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Calibration of Dynamic Traffic
Assignment Models with
Point-to-Point Traffic Surveillance

Vikrant Vaze, Constantinos Antoniou, Yang Wen, and Moshe Ben-Akiva

Accuratecalibration of demand and supply smulator swithin adynamic
trafficassignment systemiscritical for consistent travel infor mation and
efficient traffic management. Emer ging traffic surveillance devices such
as automatic vehicle identification (AVI) technology provide arich
sour ce of disaggr egated traffic data. A methodology for thejoint calibra-
tion of demand and supply model par ameter susing travel timemeasure-
ments obtained from these emerging traffic-sensing technologies is
presented. The calibration problem has been formulated as a stochastic
optimization framework. Two different algorithms are used for solving
the calibration problem: a gradient approximation—based path search
method and a random search metaheuristic. The methodology is first
tested by using a small synthetic study network toillustrateits effective-
ness and obtain insight into its operation. The methodology is further
applied to areal traffic network in Lower Westchester County, New
York, to demonstrateits scalability. The estimation resultsaretested by
using a calibrated microscopic traffic simulator. The results are com-
pared with thebase case of calibration by the use of only the conventional
point sensor data. Theresultsindicatethat use of AVI data significantly
improves calibration accuracy.

Previous and ongoing research shows the effectiveness of individual
vehicle detection and identification techniques for improved traveler
information and traffic management. Ruhe et a. demonstrated the
usability of airborne traffic imagery for individua vehicle detection
and detailed forecasts of traffic speed, density, travel times, and queue
lengths(1). Hickman and Mirchandani reviewed major developments
in the field of airborne imagery for traffic flow measurement and its
applications to estimation of individual vehicle trajectories (2).
Bar-Geraused cell-phone-based probe vehiclesto compare speed and
travel time measurementswith those obtained from loop detectors (3).
The analysis suggests that vehicle identification data based on such
emerging technol ogies appear to be suitable for advanced traveler
information system (ATIS) applications.

Recent efforts have been made to generate individual vehicle
paths by using conventional detection techniques such asloop detec-
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tors. Coifman and Krishnamurthy used dual loop detectors to re-
identify vehicles at downstream locations by matching their lengths
to estimate path travel times (4). Wilson used avehicle reidentifica-
tion algorithm to create individual vehicle trajectories that use a
series of |oop detectors with sufficiently small spacing (5).

Mahanti focused on calibration of both demand and selected sup-
ply parametersfor the MITSIMLab microscopic simulator by formu-
lating the overall optimization problemin ageneralized |east-squares
(GLS) framework (6). The approach divides the parameter set into
two groups, origin—destination (O-D) flowsand the remaining param-
eters, and an iterative solution method is implemented; the O-D
flows are estimated by using the classical GLS estimator, and
the parameters are estimated by using Box complex iterations (7).
Balakrishnaformulated the offline calibration framework asalarge-
scale optimization problem in which the final objectiveisto match
simulated and observed quantities (8). Gupta demonstrated the cal-
ibration of the mesoscopic dynamic traffic assignment (DTA) model
DynaMIT by using separate methodol ogies to calibrate the demand
and supply parameters sequentialy (9).

Kunde presented the calibration of supply modelswithin a meso-
scopic DTA system (10). A three-stage approach to supply calibra-
tion is outlined, in increasing order of complexity (single segment,
subnetwork, entire network). Theresultsin the networkwide calibra-
tion show that the simultaneous perturbation stochastic approxima:
tion (SPSA) agorithm provides results comparable to those of the
Box complex algorithm by using amuch lower number of function
evaluations, thus requiring much less run time.

Ashok introduced the notion of direct measurements for theincor-
poration of probe vehicleinformation for the solution of the O-D esti-
mation and prediction problem (11). Van der Zijpp combined volume
counts with trajectory information obtained from automated license-
plate surveys for the estimation of O-D flows (12). Mishaani et al.
evaluated theroleof varioustypes of surveillancedatain thereal-time
estimation of dynamic O-D flows at the intersection level (13).

Oh and Ritchie developed a methodology for the design of
advanced traffic surveillance systems based on microscopic traffic
simulation (14). They demonstrated the proposed methodology
through the devel opment of an inductive-signature-based anonymous
vehicle tracking system for the O-D flow estimation problem.

Dixon and Rilett proposed amethod for using sample link choice
proportions and sample O-D matrix information derived from AV
data sampled from a portion of vehiclesto estimate population O-D
matrices with the AVI data collection points acting as the origins
and the destinations (15).

Kwon and Varaiya developed a statistical O-D estimation model
by using partially observed vehicle trgjectories obtained with vehicle
reidentification or AV techniques such as electronic tags (16).



Antoniou et al. presented a methodology for the incorporation of
AVI information into the O-D estimation and prediction frame-
work (17), which was generalized into aflexible formulation that
can incorporate a large range of additional surveillance informa-
tion (18). Zhou and Mahmassani used a nonlinear ordinary-least-
squares estimation model to combine AV counts, link counts, and
historical demand information and solved the O-D estimation as
an optimization problem (19).

Balakrishna et al. developed an offline DTA model calibration
methodology for simultaneous demand and supply parameter esti-
mation that is easily extendable to incorporate other types of traffic
sensor data (20). Two algorithms are used for optimization: SPSA
and SNOBFIT. Itisconcluded that the two algorithmsresult in com-
parable parameter estimates, although SPSA does so at afraction of
the computational requirements.

This paper formulates the DTA model calibration problem as an
optimization problem that allowsthe use of multipletypesof surveil-
lance information as measurements. Particular emphasisis given to
emerging surveillance technologies, such as those providing point-
to-point travel time measurements. Candidate solution approaches
are surveyed, and the most promising are selected and applied to a
series of case studies.

PROBLEM FORMULATION

The genera calibration problem involves estimation of O-D flows
aswell asvarious model parameters by using avariety of datafrom
sensor measurements and a priori values of O-D flows and model
parameters. The calibration problem can be described as an opti-
mization problem with the objective of minimizing the goodness-
of-fit measure comparing the observed and fitted measurement val ues.
Andternativeformulation is as astate-space model, wherethe state
vector comprises the model inputs and parameters that need to be
estimated (17, 18, 21). In this paper, the problem isformulated asan
optimization problem.

The following notation is used to formulate the DTA calibration
problem in the optimization framework:

t=timeintervas;te{1,2,...,T};
x = O-Dflows, x={x}, Vte{1,2,...,T};
B = model parameters; B ={B}, Vte{1,2,...,T};
M° = observed sensor measurements, M° = {Mg}, Vt {1,
2,...,Th
x® = apriori O-D flows; x*={x3}, Vte{1,2,...,T};
B*=a priori model parameter values, f* = {BF,Vte{l,
2,..., T}
G = road network characteristics, G={G¢}, Vte{1,2,...,T};
M® = simulated sensor measurements; M°* = {M{}, Vt {1,
2,...,T};and
z = function representing goodness of fit between observed or
apriori values and measured or true values.

With thisnotation, thegeneral calibration problem can be expressed
as minimization of the goodness-of-fit measure z subject to
congtraints as follows:

minirﬁnizez(Mi X, B, M X%, B%) @
subject to the constraints M= f(x, B, G), Iy <x < uy, and Iz < < ug,

where |, and I are appropriate lower bounds and u, and u; are
upper bounds.
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The model parameters may include the trip choice model param-
eters of the route, mode, departure time, and destination choice mod-
els on the demand-side as well as the supply-side parameters. The
supply-side parameters to be calibrated depend on the type of supply
simulator. In the case of a microscopic supply simulator such as
MITSIMLab (22, 23), they would include the parameters in micro-
scopic driver behaviora models such as accel eration—decel eration,
lane-changing, gap acceptance, and merging models. In the case of a
mesoscopic supply simulator such as the onein DynaMIT (24), the
supply parametersincludethe parameters of the speed—density curves
of each segment in the network as well as segment capacities.

The general objective function can be split into three parts. The
goodness of fit is often calculated separately for each of the three
entities, that is, a priori model parameters, a priori O-D flows, and
observed sensor measurements, and the overall goodness-of -fit mea-
sure can be expressed as an additive function of individual fit values
asfollows:

mini?izezi(M°, M?)+2,(x, x*)+2(B. B*) @

Thefunctionsz, z,, and z; represent the goodness of fit and are often
described by asum of squared deviationsfor sensor measurements,
O-D flows, and model parameters, respectively.

SOLUTION ALGORITHMS

Most agorithms that solve nonlinear optimization problems, such as
Newton’ smethod (25), the stegpest descent method (26, pp. 428-436),
and the conjugate gradient method (27), make use of agradient vec-
tor to indicate the direction of cost reduction. These algorithms usu-
ally assume a closed-form analytical objective function, the ability
to calculate the gradient vector, and a deterministic setting, which
are often unreasonable for practical problems. For example, for the
problem at hand, the objective function depends on the output
of alarge-scale, stochastic, noisy simulator that does not have an
analytical expression. Computing the gradient istherefore cumber-
some. Each function evaluation is computationally expensive, as
it involves arun of the simulator. Therefore, numerical derivatives
become animpractical operation (from acomputational point of view)
for problems with realistic dimensions (hundreds or thousands of
parametersto calibrate).

Various stochastic optimization techniques try to overcome these
limitations. Stochastic approximation algorithms trace a sequence of
pointsin the search spacethat ultimately convergesto the point of zero
gradient. The evolution vector 6;,; at the beginning of the i + 1th
iteration of the algorithm is given by

0,,=6;, — aig(ai) 3

where §(6y) is the gradient approximation at theith iteration and g, is
the sequence of step-size parameters, also known as gain sequence.
Thefinite difference stochastic approximation (FDSA) approach
calculates the gradient vector by perturbing each component of
the parameter vector separately and hence—with n denoting the
number of parametersto be calibrated—requires2n + 1 functional
evaluations in each iteration. SPSA calculates the gradient vec-
tor by simultaneous perturbation of all the components of the
parameter vector, requiring only three function evaluations per
iteration (28, 29). It can be shown that the overall convergence
rate of SPSA approaches n times that of FDSA (30). Spall has
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extensively discussed the conditions for convergence of SPSA
algorithm (28, 30-32).

In pattern search methods, such as the Hooke and Jeeves method
(33) and Nelder and Mead' s downhill simplex (34), a pattern of
function evaluations at various pointsin the response surfaceis used
to obtain an improved solution at each iteration. Box proposed an
extended version of the Nelder—Mead downhill simplex algorithm,
which potentially can increase the speed and accuracy of the search
and guards against the possibilities of numerical instabilities (7).
Balakrishnaprovided adetailed exposition of the numerical problems
associated with the Nelder—Mead approach (8). Mahanti provided a
detailed description of theimplementation detail s of the Box complex
algorithm for the calibration of DTA models (6).

Path search methods start at an initial point in the search space
and keep moving to improve the objective function value based on
the gradient. Response surface methodology (RSM) (35) and sto-
chastic approximation are two important families of path search
methods. RSM involves|ocal polynomial approximation of the sur-
face at each iteration. SNOBFIT isan extension of the RSM, which
begins with a population of several points in the search space, and
the points are chosen on the basis of the lower and upper bounds on
decision variable values (36).

Random search methods maintain alarge set of pointsat eachiter-
ation and randomly select updated parameter vectors to improve
toward optimality. Metaheuristics such as genetic algorithms (GAS)
and simulated annealing fall into this category. GA techniques have
been successfully implemented for calibration of microscopic traffic
simulation tools (37—40). GAs usetechniquesinspired by evolution-
ary biology, such asinheritance, mutation, selection, and crossover.
A population of abstract representations (called chromosomes) of
candidate solutions evolves toward better solutions. The evolution
usually starts from a population of randomly generated individuals.
In each generation, the fitness of every individual in the population
isevaluated, multiple individuals are probabilistically selected from
the current population on the basis of their fitness (selection), are
recombined (crossover), and are possibly mutated (mutation) to form
anew population. The algorithm terminates when either a maxi-
mum number of generations has been produced or a satisfactory
fitness level has been reached for the population. The simplest
form of GA involvesthree types of operator: selection, crossover,
and mutation (41). Popular and well-studied selection methods
are roulette-wheel selection and tournament selection. One-point
crossover, two-point crossover, and cut-and-splice crossover arethe
common crossover techniques. The mutation operator alows ran-
dom flipping of some bits in a chromosome. GA techniques were
used to calibrate driver behavior parameters in the microscopic
models CORSIM and TRANSIMS (42). Rathi et al. used GA to
determinethe best location for variable message signsin traffic net-
works for optimal response to incidents (43). However, scalability
can be an issue for expensive function evaluations (44). The choice
of GA operators and the corresponding parametersiscritical for the
success of GA applications. As problem dimension increases (45),
the required population size increases exponentially.

Simulated annealing mimicsthe natural process of cooling of met-
als (46, 47). It can reach a global optimum because of high-energy
initial movements that increase the probability of reaching a better
solution. The method iseffectivefor combinatorial optimization with
discrete variables. The performance of simulated annealing with
continuous variablesis not encouraging (48).

Among the path search methods, SPSA is a notable candidate,
as it reaches convergence with much lower computational effort.

Furthermore, it ishighly successful in solving large-scale DTA (8)
and microscopic traffic simulator (49) calibration problems and
has been shown to outperform SNOBFIT (8). Poor convergence
to the global optimum and difficulties in handling stochasticity
reducethe attractiveness of pattern-search methodsfor applicationto
the DTA cdlibration problem. Among the random search methods,
GA has been successfully applied to microscopic model calibration
in the context of transportation, whereas simulated annealing has
been shown to have slower convergence. Therefore, SPSA and
GA have been chosen as candidate algorithms for the case studies
presented in this paper.

SETUP OF CASE STUDIES
Objectives

The main objectives for the case studies are as follows:

e Demonstrate the feasibility and effectiveness of the proposed
DTA calibration approach involving utilization of AV data;

e Evaluatetherelative effectiveness of the smultaneous demand—
supply calibration compared with demand-only calibration; and

e Compare the numerical accuracy and computational perfor-
mance of the considered algorithms (i.e., SPSA and genetic algo-
rithms) in a synthetic case study and demonstrate the scalability of
the most suitable algorithm in alarge-scale case study (involving a
complex network with multiple vehicle classesand different link use
restrictions for different classes).

DTA Model and Other Software

The DTA model used for the case studies is DynaMIT (24), a
simulation-based, real-time system designed to generate consistent,
anticipatory route guidance for transportation networks. Anticipa-
tory information (based on predicted network states) has been shown
to be effectivein eliminating driver overreaction (50, 51). DynaMIT
combines real-time surveillance data with historical data to esti-
mate current network state, predict future traffic conditions, and gen-
erate cons stent and unbiased information. DynaM I T usesan agorithm
to obtain consistent estimates of current and future states (52, 53).
For the purposes of the case studies presented in this paper, the
AVI capabilities of DynaMIT were used to replicate a transponder-
based system, such asthe TRANSMIT (transponder-based electronic
toll collection) system that operatesin New Y ork and New Jersey
(54). However, sincethe TRANSMIT network in the study areawas
not fully operational, the operation of the system was simulated
within a microscopic traffic simulator, MITSIMLab (22, 23). AVI
market penetration was assumed to be 30%. The sensor measure-
mentswere obtained asthe average of 10 MITSIMLab runs. For val-
idation of the calibrated DynaM I T parameters, asingleadditional run
of MITSIMLab was performed, and the sensor data were provided
asinput to the real-time estimation procedure within DynaMIT.

Study Networks

Two networkswere used for the case studies presented in this paper.
A synthetic network is used to gain insight into the performance of
thetwo algorithms (Figure 1). The network consists of 10 nodesand
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FIGURE 1 Topology of synthetic network.

10 links, and traffic is loaded through six O-D pairs. The model is
calibrated for a period of four 15-min intervals, atotal of 1 h.

The second study network covers Lower Westchester County,
just to the north of New Y ork City (Figure 2) and includes the most-
important highway corridors that connect Upstate New Y ork and
Connecticut to New Y ork City. Since there are entry restrictions on
the parkwaysin thisregion (no heavy commercial vehicles, such as
trucksor trailers, may enter thesefacilities), the proportion of commer-
cid vehiclesinall O-D flowsfor eachtimeinterval isapproximated on
the basis of the average proportion of commercial vehicle observed
during that time interval at threetoll plazasin the area. The propor-
tion of commercial vehicles in the traffic varies considerably with
time. AVI sensors are located at 10 locations (shown in Figure 2),
covering both southbound and northbound traffic. For each direc-
tion of traffic, there are five upstream and five downstream sensors,
allowing for 5 x 5 = 25 sensor (and thus travel time) pairs. There-
fore, for both directions, 50 travel time observations per period are
available. AVI sensors are not located on the border of the network
and therefore do not provide any direct O-D measurements. Instead,
they provide travel time measurements for the subpaths defined
between any two sensors.

The study network consists of 1,767 links (split into 2,564 seg-
ments) and 825 nodes. Traffic is loaded onto the network through
482 O-D pairs. The beginning of the morning peak (from 6:00 to
8:00 am.) was chosen as the simulation period. This period was
divided into eight 15-min intervals. Aggregated sensor data are
available for each of these 15-min intervals, and dynamic O-D flows
are estimated for each interval. The number of demand parametersto
be cdibrated istherefore equal to 482 O-D pairstimes eight intervals,
that is, 3,856 parameters. For supply parameters, capacities are cali-
brated for 2,564 segments. The segmentswere collected into 10 groups
on the basis of similar traffic dynamics properties, and a single
speed—density relationship was calibrated for each group. Within
each speed—density relationship arefive parametersto be calibrated,
and thusthere are 50 more parameters. Therefore, 3,856 O-D flows
plus 2,564 segment capacities plus 50 speed—density parameters
equals 6,470 parameters for joint demand-supply calibration.

Experimental Design

Thefollowing dimensions are considered in devel oping the experi-
mental design for the case studies presented in this paper:

e Network

— Simple, synthetic network

— Complex, large-scale network
e Scope of calibration

—Base case (using a priori available parameters and inputs;
supply parameters come from a previous calibration for the spe-
cific network, and demand parameters are perturbed randomly)

— Demand-only calibration, starting from the O-D flows used
in the base case (using the apriori supply parametersfrom apre-
vious calibration of the same network)

— Joint demand and supply calibration, starting from the param-
eter values used in the base case
e Surveillance data

— Link counts only

—Link counts and travel time (obtained from the AVI as the
time difference between two successive detections of an AVI-
equipped vehicle from different AVI sensors)
e Optimization algorithm

— SPSA

-GA

Implementation Details

SPSA and GA are used. For each of these algorithms, several
parameters are chosen on a case-by-case basis. To avoid ambiguity,
the main implementation details are presented here. In the case of
the SPSA algorithm, the jth component of gradient of objective
function at theith iteration is calculated as follows:

f(éi+c,-Ai)—f(éi—c,-Ai)
2c; - A

@ij (éu) = (4)

Thenext estimate of the parameter vector isthen calculated asfollows:

0., =11, [ei - aiY(ei )] )

The feasible region for optimization is defined by the lower and
upper bounds on each of the parameter values. A simpleimplemen-
tation of the projection operator I, is used such that whenever any
component of the parameter vector is higher than the upper bound
or lower than the lower bound, the projection operator setsit to the
upper-bound and lower-bound values, respectively.
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FIGURE 2 Overview of Lower Westchester County network, with sensor locations.

Appropriate values of the parameters of interest, a, ¢, alpha, and
gamma, are critical for achieving convergence. Alpha and gamma
are critical parameters since they determine the gain sequence. The
recommended values for alpha and gamma are around 0.602 and
0.101 per the theoretical convergence conditions provided by Spall
(29). By using aline-search approach, thevalues chosenwerec=1.9
and a = 20. Regarding the probability distribution of the compo-
nents of the perturbation vector, the suggestion of a+1 Bernoulli
distribution is adopted.

Application of GAsinvolves more complex implementation deci-
sions. Selection operator, crossover operators, and mutation opera-
tor, as well as best parameter values, must be chosen. Parameter
values are application specific, and therefore they were selected by

following aline-search procedure using the synthetic network (used
in thefirst case study presented in the remainder of this paper). The
number of particles (chromosomes) to be used is also an important
decision. These decisions can considerably affect the computational
performance and convergencerate of GAs. Therefore, various oper-
ators were explored before the most suitable were chosen for the
final calibration effort:

e For the selection step, roulette wheel selection wasfound to be
the best operator. In the roulette wheel selection operator, the prob-
ability of selecting each chromosome is proportional to its fitness
value. Inthiscase, thefitnessvalueis computed astheinverse of the
objective function value at that point.



e The single-point crossover operator was chosen because of its
simplicity. It was deemed unnecessary to use complicated crossover
operators such as two-point crossover. Some operators, such as
cut-and-splice, cannot be used, since they change the dimension
of the decision vector.

e The crossover parameter value was obtained through a line
search, and 0.7 was found to be the most suitable. This value is
within the range of those indicated in the literature.

e The choice of mutation operator is a critical decision since
there is no direct equivalent of bit mutation in case of continuous
variables. A novel approach was used for mutation: if avariableis
to be mutated, its value is drawn from a uniform random distribu-
tion with mean equal to the current value and the range from 0 to
current value multiplied by 2.

e Based on aline-search procedure on the synthetic data set, the
value of the mutation parameter is 0.002, which again iswithin the
range of values encountered in the literature.

e Finally, 100 particles (i.e., chromosomes) were used.

Most of these values are close to the empirically proved values
suggested by de Jong (55). De Jong recommended use of 50 to 100
particles, a crossover rate of 0.6, and a mutation rate of 0.001 per
bit. The population of 100 may appear quite low considering that
the model in the case study in the large-scale network includes
more than 6,000 parameters per interval. This choice is based on
two considerations: obtaining apractical trade-off between compu-
tational effort and calibration accuracy, and having comparable
computational effort for the two algorithms, SPSA and GA, so that
their performance can be compared in a more meaningful way.

Measures of Goodness of Fit

Five different statistics have been used to cal cul ate the goodness of
fit of the results (56, 57):

e Normalized root-mean-square error,

¢ Root-mean-square percent error,

N s_yo?
RMSPE = iz Yo Yo
N Y

¢ Root-mean-square error,

[1& e Lop
RMSE = NZ‘;[Yn-\(n]

e Normalized mean error,
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e Mean percent error,

N s o
MPE = iz [M}
N&[ v

Multiple statistics are used because they can capture different
aspects of the obtained results. The normalized root-mean-square
error and root-mean-square percent error quantify the overall error of
the calibration. These measures penalize large errors at ahigher rate
than small errors. The root-mean-square error is a measure of the
deviation of asimulated variablefromitsactual path. The normal-
ized mean error measures the mean normalized difference between
simulated and observed values. The mean percent error statistic
indicates the existence of systematic under- or overestimation in
the simulated measurements. Percent error measures are often pre-
ferred to their absolute error counterparts because they provide
information on the magnitude of the errors relative to the average
measurement.

RESULTS OF CASE STUDIES
Synthetic Network

Two separate experiments were performed. First, only the demand
was calibrated while supply was held constant. In the second
experiment, demand and supply were calibrated simultaneously.
Tables 1 and 2 summarize the results of the case study with the
synthetic network. The demand-only calibration (which represents
thestate of theart in thisfield until afew yearsago) providesconsid-
erable improvements and satisfactory results. The addition of AVI
data leads to a further improvement. When both demand and sup-
ply parametersare calibrated jointly, the accuracy of the calibration
improves further.

A potential pitfall with calibration is overfitting the parameters to
the specific dataset. Validation (using adifferent set of datato ensure
that the calibrated parameters are not overfit) provides a practical
approach to check that overfitting has not occurred. A comparison of
the two solution approaches indicates that SPSA outperforms GA.
Therefore, SPSA with both link counts and AVI datais used for the
validation, which suggeststhat the calibration hasnot led to overfitting
of parametersto the particular data set.

Large-Scale Network

Table 3 presentsthe calibration and validation results for the L ower
Westchester County network. On the basis of thefindings of the syn-
thetic network case study, the SPSA solution approach was sel ected
for the case study. The calibration improves the fit of the model
through estimation of the model parameters. The fit is better when
both demand and supply parametersare calibrated. Similarly, use of
both link counts and AV information improves calibration results.
Thevalidation suggeststhat the calibrated parameters have not been
overfit to the calibration data.

CONCLUSION
In this study, the problem of DTA model calibration using multiple

data sources was formulated as a simulation-based optimization
problem, which was solved by using two candidate algorithms,
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TABLE 1 Demand-Only Calibration Results for Synthetic Network

SPSA GA

Starting

Values Link Counts Counts+ AVI Link Counts Counts+ AVI
RMSN counts 32.49% 8.98% 10.35% 8.49% 9.15%
RMSNTT 11.29% 9.52% 4.51% 10.04% 4.60%
RM SPE counts 48.68% 15.77% 17.86% 15.51% 16.48%
RMSPETT 7.82% 6.59% 3.84% 6.98% 3.89%
RM SE counts 144.32 39.88 45,98 37.69 40.62
RMSETT 1.09 0.92 0.43 0.97 0.44
MEN counts 25.97% 3.85% 1.47% 1.63% 0.32%
MENTT 5.49% 2.86% 1.51% 1.33% 1.69%
MPE counts 37.30% 7.79% 5.34% 5.51% 1.38%
MPETT 3.51% 1.96% 1.31% 1.10% 1.39%

NoTe: TT = travel times.

TABLE 2 Calibration and Validation Results for Synthetic Network

Demand-Supply Joint Calibration Validation

SPSA GA SPSA

Starting Vaues Link Counts Counts+ AVI Link Counts Counts+ AVI Counts+ AVI

RMSN counts 32.49% 8.30% 6.87% 10.77% 11.05% 7.31%
RMSN TT 11.29% 9.09% 5.68% 6.97% 4.05% 5.22%
RMSPE counts 48.68% 15.20% 14.15% 14.86% 18.84% 15.87%
RMSPETT 7.82% 6.18% 4.72% 5.03% 3.44% 4.30%
RMSE counts 144.32 36.87 30.50 47.82 49.08 32.54

RMSETT 1.09 0.88 0.55 0.67 0.39 0.50

MEN counts 25.97% 5.23% 2.66% —-0.86% -4.13% 2.38%
MENTT 5.49% -1.01% 0.89% 0.88% —0.15% 0.63%
MPE counts 37.30% 9.08% 5.44% 1.17% —6.92% 5.85%
MPETT 3.51% -0.70% 1.14% 0.78% -0.01% 0.91%

TABLE 3 Calibration and Validation Results for Lower Westchester County Network Using SPSA

Joint Demand—Supply Joint Demand—
Demand-Only Calibration Calibration Supply Validation

Starting Vaues Link Counts Counts+ AVI Link Counts Counts+ AVI Counts+ AVI

RMSN counts 25.19% 20.09% 18.24% 20.69% 17.94% 17.63%
RMSN TT 29.04% 22.23% 21.24% 19.46% 18.92% 18.55%
RMSPE counts 28.54% 26.84% 30.32% 26.78% 28.92% 27.60%
RMSPETT 30.46% 22.43% 22.29% 23.89% 20.98% 21.06%
RMSE counts 151.68 120.94 109.83 124.56 108.04 106.27

RMSETT 219.17 167.79 160.30 151.07 147.10 148.67

MEN counts -12.15% —9.05% —6.61% —8.50% -3.87% -3.98%
MENTT 3.28% —7.59% -5.54% -9.00% —6.06% -9.88%
MPE counts —7.43% -3.06% -0.37% -3.90% 0.16% -0.39%

MPETT 5.82% —2.74% -1.23% -3.49% —4.84% -5.15%




applied to two different networks. Following are the main findings
and conclusions:

e Simultaneous demand-supply calibration was found to be
superior to demand-only calibration, as it substantially increased
calibration accuracy.

e A comparison of calibration results using combined |oop detec-
tor and AV dataand calibration results using only loop detector data
indicated that AV dataare useful for improving calibration accuracy
in al the experiments. In this case study, the AVI data came from a
very small number of sensors. Only 20 AV sensorswere assumed to
provide data in the network, resulting in 50 travel time observations
per interval, and the number of unknownsis 6,470.

e For the small network, SPSA was found to be the most effec-
tive algorithm, followed closely by GA. However, the GA’ s perfor-
mance required additional computational effort because of agreater
number of required function evaluations.

e The empirical results from the validation tests were found to be
consistent with the calibration results and thus validated the feasibility
and accuracy of the methods used for calibration in this research.

e The SPSA algorithm was found to be scalable. A large set of
parameters (6,470 parameters) was practically calibrated by using
SPSA.

Directions for future research are as follows:

e Exploration of the effectiveness of a combination of travel
timesand other typesof AV information, such as subpath flowsand
split fractions;

e Sensitivity analysis of market penetration and other key
parameters (e.g., number of AVI sensors);

e Effect of sensor location in calibration accuracy, aswell asuse
of additional information from probe or floating-car data; and

e Developinginsight into the magnitude of various parameters of
solution agorithms.
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