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We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress)
magnetic field. The magnetic field lines of a stationary ABC field with coefficients A = B = C = 1 are chaotic,
and we show that the motion of a charged particle in such a field is also chaotic at late times with positive
Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle
can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with
an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly
distributed within some interval, the probability density function of kinetic energy is, at late times, close to a
Gaussian but with steeper tails.
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I. INTRODUCTION

Production of charged particles with energies far exceed-
ing the thermal energy is known to be a very common
phenomenon in cosmic plasma. Such energetic particles,
which include interplanetary, interstellar, and galactic cosmic
rays, are believed to be produced in various astrophysical
bodies, from magnetospheric to cosmic plasmas, including
solar flares, coronal mass ejections (CMEs), and supernova
remnants. In other words, acceleration of charged particles
occurs ubiquitously in the plasma universe. Investigations of
particle energization remains a major topic of astrophysics.
The seminal paper in this field is by Fermi [1], who proposed
that charged particles in cosmic rays can attain very high
energies by being repeatedly reflected by two magnetic mirrors
moving towards each other.

Fermi’s idea of energization was tested in a simple setting
in the now-famous Fermi-Ulam model [2] whose numerical
simulations showed that, although the motion of a particle
reflected by moving walls can be chaotic, on average no energy
is gained by the particle if the motion of the moving wall is
a smooth function of time. This result was elaborated upon
in the early days of research in nonlinear dynamical systems
[3–6], to show that energy can grow as a power law in time if
the motion of the wall is not smooth in time, e.g., random or
a sawtooth profile in time. The Fermi-Ulam problem in more
than one dimension, sometimes called “billiard problems with
breathing walls”, allows energization of particles; see, e.g.,
[7] for a recent review. In some specially constructed cases,
even exponential-in-time energy growth is possible [8]. Such
problems, although of fundamental interest, are somewhat
removed from the problem of energization of charged particles
in time-dependent magnetic fields. In this paper, we show that
the energy of charged particles can increase as a power law in
time in a simple helical magnetic field, whose components are
slowly varying sinusoidal functions of both space and time.

The motion of a charged particle in deceptively simple
magnetic fields can be very complex, even chaotic. A recent
paper [9] has shown that very simple current configurations,
for example a circular current loop in the x-y plane plus a line

current along the z axis passing through an off-center point,
can give rise to a magnetic field whose magnetic lines of force
are nonintegrable and chaotic [10]. The motion of a charged
particle in such a chaotic magnetic field may or may not be
chaotic. Recently, it was conjectured [11] that, if such a chaotic
magnetic field changes with time, it may be able to impart
significant energy to a charged particle. Our work, described
below, demonstrates the feasibility of effective energization of
charged particles by a time-varying chaotic magnetic field. We
show that this process can lead to an indefinite energization of
a charged particle to relativistic energies, given enough time.

II. MODEL

It is now generally accepted that astrophysical magnetic
fields are generated by some dynamo mechanism, i.e., a
mechanism by which the kinetic energy of the fluid is converted
to magnetic energy [12]. If the characteristic length scale of the
magnetic field, generated by the dynamo mechanism, is larger
than the energy-containing scales of the fluid, the dynamo is
called a large-scale dynamo. The most common examples of
astrophysical magnetic fields, e.g., galactic magnetic fields,
solar magnetic fields, and planetary magnetic fields, are gen-
erated by a large-scale dynamo. Almost all large-scale dynamo
mechanisms demand that the fluid flow possess helicity, i.e.,
handedness. The helicity of the flow is often described by the
well-known α effect which was proposed by Parker [13] with
a detailed mathematical basis provided by Steenbeck, Krause,
and Rädler [14]. The helical flow typically generates a helical
field. Thus almost all large-scale astrophysical magnetic fields
are helical in nature. This is also true of large-scale magnetic
fields generated by numerical simulations [15]; see also [12]
and references therein. Observations of solar flares also show
the helical nature of magnetic field ejected from the Sun
[16]. The helical nature of the magnetic field carried by the
solar wind has also been observed [17]. One of the simple
examples of a helical field, which is also a force-free field, is
the Arnold-Beltrami-Childress (ABC) flow. The streamlines
of the ABC flows are chaotic [18].
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Here we study the possibility of energization of a test
particle in a magnetic field, which is a time-dependent ABC
function:

B = B sin ωt, (1)

where B is an ABC function with wave number k:

Bx = B0(A sin kz + C cos ky),

By = B0(B sin kx + A cos kz), (2)

Bz = B0(C sin ky + B cos kx).

Here we choose A = B = C = 1 (which is the case where the
ABC flow has chaotic streamlines), where the time-dependent
part is a sine function with circular frequency ω and t is
time. Although time variations with multiple time scales are
expected to occur in a realistic astrophysical environment, in
this work we have chosen, as an example, a simple sinusoidal
time variation of the helical field.

Furthermore, the energization of test particles has been
observed in complex (in space, but constant in time) turbulent
electric fields generated by time variation of fluctuating mag-
netic field in direct numerical simulations of MHD [19,20]. It
then behooves us to ask the question, what are the essential
ingredients of the energization process? Can a simple magnetic
field like an ABC field that is periodic in both space and time,
but is nevertheless expected to give rise to chaotic motion of
test particles, energize test particles indefinitely? Finally, the
ABC field is an eigenfunction of the curl operator; hence it is
easy to solve Maxwell’s equations to obtain the electric field
generated by the time-dependent part of the ABC field.

Through Maxwell’s equations, the time-varying ABC field
shall generate a fluctuating electric field, given by

∇ × E = −∂ B
∂t

= −Bω cos ωt. (3)

Here, E is the electric field, which is given by

E = ω

k
B cos ωt. (4)

In addition, we assume that ω/k � c, where c is the speed of
light. Hence we can safely ignore the displacement current in
Maxwell’s equations of electrodynamics. We further assume
the particle to be nonrelativistic; hence its equations of motion
are given by Newton’s second law of motion

ẋ = v, v̇ = q

m
(E + v × B). (5)

Here and henceforth, the dot denotes a time derivative. In what
follows, unless otherwise stated, length scales are normalized
by 1/k, time by ωc where ωc is defined to be the characteristic
gyrofrequency,

ωc = qB0

m
. (6)

We solve for Np = 409 600 copies of this six-dimensional dy-
namical system. Initially, the particle positions are uniformly
distributed inside a cube of dimensions 2π × 2π × 2π with
velocity along the x-axis uniformly distributed between −0.01
to 0.01 and k = 1. We use a fourth-order Runge-Kutta method
with fixed step size [21] as our time-stepping algorithm. This
algorithm is not energy-conserving by construction. However

we have checked that, in practice, energy conservation is
satisfied with a high degree of accuracy [22]. We have also
checked for representative runs that a Runge-Kutta-Fehlberg
[21] scheme with variable step size gives the same results.
The computations are done with a PYTHON package to solve
ordinary differential equations, and the figures are prepared
using MATPLOTLIB [23].

III. RESULTS

Let us first study the properties of trajectories of particles
for the case in which the magnetic field is constant in time. In
this case we define the characteristic gyroradius of the particle,

rc = v

ωc
, (7)

where v is the magnitude of the velocity of the particle, and ωc,
the characteristic gyrofrequency, is constant in time, because
the energy of the particle is conserved. Let us first consider the
case rc � 2π/k with k being the characteristic wave number of
the magnetic field. In this case, for times t � ttrans = 1/(kv),
with v = |v|, the particles move in a field that is almost a
constant and hence its motion is not random. Here, ttrans is
the time it takes a typical particle to go a distance equal to
the wavelength of the magnetic field. The net displacement
of the particle is due to the component of its velocity parallel
to the local magnetic field. This component of velocity is also
constant. Hence, the mean-square displacement of the particles
obeys

〈r2〉 ∼ t2 for t � ttrans. (8)

In the other limit, rc � 2π/k, the particles encounter signifi-
cant change in the magnetic field even within one gyro-orbit.
Hence, we expect nontrivial behavior in this regime. The
mean-square displacement (normalized by k2) as a function of
time (normalized by ωc), in log-log scale, is plotted in Fig. 1.
For short times, Eq. (8) is indeed verified; for large times we

FIG. 1. (Color online) Average displacement 〈r2〉 as a function
of time for particles in a stationary ABC magnetic field (ω = 0). The
ordinate is normalized with k2. The two straight lines to the left and
right of the curve are fits with slopes 1.9 and 1.1, respectively.
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FIG. 2. (Color online) The PDF Q(�) of the Lyapunov expo-
nents, defined in Eq. (10), for two time differences, ωcδt = 130 (blue
filled squares) and 140 (red open circles).

find that the mean-square displacement grows approximately
linearly with time (slope of the fit is 1.1); i.e., Brownian motion
is observed.

Whether or not chaotic trajectories exist in this system (i.e.,
with stationary magnetic field) can be investigated by studying
the tangent system,

˙δx = δv,
(9)

δ̇v = q

m
[(δx · ∇)E + v × (δx · ∇)B + δv × B].

This dynamical system clearly depends on the trajectory in
phase space given by x(t),v(t). It is possible to solve this
system for each trajectory given by the solutions of Eq. (5).
For each such trajectory one can calculate the quantity

� = lim
t→∞

1

t
ln

| δx(t) |
| δx(0) | , (10)
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FIG. 3. (Color online) A typical track of a particle in the magnetic
field. The initial position of the particle is shown by an arrow. The
ABC field is periodic over a cube of unit length in units plotted in
this figure. To give an idea of scales, a cube with each side equal to
10 is shown in the figure.

FIG. 4. (Color online) Mean energy of the particles as a function
of time for run R2; see Table I. The two straight lines are fits (in the
least-squares sense) with slopes 1.95 and 0.77 for small t and large
t , respectively.

which is the largest Lyapunov exponent for that particular
trajectory. Each trajectory is then labeled by the initial choice
of position and velocity. For a set of random initial conditions,
we have calculated the probability density function (PDF),
Q(�). In Fig. 2 we plot Q(�) for two time differences. The
two PDFs are quite close, and both of them are Gaussian with
a positive mean. Hence, we conclude that at large times, Q(�)
is Gaussian with a positive mean; i.e., the dynamical system
(5) even with a time-independent magnetic field, which also
implies zero electric field, has chaotic trajectories.

Now let us study the case with a time-periodic magnetic
field. We limit ourselves to the case where ω/ωc is very small
and ω/k remains equal to unity. In other words, we consider a
magnetic field that varies slowly in both space and time.

A typical path is shown in Fig. 3. Note that, although the
magnetic field is periodic with wave number k = 1, the particle
trajectories themselves are not periodic. To illustrate this in
Fig. 3 we have also plotted a cube each side of which is 10
times the length scale over which the magnetic field is periodic.
In Fig. 4 we show the growth of kinetic energy (per unit mass)
averaged over the total number of particles,

E(t) ≡ 1
2 〈v2〉. (11)

At short times, E(t) behaves as t2, but at later time goes like
t ξ with an exponent ξ that is not universal but depends on ω;

TABLE I. The table shows how the exponent ξ depends on the
frequency of the magnetic field ω. We study the limit where the
magnetic field changes very slowly. For all the runs, q/m = 1, ωc =
1, and ω/k = 1. As ω/ωc → 0, ξ approaches unity. The values of ξ

for smaller ω have larger error as these runs have not run as long as
the first two runs.

R1 R2 R3 R4

ω 1/10 1/16 1/32 1/64
ξ 0.45 0.77 0.8 0.9
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FIG. 5. (Color online) Plot of the mean-square displacement of
the particles as a function of time, for run R2. The two straight lines
are the fits (in the least-squares sense) with slopes 3.9 and 2.1 for
small t and large t , respectively.

see Fig. 4 and Table I. The gyroradius of the charged particle
grows with time as energy grows. The first stage of the growth,
over which energy grows as t2, continues until the gyroradius
becomes of the same order as the characteristic scale of the
ABC field. Figure 4 shows that the first stage of the growth,
over which energy grows as t2, continues until the gyroradius
becomes of the same order as the characteristic scale of the
ABC field. The growth at these short times can be understood
by reminding ourselves that for krc � 1, a particle does not
encounter significant spatial change in the magnetic field. As
ω/ωc is small, the particle effectively moves under a constant

FIG. 6. (Color online) Plot of the log of PDF P of the x

component of velocity of the particles at ωt = 100. The abscissa
is normalized by

√
2E at the same time. Figure 4 shows that by this

time E has grown by more than five orders of magnitude compared
to its initial value. The continuous line is the function (parabola),
f (x) = C − x2/σ 2 with C = −0.155 and σ = 1.25. The inset shows
the PDF F of kinetic energy (v2) at the same instant of time.

force (the electric field); hence its energy grows quadratically
with time. At later times, the growth slows down to t ξ where
the exponent ξ for different values of ω is given in Table I. We
find that, as ω/ωc → 0, ξ approaches unity. This shows that
the process we observe can be interpreted as a subdiffusive
process in momentum space. In real space, we simultaneously
find that the mean-square displacement is proportional to t4

for small times and goes as t2 for large times. A representative
plot of the mean-square displacement as a function of time is
given in Fig. 5.

We further study the PDF of energies of particles with
different random initial conditions; see inset of Fig. 6. The
PDF of vx is also plotted in log-linear scale in Fig. 6. For small
values of its argument this PDF is well approximated by a
Gaussian; i.e., the PDF of energy would be a Maxwellian, but
for large values of its argument the PDF is sub-Gaussian.

IV. CONCLUSION

In this paper we have shown that a helical magnetic
field with sinusoidal spatiotemporal dependence can energize
particles. The energization behavior is a power law in time
and, given enough time, can energize the particles to very high
energies where the relativistic effects start becoming important
[24]. In particular, in our simulations we observe the mean
energy of the particles to grow by six orders of magnitude.
The chaotic nature of particle trajectories plays a crucial role
in our model. If we change the ABC field such that A = B = 0
and C = 1 then we know that the magnetic lines of force
are integrable and nonchaotic. In such a field, we do observe
energization for short times, but at large times no systematic
gain in energy is observed.

The Fermi model of acceleration of charged particle, often
referred to as diffusive shock acceleration, is thought to be
one of the primary mechanisms for energization of charged
particles in the cosmos; see, e.g., Refs. [25–27] for a review.
Fermi’s theory also reproduces the experimental observation
that the PDF of energies of cosmic rays has an inverse power-
law tail. But diffusive shock acceleration of electrons can occur
only if the initial energy of the electrons is at least of the order
of a few MeV which is significantly higher than the thermal
energies; this is the well-known injection problem.

The mechanism we propose is akin to second-order Fermi
acceleration where a charged particle is energized due to
collisions with random scatter centers moving with random
velocities. The input “randomness” is a crucial ingredient of
this process and one typically obtains diffusive properties in
both real and momentum space [28]. The Fermi second-order
process also produces a PDF of energies with power-law tail.
By contrast, in our case the diffusive behavior is generated
by deterministic chaos. We obtain subdiffusive behavior (ξ <

1) in momentum space, which becomes close to diffusive
behavior as ω → 0. Furthermore, the PDF of energies at large
times becomes Gaussian with steeper tails; i.e., the PDF can
be characterized as Gaussian at low speed, but falls off more
rapidly than a Gaussian at speeds in excess of the mean.
On the positive side, our model is a possible mechanism
that can generate a population of electrons with superthermal
energies. They can now act as a resolution to the injection
problem. What is truly remarkable in our model is that a
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deceptively simple magnetic field with a dynamics that is
smooth in time is able to energize particles to indefinitely high
energies.

The question of energization of a test (charged) particle in a
turbulent plasma has been numerically studied in recent times;
see, e.g., Refs. [19,20]. These studies consider energization in
an electric field that is frozen in time but obtained from one
snapshot of a direct numerical simulation of magnetohydrody-
namic turbulence. In such a setup, test particles show diffusion
in real space. Energization is also observed, and at large times
energy seems to grow linearly with time. In addition, the
PDF of energies obtained in Refs. [19,20] has power-law tails.
However, it is not clear what the exponent of this power law is
and how that emerges. Our simple model is able to capture the
first two aspects, viz., the random walk and the energization but
not the power-law tail. One of the contributions to the electric
field in a turbulent plasma comes from the current. The square
of the current is the resistive contribution to energy dissipation
rates. The energy dissipation rates calculated from the solar
wind data [29] show intermittent behavior. Such intermittency
is absent in our simple model. This could be one of the reasons

why we do not observe the power-law tail of the PDF of energy
of the test particles. This brings us to the question, what are the
minimal ingredients necessary to add to our model to obtain a
power-law tail in the PDF of energy? This will be the subject
of future investigations.
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