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MARTINGALE METHODS IN STOCHASTIC CONTROL

M.H.A. Davis

Abstract

The martingale treatment of stochastic control problems is based on
the idea that the correct formulation of Bellman's "principle of optiraality"
for stochastic minimization problems is in terms of a submartingale inequal-
ity: the "value function" of dynamic programming is always a submartingale
and is a martingale under a particular control strategy if and only if that
strategy is optimal. Local conditions for optimality in the form of a mini-
mum principle can be obtained by applying Meyer's submartingale decomposition
along with martingale representation theorems; conditions for existence of an
optimal strategy can also be stated.

This paper gives an introduction to these methods and a survey of the

results that have been obtained so far, as well as an indication of some
shortcomings in the theory and open problems. By way of introduction we
treat systems of controlled stochastic differential equations, the case for
which the most definitive results have been obtained so far. We then outline
a general semimartingale formulation of controlled processes, state some
optimality conditions and indicate their application to other specific cases
such as that of controlled jump processes. The martingale approach to some
related problems - optimal stopping, impulse control and stochastic differen-
tial games - will also be outlined.

Paper presented at the Workshop on Stochastic Control Theory and Stochastic
Differential Systems, University of Bonn, January, 1979. Proceedings to be
published in the Springer-Verlag Lecture Notes in Control and Systems Sci-
ences Series, edited by M. Kohlmann.
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1. INTRODUCTION

The status of continuous-time stochastic control theory ten years ago is ad-

mirably summnarized in Fleming's 1969 survey paper [40]. The main results, of which

a very brief outline will be found in §2 below and a complete account in the book

[41), concern control of completely-observable diffusion processes, i.e. solutions

of stochastic differential equati6ns' Formal application of Bellman's "dynamic

programming" idea quickly leads to the "Bellman equation" (2.3), a quasi-linear para-

bolic equation whose solution, if it exists, is easily shown to be the value func-

tion for the control problem. At this point the probabilistic aspects of the pro-

blem are finished and all the remaining work goes into finding conditions under

which the Bellman equation has a solution. The reason why dynamic programming is a

fruitful approach in stochastic control is precisely that these conditions are so

much weaker than those required in the deterministic case. As regards problems

with partial observation the best result was Wonham's formulation of the "separation

theorem" [78] which he proved by reformulating the problem as one of complete ob-

servations, with the "state" being the conditional mean estimate produced by the

Kalman filter; see §6 below.

* Work supported by the U.S. Air Force Office of Sponsored Research under

Grant AFOSR 77-3281 and by the Department of Energy under Contract EX-76-A-01-2295.



The dynamic progra ming approach, whil.e successful in malny applications, suf-

fers from many limitations. iAn immediate one is that the controls have to be smooth

functions of the state in order that the resulting stochastic differential equation

(2.1) have a solution in the Ito sense. This rules out, for example, "bang-bang"

controls which arise naturally in some applications (e.g. [3]). Thus a weaker for-

mulation of the solution concept seems essential for stochastic control; this was

provided by Stroock and Varadhan [71] for Markov processes and by various forms of

measure transformations, beginning with the Girsanov Theorem [43], for more general

stochastic systems; these are outlined in §3. But even with the availability of

weak solution concepts it seems that the Bellman equation approach is essentially

limited to Markovian systems and that no general formulation of problems with

partial observations is possible (A Bellman equation for partially observed diffus-

ions was formally derived by Mortensen [65], but just looking at it convinces one

that some other approach must be tried).

Since 1969 a variety of different approaches to stochastic control have been

investigated, among them the following (a very partial list). Krylov [51] has stud-

ied generalized solutions of the Bellman equation; methods based on potential theory

[5] and on convex analysis [7] have been introduced by Bismut; necessary conditions

for optimality using general extremal theory have been obtained [44] by Haussmann; a

reformulation of dynamic programming in terms of nonlinear semigroups has been given

by Nisio [66]; variational inequality techniques have been introduced by Bensoussan

and Lions [4], and computational methods systematically developed by Kushner [54].

This suryey outlines the so-called "martingale approach" to stochastic control.

It is' based on the idea of forMulating Bellman's "principle of optimality" as a

submartingale inequaZlity and then using Meyer's submartingale decomposition [63] to

obtain local conditions for optimality. This is probably the most general form of

dynamic programming and applies to a very general class of controlled processes, as

outlined in §5 below. However, more specific results can be obtained when more

structure is introduced, and for this reason we treat in some detail in § §4,6 the

case of stochastic differential equations, for which the best results so far are

available. Other specific cases are outlined in §7. i

I have attempted to compile, in §9, a fairly complete list of references on

this topic and related subjects Undoubtedly this list will suffer from important

omissions, but readers have my assurance that none of these is intentional. It

should also be mentioned that no systematic coverage of martingale representation

theorems has been attempted, although they are obviously germane to the subject.



2. CONTROL OF DIFFUSION PROCESSES

To introduce the connection between dynamic programming and submartingales, let

us consider a control problem where the n-dimensional state process xt satisfies the

Ito stochastic differential equation

(2.1) dx t - f(t, xt, ut)dt + Co(t, xt)dwt

xO = (e R

Here w t is an n-dimensional Brownian motion and the components of f and c are C1

functions of x, u, with bounded derivatives. The controlZ ut is a feedback of the

current state, i.e. ut = u(t, xt ) for some given function u(t, x) taking values in

the control set U. Ifu is Lipschitz in x, then (2.1) is a stochastic differential

equation satisfying the standard Ito conditions and hence has a unique strong solution

xt. The cost associated with u is then

J(u) = EJ c(t, xt, ut)dt + 4(X )

where T is a fixed terminal time and c, ~ are, say, bounded measurable functions.

The objective is to choose the function u(',·) so as to minimize J(u). An extensive

treatment of this kind of problem will be found in Fleming and Rishel's book [41 ].

Introduce the value function

(2.2) V(t, x) = inf E ) c(s, x , u )ds + 4(xT)]u (t, x) s s T

Here the subscript (t, x) indicates that the process x starts at xt = x, and the

infimum is over all control functions, restricted to the interval [t, T]. Formal ap-

plication of Bellman's "principle of optimality" together with the differential for-

mula suggests that V should satisfy the BeZZman equation: ----- ----. 

(2.3) Vt + 1/2 (ao')i j V + md [V' f(t, x, u) + c(t,x,u)]= O t 1 j X.X. u x
ij 

.... .....

(t, x) e [0, T[ x R i- ,

(2.4) - V(T, x) = (x), xR ------- ... - -

(Vt = WV/at etc., and Vt, V etc. are evaluated at (t, x) in (2.3)). There is a~~~~~~it x
;"verification theorem" [41 ,§ VI 41 which states that if V is a solution of (2.3),

(2.4) and u is an admissible control with the property that
·._.i, i ? .. ..

·.- V'(tx) f(txu°(t,x)) + c(t,x,u(tx)) = mj [Vx)(t,x) f(t,x,u) + c(t,x u)]

then u* is optimal. Conditions under which a solution of (2.3), (2.4) is guaranteed

will be found in [41 ,§ VI 6]. Notable among them is the uniform ellipticity condi-

tion: there exists K>O such that

(2.5) > (K-1)ij m I > Kj C
ijij-'

for all S¢Rn. This essentially says that noise enters every component of equation

(2.1), whatever the coordinate system.



Let us reformulate these results in martingale terms, supposing the conditions

are such that (2.3), (2.4) has a solution with suitable growth properties (see below).

For any admissible control function u and corresponding trajectory xt define a process

Mt as follows:
tAt

(2.6) MUt c(s, x , us)ds + V(t, x t )

u
Note that Mt is the minimum expected total cost given the evolution of the process

up to time t. Expanding the function V(t, xt ) by the Ito rule gives

(2.7) Mt = V(O, t [V + 1/2 (')ij Vx.ix + v' f + cds + V dw

where f (t,x) = f(t, x, u(t, x)). But note from (2;3) that the integrand in the

second term of (2.7) is always non-negative. Thus this term is an increasing process.

If u is optimal then the integrand is identically zero. Assuming that the function

V is such that the last term is a martingale, we thus have the following result:

(2.8) For any aadmissible u, MU is a submartingaZe and u is optimal if and only

if Mt is a martingale.

The intuitive meaning of the submartingale inequality is clear: the difference

E[MU Ix r<s] - MU
t )s

is simply the expected cost occasioned by persisting in using the non-optimal control

over the time interval [s, t] rather than switching to an optimal control at time s.

The other noteworthy feature of this formulation is that an optimal control is con-

structed by minimizing the HamiZtonian

H(t,x,V ,U ) = V' f(t,x,u) + c(t,x,u)

'and, conveniently, the "adjoint variable" V is precisely the function that appears
x

in the integrand of the stochastic integral term in (2.7). 

Abstracted from the above problem, the "martingale approach" to stochastic con-

trol of systems with complete observations (i.e. where the controller has exact

knowledge of the past evolution of the controlled process) consists of the following

steps:

1. Define the value function V and conditional minimal cost processes M as
t t

in (2.2), (2.6) ........ ..... .....- ...................... - ......

2. Show that the "principle of optimality" holds in the form (2.8)

3. Construct as optimal policy by minimizing a Hamiltonian, where the adjoint

variable is obtained from the integrandiin a stochastic integral represen-

tation of the martingale component in the decomposition of the submartingale

Mt.

In evaluating the cost corresponding to a control policy u in the above problem,

all that is required is the sample space measure induced by the xt process with



control u. It is also convenient to note that the cost can always be regarded as a

terminal cost by introducing an extra state variable xt defined by

(2.9) dx 0 = c(t, xt, ut )dt + dw
0

where wo is an additional Brownian motion, independent of wt. Then since E wT = 0
t T

we have

(2.10) J(u) = E [xo + D(xT) ] = E [~(xT, xT )]

Let C denote the space of Rn +l- valued continuous functions on [0, T] and (Ft) the

increasing family of u-fields generated by the coordinate functions {Xt} in C. Since

(2.1), (29) define a process (xo, xt) with a.s. continuous sample functions, this

induces a measure, say p , on (C, FT ) and the cost can be expressed as

J(u) (XT, XT) p (dX)

It turns out that each p is absolutely continuous with respect to the measure H

induced by (x, x ) with f c - 0. Thus in its abstract form the control problem

has the following ingredients:

(i) A probability space (Q, FT, P)

(ii) A family of measures (p , ueU) absolutely continuous with respect to

(or, equivalently, a family of positive random variables (k ) such that

E Q = 1 for each ueU)
u

(iii) An F -measurable random variable ¢

The problem is then to choose uC-U so as to minimize E u = E [ I]. In many cases it
u u

is possible to specify the Radon-Nikodym derivative Q directly in order to achieve

the appropriate sample-space measure. We outline this idea in the next section before

returning to control problems in section 4.

3. ABSOLUTELY CONTINUOUS TRANSFORMATION OF MEASURES

Let (Q, F, P) be a probability space and(Ft)0<t<l be an increasing family of

sub-o-fields of F such that

(i) Each Ft is completed with all null sets of F

(3.1) (ii) (Ft ) is right-continuous: F s>t F
(3.1) t t s>t s

(iii) F is the completion of the trivial a-field {0, Q}.
0

(iv) F1 = F

Suppose P is a probability measure such that P <<P. Define

(3.2) L1 = dPu/dP

and

(3.3) Lt = E [L1 IFt
]



Then Lt is a positive martingale, ELt = 1, and L = 1 a.s. in view of (3.1) (iii).

According to [63 , VI T4] there is a modification of (Lt ) whose paths are right-

continuous with left hand limits (we denote Lt = 1% Ls). Define

T = 1 A inf {t: Lt Lt_ = 0}

T = 1 ^ inf{t: L < 1/n }
n t

Then T +1, T <T and Meyer shows in [64 , VI ] that Lt(w) = 0 for all t > T(w), a.s.

Suppose (Xt ) is a given non-negative ZocaZ martingale of (Ft ) with X =1 a.s.

Then Xt is always a supermartingale, since, if s is an increasing sequence of
t n

localizing times and s<t, using Fatou's lemma we have:

x = lim XA =lim E[X IF ] > E[lim inf X Fs ] = E[X IF ]
s n sAs n t^s s -n ts s t^s s

n n n n

It follows that EXt < 1 for all t and Xt is a martingale if and only if EX1 = 1.

This is relevant below because we will want to use (3.2), (3.3) to define a measure

P from a given process Lt which, however, is a priori only known to be a local

martingale.

Let (Mt ) be a local martingale of (Ft) and consider the equation

(3.4) Lt 1 + L dM
s- s

0

It'was shown by Doleans-Dade [28 ] (see also [64 , IV 25], that there is a unique local

martingale (Lt ) satisfying this, and that Lt is given explicitly by

-AM

Lt = exp (Mt - 1/2 <M c , MC>t) sit (1 + AM ) e
t _

Here Mc is the "continuous part" of the local martingale M t (see [ 64, IV 9] and the

countable product is a.s. absolutely convergent. We denote Lt =E(M)t (the "Doleans-

Dade exponential"). - -

Suppose AM > -1 for all (sky). Then Lt is a non-negative local martingale, and

hence according to the remarks above is a martingale if and only if EL1 = 1. Its

utility in connection with measure transformation lies in the following result, due

to van Schuppen and Wong [69 . -

(3.5) Suppose EL1 1 and define a measure P on (Q, F1) by (3.2). Let x be a

locaZ martingale such that the cross-variation process M<, M> exists. Then

: Xt - <X, M> is a P locaZ martingaZle.

Note that from the general formula connecting Radon-Nikodym derivatives and

conditional expectations we have

(3.6) E (XtF s) = E[L
L

and consequently X-local martingale if and only if is a Plocal maringale

and consequently Xt is a P -local martingale if and only if XtLt is a P-local martingale.

One readily verifies that this is so with X defined as above, using the general
t

change of variables formula for semimartingales [64 , IV 21].

Conditions for the existence of <X, M> are given by Yoeurp [79 ]. Recall that



the "square brackets" process [x, M] is defined for any pair of local martingales

x, M by

[X, M] = <Xc , Mc> + s- Ax AM
t s<t s 5

Yoeurp defines <X, M> as the dual predictable projection (in the sense of Dellacherie

[ 27]) of [X, MI, when this exists and gives conditions for this [ 79, Thm. 1.12].

(This definition coincides with the usual one [ 52] when X and M are locally square

integrable.) In fact a predictable process A such that X-A is a P -local martingale

exists only when these conditions are satisfied (see also [ 64, VI 22]).

An exhaustive study of conditions under which EE(M)i = 1 is given by Lepingle

and Memin in [ 57]. A typical condition is that AM > -1 and
-AM 

(3.7) E [exp (1/2 <Mc , Mc >1 l (1 + AMt) exp(+iMt) ]< 

This generalizes an earlier condition for the continuous case given by Novikov

[ 67]. We will mention more specific results for special cases below; see also

references [2],[3], [12], [13], [30], [36], ·[43], [56], [60], 1277]. -

Let us now specialize the case where xt is a Brownian motion with respect to

the G-fields Ft, and Mt is a stochastic integral

M = I X . ... ' .. . .
t J0 s d

where 4s is an adapted process satisfying

(3.8) ft 42 ds < " a.s. for each t

t 2

Then <M M>t = <MM = ds and <, X>t = sds so that 

(3.9) Lt =exp dX -/ds)

and

(3. 10) Bt = Xt - ds 

in a P -local martingale (assuming EL1 = 1). Since Xt has continuous paths, <X,X >t

is the sample path quadratic variation of t [ 52] and this is invariant under abso-

lutely continuous change of measure. It follows from (3.10), since the last term

is a continuous process of bounded variation, that - . ... -.:
(P ) : I

<B, B>t <X, X>t t 

and hence that Bt is a P -Browznian notion, in view of the Kunita-Watanabe characteri-

zation [ 64, III 102]. This is the original "Girsanov theorem" [ 43]. A full account

of it will be found in Chapter 6 of Liptser and Shiryaev's book [ 60]. In particular,

theorem 6.1 of [ 60] gives Novikov's condition: EL1 = 1 if 4 satisfies (3.7) and

(3.11) E exp(l/2 J 2ds) < 



The Girsanov theorem is used to define "weak solutions" in stochastic differential

equations. Suppose f : [0, 1] x C + R is a bounded non-anticipative functional on

the space of continuous functions and define

4(t, W) = f(t, x(',I))

where xt is a P-Brownian motion as above. Then (3.11) certainly holds and from (3.10)

we see that under measure P the process xt satisfies
u 

(3.12) dx t = f(t, x)dt + dBt

where Bt is a P -Brownian motion, i.e. (xt, Ft, P ) is a "weak solution" of the sto-t u u
chastic differential equation (3.12). (It is not a "strong" or "Ito" solution since

B does not necessarily generate x; a well-known example of Tsyrelson [ 72], [ 60,

§4.4.8] shows that this is possible). The reader is referred to [ 60] for a compre-

hensive discussion of weak and strong solutions, etc. Suffice it to say that the

main advantage of the weak solution concept for control theory is that there is no

requirement that the dependence of f on x in (3.12) be smooth (e.g., Lipshitz as the

standard Ito conditions require), so that such things as "bang-bang" controls [ 3 ],

[21] fit naturally into this framework.

4. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS - COMPLETE OBSERVATIONS CASE

This problem, a generalization of that considered in §2, is the one for which

the martingale approach has reached its most definitive form, and it seems worth

giving a self-contained outline immediately rather than attempting to deduce the re-

sults as special cases of the general framework considered in §5. The results below

were obtained in a series of papers: Rishel [68, Beneg [ 2], Duncan and Varaiya PO ,

Davis and Varaiya [25], Davis £6 ], and Elliott [34].

Let Q be the space of continuous functions on [0, 1] to R , (wt ) the family of
t

coordinate functions and F0 = {Ws s < t}. Let P be Wiener measure on (Q, FO) and

Ft be the completion of F0 t with null sets of FO. Suppose : [0, ]x Q R x n is a

matrix-valued function such that - -. .

(i) Oij ' ,) is Ft- predictable

(4.1) (ii) . ij(t, x) ij(t, y) < K Sut xs - ys .. .
i ..... .. ... ...... .....

(iii) a(t, x) is non-singular for each (t, x) and < K

(Here K is a fixed constant, independent of t, i, j)-fhen there exists a unique

strong solution to the stochastic differential equation

dx t = a(t, x)dwt, x eRn given.

Now let U be a compact metric space, and f: [0, 1] x C x U + R a given function which

is continuous in ueU for fixed (t, x) e [0, 1] x C, an Ft-predictable process as a

function of (t, x) for fixed uCU,and satisfies



(4.2) If(t, x, u) I < K(l + s I� i)

Now let U be the family of F -predictable U-valued processes and for ueU define

Lt (u) = exp( (Cl(s,x) f(sx,u ))'dw - 1/2 ft ylfI2ds)
0 0

The Girsanov theorem as given in §3 above generalizes easily to the vector case, and

condition (4.2) implies the vector version of Novikov's condition (3.10) (see [60,

-p. 221]). Thus ELl (u) = 1 and defining a measure P by

dP

L (u)
dP L 

we see that under P the process xt satisfies
U

(4.3) dx t = f(t,x,ut)dt + C(t,x)dw t

where wt is a P -vector Brownian motion. The cost associated with ueU is now
t u

(4.4) J(u) = E [ c(tx,u t)dt + ~(x!)]

0

where c, re bounded measurable functions and c satisfies also the same condition as

f.

It is clear that a must be non-singular if weak solutions are to be defined as

above (cf. the uniform ellipticity conditions (2.5)), but an important class of

"degenerate" systems is catered for, namely those of the form

1 1 1 2
(4.5) dxt f (t,xt, x)dt

2 2 1 2 1 2
(4.6) d . .(4.6) dxt f (txt,Xt, t)dt + c(t,xt xt)dw

where a is nonsingular and fl is Lipschitz in x uniformly in (t,x). Then (4.5) has

a unique solution xt = Xt(x ) for each given trajectory x2 , and (4.6) can be rewritten

as . ' , ~ -

2 2 22 2 2
--- = -dx = dt (t,Xt(x ),x )dwt + (t t( )

which is in the form (4.3). This situation arises when a scalar n'th-order differen-

tial equation is put into lst-order vector form. ! .

Fix tE[0,1] and define the conditional remaining cost at time t as --

EJ c (x,s)ds + i(x1) IFt]

U U.
(Here and below we will write c(x,s,u ) as-c (x,s) or c , and similarly for f). It

s ss fro the fru (36 ta
is seen from the formula (3.6) that ~t only depends on u restricted to the interval

[t,l] and since all measures P are equivalent the null sets up to which tUU is defined
u t

are also control-independent; in fact pu is a well-defined element of LL(QF FtP) for

each ueU. Since L1 is a complete lattice we can define the lattice infimum

q



Wt u= U tu

as an Ft-measurable random variable. This is the value function (or value process).

It satisfies the following principle of optimaZity, originally due to Rishel [68]:

for each fixed ueU and O<t<T<l,

(4.7) Wt < E cudsIFt ] + E [W IFt]
-- u s u '

The proof of this depends on the fact that the family [it : ueU] has the 'I -lattice

property": see §5 below. Now define

Mu = cu ds + W
t s s t

This has the same interpretation as in (2.6) above. Note that since x0 is assumed to

be a fixed constant,

(4.8) Mo = W0 = i J(v)(4.8)

Mu f cuds + 4(x) = "sample cost"

The statement of the principle of optimatlity is now exactly as in (2.8). Firstly

u u
(4.7) implies that M is a P -submartingale for each u. Now if M t is a P -martingale

t u t u

then E Mo = E M1 which implies u is optimal in view of (4.8), while if u is optimal
uO ul

then for any t,

t
W= E cuds + ut]

Now for any control we have from (4.7)

U . .. . : ! I .
W0 < Eu C ds + W] 

and hence

E [W t P iP]> .

u u uI
-But by definition W t <t a.s.; thus W t a.s. and therefore M E (M IFt. So

t - t t t t ul Mt
M is a martingale if and only if u is optimal.

Fix u6U.- A direct argument shows that the function t+EMt is right continuous,

and it follows from [63, VI T4] that Mu has a right-continuous modification. The
t

conditions for the Meyer decomposition [63, VII T31] are thus met, so there exists

u u u
a unique predictable increasing process A with A 0 and a martingale N such that

t 0 t

M W + Au + Nu
t 0- -At t

We now want to represent the martingale N t as a stochastic integral. If the a-fields

Ft were generated by a Brownian motion then this representation would be a standard

result [15], [52], [60], but here (4.3) is only a weak solution, so (wt ) does not

necessarily generate (Ft ) . Nevertheless it was proved by Fujisaki, Kallianpu' and

Kunita [42] (see also [25], [60]) that allFt-martingales are in fact stochastic in-

/0



tegrals of wvt, i.e. there exists an adapted process gt such that

ftl Igs 12 ds < O a.s.

and
t

u =
(4.9) N g dw

From the definition of Mt we now have

. t
(4.10) Wt =W + g a d + At - c ds

0 s S 0 t 0

Now take another control ueU. By definition
t

v 0 c ds + W t
t s t

and hence, using (4.3) and (4.10) we get

(4.11) + dw + AU + (H(v) - H (u ))ds
t s0 5 5 t s s s

where

(4.12) H (U) =gf(s,x,u) + c(s,x,u )

Now (4.11) gives a representation of MV as a "special semimartingale" (= local martin-

gale + predictable bounded variation process) under measure P and it is known
U

that such a decomposition is unique [64,1V32 ]. But we know that MVis a submartingale

with decomposition

(4.13) M= W + N + At0 t t

so the terms in (4.11), (4.13) must correspond. In particular this shows that

the integral g in (4.9 ) does not depend on the control u. We can now state some

conditions for optimality.

(4.14) A necessary condition. If u*eU is optimal then it minimizes
(a.s. dP x dt) the HomiZtonian H of (4.12)

Indeed, if u* is optimal then At = 0. Referring to (4.11) with u = u* we see

that (4.14) is just the statement that the last term in (4.11) is an increasing

process. .......

(4.15) A sufficient condition for optimality. For a given control u*, defined the

pU -martingale

P =E [M1 IFt]Pt Eu*[M 1

Then u* is optimal if for any other ueU the process

t 
I P (Cu C )ds
t t P J Cs s

i's a P -submartingale.
u~~~~~~~~~~~'



This is evident since then

u U u
J(u*) = I0 = E I < E I = J(u).

0 uO- ul

We can recast (4.15) as a local condition: since it is a martingale,p * has a

representation

p J(u*) + g u dw0t *

Now suppose that

(4.16) Ht (ut) < Ht (v) a.e. for all veU

where H is as in (4.12) but with g replacing g. Then a calculation similar to (4.11)

shows that It is a local P -submartingale for any ueU; since I = J(u*), this
t u 0

implies that if T is a sequence of localizing times then
n

E [I u > J(u*)

But the process It is uniformly bounded and I1 T I1 as n-o, so that

n

E EI ] - J(u).
u LAT

n

Thus (4.16) is a sufficient condition for optimality and it is easily seen that if

it is satisfied then t and = Mtg a.e. See [21} for an application.

Since the process gt is defined independently of the existence of any optimal

control it seems clear from the above that an optimal control should be constructed

by minimizing the Hamiltonian (4.12). Under the conditions we have stated, an

implicit function lemma of Benes [1 .] implies the existence of a predictable process

0
ut such that

Ht( u
0 ) = mi Ht(v) a.e-

0
Using (4.11) with u = u gives

t 0

M > W-+ fg %s dwV +A
t- WO s s s t

and hence, taking expectations at t=l,

0

(4.17) E [Au < J(v) -W
v -

0
To show u is optimal it suffices, according to the criterion (2.8), to show that

0

Au = 0 a.s. Here we need some results on compactness of the sets of Girsanov ex-

ponentials, due to Benes [ 2] and Duncan and Varaiya [ 30]. Let A be the set of

Rn-valued Ft-predictable processes 1 satisfying

1j(t,x) < K(l + ssu Ii), (t,x)e[0, 1] xQ

(thus fueA for ueU, see (4.2)) and let

D { 6() : peA}



where

w e 6() exp( f(a l¢)dw 1/2 f -lm idt)
0 0

then BeneS' result is

(4.18) D is a weakly compact subset of L (Q,F,P) and Z>o a.s. for all ZeD.

Returning to (4.17) we can, in view of (4.8), choose a sequence u nU such that

J(un) i W0 and hence such that for any positive integer N,
n 0 0 n 0

(4.19) E [A1 A N] = E[6(fu )(A1 A N)]+ 0, n -*.
u 1 1
n

n
In view of (4. 18) there is a subsequence of 6(fu ) converging weakly to some peD;

hence from (4.19)

0

E[P (A A N)] = 0

0
and it follows that A1 = 0 a.s. We thus have: 

(4. 20) Under the stated conditions, an optimal policy u exists, constructed by

minimizing the Hamiltonian (4.12).

Two conmments on this result: firstly, it is possible to recast the problem so

as to have a purely terminal cost by introducing an extra state x0 as in (2.9), (2.10).

However it is important not to do this here, since an extra Brownian motion w 0 is

0
introduced as well, and there is then no way of showing that the optimal policy u

0
does not depend on w - i.e. one gets a possibly "randomized" optimal policy this

way. Secondly, the existence result (420) was originally proved in [2 ] and [30]

just by using the compactness properties of the density sets. However they were

obliged to assume convexity of the "velocity set" f(t,x,U) in order that the set

D(U) = {6 (fu) : ueU} be convex (and can then be shown to be weakly closed). Finally

it should be remarked that (4.20) is a much stronger result than anything available

in deterministic control theory, the reason being of course that the noise "smooths

out" the process.

A comparison of (2.3) and(4.12) shows that the process gt plays the role of the

gradient V (t,xt) in the Markov case, so that in a sense the submartingale decompo-
x t

sition theorems are providing us with a weak form of differentiation. The drawback

with the martingale approach is of course that while the function V can (in prin-
x

ciple) be calculated by solving the Bellman equation, the process gt is only defined

implicitly by (4.9), so that the optimality conditions (4.14) (4.15) do not provide

0
a constructive procedure for calculating the optimal u , or for verifying whether a

candidate control satisfies the necessary condition (4.14). Some progress on this
0

has been made by Haussmann [44], but it depends on u (t,x) being a smooth function

of xeQ, which is very restrictive.
0

Suppose u is optimal and that the random variable

0 1
M1 f c(s,x,u0 (s,x))ds + D(xl)

0
/3



is Frechet differentiable as a function of xeQ; then by the Riesz representation theorem

there is, for each xEQ an Rn-valued Radon measure p such that for yeQ

0 0
u u

MU (x+y) M1 (x) + f y(s) Px (ds)~1 1

Since u is optimal Mu satisfies
t

0 0 t 0
Mt = J(u0) + ga 
t 0 5 5

and Haussmann [45] [46] (see also [19]) shows that, under some additional smoothness

assumptions, gt is given by

gt = E 0 [ fl](ds)(s,t) IFt]

where Y(s,t) is the (random) fundamental matrix solution of the linearized equation

0
corresponding to (4.3) with u = u . Ths representation gives, in some cases, an

"adjoint equation" satisfiedby gt, along the lines originally shown by Kushner [ ].

n
Finally let us remark that in all of the above the state space of xt is R 

Some problems - for example, control of the orientation of a rigid body - are more

naturally formulated with a differentiable manifold as state space. Such problems

have been treated by Duncan [29] using versions of the Girsanov theorem etc. due to

Duncan and Varaiya [31].

5. GENERAL FORMULATION OF STOCHASTIC CONTROL PROBLEMS

The first abstract formulation of dynamic programming for continuous-time stochas-

tic control problems was given by Rishel [68] who isolated the "principle of optimality"

in a form similar to (4.7). The submartingale formulation was given by Striebel [70]

who also introduced the important "e--lattice property." Other papers formulating

stochastic control problems in some generality are those of Boel and Varaiya [11],

Memin [61],,Elliott[37] [38], Boel and Kohlmann [9 ] [10], Davis and Kohlmann [23]

and Br maud and Pietri [14].

We shall sketch briefly a formulation, somewhat similar to that of (2.7), which

is less general than that of Striebel [70] but sufficiently general to cover all of

the applications considered in this paper.

The basic ingredients of the control problem are .: 

(i) A probability space (Q,F,P)

(ii) Two families (Ft), (Yt) (0<t<l) of increasing, right-continuous, com-

pleted sub-a-fields of F, such that Yt C Ft for each t.

(iii) A non-negative F -measurable random variable (.

(iv) A measurable space (U,E)

(v) A family of control processes {Ut, O<s<t<l}
s

Each control process ueU is a Y -predictable U-valued function on ]s,t] xQ2 . The
s



family {U } is assumed to be closed under

restriction: ueut + uL CUT for s<T<t
s s,T] s - -

concatenation: ueUT, veUt=>weU where
s T s

w,(a, F) = u(a,W)
v(C,6) ae]T,t]

(5.1)

finite mixing: u,veUt AY -+ wEUt where
S S s

W(=5,0) = u(a,) , weA

We denote U = U0 (In most cases U will consist of aZZll predictable U-valued processes,

but (5.1) is the set of conditions actually required for the principle of optimality

below). A control ueU0 is assumed to determine a measure P on (Q,Ft ) which is

absolutely continuous with respect to PIF such that PI = PiF and such that the
t F 0

assignment is compatible in the sense that if ueU0, s< t and v = ul s (so that

veUs) then P = P If ueU t and X is an F t-measurable random variable, then E X
- v us t u

F

denotes expectation with respect to measure P . We finally assume that E D <C for
U u

all ueU and the problem is then to choose ueU so as to minimize J(u) = E (.

The value process corresponding to ueUt is

(5.2) W= A E t] 
t vt v t

where " A t denotes the lattice infimum in L (Q,Yt,P), taken over all veU such that
vt 

vI[0 t] = u. Note that,-in contrast to the situation in §4, W is in general not

control-independent. We nevertheless have a result analogous to (2.8), namely

;(5.3) W Wu is a submartingale for each ueU and 'is a martingale if and only if u

is optimal.

Note that by inclusion and using the compatability condition, for any T > t

t - ' v,T v V [EV[Y Yt] 

so that the first statement of (5.3) is equivalent to the assertion that A and
v,T

E [-IYt] may be interchanged, and according to Striebel [70] (see also [26] for a

summary) this is possible if the random variables Ev [0Yt) have the -lZattice property:

1 1 -
if vl,V2eUt then there exists v3eU such that, with vi denoting the concatentation of

u and v, ..

(5.4) E Ivx[lYt] < EVl[%!¥t] Ag--[,It] + C a.s.
3 1 2

Now it is evident that under assumptions (5.1) the set {E [~lYt]}has the O-lattice

property, because given vl, v? as above one only has to define
i-6'



A = jw : E- i[(IYt] < E- [(DIYI]

and, for te]t,l],

v1 (T,) , weA

V3(t,~) =

v 2(T ,) , eAc

Then (5.4) holds with E=0.

It is clear from the definition (5.2) that u is optimal if Wt is a P'-martingale
u

while conversely if u is optimal then for any te0,1]

(5.5) E [W ] = ig5 J(v) = J(u) = E [Eu [IYt]]
u u u

But by the submartingale property E [Wo] < Eu Wt] and this together with (5.2) and
u U

utu is a P -martingale.(5.5) implies that Wt=Eu[~]Yt], i.e. uis a P -martingale.
Statement (5.3) is a general form of optimality principle but its connection

with conventional dynamic programming is tenuous as there is a different value

function for each control, reflecting the fact that past controls can affect the

expectation of future performance. This is suggestive of Feldbaum's "dual control"

idea, namely that an optimal controller will act so as to "acquire information" as

well as to achieve direct control action.

The postulates of the general model above are not, as they stand, sufficient

to endure that there is a single value function if Yt= Ft (complete information).

Let
dP

(5.6). Lt(u) = E[d IFt]

Now fix se[o0,1] and for s<t<l define

-t(U( iL(u)/L (v) if Ls(v) > 0

L (u,v) =

t (1 if L (v) = 0

then L (u,v) is a positive martingale and L (u,v) = 1. Then the following hypothesis
t S

ensures that there is a process W t such that W = W t in caseY = Ft:

(5.7) For any veU, and ulu 2eU such that u1 = u s,1]e have

Lt(Ul,v) = Lt(u2 ,v) for all te ]s,1]

See [61, Lemma 3.2]. Clearly the densities Lt(u) of §4 above satisfy (5.7)

A minimum principle - complete observations case

If we are to use the principle of optimality (5.3) to obtain locaZ conditions

for optimality in the form of a minimum principle it is necessary to be more specific

about how the densities Lt(u) are related to the controls uCU. This is generally

through a transformation of measures as described in §3 above. A general formulation

will be found in Elliott's paper [38] in this volume, but to introduce the idea let



us consider the following rather special set-up.

Suppose Yt = F for each t, and let Mt be a given Ft-martingale with almost
tups Yt t t

all paths continuous. Now take a function 4 : [0,1]x Qx UT R such that 4 is a predic-

table process for each uGU and continuous in u for each fixed (t,W), and for ueU let

u denote the predictable process 4 u(t,W) = 4(t,Lu(t,u)). We suppose that for each

ueU

(5.8) E exp(l/2 (u) 2d<M> ) < o

and that the measure P is defined by

dP
dP = (FI dM)1

(see 3). From (3.7), condition (5.8) ensures that P is a'probability measure and
u

that P ^P. Now Lt (u) (defined by (5.6)) satisfies the equation

t
u

Lt (u) = f Ls(u)s dMs

The uniqueness of the solution to this equation shows that condition (5.7) is satis-

fied, and hence that there is a single value process Wt , which can be shown to have

a right-continuous modification [61], assuming the cost function is bounded. Then

for any ueU, W t has the submartingale decomposition

u u
(5.9) Wt = W + Nt At 0 t t

where Nut is a P -martingale and At a predictable increasing process. According to
t u t

the translation theorem, the process

(5.10) dM t =dMt d<M>t

is a continuous P -martingale. Decompose N t into the sum

-u
N NN +N
t t t 

i--where N is in the stable subspace generated by M (see [64]) and Nt is orthogonalN t t
to this stable subspace. There is a predictable process gt such that

t
t t u

Now consider another admissible control v. Using (5.9), (5.10), we see, as in (4.11),

(4.12) above that Wt can be written

wt W0 + gdMU + N +f g u)d<M> + u

Now Nt is a P -martingaZe, since the Radon-Nikodym derivative E [dP /dP Ft] is in
t u u vut

the stable subspace generated by Mu (see [37], [38]) and hence, by the uniqueness

of the semi-martingale decomposition (5.9) we have

u u A u
St AU* f 9gs ( - )d<M> + A

s u
Since At is an increasing process and A 0 if u is optimal, we have the following

Sie ___A



minimum principle:

(5.11) If ueU is optimal and v is any admissible control then for almost allZZw

gS (S,Wus) < gs (SW,Vs) a.e. (d<M>s)

In particular if U consists of all predictable u-valued processes then

gS (Stwiu) = ra gSf(SWv)

The importance of this type of result is that no martingale representation

result is required, since the "orthogonal martingale" Nt plays no role in the optimal-

ity conditions (things are somewhat more complicated if the basic martingale m t is

not continuous).

Partial observations case

Further progress in the case when Yt / Ft appears to depend on representation

theorems for Yt-martingales, although possibly a development similar to the above

could be carried out. For each ueU the P -submartingale Wt is decomposed into the

sum of a martingale and an increasing process. In Memin's paper it is assumed that

all (Yt,P)-martingales have a representation as a sum of stochastic integrals with

respect to a continuous martingale and a random measure. It is shown in [48] that a

similar representation then holds for (Yt ,P )-martingales since P <<P. Using this
t U u

some somewhat more specific optimality conditions can be stated, but these do not

lead to useful results as no genuine minimum principle can be obtained. Rather than

describe them we revert to the stochastic differential equation model of §4 for which

better results have been obtained.

6. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS WITH PARTIAL INFORMATION

Returning to the problem of §4, let us suppose that the state vector xt is divided

into two sets of components xt = (y',zt) of which only the first is observed by the

controller. Define Yt = o{Y , s<t). Then the class of admissible controls is the

set N of Yt-adapted processes with values in U. The objective is to choose ueN so as

to minimize J(u) given by (4.4). Following Elliott [34] we will outline a necessary

condition for optimality. Thus we suppose that u*eN is optimal (and write c*, E,

instead of c Eu, etc.). Let

i:-= E* c*dS + (Xl )Ft 
t 1

and for any ueN define

Nu cuds + *,
t s t

Then N* is an (Ft,P*)-martingale and it is easily shown that

(6.1) (i) E*[N IYt] is a (Ytp*)-martingale

(ii) E*[N tYt] < E* [E IYt] for any uU and h > 
U t4hlFt)Y]foany uU



As in §4, we can represent N* as a stochastic integral with respect to the Brownian
t

motion wkt = wt i.e. there exists an Ft-adapted process gt such that

t. St
(6.2) N* t = t +f g*a dw*

Using an argument similar to that of (4.11)-(4.12) we see that Nt can be written

(6.3) N = S * dw + H*(u)ds
tS S S Hs

where

AH*(u) = [g*f(s,x,us) + c(s,x,u)] - [g*f(s,x,u) - c(s,x,u*)]
S s sS S

It now follows from (6.1) (ii) and (6.3) that

t+h

(I/h)E [EU AH* (u) dslFt) IYt] > 0

A rather delicate argument given in [34] shows that taking the limit as h+0 gives

E,[AH*(u) Yt] > 0. We thus obtain the following minimum principle:

(6.4) Suppose u*eN is optimal and ueN. Then there is a set Tc[0,1] of zero

Lebesgue measure such that for tOT

E*[g*f(t,x,u*) + c(t,x,u)lIYt] < E[gf(t,x,ut) + c(t,x,ut)[lY t] a.s.

where g* is the process of (6.2).

This is a much better result than the original minimum principle (theorem 4.2

of [25])since :the optimal control minimizes the conditional expectation of a Hamil-

tonian involving a single "adjoint process" g*. A similar result (including some

average value state space constraints) was obtained by Haussmann[44] using the Gir-

sanov formulation together with L.W. Neustadt's "general theory of extremals."

It is shown in [39] that a sufficient condition for optimality is that an

inequality similar to (6.4) but with E replacing E* should hold for all admissible u.

The disadvantage of the types of result outlined above is that they ignore the

general cybernetic principle that in partially observable problems the conditional

distribution of the state given the observations constitutes an "information state,"

on which control action should be based. In other words, the filtering operation is

not explicitly brought in. Although there is a well-developed theory of filtering

for stochastic differential equations [42], [60], it turns out to be remarkably dif-

ficult to incorporate this into the control problem. A look at the "separation

theorem" of linear control [18], [781], [41], chapter 7] will show why. The separation

theorem concerns a linear stochastic system of the form

(6.5)t t t

dy t = Fxtdt + R1/ dw2 u

lu 2u
where w ,w are independent vector Brownian motions, the distribution of the initial

state x0 is normal, and the coefficient matrices can be time-varying. It is assumed

that GG' and R are symmetric and strictly positive definite, that the controls. ut

/9



take values in a compact set U and that the function 3 is continuous. The solution

of (6.5) for a given Yt-adapted control policy ut is then defined by standard appli-

cation of the Girsanov technique and the (non-quadratic) cost is given by

J(u) = E [ c(t,xtut)dt + ()

It is shown in [24] that the conditional distribution of xt given Yt is normal, with
A

mean xt and covariance Zt given by the Kalman filter equations:

(6.6) dxt = Axtdt + B(ut)dt + ZtF'R1/2 dvt

t0 = Exo

(6.7) £ = AS + EA' + GG' - EF'R FE

Z(0) = cov(x0 )

Here Vt is the normalized innovations process

Vt = t R -1 /2 (dy - Fx ds)

which is a standard vector Brownian motion. Let us denote K(t) = )tF'R / , and let

n(.,x,t) be the normal density function with mean x and covariance t . Now define

e(t,x,u) = c(t:,u)n( Fx,t)d i, O(x)= = ( On( x,t)d 
n

R-n Rn -
Then the cost J(u) can be expressed as

(6.8) J(u) = EU c(t, ut)dt + O(xl)]

0

The original problem is thus seen to be equivalent to a "completely observable"

problem (6.6), (6.8) with "state" it (this characterizes the entire conditional dis-

tribution since the covariance £(t) is non-random). This suggests studying "separated

controls" of the form ut = 4(t,xt ) for some given measurable function i: [0,1] xR -+ U.

However, such controls are, in general, not admissible: admissible controls are speci-

fied functionals of y, whereas the random variable xt depends on past controls
t

{Us, s<t}. One way round this difficulty is to consider (6.6)-(6.8) as an independent

,problem of the type considered in §4, i.e., to define the solution of (6.6) by Girsanov

transformation on a new probability space, for separated controls u(t,x). However

we then run into the fresh-difficulty that weak solutions of (6.6) are only defined

if the matrix K(t)K'(t) is strictly positive definite, which cannot happen unless

the dimension of yt is at least as great as that of xt - a highly artificial condi-

tion. If this condition is met then we can apply (4.17) to conclude that there

exists an optimal separated control, and an extra argument as in [18] shows that its

cost coincides with infueN(u). If dim(yt) < dim(xt) then some form of approximation

must be resorted to.

With these elementary obstacles standing in the way of a satisfactory martingale

treatment of the separation theorem, it is not surprising that a proper formulation

of information states for nonlinear problems has not yet been given. It is possible



that the Girsanov solution concept is still too strong to give existence of optimal

controls for partially-observable systems in any generality.

7. OTHER APPLICATIONS

This section outlines briefly some other types of optimization problems to which

martingale methods have been applied. The intention is merely to indicate the martin-

gale formulation and not to give a survey of these problems as a whole: most of them

have been extensively studied from other points of view and the associated literature

is enormous. Nor is it claimed that the martingale approach. is, in all cases, the

most fruitful.

7.1 Jump processes

A jump process is a piecewise-constant right-continuous process xt on a probabil-

ity space (Q,F,P) with values in, say, a complete separable metric space X with Borel

a-field S. It can be identified with an increasing sequence of times {T } and a

sequence of X-valued random variables {Z } such that

Zn' te[TnTn+ll

t Z , t>T

where T = lim T and z is a fixed element of X. (Generally T =- a.s. in applica-00 n n c
tion.) Jump processes are useful models in operations research (queueing and inven-

tory systems) and optical communication theory, among other areas. Their structure

is analysed i.n Jacod [47], Boel, Varaiya and Wong [12] and Davis [17]. A jump pro-

cess can be thought of as an integer valued random measure p on E = R x. X defined

by

Bl wdt, dz) (dt,dz)=n (T () X ()) (dtdz)
n ,n

where 6 is the Dirac measure at ecE. Now let
e

F t = a{p(]0,s] XA), s<t, AeS = O{x, s<t} .t -S

and let P be the Ft-predictable a-field on R+ xQ. A random measure p is predictabZe

if the process

(7.1) f g(w,s,z)p(w,ds,dz)

]0,t] Xx

is predictable for all bounded measurable functions g on (Q X R x: X, PS). The fun-

damental result of Jacod [47] is that there is a unique predictable random measure

V such .that

(7.2) E[ f g(s,z)p(ds,dz)] = E[ f g(s,z)v(ds,dz)]

E E

for all g as above. V is also characterized by the fact that for each AeS, V(]0,t] XA)

is the dual predictable projection (in the sense of Dellacherie [27 ]) of p(]O,t],A),

i.e. the process

q(t,A) = p(]0,t] X A) - V(]O,t] x A)



is an Ft --martingale. An explicit construction for V in terms of the distributions

of the (T ,Z ) sequence is given in [2.3]. We will denote by fg dq integrals of

the form (fg dp - g dv) where g dp and fg dv are defined as in (7.1) then

the process

g°qt f Xg dq
]0,t]

is an Ft-martingale for a suitable class of predictable integrands g, and the mar-

tingaZe representation theorem [12], [171], [47] states that all Ft-martingales are

of this form for some g.

Denote

At = v(],t] .x X)

For each w this is an increasing function of t and evidently the measure it defines

on R+ dominates that defined by v(]O,t] x A) for any AeS. Thus there is a positive

function n(w,s,A) such that

(7.3) V(]0,t] xA)= f n (, s,A)dA

]O,t]

Owing to the existence of regular conditional probabilities it is possible to choose

n so that it is measurable and is a probability measure in A for each fixed (s,(o).

The pair (n,A) is called the Zocal description of the process and has the interpre-

tation that At is the integrated jump rate: roughly, dA Z P[X +d / Xs|F ] and

n(w,s,.) is the conditional distribution of x given that x xs .

Optimization problems arise when the local description of the process can be

controlled to meet some objective. This is normally formulated [11], [22] by abso-

lutely continuous change of measure, as in §3: we start with a "base measure" P on

(Q,F1) with respect to which the jump process has a local description (n,A ) and define

a new measure P by

dP
u u

where m is a (P,Ft) martingale. Under P the process xt has a different local des-
t u t

cription which can be identified by the translation theorem ( . ). More specifically,

it is supposed that the admissible controls U consist of F -predictable, (U,3)-valued

processes and that a real-valued measurable function 4 on (R+ x:Q x X xu, P*S*E) is

given. Denoting du(t,(, z) = f(t,w,z,u(t,w)) for ueU, mu is defined by

mt () = f 4u(sw,z)q(Wds,dz)

], t]xx 

The Doleans-Dade exponential ( . ) then takes the specific form

E(mU) =exp(- I ~Ud n dAC)T~<t(i+U(TiZ i)- ATi IsU(Ti z)n(Ti d z))
eux n - Tu sz)T(s z)n(T))dz))

s<t X

. . .~~~~~~~~~~~~



where Ac is the continuous part of A and the second product is taken over the countable

set of s such that AA > 0 and sO {T1,T2,...}. Assuming that EE(MU) 1 1, xt is,
S 2 1

under measure P , a jump process with local description

AU ((1 + u- A Udn)v(ds,dz)
]0,t] x x

(7.4)

nu (fs(l+ uA - AAs fpUdn) n(s,dz)
n (s,a) A X

(1 + - AA JUdn) n(s,dz)
X ss X

See [22], [36] for details of these calculations and conditions under which EE(m )1=1.

Generally, only weak conditions on ~ are needed to ensure that P is a probability
U

measure on F for each n and hence on F . If T = X a.s. (P) then extra conditionsT T
n c

on ~ can be imposed to ensure that T = ~ a.s.(P ) and then P is a probability on
oo u u

Ft for each fixed t; see [77]. Let us suppose that the control problem is to choose

ueU so as to minimize

J(u) = E 4'

where 4 is a bounded F -measurable random variable. Then the problem is in the

general framework of §5 and furthermore we have a martingale representation theorem

analogous to that of the Brownian case. Thus local conditions for optimality can

be obtained by following the steps of §4.

Suppose u*eU is optimal. Then by the martingale representation theorem there

is an integran g such that

(7.5) E ,[IFt] = J(u*) + .g(s,z)q*(ds,dz)
]O,t] xx

where q* = p-V*, and V* is the dual projection of p under measure P* (cf. (7.2)).

Now let ueU be any other control; then we can rewrite (7.3) in the form

(7.6) A*[OFFt] J(u*) + g dq + g(dvU dv*) -
; ]O,t] xx ]O,t] xx -

According to the criterion (5.3 ), E,[|Ft] is a P -submartingale, and hence the

last term in (7.5) must be an increasing process.o Using (7.3) and the specific

forms of local description provided by (7.4), this statement translates into the

following result: 

(7.7) Suppose u* is optimal, Zet g be as in (7.5) and define

h(t,z,) = g(t,z,) - AA(t,0) fg(t, wc)n(t,d w)

Then for aZmost aZZ -

f h(t,z)d)(t,z,u*)n(t,dz) = m f h(t,z)f(t,z,u)n(t,dz) a.e. (dAt)
X X

--------·~~~~~~~~~~~~~~~~· ------------ --------~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~ ---------------------------------·---- -------- ·- ------~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------·-~~~~~~~~~~~~~~~



Thus, as in (4.14), the optimal control minimizes a "Hamiltonian." A sufficient con-

dition for optimality similar to (4.15) can also be obtained. In the litera-

ture [12], [22], [77] various forms of Hamiltonian appear, depending on the

nature of the cost function and the function ~. In [77] an existence theorem along

the lines of (4.20) is obtained; however this only holds under very restrictive as-

sumptions, related to the absolute continuity of the measures. In the Brownian case

all the measures P are mutualtvy absolutely continuous under very natural conditions,u

and this is crucial in the proof of the existence result, as is seen in (4.18), (4-19).

In the jump process context mutual absolute continuity is very unnatural, but one is

apparently obliged to insist on it if an existence result is to be obtained.

Finally, let us mention some other work related to the above. Optimality condi-

tions for jump processes are obtained by Kohlmann [50] using Neustadt's extremal

theory in a fashion analogous to Haussmann's treatment of the Brownian case [44].

Systems with both Brownian and jump process disturbances are dealt with in Boel and

Kohlmann [9 ], [101 (based on a martingale representation theorem of Elliott [33])

and Lepeltier and Marchal [58]. The survey [13] by Bremaud and Jacod contains an

extensive list of references on martingales and point processes.

7.2 Differential games [32], [35], [73], [74], [75], [76]

The set-up here is the same as that of §4 except that we suppose U = UixU x...xUN

where each U. is a compact metric space. Then U = U1X...xUN where U. is the set of
1 1 .

Ft-predictable U.-valued processes, and we assume that each u eU. is to be chosen by
t1 1

a player i with the objective of minimizing a personal cost

Ji(U) = Ji(U ... ) = E ci(sxus)ds + i (Xl)]1 1 Uj9 I u s i

(Ci and hi satisfy the same conditions as c,1 of §4). Thus each player is assumed

to have perfect observations of the state process x. 1

N*
Various solution concepts are available for this game [76]: u* = (u ,...u ) is

- a Nash equilibrium if there is no i and u CU. such that '

J ,. u ,u ,u( ,u* ) < J.(u*)

- efficient if there is no ueU such that 

J (u)' < J. (u*) for all i
1 1

- in the core if there is no subset S C {1,2. ..,N}and ueU such that

; J.(v) < J (u*) ies
i i i*

where v = u for ieS and v = u for i0S.

Thus an equilibrium point is one from which it does not pay any player to deviate

unilaterally, a strategy is efficient if no strategy is better for everybody and a

strategy is in the core if no coalition can act jointly to improve its lot. Evidently

a core strategy is both efficient and an equilibrium, but equilibrium solutions are

not necessarily efficient or conversely.



For ueU denote J' u) = (Jl(u),...,JN(u)) and let

J = {J(u) IueU }

This is a bounded subset of R , and a sufficient condition for efficiency of a strategy

u* is the existence of a non-negative vector X eRN such that

(7.8) X'J(u*) < X'~ for ally eJ

J, (u)
(see diagram for N=2). If J is convex, this

J
condition is also necessary. It follows from

results of Benes [2] (see the remarks follow- 

ing (4.20)) that convexity of the set

N n+N
(f(t,x,U), c'(t,x,Ul)..., c (t,x,U N ))CRn+N

implies convexity of J. Now (7.8) says that

u* is optimal for the control problem of mini- J(u*)

mizing the weighted average cost C (u) = C-Ji(u). __ Jl(u)

Fix u*eU, and as in §4,, let g ,i=l,...,N, be

adapted processes such that

Euf cis ds + Ci(Xl) IF t ] J(u*)+f dwu *

u isj *0 g dt w

For any other strategy ueU the right-hand side can be expressed, as in (4.11), as

i(u,) + . t tg sdtHi 

JL(u*) + Gdw + (Hl(u ) Hl(u*))ds
S S S.

0 0
where

H (u) = gif t,x,u) + c.(t,x,u) + c(t u) 
S 1

Combining the remarks above with (4.16) shows that u* is efficient if there exists

XeR such that . ..

(7.9) *Z.. Xi Hi(u* ) < Z XiHi(v), a.e. for all veU - - --- ; ' - , 
i i

under the convexity hypothesis, this condition is also necessary. -i.

u* is a Nash equilibrium if, for each i, u* minimizes

J. (U*1~, ,U*C i,u,u* ,...,U* ) over ueU.. Applying condition (4.16) we see
1: 1 , . .. ......

that this will be the case if

i i
(7.10) H (u*) < H (v), a.e. for all veU., i=1,2,...,,N

Thus u* is an efficient equiZibriumn if ut minimizes each "private" Hamiltonian as in

(7.10) and also minimizes a "social" Hamiltonian (7.9) formed as a certain weighted

average of these. Analogous conditions can be formulated under which u* lies in the

core.

For (t,x,pi,u) e R xQ x R n x U define the Hamiltonians

Hi(t,x,Piu) = pi f(t,x,u) + ci(t,x,u)

We say that the Nash condition holds if there exists for i=l,... ,N measurable functions
0 0

u. (t,x,p,...,p ) such that u. is a predictable process for each fixed (p,u)=(p1... Nu)
-~~~~~~~~~~~



and

-i 0 ~ -i 0 0 0 0H (t,x,pi,u (tx,p) ,..,u (tx,p)) < H (t,x,Piu,u l... u +l N
' 1 N ' '.'.' '' '' ui-1 i+, v

for all veUi, for each (t,x,p)eR+ x XRNn. Uchida shows in [73] that the game has

q Nash equilibrium point if the Nash condition holds. The proof is by a contradic-

tion argument using the original formulation of the results of §4 as given in Davis

and Varaiya [25]. Conditions under which the Nash condition holds are stated in [74].

Now consider the case N=2, J2(u) = -Jl(u), so that the game is 2-person, O-sum. -

Then the core concept is ugatory, all strategies are efficient and an equilibrium is

a saddle point, i.e. a strategy u* such that (denoting J1 = J) for all ueU

J(u* , u2 ) < J(u*l,u*2) < J(ulu*2)

In this case the relevant condition is the Isaacs' condition: for each (t,x,P)eR xQ x R D ,

umg- u M 0 H (t,x,p,u1 1u2) = um um H (txpu1 u2)

The main result is analogous to the above, namely that a saddle strategy u* exists

if the Isaacs' condition holds. The argument, given by Elliott in [32], [35], is

constructive, along the lines leading to the existence result (4.20) for the control

problem. One considers first the situation where the minimizing player I announces

his strategy UleU 1 in advance. It is immediate from (4.20) that the maximizing

player II has an optimal reply u (u1) to this. Now introduce the upper value function

+ 0
Wt = u e E 0 C1 l (s ,x, u l,u 2(ul))ds + 1 (X1 ) IFt]

An analysis of this somewhat similar to that of §4 shows that player I has a best
0

strategy, i.e. a strategy ullU1, such that -

. (.. -.u 2J (u ,U 2 (u 1 )) =um J(
U 1 " 2

If it is player II who announces his strategy first, then we can define in an analo-

gous manner the lower value function Wt. In general W > W but if the Isaacs' con-t ,bt t-
+ 1 0 2 0 0dition holds then Wt and it follows that u* given by u* u, = u* u 2(u) is

a saddle strategy.

A somewhat more restricted version of this result was given by Varaiya in [75],

using a compactness-of-densities argument similar to that of Benes [1] and Duncan and

Varaiya for the control problem. No results are available if the players do not have

complete observations. Some analogous results for a differential game including a

jump process component are given in [49]. -: ;

7.3 Optimal stopping and impulse control

In the conventional formulation of optimal stopping one is given a Markov process

Xt on a state space S and a bounded continuous function 4 on S, and asked to find a
Markov time T such that Ex (xt) > Ex (x ) for all xeS and Markov times O . Let

-l(x) = sup Ex a)
X~ ~~~~~n



Then under some regularity conditions 1 is the "least excessive majorant" of 4 (i.e.,

C(x) > )(x) and 4(xt) is a supermartingale) and the first entrance time of xt into the

set {x: ¢(x) = 4(x)}is an optimal time. See [4 ], and the references there. If we

define Xt = 4(xt) and Wt = l(xt) then T maximizes E X and T = inf {t: X Z }. -Thus thet t t t x t t
optimal stopping problem generalizes naturally as follows.

Let (Q,F,P) be a probability space and (Ft)t>O be an increasing, right-continuous,

completed family of sub-a-fields of F. Let T denote the set of Ft-stopping times and

Xt be a given positive, bounded optional process defined on [0,o]. The optimal stopping

problem is then to find TeT such that

T l EXS

This problem is studied by Bismut and Skalli in [8 ]. The simplest case occurs when

X t satisfies the following hypothesis:

(7.11) Let {T T} be stopping times such that T FT or T +T. Then EXT EXTn' n n T T'
n

Criteria under which (7.11) holds are given in [8].

An essential role in this problem is played by the SneZZ envelope of Xt, intro-

duced by Mertens [62, Theorem 4]. He shows that the set of all supermartingales

which majorize X t has a smallest member, denoted Wt, which is characterized by the

property that for any stopping time T and a-field GZFt,

E[WTIG] = egs>sip E[XSIG]

Thus in particular for each fixed time t

t es>s p E[XIFt]

so that W t is the vaZue function for the optimal stopping problem. Under condition

(7.11) Wt is reguZar [63, VII D33] and hence has the Meyer decomposition

Wt = Mt - Bt

where Mt is a martingale and Bt a continuous increasing process with BO=0. Now definet t

D' = inf{t>0: Bt>0o}

and

A = {(t,w): Xt (W) = Wt ( w) }

The debut of A is the stopping time D inf{t: (t,w)eA}. It is shown in [8] that

D < D' and that:
O O

(7.12) A stopping time T is optimal if and only if the graph of T is contained in

A and T < DO

In particular, both D and D' are optimal.
0 0

This result implies an optimality criterion similar to (5.3 ): if T is optimal

then BtA T = 0 so that WtAT = MtAT is a martingale, and conversely if WtAT is a mar-

tingale then it is easily seen that T must satisfy the conditions of (7.12).

----



Analogous results can be obtained for processes more general than those satis-

fying (7.11); the details are more involved and only e-optimal stopping times may

exist.

Impulse controZ: Space precludes any detailed discussion of this topic, but it

should be mentioned that a martingale treatment has been given by Lepeltier and Mar-

chal [59]. In the simplest type of problem one has a stochastic differential equation

dxt = f(xt)dt + o(xt)dwt

A strategy 6= {Tn,Y } consists of an increasing sequence of stopping times Tn and

a sequence of random variables Y such that Y iS F -measurable. The corresponding
n n T

trajectory is x6 defined by n

x0 = x (given)

;dx f(x ) + O(xt)dw
t t t t

tE [Tn ,Tn+l1[

6 6
T = XT- n
n n

The strategy 6 is to be chosen to minimize

J(6) = E[ E I(T <1) +0 fc(x6)ds]
n- O

A value function and conditions for optimality can be obtained along the lines of

§5. It is worth pointing out that the above system obviously has a Markovian flavor

about it, and indeed it is shown in [59] that the value function is Markovian (i.e.,

at time t it depends on xO only through x ) even though the controls 6 are merely

assumed to be non-anticipative. Some further remarks on this are given in the next

section.

7.4 Markovian systems

Let us return to the problem of §4 and suppose that the system equation and cost

are 

art t t t..... .. --- ---.- --

J(u) = Eu[J c(t,x ,u )dt + (x)] 

i.e., we have a diffusion model as considered in §2. In §4 the admissible controls

U were general non-anticipative functionals but here it seems clear that feedback

controls of the form u(t,xt ) should be adequate. Denote by M the set of measurable

functions u: [0,1] x R -7 U; then MCU if we identify ueM with the process ut = u(t,xt ),

and xt is a Markov process under measure P . Thus we can define the Markovian value
u

function wM(t,x) as (with obvious notation)

W (t,x) A E rPHW=ueM Etx U c(s,xs,us)d s + m(xl)]

The conjecture then is that WM(t,xt) = W t a.e. (Wt being defined as in §4) so that in



particular

ip k J3(u) i J(u)

This is easily established (see [25, §6]) if it can be shown that WM satisfies a prin-

ciple of optimality similar to (4.7 ). However this is not clear, as there is still,

to my knowldge, no direct proof that the class M satisfies the C-lattic property. An

argument along the lines given in §5 fails because it involves "mixing" two controls

ul,u2eM to form a control v by taking

u (s,xs )IA

s u2(s,x )I
S Ac

where s>t and AeF . But then v is of course no longer Markov. Thus the results
t s

presented in §6 of [23] must be regarded as incomplete.

This problem has been dealt with in the case of controlled Markov jump processes

by Davis and Wan [26]. There it is possible to "mix" two controls in a more ingenious

way which, however, uses the special structure of the sample paths very explicitly

and hence does not generalize to other problems. An alternative approach would be to

start with the value process W t as previously defined and to show directly that
t

Wt = W(t,xt) for some function W. This has been done by Lepeltier and Marchal [59]

for impulse control problems but again the argument is very problem-specific.

My general conclusion from the above is that the direct Martingale approach is

not particularly well adapted to Markovian problems, and that more information can be

obtained from methods such as those of Bismut [5] which are specially tailored for

Markov processes. i

8. CONCLUDING REMARKS

The successes of martingale methods in control are twofold: firstly the essence

of the optimality principle is revealed in the general formulation' (5.'3 ), and in

particular the fundamental difference between the situations of complete and of in-

complete observations is clearly brought out; and secondly, the power of the sub-

martingale decomposition provides, in effect, a weak form of differentiation which

enables minimum principles and existence of optimal controls to be established with

few technical restrictions. The drawbacks of the method are that it does not lead

naturally to computational techniques, and there are difficulties in handling Marko-

vian systems and problem formulations of the "separation principle".type. -

Here are a few suggestions for further research. i -

(8.1) Obtain a more explicit characterization of the "adjoint process" gt of

§4. Comparisons with deterministic optimal control theory and other forms of stochastic

minimum principle [6], [53] suggest that it should satisfy some form of "adjoint equa-

tion," yet little is known about this unless the optimal control is smooth [44].

(8.2) To my knowledge martingale methods have not been applied seriously to



infinite-time problems (see Kushner [55] for some results using methods similar to

those of Bismut [5]).

(8.3) The partially-observable problem continues to elude a satisfactory

treatment. In particular there are no good existence theorems, and experience with

the separation theorem (§6) suggests that these may be hard to get. My feeling is

that the proper formulation of partially-observable problems must explicitly include

filtering, since it is the conditional distribution of the state given the observa-

tions that is the true "state" of the system. A lot of information about nonlinear

filtering is available [60] but, again using the separation principle as a cautionary

tale, it is far from clear how to incorporate this into the martingale framework.

Possibly some entirely different approach, such as Nisio's nonlinear semigroup for-

mulation, will turn out to be more appropriate. See [20] for a step in this direction.

(8.4) Show that the C-lattice property holds in some generality for Markovian

systems with Markov controls (cf. §7.4).

(8.5) Give a constructive treatment of Uchida's result [73] on the existence

of Nash equilibirum points in stochastic differential games.

(8.6) Is mutual absolute continuity of the measures PU really necessary for

the existence result (4.20)? If not then better existence results could possibly be

obtained for problems such as controlled jump processes (§7.1) where mutual absolute

continuity does not arise so naturally.
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