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MARTINGALE METHODS IN STOCHASTIC CCONTROL

M.H.A. Davis

‘Abstract

The martingale treatment of stochastic control problems is based on
the idea that the correct formulation of Bellman's “principle of optimality"
for stochastic minimization problems is in terms of a submartingale inequal-
ity: the "value function" of dynamic programming is always a submartingale
and is a martingale under a particular control strategy if and only if that
strategy is optimal. Local conditions for optimality in the form of a mini-
mum principle can be obtained by applying Meyer's submartingale decomposition
along with martingale representation theorems; conditions for existence of an
optimal strategy can also be stated.

) This paper gives an introduction to these methods and a survey of the
results that have been obtained so far, as well as an indication of some
shortcomings in the theory and open problems. By way of introduction we
treat systems of controlled stochastic differential equations, the case for
which the most definitive results have been obtained so far. We then outline
a general semimartingale formulation of controlled processes, state some
optimality conditions and indicate their application to other specific cases
such as that of controlled jump processes. The martingale approach to some
related problems - optimal stopping, impulse control and stochastic differen-—
tial games - will also be outlined.

Paper presented at the Workshop on Stochastic Control Theory and Stochastic
Differential Systems, University of Bonn, January, 1979. Proceedings to be
published in the Springer-Verlag Lecture Notes in Control and Systems Sci-
ences Series, edited by M. Kohlmann.
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1. INTRODUCTION

The status of continuous-time stochastic control theory ten years ago is ad~
mirably summarized in Fleming's 1969 survey paper [40]. The main results, of which
a very brief outline will be found in &2 below and a complete account in the book
[41], concern control of completely—observable diffusion processes, i.e. solutions
of stochastic differential equations/ Formal application of Bellman's "aynamic

programming" idea quickly leads to the "Bellman equation” (2.3), a quasiFlinear paré—

bolic equation whose solution, if it exists, is easily shown to be the value func- e

tion for the control problem. At this point the probabilistic aspeéts of thevbfé—
blem are finished and all the remaining work goes into fihding conditions under
which the Bellman equation has a solution. The reason why dynamic programming is a -
fruitful approach in stochastic control is precisely that these conditions are so
much weaker than those required in the deterministic case. As regards problems »
with partial observation the best result was Wonham's formulation of the "separation
theorem" [78] which he proved by reformulating the problem as one of complete ob-
servations, with the "state" being the conditional mean estimate'produced by the

Kalman filter; see 86 below.
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. structure is introduced, and for this reason.we treat in some detail in §84,6 the

The dynamic programming approach, while successful in many applications, suf-
fers from many limitations. &an immediate one is that the controls have to be smooth
functions of the state in order that the resulting stochastic differential equation
(2.1) have a solution in the Ito sense. This rules out, for example, "bang-bang"
controls which arise naturally in some applications (e.g. [3]). Thus a weaker for-
mulation of the solution concept seems essential for stochastic control; this was
provided by Stroock and Varadhan [71] for Markov processes and by various forms of
measure transformations, beginning with the Girsanov Theorem [43], for more general
stochastic systems; these are outlined in §3. But even with the availability of
weak solution concepts it seems that the Bellman equation approach is essentially
limited to Markovian systems and that no general formulation of problems with
partial observations is possible (A Bellman equatioﬁ for partially observed diffus-
ions was formally derived by Mortensen [65], but just looking at it convinces one
that some other approach must be tried).

Since 1969 a variety of different approaches to stochastic control have been
investigated, among them the following (a very partial list). KXrylov [51] has stud-
ied generalized solutions of the Bellman equation; methods based on potential theory
[5] and on convex analysis [7] have been introduced by Bisﬁut; necessary conditions
for optimality using general extremal theory have been obtained [44] by Haussmann; a
reformulation of dynamic programming in terms of nonlinear semigroups has been given
by Nisio [66]; variational inequality technigues have been introduced by Bensoussan
and Lions [4], and computational methods systematically developed by Kushner [54].

This suryvey outlines the so-called "martingale approach" to stochastic control.
It is based on the idea of formulating Bellman's "“principle of optimality" as a
submartingale inequality and then using Meyer's submartingale decomposition [63] to
obtain local conditions for optimality. This is probably the most general form of . i
dynamic programming and applies to a very general class of controlled processes, as

outlined in 85 below. However, more specific results can be obtained when more

B s e S

" case of stochastic differential equations, for which the best results so far are o P
available. Other specific cases are outlined in §7. ; ' _
I have attempted to compile, in 89, a fairly complete list of references on
this topic and related subjects . Undoubtedly this list will suffer from imporfant
i omissions, but readers have my assurance that none of these is intentional. It
should also be mentioned that no systematic coverage of martingale representation

theorems has been attempted, although they are obviously germane to the subject.
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2. CONTROL OF DIFFUSION PROCESSES

To introduce the connection between dynamic programming and submartingales, let
us consider a control problem where the n-dimensional state process X, satisfies the

Ito stochastic differential equation

(2.1) dxt = f(t, xt, ut)dt + 0 (t, xt)dwt

£e R"

il

*0

Here LA is an n-dimensional Brownian motion and the components of f and 0 are Cl
functions of x, u, with bounded derivatives. The control ut is a feedback of the
current state, i.e. ut = u(t, xt) for some given function u(t, x) taking wvalues in
the control set U, Ifu is Lipschitz in x, then (2.1) is a stochastic differential
equation satisfying the standard Ito conditions and hence has a unlque strong solution

xt. The cost associated with u is then ) :_

J(u) = E[[ C(t,’ X o ut)dt + @(xT)]

“where T is a fixed terminal time and c, ® are, say, bounded measurable functions.
The objective is to choose the function u(+,*) so as to minimize J(u). An extensive
treatment of .this kind of problem will be found in Fleming and Rishel's book [41 ].

Introduce the value function
1 : .
2. = inf +
(2.2) vV(t, x) 13f E(t, %) E[ c(s, X us)ds (_I>(xT)]
Here the subscript (t, x) indicates that the process Xs starts at xt = x, and tﬁe

infimum is over all control functions restricted to the interval [t, T]. Formal ap-

pllcatlon of Bellman's "principle of optimality" together with the dlfferentlal for-

. .mula suggests that V should satisfy the Bellman equamon- Lo S - ~ ! “-,

;(2~3) Vt + 1/2 ZJ (oo’ ) x.x. + x&éﬁ [V}'{ f(t, x, g) +”c>(t,x,u)]_f .70 - _f
! 1] : S
B e A &, x e [0, T[ x . ;
S (2.4) Co (T, x) = 8(x), xeR" T e e ~~-

1
L
l
I
S

~(V = 9V/9dt. etc., and Vt' V etc. are evaluated at (t, x) in (2.3)). There ls a
; verlflcatlon theorem" .[41 , § VI 4] which states that if V is a solutlon of (2 3),

T

" (2.4) and W is an admissible control with the property that

wa": V (t, x) f(t x,u°(t, x)) + c(t,x,u’(t,x)) = méﬁ [V'(t x) f(t X u) + c(t x,u)]

then u® is optimal. Conditions under which a solutlon of (2.3), (2.4) is guaranteed
will be found in [41 ,§ VI 6]. Notable among them is the uniform ellipticity condi-

tion: there exists k>0 such that

(2.5) -2 (00", 4 g%i“lﬁjz
ij

for all EGRF. This essentially says that noise enters every component of equation

(2.1), whatever the coordinate system.



' -, and, conveniently, the "adjoint variable" V is precisely the function that appears

S trol of systems with complete observations (i.e. where the controller has exact

Let us reformulate these results in martiﬁgale terms, supposing the conditions
are such that (2.3), (2.4) has a solution with suitable growth properties (see below).
For any admissible control funcfion u and corresponding trajectory Xy define a process
M as follows:

t
a t
(2.6) Mt =./~ c(s, X us)ds + v(t, xt)
O .
Note that Mz is the minimum expected total cost given the evolution of the process

up to time t. Expanding the function V(t, xt) by the Ito rule gives

t t
(2.7) M = v(0,&) t/’ [V + 1/2 2:(00 ) j Vx.x. + V' £Y 4+ clds t}r V_odw
t ij X b 4
. 0 1j 0
where fu(t,x) = f(t, x, u(t, x)). But note from (2.3) that the integrand in the
second term of (2.7) is always non-negative. Thus this term is an increasing process.
If u is optimal then the integrand is identically zero. Assuming that the function
V is such that the last term is a martingale, we thus have the following result:

(2.8) For any admissible u, MY is a submartingale and u is optimal 1f and onl
£ S g . . OpT Y

if Mz 18 a martingale.
The intuitive meaning of the submartingale inequality  is clear: the difference
u u
< -
E[M_ |xr , T<8] - M

is simply the expected cost occasioned by persisting in using the non-optimal control
over the time interval [s, t] rather than switching to an optimal control at time s.
The other noteworthy feature of this formulation is that an optimal control is con-

structed by minimizing the Hamiltonian

H(t}x,Vx,u) = V; f(t,x,u) + c{t,x,u)

v1n the integrand of the stochastic 1ntegra1 term in (2. 7) ' i"‘ R V

Abstracted from the above problem, the martlngale approach" to stochastlc con-

knowledge of the past evolution of the controlled process) consists of the following
steps: ' h ' ' »

1. ‘iDeflne the value functlon Vt and condltlonal mlnlmal cost processes Mt as
- in (2.2), (2 6) - : ;

2, Show that the "principle of optimality" holds in the form (2.85

d A S AN SR e, B £

3. ~ Construct as optimal policy by minimizing a Hamiltonian, where the adjoint
: variable is obtained from the integrand in a stochastic integral represen- {

. tation of the martingale component in the decomposition of the submartingale

u
Mt'

In evaluating the cost corresponding to a control policy u in the above problem,

all that is required is the sample space measure induced by the X, process with E

#




control u. It is also convenient to note that the cost can always be regarded as a

terminal cost by introducing an extra state variable x° defined by

t
. ° = + dw?
(2.9) dxt c(t, xt, ut)dt dwt
where w; is an additional Brownian motion, independent of W, - Then since E w% = 0
we have
. = ° 4 = °
(2.10) J (u) AE [xp + &(x,)] E [é(xT, x5)]

Let C denote the space of Rp+l- valued continuous functions on [0, T] and (Ft) the
increasing family of ¢~fields generated by the coordinate functions {Xt} in C. Since
(2.1), (2.9) define a process (x;, xt) with a.s. continuous sample functions, this

induces a measure, say uu, on (C, FT) and the cost can be expressed as
3 ) =j(: D% Xy My (EX)

It turns out that each uu is absolutely continuous with respect to the measure u
induced by (X;’ xt) with £ = ¢ = 0. Thus in its abstract form the control problem

has the following ingredients:

(i) A probability space (2, FT, u)

(ii) A family of measures 01u, u€l/) absolutely continuous with respect to
(or, equivalently, a family of positive random variables (2u) such that

E Qu = 1 for each ueU)

~

{iii) An FY-measurable random variable &

The problem is then to choose u€U so as to minimize Eu® = E{Quél. In many cases it
is possible to specify the Radon-Nikodym derivative £u directly in orxder to achieve
the appropriate sample-space measure. We outline this idea in the next section before

returning to control problems in section 4.

3. ABSOLUTELY CONTINUOUS TRANSFORMATION OF MEASURES

Let (Q, F, P) be a probability space and(Ft) be an increasing family of

0<t<1 5
sub-g~-fields of F such that
(i) Each Ft is completed with all null sets of F
[ . . _ . N - n
(3.1) (ii) (Ft) is right-continuous F F

t s>t s

(iii) F is the completion of the trivial o-field {g, Q}.

(iv) Fl = F

Suppose Pu is a probability measure such that Pu<<P. Define

(3.2) L, = dp /ap
and
(3.3) L, = E [L|F]

[




Then Lt is a positive martingale, ELt = 1, and L0 = 1 a.s. in view of (3.1) (4iii).

According to [63 , VI T4] there is a modification of (L ) whose paths are right-

continuous with left hand limits (we denote L = l%% L. ). Define

T=1"dinf {t: L~ L_ = 0}

= ~ 3 : <
T, 1~ inf{t L, 1/n }

Then Tn+, Tnfi and Meyer shows in [64 , VI 1 that Lt(w) = 0 for all t > T(w), a.s.

Suppose (Xt) is a given non-negative local martingale of (Ft) with Xo=l a.s.
Then X, is always a supermartingale, since, if s, is an increasing sequence of
localizing times and s<t, using Fatou's lemma we have:

x_ = lim X = 1lim E[X |[F 1 > Ellim_inf X
n sts n tAsn s” — n

s lFs] = E[Xt"s iFs]
n n

tr~s
n .
it follows that EXt < 1 for all t and X_ is a martingale if and only if EX, = 1.

t 1
This is relevant below because we will want to use (3.2), (3.3) to define a measure

Pu from a given process Lt which, however, is a priori only known to be a local
martingale.

Let (Mt) be a local martingale of (Ft) and consider the equation

t
(3.4) 1 =1+ S/ﬁ L_aM_

It ‘'was shown by Doléans-Dade [28 ] (see also [64 , IV 25}, that there is a uniqﬁe local

martingale (Lt) satisfying this, and that Lt is given explicitly by

~AM

C s . - .

C .
= - L) >
Lt exp (Mt 1/2<M°, M t) Sgt (1 + AMS) e

Here Mz is the "continuous part" of the local martingale Mt (see [ 64, IV 9] and the
countabie product is a.s. absolutely convergent. We denote Lt =E(M)t (the "Doléans-
Dade exponential").

Suppose AM 2> =1 for all (s,w) Tﬁen Lt is a non-negative local martlngale, and

hence accordlng to the remarks above is a martlngale if and only if ELl = 1. 1Its

~utility in connectlon with measure transformation lles in the follow1ng result, due'

‘to van Schuppen and Wong [69 1. I A , ‘, - e ;

 (3.5) v-ivSuppose ELl =1 and define a measure P on (Q F ) by (3 2) Let x be a

local martingale such that the cross- varzatzon process X, M> extsts Then

Y=g - <X, M 1 P 1 m . -
X X X My ‘s a P local martingale. - NI
Note that from the general formula connecting Radon-Nikodjm derivatives and

conditional expectations we have
2 gy = EILXF) S O A T S T S
(3.6) E (X |F) = ttl s | : : | e

L
- 8

and consequently Xt is a P —local martingale if and only if X is a P-local martingale.

t t
One readily verifies that thlS is so with Xt defined as above, using the general
change of variables formula for semimartingales [64 , IV 21].

Conditions for the existence of <X, M> are given by Yoeurp [79 ]. Recall that

©



the "square brackets" process [x, M] is defined for any pair of local martingales
X, M by

c c 2;
X, M] = <X M> + hx Am
(%, Ml ! t s<t s s

Yoeurp defines <X, M> as the dual predictable projection (in the sense of Dellacherie
[ 27]) of [X, M], when this exists and gives conditions for this [ 79, Thm. 1.12].
(This definition coincides with the usual one [ 52] when X and M are locally square
integrable.) 1In fact a predictable process A such that X-A is a Pu—local martingale
exists only when these conditions are satisfied (see also [ 64, VI 22]).

An exhaustive study of conditions under whichEE’(M)1 = 1 is given by Lepingle

and Memin in [ 57]. A typical condition is that AM > -1 and
~-AM - e

t [ee]
1+AM ) 1<

(3.7) E {exp (1/2 <M© , M > tgl (1 + AM ) exp (=

This generalizes an earlier condition for the continuous case given by Novikov
[ 67]. We will mention more specific results for special cases below; see also
references [2],([3]), [12]1, [13], [30}, [36], [43], [B86], {601, &771. = S

Let us now specialize the case where x, is a Brownian motion with respect to

t
the O-fields F & and M is a stochastic integral , I

- Lo

where ¢ is an adapted process satisfying

(3.8) ./f ¢ ds < a.s. for each t

t t i i ¢ B
Then <u®, M%> = <M, > =f o ? as  ana <y, b =f $ ds  so that T

(3.9) L= exp ( ¢ ax_ - 1/2f q> S S S
t 0 T

and : o D S S

: i ; ; i
Do : . . ) ! ! ! i i i ! i i ' e
©(3.10) B f ¢ _ds SRS T A Pl e s s s S e e
' (U ’ ”"E"'"“‘"‘i" .._ﬂj [ S “% : sy

1= 1). since X has continuous paths,'<x'x >£ -

is the sample path quadratic variation of x [ 52] and this is invariant under abso-

in a Pu—local martingale (assuming EL

‘lutely continuous change of measure. It follows from (3 lO), since the 1a<t term

is a continuous process of bounded variation, that ) T ‘“?'ﬂ”“;”;’”l”*”
!

(P ) - S umfv,;m_,mﬁ

<B, B>t. u - <x' X>t(P) =t ) ! P 1 ~

and hence that Bt 18 a Pu -Brownian notion, in view of the Kunita-Watanabe éharaéteri—
zation [ 64, III 102]. This is the original "Girsanov theorem" [ 43]. A full account
of it will be found in Chapter 6 of Liptser and Shiryaev's book [ 60]. In particular,

theorem 6.1 of [ 60] gives Novikov's condition: ELl = 1 if ¢ satisfies (3.7) and

1 .
(3.11) B exp(l/2 f ¢ 2ds) <
0 S



The Girsanov theorem is used to define "weakX solutions" in stochastic differential
equations. Suppose £ : [0, 1] x C > R is a bounded non-anticipative functional on

the space of continuous functions and define

q)(tr w) = £(t, x(*,w))

where Xy is a P-Brownian motion as above. Then (3.11) certainly holds and from (3.10)

we see that under measure Pu the process xt satisfies
(3.12) dxt = f(t, x)dt + dBt

where Bt is a Pu—Brownian motion, i.e. (Xt' F Pu) is a "weak solution" of the sto-

'
chastic differential equation (3.12). (It istnot a "strong" or "Ito" solution since
B does not necessarily generate x; a well-known example of Tsyrelson [ 721, [ 60,
§84.4.8] shows that this is possible). The reader is referred to [ 601 for a compre-
hensive discussion of weak and strong solutions, etc. Suffice it to say that the
main advantage of the weak solution concept for control theory is that there is no
requirement that the dependence of £ on x in (3.12) be smooth (e.g., Lipshitz as the

standard Ito conditions require), so that such things as "bang-bang" controls [ 3 ],

[ 211 fit naturally into this framework.

- 4. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS - COMPLETE OBSERVATIONS CASE

This problem, a generalization of that considered in 82, is the one for which
the martingale approach has reached its most definitive form, and it seems worth
giving a self-contained outline immediately rather than attempting to deduce the re?
sﬁlts as special cases of the generalvframework considered in §5. The results below
were obtained in a series of papers: Rishel [68, Bene¥ [ 2], Duncan and Varaiya B0},
Davis and Varaiya [25], Davis [L6 ], and Elliott [34]. S e

Let 2 be the space of continuous functions on [0, 1] to Rp, (wt) the family of
coordinate functions and F; = O{WS, s < t}. Let P be Wiener measure on (Q, Fi) and
Ft be the completion of F°t with null sets of Fi. Suppose 0 : [O,YI]X'Q‘?R?xn‘iS a

matrix-valued function such that
. |

(i) Gij(;'.) is Ft—-predictable R

4.1 ii . . = ) < -
@D log5¢6, ) = otk | < ozge| x5 - vl
(iii) o(t, x) is non-singular for each (t, x) and [(G—I(t, a .l <k
o : i 13 —
(Here Kk is a fixed constant, independent of t, i, j).TFhen there exists a unique

strong solution to the stochastic differential equation

dxt = o({t, x)dw,, xoeRn given.
Now let U be a compact metric space, and f: [0, 1] X C x U - R a given function which
%s continuous in u€U for fixed (t, x) € [0, 1] x C, an Ft—predictable process as a
function of (t, x) for fixed u€U,and saﬁisfies

8



(4.2) lf(t, X, u)l_j K(1 + ggg!xgl)

Now let U be the family of Ft—predictable U-valued processes and for uel gefine
-1 toa e
L, (u) = exp(f (0" (s,x) £(s,x,u))) 'dw_ ~ 1/2 f |o*£ |“as)
0 0
The Girsanov theorem as given in 83 above generalizes easily to the vector case, and
condition (4.2) implies the vector version of Novikov's condition (3.10) (see [60,

p. 2211). Thus ELl(u) = 1 and defining a measure P by

dPu
@ - LW

we see that under Pu the process xt satisfies

u
- (4. 3) _ dxt = f(t,x,ut)dt + O(t,x)dwt

u . . . . . .
where wt is a Pu~vector Brownian motion. The cost associated with u€U is now

) ‘ 1 .
(4.4) J(u) = Eu[{ c(t,x,u)dt + 20x)]

where ¢, ® are bounded measurable functions and c satisfies also the same condition as
£. |

It is clear that O must be non-singular if weak solutions are to be defined as
above (cEf. the uniform ellipticity conditions (2.5)), but an important class of

"degenerate" systems is catered for, namely those of the form

. 1.1 12 ;
(4.5) dxt.— f (t,xt, xt)dt f
N 2 2 1 2 1 2
- - s ;
:(4.6) dxt f (t,xt,xt,ut)dt + O(t, 1X t)dw :

'-where-E is nonsingular and fl is Lipschitz in xi uniformly in (t,xi). Then (4.5) has
. a unigque solution xi = Xt(x2) for each given trajectory x2, and (4.6) can be rewritten

;as e , SRR BT R

L2 2 2. 2 — 2, 2
dxt”— £ (t,Xt(x ),xt,ut)dt +v0(tht(x ),xt)dwt

Pl S | o 3 } A e
which is in the form (4.3). This situation arises when a scalar n'th-order differen-
. 'tlal equatlon is put into lst—order vector form.

( f Fix t€[0,1] and define the conditional remalnlng cost at tlme t as.

i

u _ » u ' : : §“'
Ve = Eu[!‘ c (x,s)ds + @(xl)lFt] : S

(Here and below we will write c(x,s,us) as~cu(2}s) or c:; and similarly for f). It
~is seen from the formula (3.6) that wu only depends on u restricted to the interval

[t,1] and since all measures P are equivalent the null sets up to which w is defined

are also control-independent; in fact wu is a well- defined element of L (f, F ,P) for

each welU. Since Ll is a complete lattice we can define the lattice 1nf1mum

9




u
W =
t uéu v
as an F -measurable random variable. This is the value function (or value process).

It satisfies the following principle of optimality, originally due to Rishel [68]:
for each fixed u€lU and 0<t<Lt<l1,

(4.7) W< EuE[Tc‘;dsut] +E W |F]
The proof of this depends on the fact that the family [wz : uel'] has the "€ -lattice
property": see §5 below. Now define
u _d/'t u
Mt = A cS ds + Wt
This has the same interpretation as in (2.6) above. Note that since xO is assumed to

be a fixed constant,

Mo = W = By IW

(@l =

(4.8)

il

1
f cuds + ${x,) = "sample cost"
0 s 1 :

u
The statement of the principle of optimatlity is now exactly as in (2.8). Firstly
(4.7) implies that Mz is a Pu—submartingale for each u. Now if M. is a Pu—martingale

t

then EuMg,= EuMi which implies u is optimal in view of (4.8), while if u is optimal

then for any t,

t
_ u u
Wy = Eu.[é‘ chds + Y.

Now for any control we have from (4.7) ’ S 7‘ o
: t . | : - J{ et
W, < EuJ cds + W] N R
0 ;
and henée

u
: - >
. Eu [Wt wt‘] - 0 A

”Bﬁt‘by definition WL'% wuia:s.; thus Wt = wz a.s._éhd therefore M: = Eu(MTIFt]' So
Mu is a maltlngale if and only if u is optimal. | ‘ '

t . s
' Fix u€lU.. A direct argument shows that the functlon t+EMt is right continuous,

and it follows from [63, VI T4] that M has a right~continuous modlflcatlon. The
- conditions for the Meyer decompos1tlon [63, VII T31l] are thus met, so there exists

" a unique predictable increasing process AY with Al

€ o= 0 and a martingale N" such that

t

u u u Y
= + +
Mt W0 M~At Nt

We now want to represent the»martingale NE as a stochastic integral. If the O-fields
Fe were'generated by a Brownian motion then this representation would be a standard
result [15], [52], [60], but here (4.3) is only a weak solution, so (WE) does not
necessarily generate (Ft)' Nevertheless it was proved by Fujisaki, Kallianpu¥ and

Kiunita [42] (see also [25], [60]) that allFt—martingales are in fact stochastic in-

/10




tegrals of w., i.e. there exists an adapted process = such that

t
t
/ |gs[2ds < ®© a.s.
0
and . .)ft .
(4.9) Nt = / gscsdws
From the definition of ME we now have
o t u u J/.t u
- —4 + -
(4.10) Wt WO + ‘4P gSUSdWS At A csds

Now take another control u€lU. By definition
\'A 'ty
= X + W
Mt /(; chs €

and hence, using (4.3) and (4.10) we get

t t
v v u
. = + -
(4.11) Mt WO u£~ gscsdws + At + .é.(Hs(vs) Hs(us))ds
where
(4.12) Hs(us) =-gsf(s,x,us) + C(s,x,us)

Now (4.11) gives a representation of MZ as a "special semimartingale” (= local martin-
gale + predictable bounded variation process) under measure Pu and it is known
that such a decomposition is unique [64,IV32 1. But we know that MVis a submartingale

with decomposition

v v, .V
. = + +
(4.13) M WO Nt At
.so the terms in (4.11), (4.13) must correspond. In particular this shows that
the integral g in (4.9 ) does not depend on the control u. We can now state some
. conditions for optimality. A ‘
(4.14) A necessary condition. If u*€lU is optimal then it minimizes , E S

(a.s. AP x dt) the Hamiltonian Hy of (4.12)
A .

Indeed, if u* is optimal then A: = 0. Referring to (4.11) with u = u* we see

that (4.14) is just the statement that the last term in (4.11) is an increasing

~ process. -

P S

(4.15) A sufficient condition for optimality. For a given control u*, defined the
* e
p" -martingale ' A

% u*
P =E I IFt]

Then u* is optimal if for any other vel the process

u " *
I = p* + f (cu~-cu )ds
_ t s

78 a P -submartingale.
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This is evident since then

u u u
*) = =B I < ETI
J(u*) T uo0-—"ul

o = J(u).

We can recast (4.15) as a local condition: gince it is a martingale, p z has a

representation
t %
* = J(u*) + f?;o aw"
Pt S s s
0
- Now suppose that
(4.1¢) Ht(ut)_ﬁ_Ht(v) a.e. for all ve€y
where H is as in (4.12) but with § replacing g. Then a calculation similar to (4.11)
shows that Iz is a local Pu—submartingale for any u€l; " since Ig = J(u*), this
implies that if Tn is a sequence of localizing times then
u
> *
Eu[IlAT ] 2 ()
n
u ., . u u
But the process It is uniformly bounded and IlAT > Il as n+»®, so that
n
u
- .
Eu[IlATn] J (u)

Thus (4.16) is a sufficient condition for optimality and it is easily seen that if
u*
t
Since the process 9 is defined independently of the existence of any optimal

it is satisfied then ;{ = and §t =g, a.e. See [2{] for an application.
control it seems clear from the above that an optimal control should be constructed
by minimizing the Hamiltonian (4.12). Under the conditions we have stated, an
bfimplicit function lemma of Bene$ [1.] implies the existence of a predictable process
ug such that
| H;(uo) = mj H (v) a.e.
e T U e

% Using (4.11) with u = u0 gives
v

! ' . t 0
B R >S W+ V 4+ au

} ; Mt - 0 {P gsosdws t
: and hence, taking expectations at t=1,
' 0

u
(4.17) E, A ] 23(v) - W,

To show ﬁo is optimal it suffices, according to the criterion (2.8), to show that

0 : o
B .
: AI = 0 a.s. Here we need some results on compactness of the sets of Girsanov ex-

: ponéntials, due to Bene$ [ 2] and Duncan and Varaiya [ 30]. Let A4 be the set of

" R'-valued Ft—predictable processes ¢ satisfying
[ocex) | < k@ + gup |x ), (tr0)elo 1] xQ
(thus ﬁueA for uel, see (4.2)) and let

D= {8(¢) : ¢edl}
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where

1 1 ;
§9) = exp( f (o oyraw - 172 [ |07 ] %an)
0 0
then Bened' result is

(4.18) D is a weakly compact subset of Ll(Q,F,P) and >0 a.s. for all 2eD.
Returning to (4.17) we can, in view of (4.8), choose a sequence uneU such that

S(u ) 4 WO and hence such that for any positive integer N,
n uO un u0
(4.19) E, [B] AN = E[S(£ ) (A A N)I> 0, n e

n
n

In view of (4.18) there is a subsequence of G(fu ) converging weakly to some p€D;

hence from (4.19)

0
EP (AT A M) =0
1 0
and it follows that Ag = 0 a.s. We thus have:
(4. 20) Under the stated conditions, an optimal policy uoexists, constructed by

minimiging the Hamiltonian (4.12).

Two conments on this result: firstly, it is possible to recast the problem so
as to have a purely terminal cost by introducing an extra state xo as in (2.9), (2.10).
However it is important not to do this here, since an extra Brownian motionwvg is
introduced as well, and there is then no way of showing that the optimal policy u
does not depend on wp - i.e. one gets a possibly "randomized" optimal policy this
way. Secondly, the existence result (4.20) was originally proved in [2 ] and [30]
jusﬁ by using the compactness properties of the density sets. However they were
obliged to assume convexity of the "velocity set™ f(t,x,U)‘in order that the set
D) = {G(fu) : u€l} be convex (and can then be shown to be weakly closed). Finally
it should be remarked that (4.20) is a much stronger result than anything available
in deterministic control theory, the reason being of course that the noise “smooths
{. 6ut" the process. 7 » ". o ;;': 7;;_  /
A comparison of (2.3) and(4.12) shows that the process g£ plays the role of the
" gradient VX(t,xt) in the Markovcase, so that in a sense the submartingale decompo-
sition theorems are providing us with a weak form of differentiation. The drawback
with the martingale approach is of course that while the function VX can (in prin-
;iple) be calculated by solving the Bellman equation, the process gt is only defined
implicitly by (4.9), so that the optimality conditions (4.14) (4.15) do not provide
a constructive procedure for calculating the optimal uo, or for verifying whether a
candidate control satisfies the necessary condition (4.34). Some progréss on this
has been made by Haussmann [44], but it depends on uo(t;x) being a smooth function
of er,kwhich is very restrictive. ;
Suppose uo is optimal and that the random variable

O .

MY - .[ c(s,x,uo(s,x))ds + d(x.)

1 5 1
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is Frechet differentiable as a function of x€0); then by the Riesz representation theorem

there is, for each x€Q an R?-valued Radon measure such that for yef

0 0
W Gory) =M+ f yie) u@s) + oyl
. (0,11

Since uO is optimal ME satisfies
uo 0 t u0
= g
Mt J(u) +[ g sdwS

and Haussmann [45] [46] (see also [19]) shows that, under some additional smoothness

assumptions, g, is given by

t
9. =E I [ ul@vis,o)|r]
u lt,1]

where ¥ (s,t) is the (random) fundamental matrix solution of the linearized equation
corresponding to (4.3) with u = uo. Ths representation gives, in some cases, an
"adjoint equation" satisfiedby It along the lines originally shown by Kushner [ 1.

Finally let us remark that in all of the above the state space of X is R,
Some problems - for example, control of the orientation of a rigid body - are more
naturally formulated with a differentiable manifold as state space. Such problems
have been treated by Duncan [29] using versions Qf the Girsanov theorem etc. due to

Duncan and Varaiya [31].

5. GENERAL FORMULATION OF STOCHASTIC CONTROL PROBLEMS

The first abstract formulation of dynamic programming for continuous-time stochas-
tic control problems was given by Rishel [g8] who isolated the "principle of optimality"
in a form similar to (4.7). The submartingale formulation was given by Striebel [70]

who also introduced the important "€--lattice property." Other papers formulating
stochastic control problems in some generality are those of Boel and Véraiya {111,
3;W_Memin [61], Elliott[37] [38], Boel and Kohlmann [9 ] [10], Davis and Kohlmann [23]
and Brémaud and Pietri [14]. T : i o ; : o ; ;
, . We shall sketch briefly a formulation, somewhat similar to that of (2.7),7which
.is'less”general than that of Striebel [70] but sufficiently general to cover all of
the applications considered in this paper. ’
‘:mg¢‘(’.The basic ingredients of the control problem are ”" ‘€““?'f'”3M§Wf"‘“
| (i) A probability space (,F,P) ‘ : ?v? '{:j ?,‘3 o :
,(ii) Two families (Ft), (Yt) (0<t<1) of increasing; right¥continuoué,icom—
pleted sub-o-fields of F, such that Yt(: Ft for each t.

1
(iv) A measurable space (U,2)

(iii) A non-negative F_-measurable random variable .

(v) A family of control processes {Ug, 0<s<t<1}

Each control process ueUz is a Y, -predictable U-valued function on ls,t] X . The

t
s~




family {UE} is assumed to be closed under

restriction: uels - ul ev' for s<t<t
s [s,T] s -

. t
concatenation: ueUz; veU:=>weUs where

w0, w) { u(o,w) o€ls,T]

v(g,§) oelt,t]
(5.1)

.. - t t
finite mixing: u,veUs, A€Y_ » wel_ where

_ u(o,w), wEA
w-(0, ) { vi(o,w), weAS

We denote U = Ué (In most cases U will consist of all predictable U-valued processes,

but (5.1) is the set of conditions actually required for the principle of optimality
below). A control ueUg is assumed to determine a measure Pu on (Q,Ft) which is

" absolutely continuous with respect to P F- such that Pul = P[F and such that the
. , t F 0

o
‘assigmment is compatible in the sense that if ueUt, s< t and v = u[{o (so that

s]

v€U0) then PV = Pu . If ueU and X is an Ft—measurable random variable, then EuX
Fs

denotes expectation with respect to measure Pu' We finally assume that Eu® <o for

all uvelU and the problem is then to choose u€l so as to minimize J(u) = @

The value process corresponding to ueUg”is

. -
(5.2) W, = Ny B lo]vy)

t
- 'where "VAt“ denotes the lattice infimum in Ll(Q,Yt;P), taken over all veU such that
I
‘Vl[o t] = u. Note that,. -in contrast to the situation in §4, Wz is in general not
; , ;

_eontrel—independent. We nevertheless have a result analogous to (2.8), namely

i(5.3)"v' Wt is a submartzngale fbr each uely and is a martzngale if and only 1f a

8 optzmal

‘Note that by'inclusion and using the compatability condition, for any T> t

W< VAT EV[<I>|Y ] = V/\,C E B [0y 1]Y]

so that the flrst statement of (5.3) is equ1valent to the assertion that A and

14

and according to Striebel [70] (see also [26] for a

summaly) thlS is possible if the random variables E [@]Y ) have the eg-lattice property:
if vl,vzeUt then there exists vy eUl such that, w1th vi denoting the concatentation of
u and v.,

i

(5.4) Bz [0|Y ] < Bz [0]Y, ] AE- [0]v. ] +e  a.s.
3 l 2
Now it is evident that under assumptions (5.1) the set {E [¢|Y ]}hae the O-lattice

as above one only has to deflne
74

property, because given vl, v
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A= {w: E;i[®|Yt] E'EGE[QIYt]

and, for Telt,1],

vy (t,w0), wea
v3(T,w) =

c
v2(T,w), WEA

Then (5.4) holds with %=0.
It is clear from the definition (5.2) that u is optimal if Wt is a Pﬁ—martingale

while conversely if u is optimal then for any te€{0,1]
u, . - -
(5.5) E Wyl = ipf J(v) = J(w Eu[Eu[QlYt]]

But by the submartingale property E [Wg] < E [Wu] and this together with (5.2) and
(5.5) implies that W Vg [@]Y ], i.e. W: is a P —hartingale.

Statement (5.3) is a general form of optlmallty principle but 1ts connection
with conventional dynamic programming is tenuous as there is a different value ‘
function for each control, reflecting the fact that past controls can affect the
expectation of future performance. This is suggestive of Feldbaum's "dual control™
idea, namely that an optimal controller will act so as to "acquire information" as
well as to achieve direct control action. .

The postulates of the general model above are not, as they stand, sufficient

to endure that there is a single value function if Y, = F_ (complete information).

t Tt
Let
ap
(5.6) . L (u) = E[~—~1F ]
Now fix s€[0,1] and for s<t<l define
. ‘ i >
Lt(u)/LS(v) if Ls(v) 0
Lt(u,v) =
1 L if L (v) =0
S N B n "
{;théﬁ Lt(ﬁ,v) is a positive martingale and Ls(u,v) = 1. Then the following hypothesis
. u _ . - - . S
. ensures that there is a process Wt such that Wt = Wt in case Yt Ft'
(5.7) For any veU, and u.,u.€U such that u = u we have
172 1] 2|
Is,1] Is,1]

Lt(ul,v) = Lt(uzfv) for all t€ ]s,1]

See [g1, Lemma 3.2]. Clearly the densities Lt(u) of 84 above satisfy (5.7)

A minimum principle - complete observations case

If we are to use the principle of optimality (5.3) to obtain local conditions
for optimality in the form of a minimum principle it is necessary to be more specific
about how the densities Lt(u) are related to the controls u€l. This is generally
through a transformation of measures as described in §3 above. VA general formulation

will be found in Elliott's paper [38] in this volume, but to introduce the idea let

/&




us consider the following rather special set-up.
Suppose Yt = Ft for each t, and let Mt be a given Ft—martingale with almost
all paths continuous. Now take a function ¢ : [0,1X QXU+ R such that ¢ is a predic-
table process for each u€U and continuous in u for each fixed (t,w), and for uelU let
¢u denote the predictable process ¢u(t,w) = ¢(t,w,u(t,u)). We suppose that for each
uel
1 u, 2
(5.8) - E exp(l/2 (¢7)7a<M> ) < =
s s
(0]
and that the measure Pu is defined by

ap

u u
& - pfdan,

(see 3). From (3.7), condition (5.8) ensures that Pu is a probability measure and

that Pu”“P. Now Lt(u) (defined by (5.6)) satisfies the equation

t
_ u
L (u) = [Ls(u)d)s am_

The uniqueness of the solution to this equation shows that condition (5.7) is satis-
fied, and hence that there is a single value process Wt' which can be shown to have
a right~continuous modification [61], assuming the cost function is bounded. Then

for any ueU, Wt has the submartingale decomposition

u u
(5.9) Wt = Wo + Nt + At

where NE is a Pu~martingale and AE a predictable increasing process. According to
the translation theorem, the process

(5.10)  aM", = au_ - ola<m>

t t

. . . S R o
is a continuous Pu-martlngale. Decompose Nt into the sum

u —u ~ : A
= + . : . ! : :

- ~where ﬁt is in the stable subspace generated by ME (see [64]) and ﬁt is orthogonal'

to this stable subspace. There is a predictable processvgimsuch that

t
—u u
Ne jjé. I Mg

Now consider another admissible control v. Using (5.9), (5.10), we see, as in (4.11),

(4.12) above that Wt can be written R o ! S

t t
u g v u u

= + + + - <M>
W= W, f g am_ + N _/(; g (b, = ¢ )a<m>_ + A

S

0 — . -a .
Now ﬁt is a Pu—martingale, since the Radon-Nikodym derivative Eu[dpv/dPulFt] is in
the stable subspace generated by Mu'(see {371, [38]) and hence, by the uniqueness

i

of the éemi—martingale decomposition (5.9) we have oy b

t
u : u u
= . - <M>
At [ gs((t)s q)s)d M s A

u |
t : ’ o i
e u ., . . ' u
Since At is an ‘increasing process and At

= 0 if u is optimal, we have the following
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A
)

minimum principle:

(5.11) If wel s optimal -and v is any admissible control then for almost all w
gsd)(s,u),us) f_gs¢(s,w,vs) a.e. (d<M>S)
In particular if U consists of all predictable U-valued processes then

gscb(s,w,us) = Igé{} gscb(s,w,V)

The importance of this type of result is that no martingale representation
result is required, since the "orthogonal martingale" Nt plays no role in the optimal-
ity conditions (things are somewhat more complicated if the basic martingale m_ is
not continuous).

Partial observations case

Further progress in the case when Yt # F, appears to depend on representation

t
theorems for Yt—martingales, although possibly a development similar to the above

could be carried out. For each u€l the Pu—submartingale Wz

sum of a martingale and an increasing process. In Memin's paper it is assumed that

is decomposed into the

all (Yt,P)—martingales have a representation as a sum of stochastic integrals with
respect to a continuous martingale and a random measure. It is shown in [48] that a
similar representation then holds for (Yt,Pu)-martingales since Pu<<P' VUsing this
some somewhat more specific optimality conditions can be stated, but these do not
lead to useful results as no genuine minimum principle can be obtained. Rather than
describe them we revert to the stochastic differential equatidn model of 84 for which

better results have been obtained.

6. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS WITH PARTIAL INFORMATION

Returning to the problem of §4, let us suppose that the state vector X, is divided
into two sets of components xé = (yé,zé) of which only the first is observed by the

controller. Define Yt = G{ys, s<t}. Then the class of admissible controls is the

set N of'Yt—adapted processes with values inVU. The objective is to choose u€lN so as
to minimize J(u) given by (4.4). Following Elliott [34] we will outline a necessary

condition for optimality. Thus we suppose that u*€N is optimal (and write c*, E,

. *
instead of cu ' Eu etc.). Let

x1!

R N

i

and for any u€lN define ' o o o i R
. € . R , v
Nt=f csds+1p* : '
0 t-
‘Then NE is an (Ft,P*)_martingale and it is easily shown that

. * . _ .
(6.1) (i) E*[Nt|yt] is a (Yt'P*) martingale

u

ii) E*[N) <E, [ 3 dh >0
(ii) E [NtIYt] < E, [Eu[Nt+hlbt]IYt] for any uelU an
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As in §4, we can represent N; as a stochastic integral with respect to the Brownian

*
motion wé = wz , i.e. there exists an Ft-adapted process gz such that

t
* = * *, *
(6:2) N* = PR +U!P g*o _dw*

Using an argument similar to that of (4.11)-(4.12) we see that Nz can be written
u t u t
. = * 4+ I-'* *
(6.3) N & Kl)o f gSGdeS +f AHs(u)ds
[§] 6]
where
AH;(u) = [g;f(s,x,us) + c(s,x,us)] - [g;f(s,x,ug) - c(s,x,u;)]

It now follows from (6.1) (ii) and (6.3) that

E+h
(I/h)E*[Eujéi AH;(u)dlet)]Yt] >0

B rather delicate argument given in [34] shows that taking the limit as h¥0 gives

E*[AHé(u)|Yt] Z_O. We thus obtain the following minimum principle:

(6.4) Suppose u*ell is optimal and ueN. Then there is a set Tcl0,1] of zero

Lebesgue measure such that for tgr
E*[géf(t,x,ug) + c(t,x,ug)lYtl f_E*[ggf(t.x,ut) + c(t,x,ut)lyt} a.s.
where gg 1is the process of (6.2).

This is a much better result than the original minimum principle (theorem 4.2
of [25])since :the optimal control minimizes the conditional expectation of a Hamil-
tonian involving a single "adjoint process" g*. A similar result (including some
average value state space constraints) was obtained by Haussmann[44] using the Gir-
'sanov formulation together with L.W. Neustadt's "general theory of extremals."

It is shown in [39] that a sufficient condition for optimality is that an
inequality similar to (6.4) but with Eu replacing E, should hold for all admissible u.

The disadvantage of the types of result outlined above is that they ignore the
~ general cybernetic principle that in partially observable problems the conditional
distribution of the state given the observations constitutes an "information state,"
on which control action should be based. In other words, the filtering operation is
not explicitly brought in. Although there is a well-developed theory of filtering
for stochastic differential equations [42], [60], it turns out to be remarkably dif-
ficult to incorporate this into the control problem. A look at the "separation
theorem" of linear control [18]1, [78], [41], chapter 7] will show why. The separation

theorem concerns a linear stochastic system of the form

: Ju
+ Gdw

(6.5) dxt Axtdt + B(gt)dt det

. 1/2. 2u

dyt = Fxtdt + R™’ dwt , v “ a :'% o

lu . . . . . N ' e
where w ,w2u are independent vector Brownian motions, the distribution of the initial

state X, is normal, and the coefficient matrices can be time-varying. It is assumed

that GG' and R are symmetric and strictly positive definite, that the controls u

/9
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take values in a compact set U and that the function f is continuous. The solution

of (6.5) for a given Yt-adapted control policy u, is then defined by standard appli-

t
cation of the Girsanov technique and the (non-quadratic) cost is given by

1
J(u) = Eu[4!‘ c(t,x ,uddt + o (x,)]

It is shown in [24] that the conditional distribution of X, given Y _ is normal, with

t
mean Qt and covariance Zt given by the Kalman filter equations:

A - A 1 —1/2
(6.6) dxt = Axtdt + B(ut)dt + ZtF R dvt
20 = Exo
. '_‘ "l
(6.7) ¥ =AY + ZA' + GG' ~ LF'R "FL

L(0) = COV(XO)

Here vt is the normalized innovations process

t
- 2 A
"V =“/” R 1/ (dy —= FX ds)
t s
0]
. . . . o —1/2
which is a standard vector Brownian motion. Let us denote K(t) = LtF R , and let
n(s,x,t) be the normal density function with mean x and covariance Zt. Now define

etz = [ ot gwn(Ex,0ag, 8x) = fecancex,vat
- , ARG

r? R

Then the cost J{(u) can be expressed as

: 1
(6.8) J(u) = Eu%{~8(t,§t,ut)dt + @(xl)]

The original problem is thus seen to be equivalent to a "completely observable"
"problem (6.6), (6.8) with "state" ﬁt (this characterizes thg'entire conditional dis-
itribution since the covariance X2(t) is non-random). This suggests studying "separated
controls" of the form ut = w(t,ﬁt) for some given measurable'function P [0,1]><Rn+ U.
‘However,vsuch controls are, in general, not admissible: admissible controls are speci-
?fied functionals of y, whereas the random variable ﬁt depends on past controls 7
,{us, s<t}. One way round this difficulty is to coﬁsider (6.6)-(6.8) as an indépendent
:problem of the type considered in 84, i.e., to define the solution of (6.6) by Girsanov
’transformation on a new probability space, for separated controls u(t,X). However

we then run into the fresh difficulty that weak solutions of (6.6) are only defined

S vfif the matrix K(t)K'(t) is strictly positive definite, which cannot happen unless

" the dimension of yt'is at least as great as that of x, - a highly artificial condi-
tion. If this condition is met then we can apply (4.17) to conclude that there
exists an optimal separated control, and an extra argument as in [ 18] shows that its
cost coincides with infueNJ(u). If dim(yt) < dim(xt) then some form of approximation
must be resorted to.

With these elementary obstacles standing in tﬁe way of a satisfactory martingale
treatment of the separation theorem, it is not surprising that a proper formulation
of information states for nonlinear problems has not yet been given. It is possible

20




that the Girsanov solution concept is still too strong to give existence of optimal

controls for partially-observable systems in any generality.

7. OTHER APPLICATIONS

This section outlines briefly some other types of optimization problems to which
martingale methods have been applied. The intention is merely to indicate the martin-
‘gale formulation and not to give a survey of these problems as a whole: most of them
have been extensively studied from other points of view and the associated literature
is enormous. Nor is it claimed that the martingale approach. is, in all cases, the
most fruitful.

7.1 Jump processes

A jump process is a piecewise-constant right-continuous process X,  on a probabil- .
ity space (Q,F,P) with values in, say, a complete separable metric space X with Borel
o-field S. It can be identified with an increasing sequence of times {Tn} and a

sequence of ¥X-valued random variables {Zn} such that

x = zn' te[Tn'Tn+l[
t zZ 4, t>7
0 —-— 00

where T, = 1%@ ?n and qnis a fixed element of X. . (Generally T, => a.s. in applica-
tion,) Jump processes are useful models in operations research (queueing and inven-
tory systems) and optical communication theory, among other areas. Their structure
is analysed in Jacod [47], Boel, Varaiya and Wong [12] and Davis [17]. A jump pro-
cess can be thought of as an integer valued random measure @ on E = R+>C X defined
by

u(w,dt,dZ) = IZI G(Tn(b)) X

7

(w)) (d€,dz)
n .

where Ge is the Dirac measure at e€E. Now let

F_ = o{uv(]o,s] xa), s<t, AeS}= olx , s<t}

~and let P be the F -predictable o-field on R" xQ. A random measure U is predictable
if the process ' ' ‘ ‘

(7.1) ’ j' A glw,s,z)u (w,ds,dz)
10,t] xX

is predictable for all bounded measurable functions g on (Q><R+>C X,Z’*S). The fun-
damental result of Jacod [47] is that there is a unique predictable random measure

v such that

(7.2) E[ f g(s,z)u(ds,dz)] = EI[ f g(s,z)Vv(ds,dz)]
E E ‘

for all g as above. Vv is also characterized by the fact that for each A€S, v(10,t] XA)
is the dual predictable projection (in the sense of Dellacherie [27 ]) of u(]o,t}],A),

i.e. the process

q(t,A) = u(lo,t] x A) - v(]0,t] X A)

R/




is an Ft -martingale. An explicit construction for v in terms of the distributions
of the (T Z ) sequence is given in [2.3]. We will denote by Jg dg integrals of
the form (J'g ay - .fg dav) where,fg du and fg dv are defined as in (7.1) then

the process

10,t]

is an F —martlngale for a suitable class of predictable integrands g, and the mar-
tmgale representation theorem [121,  [17]1, [47] states that all Ft—martlngales are
of this form for some g.

Denote

At = \)(]OIt] X X)

For each w this is an increasing function of t and evidently the measure it defines

on R+ dominates that defined by v(]10,t] x A) for any AeS. Thus there is a positive

function n{w,s,A) such that

(7.3) v(]0,t] xA) = f n(w,s,A)al
' ' : ' ]0O,t]

Owing to the existence of regular conditional probabilities it is possible to choose
- n so that i£ is measurable and is a probability measure in A for each fixed (s,w).
The pair (n,A) is called the local description of the process and has the interpre-

tation that At is the integrated jump rate: roughly, dAs ~ Plx # xSIFS] and

n(w,s,*) is the conditional distribution of X given that X #s::i.
Optimization problems arise when the local description of the process can be
controlled to meet some objective. This is normally formulated [11], [22] by abso-
lutely continuous change of measure, as in §3: we start with a "base measure" P on
: (Q,Fl) with respect to which the jump process has a local description (n,A ) and define
a new measure Pu by

dap .

; wheie'mu is a (P,Ft) martingale. Under Pu.the process xt has a differenﬁ local des-

;_cription which can be identified by the translation theorem ( . ). More specifically,

. it is supposed that the admissible controls U consist of Ft—predictable, (U,E)-valued
processes and that a real=valued measurable function ¢ on (R+><Q X X XU, P*S*~) is

' given. Denoting ¢ (t,w, 2) = ¢(t,w,z,u(t,w)) for uel, mu is defined by

m:(w) = j- ¢u(s,w,2)q(w,ds,dz)
10,tIxX
' The Doleans-Dade exponential ( . then takes the specific form

E(mu)f_=exp(f f ¢ Yan an® ) H (l+¢ ('1‘ Z, ) AA fd) (T ,z)n(T dz))
) T 0 1 X

X II" (1- AA J'¢ (s,z)n(s,dz))
s<t




where A is the continuous part of A and the second product is taken over the countable

set of s such that AAS > 0 and sg {Tl,T ,-+.+}. Assuming that EE(Mu)l =1, x, is,

2
under measure Pu' a jump process with local description

t

A= f ((1+ ¢ A ﬁ;udn)v(ds,dz)
£ o0t x s X
(7.4)

2{(1+¢: - BA {ﬁdn) n(s,dz)

nu(s,A) =

. (1 + q;‘; - AR £¢udn) n(s,dz)

See [22], [36] for details of these calculations and conditions under which EE(mu)l=l.
Generally, only weak conditions on ¢ are needed to ensure that Pu is a probability

measure on FT for each n and hence on Er . If Too = ®© ag.s. (P) then extra conditions
n [ee]

on ¢ can be imposed to ensure that Too = o a.s.(Pu) and then Pu is a probability on‘
Ft for each fixed t; see [77]. Let us suppose that the control problem i; to choose
uel so as to minimize
J(u) = Eu® ) o

where ¢ is a bounded Fl—measurable random variable. Then the problem is in the
general framework of §5 and furthermore we have a martingalé representation theorem
analogous to that of the Brownian case. Thus local conditions for optimality can
be obtained by following the steps of §4. "

Suppose u*€lU is optimal. Then by the martingale representation theorem there
is an integran g such that

(7.5) B [0]F,] = J(a%) + f 9(s,2)q*(@s,dz) i i
10,t) XX : A

where g* = p—v*, and Vv* is the dual projection of U under measure P, (cf.>17.2)).

Now let u€lU be any other control; then we can rewrite (7.3) in the form -

. B - . . - N i e - .,..,__,." e e .,.g..__, ‘f . ; IS
+(7.6) E*{QlFt] = J(u*) + “/' g dq" + J/. g(av? - av*) NS S e T -
‘ ’ 10, t] XX ]0,t] xX IS SO SN DL ‘

: According to the criteribn (5.3 ), E*{QlFt] is a Pu—submartingale, and heﬁce the:
“last term in (7.5) must be an increasing process. Using (7.3) and the specific
forms of local description provided by (7.4), this statement translates into the

. following result: o I T R SR
-

(7.7) Suppose u* is optimal, let g be as in (7.5) and define

h(e,z,0 = g(t,z,0 - ME,w fot, gone,agw

Then for almost all w

S nctz¢t, 2,00 n(t,d2) = mip fh(t,2)6(t,z,00n(t,dz) a.e. (dh,)
J il i f neeme 2 ae. (@)




Thus, as in (4.14), the optimal control minimizes a "Hamiltonian.”" A sufficient con-
dition for optimality similar to (4.15) can also bé obtained. 1In the litera-

ture (121, [221, [77] various forms of Hamiltonian appear, depending on the

nature of the cost function and the function ¢. In [77] an existence theorem along
the lines of (4.20) is obtained; however this only holds under very restrictive as-

sumptions, related to the absolute continuity of the measures. 1In the Brownian case

all the measures Pﬁ are mutually absolutely continuous under very natural conditions,
'éﬁd this is crucial in the proof of the existence result, as is seen in (4.18), (4.19).
In the jump process context mutual absolute continuity is very unnatural, but one is
apparently obliged to insist on it if an existence result is to be obtained.

Finally, let us mention some other work related to the above. Optimality condi-
tions for jump processes are obtained by Kohlmann [50] using Neustadt's extremal
theory in a fashion analogous to Haussmann's treatment of the Brownian case [44].
Systems with both Brownian and jump process disturbances are dealt with in Boel and
Kohlmann [9 ], [10] (based on a martingale representation theorem of Elliott [33]) .
and Lepeltier and Marchal [58]. The survey [13] by Bremaud and Jacod contains an

 extensive list of references on martingales and point processes.

7.2 Differential games [321, [35], (73}, [741, [75], [76]

The set-up here is the same as that of §4 except that we suppose.U = Uixuzx...xUN
where each Ui is a compact metric space. Then U = le..ﬂxUﬁ Where Ui is the set of
Ftvpredictable Ui—valued processes, and we assume that each uleUi is to be chosen by
a player i with the objective of minimizing a personal cost

J.(w) =J,(...d) = E yfl yds + &, (x,)]
;(u i eel u'o ci(s,x,uS ;% _

(e and @i satisfy the same conditions as ¢, of §4).7 Thus each player is assumed
to have perfect observations of the state process Xt'
- Various solution concepts are available for this game [76]: u* = (ul* ..uN*) is
- a Nash equilibrium if there is no i and uieUi such that '

imgv‘;,{“s 1 $(i-1) i

. i+
Ji(u* geees u”‘(l l),

: ws) < 3 (u) R

-~ efficient if there is no u€lU such that

J, (u) < J. (u*) for all i
i i

- in the core if there is no subset S CZ{l,2...,N}and uel such that
T, (v) < J,(u*)  ies S i
i g 1

i . i ik .
where v = u for i€S and v = u for igs.

Thus an equilibrium point is one from which it does not pay any player to deviate

unilaterally, a strategy is efficient if no strategy is better for everybody and a

. strategy is in the core if no coalition can act jointly to improve its lot. Evidently
a core strategy is both efficient and an equilibrium, but equilibrium solutions are ‘

not necessarily efficient oxr conversely.

xH#




For u€ll denote J'{u) = (Jl(u),...,JN(u)) and let
J = {J() |uel}

This is a bounded subset of RN, and a sufficient condition for efficiency of a strategy

. . . N
u* is the existence of a non~negative vector A ER° such that

(7.8) X'J(u*) < A'E for allged
JQ(U)
(see diagram for N=2). If J is convex, this ’ ‘

condition is also necessary. It follows from
results of Benes [2] (see the remarks follow- A

ing (4.20)) that convexity of the set
N

N n+
(£(t,x,0), c'(t,x,Ul)...,c (t,x,UN)XZR
implies convexity of J. Now (7.8) says that » //r

u* is optimal for the control problem of mini-" J(u*)

mizing the weighted average cost.a.hn = Z,?Ji(u). Jl(u)
. i
Fix u*eU, and as in §4,, let gl,izl,...,N, be

adapted processes such that . _  'f  7 o 4: ?
1 u* A ft i a*
= Hu*)+
Eu*[gr cisds + @i(xl)IFt] Jifu ) A gsﬁsdws

For any other strategy u€l the right-hand side can be expressed, as in (4.11), as

. t . t . .
i, J[' i u Jf i P
J(u*) + / gSOSdm + A (Hs(us) Hs(us))ds

where

3 H;(u) = g f(t,x,u) + e, (t,x,u)

Combining the remarks above with (4.16) shows that u* is efficient if there exists

XGRN such that

(7.9) 4Z.K1Hl(u€) <2 Aiet (v, a.e. for all veu | = o 5(W1”i U i
under the convexity hypothesis, this condition is also necessary.

~ 'u* is a Nash equilibrium if, for each i, u*' minimizes ‘ ‘ f ,
(N .+ . . . . N i B 1
Ji(u*l,...,u*(l l),u,u"‘(1 l),...,U*N) over ueUi. Applylng‘condltlon (4.16) we see

that this will be the case if

(7.10) Hl(uz).i Hl(v), a.e. for all veUi, i=l,2,...,N' : - L,

ok

L S [P [OS

Thus u* is an efficient equilibrium if u, minimizes each "private" Hamiltonian as in

(7.10) and also minimizes a "social" Hamiltonian (7.9) formed as a certain weighted
average of these. Analogous conditions can be formulated under which u* lies in the
core, '

+ . . .
For (t,x,pi,u) € R X X Iflx U define the Hamiltonians
-1
H (tlxlpilu) = pi'f(trxlu) + Ci(tlxlu)

We say that the Nash condition holds if there exists for i=1,...,N measurable functions

ug(t,x,pl,...,pn) such that ug is a predictable process for each fixed (p,u):(pl... N,u)
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and

0 0

—i : 0 0 —i 0
H (tlxlpirul(trxlp)r'-'luN(tfle)) _<__H (t,X,Pi,ul,--.,ui__l,v,ui_'_l,..

0
.,uN)
for all veu;, for each (t,x,p)eRﬁ'XQ xR, Uchida shows in [73] that the game has
g Nash equilibrium point if the Nash condition holds. The proof is by a contradic-
tion argument using the original formulation of the results of 84 as given in Davis
and Varaiya [25]. Conditions under which the Nash condition holds are stated in [74].

Ndwrcoﬁsider the case N=2, J2(u) = -Jl(u), so that the game is 2-person, O-sum..
Then the core concept is ugatory, all strategies are efficient and an equilibrium is
a saddle point, i.e. a strategy u* such that (denoting J; = J) for all uel

g, v?) < grtur?) < gd,ue?)

. L . ' +
In this case the relevant condition is the Isaacs' condition: for each (t,x,P)€R X QXR"

r

-1 —1
max - mj H (t,x,P,u,,u,) = mj m H (t,x,P,u.,u.)
u2262 uléﬂl 1772 uléBl uzgﬁz 17z

The main result is analogous to the above, namely that a saddle strategy u* exists

- if the Isaacs' condition holds. The argument, given by Elliott in [32], [35], is

constructive, along the lines leading to the existence result (4.20) for the control
problem. One considers first the situatibn where the minimizing player I announces
his strategy uleUl in advance. It is immediate ffom (4.20) that the maximizing

player II has an optimal reply ug(ul) to this. Now introduce the upper value function

+ 0

= A

Ve =L B o E/” cl(s,x,ul,uz(ul))ds + @l(xl)lFt]
1771 ul,uz(ul) t

An analysis of this somewhat similar to that of §4 shows that player I has a best

strategy, i.e. a strategy ugeyl, such that

30,05 @) “nip, 3 (uy ) (u)))

If it is player II who announces his strategy first, then we.can define in an analo-
5gqus'manner the Zower value function W;. In general W: > W_, but if the Isaacs' con-
and it follows that u* given by u*l = ug, u*2 = ug(ug) is

‘dition holds then w: = W,

a saddle strategy. D
A somewhat more restricted version of this result was given by Varaiya in [75],
:using a compactness-of-densities argument similar to that of Benes [1] and Duncan and
' Véraiya for the control problem. No results aie available if the»pléyeis”do not have
complete observations. Some analogous results for a differential game including a

-jump process component are given in [49]. Doy : .

7.3 Optimal stopping and impulse control

In . the conventional formulation of optimal stopping one is given a Markov process
X, on a state space S and a bounded continuous function ¢ on S, and asked to find a
Markov time T such that Exdxxt) 3>Exdxxo) for all x€S and Markov timesO . Let

Yx) = S%P Equ¥))
A&




Then under some regularity conditions § is the "least excessive majorant" of ¢ (i.e.,
P(x) > ¢(x) and w(xt) is a supermartingale) and the first entrance time of X, into the
set {x: ¢(x) = P(x)}is an optimal time. See [4 ], and the references there. If we

define Xt = ¢(xt) and Wt = w(xt) then T maximizes ExX and T = inf {t: Xt = Zt} .“7hus the

optimal stopping problem generalizes naturally as follows.

Let (R,F,P) be a probability space and (Ft)t>0 be an increasing, right-continuous,
completed family of sub-o-fields of F. Let T denote the set of Ft—stopping times and
Xt be a given positive, bounded optiocnal process defined on [0,®]. The optimal stopping

problem is then to f£ind T€T such that

BXp = BgF EXg
This problem is studied by Bismut and Skalli in [8 ]. The simplest case occurs when

Xt satisfies the following hypothesis:

(7.11) Let {Tn,T} be stopping times such that T AT or T VT. Then EX > EX
n

-
Griteria under which (7.11) holds‘are given in [8].

An essential role in this problem is played by the Snell envelope of X intro-
duced by Mertens [62, Theorem 4]. He shows that the set of all supermartingales
which majorize Xt has a smallest member, denoted Wt' which is characterized by the

property that for any stopping time T and o-field G:Ft,
E[WTlG] = e§§Z§¥p E[XSIG]v
Thus in particular for each fixed time t

Wt = egszégp E[XSIFt]

so’thétvw‘t is the value function for the optimal stopping problem. Under condition

(7.11) Wt is regular [63, VII D33] and hence has the Meyer decomposition

We =M - B

where M is a martlngale and B

v a continuous increasing process with B_=0. Now define

D(v). - J_nf{t>o B >0} e e e

i

Cand

{(t w) X, (w) = wt(w)} -
The debut of A is the stopplng time Dg = inf{t: (t,w)ea}. It is shown in [8] that
A . . .
< ] -
.DO _.DO and that:

(7.12) - A stopping time T is optimal 1f and only 1f the graph of T is contained in

AandT<D(')

" In particular, both Dg and Dy are optimal. T

This result implies an optimality criterion similar to (5.3 ): if T is optimal
then B = = i i Y, & i i =
é AT 0 so that WtAT MtAT is a martingale, and convgrsely if WtAT is a mar- .
tingale then it is easily seen that T must satisfy the conditions of (7.12).
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Analogcus resulis can be obtained for processes more general than those satis-
fying (7.11); the details are more involved and only 8~optimai stopping times may
exist.

Impulse control: Space precludes any detailed discussion of this topic, but it
should be mentioned that a martingale treatment has been given by Lepeltier and Mar-

chal [5%9]. In the simplest type of problem one has a stochastic differential equation

dxt = £(x,)gt + O(Xt)dwt

£)
A strategqy &= {Tn,Yn} consists of an increasing sequence of stopping times Tn and

a sequence of random variables Yﬁ such that Yn is FT -measurable. The corresponding

trajectory is xi defined by n
S _ .
Xy = X (given)
.6 _ S 8
dxtﬂ— f(xt) + G(Xt)dwt
te [Tn'Tn-l—l [
x6 = x6 + Y
T T— n
n n

The strategy § is to be chosen to minimize
os
J(§) = B[ ;‘; I(Tn§_l) +_[~ c(xs)ds]

A value function and conditions for optimality can be obtained along the lines of
§5. It is worth pointing out that the above system obviously has a Markovian flavor
about it, and indeed it is shown in [59] that the value function is Markovian (i.e.,

$

at time t it depends on x° only through xi) even though the controls § are merely
assumed to be non-anticipative. Some further remarks on this are given in the next
section.

7.4 Markovian systems

'Let us return to the problem of §4 and suppose that the éystem equation and cost

T I ‘ : v : : ‘ \ L e
. i ! I ; ' : . ; : : : . : i ;

ax, = £(t,x_,u

A,; ‘ . - u
+
© © t)dt,,,q(t'xt)dwt

. ‘v_w 14 l
S J(u) = EuE[ c(t,x ,u )dt + @(xl)],
o 0

i.e., we have a diffusion model aé considered in»§2. In 84 the admissible controls .

U were general non-anticipative functionals but here it seems clear that feedback
":controls of the form u(t,xt) should be adequate. Denote by ¥ the set of measurable
‘functions u: [0,1] ><Rn - U; then McU if we identify u€M with the process ut = u(t,xt),
and x, is a Markov process under measure Pu. Thus we can define the Markovian value

t .
funation_wM(t,x) as (with obvious notation)

Wie,x) = A B L/-l( )yds + &( )i
' ueM Tt,x ClSeX iUy X

The conjecture then is that wM(t,xt) = Wt a.e. (Wt pbeing defined as in 84) so that in
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particular

a9 = dgp 9w
This is easily established (see [25, §6]) if it can be shown that W satisfies a prin-
ciple of optimality similar to (4.7 ). However this is not clear, as there is still,
to my knowldge, no direct proof that the class M satisfies the e€-lattic property. An
argument along the lines given in §5 fails because it involves "mixing" two controls

ul,u2€M to form a control v by taking

ul(s,xs)IA
s u2(s,xs)IAc
where s>t and AeFt. But then v is of course no longer Markov. Thus the results
presented in §6 of [23] must be regarded as incomplete.

This problem has been dealt with in the case of controlled Markév jump proéesses
by Davis and Wan [26]. There it is possible to "mix" two controls in a more ingenious
way which, however, uses the special structure of the sample paths very explicitly
and hence does not generalize to other problems. An alternative approach would be to

start with the value process W, as previously defined and to show directly that

t .
W, = W(t,xt) for some function W.. This has been done by Lepeltier and Marchal [59]

t
for impulse control problems but again the argument is very problem-specific.
My general conclusion from the above is that the direct Martingale approach isv
not particularly well adapted to Markovian problems, and that more information can be
obtained from methods such as those of Bismut [5] which are specially tailored for

Markov processes. : : Co Eor

8.  CONCLUDING REMARKS A s _

The successes of martingale methods in control are twofold: firétly the essence
of the optimality principle is revealed in the general formulation (5.3 ), and in
particular the fundamental difference between the situations of complete and‘of‘in—
'complete observations is clearly brought out; and secondly, the powef of thersﬁﬁl
martingaie decomposition provides, in effect, a weak form of differentiation which
enables minimum principles and existgnce of optimal controls to be established with‘
few technical restrictions. The drawbacks of the method are that it does not lead
naturally to computational techniques, and there are difficulties in handling Marko;

vian systems and problem formulations of the "separation principle". type.

Here are a few suggestions for further reseaxrch. '7‘3”'?‘) oo

(8.1) - Obtain a more explicit characterization of the "adjoint proééés“L§; dfﬂ
§4. Comparisons with deterministic optimal control theory and other forms of stochastic
minimum principle [6], [53) éuggest that it should satisfy some form of "adjoint equé-v
tion," yet little is known about this unless the optimal control is smooth [44];

(8.2) To my knowledge martingale methods have not been applied seriously to




infinite-time problems (see Kushner [55] for some results using methods similar to
those of Bismut [5]). ‘

(8.3) The partially-observable problem continues to elude a satisfactory
treatment. In particular there are no good existence theorems, and experience with
the separation theorem (§6) suggests that these may be hard to get. My feeling is
that the proper formulation of partially-observable problems must explicitly include
filtering, since it is the conditional distribution of the state given the observa-
tions that is the true "state" of the system. A lot of information about nonlinear
filtering is available [60] but, again using the separation principle as a cautionary
tale, it is far from clear how to incorporate this into the martingale framework.
Possibly some entirely different approach, such as Nisio's nonlinear semigroup for-
mulation, will turn out to be more appropriate. See [20] for a step in this direction.

(8.4) Show that the €-lattice property holds in some'generality for Markovian
systems with Markov controls (cf. §7.4).

(8.5) Give a constructive treatment of Uchida's result [73] on the existence
of Nash equilibirum points in stochastic differential games.

(8.6) Is mutual absolute continuity of the measures Pu really necessary for
the existence result (4.20)? If not then better existence results could possibly be
obtained for problems such as controlled jump procésses (87.1) where mutual absolute

continuity does not arise so naturally.
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