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Recently, there is a considerable study on gapped symmetric phases of bosons that do not break any symmetry.
Even without symmetry breaking, the bosons can still be in many exotic new states of matter, such as symmetry-
protected topological (SPT) phases, which are short-range entangled and symmetry-enriched topological (SET)
phases, which are long-range entangled. It is well known that noninteracting fermionic topological insulators
are SPT states protected by time-reversal symmetry and U(1) fermion number conservation symmetry. In this
paper, we construct three-dimensional exotic phases of bosons with time-reversal symmetry and boson number
conservation U(1) symmetry by means of fermionic projective construction. We first construct an algebraic
bosonic insulator, which is a symmetric bosonic state with an emergent U(1) gapless gauge field. We then obtain
many gapped bosonic states that do not break the time-reversal symmetry and boson number conservation via
proper dyon condensations. We identify the constructed states by calculating the allowed electric and magnetic
charges of their excitations, as well as the statistics and the symmetric transformation properties of those
excitations. This allows us to show that our constructed states can be trivial SPT states (i.e., trivial Mott
insulators of bosons with symmetry), nontrivial SPT states (i.e., bosonic topological insulators), and SET states
(i.e., fractional bosonic topological insulators). In nontrivial SPT states, the elementary monopole (carrying zero
electric charge but unit magnetic charge) and elementary dyon (carrying both unit electric charge and unit magnetic
charge) are fermionic and bosonic, respectively. In SET states, intrinsic excitations may carry fractional charge.

DOI: 10.1103/PhysRevB.89.045127 PACS number(s): 71.27.+a, 05.30.Jp

I. INTRODUCTION

A quantum ground state of a many-boson system can be
in a spontaneous-symmetry-breaking state, or a topologically
ordered (TO) state [1–3]. A TO state is defined by the
following features: ground-state degeneracy in a topologically
nontrivial closed manifold [1–3], emergent fermionic/anyonic
excitations [4,5], or chiral gapless edge excitations [6,7]. If, in
addition to a TO, the ground state also has a symmetry, such
a state will be referred as a “symmetry-enriched topological
(SET) phase.”

Recently, it was predicted that even if the bosonic
ground state does not break any symmetry and has a trivial
TO, it can still be in a nontrivial phase called bosonic
symmetry-protected topological phase (SPT) [10–12]. Since
the bosonic SPT phases do not have TOs, a systematic
description/construction of those SPT phases was obtained
via group cohomology theory [10–12]. Many new SPT phases
were predicted/constructed with all possible symmetries and
in any dimensions. In the following, we also refer all gapped
phases of bosons that do not break the symmetry (including
SPT and SET) as “topological phases.”

To realize bosonic TO phases or SPT phases, the interaction
is crucial, since without interactions, bosons always tend
to condense trivially. Weak interactions in most cases only
lead to superfluid states. This fact hinders the conventional
perturbation approach if we want to realize TO or SPT phases.
One useful approach is via the exactly soluble models, as in the
string-net approach [8,9] and the group cohomology approach
[10–12]. Recently, many other approaches were proposed,
which are based on field theory, topological invariants, critical
theory of surface, topological response theory, etc [13–21,23–
25]. A quite effective approach for strongly interacting systems

is the “projective construction” [26–37]. Some appealing
advantages of the projective construction are that (i) it can gen-
erate many useful trial wave functions for many-body systems
and (ii) fractional charge/statistics and emergent gauge fields
can be constructed effectively. In other words, it is quite easy to
obtain TO states by using the projective construction. However,
it has been recently realized that the projective construction is
also helpful in constructing bosonic SPT states [22,38–41].

Roughly speaking, in the so-called “fermionic projective
construction,” each bosonic operator of a given boson system
is split into a product of fermionic parton operators. Different
kinds of partons can individually form different mean-field
ground states. The Hilbert space of partons is larger than
the physical Hilbert space Hphys. of the initial boson model.
The physical ground state of the boson system is realized
by doing Gutzwiller projection. In other words, the direct
product of multiple mean-field ground states is projected
into Hphys. in which the multiple partons are glued back
into a physical boson on each site. In terms of path integral
formulation, such a gluing process is done by introducing
fluctuating internal gauge fields that couple to partons. The
gauge degrees of freedom can be in Coulomb phase, Higgs
phase (e.g., residual ZN gauge symmetry), or confined phase.
In Coulomb phase, gapless photon excitations close the
bulk gap, while discrete gauge symmetry in Higgs phase
generates TO.

To obtain SPT states (gapped, symmetric, without TO),
we need to consider the confined phase of the internal gauge
fields, where the gauge fluctuations are very strong and
solitonic excitations (e.g., monopoles and dyons in 3D and
instantons in 2D) are allowed. In 2D SPT construction, we have
the well-known K-matrix Chern-Simons formalism, which
is a “controllable program” to avoid the discussion of the
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confinement problem [41] during the fermionic projection
construction. For example, one can compute the determinant of
K matrix to probe TO and even classify SPT states in 2D with
Abelian symmetry group [14]. However, K-matrix Chern-
Simons formalism is only applicable in 2D. The question is
this: in the 3D fermionic projective construction, is there an
“efficient program” that can lead to SPT states in a controllable
way? In the present work, we will handle this problem by
focusing on 3D SPT states with U(1) symmetry (boson particle
number conservation) and time-reversal symmetry (ZT

2 ). Here,
ZT

2 = {I,T } where I is identity while T 2 = I. We will refer
those phases as bosonic topological insulators (BTI). If a SET
state also contains these two symmetry groups, we call it
fractional BTI (f BTI).

From our proposed algorithm, we can even learn more than
the SPT construction itself. It is known that two fermions near
a Fermi surface can have BCS superconducting instability
under certain conditions. Various pairing symmetries and
other pairing dynamical details may generically lead to various
gapped superconducting states. In the fermionic projective
construction, we may ask a similar question: by driving a
gapless Coulomb phase into a gapped confinement phase
and keeping some global symmetries, are there more than
one type of confinement phases that the quantum many-body
system eventually enters? In this paper, we will see that
there are indeed many different kinds of confinement phases
that are featured by different choices of monopole (or dyon)
condensations without breaking symmetry. These different
phases are finally classified into trivial SPT, nontrivial SPT,
and SET states. We note that recently symmetry-breaking
patterns induced by dyon condensations are discussed in the
context of topological Mott insulators [42].

We specially choose the symmetry group U(1)�ZT
2 in

this paper. One direct motivation is that three-dimensional
noninteracting fermionic topological insulators (TI) [43] are
well-understood and also have U(1)�ZT

2 symmetry group. TI
is classified by Z2, i.e., only one type of nontrivial state. Trivial
and nontrivial TI states can be further elegantly labeled by the
so-called “axionic � angle” in the electromagnetic response
action “SEM = �

8π2 ε
μνλρ∂μAν∂λAρ” (Aμ is the external elec-

tromagnetic gauge field). � = 0 (π ) corresponds to the trivial
(nontrivial) phase [44]. It is interesting to ask whether there
exists a bosonic version of TI, i.e., BTI and f BTI via the
fermionic projective construction and how about the physical
properties? Reference [45] applied the fermionic projective
construction approach in which the boson creation operator is
split into a singlet pair of spin-1/2 fermions. It is assumed that
the fermions are described by a nontrivial TI mean-field ansatz
that explicitly breaks the internal SU(2) gauge symmetry
down to Z2. The resultant physical ground state is a SET
state admitting a fractional � angle and emergent Z2 TO.
By definition, this bosonic insulator is an f BTI, following
Ref. [46] where a fermionic version in the presence of strong
interactions is proposed.

In the present work, the underlying boson model contains
four kinds of charge-1 bosons with U(1)�ZT

2 symmetry in
three dimensions [i.e., Eq. (1)]. In the fermionic projective
construction, each boson is split into two different fermions
(f1,f2) carrying “spin-1/2.” f1 and f2 carry α and (1 − α)
electric charge, respectively (see Table I).

TABLE I. Assignment of EM electric charge and aμ-gauge charge.

Particle EM electric charge aμ-gauge charge

f1 α +1
f2 1 − α −1
b +1 0

To ensure that the mean-field Ansätze of fermions respect
symmetry before projection, we assume that mean-field
Ansätze of the fermions describe a fermionic gapped phase
with θ -angle θ1 for f1 fermions and θ2 for f2 fermions. We
assume θ1 = θ2 = 0 or θ1 = θ2 = π where the two fermions
form the same trivial band insulator state or the same
topological insulator states. We will use (θ1,θ2,α) to label
those mean-field Ansätze. Due to the projective construction,
an internal U(1) gauge field aμ exists and is gapless. So our
construction (at this first step) leads to gapless insulating states
of the bosons after the projection. We call such a state algebraic
bosonic insulator.

To obtain gapped insulating states of the bosons, we shall
push the internal gauge field into its confined phases, where
quantum fluctuations are very strong leading to a proliferation
of a certain dyon. There are many different kinds of confined
phases that correspond to proliferation of different dyons.
These dyons may carry many quantum numbers including:
fermion numbers of f1,f2, magnetic charge and gauge charge
of the internal gauge field, magnetic charge and electric
charge of an external electromagnetic gauge field. The latter
is assumed to be compact such that a magnetic monopole is
naturally allowed although the electromagnetism in our world
is noncompact so far. We will use (l,s) to label those different
proliferated (or condensed) dyons that do not break the U(1)
and time reversal symmetries.

After a symmetric dyon condensate (l,s) is selected and
the charge assignment α is fixed, we may construct a gapped
topological phase with U(1)�ZT

2 symmetry. We find that the
dyon condensation breaks the “gauge symmetry” of shifting
α (dubbed “α-gauge symmetry”), so that different α will
generally lead to different bosonic states (cf. Sec. II C). Thus
those topological phases are eventually labeled by (θ1,θ2,α) as

TABLE II. Some concrete examples of nontrivial BTI phases
in three dimensions. Each BTI state is labeled by five numbers
(θ1,θ2,α,l,s). θ1 (θ2) equals to 0 or π , denoting the trivial or nontrivial
TI phases of the fermion f1 (f2). f1 and f2 carry α and (1 − α)
electric charge of external electromagnetic field, respectively. In
the mean-field Ansatz (0,0), the condensed dyon is composed by
s magnetic charge of internal U(1) gauge field and l physical bosons.
In the mean-field Ansatz (π,π ), the condensed dyon is composed by s

magnetic charge of internal U(1) gauge field, l physical bosons, and,
in addition, s f2 fermions. Each physical boson is composed by one
f1 and one f2.

(θ1,θ2,α) Dyon condensate (l,s)

(0,0,1) (1,1)
(0,0,1) (3,1)
(π,π, − 1

2 ) (1,1)
(π,π, 3

2 ) (1,1)
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TABLE III. Topological phases of bosons with U(1)�ZT
2 symmetry in three dimensions [labeled by (θ1,θ2,α = 1/2,l,s)]. All symmetric

dyons are labeled by two integers (l,s). In each mean-field Ansatz, different kinds of dyon condensations lead to, generally, different topological
phases (trivial SPT, nontrivial SPT, or SET). If s = l = 0, i.e., there is no dyon condensation, the resultant symmetric state is the algebraic
bosonic insulator (ABI) state, which is gapless and can be viewed as a parent state of all topological phases before condensing some dyons. If
s = 0,l �= 0, the condensed dyon will break U(1) symmetry, rendering a symmetry-breaking phase. To get symmetric gapped phases, s �= 0 has
been required in the table. The physical interpretation of s and l is the following. In the mean-field Ansatz (θ1,θ2) = (0,0), the condensed dyon
with U(1)�ZT

2 symmetry is a composite of s monopoles of internal gauge field and l physical bosons. In the mean-field Ansatz (θ1,θ2) = (π,π ),
the condensed dyon with U(1)�ZT

2 symmetry is a composite of s monopoles of internal gauge field, l physical bosons, and s f2 fermions. One
“physical boson” is equal to one f1 fermion plus one f2 fermion. “Z|s| TO” denotes the TO of Z|s| gauge theory, which arises from the gauge
sector of the ground state. “None” in a given entry means that the topological phase does not exist in the corresponding mean-field Ansatz.
All trivial SPT have Witten effect with � = 0 mod(4π ) and all nontrivial SPT have Witten effect with � = 2π mod(4π ). The discussion on
Witten effect of SET will be presented in Sec. V where trivial f BTI and nontrivial f BTI are defined and classified. The mean-field Ansatz (0,π )
always breaks time-reversal symmetry.

Mean-field Ansatz Trivial SPT(trivial Mott Nontrivial SPT(BTI: bosonic SET(fBTI: fractional bosonic
(θ1,θ2) insulator of bosons) topological insulator) topological insulator)

(0,0) {l/s ∈ Z,l �= 0} ∪ {l = 0,s = ±1} None {l/s /∈ Z};
Especially, {l = 0,|s| ≥ 2} is a pure Z|s|

TO state.

(π,π ) {l/s ∈ Z} None {l/s /∈ Z} (if l/s = −1/2, an additional
Z|s| TO emerges.)

well as (l,s) (see Tables II–IV), and we have to choose certain
special values of α to preserve the U(1) and time reversal
symmetries (see Fig. 1). The excitation spectrum above a topo-
logical phase is formed by the so-called “deconfined dyons”
that have trivial mutual statistics with the condensed dyon.

To understand whether the state supports TO, we have to
examine a subset of excitations, namely intrinsic excitations
(defined as those excitations that have zero magnetic charge of
the external electromagnetic field). Noting that the underlying
model is formed by charge-1 bosons, if there are intrinsic

excitations that either carry fractional electric charge of the
external electromagnetic field or carry fermionic statistcs, the
state must be a TO state. The reason we only consider intrinsic
excitations is that the symmetry group U(1) is specific to the
conservation of electric charge of the external electromagnetic
field. The magnetic charge of the external electromagnetic
field is not an intrinsic quantity of the underlying boson
system. For example, a nontrivial TI state in a background
compact electromagnetic field allows a composite excitation
that contains 1/2 electric charge and one magnetic charge of

TABLE IV. Topological phases of bosons with U(1)�ZT
2 symmetry in three dimensions (for a generic α sequence), labeled by (θ1,θ2,α,l,s).

A state is U(1)�ZT
2 symmetric if the parameters l,s,α satisfy the conditions in this table. We see that if α = 1/2, all allowed SPT states are

trivial in any mean-field Ansatz consistent with Table III. All SET states can be further classified into trivial f BTI (without Witten effect) and
nontrivial f BTI (admitting Witten effect). The mean-field Ansatz (0,π ) always breaks time-reversal symmetry.

Mean-field Ansatz Trivial SPT(trivial Mott Nontrivial SPT(BTI: bosonic SET(fBTI: fractional bosonic
(θ1,θ2) insulator of bosons) topological insulator) topological insulator)

(0,0) {l/s = odd,α = half-odd} ∪ {l/s =
even,l �= 0,2α = integer} ∪ {l = 0,

s = ±1,2α = integer}

{l/s = odd,α = integer} {l = 0,|s| ≥ 2,2α = integer}: Z|s| TO and
� = 0 mod 4π

{l/s /∈ Z}, e.g., l/s = 1
3 : α = half-odd

−→ trivial f BTI with � = 0 mod 4π

9
Witten effect; α = integer −→
nontrivial f BTI with � = 2π

9 mod 4π

9
Witten effect

(π,π ) {l/s ∈ Z,α − 1
2 = even} {l/s ∈ Z,α − 1

2 = odd} {l/s = −1/2,α = half-odd}: Z|s| TO and
� = π

2 mod π Witten effect
{l/s /∈ Z,l/s �= − 1

2}, e.g., l/s = 1
3 :

α − 1
2 = even −→ trivial f BTI with

� = 0 mod 4π

9 Witten effect;
α − 1

2 = odd −→ nontrivial f BTI with
� = 2π

9 mod 4π

9 Witten effect
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(θ1, θ2)

(l, s)

α

(θ1, θ2, α, l, s)

α

FIG. 1. Illustration of the basic process of constructing symmetric
topological phases via fermionic projective construction and dyon
condensation.

the external electromagnetic field, but TI cannot be interpreted
to a TO state supporting fractional excitations. It is well known
that as a noninteracting fermionic gapped state, TI is not
a TO state for sure, and, all “intrinsic excitations” do not
carry fractional electric charge of the external electromagnetic
field. The 1/2 fractional charge is actually induced by nonzero
magnetic charge.

In addition to the above analysis of deconfined dyons,
if a topological phase contains deconfined discrete gauge
symmetry (e.g., Z2 gauge theory), the topological phase must
be a TO state regardless of the properties of deconfined dyons.
This state can be viewed as a realization of a Higgs phase of
an internal gauge field, which will be discussed later.

Based on the above clarification, we have the following
quantitative criterion that will be frequently utilized in this
work. (1) If a topological phase respects global symmetry
[i.e., U(1)�ZT

2 ] and contains deconfined discrete gauge sym-
metry (e.g., Z2 gauge theory), the topological phase must
be a SET state where both TO and symmetry are present.
(2) If a topological phase respects global symmetry and there
are intrinsic excitations that either carry fractional electric
charge of the external electromagnetic field or carry fermionic
statistics, the topological phase is a SET state (i.e., f BTI) with
both TO and symmetry. (3) If TO is absent and symmetry is still
unbroken, the topological phase must be an SPT state. If the
excitation spectrum of an SPT state admits a nontrivial Witten
effect with � = 2π mod 4π [15,21,47–49], the topological
phase is a nontrivial SPT (i.e., a BTI). Otherwise, the state is a
trivial SPT with � = 0 mod 4π , i.e., a trivial Mott insulator
of bosons with symmetry.

All topological phases that we constructed are summarized
in Tables III (α = 1/2) and IV (for a general α sequence).
These two tables contain the general results. For reader’s
convenience, some concrete examples of nontrivial BTI phases
are shown in Table II. The basic process of constructing
symmetric topological phases is shown in Fig. 1.

The remaining parts of the paper are organized as follows. In
Sec. II, the underlying boson degrees of freedom as well as the
fermionic projective construction are introduced. Symmetry
operations [both U(1) and ZT

2 ] on physical bosons and
fermonic partons are defined. In Sec. III, the general properties

of dyons are discussed. The main results of topological phases
are derived in Sec. IV where topological phases are constructed
by setting α = 1/2. The general construction of topological
phases in the presence of general α sequence is provided in
Sec. V. Conclusions and future directions are made in Sec. VI.

II. FERMIONIC PROJECTIVE CONSTRUCTION OF
MANY-BOSON STATE WITH U(1)�ZT

2 SYMMETRY

A. Definition of boson operators

We will use a system with four kinds of electric charge-1
bosons in three dimensions. Those bosons are described by
four boson operators. We split the boson operators into two
different spin-1/2 fermions:

(b1,b2,b3,b4) = (f1↑f2↑,f1↑f2↓,f1↓f2↑,f1↓f2↓) . (1)

The fermionic projective construction of the four bosons
implies that the underlying bosons are of hard-core nature since
the dimension of the bosonic Hilbert space at each lattice site i

is truncated to be finite and exchange of two bosons at different
sites does not generate a fermionic sign. As a result, at the very
beginning, the underlying boson model on the lattice must be
a correlated bosonic system. All possible ground states with
boson charge conservation symmetry U(1) and time-reversal
symmetry ZT

2 are what we shall look for in this paper.
The physical ground-state wave function |GS〉 in Hphys. can

be written in terms of direct product of fermions’ mean-field
Ansätze, subject to Gutzwiller projection:

|GS〉 = P̂G(|�(f1)〉 ⊗ |�(f2)〉), (2)

where P̂G is the Gutzwiller projection operator, which enforces
that the total number of f1 is equal to that of f2 at each site
in the physical (projected) Hilbert space Hphys.. |�(f1)〉 and
|�(f2)〉 are mean-field Ansätze for the ground states of f1

and f2, respectively. In the present work, we assume that both
of f1 and f2 form mean-field Ansätze with band structures
that respect U(1)�ZT

2 symmetry. Such band structures are of
TI classified by Z2, i.e., one trivial and one nontrivial states.
It is thus instructive to separately study the physical ground
states in two different classes: (1) both are trivial and (2)
both are nontrivial. Other mean-field Ansätze explicitly break
time-reversal symmetry already at mean-field level.

B. Definition of symmetry transformations

1. Time-reversal symmetry (T 2 = I)

Under time reversal, the above fermions transform as the
usual spin-1/2 fermions, but with an additional exchange
f1σ ↔ f2σ , and the bosons transform as

b1 → −b4, b2 → b2, b3 → b3, b4 → −b1. (3)

For instance, b2 = f1↑f2↓
©1−→ −f1↓ f2↑

©2−→ −f2↓ f1↑ =
f1↑f2↓ = b2 such that b2 is unchanged, where ©1 repre-
sents f1↓ → −f1↑,f1↑ → f1↓, f2↓ → −f2↑,f2↑ → f2↓ and
©2 represents exchange of labels: 1 ↔ 2. In this projective
construction, there is an internal U(1) gauge field, aμ mini-
mally coupled to f1,f2. Let us define a “pseudospinor” B ≡
(b1,b2,b3,b4)T . Equation (3) also indicates the time-reversal
symmetry matrix that acts on the pseudospinor, which has the
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following form:

T =

⎛⎜⎝ 0 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 0

⎞⎟⎠ , (4)

which has determinant Det(T) = −1. After two consecutive
transformations (T2 is a unit matrix of four dimensions),
the pseudospinor B remains invariant, implying that the time
reversal we consider here is T 2 = I, where T and an identity
I form the time-reversal symmetry group ZT

2 = {I,T }. As a
side note, we emphasize that the four-boson model shown in
Eq. (1) is the minimal choice of T 2 = I bosonic system in
the present fermionic projective construction. If this choice is
not adopted, one has to consider a more complicated choice,
e.g., bσ1σ2σ3σ4 = f1σ1f2σ2f3σ3f4σ4 where there are four spin-1/2
partonic fermions (spin indices σ1 · · · σ4 = ↑,↓) leading to a
pseudospinor with 16 components.

The assignment of gauge charges carried by fs (s = 1,2) is
shown in Table I. f1 and f2 carry +1 and −1 gauge charges
of aμ, respectively, such that all physical boson operators are
invariant under aμ gauge transformation.

2. Boson number conservation U(1) and the charge assignement

Each boson carries +1 fundamental electric charge of
external electromagnetic (EM) field Aμ such that one can
make the following assignment for fermions shown in
Table I: f1 and f2 carry α and 1 − α EM electric charge of
Aμ, respectively. Here, α is a real number whose value should
not alter the vacuum expectation value of EM gauge-invariant
operators. More precisely, α is not a defining parameter of
the underlying boson model. Rather, it is introduced in the
projective construction at ultraviolet (UV) scale. When we
only change α, the projected wave function should not change
once the projection is done exactly at lattice scale. As a side
note, one can check that U(1) symmetry here corresponds
to conservation of total number of bosons, i.e.,

∑
i(B

†
i Bi) =∑

i(b
†
i1bi1 + b

†
i2bi2 + b

†
i3bi3 + b

†
i4bi4) = constant.

C. Residual α-gauge symmetry after dyon condensation

The above discussion about α suggests that α is a pure gauge
degree of freedom (or more precisely: a gauge redundancy).
We conclude that before the dyon condensation, there is an
α-gauge symmetry, which is defined as α → α + λ, where λ is
any real number. Later, we will see that the dyon condensation
can break such an “α-gauge symmetry,” just like the Higgs
condensation can break the usual “gauge symmetry.” However,
we believe that dyon condensation does not break all the
α-gauge symmetry: shifting α by any integer remains to be
a “gauge symmetry” even after the dyon condensation. The
physical consideration behind this statement is that the EM
charge quantization is unaffected by any integer shift at all,
and, such an integer shift is nothing but redefinition of field
variables.

In this paper, we will show that in the mean-field
Ansatz (θ1,θ2) = (0,0) case, all topological phases, including
symmetry-protected topological phases (SPT) and symmetry-
enriched topological phases (SET), satisfy this statement (cf.

Sec. V). In other words, after α → α + 1, the calculated
properties of the topological phases are unaffected.

However, the statement is invalid in the mean-field Ansatz
(θ1,θ2) = (π,π ) via our continuum effective field theory ap-
proach (cf. Sec. V). After α → α + 1, the physical properties
are changed. In this case, it appears that α-gauge symmetry
with any odd integer shift is broken by the dyon condensation.
Shifting α by any even integer remains to be a “gauge
symmetry,” after the dyon condensation.

At the moment, we do not understand why dyon condensa-
tions for (θ1,θ2) = (0,0) and (θ1,θ2) = (π,π ) lead to different
α-gauge symmetry breaking. However, we would like to point
out that our field theoretic treatment on dyons is established in
the continuum limit of space-time. More rigorous approach,
however, should involve the regularization procedures of dyon
fields on lattice. For example, dyons are not point particles
at all on lattice. Rather, dyons are regularized on a dual
hypercubic lattice of space-time where magnetic charge and
electric charge are put on dual sublattices. This more careful
lattice consideration may allow us to understand how dyons
condensation may break the α-gauge symmetry and in which
way the α-gauge symmetry is broken. We leave this issue to
future work.

III. GENERAL PROPERTIES OF DYONS

A. Quantum numbers of dyons

The projective construction is a very natural way to obtain
topological phases with TO since at the very beginning the
fermionic degrees of freedom and internal gauge fields are
introduced at UV scale. To obtain SPT phases, we must
prohibit the emergence of TO, by at least considering the
confined phase of the internal gauge field, where the dyons
of the internal gauge field play a very important role. For
the purpose of probing the EM response, the nondynamical
EM field is applied and is assumed to be compact. Thus a
dyon may carry gauge (electric) charges and magnetic charges
of both internal gauge field and EM field. The terms “gauge
(electric) charge” and “magnetic charge” are belonging to both
gauge fields, while, for the EM field, we specify the charges by
adding “EM” to avoid confusion. A dyon can also include f1

and f2 fermions, resulting in nonzero “fermion number.” Thus
a generic dyon is labeled by a set of quantum numbers that
describe those gauge charges, magnetic charges, and fermion
numbers. Specially, a monopole is defined as a special dyon
which does not carry any kind of gauge (electric) charges.

To describe those dyon excitations systematically, let us
assume that each fermion (fs) couples to its own gauge field
(Af s

μ ) with “+1” gauge charge. In fact, A
f s
μ are combinations

of aμ and Aμ (cf. Table I):

Af 1
μ ≡ aμ + αAμ, Af 2

μ ≡ −aμ + (1 − α)Aμ. (5)

A dyon can carry the magnetic charges in Af s gauge groups,
which are labeled by {N (s)

m } ∈ Z(s = 1,2). These two magnetic
charges {N (s)

m } are related to the magnetic charge Na
m in aμ

gauge group and magnetic charge NM in Aμ gauge group in
the following way:

N (1)
m = Na

m + αNM, N (2)
m = −Na

m + (1 − α)NM, (6)
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where the EM magnetic charge NM is integer-valued as usual:
NM ∈ Z. For this reason, the quantization of magnetic charge
Na

m of aμ gauge group is determined by two integers: “N (1)
m ”

and “NM” via Eq. (6) with a given α. The following relations
are useful:

NM = N (1)
m + N (2)

m , Na
m = (1 − α)N (1)

m − αN (2)
m . (7)

A dyon can also carry the fermion numbers of f1,f2 denoted
by {N (s)

f },s = 1,2. They are related to magnetic charges in the
following way:

N
(1)
f = n

(1)
f + θ1

2π
N (1)

m , N
(2)
f = n

(2)
f + θ2

2π
N (2)

m , (8)

where the θ -related terms are polarization electric charge
clouds due to Witten effect [47,48] and n

(s)
f are integer-valued,

indicating that integer numbers of fermions are able to be
trivially attached to the dyon. The nature of “polarization” is
related to the fact that this charge cloud does not contribute
quantum statistics to dyons [50]. θ1 and θ2 determine the topol-
ogy of fermionic band structures of f1 and f2, respectively,
if symmetry group U(1)�ZT

2 is implemented. For example,
θ1 = 0 if f1 forms a trivial TI Ansatz and θ1 = π if f1 forms a
nontrivial TI Ansatz.

B. Time-reversal transformation of dyons, gauge
fields, and Lagrangians

To see whether the ground state breaks symmetry or not,
it is necessary to understand how the symmetry acts on dyon
labels (Na

m,NM,N
(1)
f ,N

(2)
f ,N (1)

m ,N (2)
m ) as well as gauge fields

(Aμ,aμ,Ãμ,̃aμ), where Ãμ and ãμ are two dual gauge fields,
which are introduced to describe the minimal coupling in the
presence of magnetic charge.

The fermion-exchange process defined in Sec. II B implies
that the following transformation rules are obeyed by dyon
labels (all transformed symbols are marked by “ ”):

N
(1)
f = N

(2)
f , N

(2)
f = N

(1)
f , (9)

NM = −NM, Na
m = Na

m, (10)

where Eq. (9) holds by definition. In Eq. (10), the EM magnetic
charge’s sign is reversed as usual, which is consistent to reverse
the sign of the EM gauge potential A, which is a polar vector:

A = −A . (11)

The second formula in Eq. (10) can be understood in the
following way. A single f1 fermion couples to A and a
with α and +1 coupling constants respectively, as shown in
Table I. A single f2 fermion couples to A and a with 1 − α

and −1 coupling constants, respectively. Under ZT
2 , all spatial

components of gauge fields will firstly change signs and α is
replaced by

α = 1 − α . (12)

At this intermediate status, f1 fermion couples to A and a with
−α and −1 coupling constants, respectively, and, f2 fermion
couples to A and a with −1 + α and +1 coupling constants,
respectively. The second step is to exchange the two fermions
as defined in Sec. II B. By definition, f2 (i.e., the new f2

fermion after time-reversal transformation) should couple to
A and a with 1 − α and −1 coupling constants respectively,
which results in (1 − α)A − a = −αA − a. Likewise, f1

couples to A and a with α and +1 coupling constants, such that
αA + a = (−1 + α)A + a. Overall, we obtain the following
rule by using Eq. (11):

a = a, (13)

which requires the relation of magnetic charges Na
m = Na

m in
a self-consistent manner as shown in Eq. (10).

Based on the above results, one may directly derive the
transformation rules obeyed by other quantum numbers:

N
(1)
m = −N (2)

m , N
(2)
m = −N (1)

m ,

n
(1)
f = n

(2)
f + θ1 + θ2

2π
N (2)

m ,

(14)

n
(2)
f = n

(1)
f + θ1 + θ2

2π
N (1)

m .

Suppose that NA and Na are the bare EM electric charge and
aμ-gauge charge carried by dyons (cf. Table I):

NA = αN
(1)
f + (1 − α)N (2)

f , Na = N
(1)
f − N

(2)
f . (15)

We have

NA = NA, Na = −Na, (16)

by noting that α = 1 − α.
By definition, the curls of dual gauge potentials (Ã,̃a)

contribute electric fields (E,Ea). Therefore the dual gauge
potentials should obey the same rules as electric fields under
time-reversal transformation, and electric fields should also
obey the same rules as electric charges (NA,Na) in a consistent
manner such that the dual gauge potentials are transformed in
the following way:

Ã = Ã, ã = −̃a . (17)

The four formulas in Eqs. (11), (13), and (17) are trans-
formation rules obeyed by the spatial components of the
gauge potentials. The time components of the gauge potentials
(A0,a0,Ã0 ,̃a0) obey the following rules:

A0 = A0, a0 = −a0, (18)

Ã0 = −Ã0, ã0 = ã0 (19)

by adding an overall minus sign in each of Eqs. (11), (13), and
(17).

On the other hand, let us consider the effective Lagrangian
that describes the dyon dynamics. Let us start with a general
dyon φ and try to understand its time-reversal partner φ. The
effective Lagrangian termLkin that describes the kinetic energy
of φ can be written as (up to a quadratic level)

Lkin[φ] = 1

2m

∣∣( − i∇ + Naa + NAA + Na
mã + NMÃ

)
φ
∣∣2

.

(20)

Here, we are performing time-reversal transformation in field
theory action such that we keep all real-valued numerical
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coefficients (Na,NA, . . . ) but change all field variables. By
using Eqs. (11), (13), (17), and (19) and noting that −i∇ = i∇,
we obtain the result

Lkin[φ] = 1

2m

∣∣(i∇ + Naa + NAA + Na
mã + NMÃ

)
φ
∣∣2

= 1

2m

∣∣( − i∇ − Naa + NAA + Na
mã − NMÃ

)
φ
∣∣2

.

(21)

The time component is similar:

Lt [φ] = 1

2m

∣∣(i∂t + Naa0 + NAA0 + Na
mã0 + NMÃ0

)
φ
∣∣2

.

(22)

After ZT
2 operation,

Lt [φ] = 1

2m

∣∣(i∂t − Naa0 + NAA0 + Na
mã0 − NMÃ0

)
φ
∣∣2

.

(23)

C. Mutual statistics and quantum statistics

One of the important properties of dyons is their 3D “mutual
statistics.” Two dyons with different quantum numbers may
perceive a nonzero quantum Berry phase mutually. More
specifically, let us fix one dyon (“φ1”) at the origin and move
another dyon “φ2” (labeled by symbol with primes) along a
closed trajectory that forms a solid angle � with respect to the
origin. Under this circumstance, one can calculate the Berry
phase that is added into the single-particle wave function of
φ2:

Berry phase = 1

2

[∑
s

N (s)
m N

(s)
f

′ −
∑

s

N (s)
m

′
N

(s)
f

]
� .

If the Berry phase is nonvanishing for any given �, i.e.,∑
s N (s)

m N
(s)
f

′ �= ∑
s N (s)

m

′
N

(s)
f , these two dyons then have a

nontrivial “mutual statistics.” The physical consequence of
mutual statistics is the following. If the confined phase of the
internal gauge field is formed by a condensate of dyon φ1,
all other allowed deconfined particles (i.e., the particles that
may form the excitation spectrum with a finite gap) must have
trivial mutual statistics with respect to φ1, i.e.,∑

s

N (s)
m N

(s)
f

′ =
∑

s

N (s)
m

′
N

(s)
f . (24)

Otherwise, they are confined by infinite energy gap. There are
two useful corollaries: (i) it is obvious that a particle has a
trivial mutual statistics with respect to itself, and (ii) we also
note that N

(s)
f and N

(s)
f

′
may be replaced by integers n

(s)
f and

n
(s)
f

′
, respectively, by taking Eq. (8) into consideration. As a

result, the criterion of trivial mutual statistics (24) may be
equivalently expressed as∑

s

N (s)
m n

(s)
f

′ =
∑

s

N (s)
m

′
n

(s)
f . (25)

On the other hand, it is also crucial to determine the quantum
statistics of a generic dyon. A generic dyon can be viewed as
N (s)

m magnetic charges of A
f s
μ gauge field attached by n

(s)
f fs

fermions. The quantum statistics of such a dyon is given by

Sgn =
∏

s

(−1)N
(s)
m n

(s)
f (−1)n

(s)
f , (26)

where +/− represents bosonic/fermionic [50]. The first part,

(−1)N
(s)
m n

(s)
f , is due to the interaction between the magnetic

charge N (s)
m and the gauge charge n

(s)
f of the dyon. The

polarization electric charges due to Witten effect do not
attend the formation of internal angular momentum of electric-
magnetic composite according to the exact proof by Goldhaber
et al. [50] so that n

(s)
f instead of N

(s)
f is put in Eq. (26).

One may also express n
(s)
f in terms of “N (s)

f − θs

2π
N (s)

m .”
After this replacement, it should be kept in mind that both
“N (s)

f − θs

2π
N (s)

m ” and “N (s)
m ” are integer-valued and N

(s)
f can be

any real number in order to ensure that n
(s)
f are integer valued.

The second part, (−1)n
(s)
f , is due to the Fermi statistics from

the attachment of n
(s)
f fs fermions. Alternatively, the quantum

statistics formula (26) can be reorganized into the following
Sgn ≡ (−1)�:

�
.= �1 + �2 + �3 (27)

with

�1
.= NM

[
αn

(1)
f + (1 − α)n(2)

f

]
,

�2
.= Na

m

[
n

(1)
f − n

(2)
f

]
,

�3
.= n

(1)
f + n

(2)
f ,

in which �1 and �2 are contributed from the two gauge groups
Aμ and aμ, respectively. �3 is from the fermionic sign carried
by the attached fermions. The notation “

.=” here represents
that the two sides of the equality can be different up to any
even integer.

IV. TOPOLOGICAL PHASES WITH SYMMETRY: α = 1/2

A. Algebraic bosonic insulators: parent states
of topological phases

Let us use the projective construction to study an exotic
gapless bosonic insulator (without the dyon condensation),
which is called algebraic bosonic insulator (ABI) and can be
viewed as a parent state of gapped symmetric phases (i.e., SPT
and SET phases).

For keeping time-reversal symmetry at least at mean-field
level, we will only focus on (θ1,θ2) = (0,0) and (1,1). The ABI
state does not break the U(1)�ZT

2 symmetry since all possible
dyons (each dyon and its time-reversal partner) are included
without condensation. However, the bulk is gapless since it
contains an emergent gapless U(1) gauge boson described by
aμ. The emergent U(1) gauge bosons are neutral. In addition
to the emergent U(1) gauge bosons, ABI also contains many
dyon excitations, which may carry fractional electric charges
[N (s)

f in Eq. (8)] and emergent Fermi statistics [determined by
Eq. (26)]. Since all electrically charged excitations are gapped,
such a phase is an electric insulator. At mean-field level, if θ1 =
θ2 = π , a gapless surface state emerges, which is described
by Dirac fermions. Beyond mean-field theory, those gapless
surface Dirac fermions (possibly with Fermi energies away
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from the nodes) will interact with the emergent U(1) gauge
fields that live in 3 +1 dimensions.

We note that the internal U(1) gauge field aμ has strong
quantum fluctuations, and its “fine structure constants” are
of order 1. It is possible (relying on the physical boson
Hamiltonian) that the internal U(1) gauge field is driven
into a confined phase of gauge theory due to too strong
quantum fluctuations. Due to the strong quantum fluctuations,
the internal U(1) gauge-field configuration will contain many
monopoles and even more general dyons. The ABI discussed
above is realized as an unstable gapless fixed-point residing
at the boundary between Coulomb and confined phases. ABI
finally flows into a strongly coupled fixed point of a confined
phase by energetically condensing a bosonic dyon and thus
opening a bulk gap. In this case, it is possible that some
nontrivial topological (gapped) phases with a global symmetry
(including SPT and SET states) may be constructed in this
confined phase, which is featured by dyon condensations. As
we have seen, our ABI has many kinds of dyons. Relying on
the details of the physical boson Hamiltonian, different dyon
condensations may appear. Different dyon condensations will
lead to many different confined phases.

In the following, we will set α = 1/2 and focus on looking
for dyon condensations that generate a bulk spectral gap, and,
most importantly, respect U(1)�ZT

2 symmetry. All topological
phases are summarized in Table III. We should note that in each
mean-field Ansatz, only one dyon whose quantum numbers are
self-time-reversal invariant is condensed to form a topological
phase. As a matter of fact, two time-reversal conjugated dyons
can condense simultaneously, still without breaking time-
reversal symmetry. However, this situation is trivially back to
the single dyon condensate for the reason that the two dyons
are exactly the same once the trivial mutual statistics between
them is considered. (The details can be found in Appendix A.)

B. Standard labeling and defining properties
of topological phases

Before moving on to topological phases of boson systems,
we need to quantitatively define trivial SPT, nontrivial SPT,
and SET states based on physically detectable properties in EM
thought experiments (compactness of EM field is assumed).

Each dyon is sufficiently determined by four indepen-
dent quantum numbers in ABI state. The total number of
independent quantum numbers will be decreased to three
in a specific topological phase where the condensed dyon
provides a constraint on the four quantum numbers as we
will see later. There are many equivalent choices of labeling.
In the following, we choose these four integer-valued quantum
numbers [NM,N (1)

m ,n
(1)
f ,n

(2)
f ] to express the final key results of

a given mean-field Ansatz, such as quantum statistics and the
total EM electric charge of excitations. We call it “standard
labeling.” Based on these four integers, we can obtain N (2)

m ,
N

(1)
f , and N

(2)
f via Eqs. (7) and (8). As a result, NA and Na can

be determined by Eq. (15). In each mean-field Ansatz, we will
unify all key results by using the standard labeling.

A trivial SPT state has the following properties: (1) quantum
statistics: �1 = NMNE ; (2) quantization condition: (i) NM ∈
Z , NE ∈ Z and (ii) at least one excitation exists for any given
integer combination (NM,NE); and (3) TO does not exist.

6 4 2 2 4 6
NE

6

4

2

2

4

6

NM

FIG. 2. Illustration of the charge lattice of trivial SPT. Excitations
with −7 � NE � 7 and −7 � NM � 7 are plotted. The solid circles
(open circles) denote bosonic (fermionic) statistics. The elementary
EM monopole (NM = 1,NE = 0) is bosonic, while the elementary
EM dyon (NM = 1,NE = 1) is fermionic.

The first two conditions (quantum statistics plus quantization
condition) define a “charge lattice” formed by two discrete
data points, NM (y axis) and NE (x axis). Differing from NA,
which is “bare EM electric charge,” NE is the “total EM electric
charge” in which possible dynamical screening arising from
the ground state is taken into consideration. In an experiment,
NE is detectable, while NA is not.

In the trivial SPT state here, the charge lattice corresponds
to the “trivial Witten effect” phenomenon. It rules out TO
with fractional electric charges for intrinsic excitations and TO
with fermionic intrinsic excitations. The trivial Witten effect
implies the elementary EM monopole (NM = 1,NE = 0) is
bosonic while the elementary EM dyon (NM = 1,NE = 1) is
fermionic. This charge lattice is shown in Fig. 2.

A nontrivial SPT state has the following properties: (1)
quantum statistics: �2 = NM (NE − NM )

.= NMNE − NM ; (2)
quantization condition: (i) NM ∈ Z , NE ∈ Z and (ii) at
least one excitation exists for any given integer combination
(NM,NE); (3) TO does not exist. The first two conditions
here correspond to the charge lattice with the “nontrivial
Witten effect with � = 2π mod(4π )” phenomenon. It also
rules out TO with fractional electric charges for intrinsic
excitations and TO with fermionic intrinsic excitations. The
nontrivial Witten effect implies the elementary EM monopole
(NM = 1,NE = 0) is fermionic, while the elementary EM
dyon (NM = 1,NE = 1) is bosonic. This charge lattice is
shown in Fig. 3. This statistical transmutation has been recently
discussed in Ref. [21].

If the state with symmetry supports a charge lattice that
cannot be categorized into both of trivial and nontrivial SPT
state, it must be an SET state. A constructed topological
phase is a time-reversal symmetric state if the following
three conditions are satisfied. (1) Condition I: the dyon
condensate is ZT

2 -symmetric. The selected condensed dyon is
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6 4 2 2 4 6
NE

6

4

2

2

4

6

NM

FIG. 3. Illustration of the charge lattice of nontrivial SPT.
Excitations with −7 � NE � 7 and −7 � NM � 7 are plotted. The
solid circles (open circles) denote bosonic (fermionic) statistics. The
elementary EM monopole (NM = 1,NE = 0) is fermionic, while the
elementary EM dyon (NM = 1,NE = 1) is bosonic.

self-time-reversal symmetric (time-reversal pair condensates
are not possible, see Appendix A). (2) Condition II: the charge
lattice is mirror-symmetric about x axis. On the charge lattice,
the distribution of sites, quantum statistics and excitation
energy are mirror-symmetric about x axis. More specifically,
(NE,NM ) and (NE, −NM ) are simultaneously two sites of
the charge lattice. At each site, there are many excitations
that are further labeled by the third quantum number [e.g.,
N (1)

m ] in addition to the given NE and NM . Each excitation
[NE,NM,N (1)

m ] has a counterpart [NE, −NM,N (1)′
m ] with the

same quantum statistics and the same excitation energy, and
vice versa. (3) Condition III: α-gauge equivalence condition.
2α = integer in the mean-field Ansatz (0,0); α = half-odd in
the mean-field Ansatz (π,π ). This condition and condition
II determine α altogether. Details of proof and a related
discussion on this condition are presented in Secs. II C
and V.

We simply say that the charge lattice is mirror-symmetric
if condition II is satisfied. These three conditions lead to time-
reversal invariance of the whole excitation spectrum.

C. Mean-field Ansatz (θ1,θ2) = (0,0)

1. Dyon condensation with symmetry

Let us first consider the simplest starting point: the mean-
field Ansatz with (θ1,θ2) = (0,0). In other words, both of
fermions (f1,f2) are trivial TI. In this case,[

N
(1)
f

]
c
= [

n
(1)
f

]
c
∈ Z,

[
N

(2)
f

]
c
= [

n
(2)
f

]
c
∈ Z (28)

according to Eq. (8). Hereafter, we use the subscript “c”
to specify all symbols related to the condensed dyon φc.
Excitations φ are labeled by symbols without subscript c.
Thus, in the present mean-field Ansatz (θ1,θ2) = (0,0), the
quantum numbers of excitations take values in the following

domains:

N
(1)
f = n

(1)
f ∈ Z, N

(2)
f = n

(2)
f ∈ Z, (29)

Na ≡ N
(1)
f − N

(2)
f = n

(1)
f − n

(2)
f ∈ Z . (30)

Condition I further restricts [N (1)
f ]c = [N (2)

f ]c. Therefore a
general dyon with time-reversal symmetry is labeled by two
integers l and s, i.e.,(

Na
m

)
c
= s,

[
N

(1)
f

]
c
= l,

[
N

(2)
f

]
c
= l, (NM )c = 0.

(31)

According to Eq. (6), where [N (1)
m ]c ∈ Z and (NM )c = 0, (Na

m)c
is also an integer. Such a time-reversal symmetric dyon is al-
ways bosonic since (�)c = even integer, according to Eq. (27).
Most importantly, by definition, the EM field here is a probe
field such that once the EM field is switched off, the physical
ground state (formed by the dyon considered here) should not
carry EM magnetic charge. Therefore, (NM )c vanishes, which
is also required by time-reversal symmetry. Other quantum
numbers of the condensed dyon are straightforward:

(NA)c = l,
[
N (1)

m

]
c
= s,

[
N (2)

m

]
c
= −s,

(32)
(Na)c = 0,

[
n

(1)
f

]
c
= l,

[
n

(2)
f

]
c
= l.

But will such a dyon condensed state respect the EM electric
U(1) symmetry and behave like an insulator? To answer this
question, according to Sec. III B, let us write down the effective
Lagrangian of the condensed dyon φc in real time (only
spatial components are written here for simplicity—the time
components are similar):

Lkin[φc] = 1

2m
|(−i∇ + s̃a + lA)φc|2 − V (φc), (33)

where V (φc) is a symmetric potential energy term, which
energetically stabilizes the bosonic condensate.

In the dyon condensed state φc �= 0, the internal gauge field
aμ is gapped and satisfies

s̃a = −lA, (34)

which indicates that the internal gauge field cannot fluctuate
freely and is locked to the nondynamical EM background. We
see that the dyon condensation does not generate the A2 term
if

s �= 0 . (35)

This requirement may be understood in the following way. If
s = l = 0, there is no dyon condensation, which is nothing
but the ABI state discussed in Sec. IV A. If s = 0 and l �= 0,
Eq. (34) reduces to A = 0, which is the consequence of
mass term A2, a fingerprint of superconductor/superfluid with
broken U(1). This case is nothing but condensation of l bosons
(carrying EM electric charge l), which breaks U(1) symmetry
down to Z|l| discrete symmetry spontaneously [Z1 represents
complete breaking of U(1)]. In the following, in order to
preserve U(1) symmetry and consider dyon condensation, we
will restrict our attention to s �= 0. Thus the dyon condensed
state indeed respects the EM electric U(1) symmetry and
represents a fully gapped insulator.
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To construct excitations “φ” (including intrinsic excitations
and test particles), one must trivialize the mutual statistics
between the excitation considered and φc such that the
excitation is a deconfined particle, which is observable in
the excitation spectrum. According to Eq. (25), the mutual
statistics between φc and an excitation φ (labeled by quantum
numbers without subscript “c”) is trivialized by the following
formula:

N (1)
m l + [

NM − N (1)
m

]
l = sn

(1)
f − sn

(2)
f , (36)

which constrains the quantum numbers of excitations leading
to three independent labels instead of four. It may be
equivalently expressed as

l

s
NM = n

(1)
f − n

(2)
f = N

(1)
f − N

(2)
f ≡ Na, (37)

where the definition (15) is applied, and, the condition (35) is
implicit. Therefore all excitations in the present mean-field
Ansatz can be uniquely labeled by [NM,N (1)

m ,n
(2)
f ] in the

standard labeling, while n
(1)
f is determined by Eq. (37).

Meanwhile, due to the screening effect shown in Eq. (34),
the total EM electric charge NE is the sum of NA [which is
equal to αN

(1)
f + (1 − α)N (2)

f according to Eq. (15)] and an
additional screening part:

NE = NA − l

s
Na

m . (38)

In the standard labeling, NE is expressed as (details of
derivation are present in Appendix B)

NE = n
(2)
f − l

s
N (1)

m + 2α
l

s
NM . (39)

In fact, the condensed dyon has a trivial mutual statistics
with itself. Thus the total EM electric charge of the condensed
dyon can also be calculated via Eq. (38):

(NE)c = (NA)c − l

s

(
Na

m

)
c
= l − s

l

s
= l − l = 0, (40)

which indicates that the condensation indeed does not carry
total EM electric charge and U(1) symmetry is exactly
unbroken.

Under time-reversal symmetry transformation, NE has the
following property:

NE ≡ n
(2)
f − l

s
N

(1)
m + 2α

l

s
NM = NE, (41)

where Eqs. (10) and (14) are applied and α = 1 − α due to the
exchange of f1 and f2. Since [NM,n

(2)
f ,N (1)

m ] is an excitation
[and thus (NE,NM ) is a site on the charge lattice], we can prove

that [NM,n
(2)
f ,N

(1)
m ] is also an excitation [and thus (NE,−NM )

is a site on the charge lattice] by justifying that [NM,n
(2)
f ,N

(1)
m ]

satisfies the trivial mutual statistics condition (37). Required by
the time-reversal invariant mean-field Ansatz we considered,
the two dyons have the same excitation energy, such that
Eq. (41) indicates that both the excitation energy and site
distribution are mirror-symmetric at arbitrary α.

We have selected a time-reversal invariant dyon condensate
φc but will the excitation spectrum (i.e., charge lattice) respect
time-reversal symmetry? According to Sec. IV B, in order to

preserve time-reversal symmetry, one must also require that
the charge lattice is mirror-symmetric about x axis (including
site distribution, quantum statistics, and excitation energy).
As we have proved that the site distribution and excitation
energy are already mirror-symmetric, shown in Eq. (41), the
subsequent task is to examine whether the quantum statistics
is mirror-symmetric.

Generally, we expect that only a sequence of α is allowed.
α = 1/2 satisfies condition III. In the remaining discussion of
Sec. IV, we will only focus on α = 1/2, which is the simplest
choice in every mean-field Ansatz. We will leave the discussion
on the general α sequence to Sec. V.

Now we turn to the discussion of quantum statistics of
excitations. According to Eq. (26), the statistics sign in the
present mean-field Ansatz (θ1 = θ2 = 0, α = 1/2) can be
obtained (details of derivation are present in Appendix C):

�
.= NMNE + [

2N (1)
m − NM + 1

] l

s
NM, (42)

where NE can be expressed as

NE = n
(2)
f + l

s

[
NM − N (1)

m

]
(43)

by plugging α = 1/2 into Eq. (39). In Eq. (42), NE is explicitly
written in order to compare � with the trivial Witten and
nontrivial Witten effects defined in Sec. IV B. One may also
replace NE in Eq. (42) by Eq. (43), rendering an equivalent
expression of Eq. (42):

�
.= NM

{
n

(2)
f + l

s

[
N (1)

m + 1
]}

. (44)

2. Different topological phases via different condensed dyons

a. Bosonic intrinsic excitations. With the above prepa-
ration, let us study the nature of the U(1)�ZT

2 -symmetric
topological (gapped) phases constructed via the condensed
dyon φc, mainly based on Eqs. (37), (38), (42), and (43).
From Eq. (42), all intrinsic excitations (carrying zero NM ) are
bosonic, which rules out all fermionic intrinsic excitations in
the underlying boson system. We also note that the fs fermions
all have nontrivial “mutual statistics” with the φc dyon, and
thus those fermionic excitations are confined. Up to now,
the only requirement on topological phases with symmetry is
s �= 0. To understand different topological phases via different
condensed dyons, one needs to study the physical properties
(quantum statistics, total EM electric charge) of all possible
excitations constrained by Eq. (37).

b. {l/s ∈ Z}. Let us first focus on the parameter regime
defined by l

s
∈ Z. In this case, Eq. (37) allows excitations

carrying arbitrary integer NM and arbitrary integer N (1)
m . In

other words, an arbitrarily given integer NM can ensure that Na

in the right-hand side of Eq. (37) is integer-valued required by
Eq. (30). The other two quantum numbers N (1)

m ,n
(2)
f are still

unconstrained and thus can take arbitrary integer values and
NE can also take arbitrary integer values due to Eq. (43).
To conclude, if l/s ∈ Z, for any given integer combination
[NM,N (1)

m ,n
(2)
f ], there exists at least one excitation. Thus,

for any given integer combination (NE,NM ), there exists at
least one excitation on the charge lattice. A useful corollary
is that for all intrinsic excitations (NM = 0), NE is always
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integer-valued, which rules out intrinsic excitations carrying
fractional EM electric charge (namely, fractional intrinsic
excitation).

Then we will look for the general solutions of (l,s), which
admit a trivial or a nontrivial Witten effect. To look for the
general solutions, which admit �2, we solve the equation � −
�2

.= 0, i.e., [
2N (1)

m − NM + 1
] l

s
NM − NM

.= 0, (45)

where N (1)
m and NM are arbitrary integers if l/s ∈ Z. More

precisely, if NM is an arbitrary even integer, we require
that NM

l
s
[2N (1)

m − NM + 1] is even integer. In other words,
l
s
[2N (1)

m − NM + 1] must be an integer for arbitrary integer
N (1)

m and even integer NM , which renders a requirement for
the solution: l

s
must be integer-valued. This requirement is not

new and is nothing but our starting point. On the other hand,
if NM is an arbitrary odd integer, i.e., NM = 2k + 1, where
k is an arbitrary integer, l

s
[2N (1)

m − NM + 1] must be odd. In
other words, l

s
[2N (1)

m − 2k] = 2l
s

[N (1)
m − 1] must be odd for an

arbitrary integer N (1)
m . However, it is obviously even. Therefore

there is no solution admitting a nontrivial SPT state.
Likewise, to look for a solution that gives �0, we solve the

equation � − �0
.= 0. It is easily obtained that the requirement

l
s

is an integer, which is our starting point here. Therefore, if
the two integers l and s satisfy that l

s
is an integer, such a choice

(l,s) is a solution that admits a state with a trivial Witten effect.
The state is a trivial SPT state by definition if TO does not
exist. One can check that the quantum statistics and sites are
mirror-symmetric about x axis. In addition, the distribution
of excitation energy is also mirror-symmetric due to Eq. (41).
Overall, the charge lattice is indeed mirror-symmetric and thus
satisfies condition II.

In fact, we can also directly derive the trivial Witten
effect result by reformulating � in Eq. (42) to �

.= NMNE +
[2N (1)

m − NM + 1] l
s
NM

.= NMNE where the last term in � is
always even once l/s ∈ Z.

The trivial Witten effect only rules out TO with fractional
intrinsic excitations and TO with fermionic intrinsic excita-
tions. Other TO patterns are still possible. Meanwhile, we
note that actually the excitations can also come from a pure
gauge sector, in addition to the matter field sector (i.e., dyons)
considered above. If l = 0,|s| ≥ 2, l

s
= 0, the internal gauge

symmetry U(1) of dynamical gauge field aμ is not fully broken
but broken down to Z|s| gauge symmetry according to Eq. (33),
which renders Z|s| TO in three dimensions in the presence
of global symmetry U(1)�ZT

2 . The low-energy field theory
of this TO pattern is the topological BF theory of level s.
The ground-state degeneracy (GSD) on a three-torus is |s|3.
Therefore, to get a trivial SPT state, which does not admit any
TO by definition, one should further restrict the two integers
(l,s) satisfying { l

s
∈ Z,l �= 0,s �= 0} ∪ {l = 0,s = ±1}.

c. {l/s /∈ Z}. If l/s /∈ Z, by noting that Na must be
integer-valued in the present mean-field Ansatz θ1 = θ2 = 0,
Eq. (37) shows that the allowed EM magnetic charge NM of
excitations cannot take arbitrary integer. A direct example is
that all particles with NM = 1 must be permanently confined
since Eq. (37) cannot be satisfied. Despite that the other two
independent quantum numbers of excitations N

(1)
f ,N (1)

m can
still take arbitrary integer values.

For instance, if l = 1,s = 3, the allowed value of NM should
take NM = 3k with k ∈ Z, i.e., NM = 0, ±3, ±6, ±9, . . . in
order to ensure the right-hand side of Eq. (37) is integer-valued.
This quantization sequence is different from the sequence
(0, ±1, ±2, ±3, . . . ) we are familiar with in the vacuum. By
recovering full units (each boson carries a fundamental charge
unit e), the EM magnetic charge h

e
3k can be reexpressed as h

e∗ k,
where h is the Planck constant and the effective fundamental
EM electric charge unit e∗ of intrinsic excitations is fractional:
e∗ ≡ e

3 . This fractional fundamental EM electric charge unit
implies that the U(1)�ZT

2 -symmetric ground state constructed
via condensing the dyon φc labeled by (l,s) = (1,3) in the
mean-field Ansatz θ1 = θ2 = 0 admits fractional intrinsic
excitations (which carry fractional EM electric charge), a
typical signature of TO. Interestingly, from Eq. (43), we find
that NE of excitations with NM = 0 indeed can take a fractional
value. Therefore the dyon excitations have self-consistently
included fractional intrinsic excitations in response to the new
quantization sequence of the EM magnetic charge NM . In this
sense, the topological phase labeled by (l,s) = (1,3) contains
TO (emergence of fractional intrinsic excitations) with global
symmetry, i.e., a SET state.

Generally, we may parametrize l/s = k′ + p

q
, where

k′,p,q ∈ Z, q > p > 0, gcd(p,q) = 1 (gcd: greatest common
divisor). The allowed excitations constrained by Eq. (37)
enforce NM quantization as

NM = qk, (46)

where k ∈ Z, i.e., NM = 0, ±q, ±2q, ±3q, . . . Thus the
effective fundamental EM electric charge unit e∗ of intrinsic
excitations should be consistently fractional, i.e., e∗ = 1

q
e. On

the other hand, Eq. (43) shows that NE of all excitations may
be fractional as a multiple of 1/q:

NE = k1 − pk2/q, (47)

where the two integer variables k1,k2 are introduced,

k1 ≡ n
(2)
f + k′[qk − N (1)

m

] + pk, k2 ≡ N (1)
m , (48)

to replace N
(1)
f and N (1)

m . The first term in Eq. (47) is always
integer-valued, but the second term may be fractional as a
multiple of 1/q by noting that N (1)

m is an arbitrary integer
and q > p > 0. By setting k = 0, we find that NE may be
fractional with unit e∗ = 1/q. In short, the state constructed
here must be a SET state with fractional intrinsic excitations.

Next, we will focus on the quantum statistics of all
excitations defined in Eq. (42). In Eq. (42), the term including
N (1)

m can be removed since 2N (1)
m

l
s
NM = 2N (1)

m (qk′ + p)k
.=

0. Therefore � is uniquely determined by NE,NM in the
following formula up to the quantization conditions (46)
and (47):

� = NMNE − NM (NM − 1)
l

s
. (49)

In short, by giving three arbitrary integers (k,k1,k2), one can
determine NE and NM via Eqs. (47) and (46), respectively,
and further determine the quantum statistics of the excitations
labeled by (k,k1,k2). One can plot the quantum statistics in the
charge lattice formed by discrete data NM and NE . We call this
charge lattice with TO the “charge lattice I.” One can check that
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4 2 2 4
NE

5

5

NM

FIG. 4. Illustration of the charge lattice I (any l/s satisfying l/s =
k′ + 1/3, k′ ∈ Z) with fractional intrinsic excitations (in unit of 1/3).
Excitations with −4 � NE � 4 and −9 � NM � 9 are plotted. The
solid circles (open circles) denote bosonic (fermionic) statistics.

the quantum statistics and sites are mirror-symmetric about x

axis. In addition, the distribution of excitation energy is also
mirror-symmetric due to Eq. (41). Overall, the charge lattice
is indeed mirror-symmetric and thus satisfies condition II. For
example, if l/s = k′ + 1/3, the charge lattice I is shown in
Fig. 4.

In short, this new SET labeled by l/s = k′ + p/q with
k′,p,q ∈ Z,q > p > 0,gcd(q,p) = 1 (coined “dyonic TO”
in order to distinguish it from TO which arises from the
gauge sector, e.g., Z|s| TO) has the following key properties.
(1) All excitations are uniquely labeled by three arbitrary
integers (k,k1,k2), which are related to the standard labeling
via Eq. (48). (2) The total EM electric charge NE of intrinsic
excitations is fractional with unit e∗ = 1/q given by NE =
k1 − p

q
k2. The allowed EM magnetic charge NM is quantized

at q. (3) The quantum statistics of excitations is uniquely
determined by NM and NE [cf. Eq. (49)]. (4) All intrinsic
excitations are bosonic.

Before closing the analysis of the present mean-field Ansatz,
a possible confusion should be clarified. The TI state of
free fermions admits � = π Witten effect and thus NE =
n + 1

2NM (n is integer number of attached fermions) may be
fractional. However, this fractional EM electric charge is due to
the presence of external EM magnetic monopole. To diagnose
the TO of the ground state, we should restrict our attention to
“intrinsic excitations,” which requires NM = 0 by definition,
as we are doing in the present work. Therefore, indeed, the
total EM electric charge of any intrinsic excitation in the TI is
nonfractional and no TO exist.

In summary, in the mean-field Ansatz with (θ1,θ2) =
(0,0), all symmetric gapped phases (condensed dyons with
symmetry) are labeled by two integers (s,l). Physically, a
condensed dyon with symmetry labeled here is a composite of
l physical bosons (formed by l f1 fermions and l f2 fermions)
and s unit magnetic monopoles of internal gauge field aμ. The

state is a trivial SPT state, i.e., a trivial Mott insulator of bosons
with U(1)�ZT

2 symmetry if the two integers (l,s) satisfy
{ l

s
∈ Z,l �= 0,s �= 0} ∪ {l = 0,s = ±1}. The state is a SET

state if the two integers (l,s) either (i) satisfy {l = 0,|s| ≥ 2},
which corresponds to the SET state with Z|s| TO, or (ii) satisfy
{l/s /∈ Z}, which corresponds to a new SET—dyonic TO.

We note that if the fermions f1 and f2 in our construction
are replaced by two bosons both of which are in trivial Mott
insulator states of bosons (i.e., θ1 = θ2 = 0 and α = 1/2),
there exists a solution for a nontrivial SPT state. For example,
l = s = 1 is a candidate of nontrivial SPT state, i.e., a
nontrivial BTI state, which corresponds to condensation of one
physical boson attached to a magnetic monopole of internal
gauge field aμ [22]. The charge lattice is shown in Fig. 3.
This can be verified easily with the same technique shown
above. The only difference is that in this bosonic projective

construction, the terms
∏

s(−1)n
(s)
f in the quantum statistics

formula (26) should be removed for the reason that attached
particles are bosonic.

D. Mean-field Ansatz (θ1,θ2) = (π,π )

1. Dyon condensation with symmetry

Following the same strategy, we can also consider the mean-
field Ansatz with (θ1,θ2) = (π,π ) where both fermions are in
nontrivial TI states. In this case, condition I restricts [N (1)

f ]c =
[N (2)

f ]c. Therefore a general dyon with time-reversal symmetry
is labeled by two integers l and s:(

Na
m

)
c

= s,
[
N

(1)
f

]
c
= l + s

2
,

(50)[
N

(2)
f

]
c

= l + s

2
, (NM )c = 0.

One can check that the dyon condensate is time-reversal
symmetric and (Na

m)c is quantized at integer with any given α

in the present mean-field Ansatz, and such a general dyon is
always bosonic since (�)c = even integer. Most importantly,
by definition, the EM field here is a probe field such that
by switching off EM field, the physical ground state should
not carry EM magnetic charge. So, (NM )c must be vanishing,
which is also required by time-reversal symmetry. Other
quantum numbers of the condensed dyon are straightforward:

(NA)c = l + s

2
,

[
N (1)

m

]
c
= s,

[
N (2)

m

]
c
= −s,

(51)
(Na)c = 0,

[
n

(1)
f

]
c
= l,

[
n

(2)
f

]
c
= l + s.

But will such a dyon condensed state respect the EM electric
U(1) symmetry and behave like an insulator? To answer this
question, according to Sec. III B, let us write down the effective
Lagrangian of the condensed dyon φc in real time (only
spatial components are written here for simplicity and time
component is similar):

Lkin = 1

2m

∣∣∣∣( − i∇ + s̃a +
(

l + s

2

)
A

)
φc

∣∣∣∣2

− V (φc), (52)

where V (φc) is a symmetric potential energy term that
energetically stabilizes the bosonic condensate.
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In the dyon condensed state φc �= 0, the internal gauge field
aμ is gapped and satisfies

s̃a = −
(

l + s

2

)
A, (53)

which indicates that the internal gauge field cannot fluctuate
freely and is locked to the nondynamical EM background. We
also require that

s �= 0 (54)

in the following in order that the dyon condensation does not
generate the A2 term. This requirement may be understood in
the following way. If s = l = 0, there is no dyon condensation,
which is nothing but the ABI state discussed in Sec. IV A. If
s = 0 and l �= 0, Eq. (53) reduces to A = 0, which is the
consequence of mass term A2, a fingerprint of superconduc-
tor/superfluid with broken U(1). This case is nothing but a
condensation of l bosons (carrying EM electric charge l),
which breaks U(1) symmetry down to Z|l| discrete symmetry
spontaneously [Z1 represents complete breaking of U(1)]. In
the following, in order to preserve U(1) symmetry and consider
dyon condensation, we will restrict our attention to s �= 0. Thus
the dyon condensed state indeed respects the EM electric U(1)
symmetry and represents a fully gapped insulator.

It should be noted that the surface fermionic gapless
excitations described by two fs Dirac fermions are also
confined by the φc condensation. The confinement behaves
like a strong attraction between f1 and f2 fermions, which
may turn the surface into a superconducting state.

To construct excitations “φ” (including intrinsic excitations
and test particles), one must trivialize the mutual statistics
between the excitation φ and condensed dyon φc such that
the excitation is a deconfined particle that is observable in
the excitation spectrum. According to Eq. (25), the mutual
statistics between an excitation φ labeled by quantum numbers
without subscript “c” and φc is trivialized by the following
formula:

N (1)
m l + [

NM − N (1)
m

]
(l + s) = sn

(1)
f − sn

(2)
f , (55)

which leads to

n
(1)
f − n

(2)
f =

(
l

s
+ 1

)
NM − N (1)

m . (56)

Note that by considering Eqs. (8), (15), and (56), we obtain an
alternative expression of Eq. (56):

Na =
(

l

s
+ 1

2

)
NM . (57)

Equation (56) is an important and unique constraint on
the quantum numbers of excitations φ constructed above the
condensed dyon φc. In other words, a dyon is served as
a deconfined particle (i.e., an excitation with a finite gap)
above the condensed dyon φc if its four quantum numbers are
constrained by Eq. (56). Therefore all excitations in the present
mean-field Ansatz can be uniquely labeled by [NM,N (1)

m ,n
(2)
f ]

in the standard labeling, while n
(1)
f is determined by Eq. (56).

Meanwhile, due to the screening effect shown in Eq. (53),
the total EM electric charge NE is sum of NA and a screening

part:

NE = NA − l + s
2

s
Na

m . (58)

In the standard labeling, NE is expressed as (details of
derivation are present in Appendix D)

NE = −
(

l

s
+ 1

)
N (1)

m + n
(2)
f +

(
2α

l

s
+ α + 1

2

)
NM . (59)

In fact, the condensed dyon has a trivial mutual statistics
with itself. Thus the total EM electric charge of the condensed
dyon can also be calculated via Eq. (58):

(NE)c = (NA)c − (
Na

m

)
c

l + s
2

s

= l + s

2
− s

(
l + s

2

)/
s = 0, (60)

which indicates that the condensation indeed does not carry
total EM electric charge such that U(1) symmetry is exactly
unbroken.

Under time-reversal symmetry transformation, NE has the
following property:

NE = −
(

l

s
+ 1

)
N

(1)
m + n

(2)
f +

(
2α

l

s
+ α + 1

2

)
NM = NE .

(61)

Since [NM,n
(2)
f ,N (1)

m ] is an excitation [and thus (NE,NM ) is a

site on the charge lattice], we can prove that [NM,n
(2)
f ,N

(1)
m ]

is also an excitation [and thus (NE, − NM ) is a site on the

charge lattice] by justifying that [NM,n
(2)
f ,N

(1)
m ] satisfies the

trivial mutual statistics condition (37). Required by the time-
reversal invariant mean-field Ansatz we considered, the two
dyons have the same excitation energy, such that Eq. (41)
indicates that both the excitation energy and site distribution
are mirror-symmetric at arbitrary α. Likewise, we choose the
simplest case: α = 1/2 in this section. Plugging α = 1/2 into
Eq. (59), we obtain

NE = −
(

l

s
+ 1

)
N (1)

m + n
(2)
f +

(
l

s
+ 1

)
NM . (62)

Now we turn to the discussion of quantum statistics of
excitations. According to Eq. (26), the statistics sign in the
present mean-field Ansatz (θ1 = θ2 = π , α = 1/2) is (details
of the derivation are present in Appendix E)

�
.= NM

[
N (1)

m + 1
]( l

s
+ 1

)
+ NMn

(2)
f . (63)

2. Different topological phases via different condensed dyons

With the above preparation, let us study the nature of the
U(1)�ZT

2 -symmetric topological (gapped) phases constructed
above the condensed dyon φc, mainly based on Eqs. (56), (62),
and (63).

a. Bosonic intrinsic excitations. From Eq. (63), all intrinsic
excitations with zero NM are bosonic [excitations with NM = 0
always exist in Eq. (56)], which rules out all fermionic intrinsic
excitations in the underlying boson system. We also note that
the fs fermions all have nontrivial mutual statistics with the
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φc dyon, and thus those fermionic excitations are confined.
Up to now, the only requirement on topological phases with
symmetry is s �= 0. To understand different topological phases
via different condensed dyons, one needs to study the physical
properties (quantum statistics, total EM electric charge) of all
possible excitations constrained by Eq. (56).

b. {l/s ∈ Z}. Let us first focus on the parameter regime
defined by l

s
∈ Z. In this case, Eq. (56) allows excitations

carrying arbitrary integers NM , N (1)
m , and n

(2)
f . n

(1)
f is uniquely

fixed by Eq. (56), and NE in Eq. (62) is also fixed and can also
take arbitrary integer values.

We may reformulate � in Eq. (63) by means of l/s ∈ Z
(details of derivation are present in Appendix F):

�
.= NMNE . (64)

Due to Eq. (56), n
(2)
f and N (1)

m can be still arbitrarily integer-

valued, and n
(1)
f is fixed once N (1)

m , NM , and n
(2)
f are given.

Thus NE in Eq. (62) can take any integer. There exists at least
one excitation for any given integer combination (NE,NM ). In
short, if the two integers l and s satisfy that l

s
is an integer,

such a choice (l,s) is a solution that admits a state with a trivial
Witten effect. The state is a trivial SPT state. One can check that
the quantum statistics and sites are mirror-symmetric about x

axis. In addition, the distribution of excitation energy is also
mirror-symmetric due to Eq. (61). Overall, the charge lattice
is indeed mirror-symmetric and thus satisfies condition II.

c. {l/s /∈ Z}. We note that l/s = −1/2 is a special point
where the internal gauge symmetry U(1) is broken down to
Z|s| gauge symmetry according to Eq. (52). It leads to Z|s|
TO in three dimensions in the presence of global symmetry
U(1)�ZT

2 . In the following, we will not consider this point.
For a general parameter choice in l/s /∈ Z, we will see that

there is a dyonic TO, which is defined as TO arising from
dyons. Generally, we may parametrize l/s = k′ + p

q
, where

k′,p,q ∈ Z, q > p > 0, gcd(p,q) = 1 (gcd: greatest common
divisor). Plugging l/s = k′ + p

q
into Eq. (56), we find that NM

must be quantized at q in all allowed excitations constrained
by Eq. (56). That is,

NM = qk, (65)

where k ∈ Z, i.e., NM = 0, ±q, ±2q, ±3q, . . . . On the other
hand, Eq. (62) shows that NE of all excitations may be
fractional as a multiple of 1/q:

NE = k1 − pk2/q, (66)

where the two integer variables k1,k2 are introduced and related
to the standard labeling in the following way:

k1 ≡ (k′ + 1)qk + pk + n
(2)
f − (k′ + 1)N (1)

m , (67)

k2 ≡ N (1)
m . (68)

Due to Eq. (56), n
(2)
f and N (1)

m can be still arbitrarily

integer-valued, and n
(1)
f is fixed once N (1)

m , NM , and n
(2)
f are

given. Thus the new variables k1 and k2 can be any integers.
Hereafter, all excitations are labeled by the three independent
integers (k,k1,k2). Using these new labels, we see that NE of
intrinsic excitations (k = 0) can be still fractional according
to Eq. (66), which does not depend on k. It indicates that the

state constructed here is a SET state with fractional intrinsic
excitations. A useful observation from Eq. (66) is that NE can
also take any integer once k2 = q.

Next, we will focus on the quantum statistics of all
excitations defined in Eq. (63). In the present parameter
regime, � can be expressed as (details of derivation are present
in Appendix G)

�
.= NMNE − l

s
NM (NM − 1) . (69)

Therefore � is uniquely determined by NE,NM in the
following formula up to the quantization conditions (65) and
(66). In short, by giving three arbitrary integers (k,k1,k2), one
can determine NE and NM via Eqs. (66) and (65), respectively,
and further determine the quantum statistics of the excitations
labeled by (k,k1,k2). One can plot the quantum statistics in
the charge lattice expanded by discrete variables NM and NE ,
which is same as charge lattice I discussed in Sec. IV C 2
and shown in Fig. 4 (l/s = 1/3). One can check that the
quantum statistics and sites are mirror-symmetric about x

axis. In addition, the distribution of excitation energy is also
mirror-symmetric due to Eq. (61). Overall, the charge lattice
is indeed mirror-symmetric and thus satisfies condition II.

In summary, in the mean-field Ansatz with (θ1,θ2) =
(π,π ), all symmetric gapped phases (condensed dyons with
symmetry) are labeled by two integers (s,l). Physically, a
condensed dyon with symmetry labeled here is a composite of l

physical bosons (formed by l f1 fermions and l f2 fermions), s
f2 fermions, and s unit magnetic monopoles of internal gauge
field aμ. If l/s ∈ Z, the ground state is a trivial SPT state,
i.e., trivial Mott insulator of bosons. In the parameter regime
{l/s /∈ Z,l/s �= −1/2}, the ground state is a SET state with
Dyonic TO (fractional intrinsic excitations). If l/s = −1/2,
the ground state is a SET state with Z|s| TO.

V. TOPOLOGICAL PHASES WITH SYMMETRY:
GENERAL α-SEQUENCE

A. Main results

In Sec. IV, we have obtained many topological phases based
on dyon condensations (see Table III). The value of α is chosen
to be α = 1/2 such that both f1 and f2 carry 1/2 EM electric
charge (see Table I). Such a choice preserves the time-reversal
symmetry. If we choose α to be some other values, the time-
reversal symmetry may be broken. However, α = 1/2 is not the
only value that potentially preserves time-reversal symmetry.
In the following, we shall study the general α sequence, which
respects time-reversal symmetry. Since the mean-field Ansatz
(0,π ) always breaks time-reversal symmetry, we only consider
the other two Ansätze. The main results are summarized in
Table IV. We note that the results in Table III can be obtained
by taking α = 1/2 in Table IV.

B. Mean-field Ansatz (θ1,θ2) = (0,0)

In this mean-field Ansatz, according to the general statement
in Sec. II C, two allowed values of α must be differed from
each other by any integer, which is required by the charge
quantization argument. Let us consider α = 1 − α and α,
where α is the time-reversal transformed α shown in Eq. (12).
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The requirement α − α = any integer is equivalent to the
constraint 2α = integer, which is nothing but condition III.
This is the first constraint we obtained on the domain value
of α.

We have obtained the total EM electric charge NE in the
standard labeling and in the presence of α [cf. Eq. (39)]. To
approach a mirror-symmetric charge lattice, we require that
the site distribution, excitation energy, and quantum statistics
are mirror-symmetric (cf. condition II).

1. l/s ∈ Z

Let us first consider l/s ∈ Z such that NM is arbitrarily
integer-valued due to the constraint (37). We assume that the
mirror site of [NM,n

(2)
f ,N (1)

m ] is labeled by [−NM,n
(2)′
f ,N (1)′

m ].
In order that the mirror site does exist on the charge lattice, the
integer solutions [n(2)′

f ,N (1)′
m ] of the following equation must

exist for any given integer NM [see Eq. (39)]:

NE = n
(2)′
f − l

s
N (1)′

m − 2α
l

s
NM, (70)

which is equivalent to[
n

(2)′
f − n

(2)
f

] − l

s

[
N (1)′

m − N (1)
m

] = 4α
l

s
NM (71)

by means of Eq. (39). Therefore the mirror-symmetric site dis-
tribution requires that 4α l

s
= integer. To construct symmetric

topological phases, we need to further check the quantum
statistics in the presence of α (details of derivation are present
in Appendix H):

� = NM

(
NE − 2α

l

s
NM + l

s

)
. (72)

Therefore the quantum statistics is mirror-symmetric if

NM

(
NE − 2α

l

s
NM + l

s

)
.= (−NM )

[
NE − 2α

l

s
(−NM ) + l

s

]
, (73)

i.e., 2NMNE
.= 0.

In other words, 2NMNE must be always even.
If 4α l

s
= odd, Eq. (39) indicates that NE is half-odd integer

if we take NM = 1. As a result, Eq. (73) is not satisfied.
Therefore, in order to guarantee mirror-symmetric distribution
of quantum statistics, we need to consider a stronger condition:
4α l

s
= even, i.e., 2α l

s
= integer. In Eq. (41), we have already

proved that energy is mirror-symmetric for any α, so that we
conclude that to obtain a mirror-symmetric charge lattice (i.e.,
condition II), we need 2α l

s
= integer. Under this condition as

well as 2α = integer, we may obtain trivial SPT states and
nontrivial SPT states summarized in Table IV by comparing
� with the standard trivial Witten effect and nontrivial Witten
effect defined in Sec. IV B. As usual, one should pay attention
to the emergence of Z|s| TO if l = 0 and |s| ≥ 2 although
charge lattice formed by deconfined dyons is same as a
trivial SPT state. Strikingly, we obtain BTI states, which are
completely absent in Table III where α = 1/2 is fixed.

Since NM ∈ Z, l
s

∈ Z, and l
s
NM

.= l
s
(NM )2, one may

rewrite Eq. (72) as �
.= NM (NE − 2α l

s
NM + l

s
NM ) ≡

NM (NE − �
2π

NM ). The minimal periodicity of � is 4π

because � is invariant after 4π shift. As a result, a � angle can
be formally defined as

� ≡ −2π
l

s
+ 4π

l

s
α mod(4π ), (74)

from which we see that the � angle is linearly related to α.

2. l/s /∈ Z

Generally, we may parametrize l/s = k′ + p

q
, where

k′,p,q ∈ Z, q > p > 0, gcd(p,q) = 1 (gcd: greatest common
divisor). In this case, NM is quantized at qk as shown in
Eq. (46). To guarantee mirror-symmetric site distribution, the
integer solutions (n(2)′

f ,N (1)′
m ) of Eq. (71) must exist for any

given NM = qk:[
n

(2)′
f − n

(2)
f

] −
(

k′ + p

q

)[
N (1)′

m − N (1)
m

]
= 4α(qk′ + p)k (75)

by means of Eq. (39). Equation (72) is also valid when l/s /∈ Z
by noting that −2NM

l
s
N (1)

m is still even integer in deriving the
fourth line of Appendix H. Therefore Eq. (73) is also valid
when l/s /∈ Z.

A general discussion on Eqs. (75) and (73) is intricate.
Let us take a simple example: l/s = 1/3, i.e., k′ = 0,q =
3,p = 1. The right-hand side of Eq. (75) becomes 4αk. To
obtain the integer solutions [n(2)′

f ,N (1)′
m ] for any given integers

[k,N (1)
m ,n

(2)
f ], a constraint on α is necessary: α = integer/12.

Under this condition, Eq. (73) leads to a stronger condition:
6α = k0 where k0 is an integer. It guarantees mirror-symmetric
distribution of both sites and quantum statistics. As we have
proved, energy is already mirror-symmetric due to Eq. (41).
Overall, to obtain a mirror-symmetric charge lattice (i.e.,
condition II), we need α = integer/6. Keeping in mind that
2α = integer is required by condition III, the two conditions
altogether still give 2α = integer.

Since NM/3 ∈ Z, l
s

= 1/3, and l
s
NM = NM/3

.=
(NM )2/9, one may rewrite Eq. (72) as �

.= NM (NE − 2α
3 NM +

1
9NM ) ≡ NM (NE − �

2π
NM ). The minimal periodicity of � is

4π
9 because � is invariant after 4π

9 shift. As a result, a � angle
can be formally defined:

� ≡ −2π

9
+ 4π

3
α mod

(
4π

9

)
, (76)

from which we see that the � angle is linearly related to
α. All SET states have fractional intrinsic excitations. We
can further classify these states into two categories: one
is � = 0 mod( 4π

9 ) with α = half-odd, and another is � =
2π
9 mod( 4π

9 ) with α = integer. In comparison to the trivial
and nontrivial SPT states, we call the former “trivial f BTI”
and the latter “nontrivial f BTI” via investigating the Witten
effect.

C. Mean-field Ansatz (θ1,θ2) = (π,π )

In this mean-field Ansatz, we have obtained the total EM
electric charge NE in the standard labeling and in the presence
of α [cf. Eq. (59)]. To approach a mirror-symmetric charge
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lattice, we require that the site distribution and quantum
statistics are mirror-symmetric.

1. l/s ∈ Z

Let us first consider l/s ∈ Z such that NM is arbitrarily
integer-valued due to the constraint (56). We assume that the
mirror site of [NM,n

(2)
f ,N (1)

m ] is labeled by [−NM,n
(2)′
f ,N (1)′

m ].
In order that the mirror site does exist in the charge lattice, the
integer solutions [n(2)′

f ,N (1)′
m ] of the following equation must

exist for any given integer NM :

NE = −
(

l

s
+ 1

)
N (1)′

m + n
(2)′
f −

(
2α

l

s
+ α + 1

2

)
NM,

(77)

which is equivalent to[
n

(2)′
f − n

(2)
f

] −
(

l

s
+ 1

)[
N (1)′

m − N (1)
m

]
= 2

(
2α

l

s
+ α + 1

2

)
NM (78)

by means of Eq. (59). Therefore the mirror-symmetric site
distribution requires that 2 × (2α l

s
+ α + 1

2 ) = integer. To
construct symmetric topological phases, we need to further
check the quantum statistics in the presence of α (details of
derivation are present in Appendix I):

� = NM

[
NE −

(
2α

l

s
+ α + 1

2

)
NM −

(
l

s
+ 1

)]
. (79)

Therefore the quantum statistics is mirror-symmetric if

NM

[
NE −

(
2α

l

s
+ α + 1

2

)
NM −

(
l

s
+ 1

)]
.= −NM

[
NE +

(
2α

l

s
+ α + 1

2

)
NM −

(
l

s
+ 1

)]
,

i.e., 2NMNE
.= 0 . (80)

In other words, 2NMNE must be always even.
If 2 × (2α l

s
+ α + 1

2 ) = odd, Eq. (59) indicates that NE

is half-odd integer if we take NM = 1. As a result,
Eq. (80) is not satisfied. Therefore, in order to guarantee
mirror-symmetric distribution of quantum statistics, we need
to consider a stronger condition: 2 × (2α l

s
+ α + 1

2 ) = even,
i.e., (2α l

s
+ α + 1

2 ) = integer. In Eq. (61), we have already
proved that energy is mirror-symmetric for any α, so that we
conclude that the charge lattice is mirror-symmetric if the
stronger condition 2α l

s
+ α + 1

2 = integer is satisfied.
Since NM ∈ Z, l

s
∈ Z and ( l

s
+ 1)NM

.= ( l
s
+ 1)(NM )2,

one may rewrite Eq. (79) as �
.= NM [NE − (2α l

s
+ α +

1
2 )NM − ( l

s
+ 1)NM ] ≡ NM (NE − �

2π
NM ). The minimal pe-

riodicity of � is 4π because � is invariant after 4π shift. As a
result, a � angle can be formally defined:

� ≡ 2π

(
l

s
+ 3

2

)
+ 4π

(
l

s
+ 1

2

)
α mod(4π ), (81)

from which we see that the � angle is linearly related to α.
From this � formula, we realize that shifting α by an

odd integer will change trivial (nontrivial) SPT to nontrivial

(trivial) SPT. Therefore we arrive at the statement in Sec. II C.
Thus two allowed values of α must be differed from each
other by an even integer. Let us consider α = 1 − α and α,
where α is the time-reversal transformed α shown in Eq. (12).
The requirement α − α = any even integer is equivalent to
the constraint α = half-odd, which is nothing but condition
III. Under this condition as well as the conditions obtained
from mirror symmetric charge lattice, we may obtain trivial
SPT states and nontrivial SPT states summarized in Table IV
by comparing � with the standard trivial Witten effect and
nontrivial Witten effect defined in Sec. IV B. Strikingly, we
obtain BTI states, which are completely absent in Table III
where α = 1/2 is fixed.

2. l/s /∈ Z

Generally, we may parametrize l/s = k′ + p

q
, where

k′,p,q ∈ Z, q > p > 0, gcd(p,q) = 1 (gcd: greatest common
divisor). In this case, NM is quantized at qk as shown in
Eq. (65). To guarantee mirror-symmetric site distribution, the
integer solutions [n(2)′

f ,N (1)′
m ] of Eq. (78) must exist for any

given NM = qk:[
n

(2)′
f − n

(2)
f

] −
(

k′ + 1 + p

q

)[
N (1)′

m − N (1)
m

]
= [4α(qk′ + p) + 2αq + q]k (82)

by means of Eq. (59). Equation (79) is also valid when l/s /∈ Z
by noting that −2NM ( l

s
+ 1)[N (1)

m + 1] is still even integer in
deriving the fourth line of Appendix I. Therefore Eq. (80) is
also valid when l/s /∈ Z.

A general discussion on Eqs. (82) and (80) is intricate.
Let us take a simple example: l/s = 1/3, i.e., k′ = 0,q =
3,p = 1. The right-hand side of Eq. (82) becomes (10α +
3)k. To obtain the integer solutions [n(2)′

f ,N (1)′
m ] for any

given integers [k,N (1)
m ,n

(2)
f ], a constraint on α is necessary:

10α + 3 = integer/3, i.e., α = k0−9
30 where k0 is an integer.

Under this condition, Eq. (80) leads to a stronger condition:
α = 2k0−9

30 , which guarantees mirror-symmetric distributions
of both sites and quantum statistics. As we have proved,
excitation energy is already mirror-symmetric due to Eq. (61).
By further considering condition III, α is finally restricted to
α = half-odd.

Since NM/3 ∈ Z, l
s

= 1/3, and ( l
s
+ 1)NM = 4NM/3

.= 0,
one may rewrite Eq. (79) as �

.= NM [NE − ( 5α
3 + 1

2 )NM ] ≡
NM (NE − �

2π
NM ). The minimal periodicity of � is 4π

9 because
� is invariant after 4π

9 shift. As a result, a � angle can be
formally defined:

� ≡ π + 10π

3
α mod

(
4π

9

)
, (83)

from which we see that the � angle is linearly related to
α. All SET states have fractional intrinsic excitations. We
can further classify these states into two categories: one
is � = 0 mod( 4π

9 ) with α − 1
2 = even and another is � =

2π
9 mod( 4π

9 ) with α − 1
2 = odd. In comparison to the trivial

and nontrivial SPT states, we call the former “trivial f BTI”
and the latter “nontrivial f BTI” via investigating the Witten
effect.
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As usual, one should pay attention to the emergence of Z|s|
TO if l/s = −1/2. One may also examine whether there is a
Witten effect if l/s = −1/2 in addition to Z|s| TO. Following
the same procedure, we obtain that

� ≡ π

2
mod(π ) (84)

and α is restricted to α = half-odd. At this special point, l/s =
−1/2, we find that the Witten effect is independent on α and
the state is a nontrivial f BTI in the presence of Z|s| TO.

VI. CONCLUSION

In conclusion, we used fermionic projective construction
and dyon condensation to construct many three-dimensional
SPT and SET states with time-reversal symmetry and U(1)
boson number conservation symmetry. Without dyon con-
densation, we obtained an algebraic bosonic insulator, which
contains an emergent U(1) gapless photon excitation. Then we
assumed the internal U(1) gauge field to fluctuate strongly
and form one of many confined phases characterized by
different dyon condensations. After a dyon condensate that
preserves the U (1) � ZT

2 symmetry is selected properly, the
excitation spectrum (formed by deconfined dyons) above this
dyon condensate is entirely determined. The symmetric dyon
condensate determines the quantization conditions of EM
magnetic charge and EM electric charge of excitations. It
also determines the quantum statistics (boson/fermion) and
excitation energy. By calculating these properties, we then
obtained SPT and SET states summarized in Tables II–IV. The
basic process of this construction approach is shown in Fig. 1.
In short, we presented an “efficient program” for constructing
SPT states in 3D symmetric topological phases; we also found
that confined phases of the internal gauge field with global
symmetry can be further classified into many different phases.
There are some interesting and direct directions for future
work.

(1) Classification via projective construction and dyon
condensation. The definition of nontrivial SPT states, i.e.,
bosonic topological insulators (BTI), is only related to the
nontrivial Witten effect (i.e., � = 2π ) as shown in Sec. IV B.
As shown in Ref. [19], classification of an SPT state with a
certain symmetry corresponds to looking for a complete set
of “topological invariants.” In this paper, we only consider
one Z2 topological invariant, which distinguishes the physical
properties of trivial/nontrivial Witten effect, meaning that it
is potentially possible some trivial SPT states we found in
this paper actually are nontrivial and are characterized by
new features instead of the Witten effect, e.g., 2D surface
properties. In other words, it is necessary to construct more
topological invariants to completely distinguish all SPT states.

There are some clues. Firstly, in this paper, we have
systematically shown how to construct a charge lattice that
respects symmetry by means of fermionic projective con-
struction and dyon condensation. We expect that, in addition
to Witten effect, more information (i.e., more topological
invariants) can be extracted from more complete analysis of
charge lattice. Secondly, we may consider SPT states with
merely time-reversal symmetry. In other words, these states
are protected sufficiently by time-reversal symmetry while the

boson number conservation symmetry U(1) does not play any
role. Literally, these states are also SPT states with U(1)�ZT

2
although U(1) here is not necessary. Therefore one may
consider new mean-field Ansätze for fermions and try to find
new SPT states.

(2) Surface theory and bulk topological field theory via
projective construction and dyon condensation. SPT states
have a quite trivial bulk but the surface may admit many
nontrivial physical properties that are absent in trivial Mott
insulator states. It has been recently shown that classifying sur-
face topological order may provide the answer to classifying
the BTI bulk [15,51]. Indeed, the surface detectable features
may be tightly connected to the complete set of topological
invariants that we shall look for. For instance, a nontrivial
Witten effect is indeed related to the surface quantum Hall
effect (by breaking time-reversal symmetry on the surface)
with anomalous quantization of Hall conductance that cannot
be realized in 2D U(1) SPT [49,51]. In short, it is interesting for
future work on a surface theoretical description via the present
fermionic projective construction and dyon construction.
Beside the SPT states constructed in this paper, we also
constructed many SET states in which fractional intrinsic
excitations exist (defined as excitations with zero EM magnetic
charge). A full understanding of these topologically ordered
states with symmetry is interesting from the perspective of
(3 +1)D topological quantum field theory (TQFT) descriptions
and fixed-point lattice Hamiltonian realizations. In addition,
realistic model Hamiltonians that can realize all the topological
phases constructed in this paper are quite interesting; we leave
the task of constructing such Hamiltonians to future work.
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APPENDIX A: CONDENSATION OF TWO
TIME-REVERSAL CONJUGATED DYONS LEADS TO A

SINGLE DYON CONDENSATE

The most general Ansatz for the quantum numbers of two
time-reversal conjugated dyons is shown in Table. V. We see
that there are four numbers (l1,l2,s,t)—enough to label two
dyons, one of which is the time-reversal partner of the other.

If both φ1 and φ2 are condensed, the mutual statistics
between them must be trivialized, i.e.,

l1[s − (1 − α)t] + l2(−s − αt)

= l2(s + αt) + l1[−s + (1 − α)t], (A1)

which leads to

l1[s − (1 − α)t] + l2(−s − αt) = 0 . (A2)

We note that the U(1) symmetry of the original boson system
is generated by conserved EM electric charge rather than EM
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TABLE V. Quantum numbers of two time-reversal conjugated dyons (φ1 and φ2).

Dyon Na
m N

(1)
f N

(2)
f N (1)

m N (2)
m NM NA

φ1 s l1 l2 s + αt −s + (1 − α)t t αl1 + (1 − α)l2
φ2 s + (2α − 1)t l2 l1 s − (1 − α)t −s − αt −t αl2 + (1 − α)l1

magnetic charge. The EM field here is nondynamical so that the
dyon condensates that form the physical ground state should
have zero EM magnetic charge. Therefore we have t = 0, and
the above trivial mutual statistics condition becomes

(l1 − l2)s = 0. (A3)

To satisfy this condition, l1 = l2 or s = 0. However, s must be
nonzero in order to preserve U(1) symmetry. The reason is that
once s = 0, the condensation will break U(1) since it is EM
electric charged. The reasonable choice is l1 = l2. This choice
leads to the fact that φ1 = φ2, i.e., a condensate of one kind of
dyon.

APPENDIX B: DERIVATION OF EQ. (39)

NE = [
αN

(1)
f + (1 − α)N (2)

f

] − l

s
Na

m

= αn
(1)
f + (1 − α)n(2)

f − l

s

[
N (1)

m − αNM

]
= α

[
l

s
NM + n

(2)
f

]
+ (1 − α)n(2)

f + l

s
αNM − l

s
N (1)

m

= n
(2)
f + 2α

l

s
NM − l

s
N (1)

m . (B1)

In deriving the first line, Eqs. (15) and (38) are applied. In
deriving the second line, Eq. (6) is applied. In deriving the
third line, Eq. (37) is applied.

APPENDIX C: DERIVATION OF EQ. (42)

�
.= NM

[
1

2
N

(1)
f + 1

2
N

(2)
f

]
+ Na

m

[
N

(1)
f − N

(2)
f

] + N
(1)
f + N

(2)
f

.= NM

[
1

2
N

(1)
f + 1

2
N

(2)
f

]
+ Na

m

[
N

(1)
f − N

(2)
f

] + N
(1)
f − N

(2)
f

= NM

[
1

2
N

(1)
f + 1

2
N

(2)
f

]
+ (

Na
m + 1

)[
N

(1)
f − N

(2)
f

]
= NMNA + (

Na
m + 1

)
Na

= NM

(
NE + l

s
Na

m

)
+ (

Na
m + 1

) l

s
NM

= NMNE + (
2Na

m + 1
) l

s
NM

= NMNE + [
2N (1)

m − NM + 1
] l

s
NM. (C1)

In deriving the second line, an even integer “−2N
(2)
f ” is added.

In deriving the fifth line, Eqs. (37) and (38) are applied. In
deriving the last line, Eq. (6) is applied.

APPENDIX D: DERIVATION OF EQ. (59)

NE = NA − l + s
2

s
Na

m

= α

[
n

(1)
f + 1

2
N (1)

m

]
+ (1 − α)

{
n

(2)
f + 1

2

[
NM − N (1)

m

]}
−

(
l

s
+ 1

2

)[
N (1)

m − αNM

]
= α

[
n

(2)
f +

(
l

s
+ 1

)
NM − N (1)

m + 1

2
N (1)

m

]
+ (1 − α)

{
n

(2)
f + 1

2

[
NM − N (1)

m

]}
−

(
l

s
+ 1

2

)[
N (1)

m − αNM

]
= −

(
l

s
+ 1

)
N (1)

m + n
(2)
f +

(
2α

l

s
+ α + 1

2

)
NM. (D1)

In deriving the third line, Eq. (56) is applied.

APPENDIX E: DERIVATION OF EQ. (63)

�
.= 1

2
NM

[
n

(1)
f + n

(2)
f

] + Na
m

[
n

(1)
f − n

(2)
f

] + n
(1)
f + n

(2)
f

.= 1

2
NM

[
n

(1)
f + n

(2)
f

] + Na
m

[
n

(1)
f − n

(2)
f

] + n
(1)
f − n

(2)
f

=
(

1

2
NM + Na

m + 1

)[
n

(1)
f − n

(2)
f

] + NMn
(2)
f

= [
N (1)

m + 1
][

n
(1)
f − n

(2)
f

] + NMn
(2)
f

= [
N (1)

m + 1
][(

l

s
+ 1

)
NM − N (1)

m

]
+ NMn

(2)
f

.= [
N (1)

m + 1
]( l

s
+ 1

)
NM + NMn

(2)
f . (E1)

In deriving the first line, Eq. (27) is applied. In deriving the
second line, an even integer −2n

(2)
f is added. In deriving the

fourth line, the first formula in Eq. (6) is applied with α = 1/2.
In deriving the fifth line, Eq. (56) is applied. In deriving the
last line, the even integer −N (1)

m [N (1)
m + 1] is removed.

APPENDIX F: DERIVATION OF EQ. (64)

�
.= NM

[
N (1)

m + 1
]( l

s
+ 1

)
+ NMn

(2)
f

.= −NM

[
N (1)

m + 1
]( l

s
+ 1

)
+ NMn

(2)
f
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= NM

[
−

(
l

s
+ 1

)
N (1)

m + n
(2)
f −

(
l

s
+ 1

)]
= NM

[
NE −

(
l

s
+ 1

)
NM −

(
l

s
+ 1

)]
= NM

[
NE −

(
l

s
+ 1

)
(NM + 1)

]
.= NMNE, (F1)

where an even integer −2NM (N (1)
m + 1)( l

s
+ 1) is added in

the second line. In the fourth line, Eq. (62) is applied. In the
last line, NM (NM + 1)( l

s
+ 1) is removed since it is always

even.

APPENDIX G: DERIVAION OF EQ. (69)

�
.= NM

[
N (1)

m + 1
]( l

s
+ 1

)
+ NMn

(2)
f

.= −NM

[
N (1)

m + 1
]( l

s
+ 1

)
+ NMn

(2)
f

= NM

[
−

(
l

s
+ 1

)
N (1)

m + n
(2)
f −

(
l

s
+ 1

)]
= NM

[
NE −

(
l

s
+ 1

)
NM −

(
l

s
+ 1

)]
= NMNE −

(
l

s
+ 1

)
NM (NM + 1)

.= NMNE − l

s
NM (NM + 1)

.= NMNE − l

s
NM (NM − 1), (G1)

where an even integer −2NM (N (1)
m + 1)( l

s
+ 1) =

−2qk(N (1)
m + 1)(p

q
+ 1) = −2k(N (1)

m + 1)(p + q) is added
in the second line. In deriving the fourth line, Eq. (62)
is applied. In deriving the sixth line, the even integer
−NM (NM + 1) = −qk(qk + 1) is removed. In deriving
the last line, an even integer 2 l

s
NM = 2(qk′ + p)k is

added.

APPENDIX H: DERIVATION OF EQ. (72)

� = [
N (1)

m + 1
]
n

(1)
f + [

N (2)
m + 1

]
n

(2)
f

= [
N (1)

m + 1
][ l

s
NM + n

(2)
f

]
+ [

NM − N (1)
m + 1

]
n

(2)
f

.= NM

[
l

s
N (1)

m + l

s
+ n

(2)
f

]
.= NM

[
− l

s
N (1)

m + l

s
+ n

(2)
f

]
= NM

(
NE − 2α

l

s
NM + l

s

)
. (H1)

In deriving the second line, Eqs. (37) and (7) are applied. In
deriving the third line, the even integer 2n

(2)
f is removed. In

deriving the fourth line, an even integer −2NM
l
s
N (1)

m is added.
In deriving the last line, Eq. (39) is applied.

APPENDIX I: DERIVATION OF EQ. (79)

� = [
N (1)

m + 1
]
n

(1)
f + [

N (2)
m + 1

]
n

(2)
f

= [
N (1)

m + 1
][(

l

s
+ 1

)
NM − N (1)

m + n
(2)
f

]
+[

NM − N (1)
m + 1

]
n

(2)
f

.= NM

{(
l

s
+ 1

)[
N (1)

m + 1
] + n

(2)
f

}
.= NM

{
−

(
l

s
+ 1

)[
N (1)

m + 1
] + n

(2)
f

}
= NM

[
NE −

(
2α

l

s
+ α + 1

2

)
NM −

(
l

s
+ 1

)]
. (I1)

In deriving the second line, Eqs. (56) and (7) are applied. In
deriving the third line, the even integers 2n

(2)
f and −[N (1)

m +
1]N (1)

m are removed. In deriving the fourth line, an even integer
−2NM ( l

s
+ 1)[N (1)

m + 1] is added. In deriving the last line,
Eq. (59) is applied.
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