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In a recent experiment with ultracold trapped 85Rb atoms, Makotyn et al. studied a quantum-degenerate
Bose gas in the unitary limit where its scattering length is infinitely large. We show that the observed
momentum distributions are compatible with a universal relation that expresses the high-momentum tail in
terms of the two-body contact C2 and the three-body contact C3. We determine the contact densities for the
unitary Bose gas with number density n to be C2 ≈ 20n4=3 and C3 ≈ 2n5=3. We also show that the observed
atom loss rate is compatible with that from 3-atom inelastic collisions, which gives a contribution
proportional to C3, but the loss rate is not compatible with that from 2-atom inelastic collisions, which gives
a contribution proportional to C2. We point out that the contacts C2 and C3 could be measured
independently by using the virial theorem near and at unitarity, respectively.
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Introduction.—Ultracold atoms allow the study of many-
body systems with simple zero-range interactions whose
strength, which is given by the S-wave scattering length a,
can be controlled experimentally. These studies are directly
relevant to problems in other areas of physics in which
an accidental fine-tuning makes a much larger than the
range of interactions. In particular, it is relevant to nuclear
physics, because nucleons have relatively large scattering
lengths and because the parameters of QCD are near critical
values for which those scattering lengths are infinite [1].
In the unitary limit where a is infinitely large, it no longer
provides a length scale. One might therefore expect the
interactions to be scale invariant, so that the only length
scales are provided by environmental parameters, such as
the temperature T and the number density n. This expect-
ation is realized in the simplest Fermi gas, which consists of
fermions with two spin states. There have been extensive
studies, both experimental and theoretical, of the unitary
Fermi gas [2].
The simplest Bose gas consists of identical bosons. The

unitary Bose gas is qualitatively different from the simplest
unitary Fermi gas in two important ways. The obvious
difference comes from the statistics of the particles. The
other important qualitative difference is that scale invari-
ance in the unitary Bose gas is broken by the Efimov effect,
which is the existence of infinitely many three-body bound
states (Efimov trimers) whose binding energies differ by
powers of e2π=s0 ≈ 515, where s0 ≈ 1.00624 [3]. This
difference is shared with more complicated Fermi gases,
including fermions with three spin states and nucleons near
the QCD critical point for infinite nucleon scattering
lengths. The breaking of scale invariance by Efimov
physics introduces a length scale 1=κ�, where κ� is the

binding momentum of one of the Efimov trimers at
unitarity, but physical observables can only depend log-
periodically on κ� [4]. This anomalous symmetry breaking
can give rise to logarithmic scaling violations at unitarity.
Experimental studies of the unitary Bose gas using

ultracold atoms have been hindered by atom losses from
inelastic collisions. In the low-density limit, the rate of
decrease in the number density n from three-body recombi-
nation into a deeply bound diatomic molecule (deep dimer)
is proportional to a4n3, so it grows dramatically as a is
increased. If therewas awell-defined unitary limit inwhichn
provided the only length scale, dn=dtwould be proportional
to n5=3. The plausibility of a well-defined unitary limit was
increased by experimental studies of dilute thermal gases of
7Li atoms [5] and of 39K atoms [6] and by exact theoretical
calculations of the loss rate for a dilute thermal Bose gas [5],
all of which showed that dn=dt at unitarity is proportional
to n3=T2. Recently, Makotyn et al. carried out the first
studies of a quantum-degenerate Bose gas at unitarity using
85Rb atoms [7]. They found that, after a quick ramp of a
Bose-Einstein condensate (BEC) to unitarity, the time scale
for the saturation of the momentum distribution was sig-
nificantly shorter than the time scale for atom loss.
Theoretical studies of the unitary Bose gas have been

hindered by the absence of rigorous theoretical methods
that can be used to calculate its properties with controlled
errors. Theoretical studies of the unitary Fermi gas have
faced similar problems, but the absolute stability of the
system allows the use of Monte Carlo methods that have
controlled errors. In the case of the unitary Bose gas, the
possibility of recombination into deeply bound Efimov
trimers guarantees that, even in the absence of inelastic
collisions, the system can be at best metastable.
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An alternative to directly calculating the properties of a
many-body system is to use exact solutions to few-body
problems to derive universal relations between various
properties of the system that hold for all possible states.
Universal relations for fermions with two spin states were
first derived by Tan [8–10]. They all involve the two-body
contact C2. It is an extensive quantity that can be expressed
as the integral over space of the two-body contact density
C2, which has dimensions ðlengthÞ−4 and can be interpreted
as the number of pairs per ðvolumeÞ4=3. The two-body
contact plays an important role in many of the most
important probes of ultracold fermionic atoms [11].
Universal relations for identical bosons were first derived
by Braaten, Kang, and Platter [15]. They involve not only
C2 but also the three-body contact C3. It is an extensive
quantity that can be expressed as the integral over space of
the three-body contact density C3, which has dimensions
ðlengthÞ−5 and can be interpreted as the number of triples
per ðvolumeÞ5=3.
In this Letter, we present universal relations for the loss

rate of a Bose gas from inelastic 2-atom and 3-atom
collisions. We show that the momentum distributions at
unitarity in the JILA experiment of Ref. [7] are consistent
with the universal relation for the tail of the momentum
distribution in Ref. [15] and can be used to determine C2
and C3 for the unitary Bose gas. The result for C3 is
consistent with the atom loss rate in the JILA experiment
being dominated by 3-atom inelastic collisions. In our
analysis, we assume that the unitary Bose gase in the
JILA experiment is in a locally equilibrated metastable
state, and we ignore the possibility that transient or
turbulent phenomena could produce steady-state momen-
tum distributions.
Contacts for identical bosons.—The two-body contact

C2 and the three-body contact C3 for a state with energy
E can be defined in terms of derivatives of E at fixed
entropy [15]:

�
a
∂E
∂a

�
κ�
¼ ℏ2

8πma
C2; (1a)

�
κ�

∂E
∂κ�

�
a
¼ −

2ℏ2

m
C3. (1b)

Equation (1a) can be used as an operational definition of
C2 if the scattering length a can be controlled experimen-
tally. The normalization of C2 has been chosen so that the
tail of the momentum distribution at large wave number k
[given in Eq. (2)] is C2=k4. The normalization of C3 in
Eq. (1b) implies that the three-body contact in the unitary
limit for an Efimov trimer with binding energy ℏ2κ2�=m is
κ2�. The value of κ� can be inferred from the scattering
length a− at which that Efimov trimer crosses the 3-atom
threshold, producing a resonance in the three-body recom-
bination rate. They are related by a universal constant:

a−κ� ¼ −1.50763 [12]. In the case of 85Rb atoms, a
three-body recombination resonance was observed by
Wild et al. at a− ¼ −759ð6Þ a0 with inelasticity parameter
η� ¼ 0.057ð2Þ [13].
The contacts C2 and C3 determine the high-momentum

tail in the momentum distribution nðkÞ. We normalize nðkÞ
so that the total number of atoms is N ¼ R

d3knðkÞ=ð2πÞ3.
A systematic expansion for nðkÞ at large wave number k
can be derived using the operator product expansion for the
quantum field operators ψ and ψ† [14]. The universal
relation for the tail of the momentum distribution for
identical bosons was derived in Ref. [15]:

k4nðkÞ → C2 þ
A sin½2s0 lnðk=κ�Þ þ ϕ�

k
C3 þ � � � ; (2)

where A ¼ 89.2626 and ϕ ¼ −1.338 13. The additional
terms are suppressed by higher powers of 1=k that may be
noninteger.
Inelastic loss rates.—One complication of 85Rb atoms is

that the only hyperfine state with a Feshbach resonance that
can be used to control the scattering length has a 2-atom
inelastic scattering channel into a pair of atoms in a lower
hyperfine state. The scattering length a is therefore com-
plex with a negative imaginary part. The imaginary part of
1=a is essentially constant, independent of the magnetic
field [16]: Imð1=aÞ ¼ 1=ð1.44 × 107a0Þ. The 2-atom
inelastic scattering channel gives a contribution to the loss
rate of low-energy atoms that is proportional to the two-
body contact [17]. This follows from the fact that the effects
of two-particle inelastic scattering with large energy release
on a system of low-energy particles can be taken into
account through an anti-Hermitian term in the Hamiltonian
that allows a pair of particles to disappear if they are
sufficiently close together. In a quantum field theory
framework, the anti-Hermitian term in the Hamiltonian
density can be chosen to be the local operator ψ†ψ†ψψ
multiplied by an imaginary coefficient. This same operator
multiplied by an appropriate ultraviolet-sensitive coeffi-
cient is the two-body contact density operator [14]. The
loss rate dN=dt can be expressed as the double integral over
space of a correlator of the number density ψ†ψ and the
two-body contact density [17]. Using the commutation
relations for ψ, the loss rate can be expressed in the form

dN
dt

¼ −
ℏ

2πm
Imð1=aÞðC2 þ � � �Þ. (3)

The coefficient of C2 is the same as for fermions with two
spin states in Ref. [17]. The additional terms in Eq. (3)
come from the integral of the normal-ordered correlator,
which is zero in a system consisting of fewer than three
atoms. If these terms are suppressed, the C2 term in Eq. (3)
alone provides a good estimate for the loss rate.
If the effects of 2-atom inelastic scattering are negligible,

the dominant mechanism for atom loss should be 3-atom
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inelastic scattering. The effects of three-particle inelastic
scattering with large energy release on a system of
low-energy particles can be taken into account through
an anti-Hermitian term in the Hamiltonian that allows three
particles to disappear if they are all sufficiently close
together. In a quantum field theory framework, the anti-
Hermitian term in the Hamiltonian density can be chosen
to be the local operator ψ†ψ†ψ†ψψψ multiplied by an
imaginary coefficient. This same operator multiplied by an
appropriate ultraviolet-sensitive coefficient is the three-
body contact density operator [15]. Using the methods
of Ref. [17], dN=dt can be expressed as the double integral
over space of a correlator of ψ†ψ and the three-body
contact density. Using the commutation relations for ψ, the
loss rate can be expressed in the form

dN
dt

¼ −
12η�ℏ
s0m

ðC3 þ � � �Þ. (4)

The leading term in the expansion was first given by
Werner and Castin [18]. The additional terms come from
the integral of the normal-ordered correlator, which is zero
in a system consisting of fewer than four atoms. If these
terms are suppressed, the C3 term in Eq. (4) alone provides
a good estimate for the loss rate.
Contact densities.—The contacts C2 and C3 for a system

of trapped atoms can be determined using the local density
approximation if the contact densities C2 and C3 are known
for the corresponding homogeneous system. The contact
densities for a homogeneous dilute BEC at zero temper-
ature can be obtained analytically. The two-body contact
density can be determined from the operational definition
in Eq. (1a). The three-body contact density is most easily
determined by matching Eq. (4) for the atom loss rate with
the universal result for the loss rate from three-body
recombination into deep dimers [4] in the limit η� → 0.
The additional terms in Eq. (4) are suppressed by powers
of na3. The contact densities for the dilute BEC are

C2 ¼ 16π2a2n2; (5a)

C3 ≈
16π2ð4π − 3

ffiffiffi
3

p Þs0 coshðπs0Þ
3sinh3ðπs0Þ

a4n3. (5b)

In Eq. (5b), we have neglected log-periodic effects that are
numerically suppressed by powers of e−2πs0 ≈ 1=557. In
Ref. [13], Wild et al. put an upper bound on C3 for a dilute
BEC of 85Rb atoms. The three-body contact obtained using
C3 in Eq. (5b) is a factor of 30 below that upper bound.
The contact densities for a homogeneous dilute thermal

Bose gas at unitarity can also be obtained analytically.
The two-body contact density in this limit can be obtained
by adapting the analogous calculation for fermions in
Ref. [17]. The three-body contact density is most easily
determined by matching Eq. (4) for the atom loss rate with

the exact universal result for the loss rate from three-body
recombination into deep dimers [5] in the limit η� → 0.
The additional terms in Eq. (4) are suppressed by powers of
nλ3T , where λT ¼ ð2πℏ2=mkBTÞ1=2. The contact densities
for the dilute thermal gas at unitarity are

C2 ¼ 32πλ2Tn
2; (6a)

C3 ≈ 3
ffiffiffi
3

p
s0λ4Tn

3. (6b)

In Eq. (6b), we have neglected log-periodic effects that
are numerically suppressed by powers of e−πs0 ≈ 1=24.
Exact results for the contact densities at unitarity for

a homogeneous quantum-degenerate Bose gas at zero
temperature are not known. If we assume that log-periodic
effects are numerically suppressed, as they are in Eqs. (5b)
and (6b), the only important length scale for the homo-
geneous system is provided by the number density. If we
assume that the contact densities depend weakly on κ�, they
must, by dimensional analysis, have the form

C2 ≈ αn4=3; (7a)

C3 ≈ βn5=3; (7b)

where α and β are numerical constants. Some values of α
obtained in previous attempts to calculate C2 for the unitary
Bose gas are 10.3 [19], 32 [20], 160 [21], and 12 [22].
The values in Refs. [19,20] were calculated for an equi-
librium system, while those in Refs. [21,22] were calcu-
lated for a system quenched to unitarity. All of these
calculations used uncontrolled approximations. The local
density approximations for the contacts of trapped atoms
are C2 ¼ αNhn1=3i and C3 ¼ βNhn2=3i.
Momentum distributions.—In the experiment of Ref. [7],

a BEC of 85Rb atoms was quickly ramped to unitarity. The
resulting clouds had approximately Thomas-Fermi distri-
butions with about 60 000 atoms and an average number
density hni of either 5.5 × 1012=cm3 or 1.6 × 1012=cm3.
The JILA group measured the momentum distribution nðkÞ
after a variable holding time at unitarity. They observed
that nðkÞ saturates in approximately 0.1 ms at the higher
density and 0.2 ms at the lower density, both of which are
significantly shorter than the atom-loss time scale, 0.6 ms.
The distributions k4nðkÞ are plotted in Fig. 1 using dimen-
sionless variables obtained by scaling by kF ¼ ð6π2hniÞ1=3.
The scaled distributions for the two densities agree well
for k < 1.1kF, but they differ dramatically for k > 1.1kF,
indicating large scaling violations in the tails of the
momentum distributions. According to Eq. (2), k4nðkÞ
should asymptotically approach the constant C2 at large k,
but the distributions in Fig. 1 do not appear to be
approaching a constant for either density.
We assume that the data for k > 1.5kF in Fig. 1 are part

of the tail of the momentum distribution that is determined
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by C2 and C3 according to Eq. (2). The positions of the
local maxima and minima in the tail are predicted in terms
of κ�, which is determined by the Efimov loss resonance
observed in Ref. [13]. In particular, there should be a
minimum at 0.71κ�, which is 3.9kF for the higher hni and
5.8kF for the lower hni. Fitting Eq. (2) to the momentum
distribution for hni ¼ 5.5 × 1012=cm3 from k ¼ 1.5kF to
k ¼ 3.0kF, we obtain α ¼ 22ð1Þ and β ¼ 2.1ð1Þ. The
errors are lower bounds on the uncertainties, because there
are systematic errors in the JILA experiment that were
not quantified. The value of α agrees to within a factor of 2
with the previous estimates of Refs. [19,20,22]. The fitted
curve in Fig. 1 predicts that, beyond the range of the
measured data, k4nðkÞ should increase and asymptotically
approach C2. Having fit α and β to the higher-hni data, the
tail of the momentum distribution for other values of hni
can be predicted without any adjustable parameters. The
prediction for hni ¼ 1.6 × 1012=cm3 is shown in Fig. 1
and is in good agreement with the data. Thus, the observed
scaling violations in the tails of the momentum distribu-
tions are explained by the log-periodic dependence of the
coefficient of the C3=k5 term in Eq. (2) on k=κ�.
Atom loss rate.—The loss of 85Rb atoms from a trapping

potential comes from inelastic 2-atom collisions, which
gives the C2 term in Eq. (3), and from inelastic 3-atom
collisions, which gives the C3 term in Eq. (4). The initial
loss rate for trapped atoms determines a time constant τ
defined by dN=dt ¼ −ð1=τÞN. In the JILA experiment
in Ref. [7], τ was determined to be 0.63� 0.03 ms for
hni ¼ 5.5 × 1012=cm3. If we assume the dominant loss
mechanism is 2-atom inelastic collisions as in Eq. (3) and

use τ to estimate C2, we obtain α ∼ 6000. This is more than
30 times larger than any of the estimates in Refs. [19–22],
which suggests that 2-atom inelastic collisions are unlikely
to give a significant contribution to the observed atom
losses. If we assume the dominant loss mechanism is
3-atom inelastic collisions as in Eq. (4) and use τ to estimate
C3, we obtain β ∼ 1. This is within a factor of 2 of the value
we obtained by fitting the momentum distributions. This
makes it plausible that 3-atom inelastic collisions are
the dominant mechanism for the observed atom losses.
The time constant τ is increased by the suppression factor of
η� ¼ 0.06 in the expression for the loss rate in Eq. (4).
Other probes of the contacts.—The virial theorem for

identical bosons trapped in a harmonic potential was first
derived by Werner [23]:

ðT þ UÞ − V ¼ −
ℏ2

16πma
C2 −

ℏ2

m
C3; (8)

where T,U, and V are the kinetic, interaction, and potential
energies, respectively. This implies that C3 at unitarity can
be determined from the difference between T þ U and V
and that C2 can be determined from the slope of that
difference as a function of 1=a. The virial theorem for
fermions with two spin states is Eq. (8) with C3 ¼ 0. This
universal relation has been tested by a group at JILA by
measuring T þ U, V, and C2 separately as functions of a
for ultracold trapped 40K atoms [24]. Similar measurements
of T þ U and V for identical bosons near unitarity could be
used to determine C2 and C3.
Another way to determine C2 and C3 is using rf

spectroscopy, in which a radio-frequency signal transfers
atoms to a different hyperfine state. Universal relations
for the rf spectroscopy of identical bosons were derived
in Ref. [15]. They predict scaling violations in the high-
frequency tail. The observation of such scaling violations
would add to the theoretical evidence presented in this letter
that the experiment in Ref. [7] was studying a locally
equilibrated metastable state of the unitary Bose gas.
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FIG. 1 (color online). Momentum distributions for the unitary
Bose gas. The dimensionless quantity k4nðkÞ=NkF, where
kF ¼ ð6π2hniÞ1=3, is plotted as a function of k=kF. The data
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