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Entanglement growth during thermalization in holographic systems
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We derive in detail several universal features in the time evolution of entanglement entropy and other
nonlocal observables in quenched holographic systems. The quenches are such that a spatially uniform
density of energy is injected at an instant in time, exciting a strongly coupled conformal field theory which
eventually equilibrates. Such quench processes are described on the gravity side by the gravitational
collapse of a thin shell that results in a black hole. Various nonlocal observables have a unified description
in terms of the area of extremal surfaces of different dimensions. In the large distance limit, the evolution of
an extremal surface, and thus the corresponding boundary observable, is controlled by the geometry around
and inside the event horizon of the black hole, allowing us to identify regimes of pre-local-equilibration
quadratic growth, post-local-equilibration linear growth, a memory loss regime, and a saturation regime
with behavior resembling those in phase transitions. We also discuss possible bounds on the maximal rate

of entanglement growth in relativistic systems.

DOI: 10.1103/PhysRevD.89.066012

I. INTRODUCTION

Understanding whether and how quantum matter equili-
brate is a question of much importance in many different
areas of physics. Yet such nonequilibrium problems are
notoriously difficult to deal with; universal characteriza-
tions are scarce and far between.

For a nonintegrable system it is expected that a generic
(sufficiently excited) nonequilibrium state eventually ther-
malizes. For strongly coupled systems with a gravity dual this
expectation is borne out as holographic duality maps equili-
bration from such a state to black hole formation from a
gravitational collapse, and gravitational collapse of a suffi-
ciently massive body is indeed generic in general relativity.

Questions related to equilibration then become inti-
mately connected to those of black hole physics. This
on the one hand brings in powerful gravity techniques for
studying thermalization processes, and on the other gives
new perspectives on the quantum nature of black holes.

One of the simplest settings for equilibration is the
evolution of a system after a global quench, which can be
divided into two types. In the first type one changes some
parameter(s) of a system at t = O within a short interval ot.
The previous ground state becomes an excited state with
respect to the new Hamiltonian and evolves to equilibrium
under the evolution of the new Hamiltonian. In the second
type, one turns on a uniform density of sources for a short
interval 6t at t = 0 and then turns it off. The work done by
the source takes the system to an excited state which
subsequently equilibrates (under the evolution of the same
Hamiltonian before the quench). In both situations, the
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interval 6t is taken to be much smaller than any other scale
in the system. For convenience we will take 6t to be zero in
subsequent discussions.

In the (1 + 1)-dimension, by tuning a parameter of a
gapped system to criticality Calabrese and Cardy found that
[1] the entanglement entropy for a segment of size 2R
grows with time linearly as

AS(t,R) = 2tse,, t <R, (1.1)
and saturates at the equilibrium value at a sharp saturation
time t, = R. In the above equation AS denotes the differ-
ence of the entanglement entropy from that at t = 0, and s
is the equilibrium thermal entropy density. Furthermore,
they showed that this remarkably simple behavior can be
understood from a simple model of entanglement propa-
gation using free-streaming quasiparticles traveling at the
speed of light.

Subsequently, the linear behavior (1.1) was found in a
holographic contextfor (1 4 1)-dimensional systems dual to
abulk Vaidya geometry [2] (see also [3,4]). An anti—de Sitter
(AdS) Vaidya geometry, as we will review in more detail in
Sec. I A, describes the gravitational collapse of a thin shell of
matterto formablack hole. Itcorresponds to aquench process
of the second type in a boundary conformal field theory
(CFT), where at t = 0, a uniform density of operators are
inserted for a very short time. The entanglement entropy is
obtained from the area of an extremal surface in the Vaidya
geometry with appropriate boundary conditions [5-7].

The agreement of results between the very different
setups of [1] and [2] is in some sense not surprising. Both
setups involve a homogeneous excited initial state evolving
under a gapless Hamiltonian, and the powerful boundary
CFT techniques of [1] should apply in both contexts.

© 2014 American Physical Society
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Behavior similar to that of entanglement entropy has also
been found in correlation functions in both contexts [3,4,8,9]
(see also [5,10-20] for other studies of two-dimensional
systems).

Given the simplicity and elegance of (1.1), it is natural to
wonder: (i) whether similar linear growth occurs in higher
dimensions; (i1) whether other nonlocal observables such as
equal-time correlation functions and Wilson loops share
similar behavior; (iii) if such linear growth exists, whether it
can still be understood from free-streaming quasiparticles.

For entanglement entropy we recently reported the
answers to some of these questions for a class of quenched
holographic systems [21]. Interested in long-distance phys-
ics, we focused on entangled regions of a large size and
found that the time evolution of entanglement entropy is
characterized by four different scaling regimes:

(1) Pre-local-equilibration quadratic growth in time.

(2) Post-local-equilibration linear growth in time.

(3) A saturation regime in which the entanglement
entropy saturates its equilibrium value. The satura-
tion can be either continuous or discontinuous
depending on whether the time derivative of the
entanglement entropy is continuous at saturation. In
the continuous case saturation is characterized by a
“critical” exponent.

(4) When the entangled region is a sphere, there is an
additional scaling regime between linear growth and
saturation, which we dub “late time memory loss,"
and in which the entanglement entropy depends only
on the time remaining till saturation, and not on the
size of the region and time separately.

These results are generic in the sense that they are
insensitive to the specific details of the system as well
as those of the quench.

The above scaling regimes were obtained by identifying
various geometric regimes for the bulk extremal surface.
An important observation was the existence of a family of
“critical extremal surfaces” which lie behind the horizon
and separate extremal surfaces that reach the boundary
from those which fall into the black hole singularity. In the
large size limit, one finds that the time evolution of
entanglement entropy is controlled by these critical
extremal surfaces. In this paper we give a detailed derivation
of these results and provide generalizations to other nonlocal
observables such as equal-time correlation functions and
Wilson loops.

Also, with Mezei [22], we generalized the free-streaming
model of [1] to higher dimensions. It turns out that such a
model also exhibits post-local-equilibration linear growth
of entanglement entropy, but that intriguingly, the rate of
growth of entanglement entropy resulting from free-stream-
ing particles moving at the speed of light is less than what
we find here for strongly coupled holographic systems.

In [21], we argued that the evolution of entanglement
entropy can be captured by the picture of an entanglement
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wave propagating inward from the boundary of the
entangled region, which we called an “entanglement
tsunami” (see also [20]). There we also suggested a
possible upper bound on the rate of entanglement growth
in relativistic systems. The results of [21] and the current
paper also have potential applications for various issues
associated with black hole physics. The fact that the growth
of entanglement is controlled by some critical extremal
surfaces inside the horizon of a collapsing black hole also
suggests new avenues for probing physics beyond horizons
in holography. Similar processes as those we consider here
were also considered in [23] to obtain insights into the
“scrambling time” of a black hole. We will elaborate more
on these issues in the discussion section.

To conclude this Introduction, we note that earlier work
on quenches in higher dimensional holographic systems
include [3,4,24,25] (see also [12-14,17,26-28]). In par-
ticular, for d = 3, a linear growth toward saturation was
mentioned in [24], although it appears that the linear regime
mentioned in [24] is different from that of [21] and the
current paper. Reference [24] was also the first to observe
discontinuous saturation in various examples. In [3,4]
nonanalyticity near saturation was emphasized. In a differ-
ent gravity setup, the linear growth of entanglement entropy
was also observed [25], whose connection to that in [21]
will be discussed in detail in the main text. In [13] it was
pointed out that the presence of a nonzero chemical
potential in the final equilibrium state tends to slow the
growth of entanglement.

II. GENERAL SETUP

In this paper we consider the evolution of various nonlocal
observables, including entanglement entropy, equal-time
correlation functions, and Wilson loops, after a sharp quench
of a strongly coupled gapless system with a gravity dual.
More explicitly, att = 0in the boundary system we turnon a
spatially uniform density of external sources for an interval
ot, creating a spatially homogeneous and isotropic excited
state with nonzero energy density, which subsequently
equilibrates. The precise manner (e.g. what kind of sources
are turned on and how) through which the excited state is
generated and its microscopic details will not concern us. We
are interested in the macroscopic behavior of the system at
large distances and in extracting “universal” behavior in the
evolution of these observables that are insensitive to the
specific nature of final equilibrium states.

On the gravity side such a quench process is described by
a thin shell of matter starting from the boundary and
collapsing to form a black hole, which can in turn be
described by a Vaidya metric; see Fig. 1. The matter fields
making up the shell and their configuration are determined
by the sourcing process in the boundary theory and are
again not important for our purposes. See e.g. [29-35] for
more explicit discussions. In the classical gravity regime we
are working with, which translates to the large N and
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FIG. 1 (color online). Vaidya geometry: One patches pure
AdS with a black hole along an infalling collapsing null shell
located at v = 0. We take the width of the shell to be zero
which corresponds to the 6t = 0 limit of the boundary quench
process. The spatial directions along the boundary are suppressed
in the figure.

strongly coupled limit of the boundary theory, all of our
observables are only sensitive to the metric of the collaps-
ing geometry.

In this section we give a detailed description of our setup
and review the vacuum and equilibrium properties of the
class of systems under consideration.

A. Vaidya metric

We consider a metric of the form

2

L .
ds® = 2 (=f (v, 2)dv* — 2dvdz + dx*). 2.1

In the limit the sourcing interval ot goes to zero, the width
of the collapsing shell goes to zero, and f(v,z) can be
expressed in terms of a step function

f(v,z) =1-0(v)g(2). 2.2)
For v < 0, the metric is given by that of pure AdS,
12
ds® = = (=df* + dz* + dx?), (2.3)
where
v=1r—2z, t=v+z. 2.4)

For » > 0, (2.1) is given by that of a black hole in
Eddington-Finkelstein coordinates,
L2

ds* = = (—h(z)dv? — 2dvdz + dx?),
z

2.5)

which in terms of the usual Schwarzschild time ¢ can be
written as
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L2

ds? = (—h(z)dﬂ + %dﬁ + d}z) 2.6)
with
W) =1-g(), wv=t-0(s) oz)= /"—Z
o h(Z')
2.7)

The functions /(z) in the black hole metric (2.5) and (2.6)
may be interpreted as “parametrizing” different types of
equilibration processes with different final equilibrium
states. We assume that (2.1) with some g(z) can always
be achieved by choosing an appropriate configuration of
matter fields. In the following discussions we will not need
the explicit form of i(z), and only that it gives rise to a
black hole metric. We will work with a general boundary
spacetime dimension d.

More explicitly, we assume /(z) has a simple zero at the
horizon z = z;, > 0, and that for z < gz, it is positive and
monotonically decreasing as a function of z as required by
the IR/UV connection. As we approach the boundary, i.e.
as z — 0, h(z) approaches zero with the leading behavior

h(z) =1-Mz+---, (2.8)
where M is some constant. From (2.8), one obtains that the
energy density of the equilibrium state is

Lt d—1
= —M’
8T[GN 2

(2.9)

while its temperature and entropy density are given by

)
4z

L1 1

T —
S TeN

(2.10)

Representative examples of (2.5) include the AdS
Schwarzschild black hole with

@2.11)

which describes a neutral final equilibrium state, and the
AdS Reissner-Nordstrom (RN) black hole with

h(z) =1 = Mz¢ + Q%2242 (2.12)

which describes a final equilibrium state with a nonzero
chemical potential for some conserved charge.

A characteristic scale of the black hole geometry (2.5)
and (2.6) is the horizon size' z;, which from (2.10) can be
expressed in terms of the entropy density s¢, as

'Note that while the horizon location is a coordinate dependent
quantity, in the particular radial coordinate used in (2.5) and (2.6)
z;, corresponds to a meaningful boundary scale as for example
indicated by (2.13).
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Ld-1 T
=|—— . 2.13
o <4GN seq) ( )

Were we considering a gas of quasiparticles, the prefactor

%: in (2.13) could be interpreted as the number of internal
degrees of freedom of a quasiparticle, and z;, would then be
the average distance between quasiparticles, or the mean
free path. Here of course we are considering strongly
coupled systems which do not have a quasiparticle descrip-
tion. Nevertheless, z;, provides a characteristic scale of the
equilibrium state. For example, as we will see below it
controls the correlation length of equal-time correlation
functions and Wilson loops in equilibrium.

For the collapsing process described by (2.1) we can also
identify z;, as a “local equilibrium scale” £, which can be
defined as the time scale when the system has ceased
production of thermodynamic entropy, or in other words,
has achieved local equilibrium at distance scales of order
the “mean free path” of the equilibrium state. We will
discuss further support for this identification at the end
of Sec. IV.

We note that in the AdS Schwarzschild case (2.11), the
temperature 7 is the only scale and controls both the local
equilibrium scale z;, and energy density & [given by (2.9)],

d 1 4xT\ 4
T e s M = — = _— s
4rz), z4 ( d )

but that in a system with more than one scale as in the
Reissner-Nordstrom case, z;, and £ (or M) do not depend
only on 7. In the Reissner-Nordstrom case, it is convenient
to introduce a quantity

(2.14)

4z, T
u=—, (2.15)
which decreases monotonically from its Schwarzschild
value of unity to 0, as the chemical potential is increased
from zero to infinity at fixed 7. Thus with a large chemical
potential (compared to temperature), the local equilibrium
scale £¢q ~ z; can be much smaller than the thermal wave
length 1/T. In this regime, the system is controlled by finite
density physics which gives rise to the scale z;,. For recent
related discussions, see [36].

Finally, we note that the metric (2.1) is not of the most
general form describing a spatially homogenous and
isotropic equilibration process. If the equilibrium state
has a nontrivial expectation value for (or sourced by) some
scalar operators, the metric has the form

L? ,
ds* = = (—f (v, 2)dv* = 2q(v, 2)dvdz + dX*)  (2.16)
Z
with f(v,z) =1—=0(v)g(z) and q(v,z) =1 —0(v)m(z).
The black hole part of the spacetime now has a metric
of the form

PHYSICAL REVIEW D 89, 066012 (2014)

L? -
ds* = ) (=h(z)dv? — 2k(z)dvdz + dx?)

2.17)

with 4(z) = 1 — ¢g(z) and k(z) = 1 — m(z), and can also be
written as

L? 2 h(z)
2 _ _ 2 2 2(,) —
ds =2 < h(z)dt +l(z)+dx>’ k(z)—l(z).
(2.18)

We will restrict our discussion mostly to (2.1), but it is
straightforward to generalize our results to (2.16) as will be
done in various places below.

B. Extremal surfaces and physical observables

We are interested in finding the area Ay of an n-
dimensional extremal surface I'y in the Vaidya geometry
(2.1) which ends at an (n — 1)-dimensional spatial surface
2 lying at some time t in the boundary theory. We will use
As to denote the area of Z. Since (2.1) is not invariant under
time translation, I's and therefore Ay will depend on t.

As can be used to compute various observables in the
boundary theory:

(1) For n =1, we take Z to be two points separated by
some distance 2R. I's is then the geodesic connect-
ing the two points, and its length A(R,t) gives the
equal-time two-point correlation function of an
operator with a large dimension,

G(2R,t) x e mARY), (2.19)
where m is the mass of the bulk field dual to the
operator.

(2) For n =2, we take ¥ to be a closed line, which
defines the contour of a spacelike Wilson loop. The
area Ay (t) then gives the expectation value of the
Wilson loop operator [37,38],

(Ws(t)) o« e~Axlt)/2md (2.20)
where (2za’)~! is the bulk string tension.

(3) For n=d -1, we take X to be a closed surface
which separates space into two regions. The area
As(t) then gives the entanglement entropy associ-
ated with the region bounded by X [5,7],

_ As(t)

SZ(t) - 4'GN ’

2.21)

where Gy is Newton’s constant in the bulk.

When there are multiple extremal surfaces corresponding
to the same boundary data, we will choose the surface with
the smallest area. For entanglement entropy, this allows the
holographic prescription to satisfy strong subadditivity
conditions [39,40], while for correlation functions and
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Wilson loops, the smallest area gives the most dominant
saddle point.

We will often consider as examples the following two
shapes for X, which are the most symmetric representatives
of two types of topologies for the boundary surface:

(i) a sphere of radius R: with dx? in (2.1) written in

polar coordinates for the first n directions,

dX* =dp? +p*dQ2_ +dx%  + - +dxh_ |,
(2.22)

X is specified by

a=n+1,....d-1. (2.23)

(ii) boundary of a strip of half-width R: X consists of
two (n — 1)-dimensional hyperplanes located at

x;=*R, x,=0, a=n+1,....d-1, (2.24)
and extended in spatial directions x,,...,x,. For
n =1, £ consists of two points separated by 2R.
For n = 2, it defines a rectangular Wilson loop, and
for n=d-1, it encloses the strip region
x; € (=R, R). For brevity, we will refer to a X with
this second shape as a “strip.”

C. Vacuum and thermal equilibrium properties
of extremal surfaces

1. Vacuum properties

Before the quench, our system is in the vacuum state of a
strongly coupled CFT with a gravity dual. Consider an
extremal surface I's (with boundary X) in pure AdS, whose
area gives the vacuum value of the corresponding physical
observable. When X is a sphere,2

Agphere = local divergences

(_1)%bn
+ Lna)n—l n—1
(=1)7b,logR n odd

n even
, (2.25)

where ®,_; is the area of unit (n — 1)-dimensional sphere
and

(2.26)

When X is a strip,

The following expressions for ¥ as a sphere or strip have
appeared in many places in the literature. For the case of
entanglement entropy with n = d — 1, they were first obtained
in [5].
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4 2L1ogR n=1
., = local divergences + Hg V1 A )
sip ¢ e Ay
ar(+ L
0 = le) 2.27)
')

where Agy, is the area of the strip £ with both sides
included. The local divergences in (2.25) and (2.27) can be
interpreted as coming from short-range correlations near X,
and its leading contributions are proportional to As.

The number of degrees of freedom in a CFT can be
characterized by a central charge s,, defined in all dimen-
sions in terms of the universal part of the entanglement
entropy of a spherical region in the vacuum [41],

(vac) . <_1)%Sd d odd
SSPhere = local divergences + . ,
(=1)7"sylogR deven
(2.28)
where from (2.25),
L 2 L (1 dodd
= 4Gy Vb = rayag, . 229
Sd 4GN0)d2d1 F(§)4GNX{% J even ( )

Note that for d = 2 the above central charge is related to the
standard central charge c¢ as

(2.30)

c
Sy = 3 .
From the standard AdS/CFT dictionary, s, « N> where N
is the rank of the gauge group(s) of the boundary theory. If
we put such a holographic CFT on a lattice, s; is
heuristically the number of degrees of freedom on a single
lattice site.

From (2.20) and (2.25)—(2.27), a Wilson loop of circular
and rectangular shapes, respectively, have the vacuum
behavior

V2
WZ ~
{ e Vi

circle

L2
, \//_123, (2.31)

rectangle

where ¢ denotes the length of the long side of a rectangular
Wilson loop. Similarly one finds that the two-point corre-
lation function of an operator with large dimension A =
mL > 1 is given by

G(2R) ~—

- (2.32)

2. Equilibrium properties

After the quench, our system eventually evolves to a final
equilibrium state dual to a black hole in the bulk. Here we
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briefly review properties of an extremal surface Iy (with
boundary ) in the black hole geometry (2.6), whose area
gives the equilibrium value of the corresponding physical
observable.

To leading order in the large size limit, one can show that
for X of any shape [42] (see also Appendix A)

L'V L
A =2 E = Vs ag = (233)
2 Zp

where Vs denotes the volume of the boundary region
bounded by surface X, and a., can be interpreted as an
equilibrium “density.” This result has a simple geometric
interpretation in the bulk—in the large size limit, most of
the extremal surface simply runs along the horizon. In
particular, for entanglement entropy,

gea) _ L Vs

_ oz 2.34
z 4Gy 7! (2.34)

- squD

where we have used the entropy density s., from (2.10).
For a Wilson loop we have

—#/IE
~e o, (2.35)

Weq
where Vy is now the area of the region enclosed by the
loop. The two-point correlation function of an operator
with dimension A &~ mL > 1 is given by

—A2ZR

Geg(2R) ~ €™, (2.36)

D. Further comments on the Vaidya setup

To conclude this section we make some further com-

ments on the Vaidya setup:

(1) It should be kept in mind that while the final
equilibrium state has a temperature and coarse
grained thermal entropy density, the Vaidya geometry
describes the evolution of a pure state. As a con-
sistency check, one can show that for such a process
the entanglement entropy for region A is the same as
that of its complement [2,10,24]. Thus the equilib-
rium entanglement entropy (2.34), despite having a
thermal form, reflects genuine long-range quantum
entanglement. The reason (2.34) has exactly the form
of a thermal entropy is as follows. We are considering
a finite region in a system of infinite size. Thus the
number of degrees of freedom outside the region is
always infinitely larger than that inside. As aresultin
a typical excited pure state the reduced density matrix
for the finite region appears thermal [43].

(2) Before the quench, our system is in a vacuum state of
a CFT and thus already has long-range correlations,
whereas the initial state of [1] only has short-range
correlations. However, this difference is likely not

PHYSICAL REVIEW D 89, 066012 (2014)

important for the questions we are interested in,
which concern the buildup of the finite density of
entanglement entropy in (2.34). The long-range
entanglement in the vacuum, quantified by the
universal part in (2.28), is measure zero compared
to (2.34). Heuristically, for odd d, the long-range
entanglement entropy in the vacuum, being an R-
independent constant, amounts to that of a few sites
inside the region that are fully entangled with the
outside, while in equilibrium, almost all points
inside the region become entangled. For even d,
there is a logarithmic enhancement of the long-range
entanglement in the vacuum, but it is still measure
zero compared to the final entanglement in the large
region limit.

(3) From the perspective of entanglement entropy, the
equilibration process triggered by the quench builds
up long-range entanglement, as can be seen by
comparing (2.34) and (2.28), whereas from the
perspective of correlation functions (2.19) and Wilson
loops (2.20) in which A appears in the exponential
with a minus sign, the same process corresponds to the
destruction of correlations [compare (2.35) and (2.36)
with (2.31) and (2.32)]. More specifically, long-range
correlations in the latter observables which were
present in the vacuum are replaced by short-range
correlations with correlation length controlled by z,,.
However, there is no contradiction, as the process of
building up entanglement also involves redistribution
of those in the vacuum—preexisting correlations
between local operators and over the Wilson loop
get diluted by the redistribution process.

III. EQUATIORNS OF MOTION FOR
EXTREMAL SURFACES

Here we describe equations of motion for I's and its
general characteristics when X is a strip or a sphere. In such
cases I'y, can be described by two functions, z(p), v(p) fora
sphere or z(x;),v(x;) for a strip. For both shapes the
functions satisfy the following boundary conditions at
the boundary as well as regularity conditions at the tip
of the surface:

Z(R)=0, w(R)=t  Z(0)=4(0)=0. (3.1)
For a strip we will write x; simply as x. It is convenient to
introduce the location (z,, v,) of the tip of Ty,

z(0) = z,, v(0) = v,. (3.2)
The sphere and strip being highly symmetric, specifying
(z;, v,) completely fixes I's. The relations between (R, t)
and (z;,v,) are in general rather complicated and require
solving the full equations for z(p), v(p) or z(x), v(x). Also,
it is possible that a given (R,t) corresponds to multiple
(z;,v;)’s; i.e. multiple extremal surfaces have the same
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boundary data. Then as mentioned earlier we will choose
the extremal surface with smallest area.
For X as a sphere or strip we will simply denote Ay (t)

as A(R,t).

A. Strip

The area of an n-dimensional surface in (2.1) ending on
the strip X given by (2.24) can be written as

1~ (R ./
A=-K dx nQ Q=1-2v7 - f(z,v)v"?,
2 —R Z
(3.3)
where
K = L"Ayp. (3.4)

with AStrlp bemg the area of X [both sides of X are included
which gives the 1 factor in (3.3)]. z(x), v(x) then satisfy the
equations of motlon

7+ fu laf o2,
2"\/ 00, < > 570 (3.5)
n U/ _ 1 f /2

Since the integrand of A does not depend explicitly on x,
there is a first integral

7"\/Q = J = const.

Furthermore, when 9, f = 0, Eq. (3.5) can be integrated to
give another first integral,

3.7

7 + fv' = E = const. (3.8)

We are mainly interested in I'y which go through both
AdS and black hole regions. With reflection symmetry
about x = 0, we only need to consider only the x > 0 half
of such a I'y. We now discuss equations in each region
separately:

(1) AdS region: From (3.1) and (3.8) we have

E=7+v=0 (3.9)
and from (3.7)
/ 1 2_ 2
7 =—-—VvJ =z J =12z, (3.10)
z
which give
2 dvyy"
©o)= [, w(@)=v+z-z G

2n _ 2n’
Vi =Y
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(2) Matching conditions at the shell: Denoting the

values of z and x at the intersection of 'y and the
null shell v = 0 as z,. and x,, respectively, we have

Ze =%t vy, (3.12)

and derivatives on the AdS side of the null shell are

1
7 =—v_ = —a 2n — 2, (3.13)

c
To find derivatives on the other side, we integrate the
equations of motion (3.5) and (3.6) across the null
shell to find the matching conditions

v =wv_,

Q+ =0._,
! __ ! 1 ! 1 1 !
2/ =2 59z = ( —Eg(zc)>2--

Note we have used the subscript — (+) to refer to
quantities on the AdS (black hole) side of the
null shell.
(3) Black hole region: From matching conditions (3.14),
J is the same as in the AdS region, i.e. given by
(3.10), while E is given by

(3.14)

1

E=g(z)z' <0, (3.1)

implying ¢ is no longer constant. From (3.8),

/ E-7
v = ,

h

(3.16)

which can be substituted into (3.7) to obtain

= h(z) (i— 1) YE =H(z). (.17

Substituting (3.17) back in (3.16) we also have

dv 1 ( E N 1)

dz  h\VH ‘

Collecting equations in the two regions we find from
(3.10) and (3.17)

[

where we have assumed that z(x) monotonically decreases
as x increases (recall we let x > 0). As we will see later,
z(x) can be nonmonotonic in which case the above
equation should be suitably modified. Similar caveats
should be kept in mind for other equations below. From
integrating (3.18),

(3.18)

(3.19)
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t/zc dz ( E +1)
o h(z) \\/H(z) '
Note that at z = z;,, h(z)~! has a pole but the integrand in
(3.20) remains finite as the second factor vanishes at

7=2y,, due to H(z,) = E* and E < 0. Finally, from
(3.10) and (3.17) we have that the area of I'y is given by

(3.20)

A = Apgs + Apns (3.21)
where
iAAdS =zl / 1 dy; (3.22)
K T y/1- )
and
Laggm o (a1 (3.23)
K o z2\/H(z)

For a given R and t, we can use (3.19) and (3.20) to solve
for z,(R, 1), z.(R, t) after which (3.21) can be expressed in
terms of R and t.

B. Sphere

The area of an n-dimensional surface in (2.1) ending on a
sphere X given by (2.23) can be written as

R n—1
AZK/ dp’— /0.
0

Zn

Q=1-207— f(z,v)v'?,
(3.24)

where

n Asphere

K=L .
Rn—l

(3.25)

It follows that z(p), v(p) satisfy the equations of motion

VO, [P 1] nQ 10f
pr= 3[,{ g —_Qv} = 2—8Z1J , (3.26)
VO, [t N _10f
yeo 9, {—Z” NG (7 + fo )] =35, (3.27)

and boundary conditions (3.1). When 9, f =0, Eq. (3.1)
can be integrated to give

n—1
P
———= (' + fv') = E = const, (3.28)
Z \/Q< )
which can also be expressed as
n—1
pr f dt
——=—=EFE, (3.29)
Z" /Qdp

where ¢ is the Schwarzschild time.

PHYSICAL REVIEW D 89, 066012 (2014)

Again, we are interested in I'y which go through both
AdS and black hole regions:
(1) AdS region: Given (3.1), we again have E =0,
which implies that the solution in the AdS region is
the same as that in pure AdS, i.e. is given by [6]

2p)=7\/ZF=p* vlp)=z+v,—z(p). (3.30)

(2) Matching conditions at the shell: Denoting values of
z and p at the intersection of I'y and the null shell
v =0 as z. and p,, respectively, we have

— ./ 2 2
Pe = i — e

and derivatives on the AdS side of the null shell are

Z, = Z; + v, (3.31)

_Pe
Ze

(3.32)

1_——V_ =

To find the corresponding derivatives on the other
side, we integrate (3.26) and (3.27) across the shell,
which again leads to the matching conditions (3.14)
but with z__, »" now as in (3.32).

(3) Black hole region: The matching implies

E:_1<&)"M<O

3.33
2\ ) (3.33)

and 7 is no longer constant. Solving for »" and Q in
terms of 7’ using (3.28), we obtain

2 n
V= : —Z’+EB L B=="

h(z / o |’ n—1’
() 1+% 1Y

which, when substituted in (3.26), gives the equation
for z,

(3.34)

, n—1 nh
(h+ E*B*)Z + (h+2'%) <p 7+ Z)

a.h
2

+ (E?B? — 7)== = 0. (3.35)

From integrating (3.34), the boundary time is

12
EB\/1+%

Rd
t= / Ll -+
Pe h 1 + ﬁ
\/ h
R dp EZBZ _ Z/2
- //7' l’l + E282 EB h+Z’2 / ’ (336)
‘ mEE T2
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where the second expression is manifestly well defined at
the horizon, and the integral is evaluated on shell, with z(p)
satisfying Eq. (3.35) and boundary conditions (3.14) at p =
pe and z(R) = 0. Finally, from (3.30) and (3.34), the area of
I's can be written as

A = Apgs + Agns (3.37)
where
1 . n—1 L: n—1
_-AAdS:/p d/)p " Vl"'zlz:/A dxx—m
K 0 b4 0 (1-x3)7
(3.38)
and
1 R pn_l \/ 1 + %
—Apy = / dp———F——. (3.39)
K .

z 252
L+55

Note the story here is significantly more complicated
than for a strip. One needs to first solve the differential
equation (3.35) with the initial condition given by the last
equation of (3.14). Imposing the boundary condition
z(R) =0 gives a relation between p,. and z.. One then
needs to evaluate (3.36) to find z.(R, t), p.(R, t) and finally
use (3.37) to obtain A(R, t).

IV. GENERAL GEOMETRIC FEATURES
AND STRATEGY

We now describe the geometric features of I'y during its
time evolution, using as examples the case of X being a
sphere or a strip. For the two shapes the equations of motion
(given in Sec. III) can readily be solved numerically. We are
interested in long-distance behavior; i.e. we take

R> z,. 4.1)

At fixed R, as t is varied, the tip (3.2) of 'y traces out a
curve (z;(R,t),v,(R,t)) in the Penrose diagram. This
provides a nice way to visualize the evolution of I'y with
t. See Fig. 2.

Instead of (z,,v,) it is sometimes convenient to use
(24, 2¢) or (z;,p.) to specify I'y, where z. and p, are the
values of z and p at which the I'y intersects the null shell.
For both a sphere and a strip z. = z;, + v,. For a sphere p,. is
given by (3.31), while for a strip x. can be obtained by
setting z = z. in (3.11).

We now elaborate on various stages of the time evolution
of I's, and strategies for obtaining .A(R, t) in each of them.

For t < 0, I'y, lies entirely in AdS, and

R sphere

z(R,t < 0) = {i 4.2)

. v,=t-1z,
strip ! !

where a,, was introduced in (2.27). A(R, t) is independent
of t and is given by its vacuum value. In Fig. 2 this

PHYSICAL REVIEW D 89, 066012 (2014)

(@ (b)

FIG. 2 (color online). Cartoon of the curve (z;(R,t),v,(R,t))
for (a) continuous and (b) discontinuous saturation. Cartoons of
various extremal surfaces whose tips are labeled above are shown
in Fig. 3. (a) For continuous saturation the whole curve has a one-
to-one correspondence to (R, t), and saturation happens at point
C continuously. (b) Discontinuous saturation happens via a jump
of the extremal surface from one with the tip at C’ to one with the
tip at C. Along the dashed portion of the curve, different points
can correspond to the same (R, t).

corresponds to the part of the curve below point A. Note
that as R — oo, 7, — oo.

Att = 0, or point A, I'y starts intersecting the null shell
[see Fig. 3(a)]. For t <« z;,, the point of intersection is close
to the boundary, i.e. z. < z;,. This defines the pre-local-
equilibrium stage mentioned in the Introduction. In this
regime, one can extract Ay (t) by expanding both t and A in
small z., which we will do for arbitrary X in Sec. VL

When t becomes of order z;, at some point [y starts
intersecting the shell behind the horizon, i.e. z, > z;. An
example is point B in Fig. 2, whose corresponding I'y is
shown in Fig. 3(b).

There exists a sharp time t, after which I'y lies entirely in
the black hole region. I'y then reduces to that in a static
black hole geometry. It lies on a constant Schwarzschild
time ¢ =t outside the horizon and is time independent.
That is, for t > t,

7Z(R, 1) = z,(R) < zy,, v, =t—o0(z), 4.3)
where z;, denotes the location of the tip of I'y in the static
black hole geometry, and in the second equation we have
used (2.7). This corresponds to the part of the curve above
point C in Fig. 2. For t > t;, A(R,t) is time independent
and given by its equilibrium value.

The saturation at the equilibrium value at t; can proceed
as a continuous or discontinuous transition, as illustrated in
Fig. 2. For a continuous transition, depicted on the left, the
entire curve (z;,v,) as a function of t has one-to-one
correspondence with (R, t) and saturation happens at point
C, with t; given by

066012-9
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(a) (b)

(©)

FIG. 3 (color online). Cartoons of extremal surfaces with tips at
various points labeled in Fig. 2. Spatial directions are suppressed.
(a) At t =0,, the extremal surface starts intersecting the null
shell, with z. very small. (b) When t > z,,, the extremal surface
starts intersecting the null shell behind the horizon. (c) The
extremal surface close to continuous saturation for which z;, — z..
is small.

w dz

h(z)

In contrast, for a discontinuous saturation, depicted on the
right plot of Fig. 2, in the dashed portion of the curve, there
are multiple (z,,v,) associated with a given (R,t). As a
result, the minimal area condition requires that the extremal
surface jumps from point C’ to C at some t,. In this case
there does not exist a general formula for t,. For a
discontinuous saturation, Ay (t) is continuous at t,, but
its first time derivative becomes discontinuous.

In the case of a continuous saturation, for which the first
time derivative of Ay (t) is continuous, one can then define
a critical exponent y (by definition y > 1)

£ (R) = o(zs(R)) = A (4.4)

As(t) — ALY o —(t, — ). (4.5)
The “critical” behavior around saturation can be obtained
as follows. As t — t, the tip of I'y approaches the null
shell, i.e. z, — z, — 0 with z,, z. = z, [this is depicted by
point D in Figs. 2 and 3(c)]. Thus one can expand both
t—t, and A — A, in small z, — z, as we discuss in detail
in Sec. XI.

PHYSICAL REVIEW D 89, 066012 (2014)

So far we have based our discussion on generic features
of bulk extremal surfaces without referring to explicit
solutions. To understand what happens during intermediate
stages of time evolution, i.e. between B and C in the parts of
Fig. 2, it is useful to work out specific examples of the
evolution of (z;(R,t),v,(R,t)). In Fig. 4, we give the
parametric plots of (z,(R,t),z.(R.t)) for various values of
R, for X a strip and a sphere, for Schwarzschild 4(z) with
d = 3. From these plots we see a remarkable phenomenon:
curves of varying R, after a brief period of order O(z,), all
collapse into a single curve z}(z,) highlighted by the dashed
line in each plot.

In Sec. VII, we will show that the universal curve z}(z,)
corresponds to a critical line in (z;, z..) space: for a given z,,
I's reaches the boundary only for z,. < z}. In particular, for
aI's with z, = z5(z,), to which we will refer as a “critical
extremal surface,” the surface stretches to p, v = . As a
consequence, for sufficiently large R and t, (z,, z..) lies very
close to the critical line, and the evolution of A(R, 1) is

08}

0.6}

0.4}

02}

00 2 4 6 8 0"
(@)

14

12

10

08

0.6

04

02

00 2 4 6 8 10
(b)

FIG. 4 (color online). Parametric curves (z,(R,t),z.(R,t)) at
fixed R and varying t for Schwarzschild /(z) in d = 3. Different
curves correspond to R = 2,3, ..., 10. In both plots, we choose
units so that the horizon is at z;, = 1. (a) For a strip. Note the
saturation is discontinuous with z. lying behind the horizon at
the saturation point where each curve stops. (b) For a sphere. The
saturation is continuous, and z. lies outside the horizon at the
saturation point (in the plot it is too close to the horizon to be
discerned).
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largely governed by properties of the critical extremal
surfaces. We will show in Secs. IX and XII that this is
responsible for the linear growth and memory loss regimes
discussed in [21].

To conclude this section we comment on the role of z;, in
the evolution. As can be seen from the above discussion, z;,
plays the characteristic scale for the evolution of I'y. There
is an important geometric distinction between the time
evolution of surfaces with R <z, and of those with
R > z,,. In the former case, I's(t) stays outside the horizon
during its entire evolution, while in the latter case important
parts of its evolution are controlled by the geometry near
and behind the horizon. This supports the identification of
Z;, as a “local equilibrium scale” as only after such a time
scale does an extremal surface start probing the geometry
around the black hole horizon.

V. EVOLUTION IN (1 + 1) DIMENSIONS

Before going to general dimensions, let us first consider
the case where d = 2 and the final equilibrium state is given
by the Banados-Teitelboim-Zanelli (BTZ) black hole, i.e.
g(z) = z%/7z3. Then n =1, and I’y is a geodesic whose
length can be expressed analytically in the closed form
[3.4], which enables us to directly extract its scaling
behavior in various regimes. Related boundary observables
are the entanglement entropy of a segment of length 2R and
equal-time two-point correlation functions of operators
with large dimension, at separation 2R. For definiteness,
we consider the entanglement entropy and show that its
evolution exhibits the four regimes discussed in the
Introduction.

It is convenient to introduce the dimensionless variables

T =2xTt, ¢ =2nTR, 5.1
where T is the equilibrium temperature. First, recall the
result for entanglement entropy in a CFT at thermal
equilibrium [44,45],

c sinh 7 c R
S (Z) = =1 mi——_— —log—
eq(?) 30g< ~ )+30g50

= ASeq + Svac- (5.2)
Here, the second term S, is the vacuum value (with &, a
UV cutoff), c is the central charge, and ASeq denotes the
difference between thermal and vacuum values. Note AS,,
is free of any UV ambiguities, and that for £ > 1, we have

C C
Seq =7 — glog(47rT50) + O(E_ZK).

3 (5.3)

Here we see that the log R piece in S,,. has been replaced
by a log T term, signaling a redistribution of long-range
entanglement. Also note that the equilibrium entropy and
energy densities are given by
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rwcT zcT?
o — g p— .

Seg =73 6

54)

Now, the evolution of entanglement entropy in the
Vaidya geometry (2.1) with g(z) = z%/z3 is given by
S(R,t) = AS(R,t) + Syacs (5.5)

where [the following expressions are obtained from
Egs. (3)-(5) of [3] with a slight rewriting]

c sinh 7
AS = -1 —, 5.6
3Og<fs(f,r)> (5.6)
and the function s(#,7) is given implicitly by
1 1 2(1 24 2sp —
poLe g (2t clp +2m=c 5.7)
ps 2 2(14c)p*=2sp—c
with
1 1 1 1-c¢
=—cotht+-/————+——, =v1-s% (5.8
PEF Ot G T e € s 68)

At a given 7, the above expressions only apply for

r<1,(f)=¢. (5.9)

Atz = 7, onefinds thatc = 0 (i.e. s = 1), p = cothz,, and

AS = AS,,. (5.10)

For 7 > 7, AS remains AS.
To make connections to the discussion in Sec. IV, note
that p and s can be related to z, and z,., locations of the tip of
I's and its intersection with the null shell, respectively, as
Zh Ze

= —, 5§ = —

. (5.11)
Ze Z;

Thus Egs. (5.7) and (5.8) provide an explicit mapping
between boundary data (7, ) and bulk data (z;, z.). In the
discussions that follow, it is convenient to introduce an
angle ¢ € [0, z/2] with

¢ = cos ¢, s = sin¢. (5.12)
Then saturation happens at ¢ = z/2, when z. = z,, while
¢ — 0 corresponds to z,/z, — oco. At fixed 7, as we vary ¢
from /2 to 0, £ increases monotonically from 7 to +oo. At
fixed ¢, as we increase ¢ from 0 to z/2, t increases
monotonically from O to z,. Note we will mostly consider
thelimitZ > 1, as we are interested in long-distance physics.

A. Early growth

For any 7, in the limit 7 << 1 p is large, and for (5.7) to be
satisfied we need s to be small (i.e. ¢ small). We find that
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p:%—f—l—Tz—i—---, s:%(f—f—;—k“-), (5.13)
and
§AS:T—Z— (1+1>14+0(16). (5.14)
¢ 4 96  16¢>
Note that for z;, and z., Eq. (5.13) translates to
z. = t(1 + O(t?)), zz=R(1+0(?)), (515

which is consistent with the regime of early growth outlined
in Sec. IV.

Thus at early times, the entanglement entropy grows
quadratically as

CTz

AS = ——+ 0(z*) = 272&> + O(1Y),

34 (5.16)

where we have used (5.4). This result was also obtained
recently in [46].

B. Linear growth

We now consider the regime ¢ > 7 > 1, which corre-
sponds in (5.7) and (5.8) to

1
et K p e, 3! (5.17)
T
with
L2 o(c £=2 ctlogg+0(1)
=—+-= =— 0 .
pP=5+7 5 ) g T tloe
(5.18)
Then from (5.6) we find that
c c T log?
AS =-7—-log4 - — e
S 31 3og +0(£’ 7 ,e )
c
:2seqt—§log4+~-. (5.19)

The leading term agrees with (1.1). Also note that the
subleading term is negative which is important for the
maximal rate conjecture of [21], which we will further
elaborate in the conclusion section.

Note that for z, and z., Egs. (5.17) and (5.18) translate to

1
s,
e @

ie = 2Zh + -, (520)

In Secs. VIII A and IX we will see that the linear growth of
entanglement entropy in (5.19) is generic for all dimensions
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and collapsing geometries, being a consequence of the
critical surface referred to at the end of Sec. IV.

C. Saturation

Let us now examine the behavior of entanglement
entropy as 7 — 7,. For this purpose, consider ¢ =7 —¢
with ¢ <« 1. Then from (5.6)—(5.8),

1 1
p=cotht —Etanhrs —Z(tanhr(tanhzr -2))e2+0(&?),

(5.21)
! 2 3
¢ = T—i—itanhre +0(e), (5.22)
and
inhz 1 h
EAS ~ log sinh : (1 _fan T>82 +0(%). (5.23)
c T

Now fix # and expand 7 near 7; i.e.lett =7, -5, 6 < 1.
We find

1 1
5= Etanh 7,62 + gtanh3 7,65 + (%) (5.24)

and

3 3 V2

1
—08 ==~ A8e == \/tanh 7,8 — 6tanh2 7,8° + 0(82).

(5.25)

In particular, in the limit £ > 1,

3 3 2 1
—AS =-AS, — £5% —— &+ 0(65/2, e . (5.26)
c c 3 6
We see that the approach to saturation has a nontrivial
exponent 3,
AS—ASeq o (b=t 4+,  t—t. (527

This result was also recently obtained in [46].

To make connections to the discussion in Sec. IV, note
that for z, and z., Eqgs. (5.22) and (5.23) translate to

2
Zczzt<1—%+--->, z,=zptanhz 4.+,  (5.28)

which is consistent with the picture of continuous satu-
ration presented there.

D. Memory loss regime

We now show that for 7,7 > 1 with 7 <7,, §— S
depends on a single combination of 7 and # and interpolates
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between the linear growth of Sec. V B and the saturation
regime of Sec. V C. Thus in this regime the “memory” of
the size £ of the region is lost.

First notice from (5.7) and (5.8) that for any ¢,

1
p>p. = 3 <1 +tan%>, (5.29)
and that
7,0 > 00 asp—p,. (5.30)

Thus to explore the regime 7,7 > 1, take p = p, + € with
&€ < 1. Then

1 1
7= —Eloge +§log <1 + cot?) + O(e), (5.31)

1 ¢ 1, (I—cos¢+sing
£ =—1 2 1) 421
2°g€+<C° 2 >+2°g 1+ cos )

+0(e), (5.32)
and the entropy (5.6) can be written as

éAS—§ASeq —1—¢—log(sing) + O(e™>,e7%). (5.33)
C c

Equations (5.31) and (5.32) imply that

¢—t=x(¢)+ O(e).

¢ ¢ (5.34)

x(P) = <cot§— 1) + logtana;

ie.as e = 0, 7,7 — oo but £ — 7 remains finite. Inverting
(5.34) to express ¢ in terms of £ — 7, we can write (5.33) in
the scaling form

AS = AS,, = %z(f —2) + 0(e™¥), (5.35)
where the scaling function 4 is given by
AMy) = =y —log (sinh'(y)). (5.36)

Note that y (¢) monotonically decreases from +oo to 0 as
¢ increases from 0 to 7. More explicitly, as 6 — 0,

2 8
¢ =06 y(¢) = +logo —1+0(9),

2

p=5-5 ) =2+ 0,

> (5.37)

from which A has the asymptotic behavior
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2 logy -1
—y—log(;)+0(7,y ) y>>1

o

Ay) = (5.38)

y<1

Then using the expression for large y, we find from (5.35)
and (5.3) that for Z > 7> 1,

3 log
AS=r—logdt+o(e2 L 80 (539
c ¢ ¢

which recovers (5.19), and that for 6 =7 —-7< 1,
3 3 NS s

which recovers (5.26).

In Sec. VII A, we will show that (5.29) is precisely the
critical line z}(z,) alluded to near the end of Sec. IV, and
that the scaling behavior discussed above is controlled by
properties of critical extremal surfaces associated with the
critical line.

Finally, we remark that in higher dimensions, there does
not exist a closed expression like (5.6), and we have to rely
on geometric features of bulk extremal surfaces to access
the above regimes of evolution, as was outlined in Sec. IV.

VI. PRE-LOCAL-EQULIBRIUM QUADRATIC
GROWTH

In this section, we consider the growth of Ay (t) relative
to the area of a minimal surface in AdS with the same
boundary X for

t <z (6.1)
Recall our earlier discussion in which we identified z;, as a
local equilibrium scale—at the stage of (6.1) the system has
not yet achieved local equilibrium. Except for the energy
density which is conserved in time, equilibrium quantities
such as temperature, entropy, or chemical potential are not
yet relevant at this stage.

We work in general dimensions and only assume that
9(z) has the asymptotic expansion (2.8). We will derive a
universal result that applies to X of an arbitrary shape.

At early times, the null shell lies in the UV part of the
geometry, i.e. near the boundary, and the bulk extremal
surface crosses the shell near the boundary, i.e. z. — 0 as
t — 0, [see Fig. 3(a)]. This implies the following: (i) the
part of the surface lying in the black hole region is very
small, and (ii) the black hole region can be approximated by
perturbing pure AdS. Thus our strategy in finding the small
t behavior of A is to expand t and A in small z,.

A general (n — 1)-dimensional boundary surface X can
be parametrized by

066012-13



LIU AND SUH
:xa(ga)’ a:1,2,...,d—1,
a=1,2,....n—1,

(6.2)

where x, are spatial coordinates along the boundary and &*
are coordinates parametrizing the surface. The area Ay of
is given by

Ox, Ox,

875“5)75/} (6.3)

AZ = /dn_1§ detha[,», haﬂ =

The n-dimensional bulk extremal surface I's ending on X
can be parametrized by

v(& 7). = Xa(¢"2), (6.4)
which satisfy the z = 0 boundary conditions
v(§"z=0)=t, X,(£%z2=0) = xa(é:a)' (6.5)

We also require I'y to be smooth at the tip z,. The area Ay of
I's can be written as

=L" /Zl dz/d"‘lfz_"\/dety
0

= A "z / " EL(X 0. 0), (6.6)

where Zizy is the induced metric on Iy,
Yap = g—);‘z)g; — f(v.2) 5_;3_;’ (6.7)
Yaz = ?;;;‘ 8;” - (v,z)g—;ag—z - g—;, (6.8)
rzz=aai“aai“—f(v,z)<g—z>2—2g—:. (6.9)

Near the boundary of an asymptotic AdS spacetime, i.e. as
z— 0 (or z/z, < 1), one can show that

Xo(2.£%) = x,(§) + O(2%),

v(z,E%) =t —z+ 0(?). (6.10)
Now, we denote the solution in pure AdS (f = 1) with
the same boundary COHdlthHS as I's by X(a ), ©), and as
having tip ZEO) and area -’42 9 Recall that our goal is t0 work
out the difference
AAs(t) = As(t) — AY 6.11)
to leading order in small t. First, note that the pure AdS
solution lies at constant ¢, i.e. from (2.4)
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O (g, 7y =t -z, (6.12)

and that as discussed earlier, X, (&, z), v(&, z) deviate by a
small amount from corresponding quantities in pure AdS,
ie.

X (E2) =XV 46X, w(Ez) =00 +6v, (6.13)
where from (6.10), lowest order terms in 6X, and dv in z
should start at O(z?). Solving v(£z.) = 0, we then find

t=2z.+0(z2), (6.14)
which in turn implies that expanding 6X, and dv in small 1,
the lowest order terms should start at O(t?).

Next, to leading order in small t, (6.11) can be found by

varying the action (6.6),

(
AAE(t):/O dzan1 25 5f+/d” 1EL(XO) 50795z,

/ AT A 6.15)

where |, denotes that a quantity should be evaluated on the
pure AdS solution, X, = (X,, v), and

oL
90.X,"

I, = 5Xy =X, — X (6.16)

In deriving (6.15) we have assumed that the boundary terms
associated with integration by the part over &, vanish. This
is true when X is compact and there is no boundary in the &,
directions, and also when X has no dependence on &, as in
the case when X is a strip. We proceed to observe that
LX) ;9 =0 6.17)
as the area element vanishes at the tip of the bulk surface,
and that similarly, regularity conditions at the tip for F( )
and boundary conditions at infinity imply that the last term

in (6.15) vanishes.’ Thus only the first term in (6.15) is
nonzero. Now note

oL L'l y
— =" /detytr{ y! 6.18
5f 2 e“<y 6f> (6.18)
and from (6.12)
570:/3 57az 5}/21
, =0, -1.  (6.19)
5f o 5f o 5f lo

Given that for small z,

3This term has to vanish to ensure XE,O) is a proper solution to

equations of motion.
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xV(E,2) = x,(6%) + 0(22), (6.20)

we find

Yap=hap+0(2), Va:=0(2), 7.=1+0(z). (6.21)

Thus to leading order

5L L1
—| =———=Vdeth 6.22
ik ) (6.22)
and since

Sf =Mz +- - (6.23)

is nonvanishing only for z € (0, z..), we find [recall (6.14)]

L"AsM

7td—n+l e
2d-n+1)-F

AAs = L"A27 / dongy —
0
(6.24)

For entanglement entropy, we have n = d — 1 and thus

A4y LM
4Gy 16Gy

AS Azt2+--~:ﬁé’A2t2+---,

(6.25)

where £ given in (2.9) is the energy density of the system.
This expression is free of any UV ambiguities and is
universal for any X and bulk geometry ¢(z), depending only
on the energy density of the state.

More general metrics (2.16)—(2.18) typically involve
scalar fields, and the asymptotic behavior of the metric
components /(z) and I(z) in the black hole region in
general depend on the falloff of the scalar fields.
Furthermore the energy density can also receive contribu-
tions from scalar fields. Thus it appears likely that (6.25)
may not generalize to such a case. It would be interesting to
understand this further.

VII. CRITICAL EXTREMAL SURFACES

In this section, using as examples cases of X being a strip
or a sphere, we show that the universal curve z(z,) for
different R’s observed in Fig. 4 corresponds to a critical line
in (z;,z.) space: for a given z,, I'y reaches the boundary
only if z. < z}. In particular, when I'y lies precisely on the
critical line z. = z:(z,), in which case we refer to it as a
critical extremal surface, it asymptotes to p, v = oo along
some constant 7 = z,, > 7.

A. Strip

With X a strip, the black hole portion of I'y is given by
z(p) satisfying the equation of motion (3.17),
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2n
72 = h(z) (?W - 1) + E*(z;,2.) = H(z),

2 2n
gc (%
Er=Z(2 _1 7.1
4 <Z§" ) b
and the boundary condition at z,. (3.14),
2n
9e 3y
f=—(1-= —-——1, 7.2
Z+ ( 2 > Z%n ( )
where we have denoted
9. = 9(z.) (7.3)

and E has been obtained from (3.15). As discussed in
Sec. IV, for t > z,,, the extremal surface intersects the shell
behind the horizon, i.e. z. > z,, except possibly near
saturation.

Equation (7.1) specifies a one-dimensional classical
mechanics problem, with the qualitative behavior of z(p)
readily deduced from properties of H(z). To acquire some
intuition on such behavior, we proceed to work concretely
with the Schwarzschild (or Reissner-Nordstrom) ¢(z). Since
our discussion clearly applies to more than the examples of
9(z) being examined, we maintain the general notation g(z)
and h(z) = 1 — g(z) in all expressions. However, we do not
attempt to characterize the most general class of g(z) for
which H(z) exhibits properties discussed below, nor do we
attempt to classify alternative possibilities.

To begin, note that from (7.2), when g. > 2, z,' > 0, i.e.
after entering the black hole region, I'y initially moves
away from the boundary to larger values of z. We introduce
Z, as

9(zs) =2, 7 > 7 (7.4)
7,/ changes sign when z. crosses z,. Next, note that for
Schwarzschild g(z), the first term in (7.1) is zero at z = z,
and z = z;, and negative in between. Thus H(z) has a
minimum between z,, and z, which we denote z,,. Setting
H'(z,,) =0, we find z,, satisfies the equation

o M(zn)m!
' th,<zm) - Znh(zm) .

(7.5)

It is easy to see that such a minimum also exists for
Reissner-Nordstrom ¢(z). The following discussion
depends only on the existence of such a minimum. We
now introduce z;: given by

. =0.

2.=2Z¢

H(z,)

(7.6)

Note z} and z,,, are functions of z, only. Also note that there
is a special value of z,, which we call ZES , where
2, (z\*)) = z,. Evaluating (7.5) at z,, = z,, we find that
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s Sh/ S %
& = (Z7<Z> .
zh'(z) +2n
(s)

In fact, there are two additional occurrences at z, = z,’.
First, one can check

(71.7)

6 =23 = 2. (7.8)

Second, by taking the derivative of E? in (7.1) with respect
to z. and plugging in the values ng and z; = z,, we find

dE?
dz, 2

=0. (7.9)

In the limit z, - oo, assuming that z,, remains finite
[which is not always true; see e.g. (7.24) and (7.25) below],
Eq. (7.5) can be simplified to

il (Zpn)

1) =2n. (7.10)

Similarly in the z, — co limit, assuming that -, > — oo,
Eq. (7.6) can be simplified to
h(z)

2 (%
e
g4z(*2n) =~ Z2n : (711)

In general, for a given z, there are multiple positive roots
to Eq. (7.6). In fact, Eq. (7.9) suggests that two branches of
roots of (7.6) are converging at z,"’. However, for any ¢(z)
which satisfies g(z;,) = 1 and ¢/(z;,) > 0, it can be checked
that as z, — z;, so that z, = z,(1 + ¢), e < 1, we have

1 1
Zm:z,(l—ie—f—--)=Zh<1+§8+--->, (7.12)

and there is a unique z} satisfying

2 =1z,(1-0(&)). (7.13)
Now, increasing z; and following this root, we note the
following:

(1) In region I given by z;, < z, < ZES),

2
2o > 78> 2 > s <0, (7.14)
dz. |,
and thus for z. < zJ,
z,' <. (7.15)
(2) In region II given by z, > z.*,
dE?
2y < 26 < Zpms >0, (7.16)
dz, .
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1.00 . . . . . =
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(b)

FIG. 5 (color online). Examples of z,, (blue lines) and z;: (red
lines) as functions of z, for (a) Schwarzschild ¢(z) with d = 4 and
n =3, and (b) RN ¢(z) withd = 4, u = 0.2, and n = 3. We have
fixed z;, = 1. Note in (b), z, does not exist and there is only region
1(7.14).

and for z; < z. < ZJ,

2,/ > 0. (7.17)

See Fig. 5 for plots of z; and z,, as functions of z, for
Schwarzschild ¢(z) and one instance of RN g(z).

With the above properties established, the behavior of
z(p) can be read off from Figs. 6 and 7. In particular, for a
given z,, I's only reaches the boundary for z. < z3(z;), and
at z. = z:(z,), it asymptotes to a critical extremal surface
Z = z,,. Note that this conclusion holds in the presence of
other roots to (7.6) as long as the following are satisfied:

(1) In region I there is no other root lying between z,,

and z}.
(2) In region II there is no other root lying between z;
and z}.
It can readily be checked that these conditions are satisfied
by Schwarzschild and Reissner-Nordstrom g¢(z) for general
d. In Figs. 8 and 9 we plot some examples of near-critical
surfaces with z, ~ z;.

Now let us mention some explicit results. For
Schwarzschild ¢g(z) (2.11) and d = 2, the case discussed
in Sec. V, one finds

2 =V2z, Y =12z, (7.18)

I — V eve'n

4
and

“Note that in this case there are two positive roots to Eq. (7.6).
The root below is the branch chosen by (7.13).
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H(z)
0.03
0.02
0.01
—z
Zm Zc
-001
(@)
HG)
0.04
0.03
0.02
0.01
Zz
Zm Zc
~001
(b)
H(z)
0.025
0.020
0.015
0.010
0.005
—z
—o.oosE \Z'"/Z %
~0.010

FIG. 6 (color online). H(z) for z, < zﬁ“). In this case 7} > z,,

and z.' <0 for z.Szi. (a) z. =2k z(x) decreases then
asymptotes to z=1z,. (b) z.=1z,—¢ for &>0. Since

‘f |» <0, H(z,) > 0. £’ remains negative throughout and I'y

can reach the boundary. If & is small, then H(z,) is small
(positive) and 'y hangs near the critical extremal surface z = z,,
for a long interval in x before eventually reaching the boundary.

(¢) z. = zi + €. Since ‘[Ifz >0, now H(z,) <0. z(x) first

decreases to point A, then turns around and never reaches the
boundary.

1
ol 25(\/z,2+4z,zh—4zf,—z,) + zp, (7.19)
where
zt —> 2z, asz, > oo. (7.20)

Using (5.11) and (5.12), one finds that the critical line
(7.19) is precisely equivalent to (5.29). Similarly, (7.20)
maps to (5.20).

For Schwarzschild g(z) (2.11) in general d, one has

d \#
)2 2iz,,, (7.21)

o 21 , (s) N
s 42 <t (d—n

but the expressions for z,, and z): get complicated. In the
following discussion we will mostly be interested in the
z, — oo limit, for which introducing
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0.25
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Zc N/
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0.15
0.10
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z" Zm

()
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FIG. 7 (color online). H(z) for z, > 2. In this case 75 <z, If
Ze < Zg» 7 < 0 and z(p) monotonically decreases to zero. These
plots show what happens when z. >z, so that z,” > 0.
(@) z.=2z;. z(p) increases and asymptotes to z = z,.
(b) z.=2z;—¢€ for a positive &>0. With ‘jfz = >0,
H(z,,) < 0. z(x) first increases, and then turns around at point
B and monotonically decreases to zero. If ¢ is small, then H(z,,)
is small (negative), and I's hangs near the critical surface z = z,,
(i.e. near B) for a long interval in x before eventually reaching the
boundary. (c) z, = zj + . With H(z,,) > 0, z(x) only increases
and never reaches the boundary.

(7.22)

2n
n 4’

we find the following:
(1) Forn>1,

n \7 i 4(n—1)r! pr=)
Zn=\—] 2 = |—— 2
n—1 n'

(7.23)

Note that both z,, and z; remain finite as z, — co

: 4(—D\575
and £ = ( U ))zw—n) < L.
z n

() Forn <1,

d=2n
2(d—n
T~ K 2,

2 = (1 =)z, (7.24)

Note that both z,, and z; approach infinity as z;, — oo.
(3) Forn=1,ie n=4

27
Zm = 1/ Z[Zh9

2y < 75 = 2Tz, K 2. (1.25)
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Zc*k'" """""""""""""""""
Znf -7 -
| Y

-

FIG. 8 (color online). Left: Behavior of near-critical surfaces
with & = £10712 for z, = 1.3z, < z.*), for Schwarzschild with
d =3,n =72, and X a strip. The critical surface runs to infinite x
along z = z,,. For small ¢, the solution runs along the critical
surface for a while before reaching the boundary or black hole
singularity, depending on the sign of e. Right: Cartoon of the
near-critical surfaces on the Penrose diagram. Dashed curve is a
constant z = z,, slice.

z(x)

FIG. 9 (color online). Left: Behavior of near-critical surfaces
with e = £10712 for z, = 3z, > 2", for Schwarzschild g(z) with
d=3,n=2, and X a strip. Right: Cartoon of the near-critical
surfaces on the Penrose diagram.

In this case z,, approaches infinity, but z} remains
finite as z, — oo.
For Reissner-Nordstrom g(z) (2.12), we find that for n =
d —1 and in the limit z;, — oo,

2(d—1) 1 :
= 7.26
Zm < d—2 1 + QZZ%,d_2> Zn ( )

and z} is also finite but is given by a complicated expression
which is not particularly illuminating. Also note that in the
extremal limit,

2\ 7
*
Zm = Zps Ze ™ 2—5 Zhs

and that for sufficiently large Q, z,, never reaches z, for
all z;.

(7.27)

B. Sphere

We now examine the case of X being a sphere with n > 2
(thus d > 3). The analysis is more complicated as the
equation of motion for z(p) given the black hole portion of
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I's is now a second order nonlinear differential equation,
(3.35). We copy it here for convenience,

. —1 h
(h+ E?B*)Z + (h+ 2% <—” 5 7+ n—)

z
h
_|_ (E2B2 —_ 2/2)% = (728)
with
1 /pc\" "
E=-3 (‘i) 9G) - po S (7.29)
Zc <t P

We again expect that for a given z,, there is a critical z;;
beyond which I'y never reaches the boundary. For a given
h(z), z:(z;) can readily be found by numerically solving
(7.28). From the strip analysis (7.23)—(7.25), a natural
guess for Schwarzschild h(z) is that for n =22 > 1, z;
remains finite as 7, — oo. This appears to be supported by
numerical results. In Fig. 10 we show some examples.

At z, = z} the critical solution z*(p) should reach p =
along some constant z surface. Now, solving (7.28) for a
constant z in the limit p — o0, one finds the unique solution

=2y (7.30)
In other words, independent of the choice of z, and the
function g(z), the critical extremal surface approaches and
runs along at the horizon to p = oo. Expanding about the
solution (7.30) in Eq. (7.28), one finds a perturbation that
grows exponentially in p (in Sec. XII we work this out
explicitly). By tuning z. to z, one ensures that this
exponentially growing perturbation is absent and z — z,
as p > oo. For z, = zi(1 —¢), e < 1, the perturbation
acquires a small coefficient, and z(p) runs along the
horizon for a while before eventually breaking away.
Depending on the sign of &, it either approaches the
boundary (¢ >0) or turns away from it (e <O0).
See Fig. 11.
z*

1.7

1.6}

15}

1.4}

13}
1.2} fﬁ
1.1
O 1520 55 30

FIG. 10 (color online). Plot of z; as a function of z, ford =3
Schwarzschild with n =2 (blue line), d =4 with n =3 (red
line), and d = 6 with n =2 (yellow line). We plot in the unit
z;, = 1. For the last case z: appears to grow with z, as z;. This
should also be compared with the strip case (7.24) where z;
grows with z, as zj.
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2p)

FIG. 11 (color online). Left: Behavior of near-critical surfaces
with & = £1078 for z, = 1.5z, ~ z%, for Schwarzschild with
d =4, n =3, and X a sphere. Note the surfaces now run along

the horizon (c.f. Figs. 8 and 9). Right: Cartoon of the near-critical
surfaces on the Penrose diagram.

P

When z; is large and z; remains finite in the large z, limit,
the critical extremal solution z*(p) has another interesting
feature which will play an important role in our discussion
of the linear growth of entanglement entropy in Sec. IX.
From (3.31), for a finite z, ~ 7},

pe=12,+0(1/z,), Z; — 0. (7.31)

Then for the range of p satisfying p >p, and £~ 1,
Eq. (7.28) can be solved approximately by z*(p/))zzm
with z,, given by

) n €\ 7/
n(en) | <z_m>2 PN (@) _ (7.32)
Zm Zc 8

The above equation is obtained from (7.28) by setting
2(p) = zZm» 2. = 25, and %: 1. This results in a

plateau at z = z,, for a range of p ~p, as indicated in
Fig. 12. Note Eq. (7.32) agrees precisely with Egs. (7.10)
and (7.11) for a strip. That is, provided the z} in (7.32)
agrees with that of the strip, the z,, determined from (7.32)
agrees precisely with the location of the critical surface for
a strip. We will show in Sec. IX B this is indeed the case.

2(p)

4
*
V2 B
V4

P

FIG. 12 (color online). Cartoon of z*(p) for z, > z, with z} ~
O(1) as z; > oo: There is an intermediate plateau at z = z,, for
p ~ p.. The critical surface eventually approaches the horizon for

p>pe.
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FIG. 13 (color online). The dotted line denotes a curve at
constant z, along which v increases from —oo to +oo from bottom
(not shown) to top. The dashed purple line corresponds to I'y, the
critical extremal surface, while the green lines correspond to I'y
with v, just above and below v;.

C. Summary

In this section, we showed explicitly for cases of X being
a strip or sphere that in the Penrose diagram there exists a
critical line v} (z,)’: 'y reaches the boundary only for
v, < vy, with the critical extremal surface I';, correspond-
ing to v (z,) stretching to R,t = oo. See Fig. 13. The same
phenomenon should apply to general shapes.

In the numerical plots presented in Sec. IV (see Fig. 4),
we saw that for t > O(z,), constant R trajectories of I'y in
the (z;,z.) plane collapse onto a single curve. From the
above discussion, we now understand that this is a
consequence of the following: (i) a critical z}(z,) exists
on which I's asymptotes to a critical extremal surface that
extends to infinite R and t, and (ii) z; remains finite [of
order O(z,)] as z, —» oo. Thus at large fixed R, when t
becomes sufficiently large, i.e. of order O(z,), (2 2.)
quickly approaches the critical line z:(z,). This is clearly
exemplified in the (1 + 1)-dimensional story in Sec. V D.
There, e, parametrizing the distance to the critical line
(5.29) [or (7.19)], gave the leading large ¢ and = behavior,
while ¢ in (5.29) [or z; in (7.19)], parametrizing the
location on the critical line, mapped to £ — 7 or 7, — 7.

In short, for large R, t > z,,, with corresponding (z,, v;)
lying very close to the critical line »;(z,), I's closely
follows I's before deviating away to reach the boundary.
The evolution of Ay can then be largely determined from
that of I's. Again, this is seen in (1 4 1) dimensions in the
discussion of Sec. V. In higher dimensions, with much less
analytic control, this feature provides a powerful tool for
extracting the evolution of Ag(t).

For X a strip, the critical extremal surfaces asymptote to a
constant-z hypersurface z = z,, lying inside the horizon,

SRecall v; =z, — ;. Thus statements regarding z; can
immediately be translated to those about v;.
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ie. z, > z, with z,, depending on the function %(z) in
(2.5). It is important to keep in mind that z, changes during
the time evolution, and so does z,,.

For X a sphere, the critical extremal surface for large
enough z, forms an intermediate plateau at some z = z,,
before running along the horizon z = z;, all the way to
p, v = o0; see Fig. 12. For moderate z, > z,, the critical
extremal surface runs along the horizon z = z, top, v =
with no plateau at z = z,,; see Fig. 11.

We will see below that for a sphere, the plateau at z = z,,
governs a linear growth in A at early times, while the
plateau at the horizon governs a memory loss effect at
late times.

VIII. LINEAR GROWTH: STRIP

In this section, we show that with X given by a strip
A(R,t) grows linearly with t for R > t > 7. The evolu-
tion can be straightforwardly worked out from the dis-
cussion of Sec. VII A and as we will see is largely
controlled by the critical extremal surface discussed in
the last section. The same growth also applies to a sphere
and other shapes as will be discussed in the next section.

A. Linear growth

To obtain the behavior for R > t > z;,, we consider z,
close to z; for some z,,

2. =z:(1 —¢), ek 1, 8.1)
and assume that

Lo Imo o, <. (8.2)

it 4 |10g£|

In this regime we can expand t, R, and A in a double
expansion of 1/z, and .

We now proceed to evaluate the boundary quantities t, R,
and A using (3.19)—(3.23). Note that these equations
should be modified when z(x) is not monotonic, which
happens, for example, for z, > z;”. Then from (7.16),
7. R 7p < 7, l.e. after intersecting the shell, z(x) first
moves to larger values of z before turning around as
illustrated in Figs. 7(b) and 9. In this case Eq. (3.19)
should be modified to

(8.3)

% 1 zZr z 1
R—/ dz —|—</ dz+/ dz)
Ze s /%_1 Z 0 VH(z)
Z

and similarly for others. In the above equation z,. is the root
of H(z) which is slightly smaller than z,, (i.e. point B of the
second plot of Fig. 7), and z, = z,, for e = 0.

It is useful to separate z(x) into four regions (see Fig. 9):
(i) AdS region from z; to z., (ii) from z. to near z,,
(iii) running along z,,, and (iv) from near z,, to boundary
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z = 0. One can then check that contributions to t, R, and
A — Ay, from regions (i) and (iv) are at most O(z}).°

Now let us look at region (iii). Near z = z,,, with
z. = 7:(1 — €), we have

H(z) = Hy(z = z,)* + e, (8.4)
where
1 dE?
H,=~-H"(z,). b=—z . 8.5
2= 5 (2Zm) S . (8.5)

Note H,>0 and that b <0 (b>0) for z, >z

(z; < ZES)). In (3.20) (or its nonmonotonic version), there
is no contribution from region (i), while region (iii)
contributes at order log ¢, leading to
o E)
h(zm) V H 2
In (3.19) [or (8.3)] there is an O(z,) contribution from (i) in
addition to a log e term from (iii),

loge+---. (8.6)

1
R=a,z, ———=loge+---,

VH,

where a, was introduced (2.27) [c.f. (4.2)]. Using (8.6), we
can then rewrite (8.7) as

z,—i<R—h<Z’”)t)+---

a, E(z;)

Now consider the evaluation of A using (3.21)—(3.23).
After subtracting the vacuum value A,,., the diverging
contribution near z =0 in region (iv) cancels and the
dominant contribution is again from region (iii),

8.7)

(8.8)

n

(A - Avac) = 2nZt

1o
K 'V H>

=AA
K

loge + O(1). (8.9)

Collecting (8.6) and (8.9), we find

AA =K+ --- (8.10)
with
Z;l h(Zm) _h<zm)
=L = 4o 8.11
o E(zf) zn, (610

where in the second equality we have used (3.17) to express
E(z;) as

®When z,, — o0 as z, — o0, as for example in the case (7.25),
one has to be careful because the integration range from z; to z,,
is large. One can check that divergent contributions from (ii) and
(iv) cancel.
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E(z;) =—\/—h(zm)<%:—1) :—mj_%...,

m

(8.12)

Upon substituting the explicit form of K (3.4), we have

AA= _}/(Zm>Astript 4 (8.13)
where y(z,,) is the determinant of the induced metric on the
critical extremal surface at z,,, which is spanned by v and
Xo, ..., X,, 1.e. directions along X. Using the equilibrium
“density” a.q introduced in (2.33), we can also write (8.10)

as

AA = agqAguiptnt + O(1), (8.14)
where the velocity v, is given by
v, = (Z—”> —h(z,,). (8.15)
m

In particular, for n = d — 1, we have the entanglement
entropy

AA

AS = 4Gy = squstripUEt + 0(1), (8.16)

where s, is the equilibrium entropy density in (2.10), and

m

(8.17)

In the regime of (8.2) we can approximate the value of z,,
in various equations above by that at z, = oo. So to leading
order in the large R limit, the evolution is linear. Note that in
order for (8.2) to be satisfied we need t to be large enough so
that z,. is sufficiently close to z;;, but not too large such that z,
becomes comparable to z: [see (8.8)] to invalidate (8.2).

B. Example: Schwarzschild

Letus now consider the Schwarzschild case for an explicit
illustration. From (7.23)—(7.25), depending on the value of
n = 2. z; and z,, behave differently in the limit of a large z,.
Below we consider these situations separately. While we are
considering Schwarzschild, the discussion depends only on
whether z; and z,, have a finite limit as z, — co0. So we will

still keep A (z) general in our discussion.

1.p>1

For n > 1, which covers the case of entanglement
entropy n =d — 1 1in d > 2, both z} and z,, remain finite
of order O(z;,) in the limit of large z,. The assumptions
(8.2) then apply when R >t > O(z,).

In this case we can show that the linear growth (8.14) in
fact persists all the way to saturation, which happens via a
discontinuous transition. We do this by assuming the
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conclusion, strongly suggested by Fig. 4, and checking
self-consistency.

With the linear growth (8.14), A will reach its equilib-
rium value (2.33) at time

R R

t,=—=———-—, (8.18)
Un ()" =h(zn)
when, from (8.8) and (8.12),
R 2 n
z,:—<1—<z’")>+--~ (8.19)
a, ZtZh

From (7.23), for n > 1 the second term in parentheses is
small for large z;, so we find that when the system reaches
the equilibrium value, z, is still very large.

When t is greater than (8.18), Eq. (8.14) exceeds its
equilibrium value, and the extremal surface with the
smallest area is no longer a near-critical extremal surface
to which (8.14) applies, but one that lies solely in the black
hole region. Thus the extremal surface jumps at t,, and the
saturation is discontinuous. Note that for entanglement
entropy, the saturation time is

t, =

R
—, (8.20)
Vg

where vg was given in (8.17).

2.1=1
For n =1, which covers the case of entanglement

entropy in d = 2 examined earlier in Sec. V and that of
a spacelike Wilson loop in d = 4, 7 remains finite, but z,,
increases with z, in the large z, limit. In this case, there is
still a linear regime, with

v, = 1. (8.21)
Furthermore, because of (7.25), the expression inside
parentheses in (8.19) becomes zero at the time (8.18);
i.e. z, becomes comparable to z,. before (8.18) is reached.
Thus the system exits the linear growth regime before
saturation. This is consistent with what we saw in Sec. V
for the d =2 case. In Secs. XI and XII we discuss the
behavior of the system after exiting the linear regime in
higher dimensions.

3n<l1

For n < 1, from (7.24) both z} ~ z¢ (with a < 1) and
Zm & z; grow with z, in the limit z, — oo. Then since z} is
also very large for large z,, it may take a long time for z,. to
reach z}. If z, is still O(R) as z. first approaches 7}, the
linear regime could still exist. Supposing such a regime
exists, Eq. (8.15) gives for Schwarzschild h(z)
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(8.22)

which is physically unreasonable and suggests that a linear
regime does not exist. Explicit numerical calculation
appears to be consistent with this expectation [47].

IX. LINEAR GROWTH: GENERAL SHAPES

In this section we generalize the linear growth found in
the last section for a strip to general shapes. We show that
for t in the range R >t > z;, Ay () generically exhibits
linear growth in t with a slope independent of the shape of
2. Again the technical requirement is that z;: should remain
finite as z; — oo, which for Schwarzschild ¢(z) amounts
to 2n > d.

We first revisit the strip story and rederive the linear
growth from a scaling limit, which we can extend straight-
forwardly to general shapes. We will also extend results to
the wider class of metrics (2.16).

A. Revisiting strip: A scaling limit

The linear growth of the last section occurs when z; is
large but z; remains finite in the limit z, — co. In this
regime, with z. = 7} we have [from (3.11)]

Zn—%—l
Xe = X(Zc) = ayZ; — C—” .1
t
Also from (8.8) and (8.12)
a,z; = R—0(z/"). 9.2)

The above equations suggest that in the black hole region
we should consider a scaling coordinate
y=(R—-x)z} 9.3)

Indeed, in terms of y Eq. (7.1) [or (3.17)] has a scaling form
independent of z, to leading order as z, — oo,

2 2
% — h(Z) —|— (12, a2 = gc .
dy Z2n 4Z%n

94)

Similarly, to leading order in 1/z,, Eq. (3.18) becomes

d 1
d—” = 4 (9.5)
Z %Jraz
From (9.4) and (9.5), we conclude
dx 1 dv
-~ —~0(1 9.6
dz 7V dz (1. ©-6)

Then using z as the independent variable, the action (3.3) in
the black hole region is
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FIG. 14 (color online). In the limit of a large z, and a finite
Z. & 7, the evolution in the black hole region is essentially solely
in the time direction, with two sides of the strip evolving
independently.

2 dv dv\?

Aun = LAy [ "Z_\/ (i)
d 2
—L Abtl‘lp/ dZ \/ 2__h v 5

where in the second equality we have dropped the term
(45)? ~ O(z7*"). It may look odd that in (9.7) x(z)
completely drops out. This in fact has a simple geometric
interpretation: from (9.1) and (9.2), by the time the extremal
surface reaches z., x(z.) = R— O(z;") has essentially
reached its boundary value R, while v(z..) is zero and still
far away from its boundary value v(z = 0) = t. Thus the
evolution of the extremal surface in the black hole region (for
7 < z.) is almost completely in the time direction. See
Fig. 14 for an illustration. For purposes of calculating the
area A to leading order in 1/z;, we can simply ignore the
evolution in the x direction. As a consistency check, we
indeed recover (9.5) by a variation of (9.7).
Integrating (9.5) we find that

9.7

cd
t:/zzZ . —" 9.8)
0 @ +a?
and further substituting (9.5) into (9.7) we have
Ze 1
Apn = LnAstrip/ d7 ————. 9.9)
0 722" /@ + a2

The linear growth of A(t) can now be immediately
understood from (9.8) and (9 9). As before, for z. = z;
with z} given by (7.11), 2,, ) + 42 has a double zero at its
minimum z,, which premsely coincides with (7.10).” For
z. = z4(1 — €) with ¢ — 0, both the integrals for t and Agy

"The expression h;f) + @? differs from H(z) of (7.1) only by an
overall scaling and thus has the same minimum and zero.
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are then dominated by the region around z,, and we
precisely recover (8.14).

Note that the action (9.7) as well as the linear growth of
A is in fact identical to that of [25], where entanglement
entropy between half spaces lying on two asymptotic
boundaries of an eternal AdS black hole was considered.
The agreement can easily be understood from Fig. 14; in
the large z, limit, each half of the strip evolves independ-
ently in the black hole region solely in the time direction,
which coincides with the setup of [25].

B. General shapes

The intuition obtained from the above discussion for a
strip and Fig. 14 can now be generalized to arbitrary shapes.
For arbitrary X, we again expect that in the limit
R >t > 7z, the evolution of the extremal surface after
entering the shell will be essentially solely in the time
direction, as indicated in Fig. 15. In other words, in the
large size limit, when z,. is much smaller than the size of X,
the curvature of X should not matter in the black hole, and
each point of the extremal surface essentially evolves like
one on a strip. Below we present arguments that this is
indeed the case.

Consider a smooth entangling surface £ which can be
parametrized in terms of polar coordinates (2.22) as

p =Rr(Q),

x, =0, (9.10)

where Q denotes collectively the angular coordinates
parametrizing X, R is the size of X, and the function
r(Q) specifies the shape of X . The bulk extremal surface
can then be parametrized in terms of p(z, Q), v(z, Q) with
boundary conditions

p(z=0,Q) = Rr(Q), v(z=10,Q) =t,

and regularity at the tip of the surface.

©.11)

_________________

FIG. 15 (color online). A cartoon of an extremal surface for X
with some arbitrary shape, in the large size limit and t in the linear
regime. Upon entering the black hole region, the extremal surface
has essentially attained its boundary shape X. The evolution in the
black hole region is essentially solely in the time direction and is
the same as that for a strip.
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Writing [see (2.22)]

A2, = gi(Q)de?. da'Q=]]gdo,. .12

the area of X can be written as

_ 1 e 1 r%
As = R 1/d Qr 1<Q)1/1+ﬁz,~:5’ (9.13)

where

ri = 0p,1(Q). (9.14)
Meanwhile, in the Vaidya geometry, the action for an
n-dimensional extremal surface ending on the above X can
be written as

., n—1
As = L" / dz/d"—lg”T\FQ (9.15)
S5 Z
with
12 / 12 1 1
Q=p?-2'-f(0.2v2+5> —G;
P~ gi
1 v = pjvi)’
— (piv; =pjvi)” (9.16)
P i.j glg]
where we have used the notation
p=0.p, pi=0ip, V=0,v, v,=0w (9.17)
and

Gi = ~f(v,2)(p'v; = piv')* + 2p;(p'v; — pi') — v}
(9.18)

In (9.15) ¢ is a short-distance cutoff. It is readily found that
in the black hole region p and v have the following small z
expansion (for z < z,,):

2

p(2.Q) = Rr(Q) —%;(9) o (9.19)

v(z,Q) =t —z+ 0", (9.20)
where 7(Q) is a function which can be determined
from r(Q).

For R > t, to leading order in 1/R, the part of the
extremal surface in the AdS region can be approximated by
that in pure AdS, which we denote p(*)(z,Q) (and for
which ¢ is constant). For z/R < 1, p() has the expansion

p9(z,Q) = Rr(Q) + OR™). (9.21)
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Note that in contrast to (9.19) which applies only to z < z,,,
due to the scaling symmetry of pure AdS and that X as
defined in (9.10) has a scalable form, Eq. (9.21) in
fact applies to any z/R < 1 and in particular z ~ z,. ~ z;.
Thus we conclude that when the extremal surface enters the
shell at z,.,

p(z.,Q) = Rr(Q) — O(R7). (9.22)

From (9.19), (9.20), and (9.22), the extremal surface in
the black hole region should then have the following
scaling:

p'~O(R™"), p;~O(R),

v;i~O(R™Y), v'~0(1).

(9.23)

Plugging the above scaling into the action (9.15) we find
that to leading order in 1/R,

As p = L"R"! / “dz / a1Qr1(Q)
3

1‘/ / 2 1 "12
XZ_" —2v — hv 1—|—ﬁ§i:—i

~C d
= L"As ) —5 vV =20 — h'?,
s <

(9.24)

which reduces to (9.7). In particular, all evolution in p and
Q directions have dropped out. Thus we conclude that
(8.14) in fact applies to all shapes with A, replaced by Ay.

The above discussion encompasses the case of X being a
sphere for which () = 1. In that case one can derive the
above scaling limit explicitly from Egs. (3.26) and (3.27).
In particular, the linear growth regime is controlled by the
first plateau of the critical extremal surface as indicated
in Fig. 16.

z2(p)

Imf -~ """ """~~~ "----

A kLR ED S REREEERE
Zh-———————————————————————————— ———\--———-—

FIG. 16 (color online). Cartoon: For a sphere, in the linear
regime the extremal surface follows the critical extremal surface
for a while but exits near the first plateau. The dashed curve is the
critical extremal surface.

PHYSICAL REVIEW D 89, 066012 (2014)

C. More general metrics

The above discussion can readily be extended to more
general metrics of the form (2.16)—(2.18). The action (9.24)
is replaced by

Apyy = L"Ax / w1 \/ Ch()0? = 2k(2)0),  (9.25)
0o <

from which v(z) satisfies the equation

1 h' +k
— = const,

N —h'? = 2k

which can be solved as (b is a positive constant)

(9.26)

v = -1
h(z> M_i_bZ

4
ZZ”
with
dA . k(z) 1

. " on :
dz Z %4_[)2

(9.28)

Other than a prefactor k(z) appearing in both equations,
Egs. (9.27) and (9.28) are identical to (9.8) and (9.9). The
constant b should be determined by matching conditions at
the null shell, i.e. be expressible in terms of z. alone in the
limit z, — oo. Its precise form is not important. As far as a
z exists such that h;TZ) + b? is zero at its minimum z,,, A
will have a linear growth regime for z, close to z}.

Since in the linear regime the leading behavior is given
by the behavior of the right-hand sides of (9.27) and (9.28)
near z,,, the factor k(z,,) cancels when we relate A to t, and
we conclude A is still given by (8.14) with the same v,,, i.e.
the additional function k(z) in (9.25) cannot be seen in the
linear regime.

X. LINEAR GROWTH: AN UPPER BOUND?

In previous sections we found that for any metric of the
form (2.16) and for ¥ of any shape, provided that z}
remains finite in the limit z;, — oo, there is a linear growth
regime

AA(t) = aAsp,t + O(1) (10.1)

for R >t > z,. In the above equation a., is the equilib-
rium density introduced in (2.33), Ay is the area of X, and
the velocity v, is given by

v, = (Zh) —h(z,). (10.2)
Zm
Here z,, is the minimum of % and lies inside the black hole

event horizon. In particular, for entanglement entropy we
have n =d —1 and
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ASx(t) = seqAsvpt + O(1), vp =v4_1, (10.3)
where s, is the equilibrium entropy density.

Now let us specialize to the evolution of entanglement
entropy which has the cleanest physical interpretation. The
linear growth regime (10.3) sets in for t = z;, ~ O(Zq), i.e.
after local equilibration has been achieved. This explains
the appearance of the equilibrium entropy density s, in the
prefactor. In contrast, the pre-local-equilibration quadratic
growth (6.25) is proportional to the energy density &.
Indeed, at very early times before the system has equili-
brated locally, the only macroscopic data characterizing the
state is the energy density.

It is natural that in both regimes ASy is proportional to
Ay, as the time evolution in our system is generated by a
local Hamiltonian which couples directly only to the
degrees of freedom near X, and the entanglement has to
build up from X. When R is large, the curvature of X is
negligible at early times, which explains the area law and
shape independence of (6.25) and (10.3).

Note that if we stipulate that before local equilibration
Ss(t) should be proportional to Ay and &, the quadratic
time dependence in (6.25) follows from dimensional
analysis. Similarly, if we require that after local equilibra-
tion, Sy(t) is proportional to Ay and s, linearity in time
follows.

As discussed in [21], Egs. (6.25) and (10.3) suggest a
simple geometric picture: entanglement entropy increases
as if there was a wave with a sharp wave-front propagating
inward from X, with the region that has been covered by the
wave entangled with the region outside X, and the region
yet to be covered not yet entangled. See Fig. 17. This was
dubbed an “entanglement tsunami” in [21]. In the linear
regime, the tsunami has a constant velocity given by v,
while in the quadratic regime the front velocity increases
linearly with time. The tsunami picture highlights the local
nature of the evolution of entanglement. For quadratic and
linear growth regimes, when the curvature of X can be

Y —ougt )

FIG. 17 (color online). The growth in entanglement entropy can
be visualized as occurring via an “entanglement tsunami’” with a
sharp wave front carrying entanglement inward from X. The
region that has been covered by the wave (i.e. yellow region in the
plot) is entangled with the region outside X, while the white
region is not yet entangled.
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neglected, different parts of the tsunami do not interact with
one another. But as the tsunami advances inward, curvature
effects will become important, and the propagation will
become more complicated.

In a relativistic system, vy should be constrained by
causality, although in a general interacting quantum system
relating it directly to the speed of light appears difficult. In
the rest of this section we examine v for known black hole
solutions and also various h(z) satisfying null energy
conditions. We find support that

1 d=2
l 30687 d=3
<9 (n—1):=1) SRS (104)
VgL, =——F——= , .
E=TE P §§:05m)d:4
1
% d=o0

where U(ES) is the value for a Schwarzschild black hole
with 5 = 240

There are reasons to suspect that the Schwarzschild value
in (10.4) may be special. The gravity limit corresponds to
the infinite coupling limit of the gapless boundary
Hamiltonian, in which generation of entanglement should
be most efficient. From the bulk perspective, it is natural to
expect that turning on additional matter fields (satisfying
the null energy condition) will slow down thermalization.
From the boundary perspective, the corresponding expect-
ation is that when there are conserved quantities such as
charge density, the equilibration process becomes less
efficient.

With Mezei, we generalized the free-streaming model of
[1] to higher dimensions and find that at early times there is
linear growth as in (10.3) with s, interpreted as giving a
measure for quasiparticle density. For d > 3, quasiparticles
can travel in different directions, and as a result although
they travel at the speed of light the speed of the entangle-
ment tsunami turns out to be smaller than 1 [22],

. F(d— 1)
(streaming) 2 (S)
= < < 1.
v Jar@) S

(10.5)

Comparing with the Schwarzschild value (10.4), we con-
clude that in strongly coupled systems, the propagation of
entanglement entropy is faster than that from free-streaming
particles moving at the speed of light.

It is important to examine whether (10.4) could be
violated from higher derivative corrections to FEinstein
gravity. As a preliminary investigation, at the end of this
section we consider the example of a Schwarzschild black
hole in Gauss-Bonnet gravity in d = 4, but as we explain
there one cannot draw an immediate conclusion from it.
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A. Schwarzschild, RN, and other black holes

Let us now consider some examples. For Schwarzschild
h(z) (2.11), plugging (7.23) into (10.2) we find

— 1)3=1)
© =TT 2 o6
Un 17%]/] ’ n d M ( * )
Recall that our current discussion applies only to 7 > 1, and
it can readily be checked from (10.6) that

o <1 forn> 1,

o =1 (10.7)
2

vs,s) is a monotonically decreasing function of 7. The
maximal value of # is for entanglement entropy, for which

_ 2(d-1)
== and

(10.8)

The above expression and (8.17) were also obtained earlier
in [25] in a different setup.
For Reissner-Nordstrom #(z), from (7.26) the velocity
for entanglement entropy is given by
>
(1-u).

(RN) d du @
v = 1 — _
E d-2 2(d—1)
(10.9)

where u was defined in (2.15)—recall that 1 > u > 0 with
u=1,0 being the Schwarzschild and extremal limits,
respectively. We note vy decreases with increasing chemi-
cal potential. For the extremal black hole, one finds vz = 0
which implies that the linear growth regime no longer
exists.

We now consider the behavior of vy for more general
black holes. Other than Schwarzschild and RN black holes
there are no known examples of explicit supergravity
solutions of the form (2.5). Given that (10.2) depends on
some location z = z,, behind the horizon, which could be
shifted around by modifying A(z), one may naively expect
that vz could easily be increased by changing h(z)
arbitrarily. However, in the examples we studied, the null
energy condition

20 —(d=1)zh' >0
appears to constrain vy < vf;). Here are some examples:
(i) Consider

(10.10)

h(z) =1-Mz+qz¥*?,  p>0. (10.11)

The null energy condition (10.10) requires g > 0, and
in order for the metric to have a horizon (and not a
naked singularity), g < %. (Here and below we set
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UE/UEES)
1.0

0.8
0.6
0.4r

0.2

FIG. 18 (color online). Plots of vg/ vfgs) in examples of A(z)
with parameter space restricted by the null energy condition and
the existence of a horizon. Upper: For (10.11) with d = 3 and
p = 2. Lower: For (10.12) with d = 4.

z, = 1.) This constrains vy < vg), an example of

which we show in Fig. 18. Note that for ¢ < 0, vg
does exceed vES .
(i) Consider a three-parameter example with

h(z) =1 =Mz + gz + q,z9%2. (10.12)

The null energy condition (10.10) requires both ¢ and
¢, to be non-negative, and the existence of a horizon
requires ¢, +2q, < d. Then again vy < vg), an
example of which is shown in Fig. 18.
We have also looked at some nonpolynomial examples and
found vy < vf‘). The phase space we have explored is not
big, nor do we expect that the null energy condition is the
only consistency condition. Nevertheless, the examples
seem suggestive.

B. Other supergravity geometries

1. Charged black holes in N = 2 gauged
supergravity in AdSs [48]

L*H? L, dy?
%(-h(y)dzudx +L), (10.13)
y

ds* = fo)

where
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h(y) —%,

3
H(y) =] (1 + g%
i=1

f(y) =H(y) —uy*,
(10.14)

We normalize y so that the horizon is at y, = 1, and then
u=TI2, (1+¢;). From (10.2) we find

2+ K yh — K3y, _6

o n 10.15
E 1+ K| + Ky + K3 Y ( )
with
Ki =41+ 49>+ q3, Ky = 4192 + 4193 1+ 4293,
K3 = 419293, (10.16)
and
2:K1+\/K%+3<1+K1+K3) (1017)
" 14K + K3 ' '
Note that for the temperature to be non-negative
Ky <Kk + 2. (10.18)

It can readily be checked analytically that for one- and two-
charge cases with g3 = k3 = 0, the bound is satisfied for
any (¢, q»), including regions that are thermodynamically
unstable. After numerical scanning we find that (10.15)
satisfies vg < vg) in the full three-charge parameter space.

2. Charged black holes in N' = 8 gauged
supergravity in AdS, [49]

L2H3(y) ( . dyz)
ds? = —h(y)df* + dx* + ——), 0.19
y? )t +f(y) (1019
where
_ ) _ 3
h(y)——H(y), FO)=H(y)—pny’,

(10.20)

We again set y, = 1. Then ¢ = [, (1 + ¢;) and requir-

ing a non-negative temperature gives
k4 <2k + Ky + 3, (10.21)

where k; are defined analogously to (10.16), with e.g.
K4 = q1929394- We then find that
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2 4
34 2K1Y + KoY — KaVm yo4, (10.22)
14k +x+K3+ Ky

2
Vg =

where y,, is the smallest positive root of the equation

(1 + Ky + Ky +k4)y° = 2K09% =3,y —4 = 0. (10.23)

It can again be readily checked that for a single charge
q1 70, vp < 1)9 is satisfied for any ¢;. One finds after
numerical scanning that the bound is in fact satisfied in the
full four-parameter space.

3. Metrics with hyperscaling violation

Now let us consider metrics with hyperscaling violation
[50,51]. Since we are interested in theories which have a
Lorentz invariant vacuum, we restrict to examples with
dynamical exponent unity,

20

2 20 2
ds? = 5_2 <yy_F> - <— F(y)d® + ]%) + d}’l), (10.24)

where f(y) =1- (%)‘} and d=d— 0. y is some scale
and @ is a constant. Examples of (10.24) include dimen-
sionally reduced near-horizon Dp-brane spacetimes for

which d = p+ 1 and 0 = —“=*~ With the boundary at
y = 0, such metrics are no longer asymptotically AdS, but

our discussion can still be applied. We find in this case

n—1)! 2(d -1
I Uil L A C ) T D)
' d
The null energy condition now reads [51]
o <0, (10.26)

which implies either 8 < 0 or d < 0. The former leads to

d > d and thus vy < U<ES), while the latter is inconsistent
with small y describing UV physics. For examples coming
from Dp-branes, 6 is clearly negative with d < 6, while for
higher d the metric no longer describes a nongravitational
field theory.

C. v from a Schwarzschild black hole
in Gauss-Bonnet gravity

In this subsection as a preliminary investigation of
the effect of higher derivative gravity terms, we compute
the vy from a Schwarzschild black hole in Gauss-Bonnet
gravity [52],

1 12
1= Bxy=G|R + =
167rGN/ * g[ e

A
+5 L*(R* — 4R, R" + R

Hvpo

R””/’”)] . (1027)
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We consider the following the Vaidya metric:

L? -
ds? = = (=f (v, 2)dv? — 2dvdz + dx?)

(10.28)

with f(v <0,z) =1, f(v > 0,z) = h(z), and [53,54]

L* = a*L?, EE( +V1-42),
a2 4
hz)==—(1—4/1=42(1-=] ). 10.29
95 (1-5) oo
Various thermodynamical quantities are given by

a’ 1L 3
T=—, =——, E=-Ts. 10.30
) s 4Gy 73 4" ( )

The entanglement entropy is obtained by extremizing the
action [55-58]

A= /d%\/ﬂl +AL*R), (10.31)
where y is the induced metric on the extremal surface and R
is the intrinsic scalar curvature of the extremal surface. We
have also suppressed a boundary term which will not be
relevant for our discussion below.

As v is shape independent, it is enough to examine the
extremal surface for a strip, whose induced metric can be
written as

L? ,
ds> = =z (Qdx* + dy?) (10.32)
with
i3
0=1-fv?-207, \/77:?\/@,
2 ,
R =-— o (307% +z0'7 —2077), (10.33)

where primes denote differentiation with respect to x. We
need to extremize the action

A= K/ dx— +AL*R) (10.34)

with
K = L3 Agp. (10.35)

It is convenient to split the Lagrangian as

\/Q E] —ﬂngR

EZEQ‘I‘L], LOZZ—3,

(10.36)
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Note that £, depends on A through h(z). We focus on
the black hole region where equations of motion can be
written as

7+ h

20

+ O, = const, (10.37)

o 1] [ /2>
8X<Z3\/§> =20 (3 Tl (@) +0.. (1038

with

0, = (10.39)

or, or,
o +8x<8v’>’

oL 0L\ ., (0L
0.~ 28110, (%1) - ()

To identify the linear regime, we look for a solution with

(10.40)

z = z,, = const, v’ = const, O = const.

(10.41)

One can check explicitly that
(1) Every term in O, contains at least a factor of 7’ or z .
It will thus contribute zero.
(2) Every term in O, contains at least a factor of z’ or z
or Q. It will thus contribute zero.
So to find the value of z,, and v’ we can simply ignore
L4, and the story is exactly the same as before except that
h(z) is now given by (10.29). That is, z,, is determined by

Zuh'(2m) = 6h(z,,) = 0 (10.42)
and
Q = —h(z,,)v". (10.43)
We find
d \/ h
dA_ g v0_ (Z’" (10.44)
dv Zm v
and
3. /—h
Vg = Zh—s‘(z”‘) . (10.45)
Zm

Expanding in small A, we thus have

> 3
= V2 3 0(32).
3 V2

Entanglement entropy in Gauss-Bonnet gravity was studied
numerically in [59], and their results are consistent with
the above.

(10.46)
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While in principle A can take both signs, in all known
examples A appears to be positive [60]. We should also
note that in all known examples where the Gauss-Bonnet
term arises, there are probe branes and orientifolds
which backreact on the metric and give rise to additional
contributions at the same (or a more dominant) order.® Thus
it seems one cannot draw a conclusion based on
(10.46) alone.

XI. SATURATION

In this section we consider the saturation time and critical
behavior in the case of continuous saturation. The basic
strategy was outlined in Sec. IV near (4.4)—for continuous
saturation, z; — z. — 0 as one approaches the equilibrium,
and one can expand R, t, and A in terms of small z, — z,.
Such an expansion also provides a simple diagnostic of
whether saturation is discontinuous. For continuous satu-
ration, t — t;, must be negative in the limit z, — z. goes to
zero. If it is positive, then saturation is discontinuous, and
Eq. (4.4) does not give the saturation time.

A. Strip

We already saw in Sec. VIII B 1 that for Schwarzschild
g(z) and n=2n/d > 1 (which includes the case of
entanglement entropy for d > 3) saturation is discontinu-
ous—at saturation time given by (8.18), I'y jumps directly
from a near-critical extremal surface whose area grows
linearly in time, to one residing entirely in the black hole
and corresponding to equilibrium. Here we consider gen-
eral g(z) and n.

Let us start by supposing that saturation is continuous
with saturation time given by (4.4). In the large R limit, 7,
is close to the horizon z;,, and (4.4) has the leading behavior

1
t, = ——log(z), —z) + .

11.1
(o) (D

In this limit z;, can be found as in Appendix A [see (A1) and
(A4)], from which

1 n 2rz;, T
t;:—R—l-O(RO), Cn—\/zh| (Zh)|_\/ Zp ]

c, 2n n
(11.2)
Next, introducing the expansion parameter &,
&2
zc—z,<1——>, (11.3)
2n

we find that t given by (3.20) has the expansion (see
Appendix 1 for details)

¥See [61-63] for recent progress in computing contributions to
entanglement entropy from probe branes.
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t—t,=ue+ 02+, (11.4)
where
_l b _
ul—zg(Zb)<7nh2(Zb)F/(Zb) H(zb)> (11.5)
with
! dy Zp
F = ,
@) /J Vy P = 1v/h(z,y)
! dy Zp
H(z,) = ) 11.6
@) A h(zpy)(y2" = 1) Mzy) (o

Note that #; < 0 implies t < t; as z. — z,, as one expects
for continuous saturation, while u#; > 0 implies t > t; as
Z. — Z,, indicating that the saturation is discontinuous.
The sign of u; as given in (11.5) is not universal and
depends on d, n, and g(z). In the case of Schwarzschild
g(z), for d =2 and n = 1, u; = 0, which agrees with the
result of Sec. V C. For d = 3,4, we find that u; < 0 for
n =1, but u; > 0 for n > 1. Thus for Schwarzschild g(z),
correlation functions in d = 3,4 have continuous satura-
tion, but a rectangular spacelike Wilson line and the
entanglement entropy for a strip region have discontinuous
saturation. For Reissner-Nordstrom g(z) and d = 3,4, u;
can have either sign for n = 1 but again u; > 0 forn > 1,
implying discontinuous saturation for Wilson lines and
entanglement entropy.
Meanwhile, for A given by (3.21)—(3.23), one finds the
small ¢ expansion (see Appendix 1)
AA - AA, x &, (11.7)
which for a generic continuous transition (i.e. one with
u; < 0) gives
AAyg — AA (L, — t)2. (11.8)
In the language of phase transitions, such a quadratic
approach corresponds to mean-field behavior.
Note that for a given R, a solution which lies fully in the
back hole region exists only for t >t (R), so for a

discontinuous saturation the “genuine” saturation time

t{™ is always larger than that given by (8.18). See

Fig. 19 for an explicit example.

To summarize, for X as a strip the saturation leading to
equilibrium is nonuniversal, with possibilities of both
discontinuous and continuous saturation. When the satu-
ration is continuous, one finds that AA approaches its
equilibrium value quadratically in t; — t irrespective of n.
In contrast, we will see below that for X as a sphere,
saturation is almost always continuous (except when
n =72), and there is a nontrivial n-dependent critical
exponent.
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FIG. 19 (color online). Plots of t — t; and A — A as functions
of e in (11.3), with d = 4 Schwarzschild, n = 3, and z;, = 0.8. t;
is the time when continuous saturation would have occurred, but
true saturation tg true) occurs at the dashed line, for which

tE« true) > t,.

B. Sphere

Again let us first assume that saturation is continuous.
Then from (4.4) and (A6), we find that in the large R limit

1 n—1
t, =—R-—
¢, 4T

logR + O(RY), (11.9)

where ¢, was given earlier in (11.2). For entanglement
entropy we then have

1 d-2
t,(R) =—R - log R + O(R"), 11.10
o(R) = R =2 log R+ O(K) (11.10)
where cj is the dimensionless number
zp|h (23)| 2z, T
= = . 11.11
EN\2d-1 V-1 (111

To find the critical behavior during saturation we need to
solve for z(p), which we accomplish by expanding about
the solution at equilibrium, zy(p). After a somewhat long
calculation (outlined in Appendix 2), we find that using the
expansion parameter ¢ defined by

P, = 7,8, (11.12)

t given by (3.36) has the expansion
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1 9@z (b 24 ... =2
2 Zb+ h(Zb) h2+0 8+ n =
n>?2

(11.13)

t—t, =
_%Zh£2_|_...

where by, b,, and I, are some constants which are defined
in Appendix 2. Thus for n > 2, saturation is always
continuous, while for n» =2 it is model dependent.
Computing by, b,, I in (11.13) explicitly, one finds that
the coefficient before &2 is positive for Schwarzschild g(z)
(saturation is continuous), but becomes negative for
Reissner-Nordstrom g(z) at sufficiently large chemical
potential and for sufficiently large R (saturation is discon-
tinuous). Meanwhile, A given by (3.37) has the expansion

n=2

ng((z)) e*loge+ O(&*)
AA-AA =

9(zp) (n= n '
K (B i) e n=2

We thus find

AA -AAOC{—(ts—t)z1og(ts_t)+.., W_»
N (ts_t)%+]+... }’l>2'
(11.14)

Characterizing continuous saturation with a nontrivial
scaling exponent

S(R,t)—SCV(R) x—(t,—t)", t,—t<le, (11.15)

q°

we thus find that for an n-dimensional extremal surface

g, =2 (11.16)
2

Note that the above exponent depends only on n and is
independent of the boundary spacetime dimension d. Also
note that in (11.14), the n = 2 expression applies to cases
of continuous saturation. There is a logarithmic prefactor
by which the scaling barely avoids the “mean-field"
exponent y = 2. For d = 2, only n = 1 is possible and y =
% which was previously found in [46]. For entanglement
entropy, n = d — 1, giving

Cd+1

=— 11.17
YE > ( )

C. More on the saturation time

Let us now collect the results we have obtained so far on
saturation time. For a strip we showed in Sec. VIII B [see
(8.19)] that for z, > 72, the linear regime persists all the
way to discontinuous saturation, with saturation time in the
large R limit given by
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p R, = C_h)"w/_h(zm). (11.18)

1),, m

This  happens, for Schwarzschild
with 7 = 27" > 1.

For continuous saturation we found earlier in this section
that up to logarithmic corrections, for both a strip and a

sphere

R n
LR, [ali)
Cp 2n

It is tempting to speculate that the above result applies to
continuous saturation for all shapes.
For Schwarzschild and RN black holes ¢, is given by

example, for

(11.19)

&S =1/ N =Vum<dY 1120
In particular for entanglement entropy we have
o _ 4 11.21
Cr 2d=1) (11.21)
It can readily be checked that for 7 > 1
Y < el¥ <1, (11.22)

For a sphere, Eq. (11.22) may be understood heuristically
from the tsunami picture of Fig. 17—the volume of an
annulus region of unit width becomes smaller as the
tsunami advances inward.

Forn=1

=1. (11.23)

As discussed earlier for n = 1 in d = 2, the saturation is
continuous, but is discontinuous for n = 2 in d = 4. In the
latter case the “true” saturation time should be greater than
(8.18) which at leading order in the large R expansion gives
(11.19). Numerical results suggest that the difference is
O(1) in the large R limit, and thus at leading order the
“true” saturation time is still given by tg- el — R,

For n <1, as in the case of equal-time correlation
functions in d = 3, 4, the saturation is continuous and

cfis) > 1.

(11.24)
That t; < R has been observed before numerically in e.g.
[4,13]. Recall that in this case A appears in an exponential
with a minus sign. Since ¢,, does not correspond directly to
any physical propagation, there is no obvious constraint on
it from causality.
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XII. MEMORY LOSS REGIME

In this section, we examine implications of the critical
extremal surface for the evolution of A(R, t) for a strip and
a sphere in the regime t,>t,—t>z, In (1+1)
dimensions, we saw in Sec. V D that in this regime the
difference between A(R,t) and the equilibrium value
Agq(R) is a function of t;(R) —t =R -1 only and not
of R and t separately. In other words, at late times in the
evolution, the size R has been “forgotten.” We emphasize
that since t; x R — oo in the large R limit, such memory
loss can happen long before saturation.

We will generalize this result to higher dimensions. At a
heuristic level the existence of such a scaling regime is
expected, as for large R and t, (z,, z.) very closely follows
the critical line z}(z,) as time evolves. Thus in the limit
R,t — oo the system is controlled by a single parameter
along the line z:(z,) rather than two separate variables R and
t.Recall thatin the (1 + 1)-dimensional story in Sec. V D, ¢,
parametrizing the distance to the critical line (5.29) [or
(7.19)], gave the leading large # and 7z behavior, while ¢ in
(5.29) [or z; in (7.19)], parametrizing the location on the
critical line, mapped to £ — ror 7, — 7. Inthe limit £, 7 — oo
with their difference finite, € drops out to leading order and
A — Agq is determined by a single parameter ¢ only.

In general dimensions, the story becomes technically
much more involved. For example, for X as a sphere, even
determining the scaling variable [the analogue of ¢ — 7
in (5.35)] is a nontrivial challenge. We will leave the
explicit scaling functions [the analogue of A in (5.36)],
which requires working out the O(1) counterparts of
(5.31)-(5.33), for future investigation.

A. Strip

For definiteness we will restrict our discussion to
Schwarzschild. With a given R, as t increases, z; decreases.
For n > 1, as discussed in Sec. VIII B z, remains large
compared to the log e term in (8.7) all the way to saturation,
in which case the linear regime persists to the saturation. But
this is no longer so fory < 1. Fory = 1, in Sec. VIII B 2 we
showed that before saturation z;, will become comparable to
z, and the system will eventually exit the linear growth
regime. Fory < 1, for which the linear regime appears not to
exist, from discussion of Sec. XI A, we saw, at least for
d = 3,4, the saturation is continuous which implies that z,
again has to become comparable to z,, before saturation.

We will now focus on n < 1. We show below that for
n = 1 there is another scaling regime prior to the saturation
when z; is O(1) (i.e. no longer scales with R).

We again consider z. = z;(1 —¢),& — 0. Following a
discussion similar to that of Sec. VIII A we find that

E(z7)

e

loge + O(1), (12.1)

066012-31



LIU AND SUH

1
R=-——loge + O(1), (12.2)
VH,
L ad= - 5 oge+ o)) (12.3)
i( Z%{l H2 £ ’ '

Note that z, is now considered to be O(1), which varies
with R, t, and both z, z,, are functions of z,.

For Schwarzschild with /h(z) =1— ;—;, we find
from (7.5) "

d+2
2 = dz;, "
Z”ZZ + (d - Zn)zi

(12.4)

and from (7.6)

5 == =h(e) (1) = o) :
E(Z) \/ (Z )<Z2mn > 1+(’7—1_1)Z_f1]x

d
Z

(12.5)
For n = 1, we then have
ZZn
= Z— E(z¢) = h(zp). (12.6)
h

Using these equations in (12.1)-(12.3) we find that

1
t=-— loge + O(1), (12.7)
1
R=- loge + O(1), (12.8)
1 R
=AA=—40(1). 12.9
A= 00 (129)

Note that O(1) terms are evaluated in the £ — 0 limit z, —
7:(z,) and therefore are functions only of z,. In other words,

as € — 0,
(12.10)

R—t=yx(z,), AA = AA, +a(z,)

where y and a are some functions whose explicit form we
have not determined for general n, and in the second
equation we have used (2.33). We thus conclude that for
t,R> R —t> z;,, A(R,t) has the scaling behavior
AR, 1) — Aeq(R) = A(R—1t) + -+, (12.11)
where A(x) = a(y~!(x)) and - - - are terms suppressed in the
large R,t limit. Here we will not attempt to find these
functions explicitly for general d. For d = 2, functions y, a,
and A are given in (5.34)—(5.36). The above discussion does
not apply near saturation when R —t < O(z,). Recall from
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Sec. V Cthatin d = 2 (n = 1) saturation is continuous. But
in d =4 with n = 2, the results in Sec. XI A show that
saturation is discontinuous. In both cases the saturation
time is given by t, = R for large R and thus (12.11) can
also be written as

AR t) = Aeg(R) = Aty —t) + - (12.12)

For n < 1, from (12.1)—(12.3) we find that

h(zm) A 4
R- t = 0(1), 2Ry 0(1), (12.13
B (1) ra (1), (12.13)

but in this case from (12.4) and (12.5) the prefactor %
before t as well as the prefactor before R on the right side of
the second equations depends on z,. Thus a scaling regime

does not appear to exist.

B. Sphere

We now consider X being a sphere. Since the discussion
is rather involved, here we only outline the basic steps and
final results, leaving details to Appendix C.

The basic strategy is the same as in previous sections; we
consider z, close to the critical line,

z. =27:(1 —¢), ek 1, (12.14)
and expand the quantities t, R, and A in €. In contrast to the
linear regime, where R>t~z,|loge/ >z, and we
expressed all quantities in a double expansion of 1/R

and &, here we have instead

2 Pes 2o~ O(1).
(12.15)

R — o, —loge~ O(R) - o,

That is, the evolution of the extremal surface happens
largely after the surface has entered the black hole region.

We denote the critical extremal surface for z. = 7z} as
Z*(p). As discussed earlier in Sec. VII B, z* asymptotes to
the horizon z;, for sufficiently large p. In the regime of
z, ~ 7z, an example of z* was given in Fig. 11. More
explicitly, for large p >z, we can write z* as (see
Appendix C for more details)

Z*(/)) = Zp +)(*(,0), (12.16)
where y. has the asymptotic behavior
a
x(p) = P +0(p™),  p>p, (12.17)

with @ some constant.
With (12.14), we can expand solution z about z*,

z(p) = z(p) — ez1(p) + O(€). (12.18)
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At the shell z; satisfies the boundary conditions

/! pC 1 * 1 k(%
= — 1__ -
z1'(pe) = ( 2g(zc) +52d <Z6)>’

c

zi(pe) = zés
(12.19)

which can be obtained from the matching conditions
discussed in Sec. III B. Focusing on large p for which
Z* asymptotes to the horizon, we have
2(p) =z +x*(p) — ez (p) + O(€?). (12.20)
The equation for z; can be obtained by inserting (12.20)
into (3.35) and expanding in &. Because of A(z;,) = 0, this
expansion differs depending on the relative magnitudes of
x* and ez, and as a result, the near-horizon region for z can
be further subdivided into three regions in which z; can
have distinct behavior (see Appendix C for details):

(1) Region I: y* > ez;. In this region, z is well
approximated by z* and approaches the horizon
from the inside. Solving for z;, we find it has the
leading large p behavior

z(p) = A p (14 0(p7")), (1221
where
b, |E|(hy —hy)
n=n—1 , b1=06,,———. (12.22
pn=n +2}’n 1 N ( )

Here A, (p..) is a positive O(1) constant determined by
the boundary conditions (12.19), and y,,, h; , are some
constants given in (C8) and (C4). Equation (12.21)
applies in the region

> eA el p P, (12.23)

n—1
which translates into

1 b,
Pe K p <K ——loge—f—z

Yn Vs

1
loglog;—i— o) +---,
(12.24)

which, when written using R [see (12.30) below], is

1 b
,oc<<,0<<R——(n—1—2

n

1>1og1e+0(1).

n

(12.25)

(2) Region II: y* ~¢ez;. Since z; grows exponentially
with p, at a certain point ez; surpasses y* and z
crosses the horizon. Close to this crossing y* and ez,
are comparable and need to be treated on equal
ground, making the equation for z; complicated.
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(3) Region III: y* < ez; < 1. In this region, z; has
grown sufficiently large that it dominates over y* and
has leading large p behavior

Zl (p) = Azp_(n_l)eynp(l + O(p_l))

with A, (p.) a positive O(1) constant. The domain of
the region is

(12.26)

<ey k1 (12.27)

n—1

or more explicitly

n—1

1 1 1
——logekp<k——Iloge+ loglog—. (12.28)
€

Note that £z, should become O(1) when p = R, and
z(p) then quickly deviates from the horizon to reach
the boundary, i.e.

ez, (R) ~ O(1), (12.29)

which leads to

—loge=y,R—(n—1)logR+ O(1). (12.30)
This relation can be established rigorously by care-
fully matching (12.26) with an expansion of z near the
boundary following techniques developed in [42].
Using (12.30), we can rewrite (12.27) as

n
R —

logR < p < R. (12.31)

n

Note that for n > 2, by =0 in (12.22), and the leading
behavior (12.21) and (12.26) in regions I and III match up
to an overall constant factor. Consistently, the domain of
the regions (12.25) and (12.31) are adjacent to each other,
i.e. the width of region Il is O(1) as € — 0 or equivalently,
R — 0. In contrast, for n = 2, b; # 0 so that the powers of
pin (12.21) and (12.26) do not match, and region II should
be of width O(logR).”

One can proceed to use z; obtained as above in the three
regions to calculate the boundary quantities t (3.36) and A
(3.37) (see Appendix C for details). We find that for n > 2

t=t,(R)+ O(1), (12.32)
where t (R) is the saturation time and was given before in
(11.9), and

This is evidently the case when b; < 0, for example for
Schwarzschild h(z). However, b; can also be positive, for
example for Reissner-Nordstrom #4(z) at a sufficiently large
chemical potential. When b; is positive, even though naively
it appears that (12.25) and (12.31) overlap with each other, it is
likely that the width of region II is still O(log R) in order for the
exponent of p to evolve from that of (12.21) to that of (12.26).
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AA—-AA, = O(1). (12.33)
Working in the ¢ — 0 limit, the O(1) terms in (12.32) and
(12.33) can be functions of z, only. Eliminating the gz,
dependence between (12.32) and (12.33), we find the
scaling behavior
At R) — Aeq = —acgA(t(R) — 1) (12.34)
for some function A. In (12.34) we have included a prefactor
agq s Agq(R)  aq and a minus sign, so that 4 is positive
and has the dimension of volume enclosed by . Finding
the explicit form of A requires computing the O(1) terms in
(12.32) and (12.33), which is a rather intricate task and will
not be attempted here.
For n =2 (which gives the entanglement entropy in
d = 3), we cannot rule out a possible additional log R term
in (12.32), due to complications in region II mentioned
earlier. Thus we do not yet have a clean answer in that case.

C. Memory loss

Let us again specialize to the case of entanglement
entropy with n =d — 1. Given that Se (R) = Vyseq, one
can interpret A in (12.34) as the volume which has not yet
been entangled. Equation (12.34) then implies that the
“left-over” volume depends only on the difference t, —t
and not on R and t separately. In other words, at late times
of evolution, the size R has been forgotten. We again
emphasize that with (12.34) valid for t;, > t, —t> ¢
such memory loss can happen long before saturation.

Note that the existence of the memory loss regime itself
is not related to the tsunami picture discussed earlier.
However, the tsunami picture does lend a natural geometric
interpretation to the regime as the memory loss of the wave
front of the entanglement tsunami. It is tempting to
speculate that due to interactions among different parts
of the tsunami wave front, for a generic surface X in the
limit of large R, the memory of both the size and the shape
of Z could be lost during late times in the evolution. See

eq»

FIG. 20 (color online). A cartoon picture for late-time memory
loss. The (hypothetical) tsunami picture discussed in Sec. X can
be used to visualize the memory loss regime—for a wide class of
compact Z, in the limit of large size, at late times the wave front
may approach that of a spherical X.
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Fig. 20 for a cartoon. It would be interesting to understand
whether this indeed happens.

If such “memory loss” as indicated in Fig. 20 indeed
occurs, we expect that in the infinite size limit, the space of
all possible X separates into different basins of attraction,
defined by various attractors (or “fixed points”) such as the
sphere and strip. For example, for a smooth compact X, at
late times the wave front of the tsunami may approach that
of the sphere, while for an elongated surface X with
topology that of a strip, it may approach that of the strip.
This would also imply that the saturation behavior for
generic X could be classified using those of the fixed points.

XIII. CONCLUSIONS AND DISCUSSIONS

In this paper we considered the evolution of entangle-
ment entropy and various other nonlocal observables
during equilibration, in a class of quenched holographic
systems. In the bulk the equilibration process is described
by a Vaidya geometry, with different observables having a
unified description as functions of the area of extremal
surfaces of different dimensions n. We were able to derive
general scaling results for these observables without using
the explicit bulk metric. Some of these lead to universal
behavior in the boundary theory.

It is important to keep in mind that while the entangle-
ment entropy is proportional to the area, for other observ-
ables the area appears in an exponential with a minus sign.
So the boundary interpretation of the evolution of A could
be very different. We also see interesting differences in the
evolution of A4 for different n. For example, there appears to
be no linear evolution for n < ‘5’, which includes correlation
functions in d > 2. See Tables I and II for lists of the time
dependence of various observables in d = 3 and d = 4.

In the rest of this section we discuss some future
directions, using language for entanglement entropy.

A. More general equilibration processes

In this paper we restricted our discussion to the equili-
bration following a global quench. It is interesting to
consider more general equilibration processes, in particular
those with inhomogeneous or anisotropic initial states (see
[64-66] for recent related work).

There are reasons to believe some of our results may
apply to these more general situations. In particular, an
important feature of the linear growth (10.3) is that the
speed vg characterizes properties of the equilibrium state,
as it is solely determined by the metric of the black hole.
This highlights the local nature of entanglement propaga-
tion. At corresponding times, locally, the system has
already achieved equilibrium, although for large regions
nonlocal observables such as entanglement entropy remain
far from their equilibrium values. Thus vy should be
independent of the nature of the initial state, including
whether it was isotropic or homogeneous. Similarly, the
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TABLE L
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Time dependence of nonlocal variables in d = 3 for Schwarzschild. # is used to denote some positive coefficient. To lowest

approximation in the large R limit, t, o R, with coefficients as follows: for the equal-time two-point function, t,/R = /2/3; for the
rectangular Wilson loop and strip EE, t,/R = 2%/3/3'/2; and for the circular Wilson loop and sphere EE, t,/R = 2/+/3.

t <z, 7, <t<KR 7 <t —t <t Saturation
Equal-time two-point function G, exp (—#*)  No linear regime No scaling Geqexp(#(t, — 1)?)
Wilson loop (rectangular) Wae €Xp(—#12) W,ae €Xp(—#t) Linear regime persists Discontinuous
Wilson loop (circular) Wae €Xp(—#12) W,ae €Xp(—#t) Undetermined Weq exp (—#(t, — t)? log(t, — t))
EE (strip) Sy + #12 Syac + #t Linear regime persists Discontinuous
EE (sphere) Syac + #1? Syae +H#t Undetermined Seq + #(t; — 1) log(t, — 1)

TABLE II. Time dependence of nonlocal variables in d = 4 for Schwarzschild. # is used as above and the functions 4 and 2 are those
from (12.11) and (12.34). The saturation times are as follows: for the equal-time two-point function, t,/R = 1/+/2; for the rectangular
and circular Wilson loops, t,/R = 1; for strip EE, t,/R = 3%/*/+/2; and for sphere EE, t,/R = +/3/2.

t <z, 7, <t <R <ttty Saturation
Equal-time two-point function G, exp (—#t*)  No linear regime No scaling Geqexp(#(t, — 1)?)
Wilson loop (rectangular) Wae €xp(—#13) W, ae €Xp(—#t) Weq exp (#A(t, — 1)) Discontinuous
Wilson loop (circular) Waae €xp(—#12) Wy, exp(—#t) Undetermined Weq exp (—#(t, — t)? log(t, — t))
EE (strip) Sy + #12 Syac + #t Linear regime persists Discontinuous
EE (sphere) Syac + #t2 Syae +#t Seq — #A(t; — 1) Seq — #(t, —1)3/2

memory loss regime occurs long after a system has
achieved local equilibration, and we again expect that it
should survive more general initial states.

The pre-local-equilibration stage is likely sensitive to the
nature of initial states, including the value of the sourcing
interval 6t. Nevertheless, that the early growth (6.25) is
proportional to the energy density is consistent with
other recent studies of the entanglement entropy of excited
states [67-70].

Finally with a nonzero sourcing interval ot, we expect
the wave front of “entanglement tsunami” to develop a
finite spread, but the picture of an entanglement wave that
propagates may still apply as long as 6t is much smaller
than the size of the region one is exploring. If 6t is
comparable to or larger than the local equilibration scale
Ceq» the pre-local-equilibration and saturation regimes
likely can no longer be sharply defined.

B. Entanglement growth

It is interesting to compare the growth of entanglement
entropy among different systems. For this purpose we need
a dimensionless quantity in which the system size or total
number of degrees of freedom has been factored out, since
clearly for a subsystem with more degrees of freedom the
entanglement entropy should increase faster. In [21],
motivated by the linear growth (10.3) we introduced a
dimensionless rate of growth

Lds,

mz(t) = squz dt .

(13.1)

In the linear regime, Ry is a constant given by v, while in
the pre-local-equilibration regime t < 7, from (6.25),

2r &t
Relt) = 75
eq

(13.2)
grows linearly with time. In Fig. 21 we give numerical plots
of Ry for some examples.

In all explicit examples we studied, it appears that after
local equilibration (i.e. after the linear growth regime has
set in), Ry monotonically decreases with time. Given that
we also found earlier that vy appears to have an upper
bound at the Schwarzschild value (10.4), it is tempting to
speculate that after local equilibration

Ry (t) < vl

(13.3)

Before local equilibration, the behavior of Ry appears to
be sensitive to the initial state. In particular for a RN black
hole with Z a sphere or a strip, we find Ry can exceed v%s)
near 7, (see Fig. 21). Also, for a highly anisotropic initial
state, Ry could for a certain period of time resemble that of
a (1 + 1)-dimensional system. As in (1 + 1) dimensions

1)<ES> = 1, it then appears at best one can have

Ry(t) < 1. (13.4)

It is clearly of great interest to explore more systems to
see whether the inequalities (10.4), (13.3), and (5.34) are
valid, or to find a proof.
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If true, the inequalities (10.4), (13.3), and (5.34) may be
considered as field theory generalizations of the small
incremental entangling conjecture [71] for ancilla-assisted
entanglement rates in a spin system, which was recently
proved in [72]. The conjecture states that % < c||H||log D
where S is the entanglement entropy between subsystems
aA and DB, ||H|| is the norm of the Hamiltonian H that
generates entanglement between A and B (a, b are ancillas),
D = min(Dy, Dg) where D, is the dimension of the
Hilbert space of A, and ¢ is a constant independent of
D. In our case, the Hamiltonian is local and thus couples
directly only the degrees of freedom near X—the analogue
oflog D is proportional to Ay, and the entropy density s¢q in
(13.1) can be seen as giving a measure of the density of
excited degrees of freedom.

C. Tsunami picture: Local propagation of entanglement

In [21] and Sec. X we discussed that the time evolution
of Sy (t) suggests a picture of an entanglement wave front
propagating inward from the boundary of the entangled
region. See Fig. 17. We stress that at the level of our
discussion so far this is merely a hypothetical picture to
explain the time dependence of Sy(t). As mentioned
earlier, from the field theory perspective, the existence
of such an entanglement wave front may be understood
heuristically as resulting from evolution under a local
Hamiltonian. It would be very interesting to see whether
it is possible to “detect” such local propagation using other
observables. In the free-streaming quasiparticle model of
[22], the picture of an entanglement tsunami does emerge at
early stages of time evolution in terms of propagating
quasiparticles. But as the system evolves, in particular
toward the late stage, the picture becomes murkier.

On the gravity side it should be possible to make the
tsunami picture more precise. It is tempting to interpret the
black hole and pure AdS regions of the extremal surface as,
respectively, corresponding to parts covered and not yet
covered by the tsunami wave. The two bulk regions of the
extremal surface are separated sharply at the collapsing
shell and their respective sizes are controlled by the tip of
the surface z,(t) and its intersection with the shell z..(t). It
should be possible to describe the motion of the tsunami
wave front in terms of these data.

D. Application to black holes

One striking feature of our results, which was also
emphasized in [25,73] in different contexts, is that the
growth of entanglement entropy as well as the evolution of
other nonlocal observables, such as correlation functions
and Wilson loops, is largely controlled by geometries inside
the horizon of the collapsing black hole. In particular, the
linear growth (10.1)—(10.3) is controlled by a constant-z
hypersurface inside the horizon, while the memory loss
regime discussed in Sec. XII B is controlled by an extremal
surface which asymptotes to the horizon from the inside. In
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FIG. 21 (color online). Ry for £ a sphere or a strip, for
Schwarzschild and RN black holes. We use units in which the
horizon is at z;, = 1. Upper: d =3 and X a sphere. The dot-
dashed curves are for the Schwarzschild black hole with R = 7,
13, and 50, respectively (larger values of t for the R = 13,50
curves are not shown due to insufficient numerics), with the top
horizontal dashed line marking vES). Red, green, and blue
curves are for the RN black hole with (u = 0.5,R = 20),
(u=0.2,R =50), and (u = 0,R = 50), respectively, and the
two lower dashed horizontal lines mark vy for u = 0.5 and 0.2.
Middle: For d = 3 and X a strip. The dot-dashed curves are for
the Schwarzschild black hole with R = 7,12, 15. It is interest-
ing to note their evolution is essentially identical with the
exception of different saturation times. The visible end of the
dot-dashed curves coincides with discontinuous saturation
for R=7. For R=12 and 15 the curves have not been
extended to saturation due to insufficient numerics. The red,
green, and blue curves are for the RN black hole with
(u=05R=5), (u=05R=6), and (£ =0,R=06), re-
spectively. The u = 0.5 curve ends at saturation, but for u =
0.2 and 0, saturation happens at larger values of t than shown.
Lower: For d =4 and X a sphere. The color and pattern
scheme is identical to the upper plot, but the Schwarzschild
curves are at R =7, 12, and 50, respectively, and u = 0.5, 0.2,
0 curves are all at R = 20.
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contrast, for a static eternal black hole an extremal surface
whose boundary is at a fixed time always lies outside the
horizon [74].10

The relation between entanglement growth and certain
spatial hypersurfaces inside the horizon is tantalizing. In
particular, possible bounds on vg (10.2) and the entangle-
ment growth rate (13.1) impose nontrivial constraints on
the geometry inside the horizon.
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APPENDIX A: EQUILIBRIUM BEHAVIOR OF
EXTREMAL SURFACES

Here we briefly review the behavior of I's in a black hole
geometry, corresponding to the equilibrium behavior of
various boundary observables. In a black hole geometry, an
extremal surface always lies outside the horizon [74], i.e.
denoting the location of the tip of I's by z;, z;, < z;,. In our
regime of interest R > z,,, 7, is very close to the horizon,
and we will write

7 = zp(1 =€), e< 1. (A1)

1. Strip

With X a strip, R and A in the black hole geometry can be
obtained from (3.19) and (3.23) by setting £ = 0 (z, = z,)

and z; = zy,
Zp dz
R:/ T,
SRVCIES)

zZn

(A2)

- b4 1
Aoy = ZZK/ [ . — (A3)
0 ZZn h(%— )
Thus we find that in the large R limit, with z; given
by (Al),

1 1
R=——loge+O(1), y,=—+/2nh,
Tn Zhn

hy =—z,h'(2,), (A4)

While for correlation functions separated in the time direc-
tion it is possible to relate the geometry inside the horizon to
certain features of boundary correlation functions via analytic
continuation [75-80], the relation is less direct.
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and

K L'V

—loge+O(1) =——"L+ O(R%), (A3)
hyn Zh

Agg =~

where Vi = AgyipR 18 the volume enclosed by the strip X.

2. Sphere

For £ as a sphere, the story is more complicated.
One needs to solve the differential equation (3.35) with
E = 0 to find the relation between z,, and R. In the large R
limit, this can be done by matching an expansion near the
horizon with an expansion near the boundary [42]. With z,
given by (Al) one finds [42]

—loge =y,R—(n—1)logR + O(R°), (A6)
and z(p) can be written near the horizon as
2(p) =z — €1 (p) + O(&?) (A7)
with
z1(p) = AervpN(1+ 0(p72)), (A8)

where A is some constant. Meanwhile, one finds that the
leading contribution to the area of I'y, given by (3.39) with
E = p, =0, comes from near the horizon, and thus

n—1 12

R p Z
Aeq = K/O dp 7 1 +7
KR" \% L
= :SP"‘%+ - (A9)
nzy, 2y

where - - - denotes terms lower in the large R expansion.
This behavior for a general shape X has been proved
in [42].

APPENDIX B: DETAILS IN THE
SATURATION REGIME

1. Strip

Near saturation we expect both z.. and z, of I'y to be close
to z;,, where z,, is the tip of the equilibrium I'y with the
same boundary X, i.e. the same R. We thus write

& )
e =24 1—%, 2, =2 1+%,

where both ¢ and 6 are small parameters. Then from (3.13)
and (3.15) we have

(BI)

1
E=- Eg(z,)e + O(&%). (B2)
First, we determine the relation between & and ¢ by
equating (3.19) with (A2). For this purpose it is convenient
to write (A2) as
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R=F(z),

(B3)

o dy b
F(zp) = A VY = 1/h(zpy) ‘

To expand (3.19) in terms of z; — z,, and E, we write it as

R = A] —A2 +A3 + F(Z[), (B4)
where
rd :
Al:/z;, Az:/z (BS)
z Z?" z
C Zzn 1 C
and
1
/ (B6)
V1) + B2 \/h

For small € we find that A, A,, and A3 have the expansions

A=TE140(6). A ="T(140(2). BY)
and
_ 1 z,9(z,) 2
37 75, 1) e+ 0(g7), (B8)

where in (B7) we used h(z) =
(B3) and (B4), we have

1 — g(z). Then equating

9(zp)
h(zp)F'(z5)

Next, let us look at (3.20) which can be written as

5= e+ O(&%). (B9)

t—tS:Bl+Bz—B3, (BIO)

where

. /zcﬁ /z, dz E
! Zp h(Z)’ : 0 h(Z) h(i_l)_FEZ’
Z’l

5 /z, dz E
Tk h() 1)+ B
Z

The integrals can be expanded in small & as

(B11)

1 Zp
B=—— 25+ 0(), B,=H(z)E+ O,
SR 0@). B HEE+0)
By — -2 ¥ o) (B12)
’ h(zp) n ’
with

PHYSICAL REVIEW D 89, 066012 (2014)

I dy 1
H(z) =z . B13
e =z A h(z:y) \/h(zy) 7> = 1) 19
Since B3 ~ O(&?), we find
t—t, = ue+ 0(e?), (B14)
where
_l b _
uy = Zg(zb) (nh2<Zb)F/(Zb) H(Zb>>- (BIS)

Now let us look at the area of I's. The area of the
equilibrium I's (A3) can be written as

n b 1
G(Z;,)Ezh dz#.
0 Z2n h(ﬁ_ )

1

(B16)
The area of I’y itself (3.21) can be written as
1
EA:CI_C2+C3+G(ZJ’ (B17)
where
r 1
C = z;’/ d—1 (B13)
Ze ZZn % -1
<t 1
C, = z?/ dz , (B19)
© V@ E- )+ B
wd 1 1
3 :Zt/ at
V(@) 1) + B \/ h(z
(B20)

To leading order the expansion of the above quantities is the
same as that for (B5) and (B6),

"

l-n
C, = 8+0( 3, czzzfn€+0(e3),
1 z17"9(z,)
Cy = ST e O(e?). B21
3 2]1 h(Zz) e+ (8 ) ( )

Thus we find that

(A Aeq) Zb "9(zp) (ZZGI(Zb)

2nh(z;) \ F'(zp)

Note that while G(z,) is a divergent integral (i.e. depends
on a cutoff at small z), G'(z;) should have a well defined
limit when the cutoff is taken to zero. In fact, in (B22) the

- 1) e+0(e%). (B22)
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coefficient of the O(e) term is identically zero, which can
be seen by writing G'(a) and F'(a) as

De)

I-n

"G'(a) = lim( —n = b
v =tm(-n [ (=)o)
y

h(ay)(1 = y*") 1_5>’

) ) 1-6 Y
F'(a) =1lim —n/ dy 5
5—0 0 (1- y2”)2

h(ay)

y1+n
+ ) (B23)
h(ay)(1 =y*")li-s
from which we confirm that
a"G'(a) = F'(a) (B24)

for any /(z). However, one can check that the O(&?) term in
(B22) (whose coefficient is rather long and which we will
not give here) is generically nonzero.

2. Sphere

Let zy(p) correspond to the equilibrium I's and denote
the location of its tip as z,. Then near saturation, z(p),
corresponding to the black hole portion of the actual I'y,
can be obtained by perturbing zy(p),

2(p) = z0(p) + 621 (p) + 8*22(p) + -+ (B25)
where ¢ is a small parameter which we will obtain precisely
later on. Note that near the boundary, z,, should satisfy the
boundary condition

z,(R) =0, n=12,... (B26)
They should also satisfy the boundary condition (3.14) at
the shell, order by order. For small 6, z. and z, are close to

2, and p, = \/z2 — zZ and E are all small. It is convenient
to introduce another small parameter € by

Pe = 2c€ (B27)
after which from (3.31)—(3.33),
82
z = zc<1 +3+0(84) +)
E:—%@(HO(&HW). (B28)
<e

Note that specifying R and ¢ fixes 'y entirely. Thus we
can expand t—t; and A— A, in terms of ¢, and then
A — Ay in terms of t — t,. To do so we first need to relate
Z. — z;, and 0 to R and ¢. This requires solving for z; near p,.
by expanding it as a power series in small p, but only after
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imposing the boundary condition (B26) at z = 0. We leave
the detailed analysis of z; to Appendix 3, and for now
merely list the results. We find that for n = 2,

6:—g(Zb)Zb82+0(8410g8)+"',
2}’2
7. = 2,(1 + c1€%loge + e + -+ ), (B29)
with
g\z g(z 1
612—%, sz—éTz)(ﬁ—rz‘i‘rlega)—Ev
(B30)
and for n > 2,
9(z)zy! )
§="0 g 0" -
2(n=2)r, () (B31)
Ze = 2p(1 + dr€® +--+),
with
n—1 1
d, = - —. B32
2 2(n_z)g(zb) 5 (B32)

In the above equations r; and r, are numerical constants
that we define in (B56). Note that z, > z;, while z, does not
have to be greater than z,.

Now let us look at the boundary time (3.36), writing it as

t=1t +1, (B33)
with
R ' R EB 1422
£ :—/ p>. b :/ dp— V" (B3
Pe h Pe h’ / 1 +¥
Note that t; can be written as
% dz Zedz Ze—2p
t :/ —=t,+ —=t,+ +---, (B35
o h(z) w h(z)

where in the second equality we have used that z. — z;, is
small. Meanwhile, from (B28) E ~ O(¢"), and to leading
order in small ¢, t, can be evaluated by replacing z in its
integrand by the equilibrium solution zy. The resulting
integral receives the dominant contribution from its lower
end, and we have

E,n | —log(zpe) + 1o+ -+ n=2
X . (B36)
h(zp) | 25—+ n>2

where
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ly=

ogp. |, B37)

/ ZO \/ Zo
)(

/’c_’o Zb

and we have replaced z. by z, wherever it appears.
Collecting (B35), (B36) and using (B29), (B31), we find that

Pt —%(Zb—l——g,(féiz)” (2—;4-10))824- n=2
; —%bez‘i‘"' n>?2
(B38)

Next, we proceed to compute the area of I's given
by (3.38) and (3.39). The AdS portion can easily be
expanded as

1 e 8n+2

il - - 4., B39

KAAdS 2n12) + (B39)
while the black hole portion can be written as

Apn = Ay + A, + O(E*) + (B40)
with
1 R R n—1 2
— A = / dpLy(z,7) = / dpt 145,

Pe Pe Z

1 1 R Zn Z/2
— A, = ——E? d I+ B41
g ==y [ 145 @41

Since A, is multiplied by E? ~ O(&*"), it can be computed
by replacing z with z; in its integrand, and we find the
leading order results

—log(zpe) +Ip+--+ n=2
2 h(z) |

n>2

(B42)

To compute .4, we consider the variation of £ under a
variation about the equilibrium solution z = zy + Az,
which gives

1 R
el :/ dpL(zp. 20") —M(z0) Az, + -,
Pe

oL,
o7

M= (B43)

Note that in (B43) there is also a potential boundary term at
p = R, but that it is zero due to z and z; both ending at
p = R Meanwhile,

"This boundary term at z = 0 should be treated with some
care as II is divergent there.
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et =iy (7))
N PL(205 20 TR, 11 %

(n+ Dh(zp)e"?

_ B44
2nt2) B4
and
pe __¢"
(z0)l,, = 2 _5’
1
Azc=zc—ZO(ﬂc)=zc—zb—520’(0)pi+---, (B45)

where the small p expansion of z; is given in Eq. (B49).
Finally, collecting all the results above we have

[ o e
q K 9(zp) < +0(Z/;))€n+2+,_' I’l>2.
2(n=2) \n+2 " 4h(z)

3. Discussion of z; when X is a sphere

Here we give the derivation of (B29)-(B32). To first
order in 9, z; satisfies the equation of motion
(B46)

2+ pp)z’ +alp)z = s(p),

2n Iy -1 3z
p(p)—zO’(—n——O) L )<1+ 0 ) (B47)
0 ho P ho

— 1 / 12 ]’l
CI(,O) — hO/ <£+u> +£ (1 +ZO_> <h0/ __0>
Z hop 20 ho 20

1
= 4
and ho (ho 2 ho 20’ ) (48)
Ez Z%n ! azh<z0)
s(p) = 5 (202D (ZO + > ) (B49)

While the full analytic solution z; is not known, its
behavior near p = R and p = 0 can be obtained by series
expansions, and the same applies to functions p and g—
this is sufficient for our purposes. Now, near the tip p = 0,

20(p) =2 _hz<—§bb)p2
(D2l ()= (14 2)h(a0) oo

8(n+2)z}
(B50)
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while near the boundary p = R with6 =R — p < 1,1
O(6) n=2

. B52
0(cl) n>2 (B2

2(p) =m+{

Then we find that the leading terms in p and g are given by
the following:

(1) Near p =0,
p(p) :n;1+((n_3)h<1bzz%+1bh/(zb>)ﬂ+0(/)3),
q(p) Zn(_h(ZbHZ"h/(Z”))+0(p2). (B53)

%

gl(p) =1+ Z%mﬂzm,
m=1

9 (P)
pn=2) <1 + Yo gzmﬂzm)

where in g, for even n the prime in > indicates that the
sum does not include m = (n — 2)/2. Since we are dealing
with a linear equation, the two bases are related by linear
superposition,

’;(P) =7191(p) +729:(p).
(B57)

k(p)=ri1g91(p) +129:(p),

where ry, r,, 7, 7, are constants which can be evaluated
numerically.

Now we consider a particular solution to the full
inhomogeneous equation (B46),

:gz(p)/dep/%—gl(P)/dep’%,
(B58)
where
* PIn terms of p(z) we have the expansion
p(z):R—iJr...’ B51)

2R

where the expansion is identical to that in AdS until the O(z")
term whose coefficient is undetermined.

gologp (1 + 2w gzmp”") + p~(n=2)
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(2) Near p =R,
~n-3 O(62) n=2
Plo) = 20 {0(1) n>2
n 0(c™3) n=2
-+ . B54
W =5 {0(6-1) n>2 B39

Let us first look at the homogenous part of Eq. (B46).
Near p = R, it is convenient to work with a basis of
solutions given by the expansions

k(p) = (R=p)i(1 + O((R = p)2)),
k(p) = (R=p) (1 4+ O((R=p)?)).

while near p = 0, it is more convenient to work with a basis
of solutions given by the expansions

(B55)

/oo

m=0 ZJZszm n even
. (B56)
n odd
[
Wilp) =kk' —kk' ~(R—p)'T asp—R  (B59)
and
W,(p) =992 — /g1 ~p™" V) asp—>0. (B60)
Noting that
E? 72 (z,h (2,) — 2h(z
S(pc) = s ( b ( b)2(n_1) ( b))’
5 2h(zp)pe
E* [26\"3
R)=—R(— ey B61
slp— R) =~ < R) + (B61)
we find
E*
z(p) ~ 0" asp = R, (B62)

As is shown after the matching in (B28), (B29), and (B31),
%2 ~ 8, and thus it is consistent to ignore z, near p = R.
However, it cannot be ignored near p = 0 because the
source term s becomes singular. We find that as p — 0, z;
has the behavior

E (logp)? + - -- =
5 (logp)*+--- n
z(p) ~ (B63)
{%zp—%"—” toe n>2

The actual matching that results in (B29)-(B32) is
performed as follows. The boundary condition (B26)
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requires us to choose k(p) near p = R. Then near p = 0, z;
can be written as

2 =r1g1(p) + rag2(p) + 2. (B64)

Plugging (B27) and (B28) into (B63) and (B55), we obtain
Zp and 6 in terms of z, and ¢ as in (B29)-(B32). We note
that at leading orders z, does not contribute.

APPENDIX C: DETAILS IN THE MEMORY LOSS
REGIME FOR X~ AS A SPHERE

Here we give the equations underlying (12.21) and
(12.26), and the derivation of (12.32) and (12.33). Recall
the expansion parameter and expansion given in (12.14)
and (12.18).

1. Critical extremal surface

Let us first examine in some detail the asymptotic
behavior of z*(p) for p> p. where it approaches the
horizon. Letting

Zp) = zn +x:(p) (€D
with y, small and requiring it to decrease with increasing p,
we find that z* has the asymptotic behavior

Z*(p):Z*(p)_Zh pn—l +p_n+ n+1+ P P> Pes
(C2)
where
|E|zpH! SE’z;
= ) =0,0——. C3
N TR T ©)
Here we have used the notation
hy = _Zhh/(zl)’ h, = Z%h”(Zh), (C4)

Note that « is positive; i.e. z* approaches the horizon from
above, or inside. The leading two terms in (C2) can be
obtained by equating the two most dominant terms in (3.35)
as p — oo, i.e. [note B is defined in (3.34)]

nhZ 1 (12 Z211+1
2 2 _ 2 __
g EBOh =02 = ey
h

(€5)

while in order to obtain terms of O(p~("*1)) and higher in
(C2), one needs to take into higher-order terms in (3.35).
Note the leading term in (C2) can also be written as

1
o= |E|B+ O(p™) (Co)

or
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h(z*(p)) = —cu|E|B + O(p™"), (C7)
where
1 h h
Vv, = —/2nh,, c, =/ —~=—1! (C8)

Zn 2n In¥n

Let us now calculate v*(p; p..) and A*(p; p..) correspond-
ing to z*(p; p..), where we have traded z, for p, and made
explicit in our notation that p. is the only parameter.
Evaluating (3.34) on z*, for large p we find that

;o1 n—1 |E|(3hy + hy)z3)\ 1
= = —5 — O -2 s
= <4”T n2 >t ()

202
(C9)
from which
p (n-=1 |E|(3h)+h,)z;,
“(pip ) =1 — -5 ] o0(1).
v (pipe) . <4ET 02 20 ogp+0(1)
(C10)

Note that the leading term, and for n > 2 the next-to-
leading term also, are independent of p.. Similarly, evalu-
ating the integrand of (3.24) on z*, we find

n—1 2 2
p E (3]’11 + hz)Zhl _
LF = + 9, —+0(p2 Cl1
ZZ 2 4h% P (P ) ( )
from which
1 p" E?(3h; + hy)Z2
—A*(p;p.) = Opy————5——1 O(1).
g A Pipe) P + 802 e ogp + O(1)

(C12)

The leading coefficients are again independent of p,. and
there is a logarithmic term only for n = 2.

2. Equations

We now examine the equation for z;(p) as introduced in
(12.18). Let us first look at the region in which y* > ez;.
Plugging (12.18) into (3.35) we find that z; satisfies a linear
differential equation

21 +pilp)z’ + pa(p)z =0, (C13)
where p; and p, are some complicated functions of p,

expressed via y*(p) and h(z;, + y*(p)). They have the large
p expansions

a  da
Pilp) == 45t
PP

E 2
a = an,Zm(l:shl - hZ)’
4h

a=2(n-1),

(C14)

3
2
1
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and"
b b
pap) =12+ L+ S+,
’ (C15)
b — 5 |Eltha—h)
1 n,2 \/E

Equation (C13) can then be solved in terms of an expansion

z1(p) = Aer?pF <1 +7 + 0(9_2)> +--- (Cl6)
with
b
p— —_— 1 -
pp=n + 2’
1
cin = 8y (b1 +2vby + (2a; — ai + 4by)y* + 4ayy?),

(C17)

where A;(p.) is a positive O(1) constant determined by
boundary conditions (12.19) at p,, and in (C16) we have
suppressed terms that are exponentially small, i.e. those
proportional to e™”.

In the region in which y* < ez; <1, we can plug
(12.18) into (3.35) while ignoring y* and terms in (3.35)
proportional to E2. We then find a nonlinear equation for z;,

G ) —1z/ 2
R A (C18)
71 27 Pz 2
which has the solution
— 02 (g, 2 Ko (2 ’
zi(p) =p 2( 50 | + #Ka2| S7p
= Ayep==N(1 4+ 0(p7")) + (C19)

where we have again suppressed exponentially small terms.

3. Time

In this subsection and the next, for purposes of clarity,
will use a new symbol to denote the polynomial part of the
large p limit of z*,

Pip)=x(p),  Z(p) =z + Pp). (C20)

Recall the labeling of regions I, II, and III given near
(12.25) and (12.31). Delineating the regions more explic-
itly, the boundary time can be divided as

PFor Schwarzschild A(z), b; < 0 while for RN A(z), b; > 0
for a sufficiently large charge density.
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t= U(R = tI+tH+tIII

R—k, R—ky R—k;
</ / / )dpv’, (C21)
k R— R—ky

where the first equality holds up to O(1) terms and

1 b
k1:—<n—1— 1)10gR+C1,
Yn 2y,

1
k2 :—(n— 1)10gR—C2

n

(C22)

Here C,, C,, ky, ks are all positive O(1) constants and k
must be chosen sufficiently large that large p expansions
apply in region I. We now proceed to calculate (C21),
recalling (3.34)

12

1, 1+5
= (- EB , =—F. C23
S(-Z+EB\VO). 0 [ (C23)
a. Region I
Here
z2=2z,+ P+ O(ezy) +
(C24)

P
s=o(") ot s

1
n 0<;> n <ﬁ> (C26)
P

from which

R—k (n-1 |E|(3hy + hy)Z2
= - =5, L 2% ) oo R
1= <4;;T "2 o8

+ O(1). (C27)

Comparing with (C10), we see that the two leading terms
come from the solution on the critical line, z* = z;, + P.
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b. Region II

Here the expansions require more care than in regions I
and III. Let us assume that n = 2, 3 and that z; interpolates
between the leading behavior in regions I and III given in
(C16) and (C19).

First, define D and X by

z=2z,+D, plfL_z:Pu—X), (C28)
and note
D=P—¢ez,+0()+--- < O(P),
1 1
X:ﬂ—+ 0(p_2> + -~ O(P). (C29)
ap
Using D and X we can expand
h=—c,y,D+ O(D?) + -,
EB=—-y,P(1-X)(1+0(D)+---). (C30)
Also define Y by
' =-1,(P-D)(1+7), (C31)
noting
5)role) ol ley)
Y=0(—)+0(5 )+ +0(——)+ .
(p p’ (P—D)p
Y(D =0)~O(P). (C32)

Now we divide region II into three subregions14

I,: |D| < O(P?), 1: |D|~O(P?),

I;: |D| > O(P?), (C33)
and focus on calculating
Z/2 _ EZBZ
=0-1l=—=5— C34
;=0 T B (C34)

in subregions II; and II3. Then
y%Pz(l +0(%) +0(X)+---) (1In,)

—cny,,D(l +o(D)+ 0(%) +) (ILy)
(C35)

f—l—Eszz

15
and

“Note subregions II, and II; each have two connected pieces.
Here we have only made potential leading terms explicit,
with the exception that in the expression for subregion II;, the
leading term proportional to D has been noted, although it is
subleading to terms without factors of D. This is used in
calculating ' in subregion II,.
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AP X+ Y+ =2+ (1)
Dy2(=2P+D +---) (1)’

(C36)

Z/2 _EZBZ — {

from which

{2(X+Y+~~-+O(%)+-~-) (I1,)
= (C37)

L(p-0+--) (1)’

Using expansions (C30), (C31), and (C37), we have

O(D)+ -+ (1))
—7 +EB = , C38
creny@= {001y @
from which
(o) 4+ (1)
v = {%‘f' (1) (C39)

n

in subregions II; and II;. But since the differential
equation (3.35) does not contain any scales other than
2z, ¥’ should smoothly interpolate between subregions II,
and I13; i.e. it should also be O(1) in subregion II,. Thus we
conclude

bk 1 O(logR) +0(1) n=2

(C40)
@—G—O(l) n=23

In =

c. Region IIT
Here

z=z,—e+P+O()+ -,
1
7 = —y,ez <1 + 0(;) +0(e) +-- ~>, (C41)
and

2 2
1+Z—:1+—"(ez1+P)+0<ﬂ> +0(e?) + -,
h Zn P

232 P2
- =1+0<—>+ (C42)
(4]
Then
1 P
vV=—(14+0(ez;)+ 0| — | +--- (C43)
C, (4]

and
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1
tm = —ky + O(1). (C44)

n

Finally, collecting (C27), (C40), and (C44), we have

R _ (ﬁ_M> logR + O(logR) + O(1) n=2

t={" 2 . (C45)
X—tlogR+0(1) n=3
Note for n = 2 there is an O(log R) piece that we were not able to determine.
4. Action
To calculate the action, we proceed in similar fashion. The action with its equilibrium value subtracted can be divided as
R—k, R—k; R—ks
A=Ay = A+ Ay + A = < / / / > - A, (C46)
ko R- R-

where the first equality holds up to O(1) terms including the contribution from the AdS portion of extremal surfaces, and
from (3.39),

r_P ;P Zeq
- : o = 1 C47
A s V0 Aeq Zeq + h(zeq) (C47)

Here A’ is evaluated on the near-horizon expansion (12.18) of the near-critical solution, and A is evaluated on the
near-horizon expansion (A7) of the equilibrium solution, where the ¢’s in the two expansions can be set equal Note that
from (A7),

2

Ze 2n
T+ =1+ ez g+ C48
h<zeq) Zn bed ( )
and
pn—l n
A =5 14+ Fezgeq+-- ). (C49)
2y Zp
Then in region I, from (C24) and (C25),
pn 1 P pn—l
A - Ay = o <1 + 0<p > + O(ez;) + > T (14 O(ezieq) + ). (C50)
h h
and one can check
R—k R—k,
/ : d/)ENO(l), / dpgzl_ﬂlNo(Rbl/%)’ (C51)
ko P ko P
so assuming b; < 0, we have
A= 0(1). (C52)

In region II, from (C28) and (C37),

16Although the definition of the two ¢’s in (12.14) and (A1) are different, their expansions in large R (12.30) and (A4) show that fixing
R, they agree up to an O(1) factor. This factor then can be absorbed into z; o4 in (A8).
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n—1 D 1 n—1
A’-Aeq’:pn <1—”—+"'>(1+§Qs+"'>—p,, <1_2n%+...>
Z <

2
pn—] hP _ n_ Yn
z c, zn 2c¢,

>D+---> (II5)

h Zn

(Iy)
(C53)

and from the order of magnitudes of D, X, and Y in (C29) and (C32), A" — A.y’ is O(1) in subregions II; and II;. But as was
the case with v/, A" — A.,’ must interpolate smoothly between subregions II; and II5, so we conclude A" — A, is O(1)

throughout region II and that

Ay = { O(logR) + O(1)

o(1)

Last, in region III, from (C41) and (C42),

A/_-Aeql:p <1+£(€Z1—P)+0(82)+><1+—

:(ezl—kP)—i—O(%) —|—O<g2)—|—--.> <1+0(§> +>

2n €21 ¢
n <1+Z_8Z1,eq+0< 1’q>+0(€2)+"'>’
h

Zh

P

where from (A8) and (C19),

Zleq ™ 21- (C56)

One can check that the leading terms in (C55) contribute at

R—k;
[
R—k,

so we have

% ~0(e‘Y"RR2(”‘1))

1 logR ’

n=2

3 (C54)

(C55)
|
A = 0(1>‘ (C57)
Collecting (C52), (C54), and (C57), we arrive at
3 [ O(logR)+0(1) n=2
A=Ay = { o) 5 (Cs®)

where for n =2 we have an undetermined O(logR)
piece.17

YIf n = 2 and b, > 0, there are also O(R?/(2)) contributions
from (C51).
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