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tors. Coifman and Krishnamurthy used dual loop detectors to re-
identify vehicles at downstream locations by matching their lengths
to estimate path travel times (4). Wilson used a vehicle reidentifica-
tion algorithm to create individual vehicle trajectories that use a
series of loop detectors with sufficiently small spacing (5).

Mahanti focused on calibration of both demand and selected sup-
ply parameters for the MITSIMLab microscopic simulator by formu-
lating the overall optimization problem in a generalized least-squares
(GLS) framework (6). The approach divides the parameter set into
two groups, origin–destination (O-D) flows and the remaining param-
eters, and an iterative solution method is implemented; the O-D
flows are estimated by using the classical GLS estimator, and 
the parameters are estimated by using Box complex iterations (7 ).
Balakrishna formulated the offline calibration framework as a large-
scale optimization problem in which the final objective is to match
simulated and observed quantities (8). Gupta demonstrated the cal-
ibration of the mesoscopic dynamic traffic assignment (DTA) model
DynaMIT by using separate methodologies to calibrate the demand
and supply parameters sequentially (9).

Kunde presented the calibration of supply models within a meso-
scopic DTA system (10). A three-stage approach to supply calibra-
tion is outlined, in increasing order of complexity (single segment,
subnetwork, entire network). The results in the networkwide calibra-
tion show that the simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm provides results comparable to those of the
Box complex algorithm by using a much lower number of function
evaluations, thus requiring much less run time.

Ashok introduced the notion of direct measurements for the incor-
poration of probe vehicle information for the solution of the O-D esti-
mation and prediction problem (11). Van der Zijpp combined volume
counts with trajectory information obtained from automated license-
plate surveys for the estimation of O-D flows (12). Mishalani et al.
evaluated the role of various types of surveillance data in the real-time
estimation of dynamic O-D flows at the intersection level (13).

Oh and Ritchie developed a methodology for the design of
advanced traffic surveillance systems based on microscopic traffic
simulation (14). They demonstrated the proposed methodology
through the development of an inductive-signature-based anonymous
vehicle tracking system for the O-D flow estimation problem.

Dixon and Rilett proposed a method for using sample link choice
proportions and sample O-D matrix information derived from AVI
data sampled from a portion of vehicles to estimate population O-D
matrices with the AVI data collection points acting as the origins
and the destinations (15).

Kwon and Varaiya developed a statistical O-D estimation model
by using partially observed vehicle trajectories obtained with vehicle
reidentification or AVI techniques such as electronic tags (16).
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Accurate calibration of demand and supply simulators within a dynamic
traffic assignment system is critical for consistent travel information and
efficient traffic management. Emerging traffic surveillance devices such
as automatic vehicle identification (AVI) technology provide a rich
source of disaggregated traffic data. A methodology for the joint calibra-
tion of demand and supply model parameters using travel time measure-
ments obtained from these emerging traffic-sensing technologies is
presented. The calibration problem has been formulated as a stochastic
optimization framework. Two different algorithms are used for solving
the calibration problem: a gradient approximation–based path search
method and a random search metaheuristic. The methodology is first
tested by using a small synthetic study network to illustrate its effective-
ness and obtain insight into its operation. The methodology is further
applied to a real traffic network in Lower Westchester County, New
York, to demonstrate its scalability. The estimation results are tested by
using a calibrated microscopic traffic simulator. The results are com-
pared with the base case of calibration by the use of only the conventional
point sensor data. The results indicate that use of AVI data significantly
improves calibration accuracy.

Previous and ongoing research shows the effectiveness of individual
vehicle detection and identification techniques for improved traveler
information and traffic management. Ruhe et al. demonstrated the
usability of airborne traffic imagery for individual vehicle detection
and detailed forecasts of traffic speed, density, travel times, and queue
lengths (1). Hickman and Mirchandani reviewed major developments
in the field of airborne imagery for traffic flow measurement and its
applications to estimation of individual vehicle trajectories (2).
Bar-Gera used cell-phone-based probe vehicles to compare speed and
travel time measurements with those obtained from loop detectors (3).
The analysis suggests that vehicle identification data based on such
emerging technologies appear to be suitable for advanced traveler
information system (ATIS) applications.

Recent efforts have been made to generate individual vehicle
paths by using conventional detection techniques such as loop detec-
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Antoniou et al. presented a methodology for the incorporation of
AVI information into the O-D estimation and prediction frame-
work (17 ), which was generalized into a flexible formulation that
can incorporate a large range of additional surveillance informa-
tion (18). Zhou and Mahmassani used a nonlinear ordinary-least-
squares estimation model to combine AVI counts, link counts, and
historical demand information and solved the O-D estimation as
an optimization problem (19).

Balakrishna et al. developed an offline DTA model calibration
methodology for simultaneous demand and supply parameter esti-
mation that is easily extendable to incorporate other types of traffic
sensor data (20). Two algorithms are used for optimization: SPSA
and SNOBFIT. It is concluded that the two algorithms result in com-
parable parameter estimates, although SPSA does so at a fraction of
the computational requirements.

This paper formulates the DTA model calibration problem as an
optimization problem that allows the use of multiple types of surveil-
lance information as measurements. Particular emphasis is given to
emerging surveillance technologies, such as those providing point-
to-point travel time measurements. Candidate solution approaches
are surveyed, and the most promising are selected and applied to a
series of case studies.

PROBLEM FORMULATION

The general calibration problem involves estimation of O-D flows
as well as various model parameters by using a variety of data from
sensor measurements and a priori values of O-D flows and model
parameters. The calibration problem can be described as an opti-
mization problem with the objective of minimizing the goodness-
of-fit measure comparing the observed and fitted measurement values.
An alternative formulation is as a state–space model, where the state
vector comprises the model inputs and parameters that need to be
estimated (17, 18, 21). In this paper, the problem is formulated as an
optimization problem.

The following notation is used to formulate the DTA calibration
problem in the optimization framework:

t = time intervals; t ∈{1, 2, . . . , T};
x = O-D flows; x = {xt}, ∀t ∈{1, 2, . . . , T};
β = model parameters; β = {βt}, ∀t ∈{1, 2, . . . , T};

Mo = observed sensor measurements; Mo = {Mo
t}, ∀t ∈{1, 

2, . . . , T};
xa = a priori O-D flows; xa = {xa

t}, ∀t ∈{1, 2, . . . , T};
βa = a priori model parameter values; βa = {βa

t},∀t ∈{1, 
2, . . . , T};

G = road network characteristics; G = {Gt}, ∀t ∈{1, 2, . . . , T};
Ms = simulated sensor measurements; Ms = {Ms

t}, ∀t ∈{1, 
2, . . . , T}; and

z = function representing goodness of fit between observed or
a priori values and measured or true values.

With this notation, the general calibration problem can be expressed
as minimization of the goodness-of-fit measure z subject to 
constraints as follows:

subject to the constraints Ms = f(x, β, G), lx < x < ux, and lβ < β < uβ,
where lx and lβ are appropriate lower bounds and ux and uβ are
upper bounds.

minimize
x

s o a az M x M x
,

( , , , , , ) ( )
β

β β 1
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The model parameters may include the trip choice model param-
eters of the route, mode, departure time, and destination choice mod-
els on the demand-side as well as the supply-side parameters. The
supply-side parameters to be calibrated depend on the type of supply
simulator. In the case of a microscopic supply simulator such as 
MITSIMLab (22, 23), they would include the parameters in micro-
scopic driver behavioral models such as acceleration–deceleration,
lane-changing, gap acceptance, and merging models. In the case of a
mesoscopic supply simulator such as the one in DynaMIT (24), the
supply parameters include the parameters of the speed–density curves
of each segment in the network as well as segment capacities.

The general objective function can be split into three parts. The
goodness of fit is often calculated separately for each of the three
entities, that is, a priori model parameters, a priori O-D flows, and
observed sensor measurements, and the overall goodness-of-fit mea-
sure can be expressed as an additive function of individual fit values
as follows:

The functions z1, z2, and z3 represent the goodness of fit and are often
described by a sum of squared deviations for sensor measurements,
O-D flows, and model parameters, respectively.

SOLUTION ALGORITHMS

Most algorithms that solve nonlinear optimization problems, such as
Newton’s method (25), the steepest descent method (26, pp. 428–436),
and the conjugate gradient method (27 ), make use of a gradient vec-
tor to indicate the direction of cost reduction. These algorithms usu-
ally assume a closed-form analytical objective function, the ability
to calculate the gradient vector, and a deterministic setting, which
are often unreasonable for practical problems. For example, for the
problem at hand, the objective function depends on the output 
of a large-scale, stochastic, noisy simulator that does not have an
analytical expression. Computing the gradient is therefore cumber-
some. Each function evaluation is computationally expensive, as
it involves a run of the simulator. Therefore, numerical derivatives
become an impractical operation (from a computational point of view)
for problems with realistic dimensions (hundreds or thousands of
parameters to calibrate).

Various stochastic optimization techniques try to overcome these
limitations. Stochastic approximation algorithms trace a sequence of
points in the search space that ultimately converges to the point of zero
gradient. The evolution vector θi+1 at the beginning of the i + 1th 
iteration of the algorithm is given by

where ĝ(θi) is the gradient approximation at the ith iteration and ai is
the sequence of step-size parameters, also known as gain sequence.

The finite difference stochastic approximation (FDSA) approach
calculates the gradient vector by perturbing each component of
the parameter vector separately and hence—with n denoting the
number of parameters to be calibrated—requires 2n + 1 functional
evaluations in each iteration. SPSA calculates the gradient vec-
tor by simultaneous perturbation of all the components of the
parameter vector, requiring only three function evaluations per
iteration (28, 29). It can be shown that the overall convergence
rate of SPSA approaches n times that of FDSA (30). Spall has

θ θ θi i i ia g+ = −1 3ˆ( ) ( )

minimize
x

o s a az M M z x x z
,
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extensively discussed the conditions for convergence of SPSA
algorithm (28, 30–32).

In pattern search methods, such as the Hooke and Jeeves method
(33) and Nelder and Mead’s downhill simplex (34), a pattern of
function evaluations at various points in the response surface is used
to obtain an improved solution at each iteration. Box proposed an
extended version of the Nelder–Mead downhill simplex algorithm,
which potentially can increase the speed and accuracy of the search
and guards against the possibilities of numerical instabilities (7 ).
Balakrishna provided a detailed exposition of the numerical problems
associated with the Nelder–Mead approach (8). Mahanti provided a
detailed description of the implementation details of the Box complex
algorithm for the calibration of DTA models (6).

Path search methods start at an initial point in the search space
and keep moving to improve the objective function value based on
the gradient. Response surface methodology (RSM) (35) and sto-
chastic approximation are two important families of path search
methods. RSM involves local polynomial approximation of the sur-
face at each iteration. SNOBFIT is an extension of the RSM, which
begins with a population of several points in the search space, and
the points are chosen on the basis of the lower and upper bounds on
decision variable values (36).

Random search methods maintain a large set of points at each iter-
ation and randomly select updated parameter vectors to improve
toward optimality. Metaheuristics such as genetic algorithms (GAs)
and simulated annealing fall into this category. GA techniques have
been successfully implemented for calibration of microscopic traffic
simulation tools (37–40). GAs use techniques inspired by evolution-
ary biology, such as inheritance, mutation, selection, and crossover.
A population of abstract representations (called chromosomes) of
candidate solutions evolves toward better solutions. The evolution
usually starts from a population of randomly generated individuals.
In each generation, the fitness of every individual in the population
is evaluated, multiple individuals are probabilistically selected from
the current population on the basis of their fitness (selection), are
recombined (crossover), and are possibly mutated (mutation) to form
a new population. The algorithm terminates when either a maxi-
mum number of generations has been produced or a satisfactory
fitness level has been reached for the population. The simplest
form of GA involves three types of operator: selection, crossover,
and mutation (41). Popular and well-studied selection methods
are roulette-wheel selection and tournament selection. One-point
crossover, two-point crossover, and cut-and-splice crossover are the
common crossover techniques. The mutation operator allows ran-
dom flipping of some bits in a chromosome. GA techniques were
used to calibrate driver behavior parameters in the microscopic
models CORSIM and TRANSIMS (42). Rathi et al. used GA to
determine the best location for variable message signs in traffic net-
works for optimal response to incidents (43). However, scalability
can be an issue for expensive function evaluations (44). The choice
of GA operators and the corresponding parameters is critical for the
success of GA applications. As problem dimension increases (45),
the required population size increases exponentially.

Simulated annealing mimics the natural process of cooling of met-
als (46, 47). It can reach a global optimum because of high-energy
initial movements that increase the probability of reaching a better
solution. The method is effective for combinatorial optimization with
discrete variables. The performance of simulated annealing with
continuous variables is not encouraging (48).

Among the path search methods, SPSA is a notable candidate,
as it reaches convergence with much lower computational effort.
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Furthermore, it is highly successful in solving large-scale DTA (8)
and microscopic traffic simulator (49) calibration problems and
has been shown to outperform SNOBFIT (8). Poor convergence
to the global optimum and difficulties in handling stochasticity
reduce the attractiveness of pattern-search methods for application to
the DTA calibration problem. Among the random search methods,
GA has been successfully applied to microscopic model calibration
in the context of transportation, whereas simulated annealing has
been shown to have slower convergence. Therefore, SPSA and
GA have been chosen as candidate algorithms for the case studies
presented in this paper.

SETUP OF CASE STUDIES

Objectives

The main objectives for the case studies are as follows:

• Demonstrate the feasibility and effectiveness of the proposed
DTA calibration approach involving utilization of AVI data;

• Evaluate the relative effectiveness of the simultaneous demand–
supply calibration compared with demand-only calibration; and

• Compare the numerical accuracy and computational perfor-
mance of the considered algorithms (i.e., SPSA and genetic algo-
rithms) in a synthetic case study and demonstrate the scalability of
the most suitable algorithm in a large-scale case study (involving a
complex network with multiple vehicle classes and different link use
restrictions for different classes).

DTA Model and Other Software

The DTA model used for the case studies is DynaMIT (24), a 
simulation-based, real-time system designed to generate consistent,
anticipatory route guidance for transportation networks. Anticipa-
tory information (based on predicted network states) has been shown
to be effective in eliminating driver overreaction (50, 51). DynaMIT
combines real-time surveillance data with historical data to esti-
mate current network state, predict future traffic conditions, and gen-
erate consistent and unbiased information. DynaMIT uses an algorithm
to obtain consistent estimates of current and future states (52, 53).

For the purposes of the case studies presented in this paper, the
AVI capabilities of DynaMIT were used to replicate a transponder-
based system, such as the TRANSMIT (transponder-based electronic
toll collection) system that operates in New York and New Jersey
(54). However, since the TRANSMIT network in the study area was
not fully operational, the operation of the system was simulated
within a microscopic traffic simulator, MITSIMLab (22, 23). AVI
market penetration was assumed to be 30%. The sensor measure-
ments were obtained as the average of 10 MITSIMLab runs. For val-
idation of the calibrated DynaMIT parameters, a single additional run
of MITSIMLab was performed, and the sensor data were provided
as input to the real-time estimation procedure within DynaMIT.

Study Networks

Two networks were used for the case studies presented in this paper.
A synthetic network is used to gain insight into the performance of
the two algorithms (Figure 1). The network consists of 10 nodes and



10 links, and traffic is loaded through six O-D pairs. The model is
calibrated for a period of four 15-min intervals, a total of 1 h.

The second study network covers Lower Westchester County,
just to the north of New York City (Figure 2) and includes the most-
important highway corridors that connect Upstate New York and
Connecticut to New York City. Since there are entry restrictions on
the parkways in this region (no heavy commercial vehicles, such as
trucks or trailers, may enter these facilities), the proportion of commer-
cial vehicles in all O-D flows for each time interval is approximated on
the basis of the average proportion of commercial vehicle observed
during that time interval at three toll plazas in the area. The propor-
tion of commercial vehicles in the traffic varies considerably with
time. AVI sensors are located at 10 locations (shown in Figure 2),
covering both southbound and northbound traffic. For each direc-
tion of traffic, there are five upstream and five downstream sensors,
allowing for 5 × 5 = 25 sensor (and thus travel time) pairs. There-
fore, for both directions, 50 travel time observations per period are
available. AVI sensors are not located on the border of the network
and therefore do not provide any direct O-D measurements. Instead,
they provide travel time measurements for the subpaths defined
between any two sensors.

The study network consists of 1,767 links (split into 2,564 seg-
ments) and 825 nodes. Traffic is loaded onto the network through
482 O-D pairs. The beginning of the morning peak (from 6:00 to
8:00 a.m.) was chosen as the simulation period. This period was
divided into eight 15-min intervals. Aggregated sensor data are
available for each of these 15-min intervals, and dynamic O-D flows
are estimated for each interval. The number of demand parameters to
be calibrated is therefore equal to 482 O-D pairs times eight intervals,
that is, 3,856 parameters. For supply parameters, capacities are cali-
brated for 2,564 segments. The segments were collected into 10 groups
on the basis of similar traffic dynamics properties, and a single
speed–density relationship was calibrated for each group. Within
each speed–density relationship are five parameters to be calibrated,
and thus there are 50 more parameters. Therefore, 3,856 O-D flows
plus 2,564 segment capacities plus 50 speed–density parameters
equals 6,470 parameters for joint demand-supply calibration.

Experimental Design

The following dimensions are considered in developing the experi-
mental design for the case studies presented in this paper:
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• Network
– Simple, synthetic network
– Complex, large-scale network

• Scope of calibration
– Base case (using a priori available parameters and inputs;

supply parameters come from a previous calibration for the spe-
cific network, and demand parameters are perturbed randomly)

– Demand-only calibration, starting from the O-D flows used
in the base case (using the a priori supply parameters from a pre-
vious calibration of the same network)

– Joint demand and supply calibration, starting from the param-
eter values used in the base case
• Surveillance data

– Link counts only
– Link counts and travel time (obtained from the AVI as the

time difference between two successive detections of an AVI-
equipped vehicle from different AVI sensors)
• Optimization algorithm

– SPSA
– GA

Implementation Details

SPSA and GA are used. For each of these algorithms, several
parameters are chosen on a case-by-case basis. To avoid ambiguity,
the main implementation details are presented here. In the case of
the SPSA algorithm, the jth component of gradient of objective
function at the ith iteration is calculated as follows:

The next estimate of the parameter vector is then calculated as follows:

The feasible region for optimization is defined by the lower and
upper bounds on each of the parameter values. A simple implemen-
tation of the projection operator Πc is used such that whenever any
component of the parameter vector is higher than the upper bound
or lower than the lower bound, the projection operator sets it to the
upper-bound and lower-bound values, respectively.

θ θ θi c i i ia Y+1 = − ( )[ ]Π ( )5

ˆ ˆ
ˆ ˆ
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FIGURE 1 Topology of synthetic network.



Appropriate values of the parameters of interest, a, c, alpha, and
gamma, are critical for achieving convergence. Alpha and gamma
are critical parameters since they determine the gain sequence. The
recommended values for alpha and gamma are around 0.602 and
0.101 per the theoretical convergence conditions provided by Spall
(29). By using a line-search approach, the values chosen were c = 1.9
and a = 20. Regarding the probability distribution of the compo-
nents of the perturbation vector, the suggestion of a ± 1 Bernoulli
distribution is adopted.

Application of GAs involves more complex implementation deci-
sions. Selection operator, crossover operators, and mutation opera-
tor, as well as best parameter values, must be chosen. Parameter
values are application specific, and therefore they were selected by

following a line-search procedure using the synthetic network (used
in the first case study presented in the remainder of this paper). The
number of particles (chromosomes) to be used is also an important
decision. These decisions can considerably affect the computational
performance and convergence rate of GAs. Therefore, various oper-
ators were explored before the most suitable were chosen for the
final calibration effort:

• For the selection step, roulette wheel selection was found to be
the best operator. In the roulette wheel selection operator, the prob-
ability of selecting each chromosome is proportional to its fitness
value. In this case, the fitness value is computed as the inverse of the
objective function value at that point.
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FIGURE 2 Overview of Lower Westchester County network, with sensor locations.



• The single-point crossover operator was chosen because of its
simplicity. It was deemed unnecessary to use complicated crossover
operators such as two-point crossover. Some operators, such as
cut-and-splice, cannot be used, since they change the dimension
of the decision vector.

• The crossover parameter value was obtained through a line
search, and 0.7 was found to be the most suitable. This value is
within the range of those indicated in the literature.

• The choice of mutation operator is a critical decision since
there is no direct equivalent of bit mutation in case of continuous
variables. A novel approach was used for mutation: if a variable is
to be mutated, its value is drawn from a uniform random distribu-
tion with mean equal to the current value and the range from 0 to
current value multiplied by 2.

• Based on a line-search procedure on the synthetic data set, the
value of the mutation parameter is 0.002, which again is within the
range of values encountered in the literature.

• Finally, 100 particles (i.e., chromosomes) were used.

Most of these values are close to the empirically proved values
suggested by de Jong (55). De Jong recommended use of 50 to 100
particles, a crossover rate of 0.6, and a mutation rate of 0.001 per
bit. The population of 100 may appear quite low considering that
the model in the case study in the large-scale network includes
more than 6,000 parameters per interval. This choice is based on
two considerations: obtaining a practical trade-off between compu-
tational effort and calibration accuracy, and having comparable
computational effort for the two algorithms, SPSA and GA, so that
their performance can be compared in a more meaningful way.

Measures of Goodness of Fit

Five different statistics have been used to calculate the goodness of
fit of the results (56, 57 ):

• Normalized root-mean-square error,

• Root-mean-square percent error,

• Root-mean-square error,

• Normalized mean error,
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• Mean percent error,

Multiple statistics are used because they can capture different
aspects of the obtained results. The normalized root-mean-square
error and root-mean-square percent error quantify the overall error of
the calibration. These measures penalize large errors at a higher rate
than small errors. The root-mean-square error is a measure of the
deviation of a simulated variable from its actual path. The normal-
ized mean error measures the mean normalized difference between
simulated and observed values. The mean percent error statistic
indicates the existence of systematic under- or overestimation in
the simulated measurements. Percent error measures are often pre-
ferred to their absolute error counterparts because they provide
information on the magnitude of the errors relative to the average
measurement.

RESULTS OF CASE STUDIES

Synthetic Network

Two separate experiments were performed. First, only the demand
was calibrated while supply was held constant. In the second
experiment, demand and supply were calibrated simultaneously.
Tables 1 and 2 summarize the results of the case study with the
synthetic network. The demand-only calibration (which represents
the state of the art in this field until a few years ago) provides consid-
erable improvements and satisfactory results. The addition of AVI
data leads to a further improvement. When both demand and sup-
ply parameters are calibrated jointly, the accuracy of the calibration
improves further.

A potential pitfall with calibration is overfitting the parameters to
the specific data set. Validation (using a different set of data to ensure
that the calibrated parameters are not overfit) provides a practical
approach to check that overfitting has not occurred. A comparison of
the two solution approaches indicates that SPSA outperforms GA.
Therefore, SPSA with both link counts and AVI data is used for the
validation, which suggests that the calibration has not led to overfitting
of parameters to the particular data set.

Large-Scale Network

Table 3 presents the calibration and validation results for the Lower
Westchester County network. On the basis of the findings of the syn-
thetic network case study, the SPSA solution approach was selected
for the case study. The calibration improves the fit of the model
through estimation of the model parameters. The fit is better when
both demand and supply parameters are calibrated. Similarly, use of
both link counts and AVI information improves calibration results.
The validation suggests that the calibrated parameters have not been
overfit to the calibration data.

CONCLUSION

In this study, the problem of DTA model calibration using multiple
data sources was formulated as a simulation-based optimization
problem, which was solved by using two candidate algorithms,
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TABLE 1 Demand-Only Calibration Results for Synthetic Network

Starting
SPSA GA

Values Link Counts Counts + AVI Link Counts Counts + AVI

RMSN counts 32.49% 8.98% 10.35% 8.49% 9.15%
RMSN TT 11.29% 9.52% 4.51% 10.04% 4.60%

RMSPE counts 48.68% 15.77% 17.86% 15.51% 16.48%
RMSPE TT 7.82% 6.59% 3.84% 6.98% 3.89%

RMSE counts 144.32 39.88 45.98 37.69 40.62
RMSE TT 1.09 0.92 0.43 0.97 0.44

MEN counts 25.97% 3.85% 1.47% 1.63% 0.32%
MEN TT 5.49% 2.86% 1.51% 1.33% 1.69%

MPE counts 37.30% 7.79% 5.34% 5.51% 1.38%
MPE TT 3.51% 1.96% 1.31% 1.10% 1.39%

NOTE: TT = travel times.

TABLE 3 Calibration and Validation Results for Lower Westchester County Network Using SPSA

Joint Demand–Supply Joint Demand–
Demand-Only Calibration Calibration Supply Validation

Starting Values Link Counts Counts + AVI Link Counts Counts + AVI Counts + AVI

RMSN counts 25.19% 20.09% 18.24% 20.69% 17.94% 17.63%
RMSN TT 29.04% 22.23% 21.24% 19.46% 18.92% 18.55%

RMSPE counts 28.54% 26.84% 30.32% 26.78% 28.92% 27.60%
RMSPE TT 30.46% 22.43% 22.29% 23.89% 20.98% 21.06%

RMSE counts 151.68 120.94 109.83 124.56 108.04 106.27
RMSE TT 219.17 167.79 160.30 151.07 147.10 148.67

MEN counts −12.15% −9.05% −6.61% −8.50% −3.87% −3.98%
MEN TT 3.28% −7.59% −5.54% −9.00% −6.06% −9.88%

MPE counts −7.43% −3.06% −0.37% −3.90% 0.16% −0.39%
MPE TT 5.82% −2.74% −1.23% −3.49% −4.84% −5.15%

TABLE 2 Calibration and Validation Results for Synthetic Network

Demand–Supply Joint Calibration Validation

SPSA GA SPSA

Starting Values Link Counts Counts + AVI Link Counts Counts + AVI Counts + AVI

RMSN counts 32.49% 8.30% 6.87% 10.77% 11.05% 7.31%
RMSN TT 11.29% 9.09% 5.68% 6.97% 4.05% 5.22%

RMSPE counts 48.68% 15.20% 14.15% 14.86% 18.84% 15.87%
RMSPE TT 7.82% 6.18% 4.72% 5.03% 3.44% 4.30%

RMSE counts 144.32 36.87 30.50 47.82 49.08 32.54
RMSE TT 1.09 0.88 0.55 0.67 0.39 0.50

MEN counts 25.97% 5.23% 2.66% −0.86% −4.13% 2.38%
MEN TT 5.49% −1.01% 0.89% 0.88% −0.15% 0.63%

MPE counts 37.30% 9.08% 5.44% 1.17% −6.92% 5.85%
MPE TT 3.51% −0.70% 1.14% 0.78% −0.01% 0.91%



applied to two different networks. Following are the main findings
and conclusions:

• Simultaneous demand–supply calibration was found to be
superior to demand-only calibration, as it substantially increased
calibration accuracy.

• A comparison of calibration results using combined loop detec-
tor and AVI data and calibration results using only loop detector data
indicated that AVI data are useful for improving calibration accuracy
in all the experiments. In this case study, the AVI data came from a
very small number of sensors. Only 20 AVI sensors were assumed to
provide data in the network, resulting in 50 travel time observations
per interval, and the number of unknowns is 6,470.

• For the small network, SPSA was found to be the most effec-
tive algorithm, followed closely by GA. However, the GA’s perfor-
mance required additional computational effort because of a greater
number of required function evaluations.

• The empirical results from the validation tests were found to be
consistent with the calibration results and thus validated the feasibility
and accuracy of the methods used for calibration in this research.

• The SPSA algorithm was found to be scalable. A large set of
parameters (6,470 parameters) was practically calibrated by using
SPSA.

Directions for future research are as follows:

• Exploration of the effectiveness of a combination of travel
times and other types of AVI information, such as subpath flows and
split fractions;

• Sensitivity analysis of market penetration and other key
parameters (e.g., number of AVI sensors);

• Effect of sensor location in calibration accuracy, as well as use
of additional information from probe or floating-car data; and

• Developing insight into the magnitude of various parameters of
solution algorithms.
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