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Health Aware Stochastic Planning For Persistent
Package Delivery Missions using Quadrotors

Ali-akbar Agha-mohammadi, N. Kemal Ure, Jonathan P. How and John Vian

Abstract—In persistent missions, taking system’s health and
capability degradation into account is an essential factor to
predict and avoid failures. The state space in health-aware plan-
ning problems is often a mixture of continuous vehicle-level and
discrete mission-level states. This in particular poses a challenge
when the mission domain is partially observable and restricts the
use of computationally expensive forward search methods. This
paper presents a method that exploits a structure that exists in
many health-aware planning problems and performs a two-layer
planning scheme. The lower layer exploits the local linearization
and Gaussian distribution assumption over vehicle-level states
while the higher layer maintains a non-Gaussian distribution
over discrete mission-level variables. This two-layer planning
scheme allows us to limit the expensive online forward search to
the mission-level states, and thus predict system’s behavior over
longer horizons in the future. We demonstrate the performance
of the method on a long duration package delivery mission using
a quadrotor in a partially-observable domain in the presence of
constraints and health/capability degradation.

I. INTRODUCTION

Autonomous robotic systems are being utilized in a wide
range of interesting applications by researchers in both the
controls and artificial intelligence communities. Such appli-
cations include the use of unmanned aerial vehicles (UAVs)
for surveillance missions [1], autonomous air-to-ground de-
livery [2], counter wildlife poaching [3], oil and gas spill
detection [4], and fire-fighting [5]. A common theme among
these robotic planning missions is the uncertainty that stems
from both the environment and the vehicle capabilities. This
includes the external uncertainties, such as the environmental
effects (wind) and variations in the demand/tasks that must be
performed, and the internal uncertainties, such as fuel/battery
consumption dynamics and actuator/sensor failure dynamics
that impact the vehicle capabilities throughout the mission.
The planning problem under these uncertainties has been
described as the health-aware planning (HAP) problem [6].

Markov Decision Processes (MDPs) [7] serve as a standard
framework to study such stochastic, multi-stage decision mak-
ing problems. However, the MDP formulation assumes that the
perfect state information is available to the planner, which is
not a realistic assumption for many real-life scenarios, where
measurement signals are contaminated with noise. Partially
Observable Markov Decision Processes (POMDPs) [8, 9]
extend the MDP framework to scenarios where the perfect
state information is not available. While [6, 10] developed
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methods to address this HAP problem, they are based on
MDPs. However, the POMDP framework is a better fit for
the HAP problem because the capability and health states are
typically only partially observable. The challenge with any
POMDP formulation is developing a computationally tractable
solution algorithm. Moreover, the state space associated with
the HAP problem is high dimensional due to augmentation of
the vehicle’s dynamical states with the health states, which ren-
ders the development of computationally feasible algorithms
more challenging.

The main contribution of this work is to devise a planner
for long-endurance missions that require health management in
partially-observable domains. This problem requires planning
in the belief space (space of distributions) over the vehicle-
level states (such as vehicle locations) as well as mission-level
states (such as health, capabilities, etc.). The high dimension
of this joint space restricts the use of existing forward search
methods in the belief space. This paper exploits a decom-
position between non-stabilizable (i.e. health variables) and
stabilizable belief states (i.e. vehicle dynamics) and restricts
the online forward search only to non-stabilizable belief states
to reduce computational complexity. We present the algorithm
development for the proposed framework and simulation re-
sults for persistent payload delivery missions. The developed
algorithm enables planning for package delivery in long-
endurance missions with limited fuel and stochastic health
dynamics. In addition, although the algorithm is validated only
for package delivery missions, the general idea can be applied
to any planning problem that admits such decomposition (e.g.,
many combined task and motion planning problems), which
extends the scale of solvable planning problems that can be
formulated as a POMDP.

A. Related Work and Method Contributions

Development of optimal [11] and approximate [12] plan-
ning algorithms for MDPs have been an active area of
research in the artificial intelligence community. However,
many real world robotics applications inherently possess im-
perfect/partial state information and noisy sensory measure-
ments [13], leading to interest in planning with POMDPs [9,
15]. Sampling-based methods are typically used in partially-
observable problems to handle constraints and continuous
planning domains, and [16–19] are among the pioneer-
ing methods in combining sampling-based frameworks and
POMDP solvers. However, these methods are valid for a single
initial belief and cannot handle real-time replanning from new
beliefs. Moreover, some of the heuristics used in these methods
do not apply to the HAP problem, for example in HAP we
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Fig. 1. The architecture of the proposed framework for health-aware planning.
At each node, The global planner selects the next best local planner.

need the system to go back to the base or recharge stations
periodically and thus “loops” cannot be ignored as opposed
to the approach in [16]. Recently proposed, the feedback-
based information roadmap (FIRM) framework [20, 21], which
combines the graph-based methods and belief space planning,
enables scalable and online planning in the belief space. How-
ever, the framework is only applicable to systems for which the
belief state can be stabilized by a feedback controller, which is
not the case in the HAP problem, because mission-level states
such as battery/fuel level and sensor/actuator health status
are not directly affected by the vehicle-level control signals.
Therefore, FIRM needs to be extended to be more broadly
applicable to handle high dimensional planning problems with
non-stabilizable belief states.

On the other hand, the problem of accounting for sensing
hardware health and complete loss-of-vehicle scenarios has
been investigated by researchers. Marier et al. [6] has inves-
tigated this problem in the context of health-aware coverage
control with small UAVs. Nigam et al. [1] have developed a
control architecture for achieving persistent surveillance with
multiple UAVs under limited fuel and stochastic health dynam-
ics. However, the proposed control improvement method is
only reactive to the sensor and actuator failures. In the perfect
state information case, Ure et. al [10] have developed a health-
aware planning framework, which combines the trajectory
sampling approximate MDP solvers [22] and learning based
adaptive control [23]. In this paper, we extend the health-
aware planning methods to partially-observable domains to
handle challenging tasks such as persistent package delivery
in a partially-observable setting with health dynamics. The
diagram of the proposed framework is displayed in Fig. 1.

The main idea behind the proposed framework is to reduce
the computational cost of the online forward search (online
prediction of the system’s performance) via reducing the
dimension of the belief subset for which one needs to perform
an online forward search. The proposed framework exploits
an existing structure in health-aware planning missions and
proposes a two-layer planning framework, by decomposing
the state space into two parts: the vehicle-level and mission-
level parts. The vehicle-level state dynamics are locally well

approximated by linear systems with Gaussian noises, while
the mission-level states typically live in discrete spaces with
non-Gaussian distributions. In health-aware planning, vehicle-
level dynamics usually consist of position, orientation, as
well as translation and angular velocities of the vehicle, and
mission-level variables correspond to the vehicle’s fuel/battery
level, health and capability indicators, etc.

The lower layer of the planner utilizes the information
roadmap algorithm, which has been shown to be highly
scalable through both theoretical and simulation results [21]
and has been implemented on physical systems [24]. The
higher layer planner, incorporates the fuel and health dynamics
into the planning by performing a forward search in the space
of mission-level variables. This forward search is performed
in a receding horizon control (RHC) scheme, where both
vehicle-level and mission-level costs and constraints are taken
into account. To the best of our knowledge, this is the first
POMDP-based planner that addresses the health-awareness in
persistent planning problems.

II. PROBLEM DEFINITION

We start by describing the elements of the problem. Let us
denote the system state, control, and observation signals at the
k-th time step respectively by xk ∈ X ⊆ Rdx , uk ∈ U ⊆ Rdu ,
and zk ∈ Z ⊆ Rdz , where Rn denotes the n-dimensional
Euclidean space. X, U, and Z denote the state, control, and
observation spaces, respectively.

Let us describe the state evolution model by the transition
probability P(X|x, u) := Pr(xk+1 ∈ X|xk = x, uk = u)
where X ⊂ X, x ∈ X, and u ∈ U. Also, in the presence of
noisy measurements, we describe the observation model by
the likelihood model P(Z|x, u) := Pr(zk ∈ Z|xk = x, uk =
u), where Z ⊂ Z. In the presence of noise in measurement
signal, an estimation module can provide a distribution over
all possible states, referred to as belief, for decision making
purposes. Formally, the belief at the k-th time step is defined
as bk = P(X|z0:k, u0:k−1) := Pr(xk ∈ X|z0:k, u0:k−1). We
denote the belief space by B. The Bayesian estimator evolves
the belief recursively and one can denote the belief evolution
by its transition probability P(B|b, u) := Pr(bk+1 ∈ B|bk =
b, uk = u), where B ⊂ B and b ∈ B.

State Decomposition: In this work, we consider a class of
systems, where the state can possibly be a mixture of continu-
ous and discrete variables. More rigorously, we consider sys-
tems where state consists of two parts xk = (xsk, x

n
k ), referred

to as stabilizable and non-stabilizable parts, respectively.
• Stabilizable part (vehicle-level variables): xs is the part of

the state vector, for which we can design feedback controllers
to steer the pdf over xs (denoted by bs) to predefined beliefs
[21]. As we discuss in experiments section, usually stabiliz-
able states correspond to continuous variables (e.g. vehicles
location, orientation, etc.) which has a well-behaved (e.g. well-
linearizable) evolution model in the sense that one can design
appropriate controllers to regulate bs.
• Non-Stabilizabile part (mission-level variables): xn is the

part of state vector that is not stabilizable. As we discuss
in Section IV, xn often corresponds to the discrete part of



the space for which designing belief regulating controllers is
challenging. Furthermore, xn consists of parts of the state
describing the environment (e.g., a target state) over which
we have no direct control. In health-aware planning xn may
represent higher level properties such as health of the system,
remaining fuel, state of a task, or vehicle’s capability to
perform certain functions or tasks. The evolution of non-
stabilizable part may depend on the stabilizable part (e.g.,
health or capability may depend on the location of the ve-
hicle and applied controls). Accordingly, to incorporate these
variables into the planning scheme, one needs to maintain a
probability distribution over their all possible values.

Vehicle-level transitions: In this work it is assumed that the
local evolution of the vehicle-level variables xs is independent
of mission-level variables. In other words, one can consider
the control space Us and observation space Zs (as lower-
dimensional projections of U and Z) which induce a transition
probability P(Xs|xs, us), where Xs ⊂ Xs, xs ∈ Xs, and
us ∈ Us. Accordingly, the distribution over xs is denoted
by bsk ∈ Bs, which is evolved by transition probability
P(Bs|bs, us), where Bs ⊂ Bs and bs ∈ Bs. As a result,
to generate us one can design a feedback law µs that is a
mapping from Bs to Us.

Mission-level transitions: According to above definitions,
one can decompose the control and observation spaces as
U = Us × Un and Z = Zs × Zn. However, it is important
to note that such a separation does not induce separated
transitions for mission-level state. In other words, mission-
level state dynamics depend on the full state, control, and
observation vectors, i.e., mission-level state transitions has to
be described as P(Xn|x, u), where Xn ⊂ Xn, x ∈ X, and
u ∈ U. Therefore, for a set X = Xs×Xn, one can decompose
belief to the following two parts:

bk = Pr((xsk, x
n
k ) ∈ Xs ×Xs|z0:k, u0:k−1) (1)

= Pr(xnk ∈Xn|xsk∈Xs, z0:k, u0:k−1)Pr(xsk∈Xs|z0:k, u0:k−1)

= Pr(xnk ∈Xn|xsk∈Xs, z0:k, u0:k−1)︸ ︷︷ ︸
bnk

Pr(xsk∈Xs|zs0:k, u
s
0:k−1)︸ ︷︷ ︸

bsk

Accordingly, the distribution over xn, denoted by bnk ∈ Bn,
is evolved as P(Bn|b, u), where Bn ⊂ Bn and b ∈ B.
As a result, a feedback law µn to generate un has to
map the full belief space to un; i.e., un = µn(b). In the
present setting, we pick the weighted Dirac mixture ap-
proximation to represent the non-Gaussian distribution bn =
D({xn(m)}Mm=1, {w(m)}Mm=1). The corresponding pdf can
explicitly be written as

∑M
m=1 w(m)δ(xn − xn(m)), where

δ(·) denotes the Kronecker delta function and w(m) is the
weight of the m-th particle that satisfies the normalization
constraint

∑M
m=1 w(m) = 1.

A. Problem statement

In this paper, we consider the problem of health-aware
planning, where we define our problem in two parts: proactive
planning and reactive planning.

1) Proactive Planning: In the proactive part, we predict
the evolution of the system’s state, health, and capabilities in

future time steps. Accordingly, a plan is generated to accom-
plish a given task while respecting constraints on the system’s
health and capability. The cost associated with the stabilizable
part is reflected in cs(bs, us) and the cost over health/capability
variables is reflected in cn(bn, u). The overall cost is a com-
bination of these two costs c(b, u) = g(cs(bs, u), cn(bn, u))
where g is assumed to be a linear map.

Constraints on the vehicle-level and mission-level states are
formalized by adding appropriate chance constraints to the
optimization problem. F s ⊂ Xs and Fn ⊂ Xn denote the
undesirable set of states and εs and εn denote the maximum
chance of hitting these states. Denoting the space of all policies
by Π, the full planning problem is stated as follows:

π∗ = arg min
Π

E
∞∑
k=1

γkc(bk, π(bk))

s.t. bk+1 ∼ P(Bk+1|bk, uk), xs /∈ S ⊂ Xs

bnk+1 = τstation(bnk ), xs ∈ S ⊂ Xs

Pr(xsk ∈ F s|z0:k, u0:k−1) < εs, ∀k
Pr(xnk ∈ Fn|z0:k, u0:k−1) < εn, ∀k (2)

where S denotes the location of the stations such as “base”,
“recharge”, or “delivery” stations in a persistent package
delivery mission. In these stations, the system’s belief is
governed by a deterministic function τstation: At the base
station, health is reset to its maximum value. Similarly, the
vehicle gets refueled in recharge stations. The packages are
picked-up in the base station and delivered at the delivery
station.

2) Reactive Planning: In the reactive phase, we require to
solve the proactive problem online. In other words, if the sys-
tem encounters any unexpected large deviations, health degra-
dation, or failures, we need to be able to recover in real-time
and resolve the proactive POMDP problem in (2). It is well
known that such a reactive behavior in partially-observable
environments is very challenging due to the curse of history
[25]. In other words, replanning in partially-observable spaces
requires all the computation to be reproduced.

In this research, exploiting the HAP problem’s structure,
we reduce online planning only to non-stabilizable variables.
Such reduction allows us to predict the system’s behavior over
longer horizons, in particular in problems where propagating
bs is computationally more expensive than propagating bn.

III. THE ALGORITHM

To accomplish a given mission in the presence of uncertain
mission dynamics and to provide a computationally tractable
version of the optimization in (2), we propose a hybrid
planning framework, where the key idea is to propagate the bs

part of the belief offline and the bn part online. We sample a set
of intermediate milestones, and perform a two-level planning
over this set of milestones as described further below.
• Global planner: The global planner provides a policy

over the milestones according to both (i) high-level states
such as vehicle’s health, capability, and the mission state,
and (ii) the costs that come from low-level planning such
as available information to control the vehicle. Accordingly,



at every milestone the global planner π decides which local
planner has to be utilized to guide the system toward the next
milestone (see Fig. 1).
• Local planner: Once the local planner µ(·) is fixed, it

drives the system to the next milestone associated with µ.
Each local controller µ(·) consists of two parts µ = (µs, µn)
where µs and µn generate the control signals for vehicle-
level and mission-level variables, respectively, as discussed
in Section II. While the selected local planner µ generates
control signals, the probability distribution over mission-level
variables is propagated using a particle filter. Accordingly,
when the system (i) reaches the next milestone or (ii) the
health- or mission-monitoring module reports a significant
deviation from the nominal plan, the system control is handed-
over back to the global planner π.

In the following subsections we explain how these local and
global planners are constructed.

A. Local Planners

Decomposing the state space to stabilizable and non-
stabilizable parts X = Xs×Xn, one can generate a feedback-
based information roadmap (FIRM) [21] in Xs. FIRM is a
representative graph in belief space whose nodes are certain
probability distributions and whose edges are feedback con-
trollers that takes the belief from one node to another.

To generate a FIRM in Xs, we first sample a set of N points
(milestones) {mi}Ni=1 from the constraint-free space Xs \F s.
Utilizing an appropriate metric, we connect each mj to its k-
nearest neighbors in the constraint-free space Xs \ F s. Fig. 2
shows a simple graph of nine milestones.
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Fig. 2. The left figure shows a set of sampled milestones in Xs. The figure
in right shows the unique distributions associate with each milestone.

Sampling belief nodes: To leverage milestones in state space
to milestones in belief space, we first linearize the system
about each mj . Then, for each mj we design an SLQG
(Stationary Linear Quadratic Gaussian) controller as the local
planner µj . Accordingly, one can characterize a unique normal
distribution bs,j = N (mj , P j) which is reachable under µj

[21]. Covariance matrix P j is the solution of the Riccati
equation associated with a Kalman filter designed about mj .
Fig. 2 shows a cartoon of a set of sampled beliefs. We denote
the set of milestones in state space by M = {mj} and the
set of milestones in belief space by V = {bs,j}.

Connecting belief nodes: Since these belief nodes are com-
puted offline, we can compute the edge costs in the belief space
offline as well. Therefore, for the edge going from bs,i to bs,j ,
we simulate the system evolution under the local controller µj

and compute the following edge cost:

cs(bs,i, µj) := E
T∑
k=0

c(bsk, µ
j(bsk)), bs0 = bs,i (3)

where T is the time step at which bsT enters into an ε-ball
around bs,j . The expectation in (3) can be computed through
Monte Carlo simulations as all these computations are carried
out offline. We denote the set of all edges (local planners) by
L = {µj} and the set of edges outgoing from the i-th node
by L(i).

B. Global planner

In this section, we design the global planner that incor-
porates the notion of the health/capability into planning. In
general, it is desirable to have a FIRM graph in the entire
belief space, solve a Dynamic Programming on the graph,
and compute the solution π : V → M offline [21]. However,
due to the challenging task of designing globally reachable
beliefs for variables such as health and capability, constructing
a graph in non-stabilizable belief space is a formidable task.
Consequently, we rely on a forward search to generate a search
tree and find the best sequence of edges µ0:∞ that minimizes
the cost function and respects the constraints.

Search tree: Each node n of the search tree is a probability
distributions b over the system’s state which is stored in two
parts n[bs] and n[bn] based on Eq. (1). To construct the tree,
we expand the root node by selecting local planners from the
set of edges outgoing from n[bs] in the underlying FIRM, and
propagating the probability distributions to get the child nodes
in the tree, and repeat the same procedure from the child nodes
to construct the tree. Figure 3 shows such a search tree over
non-stabilizable belief space for the search depth of three.

Belief propagation along tree edges: First, note that there
is no need to propagate bs along the edge as it is known a
priori that at the end of the edge we will reach bs,j . Hence,
nk+1[bs] = bs,j due to the FIRM structure. Therefore, taking
edge (or local planner) µj at node nk we only need to
propagate belief nk[bn] along the edge. To do so, we use
particle filters over the edge to get the belief trajectory bn0:T ,
where bn0 = nk[bn]. Belief bnT at the end of the edge will define
the next node, i.e., nk+1[bn] = bnT . According to the definition
of bn (see Eq. (1)), the evolution of bn in future time steps
depends on the future observations and realizations of xs that
are unknown a priori. One can consider all possible values
for these unknown variable in future time steps and predict
all possible trajectories bn0:T . However, to bound the forward
search computation we use the maximum likelihood values for
unknown variables in future time steps as a typical assumption
in belief space planning [16, 26]. However, it is important
to note that there are no maximum likelihood assumptions
in propagating bs as it is done offline and we can consider
all possible values for future measurements [21]. This leads
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Fig. 3. Illustrates the search tree in the non-stabilizable belief space for the
depth of three (corresponding to the graph in Fig. 2). Taking edges µ1 and
µ4 drives the system to recharge stations, where the non-stabilizable belief
gets reset.

to more reliable plans compared to traditional methods that
fully rely on maximum likelihood assumption. We denote the
node propagation (or distribution propagation) along edge µ
by nk

µ→ nk+1.
Edge cost: To search over the tree, we associate a cost to

each transition on the tree. The cost associated with taking
edge µ at node n (with joint belief b0 = n[bn0 ]n[bs0]) is the
total cost that incurs under the local planner µ = (µs, µn):

c(n, µ)=E
T∑
t=0

c(bt, ut)=g(E
T∑
t=0

cs(bst , u
s
t ),E

T∑
t=0

cn(bnt , ut))

= g(cs(bs0, µ
s), cn(bn0 , µ)), bs0 = n[bs], bn0 = n[bn] (4)

where cs(bs0, µ
s) is the cost of taking local controller µs at

belief bs0. Similarly, cn(bn0 , µ) denotes the cost of taking local
controller µn at belief bn0 . cs is computed offline as discussed
in (3), but cn is computed online since it depends on bn.

RHC-based formulation: At every step, the receding horizon
control (RHC) algorithm performs a two-stage procedure. At
the first stage, RHC computes an open-loop sequence of edges
over a finite horizon H . In the second stage, it only executes
the first edge in the sequence and discards the rest. This two-
stage procedure is repeated from the new node. The first stage,
i.e., finding the optimal sequence of edges µ0:H from a given
node n is formulated as minimizing the following cost-to-go
function, whose cost function and constraints are induced by
the original problem in (2):

µ∗0:H = π(n) = arg min
µ0:H

E
H∑
k=1

c(nk, µk), n0 = n

s.t. : nk
µk→ nk+1, ∀k

Pr(xst ∈ F s|z0:t, u0:t−1) < δs, xs0 = nk[xs], t ≤ T (µk)

Pr(xnt ∈ Fn|z0:t, u0:t−1) < δn, xn0 = nk[xn], t ≤ T (µk)

nk[bn]← τstation(nk[bn]), if nk[bs] ∈ Vstation (5)

where c(nk, µk) is the cost associated with taking the edge
µk at node nk. The node nk+1 is the resulting node of taking
edge µk at node nk. Vstation ⊂ V is the subset of FIRM
nodes that correspond to milestones lying in station areas S.

Efficient search via decomposition: To find µ∗0:H we need
to generate a forward search tree of depth H at every step.
However since the tree grows exponentially (see Fig. 3),
computing the costs c(nk, µk) and evaluating constraints in
(5) is computationally very expensive, in particular for high-
dimensional systems. However, by decomposing the state
space to stabilizable and non-stabilizable parts, we limit the
forward search to the non-stabilizable part. Therefore, in prob-
lems such as the health-aware planning problem, where the
non-stabilizable part has a much lower dimension compared
to the full belief space, the forward search can be performed
efficiently. The cost decomposition is carried out based on
(4), where cs and cn denote the cost associated with the
vehicle-level and mission-level variables, respectively. For all
edges, cs can be retrieved from the stored values and do not
need to be recomputed. Similarly, the probability of violating
vehicle-level constraints F s can be computed offline, while the
probability of violating mission-level constraints Fn needs to
be computed online.

Cost-to-reach: To perform the forward search, we assign a
cost-to-reach to each node of the search tree. The cost-to-reach
associated with node n on the tree is denoted by n[ctr], which
indicates the cost of reaching node n starting from the root.

nk[ctr] = npk−1[ctr] + c(npk−1, µ
np,n) (6)

where np is the parent node of n in the tree, and µnp,n is the
edge connecting np to n.

Algorithm 1 illustrates the procedure of the proposed RHC
algorithm.

IV. SIMULATION RESULTS

In this section, we consider a mission where the objective
is to persistently deliver packages from the base to delivery
locations via a quadrotor UAV with a limited battery life. The
battery voltage decreases while the quadrotor is operational,
and the rate of decrease depends on the amplitude of the
wind gusts at the quadrotor’s current location. Whenever the
quadrotor lands on a recharge station, the current battery is
replaced with a fresh battery, hence the mission can continue
indefinitely if the quadrotor reaches a recharge station before
the current battery is dead. In addition, quadrotor’s actuators
are subject to degradation and the probability of landing
successfully on a delivery location is coupled directly with the
actuator’s health status. It is assumed that when the quadrotor
is at a repair station, all failures are repaired and the actuators
are restored to their original state. Moreover, the battery level
and the actuator health status is not directly available and
needs to be estimated from noisy measurements. The overall
objective of the planner is to compute a policy such that
the quadrotor makes trips between the base and delivery
locations persistently, while ensuring that the quadrotor does



Algorithm 1: Forward search to solve RHC optimization

1 input : Initial stabilizable belief bs0, Initial
non-stabilizable belief bn0 , Search depth H

2 output : Next edge (or local controller) µ
3 Set n0[bs] = bs0, n0[bn] = bn0 , n0[ctr] = 0, n0[P s] =

0, n0[Pn] = 0, n0[path] = ∅;
4 Set OPEN = {n0};
5 while min(|n[path]|) < H do
6 Pop n from OPEN, where n = arg min

n̄∈OPEN
|n̄[path]|;

7 foreach µ outgoing from n do
8 Propagate belief bn under µ to get the belief

trajectory bn0:T ;
9 Set n′[bn] = bnT and set n′[bs] to the target node

of µ in FIRM;
10 Retrieve P s = Pr(xs0:k ∈ F s) from FIRM;
11 Compute Pn = Pr(xn0:k ∈ Fn);
12 Compute n′[P s]← 1− (1− n[P s])(1− P s);
13 Compute n′[Pn]← 1− (1− n[Pn])(1− Pn);
14 if n′[P s] < εs and n′[Pn] < εn then
15 Retrieve cs(n[bs], µs) from FIRM;
16 Compute cn(n[bn], µ) based on bn0:T ;
17 n′[ctr] = n[ctr] + g(cs, cn);
18 n′[path] = n[path] ∪ {µ};
19 Push n′ to OPEN;

20 Find n∗ ∈ OPEN which has the minimum n[ctr];
21 return µ∗ as the first edge in n∗[path];

not crash because of a depleted battery and the actuators
are healthy enough to perform successful landings. In the
subsequent subsections, we provide the mathematical model
of the mission.

1) State and Action Space: The stabilizable part of state
(i.e., xs) consists of (px, py, pz, ṗx, ṗy, ṗz, φ, θ, ψ, φ̇, θ̇, ψ̇),
where p = (px, py, pz) ∈ R3 denotes the position of the
quadrotor and (φ, θ, ψ) ∈ [−π, π]3 denotes the orientation of
the quadrotor. The input space of the quadrotor consists of
u = (δ̂collective, δroll, δpitch, δyaw), where inputs are the col-
lective, roll, pitch, and yaw commands, respectively. The non-
stabilizable part of state (i.e., xn) consists of xn = (v, ζ, d),
where v ∈ [0, vmax] is the voltage-drop across the battery with
vmax being the maximum voltage. ζ ∈ {0, 1, 2, ..., ζmax} is
the actuator health status where ζmax is the maximum actuator
health and d ∈ {0, 1} is a binary variable that indicates if the
quadrotor is carrying a package or not.

2) State Transition Model: The continuous stochastic state
transition model of the vehicle-level states xs is given as:

ẋs = fs(xs, us) + w, w ∼ N (0, Q), (7)

where w is the vehicle motion noise drawn form a zero-mean
Gaussian distribution with covariance matrix Q. The function
fs is given as (see [27] for details):

fs(xs, u) = (ṗx, ṗy, ṗz, gφ,−gθ,m−1δ̂collective, φ̇, θ̇, ψ̇,

LI−1
x δroll, LI

−1
y δpitch, I

−1
z δyaw)T , (8)

where g = 9.81m/s2 is the gravitational constant, m =
0.650Kg is the mass, L = 0.23 meter is the length, and
(Ix, Iy, Iz) = (0.0075, 0.0075, 0.013) Kg · m2 are moments
of inertia of the quadrotor.

The stochastic state transition model of the non-stabilizable
part is given as follows. Let us denote the region correspond-
ing to the recharge station by Xrech ⊂ Xs. Whenever the
quadrotor is not in a recharge station, i.e., xs /∈ Xrech, the
battery dynamics are given as follows,

q̇=


1

CbRp
− 1
CcpRp

1
CsRp

1
CbRp

− 1
CcpRpRcp

1
CsRp

1
CbRp

1
CcpRp

1
CsRp

q + (i+ wq)13×1, (9)

where, q is the charge stored across the three capacitors in
the equivalent circuit model , Cb, Ccp, Cs and Rp, Rb, Rcp are
the capacities and resistances of the equivalent circuit model
of the battery [28], i is the current drawn from battery and
wq ∼ N (0, Qq) is the process noise with intensity Qq . 13×1

is a three-by-one vector of ones. The process noise has a
greater intensity in windy areas as the system will draw more
current depending on the deviations caused by the wind. This
dependency will be discussed further below. The voltage-drop
across the battery is given by v = (C−1

b , C−1
p , C−1

s )q. If the
quadrotor is at a recharge station, i.e., xs ∈ Xrech, the current
battery is replaced with a full battery, and v will be reset to
its maximum value.

The actuator health dynamics are given as follows. Let us
denote the base region by Xrepair ⊂ Xs and the actuator
health by ζk at the k-th time step, where {0, 1, 2, ..., ζmax}
is the space of all possible actuator health states. The health
transition model is described by:

Pr(ζk+1 = x|ζk = x, xsk /∈ Xrepair) = pa

Pr(ζk+1 = x− 1|ζk = x, xsk /∈ Xrepair) = 1− pa (10)

where pa ∈ [0, 1] is the probability that actuator’s health will
stay at the same level at the next time step. If ζk = 0, then
actuator is completely failed and the quadrotor is not capable
of flying. If the quadrotor is at a repair station, then the actuator
is restored to ζmax, that is Pr(ζk+1 =ζmax|xsk∈Xrepair)=1.

Finally, let us represent the locations of the base and
delivery zones by Xbase ⊂ Xs and Xdel ⊂ Xs, respectively.
The package dynamics are given as follows,

Pr(dk+1 = 1|dk = 0, xsk ∈ Xbase) = ζkζ
−1
max

Pr(dk+1 = 0|dk = 1, xsk ∈ Xdel) = ζkζ
−1
max. (11)

that is the probability of making a successful delivery or pick-
up depends on the actuator health of the quadrotor.

3) Observation Model: In the posed problem of persistent
package delivery, the measurements z = (zs, zn) consist of
the vehicle-level state measurements zs and mission-level state
measurements zn.

Vehicle-level measurements: Depending on the vehicle’s
location, the vehicle may have access to absolute state infor-
mation, or use landmarks to perform delivery in GPS-denied



environments. We assume there exist nl landmarks with the
known location in the environment that are mainly distributed
in GPS-denied parts of the environment and in the vicinity
of the delivery location to ensure a precise package delivery.
Therefore, we have zs = (zabs, 1z, 2z, · · · , nlz) where, the
absolute observation is zabs = xs + vabs with Gaussian
noise vabs ∼ N (0, Rabs) with constant covariance Rabs. iz
the measurement from the i-th landmark consists of relative
distance and bearings to the landmark, and its noise intensity
is proportional to the distance to the i-th landmark. The exact
model can be found in [29].

Mission-level measurements: The measurements associated
with xn are shown by zn = (zv, zζ , zd). It is assumed that
the voltage drop is measurable from the battery dynamics as
zv = v+ ṽ, where ṽ is drawn from zero mean Gaussian noise
with variance Rv . The actuator health ζ is measured by a
diagnostic system [30]. The measurement signal at the k-th
time step is denoted by zζk = ζk + ζ̃k, where the measurement
error ζ̃k is modeled as the following non-Gaussian distribution
Pr(ζ̃k = −1) = Pr(ζ̃k = 1) = ph and Pr(ζ̃k = 0) = 1− 2ph.
where 0 ≤ ph ≤ 0.5 is the probability that the diagnostic
system under- or over-estimates the vehicle health. Finally, it
is assumed that dk is fully observable, i.e., zdk = dk. In other
words, the vehicle is perfectly aware if it is carrying a package
or not at all times.

4) Cost Function: In the current simulations, the cost
function only depends on the mission-level variables. We
assume the agent collects 0 cost whenever it delivers or picks-
up a package, and it collects 1 cost at every other state.

5) Constraints: In addition to constraints over the vehicle-
level states (e.g., avoiding obstacles), the following chance
constraints are put on battery and actuator dynamics: Pr(vk <
0.01) < 0.001, Pr(ζk = 0) < 0.001. In other words, the
probability that battery is completely consumed or the actuator
is completely failed has to be small.
A. Simulation Results

This subsection provides simulation results for the proposed
health-aware planning framework for persistent package deliv-
ery missions. Figure 4 shows an environment with 9 obstacles.
A PRM with 14 nodes and 46 edges, which approximates the
connectivity of the constraint-free space, is shown in blue.
One of the nodes is associated with the base, two nodes
with recharge/repair stations, and one node with the delivery
location. Packages are initially in the base location and need
to be picked up and delivered to the delivery location.

Wind model: The darker regions in Fig. 4 correspond to
windy areas. The bell shaped function W(xs) (see [29] for
the exact model) returns the wind intensity for any given
location xs of the quadrotor. The standard deviation of the
fuel consumption noise is linearly related to the wind intensity
Qq = (

√
Qqbias+ηW(x))2, where Qqbias is a part of covariance

that is independent of the wind.
For the given vehicle, fuel, and health dynamics, we apply

the proposed health-aware method with search depth H = 4
and compare it with a pure reactive method, over a range of
wind intensities by varying the parameter η. In the consid-
ered pure reactive method, the robot goes toward the closest

Base 
node

Recharge 
node

Recharge 
node

Delivery 
node

Fig. 4. The simulation environment with obstacles (brown), PRM graph
(blue), landmarks (stars), and windy areas (grey regions).

recharge station when its fuel or health drops below the 10%
of the nominal (maximum) fuel or health. Otherwise it goes
toward the base or delivery depending on its package state
value. Although the reactive planner delivers more packages
(since it tends to directly go from the base to the delivery
location) in some cases, but it fails to persistently continue
the mission and hence the number of delivered packages per
run is significantly lower than the proactive case.

The second comparison aims to shed light on what hap-
pens if we ignore the exploited structure in this paper and
propagate the joint belief of vehicle-level and mission-level
states. In that case, one needs to compute the vehicle-level
costs and constraints (collision probabilities) online which
can be arbitrarily expensive depending on the environment.
Moreover, since the dimension increases, the number of Monte
Carlo samples should significantly increase to achieve the
same accuracy in approximating the probability of constraint
violation. Thus, the search horizon has to be shorter to handle
this extra computation online. To show the effect of horizon
on the performance, we run our algorithm with H = 2.

Figures 5 and 6 show the mean and variance of the number
of delivered packages and the number of failures for different
values of η. For each η, we perform 20 Monte Carlo runs
to compute the mean and variance, where each run lasts for
2000 steps (on average, traversing each edge takes about 30
time steps). As it can be seen in these figures, increasing the
wind intensity, the failure rate for the pure-reactive method
significantly increases, whereas the health-aware planner can
take the stochasticity of the health and its measurement into
account and provide more robust plans.

V. CONCLUSION

This work developed a health-aware planning algorithm
for persistent missions over partially observable domains.
The algorithm works on a belief space that is decomposed
into vehicle-level (stabilizable part) and mission-level (non-
stabilizable part, such as health, fuel, etc.) parts and corre-
spondingly applies graph based methods and forward search to
each of these parts to generate a policy. Due to computational
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Fig. 6. Number of failures at different wind noise intensities

complexity reductions that result from this decomposition, the
algorithm can generate proactive plans over larger-scale do-
mains as well as real-time replanning capabilities that cannot
be handled by existing belief space planning approaches. The
performance of the algorithm is demonstrated on a simulated
persistent package delivery mission using quadrotors under
stochastic battery and actuator degradation dynamics. It is
shown that, compared to alternative approaches that ignore the
health dynamics or the existing structure in the HAP problem,
the developed approach significantly reduces the number of
failures while delivering an acceptable number of packages.
As a future work, we are planning to implement the algorithm
on actual quadrotors and recharge stations.
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