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Abstract
Crumpled graphene films are broadly used, for instance in electronics1, energy storage2, 3,
composites4, 5, and biomedicine6. Although it is known that the degree of crumpling affects
graphene's properties and the performance of graphene-based devices and materials3, 5, 7, the
controlled folding and unfolding of crumpled graphene films has not been demonstrated. Here we
report an approach to reversibly control the crumpling and unfolding of large-area graphene
sheets. We show with experiments, atomistic simulations and theory that, by harnessing the
mechanical instabilities of graphene adhered on a biaxially pre-stretched polymer substrate and by
controlling the relaxation of the pre-strains in a particular order, graphene films can be crumpled
into tailored self-organized hierarchical structures that mimic superhydrophobic leaves. The
approach enables us to fabricate large-area conductive coatings and electrodes showing
superhydrophobicity, high transparency, and tunable wettability and transmittance. We also
demonstrate that crumpled graphene-polymer laminates can be used as artificial-muscle actuators.

Graphene possess a unique combination8 of extraordinary mechanical, electrical, thermal
and optical properties and high specific surface area. Recent capability of synthesizing large-
scale graphene9, 10 has motivated intensive efforts to integrate the merits of graphene into
high-performance devices and materials1–6. In these studies and applications, graphene films
are generally wrinkled or rippled with smooth undulations9, 11, 12 and/or crumpled with
sharp ridges, folds and vertices1–6, 13. Since deformation of graphene can strongly affect its
properties and the performance of graphene-based devices and materials3, 5, 7, 14, 15, it is
highly desirable to control reversible wrinkling and crumpling of graphene. While it has
been shown that thermal expansion and substrate regulation can induce reversible wrinkling
of graphene9, 11, 16, 17 and capillary compression can crumple microscopic graphene flakes

*To whom correspondence should be addressed: xz69@duke.edu.

Author contributions
X.Z. conceived the idea, designed and supervised the experiments, and performed the data interpretation. J.Z. designed and carried out
the experiments, and performed the data interpretation. Q.W. and Q.T. supported the experiments and contributed to the data
interpretation. S.R. and M.J.B. designed, carried out, analyzed and interpreted the atomistic simulations. N.P., S.R., M.J.B., and X.Z.
developed the theoretical models and interpreted them. X.Z. drafted the manuscript and all authors contributed to the writing of the
manuscript.

The authors declare no competing financial interests.

Supplementary information accompanies this paper on www.nature.com/naturematerials.

NIH Public Access
Author Manuscript
Nat Mater. Author manuscript; available in PMC 2013 October 01.

Published in final edited form as:
Nat Mater. 2013 April ; 12(4): 321–325. doi:10.1038/nmat3542.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nature.com/naturematerials


into particles3, 6, it is still not clear how to reversibly crumple and unfold large-area
graphene films in a controlled manner. Such a capability, however, can potentially advance
the performance of graphene-based devices and materials3, 5, 7, as well as open avenues to
exploit unprecedented properties of graphene. Here, we report a simple method to control
reversible crumpling and unfolding of large-area graphene films, which yields novel
conductive coatings and electrodes that are superhydrophobic, transparent, and feature
tunable wettability and transmittance.

A film of few-layer graphene (3~10 layers) is grown on a nickel film by chemical vapor
deposition and then transferred to a Polydimethylsiloxane (PDMS) stamp and characterized
with Raman microscope (Fig. S1 and Fig. S2)9. An elastomer film based on acrylic is
biaxially stretched to 3~5 times of its original dimensions (i.e. pre-strained by 200%~400%)
and held at the pre-stretched state. The graphene film is then transferred to the pre-stretched
elastomer substrate by stamping9. Thereafter, the pre-strains in the substrate are relaxed
sequentially along two pre-stretched directions as illustrated in Fig. 1a. During relaxation,
the lateral dimensions of the transferred graphene film reduce macroscopically by the same
ratio as those of the substrate. Microscopically, however, the graphene film develops
wrinkles (Fig. 1b) and delaminated buckles (Fig. 1c) when the substrate is relaxed
uniaxially, and become crumpled (Fig. 1d) when the substrate is relaxed biaxially. If the
relaxed substrate is biaxially stretched back, the crumpled graphene film can be unfolded to
a relatively flat state (Fig. 1e). The crumpling-unfolding process is reversible over multiple
cycles under the control of substrate deformation (Fig. S3). The method is also applicable to
few-layer graphene grown on copper films (Fig. S4).

Now we discuss the underlying mechanisms that control the crumpling and unfolding of
graphene through a joint experimental-theoretical-computational analysis. We first focus on
the formation of wrinkles and delaminated buckles in graphene under uniaxial compression.
As the pre-stretched substrate is gradually relaxed along one direction, the apparent length
of the graphene film reduces from L0 at initial (flat) state to L at current state (Fig. 1a). We
define the macroscopic compressive strain in the graphene film along the relaxed direction
as εG = (L0 − L)/L0. The compressive strain in graphene can be calculated as εG = (εpre −
ε)/( εpre +1), where is εpre the pre-strain of the substrate and ε is the tensile strain in the
substrate at current state. When the compressive strain in the graphene film reaches a critical
value, wrinkles develop with an initial wavelength11, 18, 19

(1)

where E and ν are the Young’s modulus and Poisson’s ratio of graphene, μs the shear
modulus of the substrate taken to be a neo-Hookean material, h the thickness of the

graphene film, and . Taking E = 1 TPa, ν = 0.165, εpre = 200%, and μs ≈ 20
and kPa, we obtain λ0 ≈ 611h 20. Since the number of graphene layers ranges from 3 to 10,
the initial wavelength is evaluated to be 0.6~2.1 µm, consistent with our experimental results
(Fig. 1b)11, 19.

Under further uniaxial compression, a pattern of parallel ridges develops with wavelengths
of 0.2~2 µm (Fig. 1c and Fig. S5a). By sectioning the graphene film (Fig. S6), we find that
the ridges are due to buckling of delaminated regions of the graphene on substrate. The
delaminated buckles may initiate from the hills of the wrinkles of graphene21 and/or defects
on the graphene-polymer interface21–23. Once initiated, the delaminated buckles will
propagate until the decrease of the graphene-substrate system’s elastic energy balances the
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increase of its interfacial energy21–23. Macroscopic and microscopic delaminations of films
on compressed substrates have been extensively studied21–23 and applied24, 25. However, to
our knowledge, the current study presents the first observation of patterns of delaminated
buckles in large-area graphene films on polymer substrates, which is assessed using a close
integration of experiment and atomistic simulation.

The crumpling of graphene films under biaxial compression leads to a surface structure that
is distinct from the one formed under uniaxial compression. As discussed above, a pattern of
parallel delaminated buckles form in graphene on the substrate when relaxed in one
direction (Fig. 1c and Fig. S5a). As the substrate is subsequently relaxed in the other
direction, the delaminated buckles are compressed along their ridges, and thus buckle and
collapse (Fig. 1d and Fig. S5b). Furthermore, a new set of delaminated buckles develop
perpendicular to the previous ones. The intersection of two orthogonal buckles gives rise to
an interesting crumpling pattern with ridges and vertices (Fig. 1d and Fig. S5b). Our
complementary atomistic simulation reveals high stress concentrations around the ridges and
vertices, as shown in Fig. 1f. (Note that the feature size of the patterns from simulation is
smaller than experimental observation because the simulation considers a single-layer
graphene on a rigid surface, while the experiments are carried out with 3~10 layers of
graphene on elastomer surface.) If the substrate is simultaneously relaxed in the two
directions, the crumpling also occurs but leads to more irregular patterns (Fig. S7b and Fig.
S8). The difference in crumpling patterns generated by sequential versus simultaneous
relaxations is also demonstrated by atomistic simulation (Fig. S7, Movies S1 and S2). In
addition, it is noted that the crumpling of delaminated graphene is distinct from the
hierarchical folding of perfectly-bonded films under biaxial compression that was recently
reported26. Once the relaxed substrate is biaxially stretched (to its initial length), the parts of
graphene film adhered on the substrate will pull on the delaminated parts, unfolding the
crumpled graphene film (Fig. 1e, Fig. S3 and Fig. S5c). If the stretched substrate is relaxed
again, the crumpling will reoccur. The graphene film can maintain its integrity over multiple
crumpling-unfolding cycles (i.e. >50) with a few unconnected cracks emerging (Fig. 1e and
Fig. S3).

The controlled crumpling of graphene leads to self-organized surface structures with
controllable feature sizes ranging from nanometers to micrometers (Fig. 1d and Fig. S5b),
and the hierarchical structure of crumpled graphene can be used for water-repellent and self-
cleaning surfaces that mimic the structure of the lotus leaf, for example27. To demonstrate
this effect we prepare a crumpled graphene film on a substrate with a biaxial pre-strain of
400%. As shown on Fig. 2a, a water drop placed on top of the crumpled graphene gives a
static contact angle of 152°. When the relaxed substrate is biaxially stretched back, the
contact angle of the water drop is maintained above 150° until the biaxial tensile strain in the
substrate exceeds 25% (Fig. 2d). If the substrate is further stretched, the contact angle of the
water drop decreases as the crumpled graphene is unfolded (Fig. 2d and Fig. S3). Once the
graphene is fully unfolded, the contact angle of the water drop decreases to 105° (Fig. 2b),
approximately the same as that of a water drop on a bare substrate (Fig. 2c) due to the
wetting transparency of graphene28. Therefore, one can instantaneously tune the wettability
of large-area surfaces by simply stretching substrates coated with crumpled graphene, which
does not require a complicated fabrication approach29.

The tunable wettability of crumpled graphene can also be achieved by stretching substrates
with different levels of biaxial pre-strains (i.e. 250% and 100% in Fig. 2d). If the water
contact angle is re-plotted as functions of the compressive strain in graphene, the curves for
different pre-strains collapse on a universal curve (Fig. 2e). We use the Wenzel and Cassie-
Baxter models to explain the water contact angle on crumpled graphene. When the graphene
is flat or slightly crumpled, the water will be in conformal contact with the graphene on
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substrate (i.e. Wenzel state in Fig. 2e). In addition, the water will feel the wettability of
polymer substrate due to wetting transparency of graphene28. On the other hand, if the
graphene is highly crumpled, the water drop will sit on a composite of graphene and air (i.e.
Cassie-Baxter state in Fig. 2e) and the graphene-air composite is no longer transparent to
wetting. Therefore, the apparent contact angle θ of the water drop can be calculated as

(2a)

(2b)

where  and are the water contact angle on polymer substrate and
graphite respectively, fa the air fraction in the contact area at Cassie-Baxter state, and r the
roughness of the wetted surface area. The roughness can be calculated by r = 1/(1+dεG)2,
where 0 < d ≤ 1 takes into account the observed delamination, giving the portion of
compressive strain in graphene that contributes to the roughness. With d = 0.82 and fa =
0.61, our model matches the experimental data very well (Fig. 2e).

The crumpled graphene films can also be used as extremely stretchable and transparent
electrodes. To enhance the transparency of crumpled graphene, we pre-stretch the substrate
in two directions by unequal pre-strains of 10% and 500%. Thereafter, the relaxed substrate
is uniaxially stretched along the direction with higher pre-strain, while the resistance of the
graphene film is measured. The crumpled graphene electrode can maintain good
conductivity when the substrate is repeatedly stretched to an extremely high strain of 450%
or highly twisted to an angle of 360° (Fig. 3a and b). On the other hand, under the same
deformations (i.e. stretching or twisting), a crumpled gold film of 20 nm thick develops long
and connected cracks with its resistance irreversibly increased by orders of magnitude (Fig.
S9). The graphene film only begins to fracture significantly when the tensile strain of the
substrate exceeds its pre-strain (Fig. S10). These results support that graphene film can
maintain its integrity over multiple crumpling-unfolding cycles, owing to its high toughness
and deformability20. Furthermore, when the substrate is stretched, the transmittance of the
electrode in visible range increases from 30% to 80% as the crumpled graphene is being
unfolded (Fig. 3c). The contact angle of a water drop on the graphene electrode can also be
varied from 135° to 103° as shown in Fig. 3d by stretching the substrate. (Note that our
contact angle model is still valid here, considering r = 1/[1+dεG1)(1+dεG2)], where εG1 and
εG2 are compressive strains in graphene along two directions.) The water-repellent
capability of the crumpled-graphene electrode can be further enhanced by increasing biaxial
pre-strains of the substrate (e.g. Fig. 2a). To our knowledge, this combination of
stretchability, transparency, and tunability has not been achieved by existing graphene
electrodes9 or other flexible electrodes based on metal films, conductive polymers, indium
tin oxide, nanowires or carbon nanotubes. These properties make crumpled graphene
electrodes particularly suitable for niche applications such as actuators and energy
harvesters30.

Here we demonstrate the application of a laminate of crumpled graphene and dielectric
elastomer as a novel artificial-muscle actuator30. We biaxially pre-stretch a dielectric-
elastomer film by equal pre-strains of 450%, transfer graphene films on its top and bottom
surfaces, and then relax the elastomer film to a lower biaxial tensile strain of 300%. As a
direct-current voltage of 3,000 V is applied between the graphene films, the elastomer
develops an electric field that induces the Maxwell stress30. The Maxwell stress deforms the
laminate by reducing its thickness and increasing its area over 100% (Movie S3 and Fig. 4a).
The actuation is fast and the graphene-elastomer laminate restores its undeformed state once
the voltage is withdrawn. The transmittance of the laminate varies between 40% and 60%
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during actuation (Fig. 4b), yielding an artificial muscle with tunable transparency. It is noted
that the partial delamination of the graphene film from the substrate is critical to the function
of the graphene electrode, where the delaminated part of the graphene enables its high
stretchability while the attached part ensures its macroscopically conformal deformation
with the elastomer. In contrast, a graphene-elastomer laminate with flat non-delaminated
graphene electrodes can only achieve an area strain of 20% in the first actuation and 7.6% in
the second actuation due to fracture of the flat graphene electrodes (Fig. S11)9.

In summary, here we demonstrated a simple method to reversibly crumple and unfold large-
area graphene, which enables us to achieve a set of unprecedented morphologies and
properties of graphene, in a controlled manner. A number of future research directions
become possible, such as systematic and quantitative investigations of the effects of
crumpling on graphene’s electrical and electrochemical properties1–3 and the strengths of
graphene-polymer interfaces4, 5. In addition, the ridges and vertices in the crumpled
graphene are highly deformed and microscopically patterned, which can potentially lead to
other new properties and applications of graphene, such as patterned chemical reactions31 or
for applications in biomedical devices. Furthermore, by controlling the microscopic patterns
of graphene with a simple macroscopic tool, one can develop new graphene-based systems
with novel tunablility and flexibility to make nanoscale mechanisms visible at the
macroscale.

Methods
Preparation of crumpled graphene

Few-layer graphene films grown on nickel films on silicon wafers with chemical vapor
deposition are purchased from Graphene Supermarket (USA) and used as received. A
PDMS stamp is adhered to the graphene film on the wafer (Fig. S1) 9. The graphene film
with the PDMS stamp is detached from the wafer by etching off the nickel film in 1 M
FeCl3 solution. The graphene/PDMS sample is rinsed by isopropanol and deionized water
and dried in air or nitrogen gas. The cleaned graphene/PDMS sample is stamped on a
biaxially pre-stretched (with pre-strain of 200%~400%) elastomer film of VHB acrylic 4905
(3M, USA) to transfer the graphene film to the elastomer film. Thereafter, the pre-strains in
the substrate are relaxed sequentially along two pre-stretched directions. The whole process
is schematically illustrated in Step I of Fig. S1.

Characterization of microscopic patterns of graphene on elastomer substrates
Scanning electron microscope (SEM, FEI XL30 SEM-FEG, USA) and atomic force
microscope (AFM, Digital Instrumentas dimension 3100, Bruker, Germany) in tapping
mode are employed to characterize the morphologies of various patterns on graphene films
including wrinkles, delaminated buckles, crumples, and unfolded crumples.

Measurement of water contact angle
A water drop of 1~3 µ L is placed on the surface of the graphene and images are
immediately captured for static contact angle measurements using a side-view microscope
connected with a camera (Nikon, USA). The water drops are removed by compressive air to
dry the graphene surface for repeated contact angle experiments. The contact angle is
measured using image processing software, ImageJ.

Transmittance measurement
The transmittance of graphene electrodes on elastomer films are measured using a UV/VIS
spectrometer (Cary 6000i, USA) at a wavelength of 550 nm in visible range.
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Voltage-induced actuation of graphene-elastomer laminate
Graphene films are transferred to the top and bottom surfaces of a biaxially pre-stretched
elastomer film by stamping (Fig. S1). The pre-stretches in the elastomer film are relaxed
sequentially along two pre-stretched directions to a lower pre-strain. A high voltage supply
(Matsusada, Japan) with controllable ramping rate is used to apply a high voltage between
the top and bottom graphene electrodes. The voltage is ramped up to 3000 V in 0.05 S and
then reduced to 0V.

Atomistic simulation of crumpling of graphene
We model the crumpling of a single layer of graphene spanning 100 nm by 100 nm (383,125
atoms), confined on a rigid surface. The Adaptive Intermolecular Reactive Empirical Bond
Order (AIREBO) potential for carbon32 is used for full-atomistic Molecular Dynamics (MD)
simulations. Van der Waals interactions between the graphene film and the substrate are
modeled by a Lennard-Jones 9:3 wall potential corresponding to an adhesive energy of 100
mJ/m2 and equilibrium distance of d = 3.35 Å. All MD simulations are performed using
LAMMPS33 with a time step of 3 fs. Periodic boundary conditions (PBC) are applied to the
two orthogonal directions parallel to the wall surface. Before loading the graphene film in
compression, it is equilibrated for 30 ps in the NVT ensemble using a Langevin thermostat
at 300 K. After equilibration, the equibiaxial compression simulation is performed using the
Nose-Hoover thermostat in which the graphene film is scaled down in both x- and y-
directions by −0.5% of the initial length at every 10 ps until the strain reaches −50%,
corresponding to a strain rate of 108 s−1. The sequential compression simulation is
performed with identical condition but at a twice faster strain rate along each axis, i.e. 2×108

s−1, to ensure that the total compression time is identical to that of the equibiaxial
simulation. The strain rate is chosen such that the observed crumpling pattern has a smaller
characteristic scale as the simulation cell size. Because of the finite substrate modulus and
thicker graphene film, the overall scale of crumpled morphology cannot be compared
directly with experiments, but our simulation results capture the fundamental mechanism
and structures of graphene crumpling for the two distinct compression paths.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Controlled crumpling and unfolding of large-area graphene sheets
a, Schematic illustration of macroscopic deformation of a graphene sheet on a biaxially pre-
stretched substrate. b–d, SEM images of patterns developed on the graphene sheet: b,
wrinkles and then c, delaminated buckles as the substrate is uniaxially relaxed, d, crumples
as the substrate is biaxially relaxed, and e, crumples unfolded as the substrate is biaxially
stretched back. f, Atomistic modeling results of the crumpling of a single layer graphene
under uniaxial compression, and biaxial compression, followed by a visualization of the
Mises stress distribution (from left to right). Stress concentrations (visualized in red) are
observed near highly deformed regions.
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Figure 2. Stretchable graphene coatings capable of superhydrophobicity and tunable wettability
a–c, Image showing the contact angle of a water drop: a, 152° on highly crumpled graphene,
b, 103° on unfolded graphene, and c, 105° on bare substrate. d, Contact angle as a function
of the biaxial tensile strain in the substrate, ε, with various levels of pre-strain. The contact
angle of a water drop on unfolded graphene is closer to that on a bare substrate (yellow
band) than that on graphite (green band). e, Contact angle as a function of biaxial
compressive strain in graphene, εG. The experimental results can be explained by our
theoretical model. Values in d and e represent mean of n tests (n = 3–5).
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Figure 3. Graphene electrodes capable of giant stretchability and tunable transparency and
wettability
a, Resistance of the electrode on a substrate under multiple cycles of uniaxial tensile strain
up to 450%, and b, twisting up to 360°. The inset shows the electrode under twisting. c,
Transmittance of the electrode in visible range as a function of uniaxial strain in the
substrate. The insect shows the electrode under tension. d, Contact angle of a water drop on
the electrode as a function of uniaxial strain in the substrate. The inset shows a water drop
on the electrode on an undeformed substrate. Values represent mean of n tests (n = 3–5).
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Figure 4. Voltage-induced actuation of a crumpled graphene-elastomer laminate
a, As a voltage is applied, the laminate reduces its thickness and expands its area. The area
actuation strain is over 100%. b, Transmittance of the laminate in visible range as a function
of the area actuation strain. Values in b represent mean of n tests (n = 3).

Zang et al. Page 12

Nat Mater. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


