the more general
Schwinger-Zwanziger quantization condition). For example,
let us consider one magnetic monopole (of Ac

μ gauge group)
located at the origin of the three-dimensional space.

∫
d3x ∇ ·

Bc = 2πNc
m where Nc

m ∈ Z is an integer-valued “magnetic
charge.” Therefore, the corresponding response total spin
Ns = ∫

d3x J s
0 = θ0

2π
Nc

m, which indicates that a nonzero theta
term supports a “polarization spin cloud” in the presence of
magnetic monopole of the Ac

μ gauge group. A monopole
of the Ac

μ gauge group can also trivially attach integer
numbers (ns

+,ns
− ∈ Z) of bosons with Sz = 1, − 1 in the bulk,

respectively. Therefore, the whole formula of the so-called
mutual Witten effect can be expressed as

Ns = ns
+ − ns

− + θ0

2π
Nc

m. (67)

Substituting (61) into (67) leads to

Ns = ns
+ − ns

− + 1
2Nc

m, (68)

where k = 0 is selected for simplicity. Likewise, we can
place a magnetic monopole of the As

μ gauge group. Then,
a polarization charge cloud arises. The corresponding mutual
Witten effect is

Nc = nc + θ0

2π
Ns

m, (69)

where nc is the number of bosons trivially attached to the
magnetic charge of the As

μ gauge group, i.e., spin-magnetic
charge. Substituting (61) into (69) leads to

Nc = nc + 1
2Ns

m. (70)

In Fig. 1, we illustrate the mutual Witten effect, motivated
by Ref. 73. The ferromagnetic (FM) thin film uniformly breaks
Z2 spin rotation symmetry (π rotation about spin Sy) of the
surface of θ0 = π nontrivial bulk. We assume that the width
of the FM film is sufficiently small, i.e., z3 � z2. In Fig. 1(a),
a spinful but charge-neutral impurity (the red ball) is located
at (x,y,z) = (0,0,z3) near the surface (z = z2). To solve the
static electromagnetic problem of both U(1) gauge groups in
the region (z2,z4)

⋃
(z4,∞), one can use the trick of “image

charge.”74 One can introduce an image “spin” (with spin Ns

in unit of h̄) located at (0,0,z1) with z2 = (z1 + z3)/2 which
effectively takes the boundary condition on the z = z2 plane
into consideration. At the same position, the mutual Witten
effect admitted by the nontrivial bulk (z < z2) induces an image
magnetic monopole (with magnetic charge Nc

m = 2Ns in unit
of h/e, denoted by the blue ball) of the Ac

μ gauge group. This
image monopole determines the magnetic field Bc inside the
region (z3,z4) (the solid blue lines with arrows). Since these
magnetic lines are formed by the electromagnetic field Ac

μ, the

θ0=θ0=

θ0=0 θ0=0
FM thin film FM thin film

z 

z2

z4 

z1 

Bc Bs

(a)                                                             (b)                

z3

x 

y 

FIG. 1. (Color online) Illustration of the experimental setup to
realize the mutual Witten effect. The x, y, and z axes form the three
spatial directions. In both (a) and (b), a ferromagnetic thin film (FM) is
located between a trivial Uc(1)×[Us(1)�Z2] state with θ0 = 0 and the
nontrivial state with θ0 = π . The width of the film is sufficiently small.
In (a), the red and blue balls stand for a spin impurity and an image
magnetic monopole of electromagnetic Ac

μ gauge field, respectively.
The solid blue lines in the region (z2,z4)

⋃
(z4,∞) represent the

magnetic field Bc induced by the spin impurity. In (b), the blue and
red balls stand for an electric charge impurity and an image magnetic
monopole of As

μ gauge field (i.e., the “spin gauge field”), respectively.
The solid red lines in the region (z2,z4) represent the magnetic field
Bs induced by the electric charge impurity (see text).

magnetic lines can also penetrate the z = z4 plane, i.e., the top
surface of the θ0 = 0 bulk, and flows into the vacuum (z4,∞)
where both dielectric constant ε0 and permeability μ0 are
nonzero forming nonzero static charge-charge correlation. The
radial magnetic distribution provides a Lorentz force acting
on electrically charged currents. The latter can be excited if
temperature is nonzero inside the trivial gapped bulk. It should
be noted that the roles of other boundaries (such as the z = z4

plane) are ignored since they are irrelevant to the formation of
the mutual Witten effect discussed here.

There is one remaining issue to be stressed in the following.
Different from Ref. 73 where only electromagnetic field Ac

μ is
considered, we must add a trivial bulk above the FM film. The
reason is following. The vacuum medium is really “empty”
for the As

μ gauge field in a sense that the vacuum has no
background dynamics admitting communication between two
spinful particles (namely, particle-1 with spin q1 and particle-2
with spin q2), which is in contrast to Ac

μ that has background
ε0 < ∞ and μ0 > 0. In other words, in the vacuum the two
spinful particles can not interact with each other via the As

μ

gauge field. Classically, it indicates that the “electromagnetic
force” felt by particle-1 is vanishing: F12 ≡ q1Es + q1v1 ×
Bs = 0, where v1 is the velocity vector of particle-1, and Es

and Bs are spin-electric field and spin-magnetic field formed
by particle-2 current. On the other hand, the trivial bulk on the
top of FM film provides a nontrivial dynamical background
where spin-spin correlation is well formed and thus two spinful
particles can talk to each other via the As

μ gauge field.
Likewise, in Fig. 1(b), we may place an electric charge

impurity (the blue ball) which finally induces a magnetic
monopole (the red ball) of the As

μ gauge group. The monopole
determines the magnetic field Bs distribution in the trivial
state. As explained above, Bs magnetic lines (the solid red
line with arrows) are confined inside the trivial bulk and can
not penetrate into the vacuum, in contrast to Bc. The radial
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magnetic distribution provides a Lorentz force acting on spin
currents. The latter can be excited if temperature is nonzero
inside the trivial gapped bulk.

4. Anomalous KG matrix on ∂�3

Similar to Secs. II B3 and II C3, let us use the top-
down approach explicitly working out the external field
theory on ∂�3 of Uc(1)×[Us(1)�Z2] global symmetry with
ZT

2 symmetry broken, and the external field theory on �2

with Uc(1)×Us(1) global symmetry. Here, we save detailed
derivations to Appendix A and list key results directly. We first
study on �2 with Uc(1)×Us(1) global symmetry; what we start

with is the intrinsic SPT’s KS = ( 0 1
1 0 ) ⊕ ( 0 1

1 0 ) and gauging the

U(1)×U(1) global symmetry current coupling to As , we obtain

KG = ( 2p1 p12
p12 2p2

) in the gauge charge sectors of U(1)×U(1). In

the case of a charge-1 and spin-1 bosonic system, we have spin
sum

∑
q2

i = 1:

LSPT+Gauge(Ac,As) = 1

4π
εμνλ

(
Ac

μ,As
μ

)( 2p1 p12

p12 2p2

)
∂ν

(
Ac

λ

As
λ

)
(71)

with p1,p2,p12 ∈ Z labeling the class of the cohomol-
ogy group H3[U(1) × U(1),U(1)] = Z3. We comment that
this result is more general than Eq. (56) because there
Uc(1)×[Us(1)�Z2] symmetry restricts σ c = σ s = 0 so p1 =
0 and p2 = 0. However, the Hall conductance as the response
of this LSPT+Gauge(Ac) is the same:

σ sc = σ cs = p12
1

2π
. (72)

On the other hand, as the intrinsic topological field theory
of �3 in (3 + 1)D is not yet known to be completed, for the
anomalous KG matrix in ∂�3 we simply adopt the result from
the previous section to modify the effective KG matrix on ∂�3

as

KG,∂�3 =
(

2p1 p12 + θ0
2π

p12 + θ0
2π

2p2

)
(73)

in Eq. (71). With Hall conductance,

σ̃ sc = σ̃ cs = (p12 + θ0/2π )
1

2π
. (74)

Therefore, we have Eqs. (72) and (74) written in a consistent
manner as Eqs. (59) and (62). The top-down approach here
shows the consistency to Sec. II D1.

III. DISCRETE ZN CHARGE SYMMETRY
AND ZN SPIN SYMMETRY

A. Dynamical gauge theory: A general discussion

In Sec. II, we discussed the response theory of SPT states
with charge/spin continuous symmetry. In the examples we
considered, we found exotic �3 bulk response phenomena
which are descendants of the original Witten effect although
the bulk is fully gapped insulators. We also found exotic ∂�3

surface Hall effects which contain many variants, and all of
them can not be realized in a strictly two-dimensional SPT

state with the same symmetry as the ∂�3. The statement is
that, given a SPT with symmetry G in �3, its surface (∂�3)
with symmetry G′ (as a subgroup of G) can not be realized in
a SPT with the same symmetry G′ but defined in �2.

In this section, we will consider discrete charge/spin
symmetry. Recall that, in a BCS superconductor, the charge
symmetry reduces to Z2 from U(1) due to Cooper pairs. As a
result, the magnetic flux inside a type-II BCS superconductor
is quantized to π . The charge response current in terms of
Ohm’s equation is screened in a sense that in the linear
response regime the external electromagnetic field can not
be adiabatically turned on from zero due to photon mass.
Likewise, in a SPT state with discrete charge/spin symmetry
group which can be achieved by charge-N condensate/spin-N
condensate, the response phenomenon in the linear regime is
always dominated by the Meissner effect.

Instead of the response approach utilized in Sec. II, in
the following, we will study these states by gauging the
charge/spin symmety which results in the dynamical gauge
theory description of SPT states. We stress that all field
variables in the dynamical gauge theory description are now
dynamical and appear in the path-integral measure. Most
importantly, this dynamical gauge theory is not the low-energy
theory of the SPT state but a new window/tool to diagnose the
SPT states. By studying the dynamical gauge theory, we will
find the anomalous surface (∂�3), in a sense that the gauged
theory on the surface with symmetry G′ is different from the
gauged theory of a two-dimensional SPT with the same G′.
And, the dynamical gauge theory bridges SPT to a topological
ordered state, namely, “symmetry-enriched topological phase”
(SET) in which the fingerprint of SPT is hidden.

1. Gauging SPT to SET

The more precise statement of gauging the subgroup G′ of
the full global symmetry group G is that we convert partially
the global symmetry group to the gauge symmetry group,
with a leftover global symmetry (Z2 or ZT

2 ). In other words,
what we really do is convert SPT states to the symmetry-
enriched topological (SET) states, i.e., topologically ordered
states enriched with a global symmetry. Let us illuminate this
relation as follows.

Basics of SET. We first set up the SET picture in Refs. 37,
38, 55, and 56. Following pioneer works,38,55,56 let us define the
global symmetry group as Gs , the gauge symmetry group as
Gg . This SET picture in Ref. 38 considers the exact sequence
in SET,

1 → Gg → PSG → Gs → 1, (75)

which says that projective symmetry group (PSG) is an
extension of the global symmetry group Gs by the gauge
symmetry group Gg . From the exact sequence, Gg is a normal
subgroup. The global symmetry group Gs is regarded as the
quotient group Gs = PSG/Gg , from the full symmetry group
PSG mod out a gauge symmetry group Gg .

Promote SPT to SET. We now clarify that in all of our
examples, the full symmetry group has the form

G = G′
� G′′ or G = G′ × G′′, (76)
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TABLE III. The dynamical gauge theory description of spin-1 and charge-1 boson SPT systems with discrete spin symmetry and/or discrete
charge symmetry. By following Sec. III and specifically Sec. III A1, we connect the concept of gauging symmetry-protected topological (SPT)
states to symmetry-enriched topological (SET) states. The first column: projective symmetry group (PSG) in SET corresponds to the full
symmetry group in SPT. The second column: Gg in SET corresponds to the gauged symmetry group in SPT. The third column: Gs in SET
corresponds to the remaining ungauged symmetry group in SPT. Z2 in this column is π rotation about Sy . The fourth column shows the
effective dynamical gauge theory description of SET (more details in Sec. III A2), which includes the topological BF term and the � term
F ∧ F . The fifth column shows the surface gapless anomalous boson theory on Gs broken ∂�3 of �3 bulk SET (more details in Sec. III A3)
The last column is filled with the dynamical gauge theory of Gg-symmetry SPT (but with no Gs symmetry) on intrinsic �2 surface; by gauging
the symmetry Gg , it compares with the fifth column ∂�3. The central messages are as follows: (1) After gauging a normal subgroup of the
symmetry of 3D SPT, we obtain a SET state described by a dynamical gauge theory with a remaining global symmetry. (2) The surface (with
ZT

2 or Z2 broken) of 3D SET is described by a gapless boson matter field with quantum anomaly. (3) After fully gauging a SPT on �2, we
obtained a dynamical gauged field theory described by KG-matrix Chern-Simons theory. (4) The resultant states on ∂�3 and �2 are different
although both are two-dimensional space manifolds. Be aware that Bc and Bs are external antisymmetric 2-form Bc

μν and Bs
μν ; we should not

misunderstand its meaning mixed with magnetic field Bc,Bs .

Gauge Global Surface (∂�3) 2D plane (�2)
Full symmetry symmetry symmetry 3D bulk (�3) boson theory with dynamical gauge
group PSG group Gg group Gs dynamical gauge theory anomaly theory with KG matrix

ZN�ZT
2 ZN ZT

2
N

4π
εμνλρBc

μν∂λA
c
ρ+ ZT

2 broken ∂�3: ZT
2 broken �2:

( 2p N

N 0

)
θc

8π2 εμνλρ∂μAc
ν∂λA

c
ρ

N

2π
∂0φ

cεij ∂iλ
c
j

ZN×ZT
2 ZN ZT

2
N

4π
εμνλρBs

μν∂λA
s
ρ+ ZT

2 broken ∂�3: ZT
2 broken �2:

( 2p N

N 0

)
θs

8π2 εμνλρ∂μAs
ν∂λA

s
ρ

N

2π
∂0φ

sεij ∂iλ
s
j

ZN×[Us(1)�Z2] ZN×Us(1) Z2
N

4π
εμνλρBc

μν∂λA
c
ρ+ Z2 broken ∂�3: Z2 broken �2:

θ0
4π2 εμνλρ∂μAs

ν∂λA
c
ρ

N

2π
∂0φ

cεij ∂iλ
c
j

⎛⎝ 2p1 N p12 0
N 0 0 0
p12 0 2p2 0
0 0 0 0

⎞⎠
Uc(1)×[ZN�Z2] Uc(1)×ZN Z2

N

4π
εμνλρBs

μν∂λA
s
ρ+ Z2 broken ∂�3: Z2 broken �2:

θ0
4π2 εμνλρ∂μAs

ν∂λA
c
ρ

N

2π
∂0φ

sεij ∂iλ
s
j

⎛⎝ 2p1 0 p12 0
0 0 0 0

p12 0 2p2 N

0 0 N 0

⎞⎠
ZN1×[ZN2 �Z2] ZN1×ZN2 Z2

N1
4π

εμνλρBc
μν∂λA

c
ρ+ Z2 broken ∂�3: Z2 broken �2:

N2
4π

εμνλρBs
μν∂λA

s
ρ+ N1

2π
∂0φ

cεij ∂iλ
c
j+

θ0
4π2 εμνλρ∂μAs

ν∂λA
c
ρ

N2
2π

∂0φ
sεij ∂iλ

s
j

⎛⎝ 2p1 N1 p12 0
N1 0 0 0
p12 0 2p2 N2
0 0 N2 0

⎞⎠

with G′ as the symmetry group being gauged and G′′ = Z2

(i.e., the π rotation about Sy) or G′′ = ZT
2 is the leftover global

symmetry group. This specific form of G implies that G′ is
always a normal subgroup of G. Thus, the gauging process
for all of our five examples in this section (these are ZN�ZT

2 ,
ZN×[Us(1)�Z2], Uc(1)×[ZN�Z2], ZN1×[ZN2�Z2]; see, also,
Table III) guarantee the forms as Eq. (76) corresponding to the
Eq. (75) in the SET picture.38

Let us now tie everything together. In Refs. 38 and 56,
the full symmetry group G is a projective symmetry group
(PSG). Before gauging G′, what we have is SPT state with
PSG = Gs = G and Gg = Z1 = 1. After partially gauging the
subgroup Gg = G′, we can view this as choosing a normal
subgroup in the PSG. The leftover global symmetry group is
indeed the quotient group as Gs = PSG/Gg .

To be more precise, based on the relation

Gauging SPT:
G

G′ = G′′ ⇔ SET:
PSG

Gg

= Gs, (77)

the gauging process for all of our five examples in this section
can be regarded as converting SPT to SET:

SPT

⎧⎨⎩
PSG = G

Gg = 1
Gs = PSG

Gg
= G

gauging====⇒ SET

⎧⎨⎩
PSG = G

Gg = G′

Gs = PSG
Gg

= G
G′ .

(78)

In the following and the remaining parts of Sec. III, we will
base on this principle: gauging SPT to SET, try to distinguish
the features of SPT from the dynamical gauge theory viewpoint
of SET.

2. Dynamical BF term in �3

In this section, we demonstrate that gauging a discrete
ZN symmetry group will introduce a new topological term,
namely, BF term in which all field variables are dynamical.
To acheive a ZN gauge theory, we start with a U(1) gauge
theory with a gauge field Aμ (Aμ will be replaced by As

μ

and Ac
μ later) and couple Aμ to charge-N bosonic condensate

χ . Adding a Higgs potential U (χ ), the resultant condensate
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〈χ〉 (or vacuum expectation value) will spontaneously break
U(1) symmetry down to ZN symmetry. The Lagrangian for ZN

gauge theory75 is

|(∂ − iNA)χ |2 + U (χ ) + . . .

= 〈χ〉2|(∂ϕ − NA)|2 + U (〈χ〉) + . . . , (79)

where . . . stands for other terms that already exist in the
U(1) gauge theory χ = 〈χ〉eiϕ . Following, we show the
dual description of this ZN gauge theory is BF theory. This
argument works in arbitrary space-time dimension D, so let
us demonstrate more conveniently in differential form. Here,
F = dA is the 2-form field strength of A, with A is the
1-form gauge field, while B is another (D − 2) form with
independent gauge degree of freedom different from A. The
trick is dualizing ϕ by introducing a Lagrangian multiplier B.
Since d2ϕ = 0, let us name ρ = dϕ, we can impose dρ = 0
by a Lagrangian multiplier B:

〈χ〉2(dϕ − NA) ∧ ∗(dϕ − NA)

= 〈χ〉2(ρ − NA) ∧ ∗(ρ − NA) + 1

2π
B ∧ dρ. (80)

In the first line of the above equation, the integral measure
of the path integral is DADϕ, while in the second line it is
changed to DADρDB. By writing B ∧ dρ = (−1)D−2dB ∧
ρ and redefining field (ρ − NeA) → ρ, we may directly
integrate out the configuration Dρ rendering

N

2π
B ∧ dA + (−1)(D−1)

(4π〈χ〉)2
dB ∧ ∗dB, (81)

where the first term is the topological BF term while the second
term is the Maxwell term for (D − 2)-form U(1) gauge field
B. The path integral of this action has the measure DADB

since we integrated out Dρ. We assume that the superfluid
density 〈χ〉 is sufficiently large forming an ultraviolet energy
scale and thus the Maxwell term which is quadratic becomes
irrelevant in the low-energy field theory.

In closing, the derivation of the BF term as the dual
description of the ZN gauge theory, we need to confirm that the
prefactor of the BF term “ N

2π
B ∧ dA”, i.e., N/2π is the correct

normalization by examining whether the statistical angles of
this BF theory exactly recover the result in the ZN gauge theory
or not.

In the famous Kitaev’s Z2 toric code76 (as Z2 topological
order or Z2 gauge theory61), there are two kinds of excitations e

and m anyons. When doing a full winding (or twice exchange)
between e and m, the e- and m-wave functions gain a π

phase, so-called statistical angle π . In general, it is known
that a 2π/N statistical angle can be obtained from doing a full
winding (or twice exchange) between certain two excitations
of ZN gauge theory. On the other hand, in BF theory, these
two excitations are a point-particle with space-time trajectory
described by a one-dimensional worldline J which minimally
couples to A via A ∧ ∗J and a higher-dimensional object (such
as string or membrane) with space-time trajectory described
by a worldsheet or worldvolume � which minimally couples
to B via B ∧ ∗�. To test the statistical angle, we determine the
statistical interaction between the two matter field space-time

trajectories J and � by studying the following Lagrangian:

N

2π
B ∧ dA + A ∧ ∗J + B ∧ ∗�

= N

2π (D − 2)!
ε...B...∂.A.d

Dx + AμJμdDx

+ 1

(D − 2)!
B...�

...dDx. (82)

Here, we skip the apparent indices as . . . abbreviation. By
noticing that the path integral of the above Lagrangian has
integral measure DADBDJD�, we integrate out DADB to
deduce the statistical interaction, resulting in a Hopf term62

2π

N
J.

ε...∂.

∂2
�.... (83)

This is the phase appearing in the exponent of the partition
function exp[i 2π

N
J.

ε...∂.

∂2 �...], as this 2π
N

factor implies a 2π
N

statistical angle when braiding J around � by 2π , which
reassures our 2π

N
normalization is correct.

Let us express the differential form explicitly:

B ∧ dA = 1

(D − 2)!
εμ1μ2...μDBμ1...∂μD−1AμD

dDx. (84)

In �3 bulk (i.e., space-time dimension D = 4), the BF term is
explicitly expressed by

L = N

4π
εμνλρBμν∂λAρ, (85)

where Aμ ≡ Ac
μ (As

μ) and Bμν ≡ Bc
μν (Bs

μν) if ZN symmetry
originates from Uc(1) charge symmetry [Us(1) spin symme-
try]. The path-integral measure is DADB.

If the ZN gauge theory is defined on �2 (i.e., space-time
dimension D = 3), the BF term reduces to a mutual Chern-
Simons term

L = N

2π
εμνλAμ∂νAλ, (86)

where a general (D − 2)-form gauge field B reduces to a
simplest 1-form gauge field denoted by Aμ, and the path-
integral measure is DADA. Aμ ≡ Ac

μ (As
μ) and Aμ ≡ A

c

μ (A
s

μ)
if ZN symmetry originates from Uc(1) charge symmetry [Us(1)
spin symmetry].

We comment that if we view both B and A fields in
BF theory as dynamical gauge fields, the overall theory is a
dynamical topological field theory in the sense that the ground-
state degeneracy of BF theory will depend on the topology
of the spatial manifold. For example, (3 + 1)D BF theory
has N3 ground-state degeneracy, where N is the coefficient
“level N” of the BF term. Another example, (2 + 1)D mutual
Chern-Simons theory, has N2 ground-state degeneracy, where
N is the coefficient level N of the mutual Chern-Simons
term.77 As a side note, recently the BF term has been applied
to other contexts with different interpretation in condensed
matter physics.41,77,78

3. Surface theory with quantum anomaly

In this section, we briefly preview the procedure carried out
in Secs. III B, C 1, and C 2: the comparison of two kinds of
dynamical gauge theory on the anomalous surface ∂�3 and on
the intrinsic �2 bulk, and both have 2D spatial dimensions. The
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philosophy is that we will treat the external fields appearing in
Sec. II as dynamical gauge fields to gauge the 3D bulk �3 and
study its gauged surface theory ∂�2 (with Z2 or ZT

2 symmetry
broken), and compare it to the gauged intrinsic 2D bulk �2

(without Z2 or ZT
2 symmetry). We find the gauged theory on

the anomalous surface ∂�3 with symmetry G′ is different from
the gauged theory of a two-dimensional SPT with the same G′
in the intrinsic �2 bulk.

We call this ∂�3 surface anomalous because the boundary
field theory on ∂�3 is meant to cancel the anomaly contributed
from the dynamical gauge theory in �3. Here, the situation
is similar to the case that (2 + 1)D bulk topological Chern-
Simons theory requires (1 + 1)D Wess-Zumino-Witten model
on the boundary to cancel the anomaly.79–81 A more familiar
case is the (2 + 1)D bulk Abelian Chern-Simons theory, which
requires (1 + 1)D edge theory of chiral bosons to preserve
the gauge invariance on the manifold with boundary.61,81

Similarly, the (3 + 1)D bulk topological BF theory requires the
(2 + 1)D anomalous edge theory of chiral bosons to preserve
the gauge invariance on the manifold with boundary. We
comment that the interpretation of (2 + 1)D electromagnetism
in Ref. 41 is improper. Instead, we interpret the surface theory
of BF theory as an anomalous chiral boson theory and leave
the details to Appendix B. More on the understanding on the
anomaly of topological phase or topological field theory, and
their relation to bulk-edge correspondence, can be found in
Refs. 54, 82, 83, and in particular Sec. VI of Ref. 84.

B. Derivation of surface chiral boson theory:
An example with ZN�ZT

2

Physically, a SPT state with ZN�ZT
2 in �3 can be viewed

as a time-reversal-symmetric bosonic superconductor with
charge-N bosonic condensate. By collecting Eq. (85) and the
θc term in Eq. (3), we obtain the following dynamical gauge
theory with path-integral measure DAcDBc:

L = θc

8π2
∂μAc

ν∂λA
c
ρε

μνλρ + N

4π
εμνλρBc

μν∂λA
c
ρ, (87)

where θc = 2π + 4πk (k ∈ Z). Its ZT
2 -broken surface ∂�3,

however, is meant to cancel the anomaly contribution from the
bulk topological BF theory. This derivation is mentioned in
Ref. 41 in a different context, but let us still walk through the
logic to have coherent discussion. A convenient way to derive
the chiral (vector and scalar) bosons is to choose a temporal
gauge choice Ac

0 = 0, Bc
0i = 0. The gauge choice itself should

not affect the overall physics and thus should only be based
on the convenience. The equations of motion (EOM) of Ac

0
and Bc

0i impose the following constraints: ε0ijk∂iB
c
jk = 0 and

ε0ijk∂jA
c
k = 0 which imply Bc

jk = ∂jλk − ∂kλj and Ac
k = ∂kφ

as pure gauge forms. One interprets λk as vector bosons and
φ as a scalar boson. Let us consider a ∂�3 formed by x1-
x2 (i.e., x-y) plane at x3 = 0 (i.e., z = 0) and then collect
the term on ∂�3 to be 1

2
N
4π

4
∫

(B12F
c
03 + B23F

c
01 + B31F

c
02) =

N
2π

∫
dx3∂3(−λ2F

c
01 + λ1F

c
02) + . . ., so the surface theory is

described by the action

N

2π

∫
d3x(∂1λ2 − ∂2λ1)∂0φ. (88)

By choosing a light-cone gauge79 Ac
0 + v1A

c
1 + v2A

c
2 = 0, we

can add velocity81 (so the Hamiltonian is not zero) to the boson
theory, so the action becomes

1

2π

∫
d3x εij ∂iλj (N∂0φ − v1∂1φ − v2∂2φ) (89)

with i,j running in 1,2. One can massage this surface action
into a more symmetric form

1

4π

∫
d3x εij ∂iλj (N∂0φ − v1∂1φ − v2∂2φ)

+ εij ∂iφ(k∂0λj − v1∂1λjφ − v2∂2λj ). (90)

The pure gauge forms also affect the θc term on ∂�3,
θc

4π2 ε
νλρAc

ν∂λA
c
ρ = 0 because of Ac

k = ∂kφ. So, the θc term
becomes strictly zero on the surface. In this sense, Eq. (89) is
the only leftover term, which is required to cancel the anomaly
from the bulk BF theory in �3.

For intrinsic ZN symmetry SPT on Z2 broken �2, collecting
Eqs. (12), (13) and (86) leads to the dynamical gauge theory

L = 2p

4π
Ac

μ∂νA
c
λε

μνλ + N

2π
εμνλAc

μ∂νA
c

λ

= 1

4π

(
Ac

μ,A
c

μ

)( 2p N

N 0

)
∂ν

(
Ac

λ

A
c

λ

)
εμνλ (91)

with path-integral measure DAcDA
c
, integer p = k.

The ZN×ZT
2 symmetry group is similar and the results are

shown in Table III. Derivations of other symmetry groups
are straightforward. (Details of derivations can be found in
Appendix C.)

IV. CONCLUSIONS

In summary, in this work we study the response theory
and dynamical gauge theory approach of bosonic symmetry-
protected topological states (SPT) at least with charge sym-
metry [U(1) or ZN ] or spin-Sz symmetry [U(1) or ZN ] in
2D bulk, 3D bulk, and the surface of 3D bulk. The response
theory applied in the case of the continuous U(1) spin or
charge symmetry group is based on the minimal physical
input (such as the principle of gauge invariance, absence
of topological order) without relying on lattice microscopic
models. The 3D examples contain Uc(1)�ZT

2 , Us(1)×ZT
2 ,

and, Uc(1)×[Us(1)�Z2], where Uc(1) is charge-conservation
symmetry, Us(1) is spin-rotation symmetry about Sz, ZT

2 is
time-reversal symmetry, and Z2 is specified to the π -rotation
symmetry about spin Sy . ZT

2 -broken and Z2-broken surfaces
are focused. The symmetry implementation in 2D examples
is the same as the surfaces of 3D examples. By studying the
3D bulk response, we define many variants of the celebrated
Witten effects, i.e., charge Witten effect, spin Witten effect, and
mutual Witten effect. The last one is especially discussed in
details which exhibit a very exotic experimental phenomenon.
Through a case-by-case comparison of the quantum Hall
effects between the surface and 2D bulk with the symmetry
implementation, we emphasize that the surface of 3D SPT is
anomalous and its existence requires the existence of an extra
spatial dimension. The systematical study on the response
theory of these SPT states with simple spin and charge
symmetry implementation sheds light on the realistic charge

235109-14



SYMMETRY-PROTECTED TOPOLOGICAL PHASES WITH . . . PHYSICAL REVIEW B 88, 235109 (2013)

and spin response properties of underlying SPT states which
will be possibly synthesized in condensed matter materials or
cold-atom experiments in the near future.

On the other hand, the dynamical gauge theory description
is also studied through the concrete examples at least with dis-
crete ZN spin symmetry or discrete ZN charge symmetry. The
latter can be viewed as bosonic topological superconductors.
The 3D examples contain ZN�ZT

2 (ZN is charge symmetry),
ZN×ZT

2 (ZN is spin-Sz symmetry), Uc(1)×[ZN�Z2] (Z2 is π

rotation about spin Sy), ZN×[Us(1)�Z2], and, ZN1×[ZN2� Z2]
(ZN1 and ZN2 are charge and spin symmetries, respectively).
ZT

2 -broken and Z2-broken surfaces are focused. The symmetry
implementation in 2D examples is the same as the surfaces of
3D examples. The dynamical gauge theory in 3D bulk is a
topological gauge theory with topological BF term + variant
of axionic � term. Its surface theory is gapless boson matter
field theory with quantum anomaly. The dynamical gauge
theory in 2D bulk is described by multicomponent dynamical
Chern-Simons gauge theory with KG-matrix coefficient. By
studying the dynamical gauge theory, we explicitly show the
connection between a SPT in 3D and a symmetry-enriched
topological phase (SET) in 3D through the concrete examples.

There are several open questions to be stressed in future
work.

1. Symmetry implementation on the surface. It will be
quite interesting to study different symmetry-breaking patterns
on the surface other than ZT

2 breaking and Z2 breaking. For
Uc(1)�ZT

2 and Us(1)×ZT
2 SPT states in 3D, Refs. 41 and 48

have discussed many possible symmetry implementations on
the surface based on field theory approach. Uc(1)×[Us(1)�Z2]
in 3D will be an interesting SPT state by studying different
symmetry-breaking patterns on the surface. For all discrete
groups we considered, their surface anomalous theory will
be also interesting to be investigated with other symmetry
implementation.

2. Classification. The Z2 nature of the theta angles
(θc,θs,θ0) gives one nontrivial state and one trivial state.
There are more classes within the group cohomology level3

and possibly some classes beyond group cohomology,25,26,41

especially those with ZT
2 symmetry. In our case where we only

consider the � and BF terms, it will be interesting to search for
a complete set of topological terms to obtain more nontrivial
states.

3. Lattice realization and exactly solvable model. The
microscopic model, lattice model, and exact solvable model
can help to determine more physical properties. Several works
along this direction can be found in Refs. 23–26 and 28–30.
It is noteworthy that the ZN , U(1) symmetry of the charges
and spins can be implemented as the rotor angles in a
quantum rotor model.28,29 In particular, the SPT state with
Z2 symmetry has been constructed where the Z2 symmetry
is realized as the Z2 spin degree of freedom of σx,σz.23 SPT
states with ZN symmetry have been constructed in Ref. 30.
For a detailed lattice construction of the SPT edge states
with a ZN symmetry can be found in Ref. 29. Apparently,
the experimental relevant materials for realizing these SPT
states will be mostly significant. Various (charge, spin, mutual)
Witten effects we proposed may shed light on the identification
of these materials. Overall, further connections from our
approach (on the response theory and the dynamical gauge

theory) to an explicit lattice/experimental realization will be
desirable.

4. Numerical simulation. Our dynamical gauge theory
formulation has numerical simulation implications. For ex-
ample, we can apply the procedure in Ref. 23 by adding
dynamical gauge field variables on the link, while global
symmetry acts on the boson/spin on the sites, and then
investigate the subsequent gauged SPT. This can also be done
by cocycles formulation38,54,63,85 from a group cohomology
viewpoint. A recent tensor network approach in Ref. 86
using quantum-state renormalization87–91 is applied in iden-
tifying Affleck-Kennedy-Lieb-Tasaki (AKLT) states in one
and two dimensions. Based on the construction of SPT lattice
models23–26 and further gauging the SPT by adding gauge field
variable on the links,23,92 it will be applicable to apply similar
numerical simulations to identify the gauged SPT (or SET),
and further pin down the original SPT.
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APPENDIX A: K -MATRIX CHERN-SIMONS THEORY FOR
SPT AND DERIVATION OF RESPONSE THEORY

Here, we derive the detailed K-matrix construction for SPT
order (symmetry-protected topological order) and its response
theory. Motivated by pioneer works,23,36–40,63 however, we still
keep our following discussion self-contained and accessible.
In (2 + 1)D, it is believed that a large class of SPT orders, es-
pecially Abelian SPT orders, can be classified and categorized
by Abelian K-matrix Chern-Simons theory.61,93 The intrinsic
field theory description of SPT has the following action:

SSPT,�2 =
∫

dt d2x
1

4π
KS,IJ εμνρaI

μ∂νa
J
ρ , (A1)

where a is the intrinsic gauge field (or so-called statistical
gauge field), and KS is the K matrix which classifies and
categorizes the SPT orders.

The SPT order is symmetry protected, so by definition
its order is protected by global symmetry, say, some global
symmetry group Gs . The distinct features of SPT from trivial
insulator are its boundary edge states. The effective degree of
freedom of SPT edges is the chiral boson field , where  is
introduced to preserve action invariance on the boundary under
gauge transformation of the field a.61 The boundary action is

SSPT,∂�2 = 1

4π

∫
dt dx KS,IJ ∂tI ∂xJ − VIJ ∂xI∂xJ .

(A2)
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When Gs symmetry is preserved, the SPT edge states are gap-
less (otherwise it has degenerated ground states when adding
symmetry-allowed gapping term). The SPT has ground-state
degeneracy (GSD) on the torus as GSD = | det K| = 1;10,36,61

this leads to the constrained canonical form of KS . In this
paper, we focus on the bosonic Abelian SPT. Due to its bosonic
statistics, the quadratic form has all even integer coefficient,
the canonical form10,94 is known to be the K matrix Kb±

N×N ,

composed by blocks of ( 0 1
1 0 ) and a set of all positive (or

negative) coefficients E8 lattices KE8 . We can explicitly write
Kb±

N×N as

Kb+
N×N = Kb0 ⊕ KE8 ⊕ KE8 ⊕ . . . (A3)

and

Kb−
N×N = Kb0 ⊕ (−KE8 ) ⊕ (−KE8 ) ⊕ . . . , (A4)

where

Kb0
N×N =

(
0 1
1 0

)
⊕

(
0 1
1 0

)
⊕ . . . (A5)

and

KE8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 −1

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 −1 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A6)

In our paper, however, we will not need the KE8 state for our
SPT examples. While it has been discussed in Ref. 36 that
many classes of SPT can be realized by rank-2 K matrix, here
we will show some SPT examples in our study need to have
K matrix of large ranks, such as rank-4.

The implementation of this global symmetry can be
explicitly shown by the symmetry transformation on the chiral
bosons of the edge states

g : {Wg,δg,ηg}. (A7)

The group element g of symmetry group Gs acts on chiral
boson fields as

 → ηg(Wg)−1
 + δg, (A8)

K → ηg(Wg)T KWg, (A9)

where ηg = ±1, with + for the unitary symmetry and − for
the antiunitary symmetry transformation.

We will use the structure of the Gs to constrain the allowed
g as {Wg,δg,ηg}. The constraint is as follows: under any∏

i gi = e, we have chiral boson field as a quantum phase
unchanged up to module 2π ,



∏
i gi=e

−−−→  mod 2π. (A10)

We should also allow the gauge equivalence to identify the
same phases disguised by seemingly different transformations.
Those gauge transformations are represented by some {X,�}
where X obeys XT KX = K and X ∈ GL(N,Z) as a general
linear group of degree N over integer Z, and  →  + �,
such that we identify

Wg → X−1WgX, (A11)

δg → X−1
(
� + δg − ηgW

−1
g �

)
. (A12)

To gauge the theory, we need to couple the global symmetry
current to the (dynamical or external) gauge field A. In
the specific examples we study [such as U(1), ZN , U(1)
× U(1), ZN1 × U(1), ZN1 × ZN2 ], all the global symmetry
can be restricted to g as g = {Wg = I,δg,ηg = +1}, so
the global symmetry current is fully determined by δg .
Therefore, the global symmetry current on (1 + 1)D (here ∂�2)
is εμν∂ν/2π , coupled to the external gauge field A as

qI
J

1

2π
εμνρAI

μ∂ν
J , (A13)

the global symmetry current in (2 + 1)D (here �2) is
εμνρ∂νa

J
ρ /2π , coupled to the external gauge field A as

qI
J

1

2π
εμνρAI

μ∂νa
J
ρ . (A14)

The t IJ vector is proportional to δ
g

J , with the I of t IJ
specifying the I th-independent generator of the group Gs .
The Lagrangian of the SPT order with intrinsic a coupled to
the external gauge field A will be

LSPT+Gauge = 1

4π
KS,IJ εμνρaI

μ∂νa
J
ρ + qI

J

1

2π
εμνρAI

μ∂νa
J
ρ .

(A15)

To integrate out a, we adopt EOM as a constraint:

1

2π
KS,IJ εμνρ∂νa

J
ρ + qJ

I

1

2π
εμνρ∂νA

J
ρ = 0

⇒ aI ′
ρ = −K−1

S,I ′I qJ
I AJ

ρ . (A16)

We get the gauged version description, left with only external
gauge field A,

LSPT+Gauge(A) = 1

4π
εμνρAI ′

μ

( − qI ′
I K−1

S,IJ qJ ′
J

)
∂νA

J ′
ρ

≡ 1

4π
εμνρAI ′

μKG,I ′J ′∂νA
J ′
ρ , (A17)

where KG,I ′J ′ ≡ −qI ′
I K−1

S,IJ qJ ′
J .

We will work through examples shown in our main text,
relevant to the response study of �2, ∂�3. To reiterate the
examples below only requires Wg = I and ηg = +1, so below
we only list δ to specify the symmetry transformation. Aa a
side remark, our group elements g representation also form a
faithful representation.36,85
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1. U(1)

A rank-2 K matrix suffices to exhaust all classes of group
cohomology H3[U(1),U(1)] = Z with U(1) symmetry,

KSPT =
(

0 1
1 0

)
, (A18)

where the symmetry transformation of U(1) with an angle θ

specifies the group element g,

gθ : δU (1)θ = θq = θ

(
1

−p

)
. (A19)

Since a U(1) group only requires one generator, there is
only one kind of charge vector q = (1,p). Here, p labels
the Z class of the cohomology group H3[U(1),U(1)] = Z,
while KG = −qIK

−1
S,IJ qJ = 2p. So the topological term in

the gauged theory is

LSPT+Gauge(A) = 2p

4π
εμνρAI

μ∂νA
I
ρ. (A20)

2. ZN

Similarly as the U(1) symmetry case, the ZN symme-
try only requires a rank-2 K matrix, which exhausts all
H3[ZN,U(1)] = ZN :

KSPT =
(

0 1
1 0

)
, (A21)

gn : δ = 2π

N
n

(
1

−p

)
. (A22)

Here, p labels the ZN class of the cohomology group
H3[ZN,U(1)] = ZN . Both p and n have module N structure
as elements in ZN .

However, the main difference from U(1) gauged theory is
that for the ZN case, the gauge charge and gauge flux are
quantized by module N , which can be captured by a mutual
Chern-Simons term N

2π
εμνρAI

μ∂νA
II
ρ (or more generally a BF

theory, see Sec. III A2), where the statistics angle of a full wave
function gains a 2π/N phase after a full winding between a
unit gauge charge and a unit gauge flux:

LSPT+Gauge(A) = 1

4π
εμνρAI ′

μ

(
2p N

N 0

)
I ′J ′

∂νA
J ′
ρ . (A23)

3. U(1) × U(1)

We require a rank-4 K matrix to obtain all classes of
group cohomology H3[U(1) × U(1),U(1)] = Z3 with U(1)
symmetry

KSPT =
(

0 1
1 0

)
⊕

(
0 1
1 0

)
, (A24)

gθ : δ = δU (1)θ1 + δU (1)θ2 = θ1q1 + θ2q2 (A25)

with q1 =

⎛⎜⎜⎝
1

−p1

0
−p12

⎞⎟⎟⎠, q2 =

⎛⎜⎜⎝
0

−p21

1
−p2

⎞⎟⎟⎠ (A26)

with θ1,θ2 ∈ U(1).

The terms with gauge fields coupling to the symmetry
current are

q1
J

1

2π
εμνρA1

μ∂νa
J
ρ + q2

J

1

2π
εμνρA3

μ∂νa
J
ρ . (A27)

Here, we couple the two generators of symmetry group to
different gauge fields, and purposefully choose them to be A1

and A3 to represent the charge sector38,40 of gauge fields, while
the meaning of this choice will be revealed in the next section
in Sec. A 4. It is easy to see p12 + p21 identify the same index
from the gauged coupling term (p12 + p21)εμνρA1

μ∂νA
3
ρ/2π .

So, we may identify p12 + p21 → p12, with p1,p2,p12 each
labeling a Z in Z3. The gauged theory has this K matrix

KG =

⎛⎜⎜⎝
2p1 0 p12 0

0 0 0 0
p12 0 2p2 0
0 0 0 0

⎞⎟⎟⎠ (A28)

or simply in the gauge charge sectors of U(1) × U(1): KG =
( 2p1 p12

p12 2p2
).

4. ZN1 × ZN2

We require a rank-4 K matrix to obtain all classes
of group cohomology H3[ZN1 × ZN2 ,U(1)] = ZN1 × ZN2 ×
Zgcd(N1,N2) with U(1) symmetry,

KSPT =
(

0 1
1 0

)
⊕

(
0 1
1 0

)
, (A29)

g : δ = δ1 + δ2 = 2π

N1
n1q1 + 2π

N2
n2q2 (A30)

with q1 =

⎛⎜⎜⎜⎝
1

−p1

0
−p12

⎞⎟⎟⎟⎠, q2 =

⎛⎜⎜⎝
0

−p21

1
−p2

⎞⎟⎟⎠ (A31)

with n1 ∈ ZN1 ,n2 ∈ ZN2 .
Again, p12 + p21 identify the same index from the gauged

coupling term (p12 + p21)εμνρA1
μ∂νA

3
ρ/2π . So, we may iden-

tify p12 + p21 → p12. However, the two gauged sectors of
ZN1 symmetry and ZN2 symmetry share the same index p12.
Therefore, we should emphasize the number p12 of differ-
ent topological phases is identified by p12 ∼ p12 + c1N1 +
c2N2 = p12 + c12 gcd(N1,N2) for any integer c1, c2. There
is a corresponding integer c12 from the Chinese remainder
theorem. This means

p12 = p12 mod[gcd(N1,N2)]. (A32)

All together, we have that p1,p2,p12 each labels ZN1 , ZN2 ,
Zgcd(N1,N2). While our argument is based on the symmetry
transformation from the SPT side, this relation can also
be confirmed by a different argument from the statistics
angle39 of the gauged theory side. The main difference from
U(1) × U(1) gauged theory is that for the ZN1 × ZN2 case,
the gauge charge and gauge flux are quantized by module N ,
which can be captured by two mutual Chern-Simons terms
N1
2π

εμνρA1
μ∂νA

2
ρ + N2

2π
εμνρA3

μ∂νA
4
ρ , where the statistics angle

of a full wave function gains a 2π/N1 (or 2π/N2) phase after
a full winding between a unit gauge charge and a unit gauge
flux of ZN1 symmetry(or ZN2 symmetry). The gauged theory
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has this K matrix

KG =

⎛⎜⎜⎜⎝
2p1 N1 p12 0

N1 0 0 0

p12 0 2p2 N2

0 0 N2 0

⎞⎟⎟⎟⎠. (A33)

5. ZN1 × U(1)

Similar to Secs. A 3 and A 4, we require a rank-4 K matrix
to obtain all classes of group cohomology H3[ZN1 × U(1)] =
ZN1 × Z × ZN1 with U(1) symmetry

KSPT =
(

0 1

1 0

)
⊕

(
0 1

1 0

)
, (A34)

g : δ = δ1 + δ2 = 2π

N1
n1q1 + θ2q2 (A35)

with q1 =

⎛⎜⎜⎜⎝
1

−p1

0

−p12

⎞⎟⎟⎟⎠, q2 =

⎛⎜⎜⎜⎝
0

−p21

1

−p2

⎞⎟⎟⎟⎠ (A36)

with n1 ∈ ZN1 and θ2 ∈ U(1).
While the KG matrix from the response theory is derived in

the same manner as in Secs. A 3 and A 4, we skip details and
directly list the result

KG =

⎛⎜⎜⎜⎝
2p1 N1 p12 0

N1 0 0 0

p12 0 2p2 0

0 0 0 0

⎞⎟⎟⎟⎠. (A37)

The classification follows the logic in Secs. A 3 and A 4: we
have that p1,p2,p12 each labels ZN1, Z, ZN1 .

APPENDIX B: SURFACE OF (3 + 1)D BF THEORY IS NOT
GAUGE INVARIANT

There are some discussions on the surface theory of BF
theory in the literature in different contexts. For example,
in Appendix A of Ref. 41, the surface theory is interpreted
as a (2 + 1)D electromagnetism, i.e., free photon theory.
We comment that the theory is not a theory of photons
claimed in the reference. In other words, it is not a usual
electromagnetism. The reason is the following. If we use
the definitions of “electric field” and “magnetic field” in the
reference, the Lagrangian in Eq. (A6) can be reexpressed in
the form of L = · · · + E2 + B2 (in Euclidean metric), where
“. . .” is an extra term that is not a gauge-invariant term. Gauge
invariance is a fundamental requirement of electromagnetism.
If one insists on the term “electromagnetism,” it is more
appropriate to call it “anomalous electromagnetism” which
can not exist alone in (2 + 1)D. It can exist as a surface of a
(3 + 1)D bulk.

We emphasize that both Lagrangians in their Eq. (A6) and
Lagrangians of the chiral boson theory in our paper are not
gauge invariant alone on the surface. A gauge-invariant theory
must be composed by the bulk BF theory and the surface
theory as a whole. Thus, a full quantum effect of anomaly

of leaking currents to the bulk [here relation between chiral
boson and BF theory is like the relation between chiral boson
and Chern-Simons theory in (2 + 1)D quantum Hall effects]
does happen.

APPENDIX C: DERIVATION OF SURFACE CHIRAL
BOSON THEORY WITH QUANTUM ANOMALY

1. Uc(1)×[ZN�Z2] and ZN×[Us(1)�Z2] symmetry groups

Physically, a SPT state with Uc(1)×[ZN�Z2] in �3 can be
viewed as a three-dimensional interacting bosonic ground state
with charge-1 and spin-1 of discrete spin symmetry ZN�Z2

where ZN is 2π/N rotation about spin-z direction and Z2 is π

rotation about spin-y direction. By collecting Eq. (85) and the
θ0 term in Eq. (3), we obtain the following dynamical gauge
theory with path-integral measure DAcDAsDBs :

L = θ0

4π2
∂μAc

ν∂λA
s
ρε

μνλρ + N

4π
εμνλρBs

μν∂λA
s
ρ, (C1)

where θ0 = π + 2πk (k ∈ Z).
Similar to the previous Sec. III B, the (3 + 1)D bulk

topological BF theory requires the (2 + 1)D edge theory
of chiral (vector and scalar) bosons to preserve the gauge
invariance on the manifold with boundary.79,81 We again first
choose a temporal gauge choice As

0 = 0, Bs
0i = 0. The gauge

choice itself should not affect the overall physics; this choice
should based only on the convenience. The EOM of As

0
and Bs

0i impose the following constraints: ε0ijk∂iB
s
jk = 0 and

ε0ijk∂jA
s
k = 0 which imply Bs

jk = ∂jλk − ∂kλj and As
k = ∂kφ

as pure gauge forms. One interprets λk as vector bosons and
φ as a scalar boson. Let us consider a ∂�3 formed by x1-x2

plane at x3 = 0 and then collect the term on ∂�3 to be

N

2π

∫
d3x(∂1λ2 − ∂2λ1)∂0φ. (C2)

By choosing a light-cone gauge Ac
0 + v1A

c
1 + v2A

c
2 = 0, the

action becomes

1

2π

∫
d3x εij ∂iλj (N∂0φ − v1∂1φ − v2∂2φ) (C3)

with i,j running in 1,2. The pure gauge forms also affect the θ0

term on ∂�3, with θ0
4π2 ε

νλρAc
ν∂λA

s
ρ = 0 because of As

k = ∂kφ.
So, the θ0 term becomes strictly zero on the surface. In this
sense, Eq. (C3) is the only leftover term, which is required to
cancel the anomaly from the bulk BF theory in �3.

On Z2 broken �2, collecting Eqs. (71) and (86) leads to the
dynamical gauge theory

L = 1

4π

(
Ac

μ,A
c

μ,As
μ,A

s

μ

)
⎛⎜⎜⎜⎝

2p1 0 p12 0

0 0 0 0

p12 0 2p2 N

0 0 N 0

⎞⎟⎟⎟⎠

× ∂ν

⎛⎜⎜⎜⎜⎝
Ac

λ

A
c

λ

As
λ

A
s

λ

⎞⎟⎟⎟⎟⎠ εμνλ (C4)
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with path-integral measure DAcDA
c

and p1,p12,p2 ∈ Z.
ZN×[Us(1)�Z2] symmetry group is similar and the results
are shown in Table III.

2. ZN1×[ZN2 �Z2] symmetry group

Physically, a SET state with ZN1×[ZN2�Z2] in �3 can be
viewed as a three-dimensional bosonic superconductor with
charge-N1 condensate and spin-1 of discrete spin symmetry
ZN�Z2 where Z2 is π rotation about Sy . By collecting Eq. (85)
and the θ0 term in Eq. (3), we obtain the following dynamical
gauge theory with path-integral measure DAcDAsDBcDBs :

L = θ0

4π2
∂μAc

ν∂λA
s
ρε

μνλρ + N1

4π
εμνλρBc

μν∂λA
c
ρ

+ N2

4π
εμνλρBs

μν∂λA
s
ρ, (C5)

where θ0 = π + 2πk (k ∈ Z).
Similar to the previous Secs. III B and C 1, the (3 + 1)D

bulk topological BF theory requires the (2 + 1)D edge theory
of chiral (vector and scalar) bosons to preserve the gauge
invariance on the manifold with boundary.61,79,81 We again
first choose a temporal gauge choice41,61,79,81 Ac

0 = As
0 = 0,

Bc
0i = Bs

0i = 0. The gauge choice itself should not affect the
overall physics; this choice should based only on convenience.
The EOM of Ac

0,A
s
0,B

c
0i ,B

s
0i impose the following constraints:

ε0ijk∂iB
c
jk = ε0ijk∂iB

s
jk = 0 and ε0ijk∂jA

c
k = ε0ijk∂jA

s
k = 0.

These imply Bc
jk = ∂jλ

c
k − ∂kλ

c
j , Bs

jk = ∂jλ
s
k − ∂kλ

s
j , Ac

k =
∂kφ

c, and As
k = ∂kφ

s as pure gauge forms. One interprets
λc

k,λ
s
k as vector bosons and φc,φs as scalar bosons. Let us

consider ∂�3 formed by the x1-x2 plane at x3 = 0 and then

collect the term on ∂�3 to be∫
d3x

(
N1

2π

(
∂1λ

c
2 − ∂2λ

c
1

)
∂0φ

c + N2

2π

(
∂1λ

s
2 − ∂2λ

s
1

)
∂0φ

s

)
.

(C6)

By choosing light-cone gauges Ac
0 + v1A

c
1 + v2A

c
2 = 0 and

As
0 + v1A

s
1 + v2A

s
2 = 0, the action becomes

1

2π

∫
d3x εij

(
∂iλ

c
j (N1∂0φ

c − v1∂1φ
c − v2∂2φ

c)

+∂iλ
s
j (N2∂0φ

s − v1∂1φ
s − v2∂2φ

s)
)

(C7)

with i,j running in 1,2. The pure gauge forms also affect the
θ0 term on ∂�3, with θ0

4π2 ε
νλρAc

ν∂λA
s
ρ = 0 because of Ac

k =
∂kφ

c, As
k = ∂kφ

s . So, the θ0 term becomes strictly zero on the
surface. In this sense, Eq. (C7) is the only leftover term, which
is required to cancel the anomaly from the bulk BF theory
in �3.

On Z2 broken �2, collecting Eqs. (71) and (86) leads to the
dynamical gauge theory

L = 1

4π

(
Ac

μ,A
c

μ,As
μ,A

s

μ

)
⎛⎜⎜⎜⎝

2p1 N1 p12 0

N1 0 0 0

p12 0 2p2 N2

0 0 N2 0

⎞⎟⎟⎟⎠

× ∂ν

⎛⎜⎜⎜⎜⎝
Ac

λ

A
c

λ

As
λ

A
s

λ

⎞⎟⎟⎟⎟⎠ εμνλ (C8)

with path-integral measure DAcDA
c
DAsDA

s
and

p1,p12,p2 ∈ Z.
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