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Entanglement growth during thermalization in holographic systems
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(Received 3 December 2013; published 19 March 2014)

We derive in detail several universal features in the time evolution of entanglement entropy and other
nonlocal observables in quenched holographic systems. The quenches are such that a spatially uniform
density of energy is injected at an instant in time, exciting a strongly coupled conformal field theory which
eventually equilibrates. Such quench processes are described on the gravity side by the gravitational
collapse of a thin shell that results in a black hole. Various nonlocal observables have a unified description
in terms of the area of extremal surfaces of different dimensions. In the large distance limit, the evolution of
an extremal surface, and thus the corresponding boundary observable, is controlled by the geometry around
and inside the event horizon of the black hole, allowing us to identify regimes of pre-local-equilibration
quadratic growth, post-local-equilibration linear growth, a memory loss regime, and a saturation regime
with behavior resembling those in phase transitions. We also discuss possible bounds on the maximal rate
of entanglement growth in relativistic systems.
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I. INTRODUCTION

Understanding whether and how quantum matter equili-
brate is a question of much importance in many different
areas of physics. Yet such nonequilibrium problems are
notoriously difficult to deal with; universal characteriza-
tions are scarce and far between.
For a nonintegrable system it is expected that a generic

(sufficiently excited) nonequilibrium state eventually ther-
malizes. For strongly coupled systemswith a gravity dual this
expectation is borne out as holographic duality maps equili-
bration from such a state to black hole formation from a
gravitational collapse, and gravitational collapse of a suffi-
ciently massive body is indeed generic in general relativity.
Questions related to equilibration then become inti-

mately connected to those of black hole physics. This
on the one hand brings in powerful gravity techniques for
studying thermalization processes, and on the other gives
new perspectives on the quantum nature of black holes.
One of the simplest settings for equilibration is the

evolution of a system after a global quench, which can be
divided into two types. In the first type one changes some
parameter(s) of a system at t ¼ 0 within a short interval δt.
The previous ground state becomes an excited state with
respect to the new Hamiltonian and evolves to equilibrium
under the evolution of the new Hamiltonian. In the second
type, one turns on a uniform density of sources for a short
interval δt at t ¼ 0 and then turns it off. The work done by
the source takes the system to an excited state which
subsequently equilibrates (under the evolution of the same
Hamiltonian before the quench). In both situations, the

interval δt is taken to be much smaller than any other scale
in the system. For convenience we will take δt to be zero in
subsequent discussions.
In the ð1þ 1Þ-dimension, by tuning a parameter of a

gapped system to criticality Calabrese and Cardy found that
[1] the entanglement entropy for a segment of size 2R
grows with time linearly as

ΔSðt; RÞ ¼ 2tseq; t < R; (1.1)

and saturates at the equilibrium value at a sharp saturation
time ts ¼ R. In the above equation ΔS denotes the differ-
ence of the entanglement entropy from that at t ¼ 0, and seq
is the equilibrium thermal entropy density. Furthermore,
they showed that this remarkably simple behavior can be
understood from a simple model of entanglement propa-
gation using free-streaming quasiparticles traveling at the
speed of light.
Subsequently, the linear behavior (1.1) was found in a

holographic context for ð1þ 1Þ-dimensional systemsdual to
a bulkVaidya geometry [2] (see also [3,4]). An anti–de Sitter
(AdS) Vaidya geometry, as we will review in more detail in
Sec. IIA, describes thegravitational collapseof a thin shell of
matter to formablackhole. Itcorrespondstoaquenchprocess
of the second type in a boundary conformal field theory
(CFT), where at t ¼ 0, a uniform density of operators are
inserted for a very short time. The entanglement entropy is
obtained from the area of an extremal surface in the Vaidya
geometry with appropriate boundary conditions [5–7].
The agreement of results between the very different

setups of [1] and [2] is in some sense not surprising. Both
setups involve a homogeneous excited initial state evolving
under a gapless Hamiltonian, and the powerful boundary
CFT techniques of [1] should apply in both contexts.
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Behavior similar to that of entanglement entropy has also
been found in correlation functions in both contexts [3,4,8,9]
(see also [5,10–20] for other studies of two-dimensional
systems).
Given the simplicity and elegance of (1.1), it is natural to

wonder: (i) whether similar linear growth occurs in higher
dimensions; (ii) whether other nonlocal observables such as
equal-time correlation functions and Wilson loops share
similar behavior; (iii) if such linear growth exists, whether it
can still be understood from free-streaming quasiparticles.
For entanglement entropy we recently reported the

answers to some of these questions for a class of quenched
holographic systems [21]. Interested in long-distance phys-
ics, we focused on entangled regions of a large size and
found that the time evolution of entanglement entropy is
characterized by four different scaling regimes:
(1) Pre-local-equilibration quadratic growth in time.
(2) Post-local-equilibration linear growth in time.
(3) A saturation regime in which the entanglement

entropy saturates its equilibrium value. The satura-
tion can be either continuous or discontinuous
depending on whether the time derivative of the
entanglement entropy is continuous at saturation. In
the continuous case saturation is characterized by a
“critical” exponent.

(4) When the entangled region is a sphere, there is an
additional scaling regime between linear growth and
saturation, which we dub “late time memory loss,"
and in which the entanglement entropy depends only
on the time remaining till saturation, and not on the
size of the region and time separately.

These results are generic in the sense that they are
insensitive to the specific details of the system as well
as those of the quench.
The above scaling regimes were obtained by identifying

various geometric regimes for the bulk extremal surface.
An important observation was the existence of a family of
“critical extremal surfaces” which lie behind the horizon
and separate extremal surfaces that reach the boundary
from those which fall into the black hole singularity. In the
large size limit, one finds that the time evolution of
entanglement entropy is controlled by these critical
extremal surfaces. In this paper we give a detailed derivation
of these results and provide generalizations to other nonlocal
observables such as equal-time correlation functions and
Wilson loops.
Also, with Mezei [22], we generalized the free-streaming

model of [1] to higher dimensions. It turns out that such a
model also exhibits post-local-equilibration linear growth
of entanglement entropy, but that intriguingly, the rate of
growth of entanglement entropy resulting from free-stream-
ing particles moving at the speed of light is less than what
we find here for strongly coupled holographic systems.
In [21], we argued that the evolution of entanglement

entropy can be captured by the picture of an entanglement

wave propagating inward from the boundary of the
entangled region, which we called an “entanglement
tsunami” (see also [20]). There we also suggested a
possible upper bound on the rate of entanglement growth
in relativistic systems. The results of [21] and the current
paper also have potential applications for various issues
associated with black hole physics. The fact that the growth
of entanglement is controlled by some critical extremal
surfaces inside the horizon of a collapsing black hole also
suggests new avenues for probing physics beyond horizons
in holography. Similar processes as those we consider here
were also considered in [23] to obtain insights into the
“scrambling time” of a black hole. We will elaborate more
on these issues in the discussion section.
To conclude this Introduction, we note that earlier work

on quenches in higher dimensional holographic systems
include [3,4,24,25] (see also [12–14,17,26–28]). In par-
ticular, for d ¼ 3, a linear growth toward saturation was
mentioned in [24], although it appears that the linear regime
mentioned in [24] is different from that of [21] and the
current paper. Reference [24] was also the first to observe
discontinuous saturation in various examples. In [3,4]
nonanalyticity near saturation was emphasized. In a differ-
ent gravity setup, the linear growth of entanglement entropy
was also observed [25], whose connection to that in [21]
will be discussed in detail in the main text. In [13] it was
pointed out that the presence of a nonzero chemical
potential in the final equilibrium state tends to slow the
growth of entanglement.

II. GENERAL SETUP

In this paperwe consider the evolution of various nonlocal
observables, including entanglement entropy, equal-time
correlation functions, andWilson loops, after a sharp quench
of a strongly coupled gapless system with a gravity dual.
More explicitly, at t ¼ 0 in the boundary systemwe turn on a
spatially uniform density of external sources for an interval
δt, creating a spatially homogeneous and isotropic excited
state with nonzero energy density, which subsequently
equilibrates. The precise manner (e.g. what kind of sources
are turned on and how) through which the excited state is
generated and itsmicroscopic detailswill not concern us.We
are interested in the macroscopic behavior of the system at
large distances and in extracting “universal” behavior in the
evolution of these observables that are insensitive to the
specific nature of final equilibrium states.
On the gravity side such a quench process is described by

a thin shell of matter starting from the boundary and
collapsing to form a black hole, which can in turn be
described by a Vaidya metric; see Fig. 1. The matter fields
making up the shell and their configuration are determined
by the sourcing process in the boundary theory and are
again not important for our purposes. See e.g. [29–35] for
more explicit discussions. In the classical gravity regimewe
are working with, which translates to the large N and
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strongly coupled limit of the boundary theory, all of our
observables are only sensitive to the metric of the collaps-
ing geometry.
In this section we give a detailed description of our setup

and review the vacuum and equilibrium properties of the
class of systems under consideration.

A. Vaidya metric

We consider a metric of the form

ds2 ¼ L2

z2
ð−fðv; zÞdv2 − 2dvdzþ d~x2Þ: (2.1)

In the limit the sourcing interval δt goes to zero, the width
of the collapsing shell goes to zero, and fðv; zÞ can be
expressed in terms of a step function

fðv; zÞ ¼ 1 − θðvÞgðzÞ: (2.2)

For v < 0, the metric is given by that of pure AdS,

ds2 ¼ L2

z2
ð−dt2 þ dz2 þ d~x2Þ; (2.3)

where

v ¼ t − z; t ¼ vþ z: (2.4)

For v > 0, (2.1) is given by that of a black hole in
Eddington-Finkelstein coordinates,

ds2 ¼ L2

z2
ð−hðzÞdv2 − 2dvdzþ d~x2Þ; (2.5)

which in terms of the usual Schwarzschild time t can be
written as

ds2 ¼ L2

z2

�
−hðzÞdt2 þ 1

hðzÞ dz
2 þ d~x2

�
(2.6)

with

hðzÞ≡ 1 − gðzÞ; v ¼ t − σðzÞ; σðzÞ ¼
Z

z

0

dz0

hðz0Þ :
(2.7)

The functions hðzÞ in the black hole metric (2.5) and (2.6)
may be interpreted as “parametrizing” different types of
equilibration processes with different final equilibrium
states. We assume that (2.1) with some gðzÞ can always
be achieved by choosing an appropriate configuration of
matter fields. In the following discussions we will not need
the explicit form of hðzÞ, and only that it gives rise to a
black hole metric. We will work with a general boundary
spacetime dimension d.
More explicitly, we assume hðzÞ has a simple zero at the

horizon z ¼ zh > 0, and that for z < zh, it is positive and
monotonically decreasing as a function of z as required by
the IR/UV connection. As we approach the boundary, i.e.
as z → 0, hðzÞ approaches zero with the leading behavior

hðzÞ ¼ 1 −Mzd þ � � � ; (2.8)

whereM is some constant. From (2.8), one obtains that the
energy density of the equilibrium state is

E ¼ Ld−1

8πGN

d − 1

2
M; (2.9)

while its temperature and entropy density are given by

T ¼ jh0ðzhÞj
4π

; seq ¼
Ld−1

zd−1h

1

4GN
: (2.10)

Representative examples of (2.5) include the AdS
Schwarzschild black hole with

hðzÞ ¼ 1 −
zd

zdh
; (2.11)

which describes a neutral final equilibrium state, and the
AdS Reissner-Nordstrom (RN) black hole with

hðzÞ ¼ 1 −Mzd þQ2z2d−2; (2.12)

which describes a final equilibrium state with a nonzero
chemical potential for some conserved charge.
A characteristic scale of the black hole geometry (2.5)

and (2.6) is the horizon size1 zh which from (2.10) can be
expressed in terms of the entropy density seq as

FIG. 1 (color online). Vaidya geometry: One patches pure
AdS with a black hole along an infalling collapsing null shell
located at v ¼ 0. We take the width of the shell to be zero
which corresponds to the δt ¼ 0 limit of the boundary quench
process. The spatial directions along the boundary are suppressed
in the figure.

1Note that while the horizon location is a coordinate dependent
quantity, in the particular radial coordinate used in (2.5) and (2.6)
zh corresponds to a meaningful boundary scale as for example
indicated by (2.13).
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zh ¼
�
Ld−1

4GN

1

seq

� 1
d−1
: (2.13)

Were we considering a gas of quasiparticles, the prefactor
Ld−1

4GN
in (2.13) could be interpreted as the number of internal

degrees of freedom of a quasiparticle, and zh would then be
the average distance between quasiparticles, or the mean
free path. Here of course we are considering strongly
coupled systems which do not have a quasiparticle descrip-
tion. Nevertheless, zh provides a characteristic scale of the
equilibrium state. For example, as we will see below it
controls the correlation length of equal-time correlation
functions and Wilson loops in equilibrium.
For the collapsing process described by (2.1) we can also

identify zh as a “local equilibrium scale” leq, which can be
defined as the time scale when the system has ceased
production of thermodynamic entropy, or in other words,
has achieved local equilibrium at distance scales of order
the “mean free path” of the equilibrium state. We will
discuss further support for this identification at the end
of Sec. IV.
We note that in the AdS Schwarzschild case (2.11), the

temperature T is the only scale and controls both the local
equilibrium scale zh and energy density E [given by (2.9)],

T ¼ d
4πzh

; M ¼ 1

zdh
¼

�
4πT
d

�
d
; (2.14)

but that in a system with more than one scale as in the
Reissner-Nordstrom case, zh and E (or M) do not depend
only on T. In the Reissner-Nordstrom case, it is convenient
to introduce a quantity

u≡ 4πzhT
d

; (2.15)

which decreases monotonically from its Schwarzschild
value of unity to 0, as the chemical potential is increased
from zero to infinity at fixed T. Thus with a large chemical
potential (compared to temperature), the local equilibrium
scale leq ∼ zh can be much smaller than the thermal wave
length 1=T. In this regime, the system is controlled by finite
density physics which gives rise to the scale zh. For recent
related discussions, see [36].
Finally, we note that the metric (2.1) is not of the most

general form describing a spatially homogenous and
isotropic equilibration process. If the equilibrium state
has a nontrivial expectation value for (or sourced by) some
scalar operators, the metric has the form

ds2 ¼ L2

z2
ð−fðv; zÞdv2 − 2qðv; zÞdvdzþ d~x2Þ (2.16)

with fðv; zÞ ¼ 1 − θðvÞgðzÞ and qðv; zÞ ¼ 1 − θðvÞmðzÞ.
The black hole part of the spacetime now has a metric
of the form

ds2 ¼ L2

z2
ð−hðzÞdv2 − 2kðzÞdvdzþ d~x2Þ (2.17)

with hðzÞ≡ 1 − gðzÞ and kðzÞ≡ 1 −mðzÞ, and can also be
written as

ds2 ¼ L2

z2

�
−hðzÞdt2 þ dz2

lðzÞ þ d~x2
�
; k2ðzÞ ¼ hðzÞ

lðzÞ :
(2.18)

We will restrict our discussion mostly to (2.1), but it is
straightforward to generalize our results to (2.16) as will be
done in various places below.

B. Extremal surfaces and physical observables

We are interested in finding the area AΣ of an n-
dimensional extremal surface ΓΣ in the Vaidya geometry
(2.1) which ends at an ðn − 1Þ-dimensional spatial surface
Σ lying at some time t in the boundary theory. We will use
AΣ to denote the area of Σ. Since (2.1) is not invariant under
time translation, ΓΣ and therefore AΣ will depend on t.
AΣ can be used to compute various observables in the

boundary theory:
(1) For n ¼ 1, we take Σ to be two points separated by

some distance 2R. ΓΣ is then the geodesic connect-
ing the two points, and its length AðR; tÞ gives the
equal-time two-point correlation function of an
operator with a large dimension,

Gð2R; tÞ ∝ e−mAðR;tÞ; (2.19)

where m is the mass of the bulk field dual to the
operator.

(2) For n ¼ 2, we take Σ to be a closed line, which
defines the contour of a spacelike Wilson loop. The
area AΣðtÞ then gives the expectation value of the
Wilson loop operator [37,38],

hWΣðtÞi ∝ e−AΣðtÞ=2πα0 ; (2.20)

where ð2πα0Þ−1 is the bulk string tension.
(3) For n ¼ d − 1, we take Σ to be a closed surface

which separates space into two regions. The area
AΣðtÞ then gives the entanglement entropy associ-
ated with the region bounded by Σ [5,7],

SΣðtÞ ¼
AΣðtÞ
4GN

; (2.21)

where GN is Newton’s constant in the bulk.
When there are multiple extremal surfaces corresponding

to the same boundary data, we will choose the surface with
the smallest area. For entanglement entropy, this allows the
holographic prescription to satisfy strong subadditivity
conditions [39,40], while for correlation functions and
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Wilson loops, the smallest area gives the most dominant
saddle point.
We will often consider as examples the following two

shapes for Σ, which are the most symmetric representatives
of two types of topologies for the boundary surface:

(i) a sphere of radius R: with d~x2 in (2.1) written in
polar coordinates for the first n directions,

d~x2 ¼ dρ2þρ2dΩ2
n−1þdx2nþ1þ���þdx2d−1;

(2.22)

Σ is specified by

ρ¼R; xa¼0; a¼nþ1;…;d−1: (2.23)

(ii) boundary of a strip of half-width R: Σ consists of
two ðn − 1Þ-dimensional hyperplanes located at

x1¼�R; xa¼0; a¼nþ1;…;d−1; (2.24)

and extended in spatial directions x2;…; xn. For
n ¼ 1, Σ consists of two points separated by 2R.
For n ¼ 2, it defines a rectangular Wilson loop, and
for n ¼ d − 1, it encloses the strip region
x1 ∈ ð−R;RÞ. For brevity, we will refer to a Σ with
this second shape as a “strip.”

C. Vacuum and thermal equilibrium properties
of extremal surfaces

1. Vacuum properties

Before the quench, our system is in the vacuum state of a
strongly coupled CFT with a gravity dual. Consider an
extremal surface ΓΣ (with boundary Σ) in pure AdS, whose
area gives the vacuum value of the corresponding physical
observable. When Σ is a sphere,2

Asphere ¼ local divergences

þ Lnωn−1

(
ð−1Þn2bn n even

ð−1Þn−12 bn logR n odd
; (2.25)

where ωn−1 is the area of unit ðn − 1Þ-dimensional sphere
and

bn ¼
ðn − 2Þ!!
ðn − 1Þ!! : (2.26)

When Σ is a strip,

Astrip ¼ local divergencesþ
(
2L logR n ¼ 1

− LnðanÞn
n−1

Astrip

Rn−1 n > 1
;

an ≡
ffiffiffi
π

p
Γð1

2
þ 1

2nÞ
Γð 1

2nÞ
; (2.27)

where Astrip is the area of the strip Σ with both sides
included. The local divergences in (2.25) and (2.27) can be
interpreted as coming from short-range correlations near Σ,
and its leading contributions are proportional to AΣ.
The number of degrees of freedom in a CFT can be

characterized by a central charge sd, defined in all dimen-
sions in terms of the universal part of the entanglement
entropy of a spherical region in the vacuum [41],

SðvacÞsphere ¼ local divergencesþ
� ð−1Þd−12 sd d odd

ð−1Þd−22 sd logR d even
;

(2.28)

where from (2.25),

sd ¼
Ld−1

4GN
ωd−2bd−1 ¼

π
d
2

Γðd
2
Þ
Ld−1

4GN
×

�
1 d odd
2
π d even

: (2.29)

Note that for d ¼ 2 the above central charge is related to the
standard central charge c as

s2 ¼
c
3
: (2.30)

From the standard AdS/CFT dictionary, sd ∝ N2 where N
is the rank of the gauge group(s) of the boundary theory. If
we put such a holographic CFT on a lattice, sd is
heuristically the number of degrees of freedom on a single
lattice site.
From (2.20) and (2.25)–(2.27), a Wilson loop of circular

and rectangular shapes, respectively, have the vacuum
behavior

WΣ ∼
�
e−#

ffiffi
λ

p
circle

e−#
ffiffi
λ

p
l
R rectangle

;
ffiffiffi
λ

p
¼ L2

α0
; (2.31)

where l denotes the length of the long side of a rectangular
Wilson loop. Similarly one finds that the two-point corre-
lation function of an operator with large dimension Δ ≈
mL ≫ 1 is given by

Gð2RÞ ∼ 1

R2Δ : (2.32)

2. Equilibrium properties

After the quench, our system eventually evolves to a final
equilibrium state dual to a black hole in the bulk. Here we

2The following expressions for Σ as a sphere or strip have
appeared in many places in the literature. For the case of
entanglement entropy with n ¼ d − 1, they were first obtained
in [5].
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briefly review properties of an extremal surface ΓΣ (with
boundary Σ) in the black hole geometry (2.6), whose area
gives the equilibrium value of the corresponding physical
observable.
To leading order in the large size limit, one can show that

for Σ of any shape [42] (see also Appendix A)

AðeqÞ
Σ ¼ LnVΣ

znh
≡ aeqVΣ; aeq ¼

Ln

znh
; (2.33)

where VΣ denotes the volume of the boundary region
bounded by surface Σ, and aeq can be interpreted as an
equilibrium “density.” This result has a simple geometric
interpretation in the bulk—in the large size limit, most of
the extremal surface simply runs along the horizon. In
particular, for entanglement entropy,

SðeqÞΣ ¼ Ld−1

4GN

VΣ

zd−1h

¼ seqVΣ; (2.34)

where we have used the entropy density seq from (2.10).
For a Wilson loop we have

Weq ∼ e
−#

ffiffi
λ

p VΣ
z2
h ; (2.35)

where VΣ is now the area of the region enclosed by the
loop. The two-point correlation function of an operator
with dimension Δ ≈mL ≫ 1 is given by

Geqð2RÞ ∼ e−Δ
2R
zh : (2.36)

D. Further comments on the Vaidya setup

To conclude this section we make some further com-
ments on the Vaidya setup:
(1) It should be kept in mind that while the final

equilibrium state has a temperature and coarse
grained thermal entropy density, theVaidya geometry
describes the evolution of a pure state. As a con-
sistency check, one can show that for such a process
the entanglement entropy for region A is the same as
that of its complement [2,10,24]. Thus the equilib-
rium entanglement entropy (2.34), despite having a
thermal form, reflects genuine long-range quantum
entanglement. The reason (2.34) has exactly the form
of a thermal entropy is as follows.We are considering
a finite region in a system of infinite size. Thus the
number of degrees of freedom outside the region is
always infinitely larger than that inside. As a result in
a typical excited pure state the reduced densitymatrix
for the finite region appears thermal [43].

(2) Before the quench, our system is in a vacuum state of
a CFT and thus already has long-range correlations,
whereas the initial state of [1] only has short-range
correlations. However, this difference is likely not

important for the questions we are interested in,
which concern the buildup of the finite density of
entanglement entropy in (2.34). The long-range
entanglement in the vacuum, quantified by the
universal part in (2.28), is measure zero compared
to (2.34). Heuristically, for odd d, the long-range
entanglement entropy in the vacuum, being an R-
independent constant, amounts to that of a few sites
inside the region that are fully entangled with the
outside, while in equilibrium, almost all points
inside the region become entangled. For even d,
there is a logarithmic enhancement of the long-range
entanglement in the vacuum, but it is still measure
zero compared to the final entanglement in the large
region limit.

(3) From the perspective of entanglement entropy, the
equilibration process triggered by the quench builds
up long-range entanglement, as can be seen by
comparing (2.34) and (2.28), whereas from the
perspective of correlation functions (2.19) andWilson
loops (2.20) in which A appears in the exponential
with aminus sign, the sameprocess corresponds to the
destruction of correlations [compare (2.35) and (2.36)
with (2.31) and (2.32)]. More specifically, long-range
correlations in the latter observables which were
present in the vacuum are replaced by short-range
correlations with correlation length controlled by zh.
However, there is no contradiction, as the process of
building up entanglement also involves redistribution
of those in the vacuum—preexisting correlations
between local operators and over the Wilson loop
get diluted by the redistribution process.

III. EQUATIORNS OF MOTION FOR
EXTREMAL SURFACES

Here we describe equations of motion for ΓΣ and its
general characteristics when Σ is a strip or a sphere. In such
cases ΓΣ can be described by two functions, zðρÞ; vðρÞ for a
sphere or zðx1Þ; vðx1Þ for a strip. For both shapes the
functions satisfy the following boundary conditions at
the boundary as well as regularity conditions at the tip
of the surface:

zðRÞ ¼ 0; vðRÞ ¼ t; z0ð0Þ ¼ v0ð0Þ ¼ 0: (3.1)

For a strip we will write x1 simply as x. It is convenient to
introduce the location ðzt; vtÞ of the tip of ΓΣ,

zð0Þ ¼ zt; vð0Þ ¼ vt: (3.2)

The sphere and strip being highly symmetric, specifying
ðzt; vtÞ completely fixes ΓΣ. The relations between ðR; tÞ
and ðzt; vtÞ are in general rather complicated and require
solving the full equations for zðρÞ; vðρÞ or zðxÞ; vðxÞ. Also,
it is possible that a given ðR; tÞ corresponds to multiple
ðzt; vtÞ’s; i.e. multiple extremal surfaces have the same

LIU AND SUH PHYSICAL REVIEW D 89, 066012 (2014)

066012-6



boundary data. Then as mentioned earlier we will choose
the extremal surface with smallest area.
For Σ as a sphere or strip we will simply denote AΣðtÞ

as AðR; tÞ.

A. Strip

The area of an n-dimensional surface in (2.1) ending on
the strip Σ given by (2.24) can be written as

A ¼ 1

2
~K
Z

R

−R
dx

ffiffiffiffi
Q

p
zn

; Q≡ 1 − 2v0z0 − fðz; vÞv02;
(3.3)

where

~K ¼ LnAstrip; (3.4)

with Astrip being the area of Σ [both sides of Σ are included
which gives the 1

2
factor in (3.3)]. zðxÞ; vðxÞ then satisfy the

equations of motion

zn
ffiffiffiffi
Q

p ∂x

�
z0 þ fv0

zn
ffiffiffiffi
Q

p
�

¼ 1

2

∂f
∂v v

02; (3.5)

zn
ffiffiffiffi
Q

p ∂x

�
v0

zn
ffiffiffiffi
Q

p
�

¼ n
Q
z
þ 1

2

∂f
∂z v

02: (3.6)

Since the integrand of A does not depend explicitly on x,
there is a first integral

zn
ffiffiffiffi
Q

p
¼ J ¼ const: (3.7)

Furthermore, when ∂vf ¼ 0, Eq. (3.5) can be integrated to
give another first integral,

z0 þ fv0 ¼ E ¼ const: (3.8)

We are mainly interested in ΓΣ which go through both
AdS and black hole regions. With reflection symmetry
about x ¼ 0, we only need to consider only the x > 0 half
of such a ΓΣ. We now discuss equations in each region
separately:
(1) AdS region: From (3.1) and (3.8) we have

E ¼ z0 þ v0 ¼ 0 (3.9)

and from (3.7)

z0 ¼ −
1

zn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − z2n

p
; J ¼ znt ; (3.10)

which give

xðzÞ¼
Z

zt

z

dyynffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2nt −y2n

p ; vðzÞ¼vtþzt−z: (3.11)

(2) Matching conditions at the shell: Denoting the
values of z and x at the intersection of ΓΣ and the
null shell v ¼ 0 as zc and xc, respectively, we have

zc ¼ zt þ vt; (3.12)

and derivatives on the AdS side of the null shell are

z−0 ¼ −v−0 ¼ −
1

znc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2nt − z2nc

q
: (3.13)

To find derivatives on the other side, we integrate the
equations of motion (3.5) and (3.6) across the null
shell to find the matching conditions

vþ0 ¼ v−0; Qþ ¼ Q−;

zþ0 ¼ z−0 þ
1

2
gðzcÞv0 ¼

�
1 −

1

2
gðzcÞ

�
z−0: (3.14)

Note we have used the subscript − (þ) to refer to
quantities on the AdS (black hole) side of the
null shell.

(3) Black hole region: From matching conditions (3.14),
J is the same as in the AdS region, i.e. given by
(3.10), while E is given by

E ¼ 1

2
gðzcÞz−0 < 0; (3.15)

implying t is no longer constant. From (3.8),

v0 ¼ E − z0

h
; (3.16)

which can be substituted into (3.7) to obtain

z02 ¼ hðzÞ
�
z2nt
z2n

− 1

�
þ E2 ≡HðzÞ: (3.17)

Substituting (3.17) back in (3.16) we also have

dv
dz

¼ −
1

h

�
Effiffiffiffi
H

p þ 1

�
: (3.18)

Collecting equations in the two regions we find from
(3.10) and (3.17)

R ¼
Z

zt

zc

dzffiffiffiffiffiffiffiffiffiffiffiffi
z2nt
z2n − 1

q þ
Z

zc

0

dzffiffiffiffiffiffiffiffiffiffi
HðzÞp ; (3.19)

where we have assumed that zðxÞ monotonically decreases
as x increases (recall we let x > 0). As we will see later,
zðxÞ can be nonmonotonic in which case the above
equation should be suitably modified. Similar caveats
should be kept in mind for other equations below. From
integrating (3.18),
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t ¼
Z

zc

0

dz
hðzÞ

�
Effiffiffiffiffiffiffiffiffiffi
HðzÞp þ 1

�
: (3.20)

Note that at z ¼ zh, hðzÞ−1 has a pole but the integrand in
(3.20) remains finite as the second factor vanishes at
z ¼ zh, due to HðzhÞ ¼ E2 and E < 0. Finally, from
(3.10) and (3.17) we have that the area of ΓΣ is given by

A ¼ AAdS þABH; (3.21)

where

1

~K
AAdS ¼ z1−nt

Z
1

zc
zt

dy
1

yn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2n

p (3.22)

and

1

~K
ABH ¼ znt

Z
zc

0

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffi
HðzÞp : (3.23)

For a given R and t, we can use (3.19) and (3.20) to solve
for ztðR; tÞ; zcðR; tÞ after which (3.21) can be expressed in
terms of R and t.

B. Sphere

The area of an n-dimensional surface in (2.1) ending on a
sphere Σ given by (2.23) can be written as

A ¼ K
Z

R

0

dρ
ρn−1

zn
ffiffiffiffi
Q

p
; Q ¼ 1 − 2v0z0 − fðz; vÞv02;

(3.24)

where

K ¼ Ln Asphere

Rn−1 : (3.25)

It follows that zðρÞ; vðρÞ satisfy the equations of motion

zn
ffiffiffiffi
Q

p
ρn−1

∂ρ

�
ρn−1

zn
1ffiffiffiffi
Q

p v0
�
¼ nQ

z
þ 1

2

∂f
∂z v

02; (3.26)

zn
ffiffiffiffi
Q

p
ρn−1

∂ρ

�
ρn−1

zn
1ffiffiffiffi
Q

p ðz0 þ fv0Þ
�
¼ 1

2

∂f
∂v v

02; (3.27)

and boundary conditions (3.1). When ∂vf ¼ 0, Eq. (3.1)
can be integrated to give

ρn−1

zn
1ffiffiffiffi
Q

p ðz0 þ fv0Þ ¼ E ¼ const; (3.28)

which can also be expressed as

ρn−1

zn
fffiffiffiffi
Q

p dt
dρ

¼ E; (3.29)

where t is the Schwarzschild time.

Again, we are interested in ΓΣ which go through both
AdS and black hole regions:
(1) AdS region: Given (3.1), we again have E ¼ 0,

which implies that the solution in the AdS region is
the same as that in pure AdS, i.e. is given by [6]

zðρÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t −ρ2

q
; vðρÞ¼ ztþvt−zðρÞ: (3.30)

(2) Matching conditions at the shell: Denoting values of
z and ρ at the intersection of ΓΣ and the null shell
v ¼ 0 as zc and ρc, respectively, we have

zc ¼ zt þ vt; ρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2c

q
; (3.31)

and derivatives on the AdS side of the null shell are

z0− ¼ −v0− ¼ −
ρc
zc

: (3.32)

To find the corresponding derivatives on the other
side, we integrate (3.26) and (3.27) across the shell,
which again leads to the matching conditions (3.14)
but with z0−, v0− now as in (3.32).

(3) Black hole region: The matching implies

E ¼ −
1

2

�
ρc
zc

�
n gðzcÞ

zt
< 0 (3.33)

and t is no longer constant. Solving for v0 and Q in
terms of z0 using (3.28), we obtain

v0 ¼ 1

hðzÞ

0
B@−z0 þ

EB
ffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þE2B2

h

q
1
CA; B≡ zn

ρn−1
; (3.34)

which, when substituted in (3.26), gives the equation
for z,

ðhþ E2B2Þz″ þ ðhþ z02Þ
�
n − 1

ρ
z0 þ nh

z

�

þ ðE2B2 − z02Þ ∂zh
2

¼ 0: (3.35)

From integrating (3.34), the boundary time is

t ¼
Z

R

ρc

dρ
h

0
B@−z0 þ

EB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2B2

h

q
1
CA

¼
Z

R

ρc

dρ
hþ E2B2

E2B2 − z02

EB
ffiffiffiffiffiffiffiffiffiffiffiffi
hþz02

hþE2B2

q
þ z0

; (3.36)
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where the second expression is manifestly well defined at
the horizon, and the integral is evaluated on shell, with zðρÞ
satisfying Eq. (3.35) and boundary conditions (3.14) at ρ ¼
ρc and zðRÞ ¼ 0. Finally, from (3.30) and (3.34), the area of
ΓΣ can be written as

A ¼ AAdS þABH; (3.37)

where

1

K
AAdS ¼

Z
ρc

0

dρ
ρn−1

zn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p
¼

Z ρc
zt

0

dx
xn−1

ð1 − x2Þnþ1
2

(3.38)

and

1

K
ABH ¼

Z
R

ρc

dρ
ρn−1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2B2

h

q : (3.39)

Note the story here is significantly more complicated
than for a strip. One needs to first solve the differential
equation (3.35) with the initial condition given by the last
equation of (3.14). Imposing the boundary condition
zðRÞ ¼ 0 gives a relation between ρc and zc. One then
needs to evaluate (3.36) to find zcðR; tÞ; ρcðR; tÞ and finally
use (3.37) to obtain AðR; tÞ.

IV. GENERAL GEOMETRIC FEATURES
AND STRATEGY

We now describe the geometric features of ΓΣ during its
time evolution, using as examples the case of Σ being a
sphere or a strip. For the two shapes the equations of motion
(given in Sec. III) can readily be solved numerically. We are
interested in long-distance behavior; i.e. we take

R ≫ zh: (4.1)

At fixed R, as t is varied, the tip (3.2) of ΓΣ traces out a
curve ðztðR; tÞ; vtðR; tÞÞ in the Penrose diagram. This
provides a nice way to visualize the evolution of ΓΣ with
t. See Fig. 2.
Instead of ðzt; vtÞ it is sometimes convenient to use

ðzt; zcÞ or ðzt; ρcÞ to specify ΓΣ, where zc and ρc are the
values of z and ρ at which the ΓΣ intersects the null shell.
For both a sphere and a strip zc ¼ zt þ vt. For a sphere ρc is
given by (3.31), while for a strip xc can be obtained by
setting z ¼ zc in (3.11).
We now elaborate on various stages of the time evolution

of ΓΣ, and strategies for obtaining AðR; tÞ in each of them.
For t < 0, ΓΣ lies entirely in AdS, and

ztðR; t < 0Þ ¼
�R sphere

R
an

strip
; vt ¼ t − zt; (4.2)

where an was introduced in (2.27). AðR; tÞ is independent
of t and is given by its vacuum value. In Fig. 2 this

corresponds to the part of the curve below point A. Note
that as R → ∞, zt → ∞.
At t ¼ 0þ, or point A, ΓΣ starts intersecting the null shell

[see Fig. 3(a)]. For t ≪ zh, the point of intersection is close
to the boundary, i.e. zc ≪ zh. This defines the pre-local-
equilibrium stage mentioned in the Introduction. In this
regime, one can extractAΣðtÞ by expanding both t andA in
small zc, which we will do for arbitrary Σ in Sec. VI.
When t becomes of order zh, at some point ΓΣ starts

intersecting the shell behind the horizon, i.e. zc > zh. An
example is point B in Fig. 2, whose corresponding ΓΣ is
shown in Fig. 3(b).
There exists a sharp time ts after which ΓΣ lies entirely in

the black hole region. ΓΣ then reduces to that in a static
black hole geometry. It lies on a constant Schwarzschild
time t ¼ t outside the horizon and is time independent.
That is, for t > ts

ztðR; tÞ ¼ zbðRÞ < zh; vt ¼ t − σðztÞ; (4.3)

where zb denotes the location of the tip of ΓΣ in the static
black hole geometry, and in the second equation we have
used (2.7). This corresponds to the part of the curve above
point C in Fig. 2. For t > ts, AðR; tÞ is time independent
and given by its equilibrium value.
The saturation at the equilibrium value at ts can proceed

as a continuous or discontinuous transition, as illustrated in
Fig. 2. For a continuous transition, depicted on the left, the
entire curve ðzt; vtÞ as a function of t has one-to-one
correspondence with ðR; tÞ and saturation happens at point
C, with ts given by

(a) (b)

FIG. 2 (color online). Cartoon of the curve ðztðR; tÞ; vtðR; tÞÞ
for (a) continuous and (b) discontinuous saturation. Cartoons of
various extremal surfaces whose tips are labeled above are shown
in Fig. 3. (a) For continuous saturation the whole curve has a one-
to-one correspondence to ðR; tÞ, and saturation happens at point
C continuously. (b) Discontinuous saturation happens via a jump
of the extremal surface from one with the tip at C0 to one with the
tip at C. Along the dashed portion of the curve, different points
can correspond to the same ðR; tÞ.
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vtðtsÞ ¼ 0; tsðRÞ ¼ σðzbðRÞÞ ¼
Z

zb

0

dz
hðzÞ : (4.4)

In contrast, for a discontinuous saturation, depicted on the
right plot of Fig. 2, in the dashed portion of the curve, there
are multiple ðzt; vtÞ associated with a given ðR; tÞ. As a
result, the minimal area condition requires that the extremal
surface jumps from point C0 to C at some ts. In this case
there does not exist a general formula for ts. For a
discontinuous saturation, AΣðtÞ is continuous at ts, but
its first time derivative becomes discontinuous.
In the case of a continuous saturation, for which the first

time derivative of AΣðtÞ is continuous, one can then define
a critical exponent γ (by definition γ > 1)

AΣðtÞ −AðeqÞ
Σ ∝ −ðts − tÞγ: (4.5)

The “critical” behavior around saturation can be obtained
as follows. As t → ts, the tip of ΓΣ approaches the null
shell, i.e. zt − zc → 0 with zt; zc → zb [this is depicted by
point D in Figs. 2 and 3(c)]. Thus one can expand both
t − ts and A −Aeq in small zt − zc, as we discuss in detail
in Sec. XI.

So far we have based our discussion on generic features
of bulk extremal surfaces without referring to explicit
solutions. To understand what happens during intermediate
stages of time evolution, i.e. betweenB andC in the parts of
Fig. 2, it is useful to work out specific examples of the
evolution of ðztðR; tÞ; vtðR; tÞÞ. In Fig. 4, we give the
parametric plots of ðztðR; tÞ; zcðR; tÞÞ for various values of
R, for Σ a strip and a sphere, for Schwarzschild hðzÞ with
d ¼ 3. From these plots we see a remarkable phenomenon:
curves of varying R, after a brief period of order OðzhÞ, all
collapse into a single curve z�cðztÞ highlighted by the dashed
line in each plot.
In Sec. VII, we will show that the universal curve z�cðztÞ

corresponds to a critical line in ðzt; zcÞ space: for a given zt,
ΓΣ reaches the boundary only for zc < z�c. In particular, for
a ΓΣ with zc ¼ z�cðztÞ, to which we will refer as a “critical
extremal surface,” the surface stretches to ρ; v ¼ ∞. As a
consequence, for sufficiently large R and t, ðzt; zcÞ lies very
close to the critical line, and the evolution of AðR; tÞ is

(a) (b)

(c)

FIG. 3 (color online). Cartoons of extremal surfaces with tips at
various points labeled in Fig. 2. Spatial directions are suppressed.
(a) At t ¼ 0þ, the extremal surface starts intersecting the null
shell, with zc very small. (b) When t≳ zh, the extremal surface
starts intersecting the null shell behind the horizon. (c) The
extremal surface close to continuous saturation for which zt − zc
is small.

2 4 6 8 10
zt0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

zc

(a)

2 4 6 8 10
zt0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

zc

(b)

FIG. 4 (color online). Parametric curves ðztðR; tÞ; zcðR; tÞÞ at
fixed R and varying t for Schwarzschild hðzÞ in d ¼ 3. Different
curves correspond to R ¼ 2; 3;…; 10. In both plots, we choose
units so that the horizon is at zh ¼ 1. (a) For a strip. Note the
saturation is discontinuous with zc lying behind the horizon at
the saturation point where each curve stops. (b) For a sphere. The
saturation is continuous, and zc lies outside the horizon at the
saturation point (in the plot it is too close to the horizon to be
discerned).
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largely governed by properties of the critical extremal
surfaces. We will show in Secs. IX and XII that this is
responsible for the linear growth and memory loss regimes
discussed in [21].
To conclude this section we comment on the role of zh in

the evolution. As can be seen from the above discussion, zh
plays the characteristic scale for the evolution of ΓΣ. There
is an important geometric distinction between the time
evolution of surfaces with R≲ zh and of those with
R ≫ zh. In the former case, ΓΣðtÞ stays outside the horizon
during its entire evolution, while in the latter case important
parts of its evolution are controlled by the geometry near
and behind the horizon. This supports the identification of
zh as a “local equilibrium scale” as only after such a time
scale does an extremal surface start probing the geometry
around the black hole horizon.

V. EVOLUTION IN ð1þ 1Þ DIMENSIONS

Before going to general dimensions, let us first consider
the case where d ¼ 2 and the final equilibrium state is given
by the Banados-Teitelboim-Zanelli (BTZ) black hole, i.e.
gðzÞ ¼ z2=z2h. Then n ¼ 1, and ΓΣ is a geodesic whose
length can be expressed analytically in the closed form
[3,4], which enables us to directly extract its scaling
behavior in various regimes. Related boundary observables
are the entanglement entropy of a segment of length 2R and
equal-time two-point correlation functions of operators
with large dimension, at separation 2R. For definiteness,
we consider the entanglement entropy and show that its
evolution exhibits the four regimes discussed in the
Introduction.
It is convenient to introduce the dimensionless variables

τ≡ 2πTt; l≡ 2πTR; (5.1)

where T is the equilibrium temperature. First, recall the
result for entanglement entropy in a CFT at thermal
equilibrium [44,45],

SeqðlÞ ¼
c
3
log

�
sinhl
l

�
þ c
3
log

R
δ0

¼ ΔSeq þ Svac: (5.2)

Here, the second term Svac is the vacuum value (with δ0 a
UV cutoff), c is the central charge, and ΔSeq denotes the
difference between thermal and vacuum values. Note ΔSeq
is free of any UVambiguities, and that for l ≫ 1, we have

Seq ¼
c
3
l −

c
3
logð4πTδ0Þ þOðe−2lÞ: (5.3)

Here we see that the logR piece in Svac has been replaced
by a logT term, signaling a redistribution of long-range
entanglement. Also note that the equilibrium entropy and
energy densities are given by

seq ¼
πcT
3

; E ¼ πcT2

6
: (5.4)

Now, the evolution of entanglement entropy in the
Vaidya geometry (2.1) with gðzÞ ¼ z2=z2h is given by

SðR; tÞ ¼ ΔSðR; tÞ þ Svac; (5.5)

where [the following expressions are obtained from
Eqs. (3)–(5) of [3] with a slight rewriting]

ΔS ¼ c
3
log

�
sinh τ
lsðl; τÞ

�
; (5.6)

and the function sðl; τÞ is given implicitly by

l ¼ 1

ρ

c
s
þ 1

2
log

�
2ð1þ cÞρ2 þ 2sρ − c
2ð1þ cÞρ2 − 2sρ − c

�
(5.7)

with

ρ≡1

2
cothτþ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sinh2τ
þ 1−c
1þc

r
; c¼

ffiffiffiffiffiffiffiffiffiffiffi
1− s2

p
: (5.8)

At a given l, the above expressions only apply for

τ < τsðlÞ≡ l: (5.9)

At τ ¼ τs, one finds that c ¼ 0 (i.e. s ¼ 1), ρ ¼ coth τs, and

ΔS ¼ ΔSeq: (5.10)

For τ > τs, ΔS remains ΔSeq.
To make connections to the discussion in Sec. IV, note

that ρ and s can be related to zt and zc, locations of the tip of
ΓΣ and its intersection with the null shell, respectively, as

ρ ¼ zh
zc

; s ¼ zc
zt
: (5.11)

Thus Eqs. (5.7) and (5.8) provide an explicit mapping
between boundary data ðτ;lÞ and bulk data ðzt; zcÞ. In the
discussions that follow, it is convenient to introduce an
angle ϕ ∈ ½0; π=2� with

c ¼ cosϕ; s ¼ sinϕ: (5.12)

Then saturation happens at ϕ ¼ π=2, when zc ¼ zt, while
ϕ → 0 corresponds to zt=zc → ∞. At fixed τ, as we vary ϕ
from π=2 to 0, l increases monotonically from τ toþ∞. At
fixed l, as we increase ϕ from 0 to π=2, τ increases
monotonically from 0 to τs. Note we will mostly consider
the limitl ≫ 1, aswe are interested in long-distance physics.

A. Early growth

For any l, in the limit τ ≪ 1 ρ is large, and for (5.7) to be
satisfied we need s to be small (i.e. ϕ small). We find that
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ρ ¼ 1

τ
þ τ

12
þ � � � ; s ¼ 1

l

�
τ −

τ3

12
þ � � �

�
; (5.13)

and

3

c
ΔS ¼ τ2

4
−
�
1

96
þ 1

16l2

�
τ4 þOðτ6Þ: (5.14)

Note that for zt and zc, Eq. (5.13) translates to

zc ¼ tð1þOðt2ÞÞ; zt ¼ Rð1þOðt2ÞÞ; (5.15)

which is consistent with the regime of early growth outlined
in Sec. IV.
Thus at early times, the entanglement entropy grows

quadratically as

ΔS ¼ c
3

τ2

4
þOðτ4Þ ¼ 2πEt2 þOðt4Þ; (5.16)

where we have used (5.4). This result was also obtained
recently in [46].

B. Linear growth

We now consider the regime l ≫ τ ≫ 1, which corre-
sponds in (5.7) and (5.8) to

e−τ ≪ ϕ ≪ e−2τ=5;
1

τ
≪ 1 (5.17)

with

ρ ¼ 1

2
þ ϕ

4
þO

�
e−2τ

ϕ

�
; l ¼ 2

ϕ
þ τ þ logϕþOð1Þ:

(5.18)

Then from (5.6) we find that

ΔS ¼ c
3
τ −

c
3
log 4þO

�
τ

l
;
logl
l

; e−2τ
�

¼ 2seqt −
c
3
log 4þ � � � : (5.19)

The leading term agrees with (1.1). Also note that the
subleading term is negative which is important for the
maximal rate conjecture of [21], which we will further
elaborate in the conclusion section.
Note that for zt and zc, Eqs. (5.17) and (5.18) translate to

zc ¼ 2zh þ � � � ; zt
zc

¼ 1

ϕ
≫ 1: (5.20)

In Secs. VIII A and IX we will see that the linear growth of
entanglement entropy in (5.19) is generic for all dimensions

and collapsing geometries, being a consequence of the
critical surface referred to at the end of Sec. IV.

C. Saturation

Let us now examine the behavior of entanglement
entropy as τ → τs. For this purpose, consider ϕ ¼ π

2
− ε

with ε ≪ 1. Then from (5.6)–(5.8),

ρ¼ cothτ−
1

2
tanhτε−

1

4
ðtanhτðtanh2τ−2ÞÞε2þOðε3Þ;

(5.21)

l ¼ τ þ 1

2
tanh τε2 þOðε3Þ; (5.22)

and

3

c
ΔS ¼ log

sinh τ
τ

þ 1

2

�
1 −

tanh τ
τ

�
ε2 þOðε3Þ: (5.23)

Now fix l and expand τ near τs; i.e. let τ ¼ τs − δ, δ ≪ 1.
We find

δ ¼ 1

2
tanh τsε2 þ

1

6
tanh3 τsε3 þ ðε4Þ (5.24)

and

3

c
δS ¼ 3

c
ΔSeq −

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh τs

p
δ
3
2 −

1

6
tanh2 τsδ2 þOðδ5=2Þ:

(5.25)

In particular, in the limit l ≫ 1,

3

c
ΔS ¼ 3

c
ΔSeq −

ffiffiffi
2

p

3
δ
3
2 −

1

6
δ2 þO

�
δ5=2; e−2τsδ

3
2

�
: (5.26)

We see that the approach to saturation has a nontrivial
exponent 3

2
,

ΔS − ΔSeq ∝ ðts − tÞ32 þ � � � ; t → ts: (5.27)

This result was also recently obtained in [46].
To make connections to the discussion in Sec. IV, note

that for zt and zc, Eqs. (5.22) and (5.23) translate to

zc ¼ zt

�
1−

ε2

2
þ���

�
; zc ¼ zh tanhτsþ�� � ; (5.28)

which is consistent with the picture of continuous satu-
ration presented there.

D. Memory loss regime

We now show that for τ;l ≫ 1 with τ < τs, S − Seq
depends on a single combination of τ and l and interpolates
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between the linear growth of Sec. V B and the saturation
regime of Sec. V C. Thus in this regime the “memory” of
the size l of the region is lost.
First notice from (5.7) and (5.8) that for any ϕ,

ρ > ρ� ≡ 1

2

�
1þ tan

ϕ

2

�
; (5.29)

and that

τ;l → ∞ as ρ → ρ�: (5.30)

Thus to explore the regime τ;l ≫ 1, take ρ ¼ ρ� þ ε with
ε ≪ 1. Then

τ ¼ −
1

2
log εþ 1

2
log

�
1þ cot

ϕ

2

�
þOðεÞ; (5.31)

l ¼ −
1

2
log εþ

�
cot

ϕ

2
− 1

�
þ 1

2
log

ð1 − cosϕþ sinϕ
1þ cosϕÞ

þOðεÞ; (5.32)

and the entropy (5.6) can be written as

3

c
ΔS−

3

c
ΔSeq¼ τ−l− logðsinϕÞþOðe−2τ;e−2lÞ: (5.33)

Equations (5.31) and (5.32) imply that

l − τ ¼ χðϕÞ þOðεÞ;

χðϕÞ≡
�
cot

ϕ

2
− 1

�
þ log tan

ϕ

2
;

(5.34)

i.e. as ε → 0, τ;l → ∞ but l − τ remains finite. Inverting
(5.34) to express ϕ in terms of l − τ, we can write (5.33) in
the scaling form

ΔS − ΔSeq ¼
c
3
λðl − τÞ þOðe−2τÞ; (5.35)

where the scaling function λ is given by

λðyÞ ¼ −y − log ðsin h−1ðyÞÞ: (5.36)

Note that χðϕÞmonotonically decreases fromþ∞ to 0 as
ϕ increases from 0 to π

2
. More explicitly, as δ → 0,

ϕ ¼ δ∶ χðϕÞ ¼ 2

δ
þ log

δ

2
− 1þOðδÞ;

ϕ ¼ π

2
− δ∶ χðϕÞ ¼ δ2

2
þOðδ3Þ; (5.37)

from which λ has the asymptotic behavior

λðyÞ ¼
8<
:

−y − log
�
2
y

�
þO

�
log y
y ; y−1

�
y ≫ 1

−
ffiffi
2

p
y
3
2

3
− y2

6
þOðy5=2Þ y ≪ 1

: (5.38)

Then using the expression for large y, we find from (5.35)
and (5.3) that for l ≫ τ ≫ 1,

3

c
ΔS ¼ τ − log 4þO

�
e−2τ;

τ

l
;
logl
l

�
; (5.39)

which recovers (5.19), and that for δ≡ l − τ ≪ 1,

3

c
ΔS −

3

c
ΔSeq ¼ −

ffiffiffi
2

p

3
δ
3
2 −

δ2

6
þOðδ5

2Þ; (5.40)

which recovers (5.26).
In Sec. VII A, we will show that (5.29) is precisely the

critical line z�cðztÞ alluded to near the end of Sec. IV, and
that the scaling behavior discussed above is controlled by
properties of critical extremal surfaces associated with the
critical line.
Finally, we remark that in higher dimensions, there does

not exist a closed expression like (5.6), and we have to rely
on geometric features of bulk extremal surfaces to access
the above regimes of evolution, as was outlined in Sec. IV.

VI. PRE-LOCAL-EQULIBRIUM QUADRATIC
GROWTH

In this section, we consider the growth of AΣðtÞ relative
to the area of a minimal surface in AdS with the same
boundary Σ for

t ≪ zh: (6.1)

Recall our earlier discussion in which we identified zh as a
local equilibrium scale—at the stage of (6.1) the system has
not yet achieved local equilibrium. Except for the energy
density which is conserved in time, equilibrium quantities
such as temperature, entropy, or chemical potential are not
yet relevant at this stage.
We work in general dimensions and only assume that

gðzÞ has the asymptotic expansion (2.8). We will derive a
universal result that applies to Σ of an arbitrary shape.
At early times, the null shell lies in the UV part of the

geometry, i.e. near the boundary, and the bulk extremal
surface crosses the shell near the boundary, i.e. zc → 0 as
t → 0þ [see Fig. 3(a)]. This implies the following: (i) the
part of the surface lying in the black hole region is very
small, and (ii) the black hole region can be approximated by
perturbing pure AdS. Thus our strategy in finding the small
t behavior of A is to expand t and A in small zc.
A general ðn − 1Þ-dimensional boundary surface Σ can

be parametrized by
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xa ¼ xaðξαÞ; a ¼ 1; 2;…; d − 1;

α ¼ 1; 2;…; n − 1;
(6.2)

where xa are spatial coordinates along the boundary and ξα

are coordinates parametrizing the surface. The area AΣ of Σ
is given by

AΣ ¼
Z

dn−1ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det hαβ

q
; hαβ ¼

∂xa
∂ξα

∂xa
∂ξβ : (6.3)

The n-dimensional bulk extremal surface ΓΣ ending on Σ
can be parametrized by

vðξα; zÞ; xa ¼ Xaðξα; zÞ; (6.4)

which satisfy the z ¼ 0 boundary conditions

vðξα; z ¼ 0Þ ¼ t; Xaðξα; z ¼ 0Þ ¼ xaðξαÞ: (6.5)

We also require ΓΣ to be smooth at the tip zt. The areaAΣ of
ΓΣ can be written as

AΣðtÞ ¼ Ln

Z
zt

0

dz
Z

dn−1ξz−n
ffiffiffiffiffiffiffiffiffi
det γ

p
¼

Z
zt

0

dz
Z

dn−1ξLðXa; vÞ; (6.6)

where 1
z2 γ is the induced metric on ΓΣ,

γαβ ¼
∂Xa

∂ξα
∂Xa

∂ξβ − fðv; zÞ ∂v∂ξα
∂v
∂ξβ ; (6.7)

γαz ¼
∂Xa

∂ξα
∂Xa

∂z − fðv; zÞ ∂v∂ξα
∂v
∂z −

∂v
∂ξα ; (6.8)

γzz ¼
∂Xa

∂z
∂Xa

∂z − fðv; zÞ
�∂v
∂z

�
2

− 2
∂v
∂z : (6.9)

Near the boundary of an asymptotic AdS spacetime, i.e. as
z → 0 (or z=zh ≪ 1), one can show that

Xaðz; ξαÞ ¼ xaðξαÞ þOðz2Þ;
vðz; ξαÞ ¼ t − zþOðz2Þ: (6.10)

Now, we denote the solution in pure AdS (f ¼ 1) with
the same boundary conditions as ΓΣ by Xð0Þ

a ; vð0Þ, and as
having tip zð0Þt and areaAð0Þ

Σ . Recall that our goal is to work
out the difference

ΔAΣðtÞ ¼ AΣðtÞ −Að0Þ
Σ (6.11)

to leading order in small t. First, note that the pure AdS
solution lies at constant t, i.e. from (2.4)

vð0Þðξα; zÞ ¼ t − z; (6.12)

and that as discussed earlier, Xaðξ; zÞ; vðξ; zÞ deviate by a
small amount from corresponding quantities in pure AdS,
i.e.

Xaðξ; zÞ ¼ Xð0Þ
a þ δXa; vðξ; zÞ ¼ vð0Þ þ δv; (6.13)

where from (6.10), lowest order terms in δXa and δv in z
should start at Oðz2Þ. Solving vðξzcÞ ¼ 0, we then find

t ¼ zc þOðz2cÞ; (6.14)

which in turn implies that expanding δXa and δv in small t,
the lowest order terms should start at Oðt2Þ.
Next, to leading order in small t, (6.11) can be found by

varying the action (6.6),

ΔAΣðtÞ¼
Z

zð0Þt

0

dzdn−1ξ
δL
δf

				
0

δfþ
Z

dn−1ξLðXð0Þ;vð0Þ;zð0Þt Þδzt

þ
Z

dn−1ξðΠz
Aj0δXAÞjz

ð0Þ
t
0 ; (6.15)

where j0 denotes that a quantity should be evaluated on the
pure AdS solution, XA ¼ ðXa; vÞ, and

Πz
A ¼ ∂L

∂∂zXA
; δXA ¼ XA − Xð0Þ

A : (6.16)

In deriving (6.15) we have assumed that the boundary terms
associated with integration by the part over ξα vanish. This
is true when Σ is compact and there is no boundary in the ξα
directions, and also when Σ has no dependence on ξα, as in
the case when Σ is a strip. We proceed to observe that

LðXð0Þ; vð0Þ; zð0Þt Þ ¼ 0 (6.17)

as the area element vanishes at the tip of the bulk surface,
and that similarly, regularity conditions at the tip for Γð0Þ

Σ
and boundary conditions at infinity imply that the last term
in (6.15) vanishes.3 Thus only the first term in (6.15) is
nonzero. Now note

δL
δf

¼ Ln

zn
1

2

ffiffiffiffiffiffiffiffiffi
det γ

p
tr

�
γ−1

δγ

δf

�
; (6.18)

and from (6.12)

δγαβ
δf

				
0

¼ 0;
δγαz
δf

				
0

¼ 0;
δγzz
δf

				
0

¼ −1: (6.19)

Given that for small z,

3This term has to vanish to ensure Xð0Þ
A is a proper solution to

equations of motion.
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Xð0Þ
a ðξα; zÞ ¼ xaðξαÞ þOðz2Þ; (6.20)

we find

γαβ¼hαβþOðzÞ; γαz¼OðzÞ; γzz¼1þOðzÞ: (6.21)

Thus to leading order

δL
δf

				
0

¼ −
Ln

zn
1

2

ffiffiffiffiffiffiffiffiffiffi
det h

p
(6.22)

and since

δf ¼ −Mzd þ � � � (6.23)

is nonvanishing only for z ∈ ð0; zcÞ, we find [recall (6.14)]

ΔAΣ ¼ LnAΣ
M
2

Z
zc

0

zd−ndz ¼ LnAΣM
2ðd − nþ 1Þ t

d−nþ1 þ � � � :
(6.24)

For entanglement entropy, we have n ¼ d − 1 and thus

ΔS ¼ ΔAΣ

4GN
¼ Ld−1M

16GN
AΣt2 þ � � � ¼ π

d − 1
EAΣt2 þ � � � ;

(6.25)

where E given in (2.9) is the energy density of the system.
This expression is free of any UV ambiguities and is
universal for any Σ and bulk geometry gðzÞ, depending only
on the energy density of the state.
More general metrics (2.16)–(2.18) typically involve

scalar fields, and the asymptotic behavior of the metric
components hðzÞ and lðzÞ in the black hole region in
general depend on the falloff of the scalar fields.
Furthermore the energy density can also receive contribu-
tions from scalar fields. Thus it appears likely that (6.25)
may not generalize to such a case. It would be interesting to
understand this further.

VII. CRITICAL EXTREMAL SURFACES

In this section, using as examples cases of Σ being a strip
or a sphere, we show that the universal curve z�cðztÞ for
different R’s observed in Fig. 4 corresponds to a critical line
in ðzt; zcÞ space: for a given zt, ΓΣ reaches the boundary
only if zc < z�c. In particular, when ΓΣ lies precisely on the
critical line zc ¼ z�cðztÞ, in which case we refer to it as a
critical extremal surface, it asymptotes to ρ; v ¼ ∞ along
some constant z ¼ zm ≥ zh.

A. Strip

With Σ a strip, the black hole portion of ΓΣ is given by
zðρÞ satisfying the equation of motion (3.17),

z02 ¼ hðzÞ
�
z2nt
z2n

− 1

�
þ E2ðzt; zcÞ≡HðzÞ;

E2 ¼ g2c
4

�
z2nt
z2nc

− 1

�
; (7.1)

and the boundary condition at zc (3.14),

zþ0 ¼ −
�
1 −

gc
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2nt
z2nc

− 1

s
; (7.2)

where we have denoted

gc ≡ gðzcÞ (7.3)

and E has been obtained from (3.15). As discussed in
Sec. IV, for t ≫ zh, the extremal surface intersects the shell
behind the horizon, i.e. zc > zh, except possibly near
saturation.
Equation (7.1) specifies a one-dimensional classical

mechanics problem, with the qualitative behavior of zðρÞ
readily deduced from properties of HðzÞ. To acquire some
intuition on such behavior, we proceed to work concretely
with the Schwarzschild (or Reissner-Nordstrom) gðzÞ. Since
our discussion clearly applies to more than the examples of
gðzÞ being examined, we maintain the general notation gðzÞ
and hðzÞ ¼ 1 − gðzÞ in all expressions. However, we do not
attempt to characterize the most general class of gðzÞ for
which HðzÞ exhibits properties discussed below, nor do we
attempt to classify alternative possibilities.
To begin, note that from (7.2), when gc > 2, zþ0 > 0, i.e.

after entering the black hole region, ΓΣ initially moves
away from the boundary to larger values of z. We introduce
zs as

gðzsÞ ¼ 2; zs > zh: (7.4)

zþ0 changes sign when zc crosses zs. Next, note that for
Schwarzschild gðzÞ, the first term in (7.1) is zero at z ¼ zh
and z ¼ zt, and negative in between. Thus HðzÞ has a
minimum between zh and zt which we denote zm. Setting
H0ðzmÞ ¼ 0, we find zm satisfies the equation

z2nt ¼ h0ðzmÞz2nþ1
m

zmh0ðzmÞ − 2nhðzmÞ
: (7.5)

It is easy to see that such a minimum also exists for
Reissner-Nordstrom gðzÞ. The following discussion
depends only on the existence of such a minimum. We
now introduce z�c given by

HðzmÞjzc¼z�c ¼ 0: (7.6)

Note z�c and zm are functions of zt only. Also note that there
is a special value of zt, which we call zðsÞt , where
zmðzðsÞt Þ ¼ zs. Evaluating (7.5) at zm ¼ zs, we find that
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zðsÞt ¼
�

zsh0ðzsÞ
zsh0ðzsÞ þ 2n

� 1
2n

zs: (7.7)

In fact, there are two additional occurrences at zt ¼ zðsÞt .
First, one can check

z�c ¼ zs ¼ zm: (7.8)

Second, by taking the derivative of E2 in (7.1) with respect
to zc and plugging in the values zðsÞt and z�c ¼ zs, we find

dE2

dzc

				
z�c

¼ 0: (7.9)

In the limit zt → ∞, assuming that zm remains finite
[which is not always true; see e.g. (7.24) and (7.25) below],
Eq. (7.5) can be simplified to

zmh0ðzmÞ
hðzmÞ

¼ 2n: (7.10)

Similarly in the zt → ∞ limit, assuming that zt
zm
; ztz�c → ∞,

Eq. (7.6) can be simplified to

g2ðz�cÞ
4z�2nc

¼ −
hðzmÞ
z2nm

: (7.11)

In general, for a given zt there are multiple positive roots
to Eq. (7.6). In fact, Eq. (7.9) suggests that two branches of
roots of (7.6) are converging at zðsÞt . However, for any gðzÞ
which satisfies gðzhÞ ¼ 1 and g0ðzhÞ > 0, it can be checked
that as zt → zh so that zt ¼ zhð1þ εÞ, ε ≪ 1, we have

zm ¼ zt

�
1 −

1

2
εþ � � �

�
¼ zh

�
1þ 1

2
εþ � � �

�
; (7.12)

and there is a unique z�c satisfying

z�c ¼ ztð1 −Oðε2ÞÞ: (7.13)

Now, increasing zt and following this root, we note the
following:
(1) In region I given by zh < zt < zðsÞt ,

zs > z�c > zm > zh;
dE2

dzc

				
z�c

< 0; (7.14)

and thus for zc < z�c,

zþ0 < 0: (7.15)

(2) In region II given by zt > zðsÞt ,

zs < z�c < zm;
dE2

dzc

				
z�c

> 0; (7.16)

and for zs < zc < z�c,

zþ0 > 0: (7.17)

See Fig. 5 for plots of z�c and zm as functions of zt for
Schwarzschild gðzÞ and one instance of RN gðzÞ.
With the above properties established, the behavior of

zðρÞ can be read off from Figs. 6 and 7. In particular, for a
given zt, ΓΣ only reaches the boundary for zc < z�cðztÞ, and
at zc ¼ z�cðztÞ, it asymptotes to a critical extremal surface
z ¼ zm. Note that this conclusion holds in the presence of
other roots to (7.6) as long as the following are satisfied:
(1) In region I there is no other root lying between zm

and z�c.
(2) In region II there is no other root lying between zs

and z�c.
It can readily be checked that these conditions are satisfied
by Schwarzschild and Reissner-Nordstrom gðzÞ for general
d. In Figs. 8 and 9 we plot some examples of near-critical
surfaces with zc ≈ z�c.
Now let us mention some explicit results. For

Schwarzschild gðzÞ (2.11) and d ¼ 2, the case discussed
in Sec. V, one finds

zs ¼
ffiffiffi
2

p
zh; zðsÞt ¼ 2zh; zm ¼ ffiffiffiffiffiffiffiffi

ztzh
p

; (7.18)

and4

(a)

2 3 4 5zt
s

zt

1.05

1.15

1.25

zs

(b)
1.5 2.0 2.5 3.0 3.5 4.0

zt1.00

1.05

1.10

1.15

1.20

FIG. 5 (color online). Examples of zm (blue lines) and z�c (red
lines) as functions of zt for (a) Schwarzschild gðzÞwith d ¼ 4 and
n ¼ 3, and (b) RN gðzÞ with d ¼ 4, u ¼ 0.2, and n ¼ 3. We have
fixed zh ¼ 1. Note in (b), zs does not exist and there is only region
I (7.14).

4Note that in this case there are two positive roots to Eq. (7.6).
The root below is the branch chosen by (7.13).
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z�c ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t þ 4ztzh − 4z2h

q
− ztÞ þ zh; (7.19)

where

z�c → 2zh; as zt → ∞: (7.20)

Using (5.11) and (5.12), one finds that the critical line
(7.19) is precisely equivalent to (5.29). Similarly, (7.20)
maps to (5.20).
For Schwarzschild gðzÞ (2.11) in general d, one has

zs ¼ 2
1
dzh; zðsÞt ¼

�
d

d − n

� 1
2n

2
1
dzh; (7.21)

but the expressions for zm and z�c get complicated. In the
following discussion we will mostly be interested in the
zt → ∞ limit, for which introducing

η≡ 2n
d
; (7.22)

we find the following:
(1) For η > 1,

zm ¼
�

η

η − 1

�1
d

zh; z�c ¼
�
4ðη − 1Þη−1

ηη

� 1
2ðd−nÞ

zh:

(7.23)

Note that both zm and z�c remain finite as zt → ∞
and z�c

zm
¼ ð4ðη−1Þ

η2
Þ 1
2ðd−nÞ < 1.

(2) For η < 1,

zm ¼ ð1 − ηÞ 1
2nzt; z�c ∼ z

d−2n
2ðd−nÞ
t ≪ zm: (7.24)

Note that both zm and z�c approach infinity as zt → ∞.
(3) For η ¼ 1, i.e. n ¼ d

2
,

zm ¼ ffiffiffiffiffiffiffiffi
ztzh

p
; zs < z�c ¼ 2

1
d−nzh ≪ zm: (7.25)
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FIG. 6 (color online). HðzÞ for zt < zðsÞt . In this case z�c > zm
and zþ0 < 0 for zc ≲ z�c. (a) zc ¼ z�c. zðxÞ decreases then
asymptotes to z ¼ zm. (b) zc ¼ z�c − ε for ε > 0. Since
dE2

dzc
jz�c < 0, HðzmÞ > 0. z0 remains negative throughout and ΓΣ

can reach the boundary. If ε is small, then HðzmÞ is small
(positive) and ΓΣ hangs near the critical extremal surface z ¼ zm
for a long interval in x before eventually reaching the boundary.
(c) zc ¼ z�c þ ε. Since dE2

dzc
jz�c > 0, now HðzmÞ < 0. zðxÞ first

decreases to point A, then turns around and never reaches the
boundary.
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FIG. 7 (color online). HðzÞ for zt > zðsÞt . In this case z�c < zm. If
zc < zs, z0c < 0 and zðρÞ monotonically decreases to zero. These
plots show what happens when zc > zs so that zþ0 > 0.
(a) zc ¼ z�c. zðρÞ increases and asymptotes to z ¼ zm.
(b) zc ¼ z�c − ε for a positive ε > 0. With dE2

dzc
jz�c > 0,

HðzmÞ < 0. zðxÞ first increases, and then turns around at point
B and monotonically decreases to zero. If ε is small, then HðzmÞ
is small (negative), and ΓΣ hangs near the critical surface z ¼ zm
(i.e. near B) for a long interval in x before eventually reaching the
boundary. (c) zc ¼ z�c þ ε. With HðzmÞ > 0, zðxÞ only increases
and never reaches the boundary.
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In this case zm approaches infinity, but z�c remains
finite as zt → ∞.

For Reissner-Nordstrom gðzÞ (2.12), we find that for n ¼
d − 1 and in the limit zt → ∞,

zm ¼
�
2ðd − 1Þ
d − 2

1

1þQ2z2d−2h

�1
d

zh (7.26)

and z�c is also finite but is given by a complicated expression
which is not particularly illuminating. Also note that in the
extremal limit,

zm → zh; z�c →
�
2 −

2

d

� 1
d−2
zh; (7.27)

and that for sufficiently large Q, zm never reaches zs for
all zt.

B. Sphere

We now examine the case of Σ being a sphere with n ≥ 2
(thus d ≥ 3). The analysis is more complicated as the
equation of motion for zðρÞ given the black hole portion of

ΓΣ is now a second order nonlinear differential equation,
(3.35). We copy it here for convenience,

ðhþ E2B2Þz″ þ ðhþ z02Þ
�
n − 1

ρ
z0 þ nh

z

�

þ ðE2B2 − z02Þ ∂zh
2

¼ 0 (7.28)

with

E ¼ −
1

2

�
ρc
zc

�
n gðzcÞ

zt
; B≡ zn

ρn−1
: (7.29)

We again expect that for a given zt, there is a critical z�c
beyond which ΓΣ never reaches the boundary. For a given
hðzÞ, z�cðztÞ can readily be found by numerically solving
(7.28). From the strip analysis (7.23)–(7.25), a natural
guess for Schwarzschild hðzÞ is that for η ¼ 2n

d ≥ 1, z�c
remains finite as zt → ∞. This appears to be supported by
numerical results. In Fig. 10 we show some examples.
At zc ¼ z�c the critical solution z�ðρÞ should reach ρ ¼ ∞

along some constant z surface. Now, solving (7.28) for a
constant z in the limit ρ → ∞, one finds the unique solution

z ¼ zh: (7.30)

In other words, independent of the choice of zt and the
function gðzÞ, the critical extremal surface approaches and
runs along at the horizon to ρ ¼ ∞. Expanding about the
solution (7.30) in Eq. (7.28), one finds a perturbation that
grows exponentially in ρ (in Sec. XII we work this out
explicitly). By tuning zc to z�c, one ensures that this
exponentially growing perturbation is absent and z → zh
as ρ → ∞. For zc ¼ z�cð1 − εÞ, ε ≪ 1, the perturbation
acquires a small coefficient, and zðρÞ runs along the
horizon for a while before eventually breaking away.
Depending on the sign of ε, it either approaches the
boundary (ε > 0) or turns away from it (ε < 0).
See Fig. 11.

x

zc
zm

zh

z x

FIG. 9 (color online). Left: Behavior of near-critical surfaces
with ε ¼ �10−12 for zt ¼ 3zh > zðsÞt , for Schwarzschild gðzÞwith
d ¼ 3, n ¼ 2, and Σ a strip. Right: Cartoon of the near-critical
surfaces on the Penrose diagram.

5 10 15 20 25 30
zt1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

zc

FIG. 10 (color online). Plot of z�c as a function of zt for d ¼ 3
Schwarzschild with n ¼ 2 (blue line), d ¼ 4 with n ¼ 3 (red
line), and d ¼ 6 with n ¼ 2 (yellow line). We plot in the unit
zh ¼ 1. For the last case z�c appears to grow with zt as z

1
7
t. This

should also be compared with the strip case (7.24) where z�c
grows with zt as z

1
4
t .
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FIG. 8 (color online). Left: Behavior of near-critical surfaces
with ε ¼ �10−12 for zt ¼ 1.3zh < zðsÞt , for Schwarzschild with
d ¼ 3, n ¼ 2, and Σ a strip. The critical surface runs to infinite x
along z ¼ zm. For small ε, the solution runs along the critical
surface for a while before reaching the boundary or black hole
singularity, depending on the sign of ε. Right: Cartoon of the
near-critical surfaces on the Penrose diagram. Dashed curve is a
constant z ¼ zm slice.
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When zt is large and z�c remains finite in the large zt limit,
the critical extremal solution z�ðρÞ has another interesting
feature which will play an important role in our discussion
of the linear growth of entanglement entropy in Sec. IX.
From (3.31), for a finite zc ≈ z�c,

ρc ¼ zt þOð1=ztÞ; zt → ∞: (7.31)

Then for the range of ρ satisfying ρ ≥ ρc and ρ
ρc
≈ 1,

Eq. (7.28) can be solved approximately by z�ðρÞ ≈ zm
with zm given by

nh2ðzmÞ
zm

þ
�
zm
z�c

�
2n g2ðz�cÞh0ðzmÞ

8
¼ 0: (7.32)

The above equation is obtained from (7.28) by setting

zðρÞ ¼ zm, zc ¼ z�c, and ρ2nc
z2t ρ

2ðn−1Þ ¼ 1. This results in a

plateau at z ¼ zm for a range of ρ ∼ ρc as indicated in
Fig. 12. Note Eq. (7.32) agrees precisely with Eqs. (7.10)
and (7.11) for a strip. That is, provided the z�c in (7.32)
agrees with that of the strip, the zm determined from (7.32)
agrees precisely with the location of the critical surface for
a strip. We will show in Sec. IX B this is indeed the case.

C. Summary

In this section, we showed explicitly for cases of Σ being
a strip or sphere that in the Penrose diagram there exists a
critical line v�t ðztÞ5: ΓΣ reaches the boundary only for
vt < v�t , with the critical extremal surface Γ�

Σ correspond-
ing to v�t ðztÞ stretching to R; t ¼ ∞. See Fig. 13. The same
phenomenon should apply to general shapes.
In the numerical plots presented in Sec. IV (see Fig. 4),

we saw that for t≳OðzhÞ, constant R trajectories of ΓΣ in
the ðzt; zcÞ plane collapse onto a single curve. From the
above discussion, we now understand that this is a
consequence of the following: (i) a critical z�cðztÞ exists
on which ΓΣ asymptotes to a critical extremal surface that
extends to infinite R and t, and (ii) z�c remains finite [of
order OðzhÞ] as zt → ∞. Thus at large fixed R, when t
becomes sufficiently large, i.e. of order OðzhÞ, ðzt; zcÞ
quickly approaches the critical line z�cðztÞ. This is clearly
exemplified in the ð1þ 1Þ-dimensional story in Sec. V D.
There, ε, parametrizing the distance to the critical line
(5.29) [or (7.19)], gave the leading large l and τ behavior,
while ϕ in (5.29) [or zt in (7.19)], parametrizing the
location on the critical line, mapped to l − τ or τs − τ.
In short, for large R; t ≫ zh, with corresponding ðzt; vtÞ

lying very close to the critical line v�t ðztÞ, ΓΣ closely
follows Γ�

Σ before deviating away to reach the boundary.
The evolution of AΣ can then be largely determined from
that of Γ�

Σ. Again, this is seen in ð1þ 1Þ dimensions in the
discussion of Sec. V. In higher dimensions, with much less
analytic control, this feature provides a powerful tool for
extracting the evolution of AΣðtÞ.
For Σ a strip, the critical extremal surfaces asymptote to a

constant-z hypersurface z ¼ zm lying inside the horizon,

zc

zh

z

FIG. 11 (color online). Left: Behavior of near-critical surfaces
with ε ¼ �10−58 for zt ¼ 1.5zh ∼ z�c, for Schwarzschild with
d ¼ 4, n ¼ 3, and Σ a sphere. Note the surfaces now run along
the horizon (c.f. Figs. 8 and 9). Right: Cartoon of the near-critical
surfaces on the Penrose diagram.

zh

zc

zm

z

FIG. 12 (color online). Cartoon of z�ðρÞ for zt ≫ z�c, with z�c ∼
Oð1Þ as zt → ∞: There is an intermediate plateau at z ¼ zm for
ρ ∼ ρc. The critical surface eventually approaches the horizon for
ρ ≫ ρc.

FIG. 13 (color online). The dotted line denotes a curve at
constant z, along which v increases from −∞ toþ∞ from bottom
(not shown) to top. The dashed purple line corresponds to Γ�

Σ, the
critical extremal surface, while the green lines correspond to ΓΣ
with vt just above and below v�t .

5Recall vt ¼ zc − zt. Thus statements regarding z�c can
immediately be translated to those about v�t .
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i.e. zm > zh with zm depending on the function hðzÞ in
(2.5). It is important to keep in mind that zt changes during
the time evolution, and so does zm.
For Σ a sphere, the critical extremal surface for large

enough zt forms an intermediate plateau at some z ¼ zm
before running along the horizon z ¼ zh all the way to
ρ; v ¼ ∞; see Fig. 12. For moderate zt > zh, the critical
extremal surface runs along the horizon z ¼ zh to ρ; v ¼ ∞
with no plateau at z ¼ zm; see Fig. 11.
We will see below that for a sphere, the plateau at z ¼ zm

governs a linear growth in A at early times, while the
plateau at the horizon governs a memory loss effect at
late times.

VIII. LINEAR GROWTH: STRIP

In this section, we show that with Σ given by a strip
AðR; tÞ grows linearly with t for R ≫ t ≫ zh. The evolu-
tion can be straightforwardly worked out from the dis-
cussion of Sec. VII A and as we will see is largely
controlled by the critical extremal surface discussed in
the last section. The same growth also applies to a sphere
and other shapes as will be discussed in the next section.

A. Linear growth

To obtain the behavior for R ≫ t ≫ zh, we consider zc
close to z�c for some zt,

zc ¼ z�cð1 − εÞ; ε ≪ 1; (8.1)

and assume that

z�c
zt
;
zm
zt

≪ 1;
z�c

j log εj ≪ 1: (8.2)

In this regime we can expand t, R, and A in a double
expansion of 1=zt and ε.
We now proceed to evaluate the boundary quantities t, R,

and A using (3.19)–(3.23). Note that these equations
should be modified when zðxÞ is not monotonic, which
happens, for example, for zt > zðsÞt . Then from (7.16),
zc ≈ z�c < zm; i.e. after intersecting the shell, zðxÞ first
moves to larger values of z before turning around as
illustrated in Figs. 7(b) and 9. In this case Eq. (3.19)
should be modified to

R¼
Z

zt

zc

dz
1ffiffiffiffiffiffiffiffiffiffiffi

z2nt
z2n−1

q þ
�Z

zr

zc

dzþ
Z

zr

0

dz

�
1ffiffiffiffiffiffiffiffiffiffi
HðzÞp (8.3)

and similarly for others. In the above equation zr is the root
ofHðzÞ which is slightly smaller than zm (i.e. point B of the
second plot of Fig. 7), and zr ¼ zm for ε ¼ 0.
It is useful to separate zðxÞ into four regions (see Fig. 9):

(i) AdS region from zt to zc, (ii) from zc to near zm,
(iii) running along zm, and (iv) from near zm to boundary

z ¼ 0. One can then check that contributions to t, R, and
A −Avac from regions (ii) and (iv) are at most Oðz�cÞ.6
Now let us look at region (iii). Near z ¼ zm, with

zc ¼ z�cð1 − εÞ, we have

HðzÞ ¼ H2ðz − zmÞ2 þ bε; (8.4)

where

H2 ¼
1

2
H00ðzmÞ; b ¼ −z�c

dE2

dzc

				
z�c

: (8.5)

Note H2 > 0 and that b < 0 (b > 0) for zt > zðsÞt

(zt < zðsÞt ). In (3.20) (or its nonmonotonic version), there
is no contribution from region (i), while region (iii)
contributes at order log ε, leading to

t ¼ −
Eðz�cÞ

hðzmÞ
ffiffiffiffiffiffi
H2

p log εþ � � � : (8.6)

In (3.19) [or (8.3)] there is anOðztÞ contribution from (i) in
addition to a log ε term from (iii),

R ¼ anzt −
1ffiffiffiffiffiffi
H2

p log εþ � � � ; (8.7)

where an was introduced (2.27) [c.f. (4.2)]. Using (8.6), we
can then rewrite (8.7) as

zt ¼
1

an

�
R −

hðzmÞ
Eðz�cÞ

t

�
þ � � � : (8.8)

Now consider the evaluation of A using (3.21)–(3.23).
After subtracting the vacuum value Avac, the diverging
contribution near z ¼ 0 in region (iv) cancels and the
dominant contribution is again from region (iii),

1

~K
ΔA ¼ 1

~K
ðA −AvacÞ ¼ −

znt
z2nm

ffiffiffiffiffiffi
H2

p log εþOð1Þ: (8.9)

Collecting (8.6) and (8.9), we find

ΔA ¼ ~Kλtþ � � � (8.10)

with

λ ¼ znt
z2nm

hðzmÞ
Eðz�cÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

p
znm

þ � � � ; (8.11)

where in the second equality we have used (3.17) to express
Eðz�cÞ as

6When zm → ∞ as zt → ∞, as for example in the case (7.25),
one has to be careful because the integration range from z�c to zm
is large. One can check that divergent contributions from (ii) and
(iv) cancel.
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Eðz�cÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

�
z2nt
z2nm

− 1

�s
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

p znt
znm

þ � � � :

(8.12)

Upon substituting the explicit form of ~K (3.4), we have

ΔA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γðzmÞ

p
Astriptþ � � � ; (8.13)

where γðzmÞ is the determinant of the induced metric on the
critical extremal surface at zm, which is spanned by v and
x2;…; xn, i.e. directions along Σ. Using the equilibrium
“density” aeq introduced in (2.33), we can also write (8.10)
as

ΔA ¼ aeqAstripvntþOð1Þ; (8.14)

where the velocity vn is given by

vn ¼
�
zh
zm

�
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðzmÞ
p

: (8.15)

In particular, for n ¼ d − 1, we have the entanglement
entropy

ΔS ¼ ΔA
4GN

¼ seqAstripvEtþOð1Þ; (8.16)

where seq is the equilibrium entropy density in (2.10), and

vE ≡ vd−1 ¼
�
zh
zm

�
d−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðzmÞ
p

: (8.17)

In the regime of (8.2) we can approximate the value of zm
in various equations above by that at zt ¼ ∞. So to leading
order in the large R limit, the evolution is linear. Note that in
order for (8.2) to be satisfied we need t to be large enough so
that zc is sufficiently close to z�c, but not too large such that zt
becomes comparable to z�c [see (8.8)] to invalidate (8.2).

B. Example: Schwarzschild

Let us now consider the Schwarzschild case for an explicit
illustration. From (7.23)–(7.25), depending on the value of
η ¼ 2n

d , z
�
c and zm behave differently in the limit of a large zt.

Below we consider these situations separately.While we are
considering Schwarzschild, the discussion depends only on
whether z�c and zm have a finite limit as zt → ∞. So we will
still keep hðzÞ general in our discussion.

1. η > 1

For η > 1, which covers the case of entanglement
entropy n ¼ d − 1 in d > 2, both z�c and zm remain finite
of order OðzhÞ in the limit of large zt. The assumptions
(8.2) then apply when R ≫ t ≫ OðzhÞ.
In this case we can show that the linear growth (8.14) in

fact persists all the way to saturation, which happens via a
discontinuous transition. We do this by assuming the

conclusion, strongly suggested by Fig. 4, and checking
self-consistency.
With the linear growth (8.14), A will reach its equilib-

rium value (2.33) at time

ts ¼
R
vn

¼ R

ðzhzmÞn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

p ; (8.18)

when, from (8.8) and (8.12),

zt ¼
R
an

�
1 −

�
z2m
ztzh

�
n
�
þ � � � : (8.19)

From (7.23), for η > 1 the second term in parentheses is
small for large zt, so we find that when the system reaches
the equilibrium value, zt is still very large.
When t is greater than (8.18), Eq. (8.14) exceeds its

equilibrium value, and the extremal surface with the
smallest area is no longer a near-critical extremal surface
to which (8.14) applies, but one that lies solely in the black
hole region. Thus the extremal surface jumps at ts, and the
saturation is discontinuous. Note that for entanglement
entropy, the saturation time is

ts ¼
R
vE

; (8.20)

where vE was given in (8.17).

2. η ¼ 1

For η ¼ 1, which covers the case of entanglement
entropy in d ¼ 2 examined earlier in Sec. V and that of
a spacelike Wilson loop in d ¼ 4, z�c remains finite, but zm
increases with zt in the large zt limit. In this case, there is
still a linear regime, with

vn ¼ 1: (8.21)

Furthermore, because of (7.25), the expression inside
parentheses in (8.19) becomes zero at the time (8.18);
i.e. zt becomes comparable to zc before (8.18) is reached.
Thus the system exits the linear growth regime before
saturation. This is consistent with what we saw in Sec. V
for the d ¼ 2 case. In Secs. XI and XII we discuss the
behavior of the system after exiting the linear regime in
higher dimensions.

3. η < 1

For η < 1, from (7.24) both z�c ∼ zαt (with α < 1) and
zm ∝ zt grow with zt in the limit zt → ∞. Then since z�c is
also very large for large zt, it may take a long time for zc to
reach z�c. If zt is still OðRÞ as zc first approaches z�c, the
linear regime could still exist. Supposing such a regime
exists, Eq. (8.15) gives for Schwarzschild hðzÞ
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vðSÞn ¼
�
zm
zh

�d
2
−n

→ ∞; (8.22)

which is physically unreasonable and suggests that a linear
regime does not exist. Explicit numerical calculation
appears to be consistent with this expectation [47].

IX. LINEAR GROWTH: GENERAL SHAPES

In this section we generalize the linear growth found in
the last section for a strip to general shapes. We show that
for t in the range R ≫ t ≫ zh, AΣðtÞ generically exhibits
linear growth in t with a slope independent of the shape of
Σ. Again the technical requirement is that z�c should remain
finite as zt → ∞, which for Schwarzschild gðzÞ amounts
to 2n ≥ d.
We first revisit the strip story and rederive the linear

growth from a scaling limit, which we can extend straight-
forwardly to general shapes. We will also extend results to
the wider class of metrics (2.16).

A. Revisiting strip: A scaling limit

The linear growth of the last section occurs when zt is
large but z�c remains finite in the limit zt → ∞. In this
regime, with zc ≈ z�c we have [from (3.11)]

xc ¼ xðzcÞ ¼ anzt −
znþ1
c

nznt
þ � � � : (9.1)

Also from (8.8) and (8.12)

anzt ¼ R −Oðz−nt Þ: (9.2)

The above equations suggest that in the black hole region
we should consider a scaling coordinate

y ¼ ðR − xÞznt : (9.3)

Indeed, in terms of y Eq. (7.1) [or (3.17)] has a scaling form
independent of zt to leading order as zt → ∞,

�
dz
dy

�
2

¼ hðzÞ
z2n

þ a2; a2 ¼ g2c
4z2nc

: (9.4)

Similarly, to leading order in 1=zt, Eq. (3.18) becomes

dv
dz

¼ 1

h

0
@ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ
z2n þ a2

q − 1

1
A: (9.5)

From (9.4) and (9.5), we conclude

dx
dz

∼
1

znt
;

dv
dz

∼Oð1Þ: (9.6)

Then using z as the independent variable, the action (3.3) in
the black hole region is

ABH ¼ LnAstrip

Z
zc

0

dz
1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dx
dz

�
2

− 2
dv
dz

− h

�
dv
dz

�
2

s

¼ LnAstrip

Z
zc

0

dz
1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2

dv
dz

− h

�
dv
dz

�
2

s
; (9.7)

where in the second equality we have dropped the term
ðdxdzÞ2 ∼Oðz−2nt Þ. It may look odd that in (9.7) xðzÞ
completely drops out. This in fact has a simple geometric
interpretation: from (9.1) and (9.2), by the time the extremal
surface reaches zc, xðzcÞ ¼ R −Oðz−nt Þ has essentially
reached its boundary value R, while vðzcÞ is zero and still
far away from its boundary value vðz ¼ 0Þ ¼ t. Thus the
evolution of the extremal surface in the black hole region (for
z < zc) is almost completely in the time direction. See
Fig. 14 for an illustration. For purposes of calculating the
area A to leading order in 1=zt, we can simply ignore the
evolution in the x direction. As a consistency check, we
indeed recover (9.5) by a variation of (9.7).
Integrating (9.5) we find that

t ¼
Z

zc

0

dz
h

0
@ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ
z2n þ a2

q − 1

1
A; (9.8)

and further substituting (9.5) into (9.7) we have

ABH ¼ LnAstrip

Z
zc

0

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ
z2n þ a2

q : (9.9)

The linear growth of AðtÞ can now be immediately
understood from (9.8) and (9.9). As before, for zc ¼ z�c
with z�c given by (7.11), hðzÞ

z2n þ a2 has a double zero at its
minimum zm which precisely coincides with (7.10).7 For
zc ¼ z�cð1 − εÞ with ε → 0, both the integrals for t andABH

FIG. 14 (color online). In the limit of a large zt and a finite
zc ≈ z�c, the evolution in the black hole region is essentially solely
in the time direction, with two sides of the strip evolving
independently.

7The expression hðzÞ
z2n þ a2 differs from HðzÞ of (7.1) only by an

overall scaling and thus has the same minimum and zero.
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are then dominated by the region around zm, and we
precisely recover (8.14).
Note that the action (9.7) as well as the linear growth of

A is in fact identical to that of [25], where entanglement
entropy between half spaces lying on two asymptotic
boundaries of an eternal AdS black hole was considered.
The agreement can easily be understood from Fig. 14; in
the large zt limit, each half of the strip evolves independ-
ently in the black hole region solely in the time direction,
which coincides with the setup of [25].

B. General shapes

The intuition obtained from the above discussion for a
strip and Fig. 14 can now be generalized to arbitrary shapes.
For arbitrary Σ, we again expect that in the limit
R ≫ t ≫ zh, the evolution of the extremal surface after
entering the shell will be essentially solely in the time
direction, as indicated in Fig. 15. In other words, in the
large size limit, when zc is much smaller than the size of Σ,
the curvature of Σ should not matter in the black hole, and
each point of the extremal surface essentially evolves like
one on a strip. Below we present arguments that this is
indeed the case.
Consider a smooth entangling surface Σ which can be

parametrized in terms of polar coordinates (2.22) as

ρ ¼ RrðΩÞ; xa ¼ 0; (9.10)

where Ω denotes collectively the angular coordinates
parametrizing Σ, R is the size of Σ, and the function
rðΩÞ specifies the shape of Σ . The bulk extremal surface
can then be parametrized in terms of ρðz;ΩÞ; vðz;ΩÞ with
boundary conditions

ρðz ¼ 0;ΩÞ ¼ RrðΩÞ; vðz ¼ 0;ΩÞ ¼ t; (9.11)

and regularity at the tip of the surface.

Writing [see (2.22)]

dΩ2
n−1 ¼

X
i

giðΩÞdθ2i ; dn−1Ω ¼
Y
i

ffiffiffiffi
gi

p
dθi; (9.12)

the area of Σ can be written as

AΣ ¼ Rn−1
Z

dn−1Ωrn−1ðΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r2
X
i

r2i
gi

s
; (9.13)

where

ri ≡ ∂θi rðΩÞ: (9.14)

Meanwhile, in the Vaidya geometry, the action for an
n-dimensional extremal surface ending on the above Σ can
be written as

AΣ ¼ Ln

Z
zt

δ
dz

Z
dn−1Ω

ρn−1

zn
ffiffiffiffi
Q

p
(9.15)

with

Q ¼ ρ02 − 2v0 − fðv; zÞv02 þ 1

ρ2
X
i

1

gi
Gi

−
1

ρ4
X
i;j

ðρivj − ρjviÞ2
gigj

; (9.16)

where we have used the notation

ρ0≡∂zρ; ρi≡∂iρ; v0≡∂zv; vi≡∂iv (9.17)

and

Gi ¼ −fðv; zÞðρ0vi − ρiv0Þ2 þ 2ρiðρ0vi − ρiv0Þ − v2i :

(9.18)

In (9.15) δ is a short-distance cutoff. It is readily found that
in the black hole region ρ and v have the following small z
expansion (for z ≪ zh):

ρðz;ΩÞ ¼ RrðΩÞ − z2

R
~rðΩÞ þ � � � ; (9.19)

vðz;ΩÞ ¼ t − zþOðznþ1Þ; (9.20)

where ~rðΩÞ is a function which can be determined
from rðΩÞ.
For R ≫ t, to leading order in 1=R, the part of the

extremal surface in the AdS region can be approximated by
that in pure AdS, which we denote ρð0Þðz;ΩÞ (and for
which t is constant). For z=R ≪ 1, ρð0Þ has the expansion

ρð0Þðz;ΩÞ ¼ RrðΩÞ þOðR−1Þ: (9.21)

FIG. 15 (color online). A cartoon of an extremal surface for Σ
with some arbitrary shape, in the large size limit and t in the linear
regime. Upon entering the black hole region, the extremal surface
has essentially attained its boundary shape Σ. The evolution in the
black hole region is essentially solely in the time direction and is
the same as that for a strip.
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Note that in contrast to (9.19) which applies only to z ≪ zh,
due to the scaling symmetry of pure AdS and that Σ as
defined in (9.10) has a scalable form, Eq. (9.21) in
fact applies to any z=R ≪ 1 and in particular z ∼ zc ≈ z�c.
Thus we conclude that when the extremal surface enters the
shell at zc,

ρðzc;ΩÞ ¼ RrðΩÞ −OðR−1Þ: (9.22)

From (9.19), (9.20), and (9.22), the extremal surface in
the black hole region should then have the following
scaling:

ρ0∼OðR−1Þ; ρi∼OðRÞ; vi∼OðR−1Þ; v0∼Oð1Þ:
(9.23)

Plugging the above scaling into the action (9.15) we find
that to leading order in 1=R,

AΣ; BH ¼ LnRn−1
Z

zc

δ
dz

Z
dn−1Ωrn−1ðΩÞ

×
1

zn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2v0 − hv02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

r2
X
i

r2i
gi

s

¼ LnAΣ

Z
zc

δ

dz
zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2v0 − hv02

p
; (9.24)

which reduces to (9.7). In particular, all evolution in ρ and
Ω directions have dropped out. Thus we conclude that
(8.14) in fact applies to all shapes with Astrip replaced by AΣ.
The above discussion encompasses the case of Σ being a

sphere for which rðΩÞ ¼ 1. In that case one can derive the
above scaling limit explicitly from Eqs. (3.26) and (3.27).
In particular, the linear growth regime is controlled by the
first plateau of the critical extremal surface as indicated
in Fig. 16.

C. More general metrics

The above discussion can readily be extended to more
general metrics of the form (2.16)–(2.18). The action (9.24)
is replaced by

ABH ¼ LnAΣ

Z
zc

0

1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzÞv02 − 2kðzÞv0

q
; (9.25)

from which vðzÞ satisfies the equation

1

zn
hv0 þ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hv02 − 2kv0
p ¼ const; (9.26)

which can be solved as (b is a positive constant)

v0 ¼ kðzÞ
hðzÞ

0
@ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞ
z2n þ b2

q − 1

1
A

with

dA
dz

¼ LnAΣ
kðzÞ
z2n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞ
z2n þ b2

q : (9.28)

Other than a prefactor kðzÞ appearing in both equations,
Eqs. (9.27) and (9.28) are identical to (9.8) and (9.9). The
constant b should be determined by matching conditions at
the null shell, i.e. be expressible in terms of zc alone in the
limit zt → ∞. Its precise form is not important. As far as a

z�c exists such that hðzÞ
z2n þ b2 is zero at its minimum zm, A

will have a linear growth regime for zc close to z�c.
Since in the linear regime the leading behavior is given

by the behavior of the right-hand sides of (9.27) and (9.28)
near zm, the factor kðzmÞ cancels when we relateA to t, and
we concludeA is still given by (8.14) with the same vn, i.e.
the additional function kðzÞ in (9.25) cannot be seen in the
linear regime.

X. LINEAR GROWTH: AN UPPER BOUND?

In previous sections we found that for any metric of the
form (2.16) and for Σ of any shape, provided that z�c
remains finite in the limit zt → ∞, there is a linear growth
regime

ΔAðtÞ ¼ aeqAΣvntþOð1Þ (10.1)

for R ≫ t ≫ zh. In the above equation aeq is the equilib-
rium density introduced in (2.33), AΣ is the area of Σ, and
the velocity vn is given by

vn ¼
�
zh
zm

�
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðzmÞ
p

: (10.2)

Here zm is the minimum of hðzÞz2n and lies inside the black hole
event horizon. In particular, for entanglement entropy we
have n ¼ d − 1 and

zh

zc

zm

z

FIG. 16 (color online). Cartoon: For a sphere, in the linear
regime the extremal surface follows the critical extremal surface
for a while but exits near the first plateau. The dashed curve is the
critical extremal surface.
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ΔSΣðtÞ ¼ seqAΣvEtþOð1Þ; vE ¼ vd−1; (10.3)

where seq is the equilibrium entropy density.
Now let us specialize to the evolution of entanglement

entropy which has the cleanest physical interpretation. The
linear growth regime (10.3) sets in for t≳ zh ∼OðleqÞ, i.e.
after local equilibration has been achieved. This explains
the appearance of the equilibrium entropy density seq in the
prefactor. In contrast, the pre-local-equilibration quadratic
growth (6.25) is proportional to the energy density E.
Indeed, at very early times before the system has equili-
brated locally, the only macroscopic data characterizing the
state is the energy density.
It is natural that in both regimes ΔSΣ is proportional to

AΣ, as the time evolution in our system is generated by a
local Hamiltonian which couples directly only to the
degrees of freedom near Σ, and the entanglement has to
build up from Σ. When R is large, the curvature of Σ is
negligible at early times, which explains the area law and
shape independence of (6.25) and (10.3).
Note that if we stipulate that before local equilibration

SΣðtÞ should be proportional to AΣ and E, the quadratic
time dependence in (6.25) follows from dimensional
analysis. Similarly, if we require that after local equilibra-
tion, SΣðtÞ is proportional to AΣ and seq, linearity in time
follows.
As discussed in [21], Eqs. (6.25) and (10.3) suggest a

simple geometric picture: entanglement entropy increases
as if there was a wave with a sharp wave-front propagating
inward from Σ, with the region that has been covered by the
wave entangled with the region outside Σ, and the region
yet to be covered not yet entangled. See Fig. 17. This was
dubbed an “entanglement tsunami” in [21]. In the linear
regime, the tsunami has a constant velocity given by vE,
while in the quadratic regime the front velocity increases
linearly with time. The tsunami picture highlights the local
nature of the evolution of entanglement. For quadratic and
linear growth regimes, when the curvature of Σ can be

neglected, different parts of the tsunami do not interact with
one another. But as the tsunami advances inward, curvature
effects will become important, and the propagation will
become more complicated.
In a relativistic system, vE should be constrained by

causality, although in a general interacting quantum system
relating it directly to the speed of light appears difficult. In
the rest of this section we examine vE for known black hole
solutions and also various hðzÞ satisfying null energy
conditions. We find support that

vE≤vð SÞE ¼ðη−1Þ12ðη−1Þ
η
1
2
η

¼

8>>>>>><
>>>>>>:

1 d¼2ffiffi
3

p

2
4
3

¼0.687 d¼3ffiffi
2

p

3
3
4

¼0.620 d¼4

1
2

d¼∞

; (10.4)

where vð SÞE is the value for a Schwarzschild black hole
with η ¼ 2ðd−1Þ

d .
There are reasons to suspect that the Schwarzschild value

in (10.4) may be special. The gravity limit corresponds to
the infinite coupling limit of the gapless boundary
Hamiltonian, in which generation of entanglement should
be most efficient. From the bulk perspective, it is natural to
expect that turning on additional matter fields (satisfying
the null energy condition) will slow down thermalization.
From the boundary perspective, the corresponding expect-
ation is that when there are conserved quantities such as
charge density, the equilibration process becomes less
efficient.
With Mezei, we generalized the free-streaming model of

[1] to higher dimensions and find that at early times there is
linear growth as in (10.3) with seq interpreted as giving a
measure for quasiparticle density. For d ≥ 3, quasiparticles
can travel in different directions, and as a result although
they travel at the speed of light the speed of the entangle-
ment tsunami turns out to be smaller than 1 [22],

vðstreamingÞ
E ¼ Γðd−1

2
Þffiffiffi

π
p

Γðd
2
Þ < vðSÞE < 1: (10.5)

Comparing with the Schwarzschild value (10.4), we con-
clude that in strongly coupled systems, the propagation of
entanglement entropy is faster than that from free-streaming
particles moving at the speed of light.
It is important to examine whether (10.4) could be

violated from higher derivative corrections to Einstein
gravity. As a preliminary investigation, at the end of this
section we consider the example of a Schwarzschild black
hole in Gauss-Bonnet gravity in d ¼ 4, but as we explain
there one cannot draw an immediate conclusion from it.

FIG. 17 (color online). The growth in entanglement entropy can
be visualized as occurring via an “entanglement tsunami” with a
sharp wave front carrying entanglement inward from Σ. The
region that has been covered by the wave (i.e. yellow region in the
plot) is entangled with the region outside Σ, while the white
region is not yet entangled.
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A. Schwarzschild, RN, and other black holes

Let us now consider some examples. For Schwarzschild
hðzÞ (2.11), plugging (7.23) into (10.2) we find

vðSÞn ¼ ðη − 1Þ12ðη−1Þ
η
1
2
η

; η ¼ 2n
d
: (10.6)

Recall that our current discussion applies only to η ≥ 1, and
it can readily be checked from (10.6) that

vðSÞn < 1 for η > 1; vðSÞd
2

¼ 1: (10.7)

vðSÞn is a monotonically decreasing function of η. The
maximal value of η is for entanglement entropy, for which
η ¼ 2ðd−1Þ

d and

vðSÞE ¼ d
1
2ðd − 2Þ12−1

d

ð2ðd − 1ÞÞ1−1
d

: (10.8)

The above expression and (8.17) were also obtained earlier
in [25] in a different setup.
For Reissner-Nordstrom hðzÞ, from (7.26) the velocity

for entanglement entropy is given by

vðRNÞE ¼
ffiffiffiffiffiffiffiffiffiffiffi
d

d − 2

r ��
1 −

du
2ðd − 1Þ

�2ðd−1Þ
d

− ð1 − uÞ
�1

2

;

(10.9)

where u was defined in (2.15)—recall that 1 ≥ u ≥ 0 with
u ¼ 1; 0 being the Schwarzschild and extremal limits,
respectively. We note vE decreases with increasing chemi-
cal potential. For the extremal black hole, one finds vE ¼ 0
which implies that the linear growth regime no longer
exists.
We now consider the behavior of vE for more general

black holes. Other than Schwarzschild and RN black holes
there are no known examples of explicit supergravity
solutions of the form (2.5). Given that (10.2) depends on
some location z ¼ zm behind the horizon, which could be
shifted around by modifying hðzÞ, one may naively expect
that vE could easily be increased by changing hðzÞ
arbitrarily. However, in the examples we studied, the null
energy condition

z2h0 − ðd − 1Þzh0 ≥ 0 (10.10)

appears to constrain vE ≤ vðSÞE . Here are some examples:
(i) Consider

hðzÞ ¼ 1 −Mzd þ qzdþp; p > 0: (10.11)

The null energy condition (10.10) requires q ≥ 0, and
in order for the metric to have a horizon (and not a
naked singularity), q ≤ d

p. (Here and below we set

zh ¼ 1.) This constrains vE ≤ vðSÞE , an example of
which we show in Fig. 18. Note that for q < 0, vE
does exceed vðSÞE .

(ii) Consider a three-parameter example with

hðzÞ ¼ 1 −Mzd þ q1zdþ1 þ q2zdþ2: (10.12)

The null energy condition (10.10) requires both q1 and
q2 to be non-negative, and the existence of a horizon
requires q1 þ 2q2 ≤ d. Then again vE ≤ vðSÞE , an
example of which is shown in Fig. 18.

We have also looked at some nonpolynomial examples and
found vE ≤ vðSÞE . The phase space we have explored is not
big, nor do we expect that the null energy condition is the
only consistency condition. Nevertheless, the examples
seem suggestive.

B. Other supergravity geometries

1. Charged black holes in N ¼ 2 gauged
supergravity in AdS5 [48]

ds2 ¼ L2H
1
3ðyÞ

y2

�
−hðyÞdt2 þ d~x2 þ dy2

fðyÞ
�
; (10.13)

where

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

FIG. 18 (color online). Plots of vE=v
ðSÞ
E in examples of hðzÞ

with parameter space restricted by the null energy condition and
the existence of a horizon. Upper: For (10.11) with d ¼ 3 and
p ¼ 2. Lower: For (10.12) with d ¼ 4.
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hðyÞ ¼ fðyÞ
HðyÞ ; fðyÞ ¼ HðyÞ − μy4;

HðyÞ ¼
Y3
i¼1

ð1þ qiy2Þ: (10.14)

We normalize y so that the horizon is at yh ¼ 1, and then
μ ¼ Q

3
i¼1 ð1þ qiÞ. From (10.2) we find

v2E ¼ 2þ κ1y2m − κ3y6m
1þ κ1 þ κ2 þ κ3

y−6m (10.15)

with

κ1 ¼ q1 þ q2 þ q3; κ2 ¼ q1q2 þ q1q3 þ q2q3;

κ3 ¼ q1q2q3; (10.16)

and

y2m ¼ κ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ 3ð1þ κ1 þ κ3Þ

p
1þ κ1 þ κ3

: (10.17)

Note that for the temperature to be non-negative

κ3 ≤ κ1 þ 2: (10.18)

It can readily be checked analytically that for one- and two-
charge cases with q3 ¼ κ3 ¼ 0, the bound is satisfied for
any ðq1; q2Þ, including regions that are thermodynamically
unstable. After numerical scanning we find that (10.15)
satisfies vE ≤ vðSÞE in the full three-charge parameter space.

2. Charged black holes in N ¼ 8 gauged
supergravity in AdS4 [49]

ds2 ¼ L2H
1
2ðyÞ

y2

�
−hðyÞdt2 þ d~x2 þ dy2

fðyÞ
�
; (10.19)

where

hðyÞ¼ fðyÞ
HðyÞ ; fðyÞ¼HðyÞ−μy3;

HðyÞ¼
Y4
i¼1

ð1þqiyÞ: (10.20)

We again set yh ¼ 1. Then μ ¼ Q
4
i¼1 ð1þ qiÞ and requir-

ing a non-negative temperature gives

κ4 ≤ 2κ1 þ κ2 þ 3; (10.21)

where κi are defined analogously to (10.16), with e.g.
κ4 ¼ q1q2q3q4. We then find that

v2E ¼ 3þ 2κ1ym þ κ2y2m − κ4y4m
1þ κ1 þ κ2 þ κ3 þ κ4

y−4m ; (10.22)

where ym is the smallest positive root of the equation

ð1þ κ1 þ κ2 þ κ4Þy3 − 2κ2y2 − 3κ1y − 4 ¼ 0: (10.23)

It can again be readily checked that for a single charge
q1 ≠ 0, vE ≤ vðSÞE is satisfied for any q1. One finds after
numerical scanning that the bound is in fact satisfied in the
full four-parameter space.

3. Metrics with hyperscaling violation

Now let us consider metrics with hyperscaling violation
[50,51]. Since we are interested in theories which have a
Lorentz invariant vacuum, we restrict to examples with
dynamical exponent unity,

ds2 ¼ L2

y2

�
y
yF

� 2θ
d−1
�
−fðyÞdt2 þ dy2

fðyÞ þ d~x2
�
; (10.24)

where fðyÞ ¼ 1 − ð yyhÞ
~d and ~d≡ d − θ. yF is some scale

and θ is a constant. Examples of (10.24) include dimen-
sionally reduced near-horizon Dp-brane spacetimes for

which d ¼ pþ 1 and θ ¼ − ðd−4Þ2
6−d . With the boundary at

y ¼ 0, such metrics are no longer asymptotically AdS, but
our discussion can still be applied. We find in this case

v2E ¼ ð~η − 1Þ~η−1
~η~η

; ~η ¼ 2ð ~d − 1Þ
~d

: (10.25)

The null energy condition now reads [51]

~dθ ≤ 0; (10.26)

which implies either θ ≤ 0 or ~d ≤ 0. The former leads to
~d ≥ d and thus vE ≤ vð SÞE , while the latter is inconsistent
with small y describing UV physics. For examples coming
from Dp-branes, θ is clearly negative with d ≤ 6, while for
higher d the metric no longer describes a nongravitational
field theory.

C. vE from a Schwarzschild black hole
in Gauss-Bonnet gravity

In this subsection as a preliminary investigation of
the effect of higher derivative gravity terms, we compute
the vE from a Schwarzschild black hole in Gauss-Bonnet
gravity [52],

I ¼ 1

16πGN

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2

þ λ

2
L2ðR2 − 4RμνRμν þ RμνρσRμνρσÞ

�
: (10.27)
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We consider the following the Vaidya metric:

ds2 ¼
~L2

z2
ð−fðv; zÞdv2 − 2dvdzþ d~x2Þ (10.28)

with fðv < 0; zÞ ¼ 1, fðv > 0; zÞ ¼ hðzÞ, and [53,54]

~L2 ¼ a2L2; a2 ≡ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ

p
Þ;

hðzÞ ¼ a2

2λ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λ

�
1 −

z4

z4h

�s �
: (10.29)

Various thermodynamical quantities are given by

T ¼ a2

πzh
; s ¼ 1

4GN

~L3

z3h
; E ¼ 3

4
Ts: (10.30)

The entanglement entropy is obtained by extremizing the
action [55–58]

A ¼
Z

d3σ
ffiffiffi
γ

p ð1þ λL2RÞ; (10.31)

where γ is the induced metric on the extremal surface andR
is the intrinsic scalar curvature of the extremal surface. We
have also suppressed a boundary term which will not be
relevant for our discussion below.
As vE is shape independent, it is enough to examine the

extremal surface for a strip, whose induced metric can be
written as

ds2 ¼
~L2

z2
ðQdx2 þ d~y2Þ (10.32)

with

Q ¼ 1 − fv02 − 2v0z0;
ffiffiffi
γ

p ¼
~L3

z3
ffiffiffiffi
Q

p
;

R ¼ −
2

Q2 ~L2
ð3Qz02 þ zQ0z0 − 2Qzz″Þ; (10.33)

where primes denote differentiation with respect to x. We
need to extremize the action

A ¼ K
Z

R

0

dx

ffiffiffiffi
Q

p
z3

ð1þ λL2RÞ (10.34)

with

K ¼ ~L3Astrip: (10.35)

It is convenient to split the Lagrangian as

L ¼ L0 þ L1; L0 ¼
ffiffiffiffi
Q

p
z3

; L1 ¼ λL2

ffiffiffiffi
Q

p
z3

R:

(10.36)

Note that L0 depends on λ through hðzÞ. We focus on
the black hole region where equations of motion can be
written as

z0 þ hv0

z3
ffiffiffiffi
Q

p þOv ¼ const; (10.37)

∂x

�
v0

z3
ffiffiffiffi
Q

p
�

¼ 1

z3
ffiffiffiffi
Q

p
�
3
Q
z
þ 1

2
h0ðzÞv02

�
þOz; (10.38)

with

Ov ¼ −
∂L1

∂v0 þ ∂x

�∂L1

∂v0
�
; (10.39)

Oz ¼ −
∂L1

∂z þ ∂x

�∂L1

∂z0
�
− ∂2

x

�∂L1

∂z″
�
: (10.40)

To identify the linear regime, we look for a solution with

z ¼ zm ¼ const; v0 ¼ const; Q ¼ const:

(10.41)

One can check explicitly that
(1) Every term inOv contains at least a factor of z0 or z″.

It will thus contribute zero.
(2) Every term in Oz contains at least a factor of z0 or z″

or Q0. It will thus contribute zero.
So to find the value of zm and v0 we can simply ignore

L1, and the story is exactly the same as before except that
hðzÞ is now given by (10.29). That is, zm is determined by

zmh0ðzmÞ − 6hðzmÞ ¼ 0 (10.42)

and

Q ¼ −hðzmÞv02: (10.43)

We find

dA
dv

¼ K

ffiffiffiffi
Q

p
z3mv0

¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

p
z3m

(10.44)

and

vE ¼ z3h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

p
z3m

: (10.45)

Expanding in small λ, we thus have

vE ¼
ffiffiffi
2

p

3
3
4

−
3
1
4ffiffiffi
2

p λþOðλ2Þ: (10.46)

Entanglement entropy in Gauss-Bonnet gravity was studied
numerically in [59], and their results are consistent with
the above.
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While in principle λ can take both signs, in all known
examples λ appears to be positive [60]. We should also
note that in all known examples where the Gauss-Bonnet
term arises, there are probe branes and orientifolds
which backreact on the metric and give rise to additional
contributions at the same (or a more dominant) order.8 Thus
it seems one cannot draw a conclusion based on
(10.46) alone.

XI. SATURATION

In this section we consider the saturation time and critical
behavior in the case of continuous saturation. The basic
strategy was outlined in Sec. IV near (4.4)—for continuous
saturation, zt − zc → 0 as one approaches the equilibrium,
and one can expand R; t, and A in terms of small zt − zc.
Such an expansion also provides a simple diagnostic of
whether saturation is discontinuous. For continuous satu-
ration, t − ts must be negative in the limit zt − zc goes to
zero. If it is positive, then saturation is discontinuous, and
Eq. (4.4) does not give the saturation time.

A. Strip

We already saw in Sec. VIII B 1 that for Schwarzschild
gðzÞ and η ¼ 2n=d > 1 (which includes the case of
entanglement entropy for d ≥ 3) saturation is discontinu-
ous–at saturation time given by (8.18), ΓΣ jumps directly
from a near-critical extremal surface whose area grows
linearly in time, to one residing entirely in the black hole
and corresponding to equilibrium. Here we consider gen-
eral gðzÞ and n.
Let us start by supposing that saturation is continuous

with saturation time given by (4.4). In the large R limit, zb
is close to the horizon zh, and (4.4) has the leading behavior

ts ¼
1

h0ðzbÞ
logðzh − zbÞ þ � � � : (11.1)

In this limit zb can be found as in Appendix A [see (A1) and
(A4)], from which

ts ¼
1

cn
RþOðR0Þ; cn¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhjh0ðzhÞj

2n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πzhT
n

r
:

(11.2)

Next, introducing the expansion parameter ε,

zc ¼ zt

�
1 −

ε2

2n

�
; (11.3)

we find that t given by (3.20) has the expansion (see
Appendix 1 for details)

t − ts ¼ u1εþOðε2Þ þ � � � ; (11.4)

where

u1 ¼
1

2
gðzbÞ

�
zb

nh2ðzbÞF0ðzbÞ
−HðzbÞ

�
(11.5)

with

FðzbÞ≡
Z

1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−2n − 1

p zbffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzbyÞ

p ;

HðzbÞ≡
Z

1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzbyÞðy−2n − 1Þ

p zb
hðzbyÞ

: (11.6)

Note that u1 < 0 implies t < ts as zc → zt, as one expects
for continuous saturation, while u1 > 0 implies t > ts as
zc → zt, indicating that the saturation is discontinuous.
The sign of u1 as given in (11.5) is not universal and

depends on d, n, and gðzÞ. In the case of Schwarzschild
gðzÞ, for d ¼ 2 and n ¼ 1, u1 ¼ 0, which agrees with the
result of Sec. V C. For d ¼ 3; 4, we find that u1 < 0 for
n ¼ 1, but u1 > 0 for n > 1. Thus for Schwarzschild gðzÞ,
correlation functions in d ¼ 3; 4 have continuous satura-
tion, but a rectangular spacelike Wilson line and the
entanglement entropy for a strip region have discontinuous
saturation. For Reissner-Nordstrom gðzÞ and d ¼ 3; 4, u1
can have either sign for n ¼ 1 but again u1 > 0 for n > 1,
implying discontinuous saturation for Wilson lines and
entanglement entropy.
Meanwhile, for A given by (3.21)–(3.23), one finds the

small ε expansion (see Appendix 1)

ΔA − ΔAeq ∝ ε2; (11.7)

which for a generic continuous transition (i.e. one with
u1 < 0) gives

ΔAeq − ΔA ∝ ðts − tÞ2: (11.8)

In the language of phase transitions, such a quadratic
approach corresponds to mean-field behavior.
Note that for a given R, a solution which lies fully in the

back hole region exists only for t > tsðRÞ, so for a
discontinuous saturation the “genuine” saturation time

tð trueÞs is always larger than that given by (8.18). See
Fig. 19 for an explicit example.
To summarize, for Σ as a strip the saturation leading to

equilibrium is nonuniversal, with possibilities of both
discontinuous and continuous saturation. When the satu-
ration is continuous, one finds that ΔA approaches its
equilibrium value quadratically in ts − t irrespective of n.
In contrast, we will see below that for Σ as a sphere,
saturation is almost always continuous (except when
n ¼ 2), and there is a nontrivial n-dependent critical
exponent.

8See [61–63] for recent progress in computing contributions to
entanglement entropy from probe branes.
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B. Sphere

Again let us first assume that saturation is continuous.
Then from (4.4) and (A6), we find that in the large R limit

ts ¼
1

cn
R −

n − 1

4πT
logRþOðR0Þ; (11.9)

where cn was given earlier in (11.2). For entanglement
entropy we then have

tsðRÞ ¼
1

cE
R −

d − 2

4πT
logRþOðR0Þ; (11.10)

where cE is the dimensionless number

cE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhjh0ðzhÞj
2ðd − 1Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πzhT
d − 1

r
: (11.11)

To find the critical behavior during saturation we need to
solve for zðρÞ, which we accomplish by expanding about
the solution at equilibrium, z0ðρÞ. After a somewhat long
calculation (outlined in Appendix 2), we find that using the
expansion parameter ε defined by

ρc ¼ zcε; (11.12)

t given by (3.36) has the expansion

t − ts ¼
8<
:− 1

2

�
zb þ gðzbÞzb

hðzbÞ
�
b1
b2
þ I0

��
ε2 þ � � � n ¼ 2

− 1
2
zbε2 þ � � � n > 2

;

(11.13)

where b1; b2, and I0 are some constants which are defined
in Appendix 2. Thus for n > 2, saturation is always
continuous, while for n ¼ 2 it is model dependent.
Computing b1; b2; I0 in (11.13) explicitly, one finds that
the coefficient before ε2 is positive for Schwarzschild gðzÞ
(saturation is continuous), but becomes negative for
Reissner-Nordstrom gðzÞ at sufficiently large chemical
potential and for sufficiently large R (saturation is discon-
tinuous). Meanwhile, A given by (3.37) has the expansion

ΔA−ΔAeq ¼

8><
>:
K g2ðzbÞ

8hðzbÞε
4 logεþOðε4Þ n¼ 2

−K gðzbÞ
2ðn−2Þ

�
n−2
nþ2

þ gðzbÞ
4hðzbÞ

�
εnþ2þ�� � n> 2

:

We thus find

ΔAeq − ΔA ∝
�
−ðts − tÞ2 logðts − tÞ þ � � � n ¼ 2

ðts − tÞn2þ1 þ � � � n > 2
:

(11.14)

Characterizing continuous saturation with a nontrivial
scaling exponent

SðR;tÞ−SðeqÞðRÞ∝−ðts− tÞγ; ts− t≪leq; (11.15)

we thus find that for an n-dimensional extremal surface

γn ¼
nþ 2

2
: (11.16)

Note that the above exponent depends only on n and is
independent of the boundary spacetime dimension d. Also
note that in (11.14), the n ¼ 2 expression applies to cases
of continuous saturation. There is a logarithmic prefactor
by which the scaling barely avoids the “mean-field"
exponent γ ¼ 2. For d ¼ 2, only n ¼ 1 is possible and γ ¼
3
2
which was previously found in [46]. For entanglement

entropy, n ¼ d − 1, giving

γE ¼ dþ 1

2
: (11.17)

C. More on the saturation time

Let us now collect the results we have obtained so far on
saturation time. For a strip we showed in Sec. VIII B [see
(8.19)] that for zt ≫ z2m, the linear regime persists all the
way to discontinuous saturation, with saturation time in the
large R limit given by
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FIG. 19 (color online). Plots of t − ts and A −As as functions
of ε in (11.3), with d ¼ 4 Schwarzschild, n ¼ 3, and zb ¼ 0.8. ts
is the time when continuous saturation would have occurred, but
true saturation tð trueÞs occurs at the dashed line, for which
tð trueÞs > ts.
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ts ¼
R
vn

þ � � � ; vn ¼
�
zh
zm

�
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−hðzmÞ
p

: (11.18)

This happens, for example, for Schwarzschild
with η ¼ 2n

d > 1.
For continuous saturation we found earlier in this section

that up to logarithmic corrections, for both a strip and a
sphere

ts ¼
R
cn

þ � � � ; cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zhjh0ðzhÞj

2n

r
: (11.19)

It is tempting to speculate that the above result applies to
continuous saturation for all shapes.
For Schwarzschild and RN black holes cn is given by

cð SÞn ¼ 1=
ffiffiffi
η

p
; cð RNÞn ¼

ffiffiffiffiffiffiffiffi
u=η

p
≤ cðSÞn : (11.20)

In particular for entanglement entropy we have

cðSÞE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
2ðd − 1Þ

s
: (11.21)

It can readily be checked that for η > 1

vð SÞn < cð SÞn < 1: (11.22)

For a sphere, Eq. (11.22) may be understood heuristically
from the tsunami picture of Fig. 17—the volume of an
annulus region of unit width becomes smaller as the
tsunami advances inward.
For η ¼ 1

vð SÞd
2

¼ cð SÞd
2

¼ 1: (11.23)

As discussed earlier for n ¼ 1 in d ¼ 2, the saturation is
continuous, but is discontinuous for n ¼ 2 in d ¼ 4. In the
latter case the “true” saturation time should be greater than
(8.18) which at leading order in the large R expansion gives
(11.19). Numerical results suggest that the difference is
Oð1Þ in the large R limit, and thus at leading order the
“true” saturation time is still given by tð trueÞs ¼ R.
For η < 1, as in the case of equal-time correlation

functions in d ¼ 3; 4, the saturation is continuous and

cð SÞn > 1: (11.24)

That ts < R has been observed before numerically in e.g.
[4,13]. Recall that in this case A appears in an exponential
with a minus sign. Since cn does not correspond directly to
any physical propagation, there is no obvious constraint on
it from causality.

XII. MEMORY LOSS REGIME

In this section, we examine implications of the critical
extremal surface for the evolution of AðR; tÞ for a strip and
a sphere in the regime ts ≫ ts − t ≫ zh. In ð1þ 1Þ
dimensions, we saw in Sec. V D that in this regime the
difference between AðR; tÞ and the equilibrium value
AeqðRÞ is a function of tsðRÞ − t ¼ R − t only and not
of R and t separately. In other words, at late times in the
evolution, the size R has been “forgotten.” We emphasize
that since ts ∝ R → ∞ in the large R limit, such memory
loss can happen long before saturation.
We will generalize this result to higher dimensions. At a

heuristic level the existence of such a scaling regime is
expected, as for large R and t, ðzt; zcÞ very closely follows
the critical line z�cðztÞ as time evolves. Thus in the limit
R; t → ∞ the system is controlled by a single parameter
along the line z�cðztÞ rather than two separate variablesR and
t. Recall that in the ð1þ 1Þ-dimensional story in Sec. VD, ε,
parametrizing the distance to the critical line (5.29) [or
(7.19)], gave the leading large l and τ behavior, while ϕ in
(5.29) [or zt in (7.19)], parametrizing the location on the
critical line, mapped to l − τ or τs − τ. In the limit l; τ → ∞
with their difference finite, ε drops out to leading order and
A −Aeq is determined by a single parameter ϕ only.
In general dimensions, the story becomes technically

much more involved. For example, for Σ as a sphere, even
determining the scaling variable [the analogue of l − τ
in (5.35)] is a nontrivial challenge. We will leave the
explicit scaling functions [the analogue of λ in (5.36)],
which requires working out the Oð1Þ counterparts of
(5.31)–(5.33), for future investigation.

A. Strip

For definiteness we will restrict our discussion to
Schwarzschild. With a given R, as t increases, zt decreases.
For η > 1, as discussed in Sec. VIII B zt remains large
compared to the log ε term in (8.7) all the way to saturation,
in which case the linear regime persists to the saturation. But
this is no longer so for η ≤ 1. For η ¼ 1, in Sec. VIII B 2 we
showed that before saturation zt will become comparable to
zh and the system will eventually exit the linear growth
regime. For η < 1, for which the linear regime appears not to
exist, from discussion of Sec. XI A, we saw, at least for
d ¼ 3; 4, the saturation is continuous which implies that zt
again has to become comparable to zh before saturation.
We will now focus on η ≤ 1. We show below that for

η ¼ 1 there is another scaling regime prior to the saturation
when zt is Oð1Þ (i.e. no longer scales with R).
We again consider zc ¼ z�cð1 − εÞ; ε → 0. Following a

discussion similar to that of Sec. VIII A we find that

t ¼ −
Eðz�cÞ

hðzmÞ
ffiffiffiffiffiffi
H2

p log εþOð1Þ; (12.1)
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R ¼ −
1ffiffiffiffiffiffi
H2

p log εþOð1Þ; (12.2)

1

~K
ΔA ¼ −

znt
z2nm

ffiffiffiffiffiffi
H2

p log εþOð1Þ: (12.3)

Note that zt is now considered to be Oð1Þ, which varies
with R; t, and both z�c; zm are functions of zt.
For Schwarzschild with hðzÞ ¼ 1 − zd

zdh
, we find

from (7.5)

z2nt ¼ dzdþ2n
m

2nzdh þ ðd − 2nÞzdm
(12.4)

and from (7.6)

Eðz�cÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hðzmÞ

�
z2nt
z2nm

− 1

�s
¼ hðzmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðη−1 − 1Þ zdm
zdh

q :

(12.5)

For η ¼ 1, we then have

znt ¼
z2nm
znh

; Eðz�cÞ ¼ hðzmÞ: (12.6)

Using these equations in (12.1)–(12.3) we find that

t ¼ −
1ffiffiffiffiffiffi
H2

p log εþOð1Þ; (12.7)

R ¼ −
1ffiffiffiffiffiffi
H2

p log εþOð1Þ; (12.8)

1

~K
ΔA ¼ R

znh
þOð1Þ: (12.9)

Note that Oð1Þ terms are evaluated in the ε → 0 limit zc →
z�cðztÞ and therefore are functions only of zt. In other words,

R − t ¼ χðztÞ; ΔA ¼ ΔAeq þ αðztÞ as ε → 0;

(12.10)

where χ and α are some functions whose explicit form we
have not determined for general n, and in the second
equation we have used (2.33). We thus conclude that for
t; R ≫ R − t ≫ zh, AðR; tÞ has the scaling behavior

AðR; tÞ −AeqðRÞ ¼ λðR − tÞ þ � � � ; (12.11)

where λðxÞ ¼ αðχ−1ðxÞÞ and � � � are terms suppressed in the
large R; t limit. Here we will not attempt to find these
functions explicitly for general d. For d ¼ 2, functions χ, α,
and λ are given in (5.34)–(5.36). The above discussion does
not apply near saturation when R − t≲OðzhÞ. Recall from

Sec. V C that in d ¼ 2 (n ¼ 1) saturation is continuous. But
in d ¼ 4 with n ¼ 2, the results in Sec. XI A show that
saturation is discontinuous. In both cases the saturation
time is given by ts ¼ R for large R and thus (12.11) can
also be written as

AðR; tÞ −AeqðRÞ ¼ λðts − tÞ þ � � � : (12.12)

For η < 1, from (12.1)–(12.3) we find that

R −
hðzmÞ
Eðz�cÞ

t ¼ Oð1Þ; ΔA
~K

¼ znt
z2nm

RþOð1Þ; (12.13)

but in this case from (12.4) and (12.5) the prefactor hðzmÞ
Eðz�cÞ

before t as well as the prefactor before R on the right side of
the second equations depends on zt. Thus a scaling regime
does not appear to exist.

B. Sphere

We now consider Σ being a sphere. Since the discussion
is rather involved, here we only outline the basic steps and
final results, leaving details to Appendix C.
The basic strategy is the same as in previous sections; we

consider zc close to the critical line,

zc ¼ z�cð1 − εÞ; ε ≪ 1; (12.14)

and expand the quantities t, R, andA in ε. In contrast to the
linear regime, where R ≫ t ∼ zhj log εj ≫ zh and we
expressed all quantities in a double expansion of 1=R
and ε, here we have instead

R → ∞; − log ε ∼OðRÞ → ∞; zt; ρc; z�c ∼Oð1Þ:
(12.15)

That is, the evolution of the extremal surface happens
largely after the surface has entered the black hole region.
We denote the critical extremal surface for zc ¼ z�c as

z�ðρÞ. As discussed earlier in Sec. VII B, z� asymptotes to
the horizon zh for sufficiently large ρ. In the regime of
zt ∼ z�c, an example of z� was given in Fig. 11. More
explicitly, for large ρ ≫ zt we can write z� as (see
Appendix C for more details)

z�ðρÞ ¼ zh þ χ�ðρÞ; (12.16)

where χ� has the asymptotic behavior

χ�ðρÞ ¼
α

ρn−1
þOðρ−nÞ; ρ ≫ ρc (12.17)

with α some constant.
With (12.14), we can expand solution z about z�,

zðρÞ ¼ z�ðρÞ − εz1ðρÞ þOðε2Þ: (12.18)
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At the shell z1 satisfies the boundary conditions

z1ðρcÞ ¼ z�c; z10ðρcÞ ¼
ρc
z�c

�
1 −

1

2
gðz�cÞ þ

1

2
z�cg0ðz�cÞ

�
;

(12.19)

which can be obtained from the matching conditions
discussed in Sec. III B. Focusing on large ρ for which
z� asymptotes to the horizon, we have

zðρÞ ¼ zh þ χ�ðρÞ − εz1ðρÞ þOðε2Þ: (12.20)

The equation for z1 can be obtained by inserting (12.20)
into (3.35) and expanding in ε. Because of hðzhÞ ¼ 0, this
expansion differs depending on the relative magnitudes of
χ� and εz1, and as a result, the near-horizon region for z can
be further subdivided into three regions in which z1 can
have distinct behavior (see Appendix C for details):
(1) Region I: χ� ≫ εz1. In this region, z is well

approximated by z� and approaches the horizon
from the inside. Solving for z1, we find it has the
leading large ρ behavior

z1ðρÞ ¼ A1eγnρρ−βnð1þOðρ−1ÞÞ; (12.21)

where

βn ¼ n−1þ b1
2γn

; b1¼ δn;2
jEjðh2−h1Þffiffiffiffiffi

h1
p : (12.22)

Here A1ðρcÞ is a positiveOð1Þ constant determined by
the boundary conditions (12.19), and γn, h1;2 are some
constants given in (C8) and (C4). Equation (12.21)
applies in the region

α

ρn−1
≫ εA1eγnρρ−βn ; (12.23)

which translates into

ρc ≪ ρ ≪ −
1

γn
log εþ b1

2γ2n
log log

1

ε
þOð1Þ þ � � � ;

(12.24)

which, when written using R [see (12.30) below], is

ρc ≪ ρ ≪ R −
1

γn

�
n − 1 −

b1
2γn

�
logRþOð1Þ:

(12.25)

(2) Region II: χ� ∼ εz1. Since z1 grows exponentially
with ρ, at a certain point εz1 surpasses χ� and z
crosses the horizon. Close to this crossing χ� and εz1
are comparable and need to be treated on equal
ground, making the equation for z1 complicated.

(3) Region III: χ� ≪ εz1 ≪ 1. In this region, z1 has
grown sufficiently large that it dominates over χ� and
has leading large ρ behavior

z1ðρÞ ¼ A2ρ
−ðn−1Þeγnρð1þOðρ−1ÞÞ (12.26)

with A2ðρcÞ a positive Oð1Þ constant. The domain of
the region is

1

ρn−1
≪ εz1 ≪ 1 (12.27)

or more explicitly

−
1

γn
logε≪ ρ≪−

1

γn
logεþn−1

γn
loglog

1

ε
: (12.28)

Note that εz1 should become Oð1Þ when ρ ≈ R, and
zðρÞ then quickly deviates from the horizon to reach
the boundary, i.e.

εz1ðRÞ ∼Oð1Þ; (12.29)

which leads to

− log ε ¼ γnR − ðn − 1Þ logRþOð1Þ: (12.30)

This relation can be established rigorously by care-
fully matching (12.26) with an expansion of z near the
boundary following techniques developed in [42].
Using (12.30), we can rewrite (12.27) as

R −
n − 1

γn
logR ≪ ρ ≪ R: (12.31)

Note that for n > 2, b1 ¼ 0 in (12.22), and the leading
behavior (12.21) and (12.26) in regions I and III match up
to an overall constant factor. Consistently, the domain of
the regions (12.25) and (12.31) are adjacent to each other,
i.e. the width of region II is Oð1Þ as ε → 0 or equivalently,
R → ∞. In contrast, for n ¼ 2, b1 ≠ 0 so that the powers of
ρ in (12.21) and (12.26) do not match, and region II should
be of width OðlogRÞ.9
One can proceed to use z1 obtained as above in the three

regions to calculate the boundary quantities t (3.36) and A
(3.37) (see Appendix C for details). We find that for n > 2

t ¼ tsðRÞ þOð1Þ; (12.32)

where tsðRÞ is the saturation time and was given before in
(11.9), and

9This is evidently the case when b1 < 0, for example for
Schwarzschild hðzÞ. However, b1 can also be positive, for
example for Reissner-Nordstrom hðzÞ at a sufficiently large
chemical potential. When b1 is positive, even though naively
it appears that (12.25) and (12.31) overlap with each other, it is
likely that the width of region II is still OðlogRÞ in order for the
exponent of ρ to evolve from that of (12.21) to that of (12.26).
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ΔA − ΔAeq ¼ Oð1Þ: (12.33)

Working in the ε → 0 limit, the Oð1Þ terms in (12.32) and
(12.33) can be functions of zt only. Eliminating the zt
dependence between (12.32) and (12.33), we find the
scaling behavior

Aðt; RÞ −Aeq ¼ −aeqλðtsðRÞ − tÞ (12.34)

for some function λ. In (12.34) we have included a prefactor
aeq as AeqðRÞ ∝ aeq and a minus sign, so that λ is positive
and has the dimension of volume enclosed by Σ. Finding
the explicit form of λ requires computing the Oð1Þ terms in
(12.32) and (12.33), which is a rather intricate task and will
not be attempted here.
For n ¼ 2 (which gives the entanglement entropy in

d ¼ 3), we cannot rule out a possible additional logR term
in (12.32), due to complications in region II mentioned
earlier. Thus we do not yet have a clean answer in that case.

C. Memory loss

Let us again specialize to the case of entanglement
entropy with n ¼ d − 1. Given that SeqðRÞ ¼ VΣseq, one
can interpret λ in (12.34) as the volume which has not yet
been entangled. Equation (12.34) then implies that the
“left-over” volume depends only on the difference ts − t
and not on R and t separately. In other words, at late times
of evolution, the size R has been forgotten. We again
emphasize that with (12.34) valid for ts ≫ ts − t ≫ leq,
such memory loss can happen long before saturation.
Note that the existence of the memory loss regime itself

is not related to the tsunami picture discussed earlier.
However, the tsunami picture does lend a natural geometric
interpretation to the regime as the memory loss of the wave
front of the entanglement tsunami. It is tempting to
speculate that due to interactions among different parts
of the tsunami wave front, for a generic surface Σ in the
limit of large R, the memory of both the size and the shape
of Σ could be lost during late times in the evolution. See

Fig. 20 for a cartoon. It would be interesting to understand
whether this indeed happens.
If such “memory loss” as indicated in Fig. 20 indeed

occurs, we expect that in the infinite size limit, the space of
all possible Σ separates into different basins of attraction,
defined by various attractors (or “fixed points”) such as the
sphere and strip. For example, for a smooth compact Σ, at
late times the wave front of the tsunami may approach that
of the sphere, while for an elongated surface Σ with
topology that of a strip, it may approach that of the strip.
This would also imply that the saturation behavior for
generic Σ could be classified using those of the fixed points.

XIII. CONCLUSIONS AND DISCUSSIONS

In this paper we considered the evolution of entangle-
ment entropy and various other nonlocal observables
during equilibration, in a class of quenched holographic
systems. In the bulk the equilibration process is described
by a Vaidya geometry, with different observables having a
unified description as functions of the area of extremal
surfaces of different dimensions n. We were able to derive
general scaling results for these observables without using
the explicit bulk metric. Some of these lead to universal
behavior in the boundary theory.
It is important to keep in mind that while the entangle-

ment entropy is proportional to the area, for other observ-
ables the area appears in an exponential with a minus sign.
So the boundary interpretation of the evolution of A could
be very different. We also see interesting differences in the
evolution ofA for different n. For example, there appears to
be no linear evolution for n < d

2
, which includes correlation

functions in d > 2. See Tables I and II for lists of the time
dependence of various observables in d ¼ 3 and d ¼ 4.
In the rest of this section we discuss some future

directions, using language for entanglement entropy.

A. More general equilibration processes

In this paper we restricted our discussion to the equili-
bration following a global quench. It is interesting to
consider more general equilibration processes, in particular
those with inhomogeneous or anisotropic initial states (see
[64–66] for recent related work).
There are reasons to believe some of our results may

apply to these more general situations. In particular, an
important feature of the linear growth (10.3) is that the
speed vE characterizes properties of the equilibrium state,
as it is solely determined by the metric of the black hole.
This highlights the local nature of entanglement propaga-
tion. At corresponding times, locally, the system has
already achieved equilibrium, although for large regions
nonlocal observables such as entanglement entropy remain
far from their equilibrium values. Thus vE should be
independent of the nature of the initial state, including
whether it was isotropic or homogeneous. Similarly, the

FIG. 20 (color online). A cartoon picture for late-time memory
loss. The (hypothetical) tsunami picture discussed in Sec. X can
be used to visualize the memory loss regime—for a wide class of
compact Σ, in the limit of large size, at late times the wave front
may approach that of a spherical Σ.

LIU AND SUH PHYSICAL REVIEW D 89, 066012 (2014)

066012-34



memory loss regime occurs long after a system has
achieved local equilibration, and we again expect that it
should survive more general initial states.
The pre-local-equilibration stage is likely sensitive to the

nature of initial states, including the value of the sourcing
interval δt. Nevertheless, that the early growth (6.25) is
proportional to the energy density is consistent with
other recent studies of the entanglement entropy of excited
states [67–70].
Finally with a nonzero sourcing interval δt, we expect

the wave front of “entanglement tsunami” to develop a
finite spread, but the picture of an entanglement wave that
propagates may still apply as long as δt is much smaller
than the size of the region one is exploring. If δt is
comparable to or larger than the local equilibration scale
leq, the pre-local-equilibration and saturation regimes
likely can no longer be sharply defined.

B. Entanglement growth

It is interesting to compare the growth of entanglement
entropy among different systems. For this purpose we need
a dimensionless quantity in which the system size or total
number of degrees of freedom has been factored out, since
clearly for a subsystem with more degrees of freedom the
entanglement entropy should increase faster. In [21],
motivated by the linear growth (10.3) we introduced a
dimensionless rate of growth

RΣðtÞ≡ 1

seqAΣ

dSΣ
dt

: (13.1)

In the linear regime,RΣ is a constant given by vE, while in
the pre-local-equilibration regime t ≪ leq, from (6.25),

RΣðtÞ ¼
2π

d − 1

Et
seq

(13.2)

grows linearly with time. In Fig. 21 we give numerical plots
of RΣ for some examples.
In all explicit examples we studied, it appears that after

local equilibration (i.e. after the linear growth regime has
set in), RΣ monotonically decreases with time. Given that
we also found earlier that vE appears to have an upper
bound at the Schwarzschild value (10.4), it is tempting to
speculate that after local equilibration

RΣðtÞ ≤ vð SÞE : (13.3)

Before local equilibration, the behavior ofRΣ appears to
be sensitive to the initial state. In particular for a RN black

hole with Σ a sphere or a strip, we findRΣ can exceed vð SÞE
near leq (see Fig. 21). Also, for a highly anisotropic initial
state,RΣ could for a certain period of time resemble that of
a ð1þ 1Þ-dimensional system. As in ð1þ 1Þ dimensions

vðSÞE ¼ 1, it then appears at best one can have

RΣðtÞ ≤ 1: (13.4)

It is clearly of great interest to explore more systems to
see whether the inequalities (10.4), (13.3), and (5.34) are
valid, or to find a proof.

TABLE I. Time dependence of nonlocal variables in d ¼ 3 for Schwarzschild. # is used to denote some positive coefficient. To lowest
approximation in the large R limit, ts ∝ R, with coefficients as follows: for the equal-time two-point function, ts=R ¼ ffiffiffiffiffiffiffiffi

2=3
p

; for the
rectangular Wilson loop and strip EE, ts=R ¼ 24=3=31=2; and for the circular Wilson loop and sphere EE, ts=R ¼ 2=

ffiffiffi
3

p
.

t ≪ zh zh ≪ t ≪ R zh ≪ ts − t ≪ ts Saturation

Equal-time two-point function Gvac exp ð−#t3Þ No linear regime No scaling Geq expð#ðts − tÞ2Þ
Wilson loop (rectangular) Wvac expð−#t2Þ Wvac expð−#tÞ Linear regime persists Discontinuous
Wilson loop (circular) Wvac expð−#t2Þ Wvac expð−#tÞ Undetermined Weq exp ð−#ðts − tÞ2 logðts − tÞÞ
EE (strip) Svac þ #t2 Svac þ #t Linear regime persists Discontinuous
EE (sphere) Svac þ #t2 Svac þ #t Undetermined Seq þ #ðts − tÞ2 logðts − tÞ

TABLE II. Time dependence of nonlocal variables in d ¼ 4 for Schwarzschild. # is used as above and the functions λ and ~λ are those
from (12.11) and (12.34). The saturation times are as follows: for the equal-time two-point function, ts=R ¼ 1=

ffiffiffi
2

p
; for the rectangular

and circular Wilson loops, ts=R ¼ 1; for strip EE, ts=R ¼ 33=4=
ffiffiffi
2

p
; and for sphere EE, ts=R ¼ ffiffiffiffiffiffiffiffi

3=2
p

.

t ≪ zh zh ≪ t ≪ R zh ≪ ts − t ≪ ts Saturation

Equal-time two-point function Gvac exp ð−#t4Þ No linear regime No scaling Geq expð#ðts − tÞ2Þ
Wilson loop (rectangular) Wvac expð−#t3Þ Wvac expð−#tÞ Weq exp ð#λðts − tÞÞ Discontinuous
Wilson loop (circular) Wvac expð−#t3Þ Wvac expð−#tÞ Undetermined Weq exp ð−#ðts − tÞ2 logðts − tÞÞ
EE (strip) Svac þ #t2 Svac þ #t Linear regime persists Discontinuous
EE (sphere) Svac þ #t2 Svac þ #t Seq − #~λðts − tÞ Seq − #ðts − tÞ5=2
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If true, the inequalities (10.4), (13.3), and (5.34) may be
considered as field theory generalizations of the small
incremental entangling conjecture [71] for ancilla-assisted
entanglement rates in a spin system, which was recently
proved in [72]. The conjecture states that dSdt ≤ cjjHjj logD
where S is the entanglement entropy between subsystems
aA and bB, jjHjj is the norm of the Hamiltonian H that
generates entanglement between A and B (a, b are ancillas),
D ¼ minðDA;DBÞ where DA is the dimension of the
Hilbert space of A, and c is a constant independent of
D. In our case, the Hamiltonian is local and thus couples
directly only the degrees of freedom near Σ—the analogue
of logD is proportional to AΣ, and the entropy density seq in
(13.1) can be seen as giving a measure of the density of
excited degrees of freedom.

C. Tsunami picture: Local propagation of entanglement

In [21] and Sec. X we discussed that the time evolution
of SΣðtÞ suggests a picture of an entanglement wave front
propagating inward from the boundary of the entangled
region. See Fig. 17. We stress that at the level of our
discussion so far this is merely a hypothetical picture to
explain the time dependence of SΣðtÞ. As mentioned
earlier, from the field theory perspective, the existence
of such an entanglement wave front may be understood
heuristically as resulting from evolution under a local
Hamiltonian. It would be very interesting to see whether
it is possible to “detect” such local propagation using other
observables. In the free-streaming quasiparticle model of
[22], the picture of an entanglement tsunami does emerge at
early stages of time evolution in terms of propagating
quasiparticles. But as the system evolves, in particular
toward the late stage, the picture becomes murkier.
On the gravity side it should be possible to make the

tsunami picture more precise. It is tempting to interpret the
black hole and pure AdS regions of the extremal surface as,
respectively, corresponding to parts covered and not yet
covered by the tsunami wave. The two bulk regions of the
extremal surface are separated sharply at the collapsing
shell and their respective sizes are controlled by the tip of
the surface ztðtÞ and its intersection with the shell zcðtÞ. It
should be possible to describe the motion of the tsunami
wave front in terms of these data.

D. Application to black holes

One striking feature of our results, which was also
emphasized in [25,73] in different contexts, is that the
growth of entanglement entropy as well as the evolution of
other nonlocal observables, such as correlation functions
andWilson loops, is largely controlled by geometries inside
the horizon of the collapsing black hole. In particular, the
linear growth (10.1)–(10.3) is controlled by a constant-z
hypersurface inside the horizon, while the memory loss
regime discussed in Sec. XII B is controlled by an extremal
surface which asymptotes to the horizon from the inside. In
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FIG. 21 (color online). RΣ for Σ a sphere or a strip, for
Schwarzschild and RN black holes. We use units in which the
horizon is at zh ¼ 1. Upper: d ¼ 3 and Σ a sphere. The dot-
dashed curves are for the Schwarzschild black hole with R ¼ 7,
13, and 50, respectively (larger values of t for the R ¼ 13; 50
curves are not shown due to insufficient numerics), with the top
horizontal dashed line marking vð SÞE . Red, green, and blue
curves are for the RN black hole with ðu ¼ 0.5; R ¼ 20Þ,
ðu ¼ 0.2; R ¼ 50Þ, and ðu ¼ 0; R ¼ 50Þ, respectively, and the
two lower dashed horizontal lines mark vE for u ¼ 0.5 and 0.2.
Middle: For d ¼ 3 and Σ a strip. The dot-dashed curves are for
the Schwarzschild black hole with R ¼ 7; 12; 15. It is interest-
ing to note their evolution is essentially identical with the
exception of different saturation times. The visible end of the
dot-dashed curves coincides with discontinuous saturation
for R ¼ 7. For R ¼ 12 and 15 the curves have not been
extended to saturation due to insufficient numerics. The red,
green, and blue curves are for the RN black hole with
ðu ¼ 0.5; R ¼ 5Þ, ðu ¼ 0.5; R ¼ 6Þ, and ðu ¼ 0; R ¼ 6Þ, re-
spectively. The u ¼ 0.5 curve ends at saturation, but for u ¼
0.2 and 0, saturation happens at larger values of t than shown.
Lower: For d ¼ 4 and Σ a sphere. The color and pattern
scheme is identical to the upper plot, but the Schwarzschild
curves are at R ¼ 7, 12, and 50, respectively, and u ¼ 0.5, 0.2,
0 curves are all at R ¼ 20.
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contrast, for a static eternal black hole an extremal surface
whose boundary is at a fixed time always lies outside the
horizon [74].10

The relation between entanglement growth and certain
spatial hypersurfaces inside the horizon is tantalizing. In
particular, possible bounds on vE (10.2) and the entangle-
ment growth rate (13.1) impose nontrivial constraints on
the geometry inside the horizon.
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APPENDIX A: EQUILIBRIUM BEHAVIOR OF
EXTREMAL SURFACES

Here we briefly review the behavior of ΓΣ in a black hole
geometry, corresponding to the equilibrium behavior of
various boundary observables. In a black hole geometry, an
extremal surface always lies outside the horizon [74], i.e.
denoting the location of the tip of ΓΣ by zb, zb < zh. In our
regime of interest R ≫ zh, zb is very close to the horizon,
and we will write

zb ¼ zhð1 − εÞ; ε ≪ 1: (A1)

1. Strip

With Σ a strip, R andA in the black hole geometry can be
obtained from (3.19) and (3.23) by setting E ¼ 0 (zc ¼ zt)
and zt ¼ zb,

R ¼
Z

zb

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2nbz2n − 1Þ

q ; (A2)

Aeq ¼ znb ~K
Z

zb

0

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2nbz2n − 1Þ

q : (A3)

Thus we find that in the large R limit, with zb given
by (A1),

R¼−
1

γn
logεþOð1Þ; γn≡ 1

zh

ffiffiffiffiffiffiffiffiffiffi
2nh1

p
;

h1≡−zhh0ðzhÞ; (A4)

and

Aeq ¼ −
~K

znhγn
log εþOð1Þ ¼ LnVstrip

znh
þOðR0Þ; (A5)

where Vstrip ¼ AstripR is the volume enclosed by the strip Σ.

2. Sphere

For Σ as a sphere, the story is more complicated.
One needs to solve the differential equation (3.35) with
E ¼ 0 to find the relation between zb and R. In the large R
limit, this can be done by matching an expansion near the
horizon with an expansion near the boundary [42]. With zb
given by (A1) one finds [42]

− log ε ¼ γnR − ðn − 1Þ logRþOðR0Þ; (A6)

and zðρÞ can be written near the horizon as

zðρÞ ¼ zh − εz1ðρÞ þOðε2Þ (A7)

with

z1ðρÞ ¼ Aeγnρρ−ðn−1Þð1þOðρ−2ÞÞ; (A8)

where A is some constant. Meanwhile, one finds that the
leading contribution to the area of ΓΣ, given by (3.39) with
E ¼ ρc ¼ 0, comes from near the horizon, and thus

Aeq ¼ K
Z

R

0

dρ
ρn−1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

r

¼ KRn

nznh
þ � � � ¼ VsphereLn

znh
þ � � � ; (A9)

where � � � denotes terms lower in the large R expansion.
This behavior for a general shape Σ has been proved

in [42].

APPENDIX B: DETAILS IN THE
SATURATION REGIME

1. Strip

Near saturation we expect both zc and zt of ΓΣ to be close
to zb, where zb is the tip of the equilibrium ΓΣ with the
same boundary Σ, i.e. the same R. We thus write

zc ¼ zt

�
1 −

ε2

2n

�
; zt ¼ zb

�
1þ δ

2n

�
; (B1)

where both ε and δ are small parameters. Then from (3.13)
and (3.15) we have

E ¼ −
1

2
gðztÞεþOðε3Þ: (B2)

First, we determine the relation between δ and ε by
equating (3.19) with (A2). For this purpose it is convenient
to write (A2) as

10While for correlation functions separated in the time direc-
tion it is possible to relate the geometry inside the horizon to
certain features of boundary correlation functions via analytic
continuation [75–80], the relation is less direct.
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R ¼ FðzbÞ; FðzbÞ≡
Z

1

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−2n − 1

p zbffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzbyÞ

p : (B3)

To expand (3.19) in terms of zt − zb and E, we write it as

R ¼ A1 − A2 þ A3 þ FðztÞ; (B4)

where

A1 ¼
Z

zt

zc

dzffiffiffiffiffiffiffiffiffiffiffiffi
z2nt
z2n−1

q ; A2 ¼
Z

zt

zc

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2ntz2n−1ÞþE2

q ; (B5)

and

A3 ¼
Z

zt

0

dz

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðz2ntz2n − 1Þ þ E2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðz2ntz2n − 1Þ
q

1
A: (B6)

For small ε we find that A1, A2, and A3 have the expansions

A1 ¼
ztε
n

ð1þOðε2ÞÞ; A2 ¼
ztε
n

ð1þOðε2ÞÞ; (B7)

and

A3 ¼ −
1

2n
ztgðztÞ
hðztÞ

εþOðε2Þ; (B8)

where in (B7) we used hðzÞ ¼ 1 − gðzÞ. Then equating
(B3) and (B4), we have

δ ¼ gðzbÞ
hðzbÞF0ðzbÞ

εþOðε2Þ: (B9)

Next, let us look at (3.20) which can be written as

t − ts ¼ B1 þ B2 − B3; (B10)

where

B1 ¼
Z

zc

zb

dz
hðzÞ ; B2 ¼

Z
zt

0

dz
hðzÞ

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2ntz2n − 1Þ þ E2

q ;

B3 ¼
Z

zt

zc

dz
hðzÞ

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2ntz2n − 1Þ þ E2

q : (B11)

The integrals can be expanded in small ε as

B1 ¼
1

hðzbÞ
zb
2n

δþOðε2Þ; B2 ¼ HðztÞEþOðε2Þ;

B3 ¼
E

hðzbÞ
ztε
n

þOðε3Þ; (B12)

with

HðztÞ≡ zt

Z
1

0

dy
hðztyÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðztyÞðy−2n − 1Þ

p : (B13)

Since B3 ∼Oðε2Þ, we find

t − ts ¼ u1εþOðε2Þ; (B14)

where

u1 ¼
1

2
gðzbÞ

�
zb

nh2ðzbÞF0ðzbÞ
−HðzbÞ

�
: (B15)

Now let us look at the area of ΓΣ. The area of the
equilibrium ΓΣ (A3) can be written as

1

~K
Aeq ¼GðzbÞ; GðzbÞ≡znb

Z
zb

0

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðz2nbz2n−1Þ

q :

(B16)

The area of ΓΣ itself (3.21) can be written as

1

~K
A ¼ C1 − C2 þ C3 þ GðztÞ; (B17)

where

C1 ¼ znt

Z
zt

zc

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffiffiffi
z2nt
z2n − 1

q ; (B18)

C2 ¼ znt

Z
zt

zc

dz
1

z2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðzÞðz2ntz2n − 1Þ þ E2

q ; (B19)

C3¼ znt

Z
zt

0

dz
z2n

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞðz2ntz2n−1ÞþE2

q −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðzÞðz2ntz2n−1Þ
q

1
A:

(B20)

To leading order the expansion of the above quantities is the
same as that for (B5) and (B6),

C1 ¼
z1−nt ε

n
þOðε3Þ; C2 ¼

z1−nt ε

n
þOðε3Þ;

C3 ¼ −
1

2n
z1−nt gðztÞ
hðztÞ

εþOðε2Þ: (B21)

Thus we find that

1

~K
ðA−AeqÞ¼

z1−nb gðzbÞ
2nhðzbÞ

�
znbG

0ðzbÞ
F0ðzbÞ

−1

�
εþOðε2Þ: (B22)

Note that while GðzbÞ is a divergent integral (i.e. depends
on a cutoff at small z), G0ðzbÞ should have a well defined
limit when the cutoff is taken to zero. In fact, in (B22) the
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coefficient of the OðεÞ term is identically zero, which can
be seen by writing G0ðaÞ and F0ðaÞ as

anG0ðaÞ ¼ lim
δ→0

�
−n

Z
1−δ

0

yn

ð1 − y2nÞ32 ffiffiffiffiffiffiffiffiffiffiffiffi
hðayÞp

þ y1−nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðayÞð1 − y2nÞ

p 				
1−δ

�
;

F0ðaÞ ¼ lim
δ→0

�
−n

Z
1−δ

0

dy
yn

ð1 − y2nÞ32 ffiffiffiffiffiffiffiffiffiffiffiffi
hðayÞp

þ y1þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðayÞð1 − y2nÞ

p 				
1−δ

�
; (B23)

from which we confirm that

anG0ðaÞ ¼ F0ðaÞ (B24)

for any hðzÞ. However, one can check that theOðε2Þ term in
(B22) (whose coefficient is rather long and which we will
not give here) is generically nonzero.

2. Sphere

Let z0ðρÞ correspond to the equilibrium ΓΣ and denote
the location of its tip as zb. Then near saturation, zðρÞ,
corresponding to the black hole portion of the actual ΓΣ,
can be obtained by perturbing z0ðρÞ,

zðρÞ ¼ z0ðρÞ þ δz1ðρÞ þ δ2z2ðρÞ þ � � � ; (B25)

where δ is a small parameter which we will obtain precisely
later on. Note that near the boundary, zn should satisfy the
boundary condition

znðRÞ ¼ 0; n ¼ 1; 2;…: (B26)

They should also satisfy the boundary condition (3.14) at
the shell, order by order. For small δ, zc and zt are close to
zb, and ρc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2c

p
and E are all small. It is convenient

to introduce another small parameter ε by

ρc ¼ zcε (B27)

after which from (3.31)–(3.33),

zt ¼ zc

�
1þ ε2

2
þOðε4Þ þ � � �

�
;

E ¼ −
εn

2

gðzcÞ
zc

ð1þOðε2Þ þ � � �Þ: (B28)

Note that specifying R and ε fixes ΓΣ entirely. Thus we
can expand t − ts and A −Aeq in terms of ε, and then
A −Aeq in terms of t − ts. To do so we first need to relate
zc − zb and δ to R and ε. This requires solving for z1 near ρc
by expanding it as a power series in small ρ, but only after

imposing the boundary condition (B26) at z ¼ 0. We leave
the detailed analysis of z1 to Appendix 3, and for now
merely list the results. We find that for n ¼ 2,

δ ¼ −
gðzbÞzb
2r2

ε2 þOðε4 log εÞ þ � � � ;

zc ¼ zbð1þ c1ε2 log εþ c2ε2 þ � � �Þ; (B29)

with

c1¼−
gðzbÞ
2

; c2¼−
gðzbÞ
2r2

ðr1− r2þ r2 logzbÞ−
1

2
;

(B30)

and for n > 2,

δ ¼ gðzbÞzn−1b

2ðn − 2Þr2
εn þOðεnþ2Þ þ � � � ;

zc ¼ zbð1þ d2ε2 þ � � �Þ;
(B31)

with

d2 ¼
n − 1

2ðn − 2Þ gðzbÞ −
1

2
: (B32)

In the above equations r1 and r2 are numerical constants
that we define in (B56). Note that zt > zb while zc does not
have to be greater than zb.
Now let us look at the boundary time (3.36), writing it as

t ¼ t1 þ t2 (B33)

with

t1¼−
Z

R

ρc

dρ
z0

h
; t2 ¼

Z
R

ρc

dρ
EB

ffiffiffiffiffiffiffiffiffi
1þz02
hðzÞ

q
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB2E2

h

q : (B34)

Note that t1 can be written as

t1¼
Z

zc

0

dz
hðzÞ¼ tsþ

Z
zc

zb

dz
h
¼ tsþ

zc− zb
hðzbÞ

þ �� � ; (B35)

where in the second equality we have used that zc − zb is
small. Meanwhile, from (B28) E ∼OðεnÞ, and to leading
order in small ε, t2 can be evaluated by replacing z in its
integrand by the equilibrium solution z0. The resulting
integral receives the dominant contribution from its lower
end, and we have

t2 ¼
Eznb
hðzbÞ

8<
:

− logðzbεÞ þ I0 þ � � � n ¼ 2

ðzbεÞ2−n
n−2 þ � � � n > 2

; (B36)

where
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I0¼ lim
ρc→0

0
B@hðzbÞ

z2b

Z
R

ρc

dρ
z20
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0 02

hðz0Þ
q
hðz0Þ

þ logρc

1
CA; (B37)

and we have replaced zc by zb wherever it appears.
Collecting (B35), (B36) and using (B29), (B31), we find that

t − ts ¼
8<
:− 1

2

�
zb þ gðzbÞzb

hðzbÞ
�
b1
b2
þ I0

��
ε2 þ � � � n ¼ 2

− 1
2
zbε2 þ � � � n > 2

:

(B38)

Next, we proceed to compute the area of ΓΣ given
by (3.38) and (3.39). The AdS portion can easily be
expanded as

1

K
AAdS ¼ εn

n
−

εnþ2

2ðnþ 2Þ þ � � � ; (B39)

while the black hole portion can be written as

ABH ¼ A1 þA2 þOðE4Þ þ � � � (B40)

with

1

K
A1 ¼

Z
R

ρc

dρL0ðz; z0Þ≡
Z

R

ρc

dρ
ρn−1

zn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

r
;

1

K
A2 ¼ −

1

2
E2

Z
R

ρc

dρ
zn

ρn−1h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

h

r
: (B41)

Since A2 is multiplied by E2 ∼Oðε2nÞ, it can be computed
by replacing z with z0 in its integrand, and we find the
leading order results

1

K
A2 ¼ −

E2

2

znb
hðzbÞ

8<
:

− logðzbεÞ þ I0 þ � � � n ¼ 2

ðzbεÞ2−n
n−2 þ � � � n > 2

:

(B42)

To compute A1, we consider the variation of L under a
variation about the equilibrium solution z ¼ z0 þ Δz,
which gives

1

K
A1 ¼

Z
R

ρc

dρLðz0; z00Þ − Πðz0ÞΔzjρc þ � � � ;

Π ¼ ∂L0

∂z0 : (B43)

Note that in (B43) there is also a potential boundary term at
ρ ¼ R, but that it is zero due to z and z0 both ending at
ρ ¼ R.11 Meanwhile,

Z
R

ρc

dρLðz0; z00Þ ¼
1

K
Aeq −

1

n

�
εffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε2
p

�
n
�
zt
zb

�
n

−
ðnþ 1ÞhðzbÞεnþ2

2ðnþ 2Þ þ � � � (B44)

and

Πðz0Þjρc ¼−
ρnc
znþ1
b

¼−
εn

zb
;

Δzc¼ zc−z0ðρcÞ¼ zc−zb−
1

2
z00ð0Þρ2cþ���; (B45)

where the small ρ expansion of z0 is given in Eq. (B49).
Finally, collecting all the results above we have

A −Aeq ¼
8<
:

K g2ðzbÞ
8hðzbÞ ε

4 log εþOðε4Þ þ � � � n ¼ 2

−K gðzbÞ
2ðn−2Þ

�
n−2
nþ2

þ gðzbÞ
4hðzbÞ

�
εnþ2 þ � � � n > 2

:

3. Discussion of z1 when Σ is a sphere

Here we give the derivation of (B29)–(B32). To first
order in δ, z1 satisfies the equation of motion

z1″ þ pðρÞz10 þ qðρÞz1 ¼ sðρÞ; (B46)

where

pðρÞ ¼ z00
�
2n
z0

−
h00
h0

�
þ ðn − 1Þ

ρ

�
1þ 3z002

h0

�
; (B47)

qðρÞ ¼ h00
�
n
z0

þ ðn − 1Þz00
h0ρ

�
þ n
z0

�
1þ z002

h0

��
h00 −

h0
z0

�

þ 1

h0

�
h00z00 −

1

2
h00z002

�
; (48)

and

sðρÞ ¼ −
E2

δ

z2n0
hðz0Þρ2ðn−1Þ

�
z″0 þ

∂zhðz0Þ
2

�
: (B49)

While the full analytic solution z0 is not known, its
behavior near ρ ¼ R and ρ ¼ 0 can be obtained by series
expansions, and the same applies to functions p and q—
this is sufficient for our purposes. Now, near the tip ρ ¼ 0,

z0ðρÞ¼ zb−
hðzbÞ
2zb

ρ2

þhðzbÞððnþ1Þzbh0ðzbÞ−ðnþ2ÞhðzbÞÞ
8ðnþ2Þz3b

ρ4þOðρ6Þ;

(B50)
11This boundary term at z ¼ 0 should be treated with some

care as Π is divergent there.
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while near the boundary ρ ¼ R with σ ≡ R − ρ ≪ 1,12

z0ðρÞ ¼
ffiffiffiffiffiffiffiffiffi
2Rσ

p
þ
�
OðσÞ n ¼ 2

Oðσ3
2Þ n > 2

: (B52)

Then we find that the leading terms in p and q are given by
the following:
(1) Near ρ ¼ 0,

pðρÞ¼n−1

ρ
þððn−3ÞhðzbÞþzbh0ðzbÞÞ

z2b
ρþOðρ3Þ;

qðρÞ¼nð−hðzbÞþzbh0ðzbÞÞ
z2b

þOðρ2Þ: (B53)

(2) Near ρ ¼ R,

pðρÞ ¼ n − 3

2σ
þ
�
Oðσ−1

2Þ n ¼ 2

Oð1Þ n > 2
;

qðρÞ ¼ −
n
4σ2

þ
�
Oðσ−3

2Þ n ¼ 2

Oðσ−1Þ n > 2
: (B54)

Let us first look at the homogenous part of Eq. (B46).
Near ρ ¼ R, it is convenient to work with a basis of
solutions given by the expansions

kðρÞ ¼ ðR − ρÞn2ð1þOððR − ρÞ12ÞÞ;
~kðρÞ ¼ ðR − ρÞ−1

2ð1þOððR − ρÞ12ÞÞ; (B55)

while near ρ ¼ 0, it is more convenient to work with a basis
of solutions given by the expansions

g1ðρÞ ¼ 1þ
X∞
m¼1

g1mρ2m;

g2ðρÞ ¼
8<
:

g0 log ρ
�
1þP∞

m¼1 g2mρ
2m
�
þ ρ−ðn−2Þ

P0∞
m¼0 ~g2mρ

2m n even

ρ−ðn−2Þ
�
1þP∞

m¼1 g2mρ
2m
�

n odd
; (B56)

where in g2 for even n the prime in
P0 indicates that the

sum does not include m ¼ ðn − 2Þ=2. Since we are dealing
with a linear equation, the two bases are related by linear
superposition,

kðρÞ¼ r1g1ðρÞþr2g2ðρÞ; ~kðρÞ¼ ~r1g1ðρÞþ ~r2g2ðρÞ;
(B57)

where r1; r2; ~r1; ~r2 are constants which can be evaluated
numerically.
Now we consider a particular solution to the full

inhomogeneous equation (B46),

zsðρÞ¼kðρÞ
Z

R

ρ
dρ0

sðρ0Þ~kðρ0Þ
Wkðρ0Þ

− ~kðρÞ
Z

R

ρ
dρ0

sðρ0Þkðρ0Þ
Wkðρ0Þ

¼g2ðρÞ
Z

R

ρ
dρ0

sðρ0Þg1ðρ0Þ
Wgðρ0Þ

−g1ðρÞ
Z

R

ρ
dρ0

sðρ0Þg2ðρ0Þ
Wgðρ0Þ

;

(B58)

where

WkðρÞ ¼ k~k0 − ~kk0 ∼ ðR − ρÞn−32 as ρ → R (B59)

and

WgðρÞ ¼ g10g2 − g20g1 ∼ ρ−ðn−1Þ as ρ → 0: (B60)

Noting that

sðρcÞ ¼ −
E2

δ

z2n−1n ðzbh0ðzbÞ − 2hðzbÞÞ
2hðzbÞρ2ðn−1Þc

;

sðρ → RÞ ¼ E2

δ
R

�
2σ

R

�
n−3

2 þ � � � ; (B61)

we find

zsðρÞ ∼
E2

δ
σnþ1

2 as ρ → R: (B62)

As is shown after the matching in (B28), (B29), and (B31),
E2

δ ∼ δ, and thus it is consistent to ignore zs near ρ ¼ R.
However, it cannot be ignored near ρ ¼ 0 because the
source term s becomes singular. We find that as ρ → 0, zs
has the behavior

zsðρÞ ∼
(

E2

δ ðlog ρÞ2 þ � � � n ¼ 2

E2

δ ρ
−2ðn−2Þ þ � � � n > 2

: (B63)

The actual matching that results in (B29)–(B32) is
performed as follows. The boundary condition (B26)

12In terms of ρðzÞ we have the expansion

ρðzÞ ¼ R −
z2

2R
þ � � � ; (B51)

where the expansion is identical to that in AdS until the OðznÞ
term whose coefficient is undetermined.
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requires us to choose kðρÞ near ρ ¼ R. Then near ρ ¼ 0, z1
can be written as

z1 ¼ r1g1ðρÞ þ r2g2ðρÞ þ zs: (B64)

Plugging (B27) and (B28) into (B63) and (B55), we obtain
zb and δ in terms of zt and ε as in (B29)–(B32). We note
that at leading orders zs does not contribute.

APPENDIX C: DETAILS IN THE MEMORY LOSS
REGIME FOR Σ AS A SPHERE

Here we give the equations underlying (12.21) and
(12.26), and the derivation of (12.32) and (12.33). Recall
the expansion parameter and expansion given in (12.14)
and (12.18).

1. Critical extremal surface

Let us first examine in some detail the asymptotic
behavior of z�ðρÞ for ρ ≫ ρc where it approaches the
horizon. Letting

z�ðρÞ ¼ zh þ χ�ðρÞ (C1)

with χ� small and requiring it to decrease with increasing ρ,
we find that z� has the asymptotic behavior

χ�ðρÞ¼ z�ðρÞ−zh ¼
α

ρn−1
þα1
ρn

þ α2
ρnþ1

þ�� � ; ρ≫ ρc;

(C2)

where

α ¼ jEjznþ1
hffiffiffiffiffiffiffiffiffiffi

2nh1
p ; α1 ¼ δn;2

5E2z5h
8h1

: (C3)

Here we have used the notation

h1 ≡ −zhh0ðz1Þ; h2 ≡ z2hh
″ðzhÞ; � � � : (C4)

Note that α is positive; i.e. z� approaches the horizon from
above, or inside. The leading two terms in (C2) can be
obtained by equating the two most dominant terms in (3.35)
as ρ → ∞, i.e. [note B is defined in (3.34)]

nh2

z
þ 1

2
E2B2∂zh ¼ 0 → χ2� ¼

α2

ρ2ðn−1Þ
z2nþ1

z2nþ1
h

; (C5)

while in order to obtain terms of Oðρ−ðnþ1ÞÞ and higher in
(C2), one needs to take into higher-order terms in (3.35).
Note the leading term in (C2) can also be written as

χ� ¼
1

γn
jEjBþOðρ−nÞ (C6)

or

hðz�ðρÞÞ ¼ −cnjEjBþOðρ−nÞ; (C7)

where

γn ¼
1

zh

ffiffiffiffiffiffiffiffiffiffi
2nh1

p
; cn ¼

ffiffiffiffiffiffi
h1
2n

r
¼ h1

zhγn
: (C8)

Let us now calculate v�ðρ; ρcÞ andA�ðρ; ρcÞ correspond-
ing to z�ðρ; ρcÞ, where we have traded zt for ρc and made
explicit in our notation that ρc is the only parameter.
Evaluating (3.34) on z�, for large ρ we find that

v�0 ¼ 1

cn
−
�
n − 1

4πT
− δn;2

jEjð3h1 þ h2Þz2h
2h21

�
1

ρ
þOðρ−2Þ;

(C9)

from which

v�ðρ;ρcÞ¼
ρ

cn
−
�
n−1

4πT
−δn;2

jEjð3h1þh2Þz2h
2h21

�
logρþOð1Þ:

(C10)

Note that the leading term, and for n > 2 the next-to-
leading term also, are independent of ρc. Similarly, evalu-
ating the integrand of (3.24) on z�, we find

L� ¼ ρn−1

znh
þ δn;2

E2ð3h1 þ h2Þz2h
4h21

1

ρ
þOðρ−2Þ (C11)

from which

1

K
A�ðρ; ρcÞ ¼

ρn

nznh
þ δn;2

E2ð3h1 þ h2Þz2h
4h21

log ρþOð1Þ:
(C12)

The leading coefficients are again independent of ρc and
there is a logarithmic term only for n ¼ 2.

2. Equations

We now examine the equation for z1ðρÞ as introduced in
(12.18). Let us first look at the region in which χ� ≫ εz1.
Plugging (12.18) into (3.35) we find that z1 satisfies a linear
differential equation

z1″ þ p1ðρÞz10 þ p2ðρÞz1 ¼ 0; (C13)

where p1 and p2 are some complicated functions of ρ,
expressed via χ�ðρÞ and hðzh þ χ�ðρÞÞ. They have the large
ρ expansions

p1ðρÞ ¼
a1
ρ
þ a2

ρ2
þ � � � ; a1 ¼ 2ðn − 1Þ;

a2 ¼ δn;2
jEjz2h
4h

3
2

1

ð13h1 − h2Þ; (C14)
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and13

p2ðρÞ ¼ −γ2n þ
b1
ρ
þ b2

ρ2
þ � � � ;

b1 ¼ δn;2
jEjðh2 − h1Þffiffiffiffiffi

h1
p :

(C15)

Equation (C13) can then be solved in terms of an expansion

z1ðρÞ ¼ A1eγnρρ−βn
�
1þ c11

ρ
þOðρ−2Þ

�
þ � � � (C16)

with

βn ¼ n − 1þ b1
2γ

;

c11 ¼
1

8γ3
ðb21 þ 2γb1 þ ð2a1 − a21 þ 4b2Þγ2 þ 4a2γ3Þ;

(C17)

where A1ðρcÞ is a positive Oð1Þ constant determined by
boundary conditions (12.19) at ρc, and in (C16) we have
suppressed terms that are exponentially small, i.e. those
proportional to e−γρ.
In the region in which χ� ≪ εz1 ≪ 1, we can plug

(12.18) into (3.35) while ignoring χ� and terms in (3.35)
proportional to E2. We then find a nonlinear equation for z1,

z1″

z1
−
1

2

z102

z21
þ n − 1

ρ

z10

z1
−
γ2

2
¼ 0; (C18)

which has the solution

z1ðρÞ ¼ ρ−ðn−2Þ
�
#In−2

2

�
1

2
γρ

�
þ #Kn−2

2

�
1

2
γρ

��
2

¼ A2eγρρ−ðn−1Þð1þOðρ−1ÞÞ þ � � � ; (C19)

where we have again suppressed exponentially small terms.

3. Time

In this subsection and the next, for purposes of clarity,
will use a new symbol to denote the polynomial part of the
large ρ limit of z�,

PðρÞ≡ χ�ðρÞ; z�ðρÞ ¼ zh þ PðρÞ: (C20)

Recall the labeling of regions I, II, and III given near
(12.25) and (12.31). Delineating the regions more explic-
itly, the boundary time can be divided as

t ¼ vðRÞ ¼ tI þ tII þ tIII

≡
�Z

R−k1

k0

þ
Z

R−k2

R−k1
þ
Z

R−k3

R−k2

�
dρv0; (C21)

where the first equality holds up to Oð1Þ terms and

k1 ¼
1

γn

�
n − 1 −

b1
2γn

�
logRþ C1;

k2 ¼
1

γn
ðn − 1Þ logR − C2: (C22)

Here C1, C2, k0, k3 are all positive Oð1Þ constants and k0
must be chosen sufficiently large that large ρ expansions
apply in region I. We now proceed to calculate (C21),
recalling (3.34)

v0 ¼ 1

h
ð−z0 þ EB

ffiffiffiffi
Q

p
Þ; Q ¼ 1þ z02

h

1þ E2B2

h

: (C23)

a. Region I

Here

z ¼ zh þ PþOðεz1Þ þ � � � ;

z0 ¼ O

�
P
ρ

�
þOðεz1Þ þ � � � ;

(C24)

1þ z02

h
¼ 1þO

�
P
ρ2

�
þO

�
εz1
ρ

�
þ � � � ;

1þ E2B2

h
¼ 1 −

γn
cn

P

�
1 −

2α1
α

1

ρ
þ
�
2nþ h2

2h1

�
P
zh

�
þOðεz1Þ þ � � � : (C25)

Then

v0 ¼ 1

cn

�
1 −

�
n − 1

γn
þ α1

α

�
1

ρ
þ
�
nþ h2

2h1
þ γnzh

2cn

�
P
zh

�

þO

�
1

ρ2

�
þ
�
εz1
P

�
þ � � � (C26)

from which

tI ¼
R − k1
cn

−
�
n − 1

4πT
− δn;2

jEjð3h1 þ h2Þz2h
2h21

�
logR

þOð1Þ: (C27)

Comparing with (C10), we see that the two leading terms
come from the solution on the critical line, z� ¼ zh þ P.

13For Schwarzschild hðzÞ, b1 < 0 while for RN hðzÞ, b1 > 0
for a sufficiently large charge density.
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b. Region II

Here the expansions require more care than in regions I
and III. Let us assume that n ¼ 2; 3 and that z1 interpolates
between the leading behavior in regions I and III given in
(C16) and (C19).
First, define D and X by

z ¼ zh þD;
α

ρn−2
¼ Pð1 − XÞ; (C28)

and note

D ¼ P − εz1 þOðε2Þ þ � � � ≲OðPÞ;

X ¼ α1
α

1

ρ
þO

�
1

ρ2

�
þ � � � ∼OðPÞ: (C29)

Using D and X we can expand

h ¼ −cnγnDþOðD2Þ þ � � � ;
EB ¼ −γnPð1 − XÞð1þOðDÞ þ � � �Þ: (C30)

Also define Y by

z0 ¼ −γnðP −DÞð1þ YÞ; (C31)

noting

Y ¼ O

�
b1
ρ

�
þO

�
1

ρ2

�
þ � � � þO

�
D

ðP −DÞρ
�
þ � � � ;

YðD ¼ 0Þ ∼OðPÞ: (C32)

Now we divide region II into three subregions14

II1∶ jDj ≪ OðP2Þ; II2∶ jDj ∼OðP2Þ;
II3∶ jDj ≫ OðP2Þ; (C33)

and focus on calculating

Qs ≡Q − 1 ¼ z02 − E2B2

f þ E2B2
(C34)

in subregions II1 and II3. Then

fþE2B2¼
8<
:
γ2nP2

�
1þO

�
D
P2

�
þOðXÞþ���

�
ðII1Þ

−cnγnD
�
1þOðDÞþO

�
P2

D

�
þ���

�
ðII3Þ

;

(C35)

and15

z02 − E2B2 ¼
(
2γ2nP2ðX þ Y þ � � � − D

P þ � � �Þ ðII1Þ
Dγ2nð−2PþDþ � � �Þ ðII3Þ

;

(C36)

from which

Qs ¼
(
2ðX þ Y þ � � � þOðDPÞ þ � � �Þ ðII1Þ
2γn
cn
ðP − D

2
þ � � �Þ ðII3Þ

: (C37)

Using expansions (C30), (C31), and (C37), we have

−z0 þ EB
ffiffiffiffi
Q

p
¼

�
OðDÞ þ � � � ðII1Þ
−γnDþ � � � ðII3Þ

; (C38)

from which

v0 ¼
�Oð1Þ þ � � � ðII1Þ

1
cn
þ � � � ðII3Þ

(C39)

in subregions II1 and II3. But since the differential
equation (3.35) does not contain any scales other than
zh, v0 should smoothly interpolate between subregions II1
and II3; i.e. it should also beOð1Þ in subregion II2. Thus we
conclude

tII ¼
8<
:

k1−k2
cn

þOðlogRÞ þOð1Þ n ¼ 2

k1−k2
cn

þOð1Þ n ¼ 3
: (C40)

c. Region III

Here

z ¼ zh − εz1 þ PþOðε2Þ þ � � � ;

z0 ¼ −γnεz1
�
1þO

�
1

ρ

�
þOðεÞ þ � � �

�
; (C41)

and

1þ z02

h
¼ 1þ 2n

zh
ðεz1 þ PÞ þO

�
εz1
ρ

�
þOðε2Þ þ � � � ;

1þ E2B2

h
¼ 1þO

�
P2

εz1

�
þ � � � : (C42)

Then

v0 ¼ 1

cn

�
1þOðεz1Þ þO

�
P
εz1

�
þ � � �

�
(C43)

and

14Note subregions II2 and II3 each have two connected pieces.
15Here we have only made potential leading terms explicit,

with the exception that in the expression for subregion II1, the
leading term proportional to D has been noted, although it is
subleading to terms without factors of D. This is used in
calculating v0 in subregion II1.
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tIII ¼
1

cn
k2 þOð1Þ: (C44)

Finally, collecting (C27), (C40), and (C44), we have

t ¼

8><
>:

R
cn
−
�

n−1
4πT −

jEjð3h1þh2Þz2h
2h2

1

�
logRþOðlogRÞ þOð1Þ n ¼ 2

R
cn
− n−1

4πT logRþOð1Þ n ¼ 3

: (C45)

Note for n ¼ 2 there is an OðlogRÞ piece that we were not able to determine.

4. Action

To calculate the action, we proceed in similar fashion. The action with its equilibrium value subtracted can be divided as

A −Aeq ¼ AI þAII þAIII ≡
�Z

R−k1

k0

þ
Z

R−k2

R−k1
þ
Z

R−k3

R−k2

�
dρðA0 −Aeq

0Þ; (C46)

where the first equality holds up to Oð1Þ terms including the contribution from the AdS portion of extremal surfaces, and
from (3.39),

A0 ¼ ρn−1

zn
ffiffiffiffi
Q

p
; Aeq

0 ¼ ρn−1

zeq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq02

hðzeqÞ

s
: (C47)

Here A0 is evaluated on the near-horizon expansion (12.18) of the near-critical solution, and Aeq is evaluated on the
near-horizon expansion (A7) of the equilibrium solution, where the ε’s in the two expansions can be set equal.16 Note that
from (A7),

1þ zeq02

hðzeqÞ
¼ 1þ 2n

zh
εz1;eq þ � � � (C48)

and

Aeq
0 ¼ ρn−1

znh

�
1þ 2n

zh
εz1;eq þ � � �

�
: (C49)

Then in region I, from (C24) and (C25),

A0 −Aeq
0 ¼ ρn−1

znh

�
1þO

�
P
ρ2

�
þOðεz1Þ þ � � �

�
−
ρn−1

znh
ð1þOðεz1;eqÞ þ � � �Þ; (C50)

and one can check Z
R−k1

k0

dρ
εz1
P

∼Oð1Þ;
Z

R−k1

k0

dρ
εz1;eq
P

∼OðRb1=2γnÞ; (C51)

so assuming b1 < 0, we have

AI ¼ Oð1Þ: (C52)

In region II, from (C28) and (C37),

16Although the definition of the two ε’s in (12.14) and (A1) are different, their expansions in large R (12.30) and (A4) show that fixing
R, they agree up to an Oð1Þ factor. This factor then can be absorbed into z1;eq in (A8).
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A0 −Aeq
0 ¼ ρn−1

znh

�
1 − n

D
zh

þ � � �
��

1þ 1

2
Qs þ � � �

�
−
ρn−1

znh

�
1 − 2n

εz1;eq
zh

þ � � �
�

¼
� ρn−1

znh
ðX þ YÞ þ � � � ðII1Þ

ρn−1

znh

�
γn
cn
P −

�
n
zh
− γn

2cn

�
Dþ � � �

�
ðII3Þ

(C53)

and from the order of magnitudes ofD, X, and Y in (C29) and (C32),A0 −Aeq
0 isOð1Þ in subregions II1 and II3. But as was

the case with v0, A0 −Aeq
0 must interpolate smoothly between subregions II1 and II3, so we conclude A0 −A0

eq is Oð1Þ
throughout region II and that

AII ¼
�
OðlogRÞ þOð1Þ n ¼ 2

Oð1Þ n ¼ 3
: (C54)

Last, in region III, from (C41) and (C42),

A0 −Aeq
0 ¼ ρn−1

znh

�
1þ n

zh
ðεz1 − PÞ þOðε2Þ þ � � �

��
1þ n

zh
ðεz1 þ PÞ þO

�
εz1
ρ

�
þOðε2Þ þ � � �

��
1þO

�
P2

εz1

�
þ � � �

�

−
ρn−1

znh

�
1þ 2n

zh
εz1;eq þO

�
εz1;eq
ρ

�
þOðε2Þ þ � � �

�
; (C55)

where from (A8) and (C19),

z1;eq ∼ z1: (C56)

One can check that the leading terms in (C55) contribute at

Z
R−k3

R−k2
dρ

8<
:

εz1
P ∼Oðe−γnRR2ðn−1ÞÞ
1
ρ ∼O

�
logR
R

� ;

so we have

AIII ¼ Oð1Þ: (C57)

Collecting (C52), (C54), and (C57), we arrive at

A −Aeq ¼
�
OðlogRÞ þOð1Þ n ¼ 2

Oð1Þ n ¼ 3
; (C58)

where for n ¼ 2 we have an undetermined OðlogRÞ
piece.17
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