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Abstract

Identification of the time periodic dynamics of a helicopter rotor system is necessary for effective con-
troller design and analysis. The transfer properties of a linear time periodic (LTP) system can be
described by harmonic transfer functions (HTF) that give the input-output relationship between the
Fourier coefficients of the input signal and those of the output signal. A method for identifying harmonic
transfer functions of linear time periodic systems is developed in this thesis. The system identification
scheme employs a least square estimation technique to obtain HTF estimates. This least square esti-
mation problem is underdetermined; therefore, an additional assumption, that the transfer function is
smooth, is made in the ID scheme to achieve a well-posed problem. The estimates are calculated by ap-
plying a quadratic penalty to the curvature of the transfer functions. The identification scheme has been
implemented in MATLAB, and partly coded in C programming language for maximum computational
efficiency. This system ID method has been validated with analytical results for a few well-known LTP
systems. The validation results show excellent agreement between the identified and analytical transfer
functions.

Thesis Supervisor: Steven R. Hall
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Notation

A Dynamics matrix in state space formulation

Ac Amplitude of chirp signal

A Coefficient matrix formed from a system of linear equations

As Sheared A matrix (when A is band diagonal)

A Dynamics matrix in harmonic state-space formulation

B Input matrix in state-space formulation

B Input matrix in harmonic state-space formulation

C Output matrix (related to state vector) of state-space formulation

C Output matrix (related to harmonic state vector) of harmonic state-space formulation

D Input matrix (related to output) of state-space formulation

D Input matrix (related to output) of harmonic state-space formulation

D 2  Second difference operator matrix

Eb Young's modulus

E Expected value function

G(s) Transfer function in Laplace domain

G(w) Empirical transfer function estimate

G(w) Harmonic transfer function matrix

g Harmonic transfer function

I Identity matrix

Ib Bending moment of inertia

J Cost function

K Controller transfer function

N Number of chirps in an input signal

Nb Number of blades in a helicopter rotor

Nh Number of significant transfer functions of an LTP system

X Modulation frequency (block diagonal) matrix

Ruy Cross-correlation function between u(t) and y(t)

RUU Autocorrelation function of u(t)

T System time period

Te Chirp period

Td Delay time

T, Rotation period

TS Time span of a truncated continuous signal

T Control response matrix used in HHC
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U Input matrix with elements in frequency domain

U Matrix with modulated and Fourier transformed input data vector elements

Uc Chirp input vector for rotor blade

V Vector for rotor blade input signals

X Harmonic states vector

Y Output matrix with elements in frequency domain

Y Fourier transformed vector of y

aij Element of ith row and jth column of A matrix

b Vector of forcing terms in a non-homogenous linear system of equations

di Number of sub-diagonals

d2 Number of super-diagonals

e(t) Disturbance to a system

e Error vector

f Forcing function in the Laplace equation

fo Initial frequency of chirp

fi Final frequency of chirp

fIN Frequency of input signal to a Phase Locked Loop

fvco Frequency of output signal from a Voltage Controlled Oscillator

g(t) Impulse response function of an LTI system

9 Vectorized G matrix

gm mth transfer function (in vector form)

gi ith element of g

gmi ith element of gm

h Step size in discretizing mesh for the Laplace equation

p(x) Continuous function of x

q() Load per unit length of beam

n Number of data points in input vector u

ne Number of chirps generated by chirp generator

nh Number of harmonic transfer functions required to be evaluated

nD Product of n and nh

t Time (in seconds)

td Chirp duration

t, Pause time between chirps in an input sequence

t Pseudo time obtained by shifting time vector based on system phase
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u(t) Input signal in time domain

u Vector of discretized u(t)

x State vector

X8 (t) Steady-state response

y(t) Output signal in time domain

ym(t) Modulated output

y Vector of discretized y(t)

z Vibration amplitudes vector

zo Vibration amplitude vector in absence of control inputs

a Scalar for weighing difference operator matrix

3  Coefficient determining degree of periodic modulation

Damping ratio

v(x) Deflection of beam in vertical direction as function of beam length

Rotor azimuth angle

Vector of azimuth measurements

W Frequency in rad/sec

on Natural Frequency

LOP Pumping frequency

A Lumped transfer functions

# State transition matrix

#c Chirp phase

<D) State transition matrix over interval [0, T]

<DU Power spectral density of u(t)

<bY Cross-spectral density of u(t) and y(t)

Muu Product of U and conjugate transpose of U

'1 uu. Matrix in ith position of the third dimension of 4uu array

DUUs Block diagonal matrix obtained from 4 uu array

Iuy Product of conjugate transposed U matrix with vector Y

LUY, Matrix in ith position of the third dimension of -uy array

Way Vectorized form of tuy array

'Tyi ith element of (uy vector

Q Rotor frequency
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Superscripts

()T Matrix transpose

()* Complex conjugate

() Expected value (mean)

() Estimated value

() First derivative with respect to time

() Second derivative with respect to time

Subscripts

()T Truncated discrete signal (in time domain)
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Chapter 1

Introduction

In this thesis, we develop a system identification methodology for determining harmonic transfer func-

tions of linear time periodic (LTP) systems. In this chapter, we first present a brief discussion of the

motivation for this effort, followed by a commentary on previous work related to LTP system identifica-

tion. Finally, a brief outline of the thesis is described in the last section of the chapter.

1.1 Motivation

Helicopter rotors often experience significant vibrations in forward flight, due to unsteady airloading

on the helicopter blades. It has been determined that these load variations primarily arise from the

interaction of each rotor blade with the vortex of the preceding blade [1]. Atmospheric turbulence,

blade/fuselage interaction, and blade instabilities (air resonances) are also contributing factors [2]. If

this vibration problem can be addressed, pilot effectiveness and passenger comfort can be increased

significantly. Furthermore, effective vibration reduction can considerably lower the maintenance and

operational costs of helicopters.

The airloading on each rotor blade can be considered to be almost periodic, and the forces on the

blades are harmonics of the rotor frequency, Q. Due to the rotor symmetry, only those vibrations at

frequencies that are integer multiples of the blade passage frequency (NbQ, where Nb is the number of

blades) get transmitted to the fuselage through the rotor mast. One way to reduce vibration, then, is

to alter the periodic forces to cancel or suppress the vibration-inducing harmonics.

In order to devise effective control strategies and ultimately develop useful controllers, it is important

to have a good understanding of the rotor dynamics. Because the rotor aerodynamics are periodic, the

rotor dynamics cannot be modeled as time-invariant, although they may be approximated as linear.

The development of a system identification scheme that can determine the dynamics of a time periodic

12



system is therefore highly desirable, since such a tool will greatly aid in controller design.

It should also be noted that such a development will not only be applicable in the specific case of

helicopter vibration reduction, but will be useful for a variety of other mechanical and aeronautical

systems. Wereley [4] mentions a few systems in this regard, such as wind turbines, the rolling motion of

ships, and gravitationally stabilized earth pointing satellites. Furthermore, once a scheme for determining

the dynamics of an LTP system has been developed, linear time invariant (LTI) systems can also be

incorporated in the set of systems suitable for analysis by such a tool. We will discuss this point in

Section 3.3.1 in more detail.

1.2 Background

Before we embark on our specific goal of developing an identification (ID) scheme for LTP systems, we

will briefly analyze the methods previously employed for analyzing the dynamics of periodic systems.

1.2.1 Analytical Methods

Richards [5] presented an analysis on a number of systems described by second (and in some cases higher)

order differential equations with periodic coefficients. He extensively studied various types of periodic

coefficients (saw tooth, rectangular, periodic exponential, etc.) and derived their solutions. However, his

formulation represented the system outputs in terms of the input signals modulated with periodic terms

that may contain an infinite number of harmonics of the system's pumping frequency (wp). The pumping

frequency is the frequency of variation of the system coefficients, and is distinct from the commonly used

forcing frequency, which is the frequency of input excitation.

Richards did not develop an operator that mapped input signals to output signals (the way the

transfer function of an LTI system does). For instance, his derivation for the steady state forced response,

x88, of a general periodic system to a sinusoidal input of frequency, wo, was expressed as an infinite sum

of periodic coefficients, vnk, so that

X8 8 (t) = ) n exp [j (wi + (n + k)wp) t] (1.1)
n=-oo k=-oo

Such a description, however, is not helpful for developing a convenient system ID method that may be

implemented with reasonable accuracy.

Wereley and Hall [6] built on the work of several researchers, including Richards, and represented

the response of an LTP system by defining a linear operator that relates input and output complex

exponential signals. Since these signals are of fundamental importance to LTP systems, their theoretical
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developments have aided in our efforts for defining and validating our identification scheme. They

derived a frequency domain representation of the LTP system model that is analogous to the widely

used frequency domain formulations of LTI systems. The linear operator they developed was called

the Harmonic Transfer Function (HTF), which described the relationship between the harmonics of the

input signal, u(t), and those of the output signal, y(t), as

y = g(s)U (1.2)

where 9(s) is the HTF, and U and Y are vectors representing the harmonics of the signals u(t), and

y(t), respectively. Further elaboration on these harmonic transfer functions will be presented in the next

chapter.

1.2.2 Empirical Methods

In the specific case of control of helicopter vibrations, the problem of describing the time periodic plants

has usually been addressed by using the so-called T matrix formulation, especially in the so-called Higher

Harmonic Control (HHC) approach [1]. In HHC, the rotor blades are controlled at the blade passage

frequency. The T matrix is a control response matrix that relates the sine and cosine components of

the input at the N/rev frequency to the sine and cosine components of the output response, also at

N/rev. The matrix T depends on the flight conditions, which in principle necessitates the measurement

and storage of large libraries of T matrices corresponding to various flight conditions. In some HHC

approaches, the T matrix is assumed to be unknown, and is therefore estimated in real-time, yielding an

adaptive controller. In other cases, it is treated as a known quantity, and those applications use several

T matrix libraries for control purposes [3].

Some investigators have claimed that large variations in the matrix T necessitate the use of adaptive

control [3]. Shaw [7], however, obtained contrary results in his wind-tunnel tests, and determined that

the variation in the matrix T was small throughout the wind-tunnel test envelope. He attributed his

results to better measurement and precise rotor blade control techniques. Shaw's results also showed

that since the variation of the control response with changing flight conditions was small, fixed gain

controllers perform as well as adaptive controllers for vibration reduction.

Many researchers studying the HHC problem have used a quasi-steady assumption, thereby elimi-

nating the need for a model of the periodic rotor dynamics. They represented the rotor response as

z = Tu + zo (1.3)

14



where z is the vector of vibration amplitudes, u is the vector of control amplitudes, and zo is the vector

of vibration amplitudes with no control. The T matrix thus served to describe the system under control,

and was usually determined empirically during wind-tunnel and flight tests.

Since the T matrix does not provide information about the system dynamics, and therefore closed-

loop stability, the control approaches have been somewhat ad hoc. The system identification methodology

that will be developed in the following chapters aims to provide the means for determining the actual

dynamic behavior of helicopter rotors. Once the periodic nature of the system dynamics has been iden-

tified, future control implementations will be greatly improved. We will discuss system ID implications

on controller design in more detail in the final chapter.

1.3 Thesis Overview

The objective of this thesis is to present the theoretical development of a system identification method for

LTP systems, with a special focus on helicopter rotor systems. Also, this thesis presents the description

of optimized software that has been developed for the implementation of our LTP system ID scheme.

In Chapter 2, an overview of harmonic transfer functions and important properties of LTP systems

are first presented, along with a brief discussion on the development of the harmonic state-space model.

Chapter 3 deals with the theoretical development of an identification scheme for determining harmonic

transfer functions of LTP systems. The various assumptions, simplifications, and limitations of the

scheme are also discussed. In the latter sections of the chapter, the actual implementation of the

estimation scheme is described in detail. Chapter 4 presents some specific issues pertaining to input

signal generation, data acquisition, and data reduction for helicopter rotor systems. Chapter 5 discusses

the validation of the developed scheme by analyzing a few LTP systems, and comparing the transfer

functions obtained analytically and empirically through our system ID software routine. Conclusions

and recommendations for future work are given in Chapter 6. Various implications of our ID scheme on

control applications are also discussed. Some of the limitations encountered in our effort, and possible

future solutions are presented. All the MATLAB and C codes used in our analysis and implementation

have been included in Appendix A and B, respectively.
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Chapter 2

Frequency Response of Linear Time

Periodic Systems

As discussed in the previous chapter, we need to minimize the periodic unsteady aerodynamic loads on

helicopter blades in order to reduce helicopter vibrations. This requires a good understanding of the

periodic dynamics of the rotor, so that effective controllers may be designed. Therefore, we present a

brief summary of the characteristics of linear time periodic systems in this chapter. We also provide an

overview of the development of a linear operator for describing transfer properties of LTP systems. The

discussion in this chapter will set the stage for the formulation of an estimation technique to identify

dynamic characteristics of LTP systems.

2.1 Overview of Frequency Response of LTI Systems

When an input u(t) is applied to a linear time invariant system, its output y(t) can be expressed as

00

y(t) = g(r)u(t - T)dr (2.1)

-00

where g(r) is the impulse response of the system. Because the output depends on past inputs, we usually

have that
00

y(t) g(r)u(t - r)d-r (2.2)

0

The response to an exponential,

u(t) = e't (2.3)
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is

00

y(t) = g()es(t-)dr

-00

00

= g(r)e-"7e*td

00

00

= g(r)e-"dr e*" = G(s)e*t (2.4)

-00

where G(s) is the transfer function of the LTI system, given by

G(s) = g(t)e-"Sdt = L{g(t)} (2.5)

-00

Note that G(s) is the Laplace transform of the impulse response. Alternatively, for imaginary s (s = jW),
we may express the transfer function as the Fourier transform of the impulse response, so that

G(jw) = F{g(T)} = g(r)e-wrdT (2.6)

-00

It is clear from Equation 2.4 that G(s) provides a linear map between the input and output of the

system. It characterizes the dynamic properties of the system by describing its frequency response. If

the input is ei't, then the output is G(jw) eJ*t.

The differential equations governing the dynamics of an LTI system have constant coefficients, and

are often represented in the state-space form as

,x(t) = Ax(t) + Bu(t) (2.7)

y(t) = Cx(t) + Du(t) (2.8)

where x (t) is the state vector, A is the dynamics matrix, B is the input matrix, C is the output matrix,

and D is the feedthrough matrix. The transfer function for a system described as above is

G(s) = C(sI - A)-B + D (2.9)

where I is the identity matrix.
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2.2 Linear Time Periodic Systems

Linear time periodic systems are more difficult to characterize than LTI systems. In LTP systems, the

coefficients of the differential equations that describe the dynamics are time-varying and periodic. These

systems may be modeled in state-space form as

x(t) = A(t)x(t) + B(t)u(t) (2.10)

y(t) = C(t)x(t) + D(t)u(t) (2.11)

where the matrices A(t), B(t), C(t), and D(t) are periodic, with period T. In other words,

A(t + NT) = A(t) (2.12)

for any integer N, and similarly for B, C, and D.

When a complex exponential (or sinusoid) is used to excite an LTP system, the output response

consists of a superposition of sinusoids not only at the input frequency w, but also at several (possibly

an infinite number) other frequencies, o + nop, each with its own magnitude and phase [6], where n is

an integer, and op is the pumping frequency, given by

O, = 27r/T (2.13)

The frequencies nw, are harmonics of the pumping frequency. Thus, the frequencies W + nO, are shifted

harmonics, and we often refer to these frequencies simply as "harmonics."

The description of the dynamic behavior of an LTP system response is more complex, but nonetheless

it is highly desirable to have a means of characterizing such systems. In this regard, Wereley and Hall [4]

have discussed the notion of harmonic transfer functions for LTP systems that are analogous to transfer

functions of LTI systems. A brief summary of their work is presented below.

2.2.1 Fundamental Signal Spaces in LTP System Analysis

Floquet theory has been widely used in the study of LTP systems to derive several important results.

According to this theory of LTP systems, the state vector x, at time t, is related to the state vector a

full period away by the system's discrete transition matrix <D [5], so that

x(t + T) = <Dx(t). (2.14)
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<D is defined as the state transition matrix of the system evaluated over the interval (0, T), so that

4) = #(T, 0) (2.15)

where # is the state transition matrix from r to t. It is easily shown that

#(nT, 0) = #(T, 0)n (2.16)

Therefore, in general

x(t + nT) = 4x(t) (2.17)

When x(O) is an eigenvector of 4, corresponding to eigenvalue z, the solution x(t) will satisfy

x(t + nT) = znx(t)

for all t. This implies that x(t) has the form

x(t) = etT(t) (2.18)

where s = (log z)/T, and x(t) is periodic. That is, x(t) is an exponentially modulated periodic (EMP)

function. This suggests, by analogy to LTI system analysis, that EMP functions are the appropriate

signals to use to describe the input-output relationship of an LTP system, just as exponentials are used

to describe input-output relationship for LTI systems. This eventually lead Wereley and Hall to develop

the concept of using EMP test signals to determine transfer functions for LTP systems. They expressed

EMP signals as the complex Fourier series of a periodic signal of frequency wp, modulated by a complex

exponential signal,

u(t) = I un' (2.19)
nEZ

where sn = s + njwp (s E C), and un are Fourier coefficients of u(t).

2.2.2 Harmonic Transfer Functions

After defining EMP signals, Wereley and Hall expressed the elements of the matrices (Equations 2.10

and 2.11) in terms of their Fourier series, and used the harmonic balance approach to arrive at

Snxn = An-mxm + 5 Bn-mum
mEZ mEZ

Un Cn-mxm + E Dnrmum (2.20)
mEZ mEZ
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After expressing the summations in matrix form, the equations reduce to

sX = (A-.I)X+BU

Y CX+vu

The state vector X represents the states at various harmonics of a given frequency, and is expressed as

X-2

X-1

XO

x1

X2

The dynamics matrix A is a doubly-infinite Toeplitz matrix, given by

... Ao

... A 1

... A2

A_1

Ao

A1,

A-2

A_1,

AO

The matrix A, is the nth

The modulation frequency

Fourier coefficient of A(t). The matrices B, C, and D are

matrix, PN, is an infinite block diagonal matrix, given by

-2 -jwI 0

-1 -jWI

0 -jWI

0 1 -jWpI

2 -jLI

where I is the identity matrix of same dimensions as that of A,.

The harmonic transfer function (HTF) is defined as an operator that relates harmonics of the input

20
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(2.22)

(2.23)

similarly defined.



signal to harmonics of the output signals, and is given by

g(s) = C[sI - (A - N)]- 1B + D (2.24)

The LTP transfer function is thus analogous to the widely used LTI transfer function, in that it describes

the input-output properties of LTP systems in the frequency domain. Although the matrices in Equation

2.21 are infinite (due to the infinite Fourier coefficients), for practical purposes we can truncate the

number of terms in the Fourier series, and simply use the smallest number of harmonics that adequately

represent the system dynamics. Since the harmonics generally get smaller with increasing harmonic

number, only the consideration of the first few harmonics is usually adequate in describing the system

behavior.

We can now employ this notion of harmonic transfer functions in developing a method for system

identification of LTP systems.
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Chapter 3

Linear Time Periodic System

Identification Scheme

In this chapter we present a procedure to identify harmonic transfer functions of LTP systems. We first

describe the theoretical development, and then discuss our actual implementation of the identification

scheme.

3.1 Overview of LTI System Identification

For a linear time invariant system, the transfer function estimate, G(jw), is given by the ratio of the

Fourier transforms of the input, u(t), and output, y(t), so that

F {y(t)}(31
GUjo) = FfYW1(3.1)

.F{u(t)}

In the absence of noise, and assuming that u(t) has components at all frequencies, G(jw) should be a

good estimate of the transfer function, G(jw) . This estimate will be in error if the data sets (of the

input and output measurements) have significant noise. Consider a system that has measurement noise,

e(t). Then

y(t) = g(t) * u(t) + e(t) (3.2)

where * denotes the convolution operator. For stationary processes, the cross-correlation of an input

and output, R,,(r), is given as the expected value of u(t) and y(t + r), so that
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Ruy (T) = u(t)y(t + T)

= E u(t) [Jg(r)u(t + r - r)dr + Je(t + r - r)dr

.0 0
00 00

= g(r)u(t)u(t + r - r)dr + J u(t)e(t + r - r)dr (3.3)

0 0

For measurement noise e that is independent of u, and has zero mean, we have that

u(t)e(t + r - r) = 0 (3.4)

Therefore,

00

Ruy(r ) = g(r)u(t)u(t + r - r)dr

0
00

J g(r)Ruu(r - r)dr . (3.5)

0

where Ras(r) is the autocorrelation of the input signal. Equation 3.5 can be written as

Ruy(r) = g(r) * Ruu(r) (3.6)

since the last integral in Equation 3.5 is simply the convolution integral. Converting the above equation

into the frequency domain (by taking Fourier transform of the cross-correlation function), we get the

cross-spectral density, JDy, and power spectral density, (Duu,which are related by

4y (w) =G(jw)Puu(W)

G(jov) = )U .o (3.7)

This relation, with the auto and cross-spectra of the input and output, is widely used for the so-called

empirical transfer function estimate (ETFE) of linear time invariant systems [9].

We will now extend this development further for linear time periodic systems.

3.2 LTP System Identification

In an LTP system, an input sinusoid at a single frequency generates a superposition of sinusoids at several

frequencies of various magnitudes and phase in the output. Thus, common LTI system ID techniques
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cannot be used to determine its transfer functions. Some simplifying assumptions, however, can be

made which aid in developing a system ID method for an LTP system with specific application for our

helicopter rotor system.

To illustrate the approach, we will initially account for only three frequencies in the output of an

LTP system, for each input frequency. The LTP system will have period T, and corresponding frequency

Wp. We therefore assume that the output, Y, at each frequency w, comprises of the linear combination

of the responses due to inputs at frequencies w, w + op, and w - wp. The system output can then be

assumed to be a linear combination of three different transfer functions (each corresponding to one of

the three frequencies in the output): Go, G 1 , and G_ 1 , respectively. Y can thus be expressed as

Y(jo) = Go(jw)U(jw) + G1(jw)U(jw - jop) + G_1(jw)U(jw + jop) (3.8)

Equivalently in the time domain, the output may be written as

y(t) = go (t) * u(t) + gi(t) * [u(t)eWPt] + g-1(t) * [u(t)e-WPt ] (3.9)

From Equation 3.9, one can see that the output y(t) is defined as the total response due to an input

u(t) that has been modulated appropriately, and then convolved with the respective impulse response

functions. We can state more specifically that the nth transfer function is defined to be the linear

operator that maps the output at frequency w to an input, at frequency o, modulated with einwpt. This

linear system can be represented in the block diagram of Figure 3-1.

As is evident from Equations 3.8 and 3.9, we have three transfer functions, Go, G 1, and G_ 1 , that need

to be estimated. For a given input U(jw) and resulting output Y(jw), we thus have three unknowns, but

only one equation. Our identification problem is therefore underdetermined. One approach to solve this

problem is to apply three inputs and measure the resulting outputs. We can thus form three independent

equations of the form of Equation 3.8, and will subsequently be able to evaluate the desired transfer

functions.

In order to generate the three outputs, it is extremely important to take into consideration the time

of application of each input relative to the system period. This is due to the time-varying nature of the

system dynamics during one period. If the system behavior is to be completely characterized, the system

needs to be excited with appropriate input signals at various times in its period T. Since in this case

only three transfer functions are being evaluated, three identical input signals should be applied that

are evenly spread out over the system period. Figure 3-2 depicts when each of the three inputs should

be initiated, relative to the system period.

We define Td, as the amount of time (in seconds) elapsed between the beginning of a new period of
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ejwpt

U(jto) Y(jo)

Figure 3-1: LTP system model with three transfer functions.

T 3T 6T

11/3 T 12/3 T Input signal

time

Figure 3-2: Input signals initiated at appropriate time intervals over the system periods.
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Uoi-oy (J(O-Pid

Figure 3-3: Delayed input and corresponding output of LTP system.

the system and the start of the first input signal since the beginning of that particular period. In this

specific case, where we have just established that the three inputs should be spaced uniformly apart, Td

is given as

Td = T/3 = 27r/3w, (3.10)

The first input should have zero delay between the start of a system period and its time of initiation.

The input U, and output Yo, to the system are modeled as depicted in Figure 3-1. For the second chirp,

there should be a delay of Td seconds between the start of a system period and its time of application,

therefore the actual input will be U(jw)e-i' Td. The system output is modeled as shown in Figure 3-3.

Similarly, the delay time for the third input will be 2T. The output vector Y then can be expressed as

Yo U(jw) U(jW - jop) U(jW + jop) Go

Y1/3 = U(jo) U(jo - jwp)ej'P Td U(jo + jop)e--so)pTd G1  (3.11)

Y2/3 J U(jw) U(jw - jop)eJWP
2Td U(jo + jwp)e-jwp 2

Td G_1

where Y1/ 3 and Y2/3 are the outputs due to the second and third inputs respectively. If we define

W = eiWpTd, then substituting the value of Td, we get

W = ej2ir/3 (3.12)
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From this definition, we have W- 1 = e-j2w/3, and therefore W 2 =e4-/3 = W-1, and

Equation 3.11 then becomes

W 4 = W-2.

U(jW - jop)

U(jw - jop)W

U(jo - joP)W 2

U(jO + jWp)

U(jw + jwp) W- 1

U(jw + jop)W- 2

If we separate out the W terms, we get

U(jo)

0

0

0

U(jw - jop)

0

0

0

U(jw + jWp)

U

The first matrix on the right hand side of Equation 3.14 is the same as the one that commonly arises in

discrete Fourier transform notations. We can also write Equation 3.14 more simply as

(3.15)Y=UG

so that

G = U-Y (3.16)

Each row of the U matrix corresponds to an input signal, and each column corresponds to the harmonics.

Note that the inputs should be chosen so that U is non-singular, since U-- is needed to compute G.

These set of equations have been developed for determining three transfer functions. However, it is

clear that we can easily extend this method for determining any number of transfer functions of a system.

We can apply several input signals, spaced appropriately relative to system period, and account for more

transfer functions. The observed output, Y, can be refined and smoothed using autocorrelations of the

spectra. We will discuss this issue in more detail in the next section.

It is important to point out, that in this approach, the output measurements due to each input

must be obtained by allowing the response to settle down significantly before the next input signal is

initiated. In that case, it can be reasonably assumed that Yo is due to the first input, Y1/ 3 due to the

second input, and so on. However, to speed up the system identification process, we can generate inputs

(at appropriate system phase) with very little idle time between each successive signal, and effectively

treat the entire sequence as one input signal. The resulting outputs from the successive inputs are also

taken as one effective output signal. In this case the problem becomes underdetermined, since we have

more transfer functions to identify than we have known quantities. In order to obtain a problem that is
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adequately defined, we can make assumptions about certain characteristics of G. We can thus constrain

the problem by applying those assumptions, and the transfer functions can be subsequently identified.

In our system ID scheme, we essentially use this second approach to develop an efficient identification

method.

3.3 ID Scheme Implementation

A separate section describing the implementation of our ID method is necessary, since all the preced-

ing sections have dealt with continuous-time equations, while in the actual case we deal with discrete

data from digitally sampled signals of finite time duration. In the following subsections, we present a

description of our system identification scheme, which has been implemented as a MATLAB tool. We

will also give a detailed discussion of our estimation error minimization methodology, and a brief section

on issues related to MATLAB efficiency, processor speed, and memory.

3.3.1 Data Transformations

Our system ID algorithm is primarily based on the results obtained in the previous sections, with some

modifications for practical implementation. The ID routine requires three sets of data, specifically the

input u, output y, and time measurements (at which u and y occur) 4. In the case of a rotor system,

the values of 4' are the azimuth measurements. The data is assumed to have been digitally acquired,

hence all the data points can be assembled in a vector of length n, where n is the total number of data

points. Each data point is essentially a digital record of the measurement of an analog signal determined

at some fixed sampling frequency. The input data is therefore expressed as

u = Ui U2 U3 -. -Un .(3.17)

y and 1' are similarly defined.

The total number of transfer functions of the system that need to be identified, nh, have to be specified

in advance. Recall that in Equation 3.14 we had built a matrix U, whose elements were modulated inputs

in the frequency domain. An nh x n matrix U is therefore constructed, where each row consists of an
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appropriately modulated and Fourier transformed data vector u, so that

f{[el ii u1

U = F{[e0j'Oiui

rf{[e-- 11 

F{[le~"if ini

n- 1
where m = . In more compact notation,

2

-. - ... eMis nun]}

. . . ... e'iVn unI}

- -- ... e 0jV)nu]}

- - - ... e-MVsnun]}

the U matrix is really

u(w - mp)

u(W - WP)

u(w)

u(o~op)

u(w + mWp)

Similarly, we define a Y matrix analogous to our output vector

transform of vector y

(3.18)

(3.19)

in equation 3.14, as the discrete Fourier

Y =.F I [i Y2 Y3 - - n (3.20)

In Section 3.1, it was mentioned that Equation 3.7, involving the cross- and power spectral densities, is

used for the ETFE of LTI systems. In our discrete implementation, we will also use an analogous form.

Recall that in our derivation of Equation 3.7, the Fourier integral limits were from zero to infinity,

therefore for a random process an absolute integral will not exist. But, consider a stochastic signal u(t),

that has been truncated to a time span of T. When T, is large, then it has been shown [9] that

00

lim E IFUT.,(t)] = Ruu(r)e--"dr

-oo

(3.21)

where E is the expectation operator. The power spectral density and cross-spectral density can thus be
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written in the limit as

I U(w) 12  U*(w)U(w)
2Ts 2T,

and

4%y(P) = U*(w)Y(w)
2T,

where U*(w) is complex conjugate of U(w). Using Equations 3.22 and 3.23, we define

tuu = U*TU

and

(DY = U*TY

(3.22)

(3.23)

(3.24)

(3.25)

where U*T is complex conjugate transpose of U. We can now write an expression, analogous to Equa-

tion 3.7, that represents harmonic transfer functions of LTP systems as

G(w) = (uu)-'Ibuy (3.26)

G(w) is a matrix whose row vectors are the transfer functions gi, that is,

G(w)=

gm

gi

go

g i

g M.

(3.27)

It is important to note that ordinary matrix multiplication is not performed in the computation of

4uu and 4uy. Rather, each column vector of U is transposed to form a row vector, and multiplied

with its corresponding column vector to yield an nh x nh matrix. Each of these matrices is assembled

in a three dimensional nh x nh x n array to form (kuu. I'uy is similarly constructed as an nh x 1 x n

array.

Consider the 2-D matrix, i.e., all the rows and columns, in the ith position of the third dimension of
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4 ouu and denote it as Iyuuy, where

lui (W - mw-) 1 ... ui(W - mWp)u'(W) ... u (W - mWp)u ' (W + mWp)

4P = ui (w) u (w - rnw,,) ... IU (W) 1
2  

** u(W) U (W + mwP)

u (W + mQ)u (W - mWp) -.. u(w + mop)u (w) - jui(o + mp) 12

(3.28)

Similarly for the I>uy array, the ith vector in its third dimension is

u (L - MWp)y(W)

uUY, -uWp)yi(O)

4 uuy( I GO) Yi()

u(O + mWp)yi(o)

Note that the 4uu matrix is Hermitian, and positive definite. Hence, its inverse will exist, and

Equation 3.26 can be utilized for evaluating G(w). Also, note that the specific structure of ouu has

some useful implications for efficient Gaussian elimination. A detailed discussion in this regard will be

presented in Section 3.3.3.

Also, note that for nh = 1, (i.e., when only the fundamental transfer function, go, needs to be

identified) MuU and 4Luy reduce to 1 x 1 x n arrays, where 'uuj is lui()1 2 , and Luy, is u'(Lo)yj(w).

Each element of go is given as

go(w) = i)2 (3.30)

which is the same relation as that used for ETFE for LTI systems. Thus, as mentioned in Section 1.1,

this scheme reduces to LTI system ID if only one transfer function is considered in the calculations.

Once the 4uu and MUy matrices have been assembled, it is tempting to simply use Equation 3.26

to find our transfer functions. However, such a computation will not yield an accurate result. This is

because we have made a simplification in our analysis, and have considered only a few harmonics (instead

of an infinite number). The cumulative effect of the neglected harmonics may be significant, therefore,

our results will incorrectly identify the few transfer functions that have been evaluated. For instance,

suppose a given system has Nh transfer functions of relatively significant magnitudes, but only nh are
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evaluated through this method. In that case, the system has been modeled with nh number of transfer

functions, and its output response due to an input may be expressed as

m

Y = u(o - kwp)gk -+ u(o - 1Lp)g ,331
k=-m m<|l|<M

modeled part unmodeled part

n - 1 Nh -i
where m = and M = . The unmodeled part essentially appears as an error, e, in our

22
output equation for the ID scheme, since it takes into account only the modeled part. Therefore,

Y = u(w - kwp)gk + e
k=-m

= UTG+ e . (3.32)

3.3.2 Estimation Error Reduction

In the previous section, we briefly discussed errors that are introduced in our estimation due to modeling

simplifications. In addition to these modeling inadequacies, we also do not have enough constraints on

our problem so that we may obtain an accurate estimate. We have only one input and output data set,

while we want to identify nh transfer functions. Therefore, we need to make additional assumptions so

that the identification problem is well-posed. In this regard, we assume that the transfer functions are

smooth, i.e., there are no rapid variations (with frequency) in the transfer functions. This is a reasonable

assumption, since rapid variations with frequency in a transfer function usually are not physical.

In order to reduce e, and to apply the assumption we have just made, we formulate our problem

as the minimization of a cost function, J, that penalizes the quadratic error and the curvature of the

transfer functions, so that

J = min [(Y UT) + a (D2G (3.33)

where D 2 is the second difference operator, and a is a constant. Before proceeding onwards, we will

briefly digress to present an explanation of the second difference operator.

Consider the classical 1-D Laplace equation

=2 - f (3.34)
ax2

where p, is a continuous function of independent variable x, f is a forcing function, and the boundary

conditions of p are zero [10]. This function p, can be discretized into k points on a mesh of step size h.
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The derivative of p with respect to x, may be approximated in discrete form as

OP Pi+1/2 - Pi-1/2 Pi+1/2 - Pi-1/2 (335)
9X zi+1/2 - zi-1/2 h

The second derivative is then approximately

&2p (Pi+1 - pi) - (pi - Pi-1) _ Pi+1 - 2pi + pi-1 (3.36)
8 x-2 h2 h2

The Laplace equation can thus be expressed as a system of linear equations as

P2 - 2P1 + PO = h2 1

P3- 2P2+pi = h2 f 2  (3.37)

Pk - 2 Pk-1 + Pk-2 = h 2 fkl

Pk+1- 2Pk+Pk-1 = h 2 fk

The boundary values po, and Pk+1, are zero. In matrix notation, we therefore have

-2 1 Pi fi

.h2 (3.38)

1

1 -2 Pk A

The tri-diagonal matrix, which we denote as D 2 , is the second difference operator, and is widely employed

in numerical analysis for evaluating second order differential equations.

Returning back to our discussion, it is evident from Equation 3.33 that by selecting various values

for a, we can weight the second derivatives of G more or less in the cost function, and thus penalize

the curvature so that rapid variations with frequency in G are reduced. In order to get a closed form

expression for 0, Equation 3.33 is evaluated by taking the derivative of J with respect to G, setting it

equal to zero, and then solving for 0, which gives

= [UTU aD 4 ] - UTY (3.39)
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(b'uui

Figure 3-4: Structure of block diagonal tuu, matrix.

where

D = D2 - D2 (3.40)

Recall that we had assembled UTU and UTY in three dimensional arrays, Muu and (uy, respectively.

However, in order to numerically evaluate Equation 3.39, we need to reduce these arrays into two-

dimensional matrices. The tuu array is therefore transformed into a square, block diagonal, n.4 x nD

matrix tuus, in which the ith block is 'Duuy, and

n = nh - n (3.41)

Thus, tuu, has the form as illustrated in Figure 3-4. (uy is transformed into a column vector toy,
of length nz, with the form as shown in Figure 3-5. The G matrix is also transformed into a vector g,

where - has n sub-vectors of length nh, each of which is a column vector of G (w). Equation 3.39 then

becomes

g = ouus + aD IUy (3.42)

where D4 indicates the change of the dimensions of D4, similar to the change in dimensions going from
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VT'

Figure 3-5: Structure of vector (uy.

UTU to kDUUS.

After this conversion, it is evident from Equation 3.42 that the harmonic transfer function identifi-

cation problem now entails the solution of a linear system of the standard form Ax = b, where in this

case

A = Iuus + a64, (3.43)

b = I.y, (3.44)

and x is the vector of transfer function estimates, i.e., g.

It is important to note from Equation 3.43 that the three diagonals in b 2 need to be spaced apart

according to the block diagonal structure of buus. Since each block element is an nh x nh square

matrix, the D2 matrix has its super-diagonal (of unity elements) starting from the nhth column, and its

sub-diagonal (also of unity elements) starting from the nhth row. By forming f
2 in this manner, 4

acquires the form of a band diagonal matrix.

Note that the system in Equation 3.42 is analogous to the mechanical system of a beam under

bending due to a distributed load along its length. For a horizontal beam (its axis in the x-direction),
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Figure 3-6: Numerical and mechanical analogy for smoothing transfer function estimates.

with stiffness EbIb, and load per unit length q(x), its deflection v(x) in the vertical direction is given as

84v(x)
EbIb 4 =q (x) (3.45)

Equation 3.42 is essentially the discretized form of this same equation, where <Duy can be considered

to be the applied load q(x), a is equivalent to the beam stiffness EbIb, and the desired solution - is

equivalent to v(x). We can thus think of our solution as a beam bending process under a given load, in

which we restrict the deflection to minimize the energy in the system. Analogously, we can say that we

determine a - that is a loose spline fit to the data. We estimate a -, so that the mean squared error is

minimized without sacrificing the smoothness of the transfer function, i.e., - does not have significant

curvature. Figure 3-6 provides an illustration to this effect, where we can think of each data point to

have a spring that tries to pull the beam towards itself. The weight a (analogous to the beam stiffness),

penalizes the deflection in order to reduce bending energy.

In our ID scheme, the transfer functions are ultimately determined by solving the linear system

of equations represented by Equation 3.42. Therefore, our method offers an approach for identifying

transfer functions, with rapid variations with frequency filtered out, by formulating the problem as a

linear system that can be readily solved using conventional techniques. We do not perform numerical

convolution, which is computationally intensive.

As a separate note regarding improvement of our transfer function estimates, it should be realized

that by accounting for a larger number of transfer functions in the system model, i. e., increasing the

value of nh, we may reduce the errors that result from modeling deficiencies. However, this may not

be very expedient, because each transfer function, that needs to be identified adds n more equations to

the linear system in Equation 3.42. A larger number of computations are therefore required. If n, gets
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very large, there are severe demands on the processor and memory. If the processor speed is slow, the

calculation times become extremely long, or the system memory might run out if the storage space is

inadequate. Section 3.3.4 elaborates this issue in more detail.

3.3.3 Linear System Solver

Now that our transfer function evaluation problem has essentially been reduced to a large system of

linear equations, the only thing left to address is how to solve these equations efficiently.

The most common and robust method for solving linear equations is Gaussian elimination with full

or partial pivoting. For a fully populated n x n matrix, where n is large, approximately n 3/3 operations

are required to reduce it to an upper triangular matrix. Back substitution takes another n 2 /2 operations

to arrive at the final solution [11]. The A matrix that we form is n4, x no. For the kind of data sets we

will deal with (for rotor system identification) it is not uncommon to have a number of data points, n,

at least on the order of 10 5 . Now if only the fundamental and the first positive and negative harmonic

transfer functions are evaluated (so that nh = 3), the number of required operations will be on the order

of 1016. If we have larger data sets (as will quite often be the case), and wish to determine more than

three transfer functions, we can see that the number of required computations will be unacceptable.

We can obtain significant savings in calculations, however, if we take advantage of the specific struc-

ture of the A matrix. As was discussed, tI'us is a block diagonal matrix, whereas the f 2 matrix is

tri-diagonal (with the super- and sub-diagonals spaced apart from the main diagonal). The D4 matrix

is a band diagonal matrix, because it is the square of 0 2 . Since A is the sum of DUUs and weighted

0 4 matrix, A is also a band diagonal matrix with di sub-diagonals and d2 super-diagonals. When the

fourth difference operator is used, both di and d2 are equal to 2 nh.

The number of calculations required to arrive at the solution of this linear system can be significantly

reduced if the operations are carried out on only the diagonal band, since the rest of the matrix elements

are zero. We therefore apply Gaussian elimination algorithm on the band elements only, and thus

perform ndid2 calculations (where di << n and d2 << n) for row reductions and approximately nd 2

operations for back substitution. The number of required operations is thus reduced by a factor of n2 .

If we analyze the same case that we did before, and that assume n = 105 and nh = 3, then ndid2 = 1.2

x 106. There is a reduction in number of operations by a factor of about 1010.

In Gaussian elimination, often the rows or both rows and columns of the matrix are appropriately

interchanged during the evaluation steps to avoid any division by zero. This process is called pivoting,

and is necessary in most cases for solution stability [12]. It has been shown, however, that Gaussian

elimination can be carried out on a matrix without pivoting, if and only if the leading sub-matrices are

all nonsingular [11]. Our matrix A is positive definite (due to the nature of iuus and 04), and each of
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its sub-matrices are also positive definite. We can therefore avoid pivoting altogether in our algorithm,

thereby making significant savings in computation time.

The linear system solver gives the solution vector -. After obtaining this R, it is reshaped into an

nh x n matrix, G. Each of the row vectors of G represent a transfer function. A detailed description of

the specifics of our algorithm is given in Appendix B.

3.3.4 Computational Issues

It is desirable for the software to be optimally coded, since we require fast execution time for quick

system identification that may aid in developing effective control strategies in the future. Therefore, we

have taken extra care in ensuring high calculation speed. Since MATLAB is really an interpreter, it has

significant overhead, so that some operations are quite time-consuming. To speed the computation, the

solver routine has been coded as a mex file (a C-file readable by MATLAB) [14]. The band diagonal

matrix A is sheared to form a reduced order, but nearly fully populated matrix, A., with n4, rows

and di + d2 + 1 columns [12]. This shearing makes the storage more efficient, and is better suited for

manipulation in the C environment. Furthermore, it was observed (after experimenting with a few data

sets) that MATLAB was also slow in transforming the 3-D 4 iuu matrix to the sparse 2-D 4'uu, matrix.

We have therefore coded this portion in C as well.

Our routine operates on the sheared matrix A., and the column vector Iny, along with information

about the specified number of total harmonics, nh. As the row reductions are carried out, elements

of A, and 4uy are replaced with their respective new elements, to conserve memory. Consequently,

these matrices cannot be re-used (with different weights on the 04 matrix, for instance) and must be

recalculated.

It has also been observed that there is a considerable decrease in calculation time at any given step

when the stored data/variables are reduced. When there are large data sets (on the order of several

megabytes), and their manipulations through our ID scheme create even larger matrices, the system

memory rapidly gets filled up. As a result, even simple operations such as addition of two matrices

(to form our matrix A, for instance) require a significant amount of time. It is therefore extremely

important to free up as much memory as possible by clearing away variables that are no longer required

for further operations in the scheme.

MATLAB operates best when the calculation variables fit within the computer's cache. A detailed

analysis by the MathWorks Inc. has shown that the execution time of an operation may be sped up

by at least a factor of 3 if the matrix sizes do not exceed the cache size. In our case however, it will

be almost impossible to take advantage of this, since the typical data sets that are used for system ID

purposes are usually several tens of megabytes, whereas the maximum cache size one might find these
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days will not be more than a couple of megabytes at the most.

3.3.5 Summary of ID method implementation

A brief overview of the actual steps carried out in our system ID routine (implemented in MATLAB and

C code) is as follows:

1. The input, output, and time data are assembled in row vectors u, y, and i$ respectively. Each

vector has the same length n.

2. A matrix U of dimension n x n is formed, in which each row is the FFT (Fast Fourier Transform)

of u modulated with 4, as expressed in Equation 3.19.

3. A vector Y, of length n, is formed by taking the FFT of y.

4. u, y, and 4' are cleared to free up memory.

5. A 3-D, nh x nh x n matrix, I'uu, is created by multiplication of U with its complex conjugate

transpose, U*.

6. The array Muy, of dimension n x 1 x n, is created by multiplying U* with Y.

7. ujy is transformed into a column vector, Wuy, of length n4.

8. 4UU is transformed into a 2-D, block diagonal, n,, x ne matrix, UUs -

9. A matrix D, (of dimension np x np) is formed with its main diagonal set to unity and, appro-

priately placed, super-diagonal set to -1.

10. 02 , the second difference operator, is obtained by multiplication of matrix D with its transpose,

DT.

11. Iuu, Iuy, and D are cleared from memory, leaving behind only I'uy, 4uus and f 2.

12. The matrix A is formed by adding IuU, and the product of D 2 with itself, weighted by a scalar

13. 4iuu, and 0 2 are also cleared.

14. The sparse, band-diagonal matrix A, with di sub-diagonals and d2 super-diagonals, is sheared

to form A, of dimension n x (di + d2 + 1).

15. Gaussian elimination and back substitution are performed on A. and May to obtain the solution

vector, 2, of length n4.

16. 2 is reshaped to form the nh x n harmonic transfer function matrix, G. The row vectors of G

are the desired transfer functions of the system.
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Chapter 4

Signal Generation and Processing

for Rotor System ID

In this chapter, we address some specific issues pertaining to suitable input signal generation and data

processing for reliable system ID results. A comprehensive and accurate system characterization effort

requires input test signals to have appropriate frequency content and, in the case of LTP systems, phase.

Section 4.1 discusses this topic, along with a description of our implementation for helicopter rotors in

more detail.

A related issue is accurate knowledge of system phase in the transfer function identification process.

We require this information in order to produce modulation, of the input signal which is needed for our

LTP system model. Section 4.2 presents a detailed discussion of this topic.

4.1 Input Data Requirements

As mentioned in Section 2.2, sinusoids are often used for determining transfer functions. More specifically,

chirp signals (swept sine waves) are used to obtain the system response over a specific range of frequencies.

The chirps may have frequencies that vary linearly, quadratically, or even logarithmically with time. The

frequency content and time interval of the chirp is dependent on the system characteristics. In the case

of an LTP system, it is important to take the chirp phases into consideration as well. Unlike an LTI

system, the dynamic response of an LTP system is dependent on the system's phase at time of input

application, in addition to the input frequency content. It is therefore imperative to ensure that during

data collection, the test signals are applied with appropriate phases relative to the system period.

Note that in many instances, a system ID routine is implemented on data that has not been acquired
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in accordance with the ideal guidelines for an LTP system. In the absence of such a luxury, one can

still determine the time of initiation of the input signals, and if even a few test signals turn out to be

appropriately placed in time (relative to the system period), our system ID method can be used. For

instance, if ten chirps have been applied in an experiment without regard to their phases, and subsequent

analysis shows that at least three chirps are far enough apart that <-uu is well conditioned, then up to

three transfer functions may be reasonably evaluated.

4.1.1 Chirp Inputs for Helicopter Rotor Systems

Since we are developing our LTP system ID methodology for immediate application to rotor systems, we

will discuss some specific issues related to helicopter rotors. In Section 3.2, it was pointed out that great

care needs to be taken in applying the input signals at appropriate time intervals relative to the system

period. For a rotor system, it should also be remembered that the system period is not the period of

the rotor, it is the blade passage period. Therefore, for a helicopter rotor with Nb blades, and rotation

period Tr, the period T of the system is actually Tr/N. Thus, the output frequencies of an input signal

at frequency w, are shifted by positive and negative multiples of the blade passage frequency, wp, where

Wp = 27rNb/T, (4.1)

Consider a three bladed rotor in collective mode, i.e., all the blades have the same pitch. In order

to identify three transfer functions, the first chirp should be initiated at 0 degrees azimuth, the second

at 40 degrees, and the third at 80 degrees (see Figure 4-1). When Blade 1 has rotated by 120 degrees

and occupies the initial position of Blade 2, the system has returned to its initial orientation, and has

completed one period.

4.1.2 Chirp Generation for Helicopter Blade Excitation

We have developed Simulink models that generate linear chirps to enable system ID of rotor systems.

The chirp generator that has been built (Figure 4-2) uses user-defined parameters in constructing the

input signal to the blades. To specify the chirp characteristics, a user can set the initial signal frequency,

fo, final frequency, fi, time duration of a single chirp, td, pause time between two successive chirps, tp,

and total number of different chirp phases, N.

The user-defined parameters are used in controlling the rotor system input signal generation. A

counter keeps track of time, and produces an impulse after every chirp time period, Tc (the sum of td

and t,). A model block called the Azimuth Unwrapper reads in the rotor azimuth data that is in the

form of a saw-tooth wave function with limits of 0 deg and 360 deg.
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Figure 4-1: Chirp initiation at 0 deg, 40 deg, and 80 deg azimuth for a three bladed rotor in collective
mode for identification of three transfer functions.
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Figure 4-3: Output signals from various sub-systems of the chirp generator.

The data is unwrapped into a continuously increasing linear azimuth vector, and is reset every time

an impulse from the counter is received. A chirp is initiated at each impulse and lasts for td seconds.

This process is illustrated in Figure 4-3.

Since the chirps are linear, the frequencies are a linear function of time, given as

f = fo + t (4.2)

where the frequencies are expressed in Hz. Therefore, the chirp

time function, so that

#C) = (fot + 2 - t2) 27r
2Te

where the phase is in radians. The chirp generator operates

measurements. The relation between rotor speed Q (rpm) and

phase #, is the integral of this frequency

(4.3)

by using the unwrapped azimuth angle

azimuth angle 4 (deg) is

360
60 (4.4)

where time t is in seconds.

A pseudo-time, t, (in seconds) is calculated based on this relation by assuming a nominal value for

the rotor speed, and using the unwrapped measurements of 4 (in degrees here). Note that in reality,
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the rotor speed is not a fixed constant; however, its variations are small. The required uniform phase

distribution of the N chirps over 360 deg is produced by considering the number of chirps that have

already been generated ne, and offsetting the time vector accordingly, so that

£= I0 - (360 + mod (360 N 360) 360Q (4.5)

The function "mod" is the modulo function that returns the remainder obtained from the division of its

two arguments. The total chirp signal, Uc, with magnitude Ac, for the rotor blades is formed from the

relation

Uc = Ac sin[27rc(_)]V (4.6)

where V is a vector of length Nb. Provisions for generating collective amplitude, differential amplitude,

and sine or cosine cyclic amplitude inputs are made in forming the vector elements of V.

4.2 Data Processing for Phase Extraction

Traditionally, the data required for identifying a transfer function is the input and corresponding output

of interest from the system under analysis. As mentioned previously, the auto- and cross-spectra of the

input and output are sufficient for determining the ETFE of an LTI system.

In case of a helicopter rotor, which is an LTP system, it is clear from our discussion in Section 3.2

that in addition to input and output data, we require azimuth information for our system identification

method. In most cases, however, the azimuth is not determined with the same frequency as the input

and output response. For instance, an encoder may be employed to measure azimuth angle at specific

intervals that are greater than the sampling time intervals of input and output data. An encoder that

outputs, say, 60 pulses per revolution, will give phase information after every 6 deg of angular motion. A

striker (a sensor which uses magnetic induction to give out one pulse per completed rotor revolution) is

also often used. Due to these less frequent phase measurements, it is generally necessary to extrapolate

the required azimuth information, so that it may be used in conjunction with the input and output data

for system ID purposes.

4.2.1 Phase Locked Loops

A Phase Locked Loop (PLL) is commonly used to accurately determine the phase of a signal. Since

our ID scheme requires system phase measurements, a PLL can be used for obtaining phase information

from the sensor data. A typical PLL consists of a phase detector, amplifier, and a voltage controlled

oscillator (VCO). Figure 4-4 shows the schematic of a traditional PLL.
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Figure 4-4: Schematic representation of a typical phase locked loop [13].

The function of the phase detector is to compare two input frequencies (fIN, and fvco), and to

generate an output signal proportional to their phase difference. If fIN is not equal to fvco, the

control voltage (which is really the filtered and amplified phase-error signal) causes the VCO frequency

to deviate in the direction of fIN- If the PLL is designed properly, the VCO locks onto fIN very quickly

and maintains a fixed phase relationship with the input signal. It is important to note that the VCO

output is a locally generated frequency equal to fIN, so that it actually provides a clean replica of fIN,
while the original signal itself may have been noisy. The VCO output signal can be of any form, so that

one can generate sine waves or saw-tooth waves locked on to a train of input pulses [13].

4.2.2 Application of a PLL on Experimental Data

Continuing on with our specific focus on helicopter rotor systems, we will now discuss a PLL that has

been designed in Simulink for determining azimuth angle. Several hover tests of a 1/6 scale model of a

CH-47 helicopter blade were carried out at MIT in 1999 [2]. The data from those experiments was used

to develop our PLL algorithm. The algorithm was then validated using a simulated system.

In the MIT tests, a striker was used to obtain rotor revolution data in the form of a train of pulses.

Figure 4-5 shows a typical plot of the striker data. A pulse occurred about every 45 milliseconds, since

the rotor was spun at approximately 1336 RPM. Each pulse lasted for about 3 milliseconds, giving a

duty cycle of about 7%. The data was sampled at a frequency of 1000 Hz, and since the rotor went

through 8 degrees of angular motion every millisecond, there was ±4 degrees of uncertainty in time of

the leading edge of the pulses.

A PLL circuit (Figure 4-6) was implemented in Simulink for determining azimuth angle of the rotor

from pulse data that had been streamed out from a striker in one of the MIT tests. The PLL operates
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Figure 4-5: Striker data (one pulse per revolution of the rotor)
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Figure 4-6: Phase Locked Loop circuit for determining rotor phase from striker data.
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Figure 4-7: Truth model for determining difference between b and 0.

by assuming an initial value of Q, which is then integrated in discrete time to get an estimate, 4, of

the phase. The estimate is then compared with the actual striker data. The comparison is made by

taking the sine of b, and multiplying it with the train of pulses obtained form the striker. For zero phase

difference, each 1/rev pulse should be aligned with the rising zero crossing of the sine wave. However,

when a phase difference does exist, the pulse will be shifted either backwards or forwards (along the time

axis) relative to the sine wave. The phase estimate ' should then be shifted by an appropriate amount

to reduce this phase difference.

To adjust the phase estimate, the error signal resulting from the phase comparison is first passed

through a low pass filter for smoothing, and the resulting output is multiplied by a gain K and fed back

to the velocity integrator to adjust the estimated rotor speed. Additionally, the output is multiplied

by another gain K 1 , and fed back to the position integrator. The gain K 1 is required to stabilize the

estimation loop. Without this gain, the estimate would oscillate. The value of these gains, along with

the initial assumed value of , determine the transient response of the PLL.

In order to evaluate the accuracy of this Simulink PLL circuit, we developed a truth model (Figure

4-8). In this truth model, a true value for rotor speed was chosen, and a continuously increasing vector

of 0, using a digital clock, was generated. The @ values were wrapped around a period of 27r, and

then used to form a train of true pulses of appropriate duty cycles. These true pulses were fed into the

Simulink PLL circuit, which in turn gave an estimate, b, of the azimuth. The difference between ' and

quantified the accuracy of our PLL.

In our simulations, we assumed a rotor speed of approximately 392 rpm (a time period of 153 ms),

along with a sampling frequency of 2000 Hz. This low speed and high sampling frequency combined

to give a good azimuth resolution of approximately 1.18 deg. The plot in Figure 4-8 shows the phase

error in our PLL circuit estimate of 0 as calculated by our truth model. It can be seen that there is an

overshoot of about 25 deg due to the initial conditions that were chosen in the simulation. The phase

error settles down after about 4 seconds, and continues to oscillate between ±0.4 deg. Note that the
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Figure 4-8: Phase error in PLL estimate, along with zoomed view of steady-state behavior.

49



Phase Error (time period = 153ms, omega = 41.066)

-10 -
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (0.5 ms) x 104

Figure 4-9: Phase error with rotor time period of 153 ms.

overshoot in the initial transient response can be altered by changing the gains, and the initial value of Q

in the PLL model. A rotor time period of 153.1 ms was used in generating this plot. Since our sampling

frequency is 2 kHz, an integral number of samples do not fit in the rotor period. There are 306 samples

in each rotor period, with 0.1 ms left over. Therefore, an error accumulates over several periods, and

gets corrected after every few cycles when it becomes large enough to be accurately sampled. Hence the

oscillatory behavior of the estimation error.

There is significant reduction in the steady-state oscillations when we make the rotor speed such

that the time period is exactly covered by an integral number of samples. For a time period of 153 ms,

we obtain the plot shown in Figure 4-9. In this case, the oscillations are essentially negligible, and the

steady-state error is zero. Figure 4-10 shows a case where the time period is again slightly modified

to be 152.9 ms. We see the same oscillatory behavior as was present in the 153.1 ms period case.

Note, however, that depending on the initial conditions, the constant error can be any value within the

resolution of our estimation algorithm.

In order to model extreme case scenarios, we analyzed rotor speeds with up to 20% variation, which

is much larger than can occur in practice. We found that for a speed range of 313 rpm to 470 rpm, the
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Figure 4-10: Phase error for rotor time period of 152.9 ms.

worst steady-state error behavior occurs for the 152.9 ms period, as depicted in Figure 4-10. When the

time periods have integral number of samples, we have no oscillations. For other cases, the amplitude

of the estimation error is usually between ±0.2 deg and ±0.4 deg.
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Chapter 5

System ID Method Validation

At this point, we have all the necessary methodology in place to identify the harmonic transfer functions

of a linear time periodic system from its input, output, and phase data. It is important to verify the

accuracy of our scheme, and to establish its validity for identifying harmonic transfer functions. To

achieve this goal, we will analyze a few LTP systems described by second-order differential equations.

Their harmonic transfer functions will be analytically determined using Equation 2.24. These systems

will then be modeled in Simulink, and their output response due to various chirp input signals will be

simulated. This input and output data will then be processed by our identification routine, and the

resulting harmonic transfer functions will be compared with those obtained theoretically.

5.1 LTI Oscillator

5.1.1 Theoretical Analysis

A very simple example of a system exhibiting periodic behavior is a second order LTI system, whose

output is modulated with a time periodic signal. A similar case was analyzed by Wereley [4], who

considered the case where the input is modulated instead of the output. We model the LTP system in

block diagram form, as shown in Figure 5-1, with an input u(t), and output ym(t). G(s), the transfer

function of the LTI portion of the system, is

2

G(s) = s " (5.1)
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Figure 5-1: LTI oscillator with modulated output.

Note that the parameter 3 in the modulating signal determines the degree of modulation of the output.

The state space representation of the system is

A [ 0 ] 1 Ao (5.2)

B = = Bo (5.3)

All the higher coefficients of A and B are zero. The output matrix is periodic, so that

C(t) = (1 + 2# cos opt) 1 0 (5.4)

Therefore, we have that

Co = [i0 (5.5)

C1 = [3 0 (5.6)

C_.1 = C1 (5.7)

All coefficients for the second and higher harmonics of C are also zero.

Using the above information, Equation 2.24 is employed in a MATLAB script to calculate the fre-

quency response for this system. We used ±10 harmonics (which is more than adequate in this case) for

our state-space model formulation.
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Figure 5-2: Simulink model of LTI oscillator

5.1.2 Empirical Analysis

The system was then modeled in Simulink with the block diagram shown in Figure 5-2. In addition to

storing the input and output data, the phase of the system is also determined and recorded at each time

step of the simulation. We used carefully designed swept sine waves, or chirps, as our test input signals.

Each chirp (Figure 5-3) lasted 10 seconds, over which time the frequency varied from 0 to 10 Hz. The

frequency variation was slightly nonlinear, with the instantaneous frequency given by

f(t) = 10 ( - 1.2 (5.8)
10

The chirp signal, uc (t), is then

uc(t) = sin 2.2 -101.2 (5.9)

The FFT plot of the chirp, in Figure 5-3, shows that there is roughly the same amount of energy at each

frequency in the band of interest.

A complete input sequence was designed to have the same number of chirps as the desired number

of transfer functions to be identified. Furthermore, each chirp in the input sequence differed in phase,

by equal amounts over a period. In our case, we typically used 3 chirps, with phases 0, 27r/3, and 47r/3

(relative to the modulation period) to identify Go, G1 , and G_ 1 transfer functions.

Once the test signals had been appropriately designed, they were used to simulate the output of

our LTI oscillator model. The system parameters used in the simulation were # = 0.1, C = 0.3,
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Figure 5-4: Simulated input signals and corresponding response of LTI oscillator system.

w,= 21r rad/sec, and w, = 47r rad/sec. As expected, the output corresponding to each of the chirps,

differing only in phase, was slightly different in magnitude. Figure 5-4 shows the input signals and the

corresponding output plot during one of our simulation runs.

The system ID software was then used on this input and output data to estimate the transfer

functions of the system under study. The value of a was 10, and the fourth difference operator was used

for smoothing purposes. Although there is no noise in our simulation, recall that we have modeled only

three harmonics, instead of a total of 21 as were assumed in the analytical analysis. Furthermore, the set

of three chirps are treated as one long input signal, and their outputs as one output signal. We therefore

need to apply the least squares technique, described in Section 3.3.2, in order to have a well-defined

identification problem. Figure 5-5 shows the transfer functions identified by our software, along with

the analytical transfer function. As expected (in the absence of random noise), there is no discrepancy

between the two, and they match each other with good precision.
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5.2 Lossy Mathieu Equation

5.2.1 Theoretical Analysis

The Mathieu Equation is a well-known equation representing an LTP system. The canonical form of the

lossy Mathieu equation that we employed for our analysis was

,(t) + 2(Wnwi(t) + (1 + 2# cos wpt)L2X(t) = 0 (5.10)

Again, note that the value of # determines the importance of the periodic effects, i.e., for small #, the

system is essentially LTI, whereas for large #, the periodic effects are significant.

In state-space, the system matrices are

0 1
A(t) [ -(1 + 2 1cost (5.11)

0
B= (5.12)

C = [1 (5.13)

The harmonics of the dynamics matrix, A(t), are

0 1
Ao -2(on (5.14)

A1 = (5.15)

A_ 1  = A 1  (5.16)

Since there are no periodic elements in B and C matrices, Bo and Co are the same as the matrices B

and C given in Equations 5.11 and 5.12, while all the higher harmonics are zero. Using Equation 2.24,

we can calculate the HTF of the Mathieu equation.

5.2.2 Empirical Analysis

The system was then modeled in Simulink, with # = 0.1, C = 0.3, Wn = 27r rad/sec, and op = 47r

rad/sec. Figure 5-6 shows our Simulink block diagram. Input signals (chirps) with appropriate phase

and frequency content were again generated, and used in the simulation to obtain the output response
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Figure 5-6: Simulink model of the lossy Mathieu equation.

of the system. Using the ID software, we obtained transfer functions of our simulated system. Figure

5-8 shows a plot of Go, G1 , and G_ 1 , determined both analytically and empirically. The dotted lines

represent the result obtained from our ID routine, while the solid lines are the analytical results. From

the plots in Figure 5-9, it is evident that although Go and G_ 1 agree very nicely with the predictions,

G1 is far from satisfactory. However, if we increase the number of chirps in our input (to identify more

transfer functions), we find that there is a significant improvement in the identification of the first few

transfer functions. Figure 5-10 shows the plots obtained by using an input of 5 chirps, and estimating 5

transfer functions, i.e., Go, G1, G 2, G_ 1 , and G- 2 with the same weights on the difference operator as

before. The phase of each of the 5 chirps was evenly spread over a 21r period. It is found that the error

of G1 has been almost eliminated. This example highlights the point made in Section 3.2.2 that we can

improve our transfer function estimates by modeling for larger nh.
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Figure 5-7: Input signals and corresponding response of the lossy Mathieu equation.

60

T



I- T 1 T - - - - - - - - -r ri - -

Go

0.05 -. .. . -
G 1

G

0 -
0 5 10 15 20 25 30 35 40 45 50

Frequency (rad/sec)

Figure 5-8: Three transfer functions of Mathieu equation obtained analytically and empirically.
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Chapter 6

Conclusions

In this chapter, we present a final discussion of our system ID method, and the implications for rotor

control. Recommendations for further improvements are also made, along with some concluding remarks.

6.1 Summary

We have developed a transfer function identification scheme, based on the theoretical work of Wereley

and Hall [6], to identify the harmonic transfer functions of helicopter rotor systems. A least squares

estimation technique is used to estimate the transfer functions. The underdetermined problem is made

feasible by assuming the transfer functions to be smooth. This assumption is incorporated into the ID

scheme by penalizing high curvature in the estimated transfer functions with a quadratic penalty. We

have implemented our ID method in MATLAB, and use a tailored Gaussian solver, written in C, to

minimize computation time. Our analysis of a few LTP systems has shown good agreement between the

transfer functions estimated by our identification scheme and those obtained analytically.

6.2 Implications for Controller Design

In general, a system's transfer function is determined so that appropriate control may be applied to

get desirable system behavior. Our case is no different, and in fact the main objective of this thesis is

the development of a sound system identification technique for LTP systems, so that effective controller

designs for helicopter rotors may be developed.

For LTP systems, once the system's transfer function has been reasonably evaluated, a controller, K,

can be designed based on an index mh, where mh is the number of harmonics in the transfer functions

that are considered to be significant. Because good tools for the design of LTP controllers do not exist,
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Figure 6-1: System with controller designed for only the transfer function, Go.

)1A

- T

Figure 6-2: System with controller designed for only the non-trivial transfer functions.

it would be desirable to design an LTI controller, based on an LTI model of the system. For this mh = 1

design, only the fundamental frequency transfer function will be treated in the analysis, while the transfer

functions of the higher and lower harmonics can be lumped together in a collective uncertainty transfer

function, A. Such a situation is illustrated in Figure 6-1.

It is worth noting that although the transfer functions at other harmonics usually will be lower in

magnitude than the fundamental, there might be specific frequencies where they exceed the fundamental

magnitude. It is therefore necessary to identify the transfer functions due to the harmonics and account

for such situations in the controller. If we define the transfer function T as

-K
T = GK (6.1)

1 + GoK

then we can express the system as in Figure 6-2. In this form, the effect of uncertainties on the closed-

loop behavior is highlighted. Using the small-gain theorem, one can conclude that the system will remain

stable as long as

||A1l < . (6.2)

By designing the controller so that this condition is satisfied, an LTI controller can be designed that will

be satisfactory for the LTP system.
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Note that the above description of the controller design process is somewhat sketchy. To determine

whether the approach would be successful, we would need a realistic LTP model of helicopter rotor

dynamics, or flight test data, which is beyond the scope of this thesis.

6.3 Recommendations

In any system identification process, the most important performance metric is accuracy. When large

data sets are involved, another important metric is computation speed. Since we not only deal with large

data sets, but also expand them in size even further in our data arrays, it is important to consider issues

related to increasing memory and computation speed. Therefore, we make a few related recommendations

in this section. Additionally, we also make a few suggestions related to further research and analysis of

rotor system ID and control.

6.3.1 Increase Cache Size

It has been shown through various tests by the MathWorks Inc. that the execution speed of MATLAB

increases by at least a factor of 3 when the size of the variables under manipulation can fit within the

computer cache. It is therefore recommended that a system with the largest possible cache allocation

be used, since it can make a significant difference in computation time. Unfortunately, for our case this

might not be possible, since presently the cache sizes commonly available are no greater than a couple

of megabytes, whereas some of the variables generated by our scheme from typical rotor data sets are

on the order of tens of megabytes.

6.3.2 Make Data Variables Re-usable

We mentioned in Section 3.3.4 that the large intermediate variables produced during the calculation

process of our estimation routine are cleared from memory as often as possible to speed operation times.

While this does speed up the computation process, it becomes quite tedious to perform several estimation

runs using different smoothing weights, since the data sets have to be reloaded into memory each time.

This situation can be remedied if the A and D 2 matrices and the tuy vector are not cleared. In

order to achieve this, there should be large enough RAM available for computation. We recommend

the computer system should have 256 MB RAM for processing rotor data sets, and at the very least

should have 128 MB RAM to get results in a reasonable amount of time (on the order of a few minutes).

Note that these recommendations are only for cases when multiple harmonic transfer functions are being

estimated, i.e., nh > 3. The memory requirements for LTI system ID, and for LTP system ID where

only the fundamental transfer function is evaluated, are significantly less.
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6.3.3 Apply ID Scheme on Rotor Data

In Chapter 5, we presented the results of our ID method that were obtained from the analysis of an

LTI oscillator system and the Mathieu equation. Since the ID scheme has been primarily developed for

the identification of the HTF of rotor systems, it is important to process actual rotor data through our

software, and analyze its performance. Our ID scheme should first be applied on a few rotor data sets

in order to test the validity of its transfer function estimates, before any final controllers are designed

based on its results.

6.3.4 Perform Detailed Control Design Analysis

In Section 6.2, we have presented a brief overview of how controllers may be designed once the HTF of

a rotor system has been identified. A detailed design analysis, accounting for stability and robustness

should be performed, however, before any type of controller is actually implemented. Nyquist stability

criterion for LTP systems [8], or Hoo techniques can be used to determine if A can cause instability.

Sensitivity of the controller to speed, flight path angle, and other flight parameters should also be

determined in order to pick a suitable control law.
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Appendix A

MATLAB Scripts

We have carried out all the data processing for system identification in MATLAB routines (also known

as m-files). This appendix includes the m-file code we have developed for identifying harmonic transfer

functions, and the m-file codes that were used for obtaining theoretical HTFs for the LTI oscillator

system and the Mathieu equation.

A.1 M-file for System ID

XmathieuIDCsolvers.m

%This MATLAB script estimates harmonic transfer functions using

%data sets supplied by the user. It prompts the user to choose

%the number of transfer functions to be estimated. It uses two

%C-routines, sparseUUc.c and solver2f.c for computation.

%This particular m-file uses data generated in Simulink from

%the Mathieu equation model.

X01-31-01

clear

load Minput %loading input data file

load MathieuY %loading output data file

load MathieuPhase %loading phase data file

nharm = input('Enter no. of harmonics:');

%time vector is stored in the first row of var psi
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t= psi(1,:);

dt=t(2)-t(1);

y = y(2,:);

n=length(y);

u = u(2,1:n);

psi = psi(2,1:n);

UU=zeros (nharm,nharm,n);

UY=zeros (nharm, 1,n);

Y=fft(y);

c = nharm - ceil(nharm/2);

U = zeros(nharm,n);

for i = 1:nharm

U(i,:)=fft(exp(c*j*psi).*u);

c = c-1;

end

clear u y t psi

for i=1:nharm

for k=1:nharm

UU(i,k,:) =U(k,:).*conj(U(i,:));

end

UY(i,1,:) = conj(U(i,:)).*(Y);

end

uy = UY(:);

uu = sparseUUc(UU);

clear UU UY

m = size(uu,1);

D =(sparse(1:m,1:m,ones(1,m),m,m))+...

(sparse(1:m-nharm, (nharm+1) :m,-1*ones(1,m-nharm) ,m,m));

DD =D'*D;

clear D
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A= uu+DD*DD*10^13;

clear DD uu

%only for the case of DD*DD

ml= 2*nharm;

m2 = 2*nharm;

[a]=shear(A,ml,m2);

[x]=solver2f(a,uy,m1,m2);

figure

N = length(x);

f=((O:(N-1))/N/dt);

plot(f,abs(x),'.')

grid on

xlabel('Hz')

A.2 M-file for Shearing a Band Diagonal Matrix

Xshear.m

%This code is the definition of the shear function used in

Y.mathieuIDCsolvers.m. Its arguments are a band diagonal, square

%matrix (A), number of subdiagonals of the matrix (ml), and super

%diagonals (m2). It straightens out the n x n matrix A, into a

%a fully populated ml+m2+1 x n matrix (a).

function [a]=shear(A,m1,m2)

[m,n] =size (A);

if m -= n

error ('Error: Matrix A is not square')

end

a = zeros(n,m+1+m2);

a(:,m1+1)=diag(A);

for k=1:ml
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j = length(diag(A,-k));

a((n-j)+1:n,ml+1-k)=diag(A,-k);

end

for k=1:m2

j=length(diag(A,k));

a(1:j,ml+1+k)=diag(A,k);

end

A.3 M-file for Plotting Transfer Functions of LTI Oscillator

%theoryLTIosc.m

XThis script calculates and plots the theoretical harmonic

%transfer functions of the LTI system with periodically

Xmodulated output.

NN=10; Yno of harmonics

M=2*NN+l; %include plus minus all the harmonics and the zeroth.

n=2; Xno. of states in system

wn = 2*pi; %rad/sec

wp = 4*pi;

nM = n*M;

zeta = 0.3;

beta= 0.1;

%LTI Oscillator with modulated output

AO = [0 1; -wn^2 -2*zeta*wn];

Al = [0 0;0 0];

A_1 = Al;

BO = [0 ; 1];

B1 = [0; 0];

B_1 = B1;

CO = [1 0];

C1 = [beta 0];

C_1 = Cl;
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A = zeros(nM,nM);

N = zeros(nM,nM);

B = zeros(nM,M);

C = zeros(M,nM);

q=-NN:NN;

for i=1:M;

A(((i-1)*n+(1:n)),((i-1)*n+(1:n)))=AO-lj*q(i)*wp*eye(n);

B(((i-1)*n+(1:n)),i) = BO;

C(i,((i-1)*n+(1:n))) = CO;

end

for i=1:M-1;

C(i+1,((i-1)*n+(1:n))) = C_1;

C(i,((i)*n+(1:n))) = Cl;

end

D=zeros(M,M);

w=[0:0.1:2*pi*10];

GG=[];

for i=l:length(w)

G=C*inv(w(i)*lj*eye(nM)-A)*B+D;

GG=[GG; G(1+NN,:)];

end

Xplotting GO,Gl and G_1

figure

f=w/(2*pi);

plot(f,abs(GG(:,11)),'k',f,abs(GG(:,10)),'r',f,abs(GG(:,12)),'g')

grid on

xlabel('Frequency(Hz)')

ylabel('magnitude')

title('GO:blue, G-1:Red, Gl:Green');
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A.4 M-file for Plotting Transfer Functions of the Mathieu Equa-

tion

%theory-mathieu.m

%This script calculates and plots the theoretical harmonic transfer

%functions of the Mathieu Equation.

NN=10; Xno of harmonics

M=2*NN+l; %include plus minus all the harmonics and the zeroth.

n=2; Xno. of states in system

wp =4*pi;

wn = 2*pi;

nM = n*M;

zeta = 0.3;

beta= 0.1;

XLossy Mathieu Equation...

AO = [0 1; -1*wn^2 -2*zeta*wn];

Al = [0 0; -beta*wn^2 0];

A_1 = Al;

BO = [0 ; 1];

CO = [1 1];

A = zeros(nM,nM);

N = zeros(nM,nM);

B = zeros(nM,M);

C = zeros(M,nM);

q=-NN:NN;

for i=l:M;

A( ((i-l)*n+(l:n)), ((i-l)*n+(l:n)))=AO-lj*q(i)*wp*eye(n);

B(((i-l)*n+(l:n)),i) = BO;

C(i,((i-l)*n+(1:n))) = CO;

end

for i=l:M-1;
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A(((i-1)*n+(1:n)),((i)*n+(1:n)))=A_1;

A(((i)*n+(1:n)),((i-1)*n+(1:n)))=A1;

end

w=[0:0.1:50];

GG=[];

D=zeros(M,M);

Gs =zeros(M,M,length(w));

for i=1:length(w)

G=C*inv(w(i)*lj*eye (nM)-A)*B+D;

Gs(: ,:,i)=G;

GG=[GG; G(1+NN,:)];

end

%plotting GO,G1 and G_1

figure

plot(w,abs(GG(:,11)),'b',w,abs(GG(:,10)),'r',w,abs(GG(:,12)), 'g',

w,abs(GG(:,13)),'c',w,abs(GG(:,9)),'m',...

w,abs(GG(:,14)),'y',w,abs(GG(:,8)),'k')

grid on

xlabel('rad/sec')

ylabel('magnitude')

title('Harmonic Transfer Functions of the Mathieu Equation')

A.5 M-file for Producing Chirps

%chirps.m

%This m-file produces chirps to use in Simulink models

Xfor generating data to obtain transfer function estimates.

%01-31-01

t=0:.01:10;

T = 1; %time period of system (mathieu) in seconds

nchirps = input('Enter number of chirps to be produced \n')

ul = []
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for f = 1:nchirps

u2=sin(10*t.^(2.2)/2.2*2*pi/10^1.2);

t=t+T/nchirps;

a =cat(2,ul,u2);

ul = a;

end

u(2,:)[a O*t O*t O*t];

n = length(u);

dt =t (2)-t(1) ;

u(1,:)=(O:(n-1))*dt;

save Minput u
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Appendix B

C code

This Appendix presents a detailed description of the algorithm, and the C code used for our tailored

Gaussian solver. Our solver performs Gaussian elimination on a band diagonal matrix, and subsequently

does back-substitution to determine the final solution of a linear system of equations. The solver is

implemented in C programming language in the form of a mex file (C code interfaced with MATLAB)

for maximum efficiency.

The conversion of a large three dimensional array into a block diagonal matrix was found to be time

consuming in MATLAB, therefore this operation was also implemented in C, and its mex file has also

been included in this appendix.

B.1 Algorithm for Gaussian Solver

As mentioned in section 3.3.3, the matrix A, is a band-diagonal matrix. We denote its element in the

ith row and jth column as aij. A has di sub-diagonals and d2 super-diagonals. Therefore, we have that

aij = 0, j < i - di or j > i + d2 (B. 1)

The specifics of our Gaussian elimination algorithm are as follows. The first row is divided by a1 1 (the

first main diagonal element) so that it becomes unity. This division is performed only on elements in

columns 1 through db (where db = d 2 + 1), since the rest of the row elements are zero. This modified

first row is then multiplied by a21 , and the product is subtracted from the second row so that the first

element of the resulting modified second row, a', becomes zero. The prime denotes the modified value

of the element a21 . These operations, of multiplication and subtraction, are repeated with each of the

ail's and the ith rows, up to ad, 1 (where da = di + 1 ). At the end of this procedure, all the non-zero
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elements of the first column get reduced to zero, except for the first element a',, which is unity. Note that

the subtraction of each row needs to be carried out only from elements ail to ai db, since these are the

only non-zero elements of the row. Equivalent operations are also carried out on corresponding elements

of the Pny vector (i.e., from <bUY1 to (Py d+) to maintain equality. This process of row reduction is

repeated for each row, with the operations being carried out on progressively changing column numbers

as we traverse through the band diagonal matrix, until the n4 - 1 row is reached. In general, for the

ith row, the first two operations are therefore

k , = a"ji (B.2)Uvi ai '

where j = 1,... r. The primes denote modified values of the elements (due to previous row reduction

operations) from their original values. The value of r depends on the row number i and is i + di, as long

as i < n4 - d2 . When i is greater than np - d2 , then r is equal to nP.

The ith row elements are then multiplied and subtracted from rows i + 1 to i + di, so that

alk = alk - (aikali)

, = 4ayl - (uy,aiu) (B.3)

where l= i+1,...i+ di.

When the computations are carried out to the np - 1 row, A gets reduced to a banded upper

triangular matrix, where all of its main diagonal elements (except for the last one) are unity.

Once the matrix A has been reduced, back substitution is carried out to obtain the final solution

vector. This is achieved by first obtaining the last element that has already been isolated at the tip of

the upper triangular matrix,
(' UYn~p

. = " (B.4)
aneo ne

After determining the last element, we proceed to find the second to last, and so on, working our way

backwards up to the first element. A typical backward substitution step from row n4 - 1 to n4 - d2 is

gi = Inyi - S aijgj , (B.5)
j=i+1

where i = ne - 1, n4 - 2,... np - d2 . From row np - d 2 + 1 to 1, we sum up to only the last non-zero
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element in each row. Therefore,

gi = <I'u - aijgj , (B.6)
j=i+1

where i = ne - d 2 + 1, ne - d 2 , .. 1.

As mentioned in Section 3.3.2, the sub-vectors of g are column vectors of G matrix. The solution

vector is therefore reshaped into nh x n matrix, G, with each of its row vectors representing a transfer

function.

B.2 Mex file for Gaussian Solver

/ *solver2f .c*/

#include ''mex.h''

#include ''matrix.h''

#include <stdio.h>

/*call this function in MATLAB as [x]=solver2f(a,b,m1,m2) */

/*computational subroutine*/

void solver(int ml, int m2, int n, int c, double *pra, double *pia,

double *prb, double *pib, double *prx, double *pix, int isComplexa, int isComplexb)

{

int i, j, k, 1, d, rows, last, isComplexX;

double tempr, tempi, OLDprb, OLDpra, piaValue, pibValue, pixValue, sumr, sumi;

d = ml;

rows = n;

n = n-1; /*array index in C, unlike MATLAB, starts at 0 instead of 1 */

c = c-1;

piaValue = 0;

pibValue = 0;

pixValue = 0;

tempi = 0;

isComplexX = 0;

/*some of the C code lines have their corresponding m-file code in comments

above them*/

/*row reductions*/

for (i=0; i < n ; ++i)
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/*temp = a[i][d];*/

tempr = pra[i+rows*d];

if (isComplexa) tempi = pia[i+rows*d];

/*b[i]=b[i]/temp;*/

if (isComplexb) pibValue = pib[i];

OLDprb = prb[i];

prb[i] = (1/(tempr*tempr+tempi*tempi))*(prb[i]*tempr+pibValue*tempi);

if (isComplexb) pib[i] =

(1/(tempr*tempr+tempi*tempi))*(pib[i]*tempr-OLDprb*tempi);

for (l=d; l<=c; ++l)

{

/*a[i] [1]= a[i] [1]/temp;*/

if (isComplexa) piaValue = pia[i+rows*1];

OLDpra = pra[i+rows*l];

pra[i+rows*l] =

1/(tempr*tempr+tempi*tempi)*(pra[i+rows*l]*tempr+piaValue*tempi);

if(isComplexa) pia[i+rows*l] = 1/(tempr*tempr+tempi*tempi)*

(pia[i+rows*1]*tempr-OLDpra*tempi);

}

k = 1;

if (i< n-(ml-1)) last = m1+i;

else last = n;

{

for (j=i+1; j<=last; ++j)

{

/*b[j] -= b[i]*a[j] [d-k];*/

if (isComplexa) piaValue = pia[j+rows*(d-k)];

if (isComplexb) pibValue = pib[i];

prb[j] -= prb[i]*pra[j+rows*(d-k)]-pibValue*piaValue;

if (isComplexb) pib[j] -=

prb[i]*piaValue+pib[i]*pra[j+rows*(d-k)];
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/*temp = a[j][d-k];*/

tempr =pra[j+rows*(d-k)];

if (isComplexa) tempi = pia[j+rows*(d-k)];

for (1=d-k; 1<=c-k; ++1)

{

/*a[j] [1] -= a[i] [1+k]*temp;*/

if (isComplexa) piaValue = pia[i+rows*(l+k)];

pra[j+rows*1] -=

pra[i+rows*(1+k)]*tempr-piaValue*tempi;

if(isComplexa) pia[j+rows*1] -=

pra[i+rows*(1+k)]*tempi+pia[i+rows*(1+k)]*tempr;

}

k++;

}

}

}

/*back substitution*/

/*initializing vector x

if(isComplexa | isComplexb) isComplexX =1;

/*for (j=O; j<= n; ++j) x[j]=O;*/

for (j0; j <=n; ++j)

{

prx[j] = 0;

if(isComplexX) pix[j] = 0;

}

/* x[n] = b[n]/a[n] [d]

if (isComplexa) piaValue = pia[n+rows*d];

if (isComplexb) pibValue = pib[n];

prx[n] = 1/(pra[n+rows*d]*pra[n+rows*d]+piaValue*piaValue)*

(prb[n]*pra[n+rows*d]+pibValue*piaValue);

if (isComplexX) pix[n] = 1/(pra[n+rows*d]*pra[n+rows*d]+piaValue*piaValue)*

(pibValue*pra[n+rows*d]-prb[n]*piaValue);

k =1;
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for (i = n-1; i>= n-m2; -- i)

{

stumr = 0;

sumi = 0;

for (j=1; j<= k; ++j)

{

if(isComplexa) piaValue = pia[i+rows*(d+j)];

if(isComplexX) pixValue = pix[i+j];

sumr +=pra[i+rows*(d+j)]*prx[i+j]-piaValue*pixValue;

if(isComplexx) sumi +=

pra[i+rows*(d+j)]*pixValue+piaValue*prx[i+j];

}

k++;

/*x[i] = b[il - sum;*/

prx[i] = prb[i] - sumr;

if (isComplexb) pibValue = pib[i];

if (isComplexX) pix[i] = pibValue - sumi;

}

for (i =n-(m2+1); i>=0; -- i)

{

sumr = 0;

sumi = 0;

for (j=1; j<=m2; ++j)

{

/*sum += a[i][d+j]*x[i+j];*/

if (isComplexa) piaValue = pia[i+rows*(d+j)];

if (isComplexX) pixValue = pix[i+j];

sumr +=pra[i+rows*(d+j)]*prx[i+j]-piaValue*pixValue;

if (iscomplexX) sumi+=

pra[i+rows*(d+j)]*pix[i+j]+piaValue*prx[i+j];
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/*x[i] = b[i] - sum;*/

prx[i] = prb[i] - sumr;

if (isComplexb) pibValue = pib[i];

if (isComplexX) pix[i] = pibValue - sumi;

}

}

/*gateway subroutine*/

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

int i,j, n, c, ml, m2, isComplexa, isComplexb;

double *pra, *pia, *prb, *pib, *prx, *pix;

/*check input arguments*/

if (nrhs !=4)

mexErrMsgTxt(''Four inputs required!

(a matrix, a vector and two scalars)\n'');

else if (nlhs > 1)

mexErrMsgTxt(''Too many output arguments!'');

else if (!mxIsNumeric(prhs[O]) |1 !mxIsNumeric(prhs[1]))

mexErrMsgTxt('Input matrix or vector is either not numeric or complex!'');

/*Get input arguments*/

n = mxGetM(prhs[0]);

c = mxGetN(prhs[0]);

isComplexa = mxIsComplex(prhs[0]);

isComplexb = mxIsComplex(prhs[1]);

mexPrintf(''isComplexa = %d isComplexb = %d \n'',isComplexa,isComplexb);

ml = mxGetScalar(prhs[2]);

m2 = mxGetScalar(prhs[3]);

/*create output vector x*/

plhs[0] = mxCreateDoubleMatrix(n,1,(isComplexa

isComplexb)?mxCOMPLEX:mxREAL);
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/*get pointers of matrix a and vector b*/

pra = mxGetPr(prhs [0]);

prb = mxGetPr(prhs[1]);

prx = mxGetPr(plhs[O]);

pia = mxGetPi(prhs[O]);

pib = mxGetPi(prhs[1]);

pix = mxGetPi(plhs[0]);

/*call the computation C subroutine*/

solver(ml, m2, n, c, pra, pia, prb, pib, prx, pix,

isComplexa,isComplexb);

return;

}

B.3 Mex file for Transforming a 3D Array to Matrix Form

/ *sparseUTJc.c*/

/*mex file for converting input 3-D array data into a 2D sparse block diagonal

matrix. Input data must be either a column vector or a 3 dimensional numeric

matrix. October 12, 2000 */

#include ''matrix.h''

#include ''mex.h''

#include <stdio.h>

/*gateway routine*/

void mexFunction (nt nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

double *prUU, *piUU, *sr, *si;

int i,j,k, m, index, rows, cols, length, cmplx, nzmax, nharm, *irs, *jcs,

Ndims; const int *dims;

Ndims = mxGetNumberOfDimensions(prhs[0]);

dims = mxGetDimensions (prhs[0]);

rows = dims[0];

cols = dims[1];
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/*check proper input and output*/

if (nrhs !=1)

mexErrMsgTxt(''One input required!'');

else if (nlhs > 1)

mexErrMsgTxt (' 'Too many output arguments!'');

else if (!mxIsNumeric(prhs[0]))

mexErrMsgTxt(''Input must be numeric!'');

else if (Ndims > 3)

mexErrMsgTxt(''Input cannot have more than three dimensions!'');

else if (Ndims ==2 && cols!=1)

mexErrMsgTxt(''Input should be a column vector!'');

/*get pointers to real and imaginary data in UU matrix*/

if (Ndims ==3 ) length = dims[2];

nzmax = rows*cols;

if (Ndims == 3) nzmax = nzmax*length;

/*number of harmonics considered will be the no. of rows in UU */

nharm = cols;

prUU = mxGetPr(prhs[0]);

piUU = mxGetPi(prhs[O]);

cmplx = ((piUU==NULL)? 0:1);

if (Ndims <3) m = rows*cols;

else m = rows*length;

plhs [0]=mxCreateSparse (m,m,nzmax, (cmplx ? mxCOMPLEX: mxREAL));

/*getting pointers for the output array*/

sr = mxGetPr(plhs[0]);

if(cmplx) si = mxGetPi(plhs[0]);

irs = mxGetIr(plhs[0]);

jcs = mxGetJc(plhs[O]);

/*populating the row-index, column-index and data arrays */

index = 0;

if(Ndims >2)

{
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for (k=O; k<length;k++)

{

for (j=0; j<cols;j++)

for(i=0; i<rows;i++)

{

irs [index]= k*nharm+i;

sr[index] = prUU[i+rows*j+rows*cols*k];

if (cmplx) si[index]=piUU[i+rows*j+rows*cols*k];

index++;

}

}

}

}

else

{

for (i=O; i<rows;i++)

irs[index]= i;

sr[index] = prUU [i];

if (cmplx) si [index]=piUU[i];

index++;

}

}

for (j=O; j<m;j++) jcs[j]=j*nharm;

jcs [m]=nzmax;

mxSetJc(plhs [0], jcs);

return;

}
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