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Abstract

A bias towards angiogenesis from the venous circulation has long been known, but its cause

remains unclear. Here we explore the possibility that high interstitial pressure in tumors and the

resultant net filtration pressure gradient that would induce flow from the interstitium into the

venous circulation or lymphatics could also be an important mechanical regulator of angiogenesis.

The objective of this study was to test the hypothesis that basal-to-apical (B-A) transendothelial

flow promotes angiogenesis and to investigate potential mechanisms. Macro- and microvascular

endothelial monolayers were cultured on type I collagen gels in a microfluidic cell culture device

and subjected to apical-to-basal (A-B) and B-A transendothelial flows. Samples were perfusion

fixed and analyzed for morphological responses, localization and degree of phosphorylation of

certain signaling proteins. Application of B-A, but not A-B flow, to cultured endothelial

monolayers was found to promote capillary morphogenesis and resulted in distinct localization

patterns of VE-Cadherin and increased FAK phosphorylation. These results suggest that B-A flow

triggers the transition of vascular endothelial cells from a quiescent to invasive phenotype and that

the flow-mediated response involves signaling at cell-cell and cell-matrix interfaces. These results

support the hypothesis that transendothelial pressure gradients resulting in B-A flow promotes

sprouting angiogenesis and are consistent with early observations that tumor angiogenesis occurs

from the venous side of the circulation.

Introduction

Angiogenesis – the formation of new blood vessels from a pre-existing parent vessel – is

commonly defined by the imbalance of soluble pro- and anti-angiogenic factors (1). The

biochemical regulation which involves the binding of soluble ligands to endothelial cell

(EC) surface receptors and subsequent downstream signaling have been painstakingly

mapped out by decades of research (2), (3), (4). The in vivo endothelial microenvironment

however, is a complex integration of both biochemical and biomechanical factors, which
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together promote either a quiescent or angiogenic phenotype. The relative importance of

biochemical or biomechanical stimuli in the regulation of endothelial fate and function

remains unclear. Nonetheless, it is widely accepted that mechanical forces regulate

endothelial cell growth, differentiation, motility, protein synthesis and gene expression (5).

Studies of the impact of mechanical stimulation due to fluid flow on cultured endothelial

monolayers traditionally focus on the effects of shear stress – an important regulator of

vascular tone, homeostasis, inflammatory and immune response. In vivo, endothelial cells

are subjected to both surface shear flow as well as transendothelial flow - fluid filtration

across the endothelium –caused by pressure differentials between luminal/apical and

abluminal/basal endothelial surfaces. Apical-to-basal (A-B) transendothelial flow has been

shown to inhibit the transmigration of neutrophils across human umbilical vein EC

(HUVEC) cultured on polycarbonate filters (6), alter EC transport properties (7) and

influence capillary morphogenesis (8) (9), (10), although the mechanisms for this remain to be

elucidated. Early studies of tumor angiogenesis made the observation that new vessels

emerge predominantly from venules (11). However, the direction of transendothelial flow,

which is also physiologically relevant, has only recently been investigated in the context of

endothelial function or sprouting angiogenesis (9), (10).

High interstitial pressure is a hallmark of neoplastic tissue (12), (13) and gradients in

interstitial pressure are thought to play an important role in a variety of developmental

processes (14). With high interstitial pressure induced by the solid tumor, neighboring blood

vessels from the lower pressure circulation are potentially affected by the resulting

transmural pressure, causing vessel collapse and potentially influencing the rate of

transendothelial flow. The resultant net filtration pressure gradient would induce flow from

the interstitium into the venous circulation or lymphatics. Endothelial cells lining these

vessels would be subjected to transendothelial pressures with higher pressure on the basal-

surface compared to the apical surface. Under these conditions basal-to-apical (B-A)

transendothelial flow is highly probable.

The objective of this study was to study the role that B-A transendothelial flow exerts on

sprouting angiogenesis and to investigate potential mechanisms. In this study, we present

evidence of the initial signaling cascade that is initiated by B-A flow and propose links

based on our results and previously published work that supports an argument for

mechanically-stimulated angiogenesis. We find that FAK-mediated signaling accompanied

by extensive remodeling of cell-cell junctions and redistribution of the actin cytoskeleton

contributes to the effect of transendothelial flow on vascular sprouting.

Methods

Cell Culture

Human dermal microvascular endothelial cells (HMVEC - cc-2643, LONZA, Walkersville,

MD) and human umbilical vein endothelial cells (HUVEC - cc-2617, LONZA) were

expanded on collagen-coated flasks in EGM-2MV (cc-3202, LONZA) and EGM-2

(cc-3162, LONZA) medium, respectively. Cells were cultured in a humidified incubator at

37 °C and 5% C02. All experiments were conducted with passages 4–6 cells. Monolayer
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maintenance medium was EGM2MV without hydrocortisone. Experimental medium was

maintenance medium supplemented with 20 ng/ml VEGF165 (293-VE-010, R&D Systems

Inc., Minneapolis, MN) or VEGF121 (4644-VS-010, R&D Systems Inc.). At this

concentration, VEGF was not at sufficient level to induce sprouting under no-flow

conditions within 24 hrs.

Microfluidic – based cell culture platform

A microfluidic-based cell culture system with the demonstrated capability of controlling the

biochemical environment and flow was used in these studies, as described in detail in (15).

Briefly, the design includes two independent microfluidic channels (240 μm) that are

separated by a central region – “gel cage” for housing injectable hydrogels (synthetic

peptide, Matrigel, collagen) allowing for simultaneous culture on two-dimensional (2D)

surfaces and within three-dimensional (3D) matrices. This geometry permits the

establishment of pressure gradients and small interstitial fluid flows through the 3D matrix.

The device is fabricated using standard soft lithographic techniques from

Polydimethylsiloxane (PDMS – 184 SIL ELAST KIT, Ellsworth Adhesives, Germantown

WI), a widely used biocompatible and optically transparent elastomer for microfluidics-

based cell culture devices (16). For a detailed description of device assembly and operation

see Vickerman et al 2008 (15). Interstitial flow (6 μm/s) is established by means of inserting

small reservoirs into the inlet and outlet ports of the channels, and regulating and monitoring

the relative heights of the liquid columns (15), (17), thereby allowing both flow rate and

pressure drop to be determined by visual inspection (details provided in Supplementary
Information).

Imaging

Multiple imaging modalities were used in this study. Phase-contrast (Zeiss Axiovert 200,

Carl Zeiss, Germany), epifluoresence (Nikon TE300, Nikon Instruments Inc., NY), confocal

(Olympus FluoView 1000, Olympus America, Center Valley, PA and Carl Zeiss 510,

Axiovert 200M Laser Scanning Microscope, Carl Zeiss, Germany) and transmission

electron microscopy (Model 300, Philips, Eindhoven, The Netherlands) were used to

characterize microenvironmental properties, cellular morphology, protein localization and

phosphorylation state. EC monolayers grow perpendicular to the imaging plane which

readily permits sprout visualization and imaging.

EC monolayer formation and characterization

In the current study, rat tail collagen type I was used as scaffold. Liquid rat tail collagen type

I pre-polymer solution (354236, BD Biosciences) was prepared according to product

specifications to obtain a final gel concentration of 2.5 mg/ml. Collagen gels and

endothelium monolayers were formed in the microfluidic devices as previously

described (15). Briefly, collagen pre-polymer solution at pH=7.4 was microinjected into the

gel-cage, sealed with a glass coverslip and polymerized at 37 °C for 30–35 min. Following

collagen polymerization, gels were incubated overnight in monolayer maintenance medium.

Cell suspension was perfused through one microfluidic channel, device tilted and cells

allowed to attach to the collagen gel surface, spread and form a monolayer. Diffusional
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permeability, Pd, was measured by monitoring the concentration of fluorescent dextrans

introduced via the endothelial-lined channel under steady-state conditions, as described in

detail in Supplementary Information. Evaluation of EC expression and localization of

adherens and tight junction proteins was done by immunolabeling with purified rabbit

polyclonal VE-Cadherin (ALX-210-232-C100, ENZO Life Sciences, Uniondale, PA) and

mouse monoclonal ZO-1 (339110, Invitrogen, Chicago, IL) primary antibodies (details

below). Labeled monolayers were imaged with a confocal microscope. In separate samples,

further ultrastructural characterization was done using transmission electron microscopy

(TEM) (details provided in Supplementary Information).

In vitro transendothelial flow angiogenesis assay

Basal-to-apical and A-B trans-endothelial flows were generated by imposing a higher liquid

column (typically 80 mm) on the basal or apical surface of the EC monolayer, respectively.

The monolayer was perfused with experimental medium for 24 hours whereas non-flow or

static conditions were used as control. At the end of an experiment, the monolayer was fixed

with 4% paraformaldehyde (PFA), stained with 4′, 6-diamidino-2-phenylindole (DAPI;

Sigma-Aldrich, Atlanta, GA) for nuclei and phalloidin (Alexa Fluor 488-phalloidin, Al2379;

Invitrogen, Chicago, IL) for actin and stored for further processing. Fixed samples were

imaged with a confocal microscope (Olympus FluoView 1000) to generate stacks for further

quantification. Length, number of sprouts and total number of cells that invaded in 3D gel

were used as simple metric for quantification (18). For the purpose of quantification, sprouts

were defined as capillary-like structures that contained at least one nucleus to distinguish

them from invadopodia or filopodia-like membrane projections. Similar experiments were

conducted to study the effect of pharmacological inhibition (see details below).

Evaluation of signal transduction at cell-matrix adhesions

Transendothelial flow direction-mediated difference in signalling at cell-matrix adhesion

was determined by quantifying levels of phosphorylation of FAK on Tyr 397 compared to

total FAK. Antibody pairs were validated (methods described in Supplemental Information)

before use for quantification. Endothelial cell monolayers were subjected to A-B, B-A flow

or static conditions, perfusion fixed and immunostained with mouse monoclonal anti-FAK

(Clone 4.47, Millipore) and rabbit polyclonal anti-p-FAK Y397 (ab4803, Abcam Inc.) and

appropriate secondary antibodies (detailed below). Samples were also counterstained with

DAPI to identify nuclei. Doubly immunolabeled samples were imaged with a confocal

microscope (Carl Zeiss 510, Axiovert 200M Laser Scanning Microscope) equipped with a

multi-track channel system, to generate stacks (at least 40 slices, 1 μm thick) for p-FAK,

FAK and DAPI. ImageJ (U.S. National Institute of Health, Bethesda, MD) (19) was used to

quantify florescent intensity for FAK and p-FAK Y397. Average p-FAK/FAK ratio was

then calculated for each stack. Average ratios for A-B and B-A flow were normalized by

averages from static controls. For quantification, confocal settings were kept the same for all

samples. Reported p-values were obtained from Student’s t-test analysis.
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Localization of signaling protein

On the assumption that the morphological changes observed at later times were a

consequence of signaling activated much earlier, shorter term experiments were also

conducted to study the effects of flow direction on signaling protein localization. HMVEC

monolayers were perfused in either B-A or A-B direction for 2 hrs and perfusion fixed while

maintaining the initial flow direction. Samples were subsequently immunolabeled (details

below) with VE-cadherin antibody (ALX-210-232-C100, ENZO Life Sciences, Uniondale,

PA) and imaged with a confocal microscope (Carl Zeiss 510, Axiovert 200M Laser

Scanning Microscope). A series of at least 40 optical serial sections were obtained. Each

confocal slice yields a cross-sectional view of the monolayer which is formed perpendicular

to the optical imaging plane. Enface views showing protein localization on the monolayer

was generated from projection of image stacks using LSM Image Browser (Carl Zeiss,

Germany) software.

Fluorescent line intensity profiles were obtained for quantitative representation of VE-

cadherin distribution. Cross-sectional images of the monolayer were obtained by confocal

imaging and processed in ImageJ (U.S. National Institute of Health, Bethesda, MD).

Fluorescent intensity was obtained along a horizontal line defined between two adjacent

cell-cell junctions. Additional difference in protein distribution due to flow direction was

evaluated using kurtosis analysis (20) in ImageJ.

Pharmacological Inhibition

Two sets of pharmacological experiments were conducted: (1) long term, to evaluate the

effect of various inhibitors on EC migration or sprouting angiogenesis, and (2) short term, to

determine the effect on flow-induced protein localization. For these experiments 3D

sprouting assays were repeated in the presence of the following small molecules: Genistein

(100 μM; 345834, EMD Chemicals Inc., Gibbstown, NJ), a tyrosine kinase inhibitor (21),

PP2 (10 μM; 529576, EMD4 Biosciences, San Diego, CA), a Src inhibitor (22), Y27632 (50

μM; 688000, EMD4 Biosciences), a Rho-associated kinase (ROCK) inhibitor (23),

Heparinase III (15 mU/ml; H8891, Sigma-Aldrich, Atlanta, GA), an enzyme that cleaves

heparin sulfate of the glycocalyx (24) and L-NAME (100 μM; N5751, Sigma-Aldrich,

Atlanta, GA), a nitric oxide synthase (NOS) inhibitor (25). Many dynamic processes and

molecular interactions in cells are mediated by protein phosphorylation and Genistein is a

widely used tyrosine kinase inhibitor. Rho proteins and their effectors play essential roles in

regulating cytoskeletal events critical for cell migration. The main downstream RhoA

effector, ROCK, controls actomyosin contractility which is important for 3D cell migration.

ROCK inhibition with Y27632 treatment decreases invasive potential of cancer

cells (26) (27). Furthermore, tumor-derived endothelial cells reportedly record constitutively

high levels of ROCK (28). A subset of the pharmacological inhibitors was used to further

investigate the effects of inhibition on protein localization. In all studies inhibitors were

incubated 2 hours prior to and throughout flow treatment. As before, monolayers were

perfusion fixed with 4% PFA, immunostained and imaged by confocal microscopy.
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Antibody Labeling and Counterstaining

For antibody labeling, fixed samples were rinsed twice with 1X PBS, permeabilized with

0.1% Triton-X, rinsed twice with 1X PBS and incubated at room temperature for 2 hrs in

blocking buffer – 10% BSA in PBS. Following the blocking step, samples were then rinsed

once with rinse buffer – 0.5% BSA. Primary and secondary antibodies were diluted in rinse

buffer. Blocked samples were incubated with primary antibodies overnight at 4 C.

Subsequently, samples were then washed thoroughly with rinse buffer (3-times, 30 min rinse

incubation at room temperature) and incubated with secondary antibodies in the dark for 2

hrs. Following indirect antibody labeling, samples were washed thoroughly with 1X PBS

and counterstained at the indicated dilution with DAPI (1:1000) to identify nuclei and

phalloidin (1:50) to label F-actin. In some cases, fixed and Triton-X treated samples were

stained with only DAPI and phalloidin thus the blocking, antibody incubation and associated

wash steps were not required.

Results

Formation of a functional EC monolayer

Functional monolayers with barrier function to fluid and macromolecules are vital for

establishment of transendothelial pressure gradients and flow. In order to characterize the

functionality of the monolayers cultured in our microfluidic device, both the permeability of

a 40kDa dextran (typical size of growth factors) and the expression of junction protein were

evaluated. EC cultured for 24 hrs on type 1 collagen expressed both tight and adherens

junction protein as indicated by immunofluorescence staining for ZO-1 and VE-Cadherin,

respectively (Fig. 1). The expression profile is similar to that of ECs cultured on glass (Fig.

S1). Ultrastructural analysis of the monolayer from TEM micrographs shows typical

junction morphology of extended membrane adhesions (Fig. 1C).

Monolayer functionality was also assessed by testing barrier function of monolayers

cultured for 24 hours using a fluorescent 40kDa dextran and computing diffusional

permeability. An average Pd value of 9.7 × 10−7 m/s was obtained which is comparable to

values reported in the literature for monolayers cultured in vitro (29). Together these results

demonstrate that EC formed a functional barrier on the collagen gels within microfluidic

device and is capable of supporting transendothelial pressure gradients (see also

Discussion).

Switching response evoked by transendothelial flow

Prior studies in our lab have demonstrated the use of our microfluidic-based cell culture

device for chemokine or biochemically induced sprouting angiogenesis assays. In the

current work, the impact of a biomechanical stimulus –transendothelial flow – on sprouting

angiogenesis is investigated. Confluent monolayers of HMVEC were cultured on relatively

stiff 3-D collagen gels with minimal (20 ng/ml) VEGF and subjected to control (no-flow),

A-B or B-A flow for 24 hrs. B-A flow induced an angiogenic response (Figure 2A, right)

while monolayers subjected to A-B or zero flow remained quiescent (Fig. 2A, left). In

addition to sprout formation/capillary morphogenesis, B-A flow also induced/triggered

invadopodia (extensive and highly branched filopodia-like projections (see movie in
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Supplementary Information and sequential images in Fig. 2E for five time points) which are

actin rich membrane projections) that extend deep into the 3D gel (9), (10). Further

morphogenesis of these sprout precursors (Fig. 2D, left) result in the formation of sprouts

once the nucleus has translocated from the monolayer to the elongating stalk (Fig. 2D,

right).

In order to determine if these flow-induced effects were unique to microvascular cells,

separate experiments were conducted using HUVECs. Similar to microvascular cells, cells

of a macrovascular origin form sprouts in response to B-A flow (see Supplemental Fig. S2.).

Multiple signaling pathways are involved in B-A flow induced sprouting angiogenesis

In order to identify potential signaling pathways that might be involved in B-A

transendothelial flow induced angiogenesis, we first used a panel of pharmacological

inhibitors to target signaling pathways common to angiogenesis. Protein phosphorylation is

a common post-translational modification that affects protein function or state of activation.

Tyrosine phosphorylation inhibition, with a natural protein kinase inhibitor, Genistein,

blocked invadopodia formation and invasion (Fig. 3), suggesting that B-A flow-induced

sprouting angiogenesis is tyrosine phosphorylation-dependent. Treatment with PP2, a

specific Src family kinase inhibitor, decreased EC invasion and sprout formation. Rho/

ROCK signaling has been reported to be important for angiogenic processes including EC

migration, survival and permeability (30). Inhibition with specific ROCK inhibitor Y27632

blocked B-A transendothelial flow induced EC invasion and sprout formation. Instead,

Y27632 treatment resulted in extensive invadopodia devoid of nuclei. These results are

consistent with reports that Y27632 blocks VEGF-mediated angiogenesis in retinal explants,

EC migration and lumen-containing tube-like structures in vitro (30). Our results demonstrate

that invadopodia are necessary for EC invasion and sprout formation but their appearance

does not guarantee the formation of sprouts. Transendothelial flow has been reported to

upregulate NO production (6). The NO pathway has been extensively studied in the context

of cells exposed to A-B transendothelial flow or transmigration studies. For these reasons,

the effect of NO production using the NO inhibitor LNAME was used to investigate the

potential role of NO production in B-A flow induced angiogenesis. Consistent with this line

of reasoning, NO inhibitor LNAME was also found to reduce B-A mediated EC invasion

into collagen gels. The cell surface glycocalyx has been known to mediate shear response in

endothelial (31) and vascular smooth muscle cells (32). To determine the potential role of

heparan sulfate proteoglycans (HSPGs), cells were treated with heparinase III and subjected

to B-A flow. Similar to other inhibitors, digestion of the glycocalyx reduced B-A flow

mediated EC invasion. Collectively, these results from pharmacological inhibition

experiments suggest that there are multiple signalling pathways involved in B-A induced

sprouting angiogenesis with potential for cross-talks.

B-A flow induced activation of EC occurs via FAK-mediated signaling

Pharmacological studies provided some clues into signaling pathways that might potentially

be involved in B-A flow induced sprouting angiogenesis. However further investigation was

warranted to identify the initiating event linking flow to signal transduction. To gain deeper

insight into the observed switch response we postulated that ECs adherent to a matrix can
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sense the direction of transendothelial flow and that the observed difference in migration and

sprouting angiogenesis could be attributed to differential activation at adhesion sites.

Differential activation via cell-matrix adhesion receptors (e.g. integrins, HSPGs) was by

quantifying the ratio of FAK Y397 to total FAK for the two flow directions relative to static

control. Transendothelial flow direction induced different levels of FAK-mediated signaling

activation as measured by the FAK Y397 to FAK ratio (Fig. 4). Monolayers subjected to B-

A flow consistently recorded significantly higher levels of the FAK Y397/FAK ratio

compared to those exposed to A-B flow (p=0.0003) and compared to controls (p=0.0005),

whereas A-B flow and control conditions were not significantly different. In Fig. 4D(right),

the increase in pFAK at 6 hour was due to relative decrease for A-B flow (the error bar was

left out intentionally due to limited data at this time point). These results demonstrate that

flow direction differentially affects FAK-mediated signaling.

Transendothelial flow direction differentially affects VE-cadherin localization

Since signal transmitted via cell-matrix receptor, for example through integrins which has

been shown to regulate junctional remodeling (33), the effect of flow direction on endothelial

cell-cell junction protein distribution was assessed. Confluent monolayers were perfused for

2 hrs in either apical-to-basal or B-A flow direction, perfusion fixed and stained for junction

protein to capture early signs of differential protein distribution (Fig. 5). B-A flow caused

delocalization of VE-cadherin from cell-cell junctions, while samples subjected to A-B flow

retained well-defined junctional labeling. Compared to static controls there was no

noticeable change in VE-cadherin localization that could be attributed to A-B flow. For the

case of A-B flow, fluorescent intensity line profiles across the cell (Fig. 5C) show distinct

peaks and valleys corresponding to high and low VE-cadherin expression at cell-cell

junctions and in the cytoplasm, respectively. A similar analysis for monolayers subjected to

B-A flow yields, by comparison, a relatively uniform profile. Furthermore, kurtosis analysis

confirms the visually observed difference in VE-Cadherin protein localization pattern as a

function of transendothelial flow direction. These results demonstrate that flow direction

differentially affects adherens junction remodeling and confirms the plasticity of cell-cell

contacts, an important prerequisite for migration and angiogenesis.

Transendothelial flow direction differentially affects actin cytoskeletal organization

Because forces acting on focal adhesions often lead to recruitment or rearrangement of

various intracellular proteins including actin (34), (35), (36), we investigated the effect of

transendothelial flow direction on actin distribution. In addition, since cell-cell junctions are

mechanically coupled to actin cytoskeleton, we suspected that reorganization of VE-

cadherin complexes might also result in remodeling of the actin cytoskeleton.

Transendothelial flow direction exerted a strong influence on the intracellular distribution of

F-actin as revealed by confocal sections of phalloidin stained monolayers [Fig. 6].

Monolayers subjected to A-B flow exhibited dense actin labeling at cell-cell contacts,

whereas monolayers exposed to B-A flow exhibited a more diffuse/disorganized staining

pattern. In addition B-A flow induced clustering of actin near the basal surface [Fig. 6D]

from which “hair-like” structures emerged [Fig. 6D (ii)], at the tips or filopodia/invadapodia

[Fig. 6D (iii)] and the base of newly forming sprouts [Fig. 6D (i)].
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VE-Cadherin delocalization is mediated by Src

Src is important in mediating communication between focal adhesions and cell-cell

junctions (37), and has been implicated in angiogenesis in vivo and in vitro (38). Our results

show clustering of phosphorylated Src at locations in monolayers from which sprouts

emerged [Fig. 7]. Src is reportedly a key mediator in signal transduction between integrin-

mediated adhesions and cadherin mediated cell-cell contacts (37). Furthermore upon integrin

activation, Src associates with FAK in focal complexes and VE-cadherin is known to

possess a Src phosphorylation site on Tyr 658 (39), (40). We therefore wanted to determine

whether B-A flow induced VE-cadherin redistribution at cell-cell contact was mediated by

Src. Treating monolayers with PP2 prior to and during the application of B-A flow, we

found that this Src-family kinase specific inhibitor was able to substantially reduce B-A flow

induced VE-cadherin delocalization, demonstrating that B-A flow induced VE-cadherin

delocalization at cell-cell junction is mediated by Src.

Conclusions

Cells are continuously experiencing external mechanical perturbations within their

environment and mechanical forces play an important role in physiological as well

pathological conditions. Of particular interest is the role that mechanical forces play in the

tumor microenvironment. Much of the work published on endothelial mechanotransduction

addresses cardiovascular diseases while tumor vascularization studies typically focus on the

chemo-regulation in the recruitment of new blood vessels. Here we explore flow-mediated

regulation of angiogenesis that could potentially occur in a tumor environment due high

interstitial fluid pressure (41), (12), (42) and lower microvascular pressure compare to

normal tissues (12) and demonstrate that sprouting angiogenesis can be promoted by B-A

transendothelial flow through a process that is mediated by FAK at the cell-matrix interface.

We postulate that B-A transendothelial flow could occur in neoplastic tissues. In further

support of this line of reasoning, robust angiogenesis is observed at the tumor margin/

periphery (43) where there would be high gradients in pressure (42). The tumor

microenvironment is mechanically dynamic and mechanical stress due to high interstitial

pressures which is known to impact tumor cell function (44), (45) may be an important

factor in regulating endothelial function and the initiation of angiogenic sprouts.

Flow direction acts as an angiogenic switch

We investigated the effect of transendothelial flow direction on sprouting angiogenesis and

observed a switch-like response in which B-A flow promotes angiogenesis but the reverse

flow direction, A-B, did not. Our results therefore suggest that transendothelial flow

direction acts as an angiogenic switch. B-A flow promotes angiogenesis in micro- and

macro- vascular endothelial cells – defining an angiogenic ON state while the alternate flow

direction – apical-to-basal – maintains the OFF state. This behavior is consistent with the

early observation that neovascularization in tumors originate from venules and post-

capillary venules (11).
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EC activation is due to mechanical stimulation

The observed angiogenic response could be due to either biochemical or biomechanical

stimuli. We first explored the hypothesis that a migratory stimulus could arise due to

concentration polarization of soluble or matrix-bound growth factors (e.g. VEGF) arising

from B-A flow in combination with the low permeability of the endothelial monolayer.

Experiments at saturation levels of VEGF165 and VEGF121 (the non-binding isoform)

(results not shown) confirmed that the influence of flow direction was unaltered.

Furthermore, intuition, confirmed by numerical simulation, tells us that although B-A flow

could lead to higher concentrations at the basal membrane, it would also produce a gradient

that would not be favourable for sprouting. A favourable gradient would produce lower

concentration near the basal membrane and gradually higher concentration as you move

away from the basal surface across the length of the gel. Here, the endothelial monolayer

selectivity to macromolecule for example, VEGF could potentially cause a “pile up” at the

basal surface even with an initially uniform concentration throughout the device and equal

concentration in reservoirs. However, concentration polarization during B-A flow would

produce a gradient of the opposite sign, meaning that sprouts would be growing in the

direction of reducing concentration. Thus, although we cannot completely rule out the

possibility that biochemical effects contribute to our observations; this evidence suggests

that factors other than biochemical gradients are responsible.

B-A Flow increases FAK-mediated signaling at cell-matrix adhesions

Based on the low hydraulic permeability of the endothelial monolayer, a simple force

balance dictates that the pressure difference associated with B-A flow would give rise to a

net force acting to lift the cells off the hydrogel surface. Since separation was not observed,

presumably the cell matrix adhesions, α1β1 or α2β1 integrins in the case of type I collagen,

must be capable of supporting the force arising from this pressure drop. Conversely, in A-B

flow, the cell can be supported by direct physical contact with the gel; to the extent that the

cell adhesion receptor-collagen bonds support the load, it would be compressive rather than

tensile. It is well established that integrins transduce signals from the extracellular

matrix (46), and that mechanical force leads to integrin activation (47) resulting from integrin

conformational change (48) or clustering (49) (50). While there is insufficient evidence to

irrefutably name the specific cell-matrix adhesion mechanosensor, based on evidence in the

literature and models describing the signalling events following integrin activation it is

tempting to speculate that the observed difference due to flow direction is integrin-mediated.

It is widely accepted that integrin activation leads subsequently to phosphorylation of Tyr

397 in focal adhesion kinase (FAK). Nevertheless, we cannot completely rule out potential

contributions due to non-integrin mediated signalling. Our observations that B-A flow

induces a significant increase in the ratio of p-FAK to total FAK when compared to A-B or

static conditions therefore supports the role of FAK-mediated signalling in the cellular

response due to increased autophosphorylation and potential integrin activation. A recent

study by Shi et al., (32), reports on FAK-mediated signalling downstream of HSPGs induced

by interstitial flow for vascular smooth muscle cells (SMCs) suspended in collagen gel. Here

they propose a cooperative interaction between integrin and HSPGs with the latter being the

main signal transducer. A potential role of HSPGs is also plausible in our current study on

the basis of the observed inhibitory effect of heparinase treatment on B-A flow induced cell
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invasion. Unlike in our current study, Shi et al., (32) did not observe changes in FAK

phosphorylation on Tyr 397, instead a flow mediated difference was observed at Tyr 925.

Due to differences in cell type (SMCs vs. EC), seeding configuration (3D suspended cells

vs. monolayer) that might affect the distribution of HSPGs on the cell surface and other

differences in experimental methods it is difficult to reconcile the differences in FAK-

mediated signalling and subsequent conceptual models. Nevertheless, crosstalk between

signalling pathways downstream of individual mechanosensors in general is highly

probable. Furthermore given the molecular complexity and diversity at these sites of cell-

matrix contacts cooperative interactions are foreseeable which presents a challenge in

identifying individual contributors. Consequently, further investigation is necessary to

identify potential mechanosensor(s) and to determine the involvement of integrins, HSPGs

or both in the current model. Nevertheless we cannot conclude whether the glycocalyx and

integrin act independently or the nature of any potential interaction.

We postulate that at the molecular level, B-A flow produces tension at the site of cell-matrix

adhesion and subsequent activation as measured by FAK Y397 levels. Src, which

translocates to cell-matrix adhesions following integrin activation, subsequently becomes

activated. Following this initial event Src further phosphorylates FAK on multiple other sites

including Tyr 576 and Tyr 577 in the activation loop, which promotes optimal FAK

activity (39). We propose that this is the major difference between flow directions that results

in the observed angiogenic response.

B-A flow induced VE-Cadherin delocalization and angiogenesis are mediated by Src

VE-Cadherin engages in homophilic interactions between neighboring cells and its presence

at cell-cell junctions is typical of a quiescent endothelial phenotype. We demonstrate here

that B-A flow promotes delocalization of VE-cadherin from cell-cell junctions, while static

or apical-to-basal flow does not. While this could be a direct consequence of forces acting at

the cell-cell junction, we postulated that this junctional remodeling is due instead to

signaling initiated by integrin activation. VE-cadherin intercellular adhesive activity is

regulated by cytoplasmic signaling events involving catenins, which can be abolished by

tyrosine phosphorylation of both catenin and VE-cadherin. Disruption of cadherin-catenin

complexes causes the destabilization of intercellular junctions (51). Remodeling of adherens

junction can occur due to VE-cadherin internalization, enzymatic cleavage or kinase

phosphorylation. Tyrosine phosphorylation of Y658 or Y731 on VE-cadherin prevents the

binding of p120- and β-catenin, respectively (52). VE-cadherin retention at adherens

junctions requires association with p120 (53). B-A flow can therefore initiate a signaling

cascade that causes disruption of adhesion complexes and subsequently delocalization of

VE-cadherin. Furthermore, VE-cadherin is a substrate for Src (52) and is phosphorylated on

Y685 (40). Additionally, phosphorylation of VE-cadherin is inhibited in Src-deficient

mice (54). For Src to function, the Src kinase domain must be unmasked. Src is activated by

both growth-factor initiated signals (55) and those of a mechanical origin (47). VE-Cadherin

complex disruption has been shown to enhance angiogenesis (56). While the detailed events

leading to Src activation and subsequent association with VE-cadherin are beyond the scope

of this paper, presumably, Src activation follows from B-A flow induced integrin activation.

We also showed in pharmacological studies that VE-cadherin delocalization is Src-
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mediated; inhibition with PP2 blocks VE-cadherin delocalization during B-A flow. Based on

these findings we infer that VE-cadherin delocalization from intercellular junctions was

likely due to phosphorylation of VE-cadherin which was mediated by Src and downstream

of integrin activation.

Reorganization of actin cytoskeleton by transendothelial flow

The cytoskeleton is a key player in mechanotransduction (57) and invasive cell migration,

which involves dynamic remodeling of actin cytoskeleton, is essential for angiogenesis.

FAK promotes cell motility by activating regulators of cytoskeletal dynamics (e.g.

Rac1) (58) and the intercellular adhesion complex is mechanically coupled to the actin

cytoskeleton. It therefore follows that reorganization of VE-cadherin would affect

distribution of actin at junctions. Direct evidence of cortical actin remodeling in the

endothelial monolayer during sprouting angiogenesis is not available. Wang and colleagues

reported VE-cadherin and actin remodeling when cultured cells were treated with ECM

coated beads (33). Moreover, parallels can be drawn between sprouting angiogenesis and

epithelial-to-mesenchymal transition (EMT) where cells transition from a stable endothelial

(angiogenesis) or epithelial (see (59) for review) monolayer to acquire a migratory

phenotype. Remodeling of cortical actin to actin stress fibers is a distinct feature of

migratory mesenchymal cells (60). Epithelial cells exhibit cortical actin while transformed

mesenchymal cells do not (61). Moreover, Src kinase activity is required for protrusion

dynamics specifically; phosphorylation of FAK on Tyr 925 is directly mediated by Src and

is necessary for the dynamic regulation of matrix adhesion during cell migration (62).

Force estimates acting on the monolayer

Numerous studies have investigated the forces necessary to elicit a mechanoresponse, so it is

useful to compare the levels of force acting on the monolayer to those associated with other

mechanotransduction phenomena. While it is difficult to determine the pressure drop across

the monolayer as distinct from that across the gel-monolayer combination, based on a

comparison of the flow through the matrix with and without a monolayer present, we

estimate that under our experimental conditions, the monolayer supports a pressure of ~15

Pa. Using this value in combination with an estimated cell area of ~500 μm2, we arrive at a

value of ~7 nN supported by each cell; this level of force is well in excess of that required

by endothelial cell activation by shear stress (~0.5 nN) (63), (64) or by direct application of

force by pulling on cell-tethered beads (~1.0 nN) (65). Therefore, in terms of force

magnitude alone, it is not surprising that B-A flow activates mechanotransduction pathways.

Summary Proposed Model

Collectively, these results suggest that B-A flow triggers the transition of vascular

endothelial cells from a quiescent to a migratory phenotype. We present evidence of a

signaling cascade that is initiated at focal adhesions and subsequently transduced across the

plasma membrane prompting changes at cell-cell junctions and within the actin

cytoskeleton. We propose that B-A flow produces mechanical stress at cell-matrix

adhesions, which leads to FAK-mediated signaling, Src-mediated cell-cell junction

remodeling and delocalization of VE-cadherin and cytoskeleton reorganization which

promotes a transition from a quiescent to an invasive/angiogenic phenotype. Multiple pro-
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angiogenic signaling cascades follow FAK activation and VE-cadherin remodeling which

would trigger endothelial cell invasion and angiogenesis. Furthermore, Src-induced

deregulation at cadherin junctions in cancer cells require integrin signaling (37), and

invadopodia dynamics during migration requires Src-specific phosphorylation of FAK (62).

In vivo, new blood vessels predominantly emerge from postcapillary venules which is the

lower pressure side of the circulation and would be more susceptible to B-A transendothelial

flows in a high pressure tumor environment. Following this line of reasoning, B-A flow

could also contribute to tumor angiogenesis. It is intriguing that similar results can be

captured in our microfluidic system, which opens the opportunity for future investigation of

angiogenesis where both biochemical and biomechanical environment is recapitulated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Microfluidic-based 3D cell culture system for studies of the effects of transendothelial flow

on sprouting angiogenesis from an endothelial monolayer. (A) Layout of microfluidic-based

3D cell culture system. Design features include “gel-cage” loaded with collagen gel (pink),

an array of pillars (white squares) for mechanically supporting the gel and two parallel

fluidic channels (denoted apical- and basal at pressures P1 and P2, respectively). Single cell

suspension is perfused through the apical channel and an endothelial monolayer grows to

confluence. (Dashed arrows denote direction of flow). Transendothelial flow is established

in either A-B (red) or B-A (green) direction by applying a pressure gradient across the gel-

cage Scale bar 500 μm. (B) Confocal images of endothelial monolayer showing coverage on

gel and channel surfaces, immunostained with anti-VE-cadherin (Red) and nuclei (Blue). To

confirm that EC form physiologically relevant monolayers the quality of cell-cell junction

was evaluated. (B) Localization of tight junction and adherens junction proteins was

analyzed by confocal microscopy (Magnification 40x). En face view of doublylabeled

monolayer (i) VE-Cadherin, (ii) ZO-1 and (iii) merged images indicating colocalization at

cell-cell contacts. Inset shows cross-sectional views. (C) Ultrastructure of cell-cell junction

of monolayer cultured in the device was analyzed by transmission electron microscopy

(TEM). Micrograph of EC cell-cell contact shows typical junction morphology.
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Figure 2.
Transendothelial flow direction modulates EC monolayer phenotype (Red arrow indicates

flow direction). HMVECs are cultured on rat tail collagen type I gels and subjected to B-A,

A-B flow and static control. (A) Fluorescent micrograph of HMVEC monolayer subjected to

A-B (LEFT) and B-A (RIGHT) transendothelial flow (green-actin cytoskeleton, blue-

nucleus). Scale bar = 20 μm. (B) Quantification of the asymmetric response that is observed.

The average number of cells that have migrated into the collagen gel as well as average

number of sprouts per device is reported. (Note: Some cells also migrate as single cells and

are not considered as sprouts). (C) Comparison of B-A induced sprouting in HUVECs

(macrovascular EC) and HMVECs (microvascular EC).) (D) Confocal image of invadopodia

and nucleus deformation during the formation of true spouts. (E) Time-lapse images from

video micrograph during B-A flow induced sprouting angiogenesis. Endothelial cells project

invadopodia in response to B-A flow initiation and subsequently invade the underlying

collagen gel to form sprouts. Scale bar = 20μm
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Figure 3.
Inhibition of B-A flow induced angiogenesis by small molecule pharmacological inhibitors.

Multiple potential signaling pathways are involved in B-A flow induced sprouting

angiogenesis. EC monolayers were generated as described in Methods. Monolayers were

incubated for 2 hours with experimental medium containing pharmacological inhibitors

prior to and during B-A perfusion. Monolayers were perfused for a total of 24 hours, fixed

with 4% PFA and stained for actin and nuclei with phalloidin and DAPI respectively.

Samples were subsequently imaged and the degree of inhibition quantified. (A) Panel of

representative confocal micrographs of monolayers subjected to B-A flow in the presence of

inhibitors for Rho kinase (Y27633, 50μM), Tyrosine phosphorylation (Genistein, 100μM),

Src kinase (PP2, 10μM), Nitric oxide (LNAME, 100μM)and enzyme specific to heparan

sulfate –cell glycocalyx component (Heparinase III, 15 mU/ml). (B) Quantification of the

inhibitory effects of pharmacological inhibitors.
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Figure 4.
B-A flow induced activation of ECs occur via FAK-mediated signaling. (A) Schematic of B-

A flow induced forces focused at cell-matrix adhesions. EC monolayers were subjected to 2

and6 hrs of static, apical-to-basal and B-A flow conditions. Fixed samples were labeled with

anti-FAK and p-FAK Y397 antibodies. (B) En face view of monolayer subjected to apical-

to-basal (TOP) and B-A (BOTTOM) transendothelial flows labeled with p-FAK Y397

antibody. (C) Confocal image showing cross-sectional view of EC monolayer subjected to

B-A flow and labeled with p-FAK Y397 antibody (LEFT) and fluorescent line intensity

profile (RIGHT) from apical to basal cell surface showing asymmetry of p-FAK Y397

distribution towards cell-matrix interface. To evaluate flow direction-dependent changes at

cell-matrix adhesions the ratio of p-FAK to total FAK was obtained for monolayers under

static, A-B and B-A flow treatments. (D) (LEFT) Quantification of pFAK Y397/FAK ratio.

Values are reported relative to static controls. B-A flow samples are significantly different

compared to apical-to-basal and static treatments (p-values 0.0003 and 0.0005 respectively).

No significant difference between static and apical-to-basal treatment (p value 0.44).

(RIGHT) Relative levels of p-FAK Y397 at 2 and 6 hours.
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Figure 5.
B-A flow induces delocalization of VE-Cadherin. Functional monolayers were generated as

described in Methods. HMVEC monolayer was subjected to 2 hrs static, A-B and B-A flow

treatment. The effect of flow direction on protein remodelling at cell-cell junctions was

evaluated using confocal microscopy of samples immunolabeled with VE-Cadherin

antibody. (A-I.) Enface view of monolayer subjected to A-B (Left) or B-A (Right)

transendothelial flow. (A-II.) Cross-sectional view for A-B (Top row) and B-A (Bottom

row) treatment. Scale bar: 50 μm (B) (TOP) Schematic of the procedure used for obtaining

VE-cadherin intensity profile from images with a cross-sectional view of the monolayer.

(Bottom) Fluorescent intensitylines profile across cell for A-B and (Inset) B-A flow. (C)

Enface views of monolayers and corresponding surface plotsfor boxed region for A-B

(Bottom, left) and (B-A, Bottom, right). Scale bar: 25 μm (D) Kurtosis analysis of VE-

Cadherin distribution, showing differences as function of flow direction. (Inset)

Quantification of VE-Cadherin intensity, relative to background, at cell interior or non-

junctional locations for A-B and B-A flow treatment.
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Figure 6.
B-A flow direction affects distribution of cortical actin. (A) Confocal section of HUVEC

monolayer exposed to A-B (TOP) and B-A (BOTTOM) flow. Samples were fixed and

stained with phalloidin to label actin cytoskeleton. (B) Fluorescent line intensity profile of

actin localization across cell for A-B (BLUE) and B-A (RED) flow directions; (INSET)

apical surface to basal surface distribution of actin for monolayer subjected to B-A flow,

showing notable clustering of actin towards basal surface. (C) Quantification of the impact

of flow direction on the degree of actin polarization assessed by the ratio of “basal actin”

and “apical actin” intensity. (D) HMVEC, (LEFT) 3D view of a sprouting monolayer

stained with phalloidin (RIGHT) Magnification of boxed regions highlighting actin

localization and clustering towards basal surfaces.
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Figure 7.
Src mediates B-A flow induced remodeling at cell-cell junction. (A) Reconstruction of

confocal images showing 3D views of B-A flow induced sprouting monolayer stained with

anti-p-Src Y416 antibody (GREEN) and DAPI (BLUE). (i–ii) View from basal surface,

showing clustering at membrane projections (white arrow) and tip cell (inset); (iii–iv) View

from apical surface showing p-Src clustering where sprout emerges from monolayer, around

lumen (inset). (B) B-A flow induced VE-cadherin delocalization from junctional complex is

mediated by Src. Images show enface view of monolayer subjected to B-A flow (i) without

PP2 (control) (ii) with Src inhibitor, PP2 treatment and stained for VE-cadherin (RED) and

DAPI (BLUE). Scale bar: 25 μm
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