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ABSTRACT

An investigation is made of the possibility that gravity
is the low energy effective theory resulting from a phase
transition at some high energy. I focus on the instabilities
of classical gravity in order to build a model for the universe
shortly after such a transition which is assumed to be of first
order. The dynamics of the evolution of this initial state
are investigated in detail, and the implications for such pro-
cesses as baryosynthesis and monopole production are discussed.
Also, the initial state is investigated in detail, with con-
sideration of the validity and possible refinements of the
initial approximations, and connection is made to the outstand-
ing horizon, flatness, and cosmological constant problems in
cosmology. Finally, I briefly discuss other treatment of
gravity which may have implications for phase transitions in
the early universe.
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6.

Introduction

Science has come closest to theology on a subject of abid-

ing interest to both: the origin and nature of the large scale

universe. Indeed it is hard to distinguish at times which field

has required greater leaps of faith, or imagination. The last

half century has, however, ushered in a remarkable transition in

scientific cosmology. Emerging out of an era of primarily

unfounded hypotheses, it is now possible to seriously consider

constraints which can be imposed on various theoretical models

of the first 10-35 sec of the big bang expansion. Two factors

have made possible these striking developments. On the one

hand, vast improvements in the experimental apparatus of

observational astronomy have allowed the accumulation of fund-

amental data, including the discovery and nature of the Hubble

expansion and of the 3* black body radiation background. At

the same time rapid progress in elementary particle physics

has allowed us to extend the regime of validity of the equations

of state for matter by many orders of magnitude. If the observed

big bang expansion implies the universe was hotter as we look

earlier in time, then each new breakthrough in understanding

particle interactions at higher energies gives, in principle,

a new tool to dig one layer deeper into the cosmological fossil

record which the present universe provides.

The situation is complicated, however, by'the fact that this

fossil record is extremely meager. Evidence indicates that for

the period immediately preceeding the formation of the objects

we observe today (beginning at kTspace % l MeV) the universe was
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in thermal equilibrium. The equilibrium state at that time was

largely insensitive to the detailed dynamics which led to equi-

librium. The net result is that many high-energy effects of

interest to particle physicists are washed out by equilibrium.

The only relevant quantities which survive today are remnants

of non-equilibrium processes; such as the baryon to entropy

ratio,2 and inhomogeneities in matter3 and radiation4 distri-

butions. That there are very few such quantities limits the

applicability of many particle physics calculations for cos-

mology. However it also provides a challenge to particle

physicists to search out developments which may allow a der-

ivation of these fundamental quantities.

Recently the application of the concept of spontaneous

symmetry breaking in field theory has provided a framework

for models to unify interactions and classify particle types

up to energies of the order of 1015 GeV.5 Such energies may have

only been achieved in the very early universe. Yet because

of the efficiency of modern detection technology, these grand

unified symmetries may be measured indirectly in our terrestrial

laboratories through such processes as proton decay and neutrino

mass measurements.6 Naturally the development and potential

experimental verification of grand unified theories has

resulted in a rush of activity to investigate their many impli-

cations. One of these is the fact that phase transitions in

matter interactions as a function of energy are mirrored by

transitions in the dynamics of universe evolution at various

critical temperatures. This possibility of non-equilibrium

behavior specifically determinable within the framework of
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particle physics has,for the reasons described earlier,infused

nbw life into early universe model building by particle physic-

ists to derive the few parameters of observational cosmology.

While the number of such constraints may be insufficient

to imply a unique empirical model of the early universe they

can be supplemented in order to point out important directions

of inquiry. This is because our present, clearly incomplete

models of the neo-natal universe contain a number of paradoxes

which must be resolved to give an acceptable description of

this era. While their "natural resolution" will not be an

empirical test, it may further restrict the class of reasonable

models. Even if the net result is merely to point out where

our ignorance is greatest these combined constraints of cos-

mology may, as grand unified theories are beginning to demon-

strate, provide the only valuable, if not empirical, directions

for progress in particle theory.

In this sense one of the most exciting aspects of recent

developments is that they motivate consideration of an era

where quantum, or semi-classical gravitational effects may

become important. The consistent application of quantum

mechanics to gravity has presented insurmountable difficulties

up to the present time. If we can use the limited developments

in this area to probe for significant effects in the cosmological

era now under investigation we may gain important new insights

for quantum gravity.

For these reasons I consider in this work the relationship

between various problems in cosmology and the peculiarities of

gravity as a field theory, and focus on the role gravity may
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play in early universe phase transitions. While I will briefly

discuss potential important effects of gravity in matter phase

transitions, I will concentrate on possible phase transitions

more intimately tied to the nature of gravity itself. For

reasons that will be described in more detail in the following

chapter I consider the possibility that classical gravity is

low energy effective theory, the remnant of a phase transition.

Rather than attempting to find the explicit symmetry breaking

which may be responsible for this transition I investigate

aspects of the classical theory which may signal the existence

of such a transition, which might occur in the early

universe. These are then used to build an ansatz for the physics

of the transition region, and the implications of this ansatz

can then be investigated.

We find that the semi-classical effects on which our tran-

sition scenario is based can significantly alter early universe

dynamics, leading to novel methods of treating the horizon

problems, cosmological constant, and baryosynthesis

problems of the standard model, and perhaps avoids

the monopole production problems of other phase transition

scenarios. While only suggestive, our results indicate the

potential importance of the application of early universe

studies to our understanding of quantum gravity.

The specific outline of this work is as follows:

Chapter one provides in more detail the cosmological

and field theoretic motivations for first order phase transitions

in the early universe, and for our hypothesis in particular, and

gives an introduction to the standard FRW model, and to the
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phenomena of first order phase transitions in field theory.

Chapter two gives an introduction to the instabilities and

peculiar thermodynamic behavior of semi-classical gravity which

will be used to build a model. Black hole thermodynamics are

discussed in some detail.

Chapter three provides a brief overview of the model, its

dynamics, and some of its implications.

In Chapter four I give first a detailed review of the

model, a derivation of relevant dynamical equations, and a

qualitative treatment of their solutions. I then provide

a quantitative description of its dynamics based on a numerical

evaluation of the equations.

Chapter five then provides a reexamination in some detail

of some of the assumptions which went into the description

given in the previous chapter. I also describe how several

paradoxes of the standard FRW model are treated in the context

of this work.

Chapter six is devoted to an investigation of several de-

tailed implications of this scenario. Specifically discussed

are baryosynthesis, monopole production, the nature of inhomo-

geneities, and also implications for supersymmetric

scenarios.

Finally, the last chapter briefly outlines other applications

of gravity to phase transitions in the early universe, as well as

problems and perspectives for future studies of gravity at

finite temperatures.



Chapter 1: The Standard Model

and Phase Transitions in Cosmology and Gravity

1.1 The problem of adiabaticity

The standard cosmological model, a hot big-bang followed

by an adiabatic isotropic homogeneous expansion is necessarily

incomplete. The model loses predictive power at the inevitable

singularity at t=O, and requires the imposition of ad-hoc physical

initial conditions at some time t>O. Moreover, the initial

conditions which must be chosen so that the model agrees with

present observations are highly unnatural. To further explain

this requires a brief description of the standard Friedman-

Robertson-Walker (FRW) model.

An isotropic and homogeneous universe is described in

general in terms of comoving coordinates by ametricof the form: 2

where K is a constant parameterizing closed, open, or flat

universes. The particular combination of K and R which is

physically relevant can be determined by considering

Einstein's equations for the scale factor R(t), which can be

written as

(1.1-2a)

wc (peto ener (1.1-2b)

where pc 2 is the total energy density, and p is the pressure

11
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of matter and radiation. Eq. 2(b) represents the statement of
2

energy conservation. Eq. 2(a) implies that it is only Kc2 which is
R2

physically significant. This is why we are free to rescale R

and r so that K takes on the standard values: +1, 0, and -1

for closed, flat, or open universes respectively. It is also

assumed the this expansion is adiabatic:

d(sRI 0 (1.1-3)
ALt

where s is the entropy density.

To solve these we must supplement them by an equation of

state p(p,T) for matter. If we assume that the early universe

was dominated by radiation in thermal equilibrium (KT >> particle

masses), then we can use the equations of state for radiation

paT 4 , scT 3, to rewrite Eq. (l)-(3) in terms of temperature.

Note first that (3) implies:

RFz c* 2)R - (1. 1-4)
R T

As we shall show shortly, our universe is approximately

flat (Rpresent is very large), and the approximation k=0 gets

continually better as we extrapolate back in time. Hence, for

early times we can now solve Eq. (2a) in terms of temperature,

2-1
neglecting the second term, yielding the relation T .t

This implies from (1.1-4) that R(t) "\, t1/ 2 for a radiation

dominated expansion. Using the fact that tpresent ; 10 years,

one finds that the size of the presently observable region of

the universe at earlier times is given by L(t) % 10 2 0 t1 /2 cm.
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On the other hand, from the metric (1.1-1), the distance light

will travel in time t is given by:

i~c ft (L 2C (.15

The expressions for L(t) and k(t) are graphed on figure 1. From

this, we see that the presently observed universe was made up

of many (O 1075 at t o lO-35 sec) causally disconnected volumes

at early times. Why these regions should combine to yield an isotropic and

homogeneous universe is probleimmatic (the horizon problem) .

We now demonstrate why the adiabatic assumption implies

that the approximation k=O becomes better at early times, re-

quiring extremely fine tuning of p(t) at early times. Consider

the case jKI = 1 (K=O is contained in this parameterization

when R-*). Eq. (2a) is thus equivalent to:

where Pcri(t) is the value of p(t) for a flat universe (K=O).

Now for an adiabatic radiation dominated expansion R %t 1 /2 and

p '- t-2. Hence (6) implies

LS~±h\(1.1-7)

where C is a positive constant.

Hence by choosing times to that Ct<<l the ratio on the left

hand side becomes arbitrarily small. When the constant C is

evaluated3 we find that this ratio becomes vanishingly small even

well after the planck time, implying that we must fix an initial
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condition p=pc with extreme accuracy (the flatness problem).

Clearly both the horizon and flatness problems stem from

extrapolating back the assumption of adiabaticity, requiring

very large entropy densities at very early times. In an effort

to relax this assumption it is natural to consider ways in

which entropy may have been generated in the early universe.

The possibility that it arose through dissipative hydrodynamic

processes during the expansion seems to have been ruled out. 4

However, during the non-equilibrium period associated with a

first order phase transition significant entropy may be

generated via latent heat. Such a possibility has been

suggested, associated with the breaking of grand unified

5
symmetries. To understand the significance of this suggestion,

and because it will prove useful later, I shall briefly review

the phenomenology of first order phase transitions in field

theory in the next section.

1.1 First order phase transitions in the early universe

The well-defined techniques of statistical mechanics for

the description of phase transitions can be carried over with

few changes to describe phase transitions associated with sym-

metry breaking in particle physics. Of particular interest

here are first order transitions which, in statistical mechanics,

are defined as changes of state with discontinuities in various

thermodynamic state functions (energy, entropy, etc.) at the

transition point, as opposed to second order transitions, where

the change of state is continuous. Mathematically, an "order
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parameter" is defined which takes on non-zero values in one phase

("non-symmetric" or "ordered" phase) and is zero in the symmetric

or disordered phase. First order transitions involve a dis-

continuous shift in this parameter.

Also relevent is the fact that at the transition point of

a first order transition both phases coexist: i.e., both cor-

respond to local minima of th6ir respective free energy fun-

ction O(P,T) and thus represent equilibrium (though possibly

metastable) states. At the transition point the free energies

(thermodynamic potentials) are equal. Since both phases are

local minima there exists the possibility for supercooling

however. Regardless, when the discontinuous transition occurs,

it must take place locally at the interface of two phases. For

second order transitions this situation is impossible. Only

one phase represents a local minimum at any time. The whole

system is either in one state or in the other and the tran-

sition describes a singular situation where large-scale fluc-

tuations cause a global transition.

In quantum field theory the role of the free energy is

played by an effective potential V (4) which is a function of

a classical field i representing the expectation value of a

quantum field $. 4 plays the role of an order parameter for the

transition. Consider for example the field theory described by

the Lagrangian:

To lowest -UC) (1.2-1)

To lowest order in N' the absolute minimum of the classical potential
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U($) corresponds to the vacuum state of the quantum system and

the value of the classical field at this minimum (4) is the

expectation value of the quantum field $ in this state. U() must

be altered to take into account both quantum and thermal corrections

to (1.2-1), and the quantity which has the above properties to all

orders in Y and temperature is called the effective potential

V ff). These corrections and the calculation of V (ff) are

discussed in Appendix I. The symmetries of U($) determine the sym-

metries of the Lagrangian (1.2-1), but if U() (or V eff( ) ) has a

non-zero absolute minimum, these symmetries may not be possessed by

the ground state of the theory (spontaneous symmetry breaking).

Moreover, if Vef( () has a local minimum at 4 = 0 as well as

the absolute minimum at 4 5 0 (see Fig. 2) then the symmetry

breaking may take place via a first-order transition from the

metastable symmetric state. Thus 4 acts as an order parameter

describing the transition and V eff( ) is equivalent to

the free energy function in statistical mechanics. Its form

as both a function of temperature, and higher order

radiative (loop) contributions (see Appendix I) gives the phase

structure of the quantum theory.

For example consider the finite temperature one loop eff-

ective potential shown in Figure 3(a). There is only one minimum

of V ( ) at each temperature, and -Min' the expectation value at

this mimimum, continuously approaches T = 0 as a function of

temperature. This thus represents a second order transition.

(N.B.: the smooth approach to 4 = 0 is due to the fact that

Mq = d2  _ at T = Tc, allowing the long range correlations
d$ $=0
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necessary for such a global transition.)

An alternative possibility, the one on which we shall

concentrate, is shown in Figure 3(b). If the system is

originally at high temperatures T > Tc the ground state will be

the symmetric minimum at 4 = 0. If the system cools to temper-

atures T <Tc, P = 0 becomes a metastable local minimum which

may decay via quantum tunnelling resulting in a local first

order transition. This possibility has recently taken on

cosmological significance because the standard big bang model

allows precisely these thermal conditions, and because the

finite temperature effective potential of a wide variety of

realistic grand unified models is of this general form.

Moreover, there exists the possibility for substantial entropy

generation depending on the decay rate of the metastable state,

the decay mechanism, and universe dynamics during the

transition.

Both the decay rate and decay mechanism for first order

transitions induced by effective potentials of the above form

can be determined semi-classically, by extending to field

theory methods used to calculate barrier penetration in quantum

mechanics, the details of which are presented in Appendix II.

The result closely parallels nucleation processes in statistical

physics, with quantum fluctuations replacing thermodynamic ones.

Bubbles of the phase = $ materialize (via tunnelling) amidst

the phase = 0. If it is energetically favorable for them to

grow, they will - converting metastable vacuum to true vacuum.

The decay rate per unit volume (r) is determined from the re-
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lationr = Im E., where E0 is the energy of the metastable state

and, using a functional integral formalism, is related to the

Euclidean action of the solution to the equations of motion des-

cribing the bubble at the instant of its formation. The critical

size bubble (V ) is also calculable at least numerically by a

variational method.

An example of how this mechanism may lead to substantial

entropy production within the framework of an expanding uni-

verse is given by the inflationary universe scenario of Guth. 8

If the decay rate of the metastable vacuum is slow compared to

universe expansion rate, substantial supercooling may be pos-

sible. As the metastable phase supercools its energy

density approaches a fixed value related to Veff (0) - V ff()

(see Fig. 3(b)). Solving Eq. (1.1-2a) for fixed p0 yields the

asymptotic relation:

R, Xext ~e (1.2-2)

Thus in this scenario the universe may undergo a non-equilibrium

period of exponential expansion during the transition. After

the transition is complete, sufficient entropy may have been

generated so that the initial pre-transition conditions do not

involve the horizon and flatness problems (see Fig. 1). At

the moment this scenario has fundamental problems associated

9 10
with it, but several variants are being considered. It does

illustrate however the cosmological appeal of the hypothesis of

a first order transition in the early universe. We next consider

whether such a transition may be related to the nature of gravity.
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1.3 Gravity and symmetry breaking

Immediate problems are encountered when attempts are made

to quantize classical gravity. Its Lagrangian:

S((1.3-1)

contains a coupling constant G with negative dimensions of

-2mass [\M 1, and thus dimensional arguments imply that it is
p

naively non-renormalizable in perturbation theory. Higher order

diagrams become increasingly divergent requiring an infinite

number of counterterms in the bare Lagrangian proportional to

powers of the curvature tensor and its covariant derivatives.

Gravity coupled to matter has other divergences as well (some

of which may be of cosmological interest 1).

It may be that coupling gravity to matter in specific ways

demanded by certain symmetries might allow a cancellation of

divergences, as is the hope in supergravity. Alternatively,

perhaps these divergences are just a disease of perturbation

theory about flat space and non-perturbative or curved space

effects may remedy this deficiency. They might, for example,

provide some natural physical cutoff at large momenta, thus

changing the short distance structure of the theory. This

last possibility is particularly plausible in the case of

gravitation, which is after all measured

purely by its macroscopic effects.

The simplest natural cutoff is provided by new dynamical

degrees of freedom which are frozen out at some large mass scale,

by symmetry breaking for example, and which leave an effective
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non-renormalizable theory at low energies. As can be demonstrated

easily using functional integrals, or by considering Feynman graphs,

when heavy dynamical degrees of freedom are integrated out of a

theory they leave behind at low energies induced effective non-

renormalizable terms suppressed by powers of the energy over the

mass scale being integrated out. For example the Fermi theory of

weak interactions contains a non-renormalizable four fermion

coupling (with dimensional coupling G F n' O(M- 2

F Y4 C% (1.3-2)
F-4F

This term is induced via heavy intermediate vector boson

exchange in a fundamental renormalizable theory with symmetry

breaking at high energies:

Another example which will be discussed in greater detail

later is the non-linear a model with 0(N) internal symmetry,

and which in many ways resembles the Lagrangian of General

Relativity. It can be induced from sponaneously broken linear

a model with the symmetry 0(N) breaking parameter going to

infinity. The generating functional (see Appendix I) for the
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spontaneously broken linear O(N) theory is given by:14

2
If f 2 is positive and ac-* the long wavelength (D X 0) behavior

is given by:

-174A

The delta function fixes one component of , say X0 (i.e. m ,

leaving (N-l) dynamical fields f(x). Setting J =0, and integrat-

ing over X0 , we obtain

T"s' (X (1.3-5)

(plus other measure-dependent terms which are zero in dimensional

14
regularization). The Tr fields transform non-linearly under O(N)

transformations, and the effective theory (1.3-5) contains the

non-renormalizable coupling X0 n 1/f Tr2

All such non-renormalizable interactions are suppressed by

inverse powers of the mass-scale of the fundamental dynamics.

(In the above model, even though a-), symmetry restoration is

-l 15
associated with masses r ' ). Thus it is expected that at

low energies observable interactions will be renormalizable.

Gravitation, however, although it is incredibly weak, involves

coherent long-range macroscopic interactions. Since it is only these

macroscopic interactions we detect, it is natural to suppose that the

non-renormalizable Lagrangian (1.3-1) is an effective one. Indeed, in

order to have long-range coherence, any macroscopically

detectible interaction must involve exchange
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of massless bosons. Moreover, Lorentz invariance alone constrains

the interactions of massless spin two particles to satisfy the

Principle of Equivalence. The unique such theory at long

distances is General Relativity.1 7

If there is strong field theoretic motivation for considering

gravity to be an effective interaction, there remains the problem

of explicitly determining the fundamental interaction from which

gravity is induced. Whether such a fundamental theory can be

explicitly deduced merely by knowledge of an effective theory is

18
not clear. The effort most likely must be supplemented by

certain guiding principles, such as renormalizability in the case

of the weak interactions. I will briefly discuss in the final

chapter of this thesis an extension of this idea related to the

treatment of the non-linear a model described earlier which has

been suggested for the case of gravity along with renormalization

group techniques used to implement the idea. There I will also

mention various models which have been proposed as fundamental

theories from which general relativity might be explicitly in-

duced.

The body of this work relies on a different approach, however.

Presumably at the scale at which a cross-over occurs between the

dynamics of general relativity and those of a fundamental theory

there is a phase transition. As has been discussed, such trans-

itions at large energy scales have important consequences. I in-

vestigate here what physical properties of the classical theory

might signal the possible onset of a transitional region, and

characterize its physical properties. This heuristic approach

has the advantage that we need not know the structure of a high-
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energy phase (indeed we may gain as a result some insight into its

structure). Moreover we can use the constraints of cosmology

to test our hypotheses. Presumably these physical constraints

are more reliable than the current prejudices of field theorists.
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2 Gravitational Instabilities and Thermodynamics

Due to its universally attractive nature classical gravity

is beset by instabilities. On the most dramatic scale these

instabilities manifest themselves in gravitational collapse,

and the formation of singularities in space-time. Indeed, it

has been shown that such a singularity in the past is inevitable

in space-time under very general conditions.1 In the semi-

classical treatment of gravity, the event horizons associated

with gravitational collapse result in interesting and peculiar

thermodynamics. It is this thermodynamic structure associated

with gravitational instabilities that I believe most likely points

in the direction of a possible gravitational phase transition, in

ways in which I will describe below.

The peculiar relationship between the instabilities of

universally attractive gravity and thermodynamics manifests itself

even at the Newtonian level through the Jeans instability.2

Consider for example a spherically symmetric distribution of gas

in equilibrium under its own gravitational field.3 The outward

pressure gradient must equal the inward gravitational force:

S -. &t r) (2.1)
der 7-

where n is the density and M(r) is the mass enclosed within a

radius r. Multiplying both sides by 47r 3 and integrating by

parts we get:

jZPq fL( fr Gri 0q .Tj-rAr (2.2)
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The L.H.S. is 3PV (P is average pressure) and the R.H.S. is

the negative gravitational energy,yielding the virial condition

3'v -9 (2.3)

Assuming the average gas pressure is given by an ideal gas

at temperature T:

/4 (2.4)

(2.3) yields (for a uniform density):

____ (2.5)

where N is the number of gas particles (of uniform mass M). Now,

for an ideal gas the kinetic energy is 3/2 PV = 3/2 NkT. Thus

(2.5) can be rewritten as:

Hence the total energy is:

ET-:E, k2 Z T- __M_ (2.6)

This expresses the virial theorem identity that for a self-grav-

itating system the kinetic energy is half the absolute gravitational

energy. Hence for such a system (2.6) shows that the lower its

total energy the higher its kinetic energy. If the system radiates

it gets hotter, and thus has negative specific heat. The total

energy of the system decreases as it collapses because the potential
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energy decreases twice as fast as the kinetic energy.

This thermodynamic instability is not special to Newtonian

gravity. Negative specific heats arise as a feature of general

relativity as well - when it is self-consistently coupled to

quantized matter systems. This is no accident. In a fundamental

way it is tied to the sickness of gravity as a field theory.

The Einstein Action is not positive semi-definite, even when

continued to Euclidean space (a remnant of the virial condition

(2.6)). This instability is reflected in the functional integral

formalism of quantum gravity, where in principle we are instructed

to integrate over all field configurations. However R (the

curvature) can be arbitrarily large with either sign, causing

the integral to be ill-defined. Moreover at finite temperature,

the functional integral is defined in terms of a canonical ensemble

of states in a heat bath (see Appendix 1). The presence of

gravitational states with negative specific heats, even in the

classical theory, implies a breakdown of the ergodicity postulate

at the basis of this ensemble.4 At fixed temperatures some clas-

sical trajectories (associated with negative specific heats) run

into the boundaries of the allowed regions of phase space. Another

way of demonstrating this is to recall that in the canonical

ensemble the number of subsystems which, in a loosely coupled

large system,are in a given energy state E., is proportional to

exp (-E /T). If the number of energy levels of one of the

subsystems between E and E+dE is p(E)dE then the probability

of the subsystem having energy in this range is p(E)exp(-E/T)dE.

However for certain subsystems with negative specific heat (such
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as the black holes we will shortly describe) the entropy as a

function energy is such that P(E) ' exp(E2 ).5 At fixed T this

grows faster than the thermal factor, so the total probability

diverges indicating again a breakdown of the ensemble.

It seems reasonable when investigating the possibility of

a phase transition to concentrate on this thermodynamic instab-

ility, which is of course related to the dynamic instability

of gravitational collapse and the subsequent formation of sing-

ularities.

The peculiar thermodynamic behavior associated with formation

of event horizons when gravity is semi-classically coupled to

quantized matter fields was first investigated by Hawking.6

Since his discovery, his results have been confirmed and rederived

via a vast number of independent and equivalent means. For the

purpose of simplicity I will give here the most heuristic

derivation.7 Other methods of obtaining the same result are

given in Appendix 3.

Associated with gravitational collapse, and before the

formation of a singularity occurs the formation of an event

horizon, inside of which the gravitational field is so strong

that classically not even radiation can escape to infinity. This

surface forms the boundary of a classical black hole, shielding

the singularity inside. (Indeed, it is currently hypothesized

that all singularities in space-time must be cloaked behind an

event horizon 8). For a non-rotating uncharged hole this surface

occurs at the Schwarzschild radius

given by r o 2 M. The area of the event horizon is thus given
c

by:
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As g -1 GMIz (2-7)

The "no hair theorem"9asserts that the only properties one

can ascertain about a black hole a macroscopic ones associated

with the existence of long-range fields (i.e., its mass, charge,

etc.). Hence no details about the specific particles states

inside the black hole are available, even though geodesic comp-

leteness implies this region must be considered as part of

space-time, implying an inherent entropy associated with the

10 11
black hole event horizon. Bekenstein was the first to point

out that the relation:

d( YC_' cX + ~jT t Cic (2-8)

1,6rr L Mj

relating the change in equilibrium energy of black holes to changes

in the area of the event horizon A, and changes in its angular

momentum J, and charge Q, (B, C are constants which do not

interest us here), is similar to the first law of thermodynamics:

iU -TS -?/ (2-9)

This relation between event horizon and entropy becomes especially

suggestive when one recognizes that classically the area of the

event horizon of a black hole can only increase.

This, combined with the fact that two black holes which

collide will merge and thus the entropy of the final hole should

be greater than or equal to that of the original separate holes

suggests the relation S = yA (where y is a constant to be deter-
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mined). Classically, the number of possible configurations inside

a black hole of mass M (horizon area A) would be infinite due

to the possible presence of an indefinitely large number of

massless particles. However, for the same reason that quantum

mechanics cures the infinities in the distribution of radiation

in a box, the fact that the Compton wavelengths of particles

might be restricted to be less than the radius of the black

hole reduces the number of possible internal configurations to

12 kC 2
be large but finite. An explicit computation yields y = 4G'

giving:

. -- A(2-10)

Given an entropy in terms of energy we use the thermodynamic

relation T 1 = ) to yield
JQ

kTk 0- (2-11)

This result implies that black holes have associated with

them a finite temperature, and they thus radiate particles

with a thermal spectrum. Moreover (2-11) indicates that black

holes too have negative specific heat - as they radiate they be-

come hotter.

The fact that black holes radiate, implies that under certain

conditions they can exist in equilibrium with radiation. Clearly

for the reasons described earlier, stable isothermal equilibrium

is impossible. However in a box of fixed volume with fixed total

energy E, equilibrium is possible if:
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(a) T H T Rd
3T aT

(b) Rad > _ Hole

3ERad DEHole

Condition (a) implies that STOT is maximized subject to

EHole +ERad = E, while (b) implies that if the black hole

momentarily emits more radiation than it absorbs, the

temperature of radiation must increase more than that of

the black hole. Otherwise, due to its negative specific

heat, the black hole would continue to get hotter and

radiate faster.

Constraints (a) and (b) together with the relations

TRd .1E Rad T2 EHole imply that for equilibrium:

I JL

(2-12)

~eaL

This result is independent of the constants ar , 2 and hence

is independent of the number of helicity states which make up

the radiation. Note also that for a given mass black hole

this provides a constraint on the volume in which it can

remain in equilibrium. This volume must be small enough so

that the total energy of radiation is less than 1/4 the energy

of the hole. As long as V is less than this critical volume Vc

J,
Fk"4-
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(and greater than the Schwarzschild volume) the most probable

state of a system with total energy E will be that of a single

black hole surrounded by radiation at the same temperature.

Alternatively, if one raises the energy density in a fixed vo-

lume the equilibrium state will eventually be that of a black

hole and radiation, coexisting at a temperature less than that

of pure radiation with the same total energy. This is il-

lustrated in Figure 4.

This instability under the formation of black holes can

also be demonstrated in a fixed temperature canonical ensemble.

Among the total ensemble of states the system can occupy at

fixed temperature will be states involving black holes at that

temperature. Thus at least part of the time we would expect

any finite temperature system to evolve such a state. Of course

once formed this state will be unstable against evaporation

or accretion of matter, unless the heat bath keeping the

system at fixed temperature is removed. What is particularly

interesting is that such a state can form not only by thermal

density fluctuations, but by semi-classical quantum tunnelling

13
effects. The Schwarzchild black hole represents a solution

to the Euclidean equations of motion with period B = 1/T in

imaginary time, and hence gives an instanton contribution to

the finite temperature Euclidean functional integral which

gives the ground state free energy of the theory (see Appendices

I and II). Moreover, the Guassian fluctuations about this

14
saddlepoint involve negative modes, giving an imaginary part

to the free energy. As described in Appendix II, this yields

a decay rate for nucleation of black holes from hot "flat"
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14space via quantum tunnelling effects.

As we have discussed above these semiclassical thermodynamic

instabilities are inherent to the description of gravity coupled

to matter. In addition, the above arguments suggest that they

should play an increasingly important role as energy densities

and temperatures are increased, and are thus especially relevant

to considerations of the early universe. If then, as we suspect,

gravity is a low energy effective interaction these instabilitie

are likely a reflection of that fact and we might hypothesize

that they play a dominant role in the region near a first order

phase transition involving gravity. Based on the properties

described above, black hole thermodynamics is ideally suited

to the formulation of a model for such a transition region.

Using such a model we will investigate the justification and

implications of this hypothesis in the subsequent chapters.
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3. A Model for Dynamics Near a Gravitational Phase Transition

3(a) Initial State

If black hole configurations become more probable as

energy densities and temperatures are increased, we may

imagine that such configurations were more probable in the

early universe. There has already been speculation that

density fluctuations during the early periods of the Robertson-

Walker expression resulted in an abundance of primordial

black holes.1 We consider here however the possibility

that such black holes were already present in the initial

state from which the Robertson-Walker expansion resulted.

In the standard cosmological model there is a natural justifica-

tion for assuming black hole configurations to be present in

the initial state, based on the behavior of particle horizons

at early times. In the FRW radiation dominated model the

3 3 -2
horizon volume 3k t and the local energy density p - t

Hence the total energy contained in a horizon volume goes

as Z 3p - t. We also know the radiation temperature goes as

T t/ 2 . The mass of a black hole which radiates at the

temperature is M - T 1. Hence the mass of black holes which

could be in equilibrium with the radiation goes as M ~ t

Thus the ratio of black hole energy at this temperature to

the energy per horizon volume goes as t 1 /2 . Once this

ratio (with the proper numerical factor in place) gets larger

than 4/5 then, based on earlier arguments about black hole

equilibrium2, a state in each horizon volume involving one

black hole surrounded by radiation becomes the favored
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equilibrium configuration.

Hence the "natural" condition at early times in the

Robertson-Walker expansion involves a black hole radiation

mixture. Indeed as the above argument suggests, if this initial state

arose as the result of a local physical process (e.g., tunnelling),

black hole configurations would likely be favored.

Any first order transition involving gravitation is such

a process. While we have concentrated here on the possibility

of a transition to semi-classical gravity as a low energy effec-

tive theory, one should note that these remarks will be rele-

vant to any transition for which gravity plays a dynamical role

(i.e.the effective potential is a function of the metric as a

dynamical field).

There are several reasons one might associate the presence

ofblack holes to a first order transition. First, we remark

that as a black hole radiation "gas"

evolves into a state involving pure radiation alone, its

specific heat goes from a negative value (dominated by the

black holes) to a positive value. This is reminiscent of

canonical behavior near a first order transition.

Such a turnaround in the thermodynamic behavior

in a quantum system, has been linked before to

the possible onset of a transition.
3

In addition there is a natural mechanism for the production

of black holes in first order transitions. Based on the field

4theory description of such transitions , they may be described
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by nucleation of bubbles of one phase amidst the surround-

ing the metastable phase. This is the mechanism by which

quantum tunneling allows the expectation value of a quantum

field to relax to the absolute minimum of the effective po-

tential. After such bubbles form they evolve classically

with the fields inside to relaxing to their equilibrium

expectation values. If, during bubble formation, the energy density

and size of the bubble are such that a metric configuration

which involves a black hole surrounded by radiation at a

temperature T is classically favored, we would expect such

a field configuration to arise inside the "bubble" as a result

of the tunneling process. After the bubbles have occupied all

of space, completing the transition we are left with the remnant

black hole "gas" in local equilibrium with radiation which we may

take as the initial state for the Robertson-Walker expansion.

The actually decay mechanism and decay rate cannot be

calculated until we have a fundamental quantum theory whose

effective potential describes the transition. A calculation

using the classical gravitational Lagrangian (supplemented by

surface terms) of the instability of hot flat space to

nucleate black holes done by Gross et al. 5, gives us some

confidence that the time reversed picture of this process

supports our assumptions. Of course, calculations using the

low energy (classical) theory are only suggestive, and strong

quantum effects which presumably govern any gravitational

phase transition will, drastically affect decay rates, etc.

We thus take the above initial state as an ansatz,

and investigate its consequences (i.e. we consider time as
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measured from the moment this state is formed--see Section

4.3 for a more detailed discussion of this point). My recent

letter (see next section) gives a preliminary view of this

investigation. The quantitative results are described here

in the sections which follow.
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The rapprochement between particle physics and cosmology can

nc t be complete until quantum gravity is fully understood, when it

w ll be possible to quantitatively trace the big bang to times

' planck (=5.4xlO 4 4 s). Developments in particle theory however

hive motivated a consideration of periods shortly thereafter. Not

or ly might one explain such fundamental quantities as the observed

b ryon to photon ratio, but the early universe may have undergone

plase transitions during which its dynamics may have differed greatly

2
f-om that of the adiabatic Robertson-Walker model. Thus the

ei rly universe can serve as a laboratory in which to test our models

of particle interactions at high energies. In particular, the

resolution of various problems of cosmology may be tied to under-

standing the peculiarities of gravity as a field theory.

The model we present, based on treating classical gravity as

a remnant of a phase transition, is somewhat speculative and pre-

liminary, but illustrates several important aspects of such an

approach: (1) The attempt to couple quantum mechanics and general

relativity is strongly tied to thermodynamics. Resulting effects

will be important in the early universe, and need further investig-

ation. (2) Quantum, or semi-classical, gravitational effects may

be relevant at temperatures below the planck temperature.

Specifically our model indicates that space may never have been

hotter than the critical temperature for restoration of Grand

Unified gauge symmetries. At the same time it may be possible to

gcnerate the observed baryon excess while suppressing monopole

pioduction. We here briefly outline these results, leaving more

detailed discussions to a future paper.

Although they present some problems, first order transitions

may play a crucial role in early universe dynamics, perhaps resolving

several paradoxes of the standard FRW adiabatic model. Indeed, given

the possibility that baryon number may not be conserved all the

observed matter and entropy of the present universe may have been

2. .
generated in such a transition. Thus the big bang explosion itself

may have been the result of a first order phase transition. In an

earlier article I suggested that it may be feasible to connect such

a possibility to the nature of classical gravity. The gravitational

1 -2
Lagrangian with its dimensional coupling K = 1GO(mPlanck) has

the form of a non-renormalizable low energy effective interaction

in an expansion in inverse powers of a large mass scale at which

some heavy degree of freedom is frozen out. In this sense it

resembles the Fermi weak effective Lagrangian. Also, Weinberg

demonstrated on general grounds that any such effective interaction,

in order to have detectable macroscopic effects at large distances

might reasonably have long range dynamics governed by a Lagrangian

like that of gravity.
4

Whether it is possible to explicitly deduce from an effective

theory the existence of a transition and the nature of a fundamental

high energy theory is not clear, although renormalization group

techniques may offer some possibilities.5 A more intuitive approach

involves investigating the classical theory for instabilities which

may signal the onset of a transition and may characterize the relevant

physics of the transition region. This is the approach of the present

work. I thus produce an ansatz for the physics of a state immediately

following a transition to a vacuum effectively describable by a semi-

classical coupling of gravity to quantized matter fields. It is then

possible to evolve this state using the equations of general

Lj
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relitivity, in order to investigate alternative early universe

behavior and relevant semi-classical gravitational effects therein.

Classical gravity is beset by instabilities. Even Newtonian

gravity involves the Jeans instability.
6 In General Relativity

instabilities lead to gravitational collapse and the formation of

sinjularities in space time, which are particularly relevant for

stulies of the early universe as they indicate points where the

predictive power of the classical theory breaks down. If such naked

singularities are cloaked behind an event horizon
8 this results in

the formation of black holes (BH's). Since such singularities imply

the incompleteness of the classical theory the formation of associated

BH's may be important in the region of a gravitational phase transi-

tion. Indeed, if classical gravity is self-consistently coupled

to quantized matter fields, BH's exhibit thermodynamic behavior

relevant to the description of a transition. Associated with their

finite event horizon, BH's have finite entropy:
9

(1)Sa kc,(44 7 -'A, . 4r&Y

where AH is the area of the event horizon. Thus BH's radiate at

a temperature:

(2)

an6 thus have negative specific heat.

It can easily be shown10 that this implies that BH's can exist

in equilibrium with radiation in a box with fixed total energy if:

5

For radiation, Tspace - Es 1/ and using (2) this then impliessae space

(3)'1E, L4 !_FII

Thus if one raises the energy density in a fixed volume the

equilibrium state will eventually be that of a black hole and radia-

tion at a temperature which is less than the equilibrium temperature

of pure radiation with the same energy density. [For a similar

result, using a fixed temperature ensemble see Ref. 61.

This suggests that BH configurations should become more

important in the early universe, where energy density and temperature

are increased. Moreover, a "black hole gas" would have non-standard

thermodynamic properties reminiscent of a system near a first order

transition, being dominated by the negative specific heat of the

BH's [Note: The possibility of an abundance of primordial BH's has

been considered elsewhere for other reasons. 1

Let us next consider how such a state may arise out of a first

order transition. Based on semi-classical calculations in model

field theories,12 such a transition occurs locally at randnm qitpg

via the nucleation of "bubbles" of fixed size and energy density

which then evolve classically until the phase transition to a new

equilibrium state is completed via percolation. If the transition is

to a state described by semi-classical gravity coupled to quantized

matter, and if the bubble size and energy density are within the

proper range, then the state which is tunnelled to inside the

bubbles will involve a BH surrounded by radiation.

We will assume here that such a situation describes to some

approximation the universe shortly after a transition. After it

low

C
T44
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i3 completed we are left with a remnant "gas" of BH's with a mean

n -ss and volume per hole (with which each hole is in thermal contact).

Wiile a fundamental theory is needed to calculate the parameters

cf such a transition, we can take this ansatz as an initial state

ccndition and investigate its consistency and the consequences

off its evolution in time.

The pre-tunnelling state may have had an arbitrary long time

t> relax into a metastable equilibrium (as we have dispensed with

tie big bang as the origin of time). Then, if the nucleation rate is

sufficiently fast we may imagine that on a scale large compared to

the volume per hole that the universe is sufficiently isotropic and homogenous

to describe its evolution by the Einstein equations for the

Robertson Walker metric scale factor R(t):

(WI/8 + ,c/g xel = -Pr /3 (4

where we will hence refer to the quantity in brackets as K(t),

which smoothly goes from the matter value K(t)=3 to that of radiation,

K(t)=4 as the BH's decay.

One can also show that the universe expansion, combined with

Eq. (2) implies that BH's lose mass at a rate:

A/M z - 3.1 )O /'i 3  o-(7)

(in MKS units) where N is the standard helicity factor dependent

on the number of massless fermionic and bosonic degrees of freedom;

N=1 (NB +F

Then, using Eqs. (4) (choosing =0) and (6), we have

(8)

Finally, the time behavior of pBH and pspace (using the fact

that pspace = PTOT -BH) is given by:

A (e~zR 'A+ = _p dRS/44-
(5)

where pC2 is the total energy density, and p is the pressure and

1q. (5) represents the statement of energy conservation. To solve

these we must supplement them by an equation of state p(p,T) for

a BH-radiation mixture. Assuming the standard equation of state for

radiation (p=p/3), and that BH's act like massive dust particles (p=o)

(5) implies:

. rr = - + /r/er . R/ (6)

a. / - 3RIR

1/-A

(9)

(10)

Equations (7), (8), (9), and (10) allow one in principle to

evolve an initial state with BH's of mean mass M0 and mass density

P0 H In practice, they must be solved numerically and we shallBH

describe out quantitative results in a future paper. However, the

general qualitative features are easily described. Depending on the

initial parameters there may be an adiabatic period where Tspace = BH

and both are increasing. However, it is easy toshow that once

0

W

:V&
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4 Ppace >PBH black holes must go out of equilibrium. (In fact they

wi'Ll often go out of equilibrium before this, depending on the

relative magnitudes of A and A). After this point the BH's, at a

ma;s MC, increase in temperature and evaporate in a time scale of

orler:1 3  T % 10-1 8 MC3 sec,while the temperature of space reaches

a naximum and then decreases.

The initial values M and pH are constrained by a variety of
0 0

requirements. First, for a given M , PBH must be less than the value
given by ense (in0 iore

given by dense Packing of BH's, pcrit n practice pBH 0 cr in order

for our approximations to be valid) and greater than a minimum value

below which BH states would no longer be favored in the initial

tunnelling bubble formation. This dual requirement then can be shown

BH 17
to imply: M 2 10-100 M planck (kT0  < 10 GeV).

There are also limits on primordial BH density for M - 109 kg

.14
in order not to affect big bang nucleosynthesis, so we will take

.- 6 9
our initial mass constraint as: 10 kg < M < 10 kg.

This range can be restricted further by considering baryon

ani monopole production by black holes. It has been shown that

unless CP is not microscopically conserved, black holes may produce

.15
a net baryon number only via superheavy X-boson production. The

advantage of such production in our scenario is that if kTikT <10 14s BH~

GeV, all X-bosons produced subsequently by black hole evaporation

will be out of equilibrium (inverse decays are suppressed) and will

decay producing net baryon number. Hence mass limits on the X-boson

needed in the standard model in order to get departure from thermal

equilibrium are unnecessary. Noting that X-bosons will only be

radiated after kTBH>Mx (Mhole>M i) one can estimate the number of

such particles produced per black hole:

N) r M. /3k< T'>N = 2 .5 10 2/ N
(11)

where <T> is the average temperature at which the BH radiates

after reaching mass M., and N is the number of species of

particles being radiated.

I.f the expansion of the universe is adiabatic after the

X-particle decay products thermaliae then

where p , Mo, S are the initial values of BH mass density and mass
BH' 0 Ft0

and the total entropy density respectively, t. and p , are the H
i BH'

values of the temperature of space and BH mass density at the time the

X-bosons are emitted (MBH = M.), and 4 is the net baryon number

per X, X pair decay. Note that the term in curly brackets arises

because X-bosons are out of equilibrium and their decay produces

significant entropy. (This term has been neglected by other

authors1 4 but it need not be small). Without this term (nB /nY

would be comparable to that of the standard scenario. Hence,

although we avoid problems with tuning the X-boson mass, the poten-

tial entropy production by the X-boson constrains the size of the

temperature difference between the BH's and radiation at the time

X-bosons are radiated, and can in turn further constrain M and pBH

On the other hand, monopole production via phase transitions

provides a severe constraint on grand unified theories.15 One might
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n ively imagine that in our model if Tspace is always less then Tcrit

f r such a transition that, as the transition never occurs, no

monopoles are produced and we avoid these constraints. However in

f tct one may expect production of monopoles via a thermal background

ard via BH evaporation. The latter effect may be exponentially

16s .ppressed by semi-classical effects, and by the finite size of

ti e monopole (model calculations to provide estimates are underway),

ai d background thermal production may be suppressed by Boltzman factors

i: Tspace Tcrit at all times during which equilibrium may be achieved.

Thus the early universe may have been much cooler than naive

extrapolations would imply. In this scheme, the temperature of

space need never have exceeded the critical temperature for the

restoration of grand unified symmetry. If so, (modulo various

numerical computations now underway) it seems possible in principle

to allow baryosynthesis, while suppressing monopole production. Also

being considered are such questions as: the possibility of producing

remnant inhomogeneities on the scale of galaxies; refinements to

include an initial mass distribution of BH's; and a discussion of

the horizon, flatness, and cosmological constant problems in the

context of our model. While such investigations, in the absence

of a fundamental theory, provide only circumstantial evidence for

the existence of a gravitational transition, they illustrate the

possibility that finite-temperature gravitational effects may

significantly alter our models of the early universe, as well as our

understanding of quantum gravity.

I would like to thank Roscoe Giles for immeasurable aid, A. Guth

for insightful discussions, and S. Glashow, D. Gross, N. Isgur, J.

Preskill, and J. Primack for useful comments.
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4. Detailed Dynamics

As noted previously,1 a complete description of the dynamics

of the black hole-radiation mixture is described by a set of

coupled differentialequations involving the total mass density

p(t), the black hole mass M(t), the radiation mass density PRad (t),

and the black hole mass density PBH (t). These equations can be

derived from the Einstein equations coupled with an equation of

state for the mixture, plus the relations between black hole

temperature as a function of mass, and radiation temperature

as a function of energy density as the number of massless

degrees of freedom change. We describe first in detail the

derivation of these equations. Before a numerical analysis of the

resulting dynamics is presented in Section 4.3, we describe in

Section 4.2 the qualitative dynamical behavior of the system in

various regions of interest, where we can give approximate

analytical solution of the evolution equations.

4.1 Derivation of evolution equations

Under the assumptions described earlier (we shall review

in detail all our approximations in the next chapter) dynamics

are governed by the Einstein equations for an isotropic homo-

geneous expansion:

A4-- (4.1-2)

The solution of these equations depended on an ansatz

for an equation of state for the black hole mixture. This

allows us to use (4.1-2) to express p in terms of R. For a
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pure radiation state we know p =pc 2 /3. Then (4.1-2) yields

the relation

(4.1-3)

The equation of state for a black hole gas is however

not obvious. We assume that the black holes, if dilute

enough, act like noninteracting dust particles in which

case p=O. We shall justify this assumption in the next

chapter, based on our numerical results. Eq. (4.1-2) then yields

V (4.1-4)

Combining (4.1-3) with (4.1-4)

radiation mixture:

- (3 ~-

yields for the black hole-

= )R

This immediately yields, when combined with (1) the time

development for the total mass density: (using 4=0)

(4.1-6)

(4.1-5)

On
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Next, we need to determine the time development of M(t),

the black hole mass. Now for a black-body radiating at tempera-

ture T the intensity of emission is given by:

T= 4 J (4.1-7)

where N is related to the number of helicity degrees of freedom

in the radiation: N = (NB +7/8 N F) where N B, NF are the

number of boson and fermion degrees of freedom, respectively.

In SU(5) N 80 (T >10 14), N z 25 (T >100 GeV).

Assuming for the moment that the black body approximation

is reasonable, the black hole will radiate at a rate (we will

use MKS units throughout):

N ."~'Jk~ (-1-8)

224

where A = surface area = area of event horizon = 16rG M /c

Note that while the black hole temperature is independent of

the number of massless particles, its emission rate is not.

Also, Eq. (4.1-8) gives an upper bound on the emission rate.

Suppression factors due to nonzero spin, etc., will stop some
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particles which are emitted by the black hole from reaching

14 2
infinity for black holes with mass >10 . Page has estimated

these suppression effects, and shows that they reduce the

emissive power by a factor of 2.6 from the naive frequency

independent estimates based on a geometric cross section

2 2
27TrM , thus making the effective emission area -107M . This

factor is 1.6 less than the area factor used here, and hence

our assumption of black body emission is, to a first approxi-

mation quite reasonable.

The effect of radiation with an energy density prad

being absorbed by the black hole is given, using the relation

prad = 4/c J, when J now equals the mass intensity incident

on the surface. Using this we get

-qr6- 2__ _ _ _~ (4.1-9)

(Note again that the helicity factor for the incident radia-

tion is included in pd) Hence the total rate of change
rad

of M is given by:

Using the relation PBH ~ oM/R (pBH ~ mass density of

black holes) we get

P : M (4.1-11)
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where the right hand side is given by (4.1-10) and (4.1-1).

Finally, we can derive the time development of p rad as follows

since prad ~rot ~BH. Then (4.1-6), (4.1-11) and (4.1-1)

imply:

E' - -K ~~P~

FC -/Z 's~ M (4.1-12)

Thus, in principle (4.1-1), (4.1-6), (4.1-10), (4.1-11),

and (4.1-12) allow us to derive the complete time evolution

from the initial state, giving R(t), M(t), Tblack hole (t),

Trad (t). Of course, this set of coupled differential equations

is difficult to solve analytically in any useful fashion, and

we will discuss its solution via numerical methods in Section

4.3. It is possible, however, to get a great deal of

qualitative information without the explicit solution cf

these equations, and we now discuss these results.
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4.2 Qualitative Dynamics

The evolution of the black hole radiation state is

governed by two competing processes. The expansion of the

universe will tend to reduce the temperature of radiation,

thus driving the initial state configuration away from

equilibrium. On the other hand, as the black holes get

hotter than the ambient radiation, they will pump energy

into the background via particle emissions. Which process

wins out for different initial conditions can be determined

numerically. However, we can analytically describe the

behavior of the system in a variety of regimes.

First, consider the possibility of a period of adiabatic

expansion. The total entropy of the system is given by

SZC,- r CZi (4.2-1)

3
where C and C2 are constants and V - R . Imposing the condition

dS/dt =0 implies:

Tizi3 (4.2-2)

If the term in brackets were zero (4.2-2) would describe the

standard adiabatic relation in the radiation dominated FRW

universe. As in that case we can determine the temperature

evolution of the system by using the energy conservation

condition (4.1-2). Since the total energy density is given by:

(4.2-3)

T C'
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Eq. (4.1-2) then implies the relation

(4.2-4)

Demanding that (4.2-2) and (4.2-4) both be satisfied implies

the condition:

Using the explicit form for these quantities one can show that

(4.2-5) then implies the condition for adiabatic expression:

V, C)'Mr

(rr(T(t) (4.2-6)

This is exactly the condition that the temperature of radia-

tion equal the temperature of black holes, which agrees with

our intuition that adiabatic expansion implies the system

always remains near equilibrium.

This process cannot go on indefinitely, and it is easy

to derive limits on when it must cease. Even if the black

holes could radiate at an arbitrarily large rate, (4.2-6)

cannot always be satisfied. To see this, we note that (4.2-6)

implies:

(4,2-6A)
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Now, neglecting the energy loss incurred by radiation in doing

work in the expansion (this will only extenC the possible

period of adiabaticity) we have:

(4.2-7)

where N BH gives the total number of black holes in the

initial state. Eq. (4.2-7) and (4.2-6,60 then imply:

(j"C 2 oc .11% CI 4(- Mr-t' M~~I 10'

tVN(t- -'t C'
(4.2-8)

Although we can give an explicit form for R3 (t) as we shall

show shortly, all we need at this point is that the expression

of the universe implies:

d9m > (4.2-9)

Now plugging (4.2-9) into (4.2-8) and differentiating with

respect to time yields,

AVt) - - S N M(+)c.]Mte) (4.2-10)

The left-hand side of (4.2-10) is always positive

Since m <0, the right-hand side becomes negative when

MM C. (4.2-11)

- - -0(no - R (t CL 'V_ t-- M'J'
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Since the left-hand side of (4.2-11) gives the total

energy in the form of black holes, this inequality expresses

the fact that adiabatic expansion is impossible once the

total energy in the form of black holes is less than 4/5

the total energy of the system. However, this is merely a

reflection of the well known fact, which we have previously

derived 3, that a black hole radiation state cannot be in

equilibrium in a box if radiation accounts for more than

1/5 of the total energy. Thus, our derivation implies the

reasonable constraint (which we could have guessed) that

adiabatic expansion is impossible when equilibrium is im-

possible.

On top of this, however, there exists a dynamic con-

straint on adiabatic expansion, if the black hole decay rate

is small compared to the expansion rate. Using the relation

Trad =TBH during the adiabatic phase, (4.2-4) then implies

during this period

T., Tp, 9 (4.2-12)

Then, using the fact that T /T -M/M, we see that in orderBH BH

for adiabatic expansion:

M (4.2-13)

Again, we see that if pBH < rad this relation cannot be

satisfied. However, (4.2-13) also gives a constraint on the

value of M/M which is needed to maintain adiabatic expansion.

Also, setting T/T = 0 in (4.2-4) gives the minimum value
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of M/M which will stop the temperature of space from decreasing:

(4.2-14)

Regardless of whether the expansion is adiabatic or not,

we can analytically derive the approximate behavior of ptot (t)

and R(t) over large time intervals. This is because the

factor B(t) in (4-6) changes only from 3-4 as black hole

density varies over its entire range. Hence we can integrate

(4.1-6) and (4.1-1) (with K=O) using the approximation B(t) =

B = const. With the boundary conditions p (t=0) =Pttotptot"

R(t=O) =R we get:

0

i-i) (4.2-15)

To.

(4.2-16)

(the result (4.2-15) was used in the derivation of (4.2-16)).

Thus the value of p(t) is largely insensitive to the variation

of B, and asymptotically has the same t-2 behavior of the

standard model. On the other hand, the scale factor R(t)

has a factor of B in the exponent. When B=3 and black holes

dominate the mass density R(t) - t This value will then

shift to the standard R(t) - t1 /2 behavior as the universe

becomes radiation dominated.

If M/M begins much smaller than R/R, we may expect this

shift to occur quite rapidly in the final stages of black hole

24 40 - "
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evaporation. For in this case we can analytically solve

(4.1-11) and (4.1-12) (for constant B), yielding

~ Z ~fLrb " (4.2-17)

Hence, in this case B(t) will approach the value 3, as long

as radiation loses more energy doing work on the expanding

universe than the black holes do due to evaporation. Also,

from our previous discussion, in this case we expect that

the temperature of space will drop considerably before the

black hole begins to evaporate. At this point the first

term of (4.1-10) dominates indicating that the black hole

will evaporate freely with M(t) given by:

Thus, to summarize: From the initial state, the expansion

will go at a rate R(t) - t2 / 3, and ptot (t) will drop pro-

-2 0
portionally to t . Depending on the initial values, pt0

and M 0, then may be a short period of adiabatic expansion

with the temperature of space increasing. The temperature

of space will then fall while the black hole temperature

continues to increase. Finally, in the last moments of their

evaporation, when M/M becomes very large black holes will

rapidly pump energy into space, heating it up.
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4.3 Quantitative Dynamics

The coupled set of equations for M/M, P tot/P t ot' Prad/ rad'

PB/PBH were numerically integrated using a fourth order

Runge-Kutta approximation. (see Appendix IV for computer

program). The evolution was determined by the initial value

0 0
conditions on pBH, and M0 . (In this scenario with k=0 in

equation (4.1-1), R0 is a free variable whose value can be

determined by requiring the final state to agree with the FRW

0 _
model at a given temperature). The constraint that TBH radBH rad

was also used, in order that the initial state be an equilibrium

0 0
configuration. For a given M , the range of acceptable PBH

0
was determined by requiring that pBH satisfy the dual

requirement that it be less than the value given by dense

packing of black holes (by a minimum factor of 10- ) and

greater than the value below which black hole configurations

would no longer be favored in the initial state (i.e., PBH >4p rad

This can be shown to imply:

. (4.3-1)

or in MKS units:

M3 
(4.3-2)

0
This restriction implies that PBH has a nonzero range onlyBH

when M >10 kg= 10 M and the acceptable range for p 0
p BH

0 0 2
increases with increasing MBH. The constraint M >10 M is

BH* p
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also self-consistent because it implies that the distance

scales and densities under consideration will be safely

within the "classical regime", where we expect our evolution

equations to be valid. On the other hand, this constraint

implies that if the initial state results from effects near

the Planck scale, then the parameters of the state will be

tightly constrained. We shall discuss this point in more

detail when we discuss the stability of this initial state

in the next section.

Results for two initial value of M0 (=10- 2,l 04kg) are

plotted on Figures 5(a,b). We note immediately that there

is a very short period of adiabatic expansion, during

which the temperature remains nearly constant. -This is due

primarily to the fact that the "expansion" rate has not yet

become significant enough to reduce the temperature of

radiation. As can be seen, black hole decay is not signifi-

cant factor during this period and once the expansion rate

reaches its asymptotic -t2 /3 value, the temperature of space

drops more or less monotonically. As can be seen, in Figure 4(b),

there may be short periods during which ratio of the mass

density of black holes to that of radiation is sufficiently

large so that even small levels of black hole decay stop the

monotonic decrease in the temperature of space. This is not

a general feature, however, and occurred for only one black

hole mass value. It is true, however, that the decrease in tem-

perature of space is significantly less than that predicted

by (4.2-17), indicating black hole evaporation has a significant effect. On

the other hand, the time evolution of black hole mass M(t) dif fers negligibly
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from the formula (4.2-19) indicating that the back reaction

due to the nonzero temperature of space never significantly

affects the black hole decay rate. Also, we note that for

black holes of mass < 10 kg, the decay rate time is decreased

by a factor of 3 due to effect the increase in the number of

massless degrees of freedom in Eq. (4.1-8). The initial values

0
of MO'PBH used in the computation, plus the value of the

temperature of space after the black holes have evaporated

are shown in Table 1.

Shown on Figure 5(a) is the behavior of the scale factor

R(t) with time. As expected, its rather quickly approaches

the expected asymptotic t 2/3 behavior, with a shift to t

only after the last moments of the black hole evaporation.

The speed with which it approaches its asymptotic behavior

is a function of the initial mass density, also as expected

from Eq. (4.2-16). Shown on Figure 6(a) is the behavior of

R(t) as a function of temperature. The adiabatic Robertson-

Walker value is R(t) - T 1. During the black hole decay

phase the behavior of R(t) is quite different from this

value - an example of the nonadiabatically in this model.

Also, the temperature of space falls faster as a function of

0
R(t) for smaller initial values of pt0,which is again a

reflection of the fact that black hole decay is slowing the

decrease of the temperature of space.

Another point which will prove useful later is that

although R(tdecay)/R0 decreases with decreasing initial mass

density for fixed Mo, the distance between black holes increases

with decreasing mass density. Hence the final physical
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distance between points where the black holes were initially

located will be constant for fixed M 0
As a final note we point out that the initial boundary value

t=0 in this scenario has a different connotation from that in the standard

FRW model. There it represents the time T,hen the total

energy density becomes singular. Here t measures time of

evolution from an initial local equilibrium state of black

hole and radiation. Hence it may appear that t=O is somewhat arbitrary, and

as long as the initial state is in local equilibrium, re-

definition of t0 can be compensated by possible changes in

o 0the values of pBH and M . While this is true in principle, the

degree of flexibility of choice in t0 is restricted by the fact

that wB havs seen that black holes and radiation go out of equi-

librium on a timescale associated with the expansion timescale.

This timesacle is tied to real physical scale which enters the

problem in order that the initial volume per black hole describes

a possible equilibrium configuration, and it is this timescale

which is not arbitrary. The time at which this expansion sets

in connects time in our scenario with the time variable in the

standard model. We see from Tables 1, 2, 3 and Appendix IV that

this timescale becomes closer to the Planck timescale as the initial

black hole masses get smaller, and the distances between them approach

the Planck scale. The fact that we are always limited to time and

distance scales larger than the Planck scale is associated with

the equilibrium condition (4.3-1) and this timescale can be

thought of roughly as the time required to form the initial state

configuration.
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5. The Initial State Reexamined

The preceding discussions relied on an initial state

configuration which involved on large scales an isotropic

and homogeneous pressureless gas of black holes of mass Mo'

In such an initial state self-consistent? The quantitative

results we have obtained now allow an examination of the

stability of this state, and the validity of the approxi-

mation used to derive its behavior. As it invariably must,

the rapid expansion of the universe plays a vital role in

resolving these questions. Also of importance is the fact

that black holes have a finite lifetime. Our discussions

also shed light on how the horizon, flatness, and cosmological

constant puzzles, or their resolution, fit into our initial

state assumptions.

5.1 Noninteracting Black Holes?

Assuming that p z 0 for the black hole configurations in

Section 4 was equivalent to the assumptions that black holes

behave somehow like noninteracting dust particles. This seems

nonintuitive. Unless the black holes are extremely "dilute"

we expect the gravitational potential between neighboring

black holes to be large. By recalling the definition of

pressure in relativistic fluid mechanics, we can see bow

this strong interaction might manifest itself in nonzero

pressure.

The pressure of a moving fluid measures the deviations

from the average motion. Pressure is defined by the flux of

1
momentum out of a comoving volume element.. Clearly if all

particles are motionless with respect to the average flow
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the pressure is zero. Likewise if particles are noninteracting

the average momentum flow out of a volume is zero. Interactions

however change the momentum of particles, and this may lead to

a net momentum flux. If deviations from the average state are

associated with a random velocity v, then the relation between

pressure and mass density in a relativistic fluid is given by2

IP/CZ 'k 7
.... (5.1-1)

Thus, if interactions induce velocities of order c, then the

pressure of the system is significant. The p=O approximation for

massive bodies is based on the assumption that their random

^2 2
motion is thermal in character in which case v /c <<l in

general. For example, if initial black hole motion is thermal,

using the fact that kT (1.6/M) Joules, we can estimate v

^2
from the relation 1/2 my 3/2 kT. For the black hole

^2 2 -4
masses considered previously this yields v /c <10 . The

argument that black hole motion always remains predominately

thermal is clearly false in general, as we know at some critical

density interactions must become important. It also ignores

possible relevant curved space effects.

We can immediately remedy this last point. For a

Schwarzchid metric g0 0 ; (1 - 2GM/c r). This metric is time

independent, and with the expectation (which we here hope to

justify) that particle velocities in a comoving frame will be small

we recognize that if the second term is small we can use the

3 2
weak field approximation g0 0 = 1 +2$/c , where c is the

Newtonian gravitational potential. If r " 0(10GM/C 2) then this
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approximation will be justified. Thus if black holes are

separated by this order or greater we may do our calculations

in the Newtonian approximation.

The effect of interactions on particle motion is

dependent not only on the characteristic strength associated

with encounters, but also on a characteristic time scale over

which they become important. If, considering the combined

effects, we can show that the effects at interactions are

negligible on the time scales with which we are concerned,

then the p=O approximation is justified. This approach is

standard in astrophysics, in stellar dynamics for example ,

where interaction effects are parameterized in a time

variable, the relaxion time. This is defined as the time

it takes on average for encounters to produce deviations in

the velocities of stars which are of the order of magnitude

of the original velocity. Because in the case of stars each

encounter results in a small deviation Av, the relaxation.time

in usually many orders of magnitude greater than the time it

takes for a star to traverse the general dimensions of the

system.

In the black hole system, however, each encounter is

significant. To get a quantitative idea of this, consider

the simplified two body gravitational encounter with impact

parameter Z shown in Figure 8. Each path can be approximated

by straight lines if the resultant change in velocity Av,

perpendicular to the original direction of motion, is

small compared to initial velocity v. This change Av is of order: 5

AV (5.1-2)
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where m is the mass of each particle. For thermal velocities

(v z/3kt/m) considered here the impact parameter needed so that

Av -v is of order 108-1012 times the average initial distance

between black holes in our model. Indeed, by the virial

theorem, for particles reaching equilibrium under their

mutual gravitational interactions, vav - /Gm/2R, where R

is the distance between particles. For masses and initial

densities we consider this implies v ~ .1 -. 3c. This average

random velocity is large enough to result in nonzero pressure

for the relativistic black hole gas.

Hence, the only way in which the p= 0 approximation can

be justified is if no encounter between black holes can take

place before they evaporate. We show below that this is

indeed the case, for certain initial conditions. Our argument

is based on three properties of the initial state. First, the

black holes are not in global gravitational equilibrium at

small times. The particle horizon is initially smaller

than the distance between holes, although it grows almost

immediately to include nearest neighbors. This implies that

we can treat the initial random motion as thermal in origin.

Next, the assumption of an approximately flat (K=0) con-

figuration to agree with observation, implies that each black

hole at rest in a comoving frame will asymptoticaly escape to

infinity in spite of the gravitational pull of its neighbors.

Small initial fluctuations counteract the effects of this expansion

in order to become significant. However, the time scale for

this to occur is longer than the characteristic

expansion time for the period under consideration.
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(Such suppression of interactions due to expansion is standard,

in the case of monopole-antimonopole annihilation. 6) Finally,

the isotropic nature of the initial configuration cancels

out much of the force between any two neighboring black

holes.

Consider, for example, the nearest neighbor configuration

of Figure 9. (Interactions with black holes at larger dis-

tances will be suppressed). Initial thermal fluctuations

will cause the black hole at 0 to move a distance 6r =vthermal6 t.

Once the particle moves from the center point it begins to

feel a differential force acting in the direction of the

nearest black hole. If Sr is small, then in Figure 9 we can

neglect the forces from C, D. The resulting force is then

given by:

C' ( ct (r

where r' =2r where r is given approximately by r ~ (M/pBH)l/3

Thus the instantaneous accelerations of the particle towards

A is given by

Now, from Chapter 4 we know that distance intervals are

expanding at a rate
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Also if Av = ftdecay a(r,t)dt is small enough so that Av <v,0

then throughout this time interval vav Vinitial* The

distance travelled by a particle with this velocity during

the expansion (5J-5) is . 3v t (if t >3/2(p 0 ) 1/2C).
decay decay tot

Thus if we set 6r 3v 0t, then we can show that (6r(t)/r(t))av

(6 r(t))/r(t))final. Thus the average acceleration during this

period is

where, from (51-5) rav 3/5 rfinal*

The self-consistency of this procedure can then be verified

by checking that Av'= aavtdecay <vo and that tdecay tot

and finally that (6r(t)/2r(t))final 1. If, all these condi-

tions are met, then during the time interval over which the

black holes decay their mutual gravitational interaction

induced by initial thermal fluctuations never significantly

2 2
increases their initial velocity. Since v0 /c <<l this then

implies that p 0 0 during the period under consideration. Also,

since (6r/2r)av <1 for this period, actual black hole collisions do

not occur. Table 2 lists the calculation of

these variables for various initial masses m 0 and mass den-

sities p0 . Note that the results do not depend on initial

mass density for each initial black hole mass, because as

we pointed out earlier, the expansion rate and the initial

volume per hole very inversely so that ffinal is constant.



64

Based on the results in Table 2, the above approximation

is self-consistent in the case of initial masses of 10~4 and

10-2 kg. Here Av is less than v so that the actual average velocity

does not differ significantly from V0 (in fact Vav < 2V0 ). Also,

(6r/r)av 10-2 so that the approximation used to derive (5-3)

and the equations which follow are valid. For other masses we

cannot conclude from this argument that the p=O approximation

is invalid--just that the simple approximations used here to

check its validity break down. It is interesting to note why.

For masses smaller than 10 4 kg, the short lifetime of the

black hole keeps velocity increase Av down, but the expansion

rate does not have time to significantly increase r, so that

6r/r can become large. On the other hand, for masses larger

than 10-2 the expansion rate is sufficient to keep 5 r/r small,

but the lifetime of the black holes is long enough to allow Av

to be of order v.
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5.2 Stability--Initial Mass Distribution

The expansion rate of the universe is also crucial in

stabilizing the density fluctuations arising from an initial

distribution of black hole masses, as opposed to a fixed

uniform initial mass. There are many ways such distributions

might arise in a transition, due to fluctuations in initial

bubble size, and the amount of growth after formation, for

example. Such a distribution of black holes, if static, would

be unstable. Holes smaller than the mean would evaporate, and

holes larger than the mean would continue to grow through

accretion of radiation. However, the data in Table 1 clearly

indicates that the expansion rate of the universe is much

larger than the evaporation rate for black holes for all

reasonable initial mass densities. This implies that each

black hole evaporates for the most part independently of the

evaporation of other black holes. The dynamics of mean

temperature, mean mass density of space, and mean decay time

will approximate those of the uniform initial mass model. The

temperature of space will initially fall at a slower rate, but

then the rate will increase so that at the time of evaporation

the temperature will not differ significantly from the naive

model.

Consider, for example, a mean initial mass of 10-2 kg,

77 3with a mid-range mean initial mass density of 10 kg/m3. Say

10% of the initial density is in the form of 10-3 and 10~1 kg

holes, respectively, and 1% in the form of 10-2 and 100 kg

holes. Using the data from Table 2 and Table A-l(Appendix 4)
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we can estimate the following behavior. The 10~ kg black

holes (with initial mass density 1075 kg/m3 ) will evaporate

in a time -10-30 sec. At the time of their evaporation,

their mass density will be ~1066 kg/m 3 . This will increase

the temperature of space from -1010 GeV to ~10l1 GeV.

However, it will also raise the ratio of radiation density

to black hole mass density by four orders of magnitude, thus

decreasing the effect of black hole evaporation on suppressing

the decrease in the temperature of space. Thus this temperature

will begin to fall at a faster rate. The evapora-

tion of the black holes of mass 10 3 kg will occur at -3 x

10 sec, when their mass density is ~10 kg/m3. This will

raise the temperature of space to 6 x10 9 GeV if it has already

fallen below that value. This evaporation will once again

increase the ratio of radiative energy to black hole energy

to the value -.5. This will mean that from this time until

the black holes of mass 10- 2kg evaporate at time ~10-24 sec

the temperature of radiation will drop as ~t-8/3.5 = t2.2

(see Eq. (4.2-17)). Thus as t increases by a factor 1031

6 -24
prad will fall by a factor -4 x10 . Thus at time t - 3 xlO

sec, just before the black holes of mass 10-2 evaporate the

density of radiation will by -10 5 5kg/m 3, almost exactly

the same values as in the uniform mass model of Table A-1

(Appendix 4). Similarly one can show that the black holes of

original mass 10 0kg will not accrete enough matter to

change their mass significantly by the time they evaporate.

Thus an initial state with a range of initial of masses
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results in similar dynamics to those of the uniform mass

initial state.
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5.3 Horizon, Flatness and Cosmological Constant Problems

As has been described before the standard adiabatic

Robertson-Walker model suffers from what has become known as

7
the horizon and flatness problems. In addition, observations

restrict a possible cosmological constant to be very nearly

8
zero , while theory gives no such constraint. We now

consider how these paradoxes are reflected in our initial

state conditions. Each of them puts a strong constraint on

the initial state, which in turn implies that their resolu-

tions in this scenario is closely linked with the parameters

of the hypothesized initial phase transition.

The finite horizon in the initial state black hole

configuration proved to be an important feature in our

stability arguments--keeping the different black hole regions

from being in initial thermal contact and in gravitational

equilibrium. On the other hand, there is natural mechanism

which keeps causally disconnected regions at the same tem-

perature. The temperature of each region is governed by the

temperature of the black holes within. These black holes

will have the same mass, thus each region has the same tem-

perature.

While on the surface this appears to be a natural reso-

lution of the horizon problem as it is traditionally framed,

the problem arises in a different form. Why are all black

holes of the same mass? This is presumably a reflection of

the fact that the parameters of a local phase transition via

bubble nucleation (i.e., p0 and v 0) are fixed by the initial
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parameters of the effective potential. On the other hand,

this implies that the pre-transition phase was globally uniform

in order for the conditions for a local transition to be the

same everywhere (i.e., in order for the parameters of the

effective action to be the same everywhere.) Hence thE:

resolution of the standard horizon problem in this scenario

puts the strong constraint that there exist no horizon

problem in the pre-transition phase. It can be claimed,

justifiably, that this sweeps the- problem under the rug,

pushing it backwards in time to a region about which we

claim to have little or no information. On the other hand,

the standard horizon problem stems from the demand that the

Robertson-Walker metric be good arbitrarily close to t=O.

Once the assumption of a phase transition is made, the

initial state may have had an arbitrarily long time to relax

to metastable equilibrium. The assumption that this phase

was uniform, while entirely ad hoc, is more plausible

physically, than the assumption of uniformity in the initial

Robertson-Walker state.

Similarly, in order to describe the evolution of our

initial state,the flatness (K=O) condition was put in by

9
hand. Hence unlike the inflationary inverse scenario there

can be no explicit self-consistent resolution of this problem.

On the other hand, the flatness problem in the Robertson-Walker

model is a reflection of the fact that the initial state has

arbitrarily large total engropy. The real point is that there is

no explanation within the model of why this entropy should be
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so large. In our scenario, however, the final Robertson-Walker

state which results out of the black hole-phase transition

scenario has a radiation entropy as large as 1014 times the

initial radiation entropy. The entropy of the final Robertson-

Walker state can be viewed as a remnant of that generated in

the first order transition which produced the highly entropic

initial black hole configuration. This is again a reflection

of the motivation behind the original inflationary universe

model--that the only known way to generate large entropies is

during the non-equilibrium period of a first order transition.

The specific way in which large entropies in the final state

are tied to the flatness constraint in post-transition black

hole state is interesting. As we pointed out earlier, the

fact that the initial relative velocity of the black holes

was sufficient so they could asymptotically escape to infinity

(X=0 flatness condition) allowed the initial state to evolve

in the manner we have described. Thus in order to generate

the required entropy in the observed Robertson-Walker state

via a physical mechanism like the one proposed here requires

that the initial black hole configuration be created with at

least zero "gravitational" (potential plus kinetic) energy.

From the point of view of a possible gravitational phase

transition this is not an unreasonable constraint. On the other

hand we will see that the fine tuning aspect of the flatness problem

crops up in another form in our scenario when we discuss inhomogeneities.

Finally, there is an intriguing anthropic connection

between the observed small value of the cosmological constant

and a phase transition as envisioned above. We might imagine
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that the initial state contains in addition to black holes,

a nonzero cosmological constant. Locally then the con-

figuration would have a Schwarzchild-de Sitter metric, given

by

dLs-2 rZ = _A __ (i201 - r)~ irL.&AZ

(5.3-1)

where A is the cosmological constant.

As can be seen from (5.3-1), if A >0, and 9Am2 <1 the

factor g 0 0 is zero at two positive values of r. This

implies there are two event horizons, one associated with

the black hole, and a larger cosmological event horizon.

Gibbons and Hawking10 have demonstrated that it is possible

to associate a temperature, T c, with the surface gravity

associated with this second event horizon. In this case

Tc BH where TBH is the black hole temperature. Thus no

equilibrium is possible for such a state, as the black holes

will evaporate. Hence the initial state we have described

is only in local equilibrium if A=0. Put in another way; if

there was a phase transition resulting in the initial local

equilibrium state described here, we expect A=0.



72

Chapter Six: Model Predictions

Having analyzed the initial state configuration in detail

we now proceed to consider the implications of the dynamics

described in Chapter 4. Specifically we investigate baryosynthesis,

monopole production, and remnant inhomogeneities in this model.

6.1. Baryosynthesis

Grand unified theories provide automatically two of the three

ingredients necessary for baryon production in the early universe:

C- and CP-non-invariance, and baryon non-conserving interactions. 1

The third ingredient, departure from equilibrium, is more difficult

to achieve in general. Particles, such as superheavy X-bosons,

whose decays are baryon asymmetric must go out of equilibrium if

the baryon number their decay produces is not to be washed out

by the effect of inverse decays (see Appendix V). On the other

hand, black holes will radiate superheavy particles once their

temperature is greater than the mass of these particles. As

demonstrated earlier, the temperature of space may

be substantially below these black hole temperatures. Thus the

particles radiated by the black holes at this time will auto-

matically be out of equilibrium, with inverse decays suppressed,

and the subsequent decay of these particles can result in a net

baryon-antibaryon asymmetry.

As discussed previously,2 this removes the constraints on

masses of superheavy particles which are normally needed to

ensure that their distribution functions move away from their

equilibrium values during the cosmological expansion. However

it introduces the additional problem that significant entropy
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is also generated by out of equilibrium decays. With the data from

Section 4 we can estimate this effect to determine the net baryon

to photon ratio that results.

We consider here only baryon number generation via super-

heavy particle production and subsequent decay. It has also been

suggested that black holes may emit a net flux of baryons direct-

ly if baryon number and CP are microscopically violated. 3,4

However since baryon number violating interactions do not become

significant below energies of order of the superheavy mass scale

we expect such a flux will not significantly alter the order of

magnitude estimate of the net baryon flux produced via superheavy

particle decays.

As described in our previous letter, 5 it is easy to estimate

the net baryon number produced in black hole decays. X bosons

(x generically may stand here for vector or higgs bosons) will only

be radiated significantly after kTBH > MX, provided of course that

at this time the mass of the hole is greater than the mass of the

X particle. This implies (in units )i=c=l and Mp = planck mass

- 5O gn10-5gm

(6.1-1)

We can determine the average temperature of black holes after

their mass drops below this value, using the relation (eq. 4.2-19)

%M
0  

- 1/3 1
M(t) (MBH - 3at) : a~ 80(3.8 x 10 15):

where ___

(6.1-2)
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Assuming that in a thermal distribution of particles each

particle carries energy u3/%kT, and letting N be the ratio of

total number of helicity states of particles being emitted to

the number of R + X particle helicity states at these temperatures

then the average number of X particles emitted per black hole is

given by: (using 6.1-1, 6.1-2)

0
=X 1012. ~ ( (6.1-3)

2.

where we have assumed M X 1014 GeV.

The total number density of X, X pairs emitted is then related

to the number density of black holes at the time of emission

(5 decay time) :

n. Nx 5 -Y" ( ' (6.1-4)

The net number density of baryons produced will then be

given by n:B = ABn , where AB is related to the CP violating

6
parameter of the theory (see Appendix V).

We can derive the ratio of baryon density to photon density

at present by considering the baryon to entropy density ratio,

which is constant for the adiabatic expansion presumed

to follow the black hole decay. Since n s (s = entropy density)

we have:

J3 Pei(61 
5
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f f fwhere S , T , PT are the entropy density, temperature, and total

mass density just after the black holes have evaporated, and S

is given by:

--- (6.1-6)

where we assume the final state is radiation dominated.

Several features of this result are notable. First; ( )<AB.n N'
y

This is due to the fact that the R.H.S. is the baryon to radiation ratio

produced by the black hole. This ratio can only be decreased by

the subsequent out of equilibrium decays and annihilation of

particles to produce photons. Thus, the lower the temperature

of space when the black holes decay, the greater the entropy

produced, and the smaller the ratio (6.1-5).

Next, as we have noted earlier, due to the relationship

of expansion rate to black hole density the final mass densities,

temperatures, and thus entropy densities are the- same for all initial

mass densities for a given black hole initial mass. Hence, for initial mass

M holes, baryosynthesis is independent of the original mass density.

From the data in Table 3 (Appendix IV), and using N % 40 we

get:

Kt 1) - [i. 9 A (6.1-7)

tjo- jo 2 k 4 3C 4(6.1-8)

Thus, the larger the initial black hole mass, the smaller

the baryon to photon ratio. For M l1~ kg that the ratio
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produced is somewhat lower than that produced via non-equilibrium

decay in the standard FRW cosmological expansion.7 This means

that SU(5) in its simplest form, with AB _ 10~17, is not compatible

with the observed - 1010±1 if baryon production is via the
Y

above mechanism, just as it is not compatible with the standard

baryosynthesis mechanism.8 However, schemes with more complicated

higgs structure, and more complicated gauge groups which have

been developed for the standard baryosynthesis mechanism, with

AB < 10- 5, are phenomenologically acceptable in this model. Thus

we conclude that if M0 < 10~4 kg, acceptable baryosynthesis is

14possible in this scenario. Moreover since T <10 GeV at
space

all times, this scenario provides the significant advantage of

removing the constraints on particle masses needed in the standard

model to produce a non-equilibrium situation. Thus, in this

scenario, smaller higgs (and/or vector) masses result in larger

net baryon to photon ratios, a result very different from the

standard model.9 If the higgs mass , 1013 GeV then this may

increase - in (6.1-8) by a factor of 102. We also note, that
n

'Y
if there exists an initial distribution of black holes, or if the

temperature of space were at some early point rather hotter than

the temperature of black holes, then larger mass holes would tend

to reduce any initial symmetry - first by asymmetric absorption,

then by increasing the total entropy as they evaporate. These

effects depend on factors such as initial asymmetry, black hole

densities and masses as discussed in Section 5.2.
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6.2 Monopole Production

The existence of superheavy magnetic monopoles, which

10
may have recently been observed ,is one of the most exciting

predictions of grand unified theories. On the other hand,

monopoles provide one of the strongest constraints restricting

grand unified cosmology. It is difficult to devise a transition

from the symmetric to broken phase that does not produce too

many monopoles to agree with present mass densities 11and

12
galactic magnetic fields. However, estimates of monopole

production and remnant densities are problematic. Monopoles

are classical solutions in a quantum field theory. As such

they must not be considered as elementary quantum excitations

out of the vacuum, but rather as a coherent state of quantum

excitations. As a result, it is possible that their production

13
is suppressed. At the very least their production is intimately

tied to the complicated phase transition dynamics of the

elementary Higgs fields on which they are built.

Due to the novel thermal behavior in our model scenario

it is interesting to consider the possibility that within it

monopole production is at acceptable phenomenological levels.

We will consider here a number of possibilities, related first

to production in the initial transition, and then to production

via subsequent black hole evaporation. The latter subject is

interesting in its own right. Estimates are presented which

indicate that such production is suppressed. We will consider

this question in more detail in a subsequent publication.
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As far as production resulting out of transition to a

black hole "gas" is concerned, it was demonstrated in Section

4 that the temperature of space may always have been lower

than the critical temperature associated with GUT transitions.

This will happen if M0 Z 10 4 kg. Monopole formation is

associated with local zero of the Higgs expectation value

(symmetric regions) surrounded by regions where the Higgs takes on

its low temperature nonzero expectation value.14 The question

then becomes one of whether or not any such locally symmetric

regions are produced during the transition. The initial

expectation is that if the transition occurs at low temperatures,

the Higgs will have a nonzero expectation value in both phases

(the universe will always be in the nonsymmetric state) and no

monopoles will be produced. However, one is somewhat uncomfort-

able with prescribing certain Higgs behavior in a transition

whose parameters we do not know. It is not clear, for example,

that the Higgs expectation value is well defined in a "pre-

gravitational transition" phase. Alternatively, it may be pos-

sible that before the state settled down to the equilibrium black

hole configuration that high temperatures occurred. Thus we

investigate the conservative alternative that Higgs expectation

values in different regions are uncorrelated, with the possi-

bility of local zero values, and use standard topological-horizon

arguments to estimate maximum densities which may result.

Following the arguments of Kibble and Einhorn we assume

that if this situation exists, there will be on on the order of

-.1 monopole per horizon volume by the time the transition is

completed. The results from topological frustrations when one
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tries to extend certain uncorrelated regions with nonzero Higgs

expectation continuously into a central region. In the

black hole configuration resulting from such transition, the

initial horizon volume is approximately the inverse black hole den-

sity. Thus, we can estimate the initial monopole density as

a function of black hole density, and from the initial tem-

perature, the initial monopole to photon ratios. However,

during the subsequent evolution significant entropy is

generated. If we assume for the moment that no significant

monopole production occurs during this period then the initial

monopole to photon ratio is severely diluted. Moreover, if

initial density is that nm/n >>10-10, the annihilation pro-

cesses may reduce this ratio17 to ~10-10 before the black holes

evaporate. Table 3 gives the result of calculations for M0

initial mass 10~4 kg and 10 2 kg for a range of initial mass

densities. We estimate the effect of annihilation processes

on reducing initial mass densities by calculating the two terms

in the relation:

(6.2-1)

where we have used Preskill's 1 8 estimate for D for temperature <
0- 2 Dl 2 T-2 ) We Dn 2 >kR

10 Minonopole (in units h =c =1, D-102T-). When

we expect that the initial ratio (n m/n ) will quickly be

reduced to -10- 10. Final estimates of (nm/s) are presented

with and without this assumption.

We see first that final monopole density is suppressed

more in initial transitions resulting in larger black holes,
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due to the entropy production by these holes. With the

assumption that annihilation to a level of (n m/n Y)10- 1 0

occurs when Dn2 >R/R n we see that it is possible
0 0

(evenif monopoles are produced in abundance in the initial

transition),that for MO 10- kg the ratio (n m/s) can be

made small enough not to violate: present mass density

limits (n m/s) present 1024, and definitely small enough

not to affect nucleosynthesis constraints (n m/s) <1019.

For M x 10 kg, monopole densities that are produced in the

transition are approximately small enough not to violate

nucleosynthesis limits, but must be reduced by subsequent

annihilation (perhaps in galaxies) in order to agree with

present mass density limits. We recall that these limits

only exist if the Higgs field does not have a uniEorm well

defined nonzero expectation value in the pre-transition phase.

If it does, then we expect little or no production in the

transition.

We now investigate the possible production of monopoles during

black hole evaporation. It may first be expected that black

holes may produce monopoles at a thermal rate once their tempera-

ture exceeds the monopole mass, which is -M/a-l016 GeV in simple

grand unified theories.20 This results in prohibitively large

production rates in our scenario. (i.e iimonopole/nbaryon L 2

However, this naive expectation must be refined to take

into account the peculiar dynamics and structure

of monopoles. Indeed, as we demonstrate, there
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are a variety of reasons to expect that this production will

be exponentially suppressed, at the very least. Due to

uncertainties in the production mechanisms, we consider a

number of different alternatives. All are suppressed, but

for different reasons.

The first problem we encounter when trying to make sense

out of monopole production, is that black hole radiation has

a thermal spectrum, i.e., a black hole in thermal equilibrium

at temperature T will emit as many particles in each mode as

it absorbs in that mode from the ambient thermal radiation.

Monopoles, however, are complicated objects, and thus have a

unique thermal behavior. Below Tc, when the Higgs field 0

has a well defined nonzero expectation value, monopoles exist,

with a structure determined by this expectation value. Since

their mass is greater than Tc' bowever, population in thermal

equilibrium is suppressed. Above Tc, it is not clear that

monopoles have any meaning. The Higgs expectation value is

zero, and while local fluctuations may produce local nonzero

values, these are rapidly changing, and no asymptotic structure

can be defined. Thus, it is a nontrivial question to consider

whether monopoles can exist in thermal equilibrium at temperatures

T >T c Nevertheless we will investigate the possibility that

monopole-antimonopole pairs are produced near the event horizon

of black holes which radiate at a temperature T >M .
monopole



82

The production cross-section for monopole-antimonopole

pairs may also be expected to depend on the production mechanism,

i.e., are monopole-antimonopole pairs produced directly by the

gravitational field near the horizon, or do they result from

thermal fluctuations of elementary Higgs configurations pro-

duced near the horizon? Also, if one member of a monopole-

antimonopole pair is absorbed by the hole while the other

escapes to infinity, the hole will become magnetically charged.

Not only do we expect significant corrections in production due

to this large fluctuating magnetic charge, but if.the energy

of the black hole changes significantly, we might expect the

semiclassical approximation of fixed background metric to

break down. Nevertheless we can proceed undaunted to estimate

maximum production rates, making simplifying assumptions whenever

possible which can only enhance them, and by attempting to

determine rates which are independent of the specific mechanism

of production-limited only by energetics.

Particle production by black holes is determined by the

condition that at thermal equilibrium, production rates and

absorption rates are equal. Here departures from black-body

thermal spectrum can be obtained by estimating suppression in

absorption cross-sections.21 Thus, we examine absorption of a

monopole of mass -M /a ~ 1016 GeV by a neutral black hole of

-l
mass MBH (~ (8TrG KT) , where KT =Mmonopole). The classical size

-l 1 -l -30
of an equilibrium monopole configuration is -Mx ~lo 1 4 GeV ~(10

in MKS units). A black hole of the required mass (<10 -6kg) has

Schwarchild radius 10- 33M.
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In order to be absorbed by the black hole, tidal forces must

crush the monopole down to the size of the hole. If this

occurs and the monopole is captured, then the black hole will

become magnetically charged, with long range B fields. We

can roughly estimate the energy gain by the black hole (we

will give a better estimate based on monopole energetics

later) by considering its magnetic energy. Magnetic energy

density is -1/2 B and a spherical object of size R with

magnetic charge 1/g (g ~ GUT coupling) has a field B -l/gr

outside Rs. Thus its total energy is

2- (6.2-2)

Hence the mass of the black hole increases by more than

the rest mass of the monopole. We then expect suppression of

the monopole absorption cross-section in much the same way

that absorption of massless particles with nonzero spin is

suppressed for long wavelengths.22 There, the suppression is

essentially due to the fact that angular momentum transferred

to the hole when they are absorbed will be large compared to

the initial energies of those particles.

That energetics inhibit monopole absorption by black

holes, when considered in light of the implied suppression in

production via quantum process, is a manifestation of the

fundamental fact that monopoles are classically extended

structures with size larger than their Compton wavelength.

We might expect that to produce a monopole as if
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it were normal quantum excitation, that the initial region of

support for the wavefunction of the monopole must be at most of

the order of its compton wavelength, or of the order of the size

of the quantum state from which it is being produced. This can

be shown to lead to a soliton-like production suppression factor

exp(-A/g ), usually derived using perturbative arguments.23 We

will discuss this point in more generally in a subsequent publi-

cation. Here we discuss how this factor may explicitly be

derived by direct consideration of monopole production by black

holes, via an energetics argument similar to the one which lead

to (6.2-2).

Consider a black hole of temperature T 2 Mmonopole. Assume

monopoles are produced freely near the event horizon (neglecting

complications due to magnetic charge fluctuations of the hole.)

Their characteristic scale must initially be of order of the

scale of the black hole radius. After production they may

relax to their equilibrium scale. We may, however, estimate

the energy of the initial configuration. Assuming, for

simplicity, a 't Hooft-Polyakov hedgehog type monopole with

the Higgs field responsible for symmetry breaking in the adjoint

representation of the gauge group, we can write the energy

density of the monopole schematically (suppressing group

indices, etc.) as:

(6.2-3)

Where VLp -)Z
/ '~ Oj-LtAt
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The monopole is made up of two asymptotic regions. In a

central region of scale R1 , $ will have its symmetric

expectation value $=0. At large distances $-+v and D "P-.

There will be a transition region of size R2 between

these regions. We note that in the broken phase $=v, gauge

particles get a mass my '-gv and the remaining massive Higgs

get a mass mH ~/X v.

In region one, the energy density is given purely by the

4
potential term V - Xv Hence the total energy in this region

3 4
is of order -R Xv . In the outer region only the second term

contributes. Since the field in this region is B ~l/gr we

have E3 ~ B 2d 3 r l/g2 R2 - Outside the central region the

gauge field aligns itself outside this region so that the

covariant derivative is zero, so that we expect that in this region

the contribution from the covariant derivative will be at most

of the order of the pure derivative part. In the hedgehog -

solution the component of 3P which is important is the angular

piece -1/r D/De, which acts on the $ field (which has constant

value v and rotates around the sphere) to give a contribution

~v/r. Hence in this region E2  d 3 r v 2 /r 2  v 2 (R2 -R 1 ).
,Rl

Hence the total energy can be approximated by:

+ (6.2-4)

Minimizing this separately with respect to Ri, R2 gives:

AV I)*' j2.v ' (6.2-5)
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-l
which is why we associate a scale R2 M v with the monopole.

This variational calculation implies that at the minimum

configuration each term in (6.2-4) contributes equally. This

implies ET ~ Mmonopole /g R2  g 2M, which is where the

mass estimate of the monopole equilibrium configuration comes

-l
from. Now if we constrain the monopole so that Ri, R2 <<mH '

then the energy (6.2-4) is minimized if R2 - R (from the

second term). Since in this case the first term is much less

than its equilibrium value, this implies that the energy of

the new configurations will be dominated by the third term.

Hence E' ~M' l/g 2R
T monopole 2

If R2 is constrained to be =RBH, then from the relations

(in units h =c =1) RBH ~ 2 M BH/M , we get

( h P' (6.2-6)

On the other hand, for the black hole we have T = 1/8rGM =

Mp /8TMBH. Hence, we have (modulo factors of 27, etc., from

volume factors, etc.)

h 1l T (6.2-7)

In a thermal state at this temperature this state will occur

with probability exp -M'/T - exp(-47/g ). Hence, whether or

not the monopoles are produced with thermal probabilities

directly via the gravitational field, or whether they are

produced via fluctuations of Higgs fields produced by the hole,

we expect they will be suppressed. The'factor is of the

form of the standard soliton production suppression
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factor. The situation is not helped by going to higher

temperatures. Not only will the size of the black hole

emitting at higher temperatures be decreased, thus increasing

the mass of the monopole state, but the total mass of a black

hole at this temperature becomes less than the mass of the

monopole.

On the other hand, one might expect that, if the Higgs

field expectation value (and hence the Higgs field mass) are

reduced near the black hole surface that this suppression

might be less severe. After all, the monopole equilibrium

2
mass goes as M - m /g , which goes to zero as m (m H) -*O.

However, if this occurs, then the equilibrium size of the

monopole increases (so that the B field contribution to

the energy is reduced.) Hence a greater size suppression

is required, and the net energy of the monopole configuration

produced near the black hole horizon will be the same. (This

reflects another difference between classical solutions, and

true quantum excitations, which can remain point-like even

as their mass changes).

One might, however, carry this argument further and expect

that symmetry will be restored in large regions around a black

hole, in which the temperature is effectively greater than Tc'

On the borders of this region one might expect thermal monopole

production. However, Candelas 25, has shown that outside a black

2 -2
hole (T >>T C) radiating into cold space that TEFF r . This

implies that the region over which symmetry is restored has radius at

-l126
most of order mH . If monopoles are thermally produced with

initial size at most the order of this radius their mass will be
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approximately equal to their equilibrium mass -Tc g2. Hence

thermal production in this region will be suppressed by a

factor -(exp-l/g 2). Even if monopoles produced at the border

of the symmetric and non-symmetric regions had much smaller

masses one could estimate that their thermal production, over

the lifetime of a black hole hot enough to produce a large

symmetric region, would be negligible.2 1

Thus, we conclude from this section that monopole production

via black hole evaporation is strongly suppressed, and

even if no monopoles are produced during the initial transition,

very few are produced afterwards. Based on our earlier

considerations, if monopoles are produced in abundance during

the transition, this number is not increased afterwards, and

thus may still be small enough to agree with constraints of

astrcphysical phenomenology.
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6.-3 Inhomogeneities

It is interesting to consider whether the density

fluctuations in the initial black hole-radiation state result

in remnant inhomogeneities which may be related to the formation

of galaxies. ~ It is currently felt that galaxies formed on

the scales they have because shortly after the recombination

time (t-1012 sec) the Jean's length drops sharply.27 This

allows any surviving fluctuations on scales longer than this

length to become unstable under their own gravitational interac-

tions,-fermion clumps which subsequently evolve into galaxies

and clusters of galaxies. On the other hand, these relic inhom-

ogeneities must not be too large if they are not to collapse into

black holes,as we shall describe shortly.

Whether an initial fluctuation will survive until this era-

depends on its initial form: adiabatic or isothermal. Adiabatic

fluctuations are ones in which matter fluctuations (characterized

by the local density of baryons) are coupled to those of radia-

tion, so that the net ratio of baryon to photon density remains

constant throughout space. This implies 6p/p = 36T/T (T =

temperature of radiation.) During universe expansion in the

radiation dominated phase, adiabatic perturbations larger than

the Jean's scale will grow as fast as -t, while those smaller

will exhibit damped acoustic oscillations. 2 8  It is estimated

that only those that result in fluctuations on mass scales

greater than M10 Msolar at the time of recombination will

survive this damping.29 While this is in the range of the

mass of galaxies today, adiabatic fluctuations at recombination

time should also be reflected in the black-body radiation

spectrum. Such fluctuations have not yet been conclusively
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observed.30 Hence there is some interest in whether the

relevant primordial fluctuations might have been isothermal

in character.

Isothermal fluctuations are those in which matter

fluctuations are independent of radiation so that the net

radiation temperature is constant throughout space. Such

fluctuations remain constant during the one-recombination

expansion period, when matter and radiation are coupled via

thermal processes. Since the relevant Jean's mass at recom-

bination is ~105 Msolar, about the size of a globular cluster,

any initial isothermal fluctuations on this scale will, after

recombination, grow.

The initial black hole configuration in our model

clearly involves initial small scale isothermal density

fluctuations. Thus, it is in principle possible that baryosynthe-

sis in this model may be tied to isothermal perturbations--

exactly opposite behavior from that of the standard scenario.

This has evoked interest in possibly tying baryosynthesis

constraints and galaxy formation. Unfortunately, however,

the remnant inhomogeneities which are important are those

surviving after black hole evaporation. As demonstrated

clearly in section 4, entropy generation by evaporating black

holes is at least on the order of the ambient background radia-

tion entropy at the time of decay. Hence any remnant baryon

density fluctuations will also involve fluctuations in radiation

and will thus be primarily adiabatic.

We first demonstrate easily that such remant fluctuations

on the scale of the black hole inverse density (r~ {M/pj 1/3 )



will be on scales smaller than the Jeans scale. This scale,

X , represents the scale at which pressure gradients can

balance gravitational forces.- For larger scales gravity

dominates, whereas for smaller scales, pressure dominates

and perturbations behave like acoustic waves. We can estimate

the Jean's scale immediately. Let the gravitational free fall

time (ignoring pressure) in a uniform region, be t f*

If a soundwave can cross the region on a time-scale less than

that associated with this gravitational collapse than pressure

stabilizes the region. Thus, the Jean's scale is approximately

vst f, where vs is the speed of sound in the region. This

argument also turns out to be valid in an expanding curved

universe, as at the Jean's scale these factors are

negligible.3 2  Since, V = ( .p/3p), and for radiation p-pc 2 /3,

we have that for a radiation dominated phase v s c//3. Also,

since in the early universe t ~ t, we see that the Jean's

scale is approximately the horizon distance at time t.

Now we expect that the maximum initial fluctuations will

be on a scale of the order of the distance between black holes.

It is clear from the data on Table 1 in section 4, that these

scales are much smaller than the horizon scale at the decay

time for black holes. Hence, any remnant adiabatic fluctuations

will be damped. It is also clear that for black holes of

primary interest (-0~ ,10- 2kg) the mass contained within this

11
fluctuation <<<10 M , and thus we expect that such

adiabatic fluctuations will be negligible at the recombination

time. We also note that any accompanying-isothermal fluctuation,

which will survive until the recombination time will have a
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characteristic mass <105 Msolar' and thus will also not be

important after recombination. Even in an initial state with

a distribution of black holes of different masses, as described

in section 5 would result in inhomogeneities which are negigible,

unless the initial holes were so exceedingly large as to be

virtually impossible in the initial state.

However, any black holes with masses 2 1010 would survive

until the recombination era. These are too small to contribute

to galaxy formation, and so large as to be very improbable in

the initial state. Still, if they exist, and survive until

galaxies begin to form they may begin to grow by the accretion

of matter, and survive until the present era. As such, they

may be linked to present quasar densities. Since significant

accretion may only begin in the late stages of galaxy development

this implies a minimal size for black holes wbaich survive. It may

also explain why Quasars are only observed with redshifts less than

a certain value. Such assertions are however highly

speculative especially in the absence of an initial distribution

function.

Unfortunately however the effect of these initial small scale

isothermal fluctuations are secondary, when compared to larger

scale possible initial adiabatic fluctuations.33 Consider, for

example, the possibility that thereare statistical Poisson dev-

iations in the initial spatial distribution of black holes. On

the scale of N black holes we then expect that 6p/p~N-

Also, on scales larger than the horizon the initial fluctuation

is adiabatic because its wavelength is so large that the density
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is uniform over distances where radiation drag might be important.3 4

We then expect, during the matter dominated black hole era that

these fluctuations can grow as fast as ~t After the black

holes evaporate, the adiabatic fluctuations will have modes which

grow as fast as -t.

We can now show that such initial fluctuations on the scale

of galaxies will become intolerably large. The initial number

of radiation quanta which, in the matter dominated era, eventually

74 35 - 4form galaxies is on the order of 10 . Assuming say, for 10 kg.

black holes, that each hole emits 108 radiation quanta before

it disappears (see section 6.1), then the initial number of

black holes which could evolve into a galaxy would be on the order

66.tsclwolledtinta
of 106. Poisson deviations on this scale would lead to initial

density fluctuations 6p/p-10- 3 3 . From the time when expansion

becomes significant (o-l0- 3 8 sec) until the black holes decay (tf-~

10-30 sec) these large scale fluctuations grow by a factor tf/to)2/3

~105. If they then grow at a rate t then at a time t=10- 2sec

the density fluctuations 6p/pl. This is sitll within the rad-

iation dominated era and at this time the horizon scale is still

much smaller than the scale of the fluctuations. This will then

probably result in gravitational collapse into a singularity,36

although the details of this collapse require further study.

While one might imagine mechanisms which slow somewhat the

growth of inhomogeneities, the above estimates indicate the need

to strongly suppress possible statistical fluctuations (of the

Poisson type) in the initial state of our model. This may

represent the most prominent "un-natural" fine tuning in this
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scenario. Actually the fact that even extremely small fluct-

uations in the initial state are unacceptable is a remnant of

the flatness problem which as we have observed, is unresolved

in both this and the standard scenarios. Thus small density

fluctuations on large size scales in the initial density near

the critical density will result in collapse on time scales

smaller than the present Hubble time. We intend to investigate

this phenomena further in a subsequent work.

6.4 Implications for Supersymmetry

We note here, for completeness, that the fact that space

might have always existed at temperatures <T crit for grand

unified theories, as is possible in our scenario, has poten-

tially interesting ramifications for supersymmetry theories.

37
As Weinberg has pointed out, gravity splits the normally

degenerate supersymmetric vacuum so that the broken symmetry

vacuum we presumably live in is the state of highest energy

density, and thus if the universe began at high temperatures

in the symmetric phase it is difficult to imagine how

symmetry breaking could occur. However, if the universe was

always at a temperature less than the temperature where thermal

effect favor the symmetric state, it may be possible in

principle that this problem can be avoided. If the universe did

begin in the nonsymmetric phase, then, as Weinberg has also

shown 3 8 this phase is stable against decay.
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6.5 Summary and conclusions

We have demonstrated, using the assumptions of an iso-

tropic homogenous initial state involving a mixture of black

holes and radiation which may have resulted from a gravitational

phase transition, that the dynamics of the early universe could

have departed in several important ways from the standard model.

These departures are especially relevent to certain problems

of interest to particle physicists, and indicate the importance

of semi-classical gravitational effects in the early universe.

Specifically, the early universe in this model may

have had a radiation temperature which never exceeded the

critical temperature for restoration of symmetry in Grand

Unified Theories. The early expansion in this model is

matter dominated so that R(t)t 2 /3 . During this period the

black hole temperature increases slowly until the final moments

of evaporation, while the temperature of space drops almost

immediately and continues decreasing monotonically. As the

black holes evaporate we have shown that they can generate

a baryon to entropy ratio which may be as large as 10-3 &B,

where AB is related to the CP violating parameter in grand

unified theories. This ratio occurs in spite of the fact that

the temperature of radiation never exceeds -10 14 Gev because

the black holes radiate superheavy particles which subsequently

decay out of equilibrium. The generation of entropy by black

holes is sufficiently large however, that monopole densities

in the initial state may be diluted to phenomenologically
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acceptable levels. We have also demonstrated that monopole

production during black hole evaporation is strongly suppres-

sed. It thus appears possible to avoid the monopole problem

in this scenario.

However the fact that the flatness problem occurs.implicit-

ely in our initial state assumptions requires that the initial

black hole distribution must be fine tuned. This seems to be

a problem common to all models whose scale factor evolution

resembles that of the standard model (i.e. R(t) goes as a

power of t). Whether this requires and "inflationary" period

of growth, or whether the necessary fine tuning can be incorpor-

ated naturally in an initial state resulting from a physical

process such as a phase transition is an exciting question for

the future.
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Chapter 7: Gravity and Phase Transitions: Problems & Perspectives

As I have tried to demonstrate in this work, the possibility

of a gravitational phase transition may allow for significantly

different dynamics in the early universe, resulting in novels ways

of dealing with a certain number of problems at the interface of

particle physics and cosmology. Further could be done within

the context of the specific model described here, including

a systematic treatment of corrections to a number of the initial

approximation we have used. More generally, investigations of

black hole dynamics are important aside from the context in

which they have been described above. There are many reasons

to expect that early fluctuations might have resulted in black

hole formation even in the standard model.1 Moreover, as we

hinted in section 6, an understanding of such cosmological

objects as quasars may also depend on assumptions about pri-

mordial black holes. Also, of more direct interest to particle

physicists, is the possibility, demonstrated in chapter six,

of using the constraints of particle physics to probe the

semi-classical gravitational effects responsible for black hole

evaporation, and vice-versa.

As far as the general problem of understanding the ultimate

high energy behavior of gravity, and of its role in the dynamics

of the early universe, the scenario I have presented is only a

suggestive, and clearly incomplete, first step. Definite dynamics

are required if one hopes to derive a natural initial state config-

uration. In this final section I will briefly describe

other related areas of investigation, and some perspectives

on future developments. I will take advantage of the

concluding nature of this section to make my remarks schematic
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and suggestive. They are intended to present future directions

rather than results.

As I outlined in chapter one there is direct field theoretic

motivation for considering possible significant changes in the

dynamics of gravity at high energies. The most useful method

presently available in field theory to describe the high

energy evolution of theories is the renormalization group,2

which also has its origins in statistical mechanics (as does

much of modern field theory).

In quantum field theory the renormalization group stems

from the fact that in all quantum theories a dimensional scale

naturally arises - the scale at which renormalized parameters

are defined. The fact that the physical observables of the

theory must not depend on the scale at which renormalization

is performed implies relations - the so-called renormalization

group equations - between the physical parameters of the theory;

coupling constants, masses, fields, as a function of changes

in the renormalization scale. By equating this scale to the

characteristic energy of the interactions being probed, it is

possible to determine, to all orders in perturbation theory,

the behavior of the above physical parameters with energy.3

Weinberg has suggested that certain appropriate

behavior of the coupling constants of gravity might imply

simplifications in the high energy structure of the theory

which would allow an extension of the concept of

renormalizability to make the low energy theory "sensible". As

discussed earlier the non-renormalizability of the classical
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Lagrangian (1.3-1) implies the necessity for an infinite num-

ber of divergent counterterms in the bare quantum Lagrangian.

Each of these has associated with it a free coupling parameter.

The presence of this infinite set of free parameters implies

that the theory loses predictive power. Imagine, however, that

in the infinite dimensional coupling constant space there exist

trajectories of the renormalization group which approach an

ultraviolat fixed point. Explicitely this implies the set

of coupling constants has behavior governed by a generalized

Gell-Mann Low equation: 5

P-s-~)'~(3jy~'~)(7-1)

and that as P+, IS (g*)=O, where g* is the ultraviolet fixed

point. If we constrain the initial couplings to lie on an

"ultraviolet critical surface" (i.e. all trajectories on this

surface approach g*) and if this surface is finite-dimensional,

then all but a finite number of couplings must be fixed,

leaving a finite number of free parameters which describe the

theory. Weinberg has called such a criterion "asymptotic

safety."

What makes this criterion particularly interesting from

the point of view of symmetry breaking and effective theories,

is the similarity between this behavior, and the observed

behavior in effectively non-renormalizable theories which

exhibit phase transitions. Models such as the

Gross-Neveu model,6 and the non-linear a model described

previously, exhibit in certain limits non-trivial ultra-



100

violet fixed points in their coupling constants. Moreover these

points are associated with boundaries between different phase

behaviors of the theory.8 Of particular interest is the

non-linear a model (see section 1.3). In 2+F dimensions

where the theory is effectively non-renormalizable, there

exists in the large N limit a fixed point of order E.

The value of the coupling constant, X c at this

ultraviolet fixed point determines the point at which the

O(N) symmetry, realized non-linearly at low "temperatures"

borders on the high"temperature" limit where a new dynamical

bound state appears, degenerate with the N-1 fields. These

fields transform linearly under O(N). Thus the high temperature

theory which is deduced is simply the original theory we

described in eq. 1.3-3, which was broken to yield the effective

non-linear theory. Furthermore the mass of the dynamical bound

state is related to the original dimensional coupling parameter.

As far as gravity is concerned, recent studies based on

renormalization group arguments also point out the possibility

that gravity possesses a non-trivial ultraviolet fixed point,

at least in the large N limit,9 or in 2+c dimensions.10

It would be extremely interesting if this type behavior could

be convincingly demonstrated, both from the point of view of

asymptotic safety, and from the point of view of the possibility

of a gravitational phase transition.

The theory at the critical point is scale invariant. The

scale invariance is broken at low energies only by the choice

of the critical renormalization group trajectory. This could
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relate the value of G to a symmetry breaking parameter. Such

a possibility connects this approach with several others which

attempt to derive gravity from a scale invariant theory. One

such theory is based on the observation that in the absence of

the coupling G, Eq. (1.3-1) is scale invariant. Thus the

assumption is that the scale G arises as a result of the par-

ticular choice of asymptotically flat metrix at large dis-

tances, so that:

<19t 4 D> ~ I - t,(7-2)

Remarkably, spontaneous dynamical scale symmetry breaking

arises in yet another model in which gravity is induced as

an effective interaction - this time from a curved space pure

matter Lagrangian.12 Since a scale invariant scalar field

theory in curved space has an R coupling term, if symmetry

is broken so that <4> 30, this induces an effective interaction

term proportional to R, resembling the Lagrangian of pure

gravity.

These field theoretic approaches to the small distance

structure of gravity have not yet produced conclusive results.

However the possibilities of connecting asymptotic safety

with symmetry breaking are worth further investigation. From

the viewpoint we have stressed in this work, it may then be

possible to relate this to explicit phase behavior in the

early universe.

However, apart from the possibility of phase transition

behavior involving gravity as a low energy effective theory,
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the dynamics of a semi-classical gravity coupled to matter may

be extremely important. For example, semi-classically coupling

gravity to matter fields fundamentally affects vacuum decay

13
phenomena in matter theories. Moreover it has recently

been shown that the same semi-classical gravitationally

induced particle production effects responsible for black

hole radiation (in this case, Hawking radiation in a de Sitter

space) may crucially alter the new inflationary universe

scenario.14 Gravitational effects may also determine the phase

structure of supersymmetric theories.1 5

In addition to these effects, instanton tunnelling tran-

sitions with semi-classical gravity itself, such as the black

hole nucleation described earlier, may prove to be important.1 6

Of particular interest, and a subject I will investigate in

a subsequent work, is the interpretation and implication of

de Sitter tunnelling events, and the possibility of decay from

de Sitter space, which could have important ramifications for

the cosmological constant problem.

Finally, there has yet to be a proper understanding of finite

temperature effects in the quanization of gravity. Temperature

is not a covariant quantity, yet it is clear that finite

temperature renormalization will affect such quantities as the

induced renormalized cosmological term that appears when

gravity is coupled to matter.17 Indeed, there exists the

more general problem of treating finite temperature effects in

the early universe when it is not clear that an isothermal en-

semble truly represents the physical situation.
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It is thus an exciting time in cosmology. The close

connection between problems of cosmology and particle

physics is attracting a whole new spectrum of physicists to

investigate these problems. A probable concomitant of these

investigations will be a better understanding of particle inter-

actions including gravity at high energies. The close inter-

play between advances in particle theory on the one hand,

and semi-classical effects of gravity on the other yields the

exciting possibility of real breakthroughs in our understanding

of the fundamental forces of nature at its smallest, and largest

scales.
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Appendix I: Effective Potential and Finite Temperature Field Theory

We describe here, using a scalar field theory for simplicity,

how the classical potential function V($) in the Lagrangian:

tkl-: e , -y() (A-1)

must be modifed to take into account higher order quantum and

thermal corrections. U($) becomes the first term in an expansion

of the effective potential Veff () which gives the symmetry

structure of the full quantum theory.

(a) Quantum corrections

We begin by recalling that the full Green's functions, which

give the physical content of the quantum theory, can be generated

from the functional Z(J):

? =Z (LY L~4), (A-2)

Since

I (A-3)
6i~j -- 6, (xn -T

Using the well-known combinatoric fact that the exponential

of all connected graphs gives the sum of all graphs; we can

define the generating functional for connected Green's functions

by:

Lw 
(A-4)

2
Z(J) may be represented as a functional integral:

N ~'Y4~ ~(A -5)
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where S is the action of the theory given in (A-1) in the presence

of a source J(x). We also can use the well-known fact that the

generating functional of connected graphs is related to the

generating functional of one particle irreducible graphs. The

above-mentioned connection between connected graphs

and lPI graphs can be written (to lowest order in a):

where r(4) is the generating function for lPI graphs, in terms

of some field function 4.

Now the R.H.S. of (A-6) can be evaluated for small a in

the saddle point approximation, yielding (seting fd 4xJ(x)$(x)=J$)

(A-7)

Hence we have

ir __

U 'T C (A- 8)

Thus F(4) is the Legendre transform of W(J), and is given
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by the inverse of (A-7):

Hence F'(T) is the functional such that = 0 when P = = ,

and thus the extrema of P( ) determines the ground states of the

full quantum theory.

In a transitionally invariant theory T(x) is a constant.

In this case we can write r(T) = - fd 4x[V eff()], defining the

effective potential. Veff () can thus be easily calculated in

loop expansion terms of the generating functional for lPI graphs.

To lowest order in 'f we have:

\/ ))(A-10)

(b) Finite temperatures

Finite temperatures imply scattering events take place in

a thermal bath at temperature T, and thus averaging should not

be taken with respect to the vacuum state but with respect to

the thermal bath. Hence Green's functions change:

eo iT(Oy --.- ) -T(A-11)

(f$> represent a complete set of states with energies E($)).

One can thus define a finite temperature generating functional:

2Us) Tr CI (; f j 4X Ttx) 0 t'j
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This may in turn be written in terms of a functional integral

as in (A-5). The important point here is the fact that the only

change in the functional integral at finite temperature is in

the boundary conditions on the set of paths on which the measure

[d$] has support, since the state wave functionals $($) merely

3
determine the boundary condition on the functional integral. This

change in boundary conditions becomes especially simple in Euc-

lidean space. Finite temperature greens functions are periodic

(anti-periodic for Fermi fields) in Euclidean time with period

3,4 (as can be shown from A-ll using cyclicity of the trace,

and the Poincare transformation properties of $($)). Hence

paths (field configurations) contributing to the functional

integral must be likewise periodic (antiperiodic). This implies

that the Feynman rules derived via the functional integral form

of ZB (J) will be unchanged, except for discretization of the ik0

variable (iown = 27rn for bose fields). Hence 4-dimensional loop

integrals become three-dimensional integrals times a one-dimensional

infinite sum. Similarly vertex 4-dimensional delta functions

become products of Kronecker delta functions and standard

three-dimensional delta functions.

Thus the calculation of V ($, ) is in principle the same

at finite temperatures, except with the new Feynman rules described

above.
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Appendix II: Semiclassical Metastable State Decay in Field Theory

From quantum mechanics we know the decay probability of an

unstable state is given by the imaginary part of its energy

(free energy at finite temperature):

r(A2-1)

This ground state energy E0 can be computed by analogy to

quantum mechanics, using the relation

J2A <\7 - (A2-2)

where <xl is a position eigenstate, and n are energy eigen-

states, and n0 is the lowest energy eigenstate not orthogonal

to <xj; with energy E0 . If coordinates are chosen such that

<x=01 is the metastable ground state then we have the relation:

-L B4o ieVOT (A2-3(a))

Now the RHS of (A2-3) can be written in functional integral

form using the Euclidean version of the Feynman path integral:2

<034 Ot' e- NI/ 6? A e. (A2-3(b))

with boundary conditions

(A2-4)
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and SE is the Euclidean action:

The functional integral can then be evaluated in the semi-

classical (X=0) approximation by performing a Gaussian approximation

about each stationary part of SE subject to the boundary

conditions (A2-4). The calculation in field theory proceeds

identically replacing x by 4 and SE (x) by (see Chapter 2):

s- W Z d4 Et at D - OW] (A2-6)

The boundary conditions are that $(T+o±w,x) = 0 (the unstable

state in Figure 2), and also the condition ct(T, cx*+) = 0,

which ensures that only solutions with finite action give a

non-vanishing contribution to the semiclassical evaluation

of the functional integral.

Stationary points of (A2-6) are solutions to the Euclidean

equation of motion:

(A2-7)

(which is the classical equation of motion in an inverted

potential -uJ().), subject to the proper boundary conditions.

Assuming these extrema of SE (f) give the dominant contributions

a Gaussian approximation to the integral is performed about

each such stationary point. This can be shown to give the

relation:3
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N S e a t -, V1 1 Z( A 2 - 8 )

The important point is that while there may be several extrema

of SE(f), only those with negative eigenvalues of the

operator in brackets will contribute to the imaginary part

of (A2-3) and hence to 1. Such solutions are called instantons.

If Figure 2 represented a one-dimensional quantum mechanics

potential U(x) the standard instanton solution which contributes

to P is called the bounce and consists of a particle rolling

off the hill at x=0 in -U(x) at T-*-o bouncing off the "wall"

at $=$ * and returning to x=O at T-+o.

In the scalar field theory described here, the minimum

action instanton solutions to (A2-7) are 0(4) invariant

solutions and the decay rate per unit volume of the metastable

state (false vacuum) is proportional to exp(-S ) where S4 is

the Euclidean instanton action.4

Quantum corrections to this approximation can be determined

by substituting Veff(f) for U($) (see Appendix I). Similarly

metastable decays at finite temperatures can be calculated

by using V eff(T) and by imposing periodic boundary conditions

on Euclidean time of period = l/T on the functional integral,

and its solutions.5 One then deals with 0(3) invariant "static"

solutions to 3-dimensional Euclidean equations of motion, and

the decay rate becomes proportional to exp(-S 3/T) where S3

is the Euclidean action of the 0(3) invariant solution.6

Under certain simplifying assumptions, these solutions

look like spherical bubbles in Euclidean space inside of
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which $=$_ and outside of which $=O. At the instant of formatilon

(t=Q) in Minkowski space they are of the same form.

If the bubble once formedis larger than a critical

radius R for it to be energetically favorable to grow, it will.

The critical radius R can be calculated from variational

calculations. As the energy difference between the two equili-

brium states gets smaller, this radius gets larger.



112

Appendix 3: Black Hole Thermodynamics

The fact that black holes radiate thermally with temperature

T =8M (in units X=c=G=k=l), has been confirmed in a wide variety

of ways, perhaps because it was too remarkable to be accepted on

the basis of one derivation. We here describe a number of

independent means of demonstrating the result, each of which

illuminates some of the intricacies of gravity as a quantum

field theory.

First, we note the immediate difficulty that in a curved

space background the notion of particle states and vacua becomes

ambiguous. In flat space one decomposes field operators into

positive and negative frequency components, which are then in-

terpreted as annihilation and creation operators respectively.

I.E., if $ is a massless scalar field satisfying ;abn ab = 0,

we express $ as

t (A3-l)

where {fi} are a complete basis of solutions of the covariant wave

equation f i;ab =0, with positive frequencies with respect to the

time coordinate x0=t. The vacuum is defined as the unique state

such that a. 10> for all i (i.e. one cannot annihilate any particles).

However, in curved space, positive frequencies have no invariant

meaning, because the "time" coordinate has no invariant meaning.

Loosely speaking, it can be "rotated" from one point to another.

In a space with local regions of non-zero curvature, the solutions

ab
to f ab g =0 can be defined as having positive frequencies with

respect to some asymptotically flat Minkowski time coordinate.
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However the basis {f I containing only positive frequencies with
lj

respect to one asymptotic region will not necessarily be the same

as the basis {f 2 } defined on some other asymptotic region. Hence

the initial vacuum state need not be the same as the final vacuum

state, i.e.

Hence it will appear that a gravitational field can cause the

creation of particles, or at least the definition of a particle

state is observer dependent. The problem becomes more acute

when one attempts to uniquely define {f.} in a region of

curved space. Here, unlike the asymptotic flat region, there

is no unique definition of the subspace of solutions spanned

by the {f.}. Depending on the curvature, one may set up an

inertial coordinate system in a region U of a point P with a

2
coordinate radius R, of the order of the radius of curvature.

One can then choose a family of {f } which are approximately

positive frequency with respect to the time coordinate of U.

Clearly as the frequency w gets larger compared with the R

the approximation gets better. However for those modes w for

which w < R-1, the distinction between positive and negative

modes virtually vanishes. This indeterminacy in defining modes

of wavelength greater than R is reflected in an uncertainty

in the local energy density of order R (in units X=c=G=l).

This uncertainty can be thought of as corresponding to the

energy density of particles created by the gravitational field.

(The back reaction of this on the curvature, via Einsteins equations
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is small provided the initial radius of curvature is small com-

pared to the planck length - which is a statement that the semi-

classical background metric approximation remains valid).

This particle creation via gravitational field is what

is responsible for black hole radiation. The negligable back

reaction described above (in order to maintain the validity of

the semi-classical approximation), represents the statement

that the black hole metric does not change significantly on

a time scale given by the inverse rate of particle creation.

This will be true for black holes larger than the planck mass.

The fact that the particle creation and emission rate from

a black hole are proportional to the surface gravity K (1 in

dimensionless units $=c=G=l) can be seen as follows. Imagine

a virtual pair created just outside the event horizon, one

particle having negative energy and the other positive. The

particle with negative energy is classically forbidden, but

if it tunnels through the event horizon, it can exist as a

real particle, because negative energies with respect to

infinity are allowed inside the black hole. The other member

of the pair can escape to infinity where it is detected as

thermal radiation. The tunnelling probability is related to

the surface gravity K since this quantity governs the rate of

change of the time translation killing vector (i.e. how fast

this time-like killing vector becomes space-like - allowing

the negative energy particle with respect to infinity to exist

classically). We can actually derive an order of magnitude

estimate of this process, using a slightly different heuristic

description,4 similar to the mechanism of pair creation by strong
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background electric field. If each member of the virtual pair

has energy w, the maximum lifetime of the pair is given by a

time of order o (setting )f=c=l, and neglecting numerical

factors). However if a force can do work on these particles,

giving them an energy of o in a time of order o then they can

exist classically as measurable particles. Imagine now the

creation in the field of a black hole of mass M, at a distance

(r> 2GM). If the particles are separated radially by a distance

k then the tidal force separating them (which can be derived

from Newtonian mechanics for the purposes of this argument) is

of order

(Ap 3-2)

Hence for real pair creation we need:

Ji FcL IJ (Ap 3-3)

Using (Ap 3-2) we get

For the outgoing photon to reach infinity, r > 2GM. Hence:

UQ ,4 ((Ap 3-4)

for significant pair creation. If all frequencies up to this

value are created uniformly (to this approximation) then the

differential luminosity to up to w (GM) - This gives
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L % (GM) . If this radiation were actually thermal then we

could use the blackbody formula Lr UAT for a radiator of area

A to associate a temperature with this radiation, given by

T ~ce )_ A & so-A~( (Ap 3-5)

which is qualitatively correct. (The temperature increases as

mass decreases because r decreases at the same rate as M

and thus the tidal forces increase, increasing w max')

To describe the exact field theoretic calculation we must

however recall our first description of the ambiguity of deter-

mining positive energy states in curved space-time. For the case

of interest, this ambiguity is explicately determined for the

case of a background Schwarzchild metric in asymptotically

flat Minkowski space. Massless fields can then be described

using (Ap 3-1) with the {f .} uniquely defined at past null

infinity cl~ to contain only positive frequencies with respect

to the canonical affine parameter (proper time) there. Since

Cauchy data on d~ is sufficient to determine a massless field

everywhere, the form (Ap 3-1) is applicable elsewhere. Another

complete boundary value surface consists of future null in-

finity + plus the event horizon surface outside the black

hole (see the penrose diagram for this case - Figure 7).

Here can be expressed as:

PL C~k ~ (Ap 3-6)

where {p. } have zero Cauchy data on the event horizon and q. have
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zero data on- . Also.{P.} can be unambiguously defined to have
I

only positive frequencies with respect to the af fine parameter

4 +. Since both (Ap 3-1) and (Ap 3-6) describe 4 everywhere

we must have:

' 4< +3~) (Ap 3-7)

(with similar conditions connecting b,b+ with a,a +

The critical vacuum state 10_> (containing no incoming

particles) at~ is defined by a.IO> =0. However, because

may not be zero in general an observer at j2 will not measure

this to be the vacuum state. Indeed he will find the expectation

value of the number of particles in mode i to be

6<o L to 3 Z (Ap 3-8)

Hence the calculation of the number of particles created by the

hole and emitted to future null infinity reduces to calculating

... The form of this calculation goes as follows. (The details

can be found in Ref. (1).) Using continuous normalization,

the solutions {p }, {f ,} (w,w' refers to the continuous

frequency variable) are expanded into their Fourier components,

in terms of advanced and retarded time. Thus the sums in (Ap

3-7), (Ap 3-8) can be written as integrals. In order to find

the phase relationship between {p } and {f , }, the backward

propagation of the part of {p } which goes through the collapsing

body and eventually emerges atti~ is studied. This becomes tract-

ible because near the event horizon, the retarded time coordinate
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goes to infinity. Thus the effective frequency of the p gets very large

near the event horizon, and it propagates through the body via

the geometrical optics to d~ where its form can be estimated.

The phase that p acquires is determined by comparing the

relationship between the retarded time u and a vector which

connects the event horizon to a nearby null surface of constant

u as one translates the vector along the null geodesic generating

the future event horizon, and past the end point of this

event horizon back toSj.

This phase is determined by the surface gravity

of the black hole K, since K determines the scale change of

the time translation killing vector on the horizon. Once the

form of p on-i is found, W , in the integral form of (Ap 3-7)

can in principle be determined. Of course since continuum

normalization is used, the integral form of (Ap 3-8) diverges,

as the number of particles created over an infinite time is

infinite. However by introducing finite wave packets one can

establish the relationship:

(probability for black hole to emit particle to j+
with energy E)

(Ap 3-9)

= c~4" ~x(probability for black hole to absorb particle
from j with energy E)

This condition can then be shown to imply that at equilibrium

black holes radiate thermally with a temperature T = (with

$=G=c=K=l).

Alternatively, a similar calculation can be done using Feyn-

man path integral techniques for calculating particle prop-

agation amplitudes.5 Here, the amplitude that a particle is
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produced by a black hole and detected by an observer outside

the hole in a given mode at a point A, is given by an approp-

riately weighted sum over paths connecting points on the future

singularity of the black hole and A. These paths can be analy-

tically continued to paths connected points on the past singular-

ity of an analytically continued complexified Schwarzchild space

to A. Hence the above amplitude can be related to the

amplitude to propagate to A from a point on this past singularity.

This amplitude is just the time reversed amplitude for particle

absorption by a black hole. Thus absorption and emission are

related and (Ap 3-9) is again derived.

Perhaps the simplest field theoretic argument that black

holes have associated with them a temperature is given by

examining the functional integral formulation of gravity.

Consider the Schwarzchild metric:

-r (Ap 3-10)

Putting t = it converts this to a positive definite metric

for r > 2M. The apparent singularity can be shown to be merely

a coordinate artifact by defining a radial coordinate

x = 4M(1-2Mr~ 1 ) 1/2 , giving

(ji Ci 4-r jL7_

There is again an apparent singularity at r = 2Mx = 0, but this

can also be shown to be a coordinate artifact by taking T/4M
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to be an angular coordinate with period 27. This apparent

singularity then becomes just like the origin of polar coordinates.

Now if T/4M has period 2v, T has period 8irM. Thus the Schwarzchild

solution is a solution to the Euclidean equations with period

8rM in imaginary time. Euclidean Greens functions defined on

this background will then automatically also have period 87M

in T. However, we know that the Greens functions of a theory

at finite temperature T are periodic in Euclidean time with

period ' = l/T. Hence fields propagating in a black hole

background will be propagating in a thermal background with

temperature T = 1/8TM.
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ADpendix 1V: Comouter Program and Output
10 INPUTNaxe of output file! ";cuti let

20 O?ENt, o t i iie
10O & NPU7"Na& of input file? "infiles

110 OPEN#1,InfileS
.20 ON EO#i CLSL:PR;NT"DONE":ENr
130 IiiiUTe~m~numbur

i31 Ir a(le-4 THEN ItwauOO.ELSE ltemw;5
12 II a',1.7 THIN Ii *a&

.33 LET Jimit&l.0/(1.3*-ZDaA2)
a's LE K ballmitale-2

;.I 11 pb(itma,(1.4e-1'*A4' THEN GOTG 137
34 a060 1.0
iL7 PLINW.PR;NT4"b Low set =";Pb," 4nd is below minimum allowed denp i y"

136 PRAWT#i, .P~iNT2, "pb now set ";pb " and is beiow minimua a.odwe d nsitV
39 PR:NT"we now Gc to the nest a value"i:PA1NT

4,C PRii42;"we now no to the next a value":PRiTf,
i4. GOTO 130

L0 G0SU2B .00
. r GUiTO 130

200 IT( ER)-a55 THEN END:OTO 130
10 FkIFT.E'RIN7"ERROR NUMBER ";( ERR)." IN LINE ';( LRRLIN)," HAS HALTED EECUT1IN".P,:x

210 PR1K 12;:PR1NT#2 "ERROR NUMD:R ",( ERR)," IN LiNl ",i ZRRLIK.l " HAS HALTE EiLCUTi0iC 7:4
IN-AC2.

20 G6T0 3650
.00 Lri EN atat(t)afin(DMKps-kkappa/MAb)

501 .t EN & tpt(t)-fin'kt'c*SR(ot)
b0: DLT TN psps(t)-fjn*(w*cSOR(Dt)+ob/ps* TN mtat(t))

003 T.Er 7N Ohvb(t)Lfin1*( FN mtmt(t)-bac*SGR(pt))
31,0 1terjation=0:i=0:fsctora0
350 REM ON ERR GOTO 200
600 PR:NT"a ";14," pbL' pbo" numbera";nuaber

.j0 ; ,, ub-"pb;" numb.or=znumber
630 If' a ,k THEN fin=ie-i0:ELSE fin=j

660 ii iin ! THEN GTO 700
6.3 PRIN7 PRINTITine sci.]e is now IE10 times what it was. :PRNT

i8s FR;iXT7; FflRaT62;"Time scale is now IijO Lines what It was." PRI16Z.
700 LI. ka.8- ljw.Oe-13:La3:flN
Gl3 one

i04 perp-D
706 LET %'x
710 iF MJN. -4 THEN Kaupaz80 ELSE kappaz25
7&4 I );*7 THN kAppa=6

*ili kritxke.Dp
717 L.T sa3=6.1ow=1*2.twf25
720 test=D. tiae=0
7I LE. r t -
730 roscoe u
750 .3E c-a.-S
760 LLT r-,e-20 yale10 jza -IC:pussaL10
770 LET ieI1ow ke5:redle-5
780 w=4

790 LrT same*.;
800 RATLa.6L9 

DATE.=iE1:TEI FuiE14
631 e-
840 twenz50

61 L houa.00
iH c s ./6:9=2

950 couniera0
1000 aurt t= 25EIGITY.80
.350 a&z1. .. :0a3
:;00 LL- ps=k*XAFPA/MA4/D
1110 LET piscb+ps
jA1. PR:NT ULLNG 9D10;"ps ,"","t",TB","TBH" ,"R/RD","T"

1I16 PRINTe2 USING 9010,"ps',"M","t","TS","TBf","R/RC",
12,j IF ps)y THEN GO-D 1185

1175 iF FB)v THEN GOTO 1185
iu80 GOTO 1152

.16 LET DaD~v:czctpuss:pbapbr:pssps*r.ptapt'r
1166 LET ratezrateayellow

1iB7 LET f.ctorsfactor,,
i9 0 GCTC; IsOG

;ill' I ps r THEN GOT 1195
j"93 -7 r THEr G070 .395
;19 .07, 1300

.153 LET L=DAr. cac=.pb=p0*y:pszpsty.ptapt'y
:;i6 LET rate-rate'rd-
i.?7 LZT factorafactor-1

1500 LET ktab*hipt
1700 LET 7=m1i-iterationaittration+1
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1950 Ift roscoeal THEN GOTO 1900
1766 LET hsA5sissame/ N pops(t))
1170 if(Min-H)Imin).65 THEN rosoeemi
1900 LET a aih TN pbpb(t)
2000 LET liahT FN pops(t)
1030 misht FN ptpt(t)
2100 LET kish' FNmstmt(t):.qM:vaps:aapt.napb
2110 If perpzI0 THEN GOTO3 945
z110 IF li)twen THEN hale-4*t:perpsperp+1:GOTO 1900
2i5o tat+fth:MnoEIP(ftki):pszv*LEP(f*1I):ptuaSEP(f5ai):pbsahEP(f*U)
2200 IF Nie-?tain GOTO 3704
2 2

4
0  

k2aht FN atat(t).l2ah% FN psps(t):maehl FN ptpt(t):n2h* MN pbpb(t)
2I70 IF 12)twen THEN tat-th:h1e-4*t:Msq:psav:pt a:pb&n:purpzprp+1:COTO 1900
23O0 ?iuq'EIP(f'k2).ps~vLiZP(i*l2):pte,.CEIF(f*ml).pbanEPfmfl2)
2350 IF l(1e-72ain GOTO 370C
240D k3ahA FN atat(t):13ehl MN psps(t):m3=h' TN ptpt(t):n3&h& r pbob(t)
2410 I 13)twon THEN t t-M~h.hu.e-4St:aq:psev:ptza:pban:petroxprP:1.GCTQ 190C
2450 tat*f 6h:Maq$EIP(f'k3):.psawvEIP(ft13).pt=a*tEIP(Ifa3):;pb=n*fIP f'n3i
2500 IF M(ie-72ain GOTO 3703
25i0 k4xhT FN atat4t):14.h' MN psps(t):a4ahs MN ptpt(t).u4abh FN pbpb(t)
270 I 14)twen THEN tat-h:h=Ie-41t:Maq psev:pt&a:pbun:perpuperP1GCTO 1900
2t00 MaQ*EXF(s'(ki+sk2+zs*k3+k4))

270& pt;*ZIP (s*(ni+z*v&2+z*a3+4)
2710 ban§EIPCO'(i+5n2+5tn3+4))
2710 LET rtart'(kt/scSR(pt)*h+1)A(s/kt)
2750 IF counterz1 THEN COTO 2900
2000 IF ps)Cpt/5) THEN FRINT"t critical is t:PRINT*2;"t critical is ",t:ELSE COTO7 900

2350 counterz1
2900 TS=RATESSORCSOR(ps/krit)):TBHNBATE/M
221 LET standukrit
2144 i1 Is)& ow THEN kritztwf
2750 IF TS)TCMP THEN kiitEIGHTY
27158 I t*,hirlow THEN kappaatwf
3960 IF 7BH)TEMP THEN kappAeEIGHTY
2S70 LE7 ps=(ps'krit)/stznd
3100 LE: testLtime
3010 Il ps)=v TH4N tiaeal:ELSE tiae*=
3U0C L' timotest THEN GOTO 3450
51 5 P IF timetest THEN OTO 32'iD
3200 GCTO 350C
3250 PR.NT.PRIN""Ps has started to decrease at tm",t-h,"pss".ps,"N=';,"Th"HH,"TS=' ,

IAOs ';rt, fa ctor=";factor:PRINT
3255 ?R1MNT2,:PRINT#2;"p* has stziitea to decruase at ts";t-h,"psa"p,"=;M"T8 "7LX,".:

,TS,"RIRz ;t,"factoru".factor:PRINT62I
3406 G070 3500
3450 FRN-:PRINT"ps has started to increase at ts";t-h,"ps=;ps,"K=",M,"TSe";TEH,"TE=,;E.,"'

IRG "%rt,"fjctor-",factor.PRINT

345w PRIKT42;:K'hNT2;"ps has started to increase at tw";t-h,"psP";Ms,"Ha".X,"Ti=,TLX."Th
;TS,'IRO. ";it,"faciorL";iactor.PRIN-S2..

346' i d*amris(0.001*((kwkappa)/(a~b)) THEN GOTO 3680
3E00 IF J-number GOTO 3.00
35ro GOT10 1121
1560 PRINT USING 9000.psM, tTS,TVH,rt,factor:PRINT42 USING 9000,ps,a, t, s, tWirt, factor
3610 IF iteratior.<100I OTO 1125
3650 PRINT"LIECUTION TERMINATING AFTEH 1000 ITERATION6"
3660 PRINT.2,"IIECUTION TERMINATING A'TER 1000 ITERATIONS"
3670 RETURN
3680 LET tauzim^b)/(b'kskappd)
3)66 PRINT:PRINT"Black hole now evaporating unimpeded In time ta"Itau
3682 PR1t7623,.PR1NT#2;"Vlack hole now evaporating unimpeded in lime i=".tau

3684 LET tat+tau
3185 PRINT"total eLapsed time is "it

36b6 PR1NT6, 'total elapsed time is ";t
3687 LET ktzb+0.5$(1-pspt)
3608 PNINT"kt is now "'kt
3689 PRINT42;"kt is now ",kt
3650 LET ptmpt (/+0.5'kt'c'SOR(pt)'tau)
3691 PRINT"pt is now ";ct
36V2 PRINT 62,"pt Is Now ";pt
369S LET rtar t(kt/ZcSQR(pt)Stau+i)A(2/k t)
3697 PRINT"Rt/RQ is now ";rt:?R3NT
3058 PRNTr12;"RtiRO is now ";rt:PRINT*2;
36T9 GOTO 5842
;700 PRINT:PRINT" the smallest value of X is ",M
3750 PRINT" at ihis time ihe value of ps is ' ps
3500 PRINT' dtca time (tpzt*IE-30) is ";t:PRIN
38!0 PRirZ42;; PRINT2;" the smallest value of M is ",11
3620 PRNT#1," at this time the value of p Is ",ps
3030 PrNTSi" decal time (tp-t*'10-30) is ",t

;840 lRINTS2,:PRINTI3.PRINTO2;:PRINTG2,
3042 LrT isn(rate*SCR(5GR(qt/krIt)))
543 PRNT.PRINT"Tspace is now not more then ";ts;" Gew":PRINT
3044 FPINr$72, :PRINTA2;"Tsaace is now not more then ";ts; Ge V'.PRINT.62;
364:. LET iimitaljamit'e-2:maein
3841 POP.GCTO 134
5840 PRIN1.PRINT"we now a to the nest a value":PRINT
3449 FRiN72.;PRiNT62,"we now go to the nest a valve":PRlNTk2;
2850 LHTURN
90 y o MAGLE-4.404E,41,-.464E,41,-#.404E,42,-#.4#4E,41,-I.444L,41,-i.444E,41,3#
9;10 IMAG, 13C,15C.5C,15C,13C,15C,5R
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Appendix V: Baryon Production - an outline

In order for a net baryon number to be generated dynamically

it is clear that baryon number violating interactions are necessary.

Also, in order for more baryons than anti-baryons to be produced

these interactions must also violate C and CP invariance. Also,

since in equilibrium equal numbers of particles and antiparticles

must exist, particle distribution functions must depart from

their equilibrium values. Since, in a free expansion massless

particle distributions keep their equilibrium values even in the

1
absence of interactions, this implies that relevent baryon

violating interactions must involve heavy particles.

Consider a superheavy particle X with baryon violating

decays X+ £q , qq with branching ratios r, and 1-r respectively.

The mean net baryon number produced when an X, 7 pair decay

independently is then B =1 - 21r + (-1- + 2 - = r-r,

where r is the branching ratio of X -+ qk. While total rates for

particles and anti-particles must be equal by CP, a CP violating

phase induced via interference in higher order interactions

allows rr.

The order of the interaction at which CP violation first

appears thus determines the amount of baryon production (i.e.

r-r), which will be proportional to e(X) where c is the

phase angle characterizing CP violation and is the total number

of loops in the graphs whose interference induces the violation.

In minimal SU(5) the lowest order occurs in Higgs decay at four

nx AB '-a4 -17. nB Ax AB
loops. Thus AB ~ Xa < 10 . Since at best, n - n

Y Y
(where N is the total number of helicity states), this level of

baryon generation is too small. Thus more complicated GUTs must
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be used to generate baryon number. The addition of Higgs multi-

plets, and larger gauge groups, allow one in principle to increase

AB to phenomenologically acceptable levels.2

An additional problem occurs in the context of the standard

scenario, because in order for X-decay to produce net baryon

number, their number density distribution must be out of equilibrium, and

inverse decays must be suppressed. This is a highly restrictive

problem in general, and further increases the probability that

any baryon number generation comes from the Higgs sector of the

theory. This particular problem is removed in the black hole

scenario because black hole evaporation takes place when the

temperature of space is significantly below the mass of

particles which generate baryon number. Thus for a further

discussion of decay rates and equilibrium problems and their con-

nection with heavy particle masses we refer to the literature. 3' 4



126

REFERENCES

Introduction

1. See P. J. Peebles, Physical Cosmology, (Princeton University

Press, Princeton, 1971), and references therein.

2. See S. Weinberg, Gravitation and Cosmology, (S. Wiley and

Sons, New York, 1972).

3. B. T. Jones, Rev. Mod. Phys. 48, 107 (1976).

4. R. B. Partridge, Physica Scripta 21, 624 (1980).

5. See for example, First Workshop on Grand Unification, P.

Frampton, S. Glashow, A. Yildiz, eds., Math Sci Press,

Boston (1980).

6. ibid

Chapter 1

1. S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of

Space-Time, (Cambridge University Press, Cambridge, 1973).

2. See S. Weinberg, Gravitation and Cosmology, op. cit.

3. A. Guth, Phys. Rev. D23, 347 (1981).

4. S. Weinberg, Ap.J., 168, 175 (1971).

5. A. Guth, op. cit.

6. L. Landau, E. Lifshitz, Statistical Physics, 3rd Ed., Permagon

Press, Oxford (1980).

7. S. Coleman, Phys. Rev. D15, 2929 (1977).

8. A Guth, op. cit.

9. A. Guth, E. J. Weinberg, MIT Preprint CTP #950, Feb. 1982.

10. A. Albrecht, P.Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

A. D. Linde, Lebedev Institut Preprint #229, October 1981.

11. B. de Wit, R. Gastmans, Nucl. Phys. B128, 294 (1977).



127

12. See S. Ferrara, J. Ellis, P. van Nieuwenhuizen, eds. Uni-

fication of the Fundamental Particle Interactions, Plenum

Press, NeV: York (1980).

13. N. Sanchez, Preprint, Groupe d'Astrophysique Relativiste,

Meudon, 1981.

14. W. Bardeen, B. Lee, R. Schrock, Phys. Rev. D14, 985 (1977).

15. ibid.

16. See S. Weinberg in General Relativity: An Einstein Centenary

Survey, S. Hawking, W. Israel, eds, Cambridge University

Press, Cambridge (1979).

17. ibid.

18. See Chapter 7, ref. 12.

Chapter 2

1. S. W. Hawking, G. F. R. Ellis, op. cit.

2. D. J. Gross, M. J. Perry, L. G. Yaffe, Phys. Rev. D25, 330 (1982).

3. M. Nauenberg, V. Weisskopf, Am. J. Phys. 46(1), 23 (1978).

4. S. Hawking, Phys. Rev. D13, 191 (1976).

5. ibid.

6. S. Hawking, Commun. Math. Phys. 43, 199 (1975).

7. S. Hawking, Phys. Rev. D13, 191 (1976).

8. See S. Hawking, W. Israel, op. cit.

9. ibid.

10. See ref. 6, this chapter.

11. J. D. Bekenstein, Phys. Rev. D7, 2333 (1973); D9, 3292 (1974).

12. See ref. 6, this chapter.

13. D. J. Gross, M. J. Perry, L. G. Yaffe, op. cit.

14. ibid.



128

Chapter 3(a)

1. B. J. Carr, Ap. J. 201, 1 (1975).

2. See Chapter 2.

3. C. Callen, D. Gross, R. Dashen, Phys. Rev. D17, 2717 (1978).

4. S. Coleman, Phys. Rev. D15,'. 2.929 (1977).

5. See ref. 13, Chapter 2.

Chapter 3(b): See end of chapter.

Chapter 4

1. L. Krauss, M.I.T. Preprint CTP #954 (1982).

2. D. Page, Phys. Rev. D13, 198 (1976).

3. See Chapter 2.

Chapter 5

1. R. Adler, M. Bazin, M. Schiffer Introduction to General

Relativity, McGraw Hill, New York (1975).

2. ibid.

3. ibid.

4. See M. Henon, in Dynamical Structure and Evolution of Stellar

Systems, Geneva observatory, 1975.

5. ibid.

6. J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).

7. A. Guth, Phys. Rev. D23, 347 (1981).

8. P. J. Peebles, op. cit.

9. See ref. 2.

10. G. Gibbons, S. W. Hawking, Phys. Rev. D15, 2738 (1977).



129

Chapter Six

1. S. Weinberg, Phys. Rev. Lett. 42, 850 (1979).

2. L. Krauss, op. cit.

3. D. Toussaint, S. B. Trieman, F. Wilczek, A. Zee, Phys. Rev.

D19, 1036 (1979).

4. M. S. Turner, Physics Lett. 89B, 155 (1979).

5. L. Krauss, op. cit.

6. See Ref. 2, Appendix V.

7. ibid.

8. ibid.

9. ibid.

10. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).

11. J. Preskill, Phys. Rev. Lett. 43, 1365 (1979).

12. E. N. Parker, Ap. J., 160, 303 (1970).

13. A. Drukier, S. Nussinov, Phys. Rev. Lett. 49, 102 (1982).

14. T. W. B. Kibble, J. Phys. A: Math. Gen., 9, 1387 (1976).

15. ibid.

16. See M. Einhorn et al, Phys. Rev. D21, 3295 (1980).

17. See Ref. 11.

18. ibid.

19. See Ref. 13.

20. See Ref. 16.

21. D. Page, op. cit.

22. ibid.

23. See Ref. 13, and E. Witten, Erice lectures, 1979 (Harvard

Univ. report HUTP-79-A007).

24. G. 'tHooft, Nucl Phys B79, 276 (1974).

25. P. Candelas, Phys. Rev. D21, 2185 (1980).



130

26. M. Wise, private communication.

27. B. J. T. Jones, Rev. Mod. Phys. 48, 107 (1976).

28. ibid.

29. M. S. Turner, D. Schramm, Nature, 279, 393 (1979).

30. ibid.

31. J. D. Barrow, M. S. Turner, U. of Chicago Preprint, NSF-ITP-

91-03 (1981).

32. S. Weinberg, Gravitation and Cosmology, op. cit.

33. I thank Alan Guth for explaining this point to me. The following

is due to discussions with him.

34. A. Guth, private communication.

35. See A. Guth, to be published.

36. S. Hawking, I. G. Moss, J. M. Stewart, Bubble Collisions in

the early universe, submitted to Phys. Rev. D.

37. S. Weinberg, University of Texas-Austin preprint, June 1982.

Chapter Seven

1. See, for example, B. J. Carr, op. cit.

2. See, for example, S. Weinberg, in General Relativity: An

Einstein Centenary Survey, op. cit., and refs. therein.

3. ibid.

4. ibid.

5. ibid.

6. D. J. Gross, A. Nevev, Phys. Rev. D10, 3235 (1980).

7. W. A. Burdeen, et al, op. cit.

8. ibid.

9. L. Smollin, Institute for Advanced Study, Princeton, Preprint,

November 1981).

10. See ref. 2.

.VNE.1111.1111,1-1 _ i. el, 1-1 1____.__ __' - --- ------- _ . I - - '__ - - --*A%



131

Chapter 7 (cont.)

11. V. Alfaro, S. Fubini, G. Furlan, Trieste-ICTP Preprint,

IC/82/21 (February 1982).

12. S. Adler, in "The High Energy Limit", ed A. Zichichi,

Plenum Press, N.Y. 1981.

13. S. Coleman, F. de Luccia, Phys. Rev. D21, 3305 (1980).

14. S. Hawking and I. Moss, Phys. Lett. 110B, 38 (1982).

15. S. Weinberg, U. of Texas-Austin preprint, June 1982.

16. D. J. Gross, M. Perry, L. Yaffe, op. cit.

17. B. de Wit, R. Gastmans, op. cit.



132.

REFERENCES

Appendix I:

1. For example, see R. Brandenberger, Harvard U. Preprint,

HUTMP 82/13 122 (1982).

2. See, S. COleman, in Laws of Hadronic Matter, ed by A. Zichichi,

Academic Press, New York (1975).

3. L. Dolan, R. Jackiw, Phys. Rev. D9, 3320 (1974).

4. ibid.

Appendix II:

1. See for example, S. Coleman, in The Whys of Subnuclear Physics,

ed. by A. Zichichi, Plenum Press, N.Y. (1979).

2. ibid.

3. ibid.

4. G. Cook, K. Mahantahappa, Phys. Rev. D23, 1321 (1981).

5. ibid.

6. ibid.

7. ibid.

Appendix III:

1. See for example, S. Hawking, Commun. Math. Phys. 43, 198 (1975).

2. ibid.

3. L. Parker, in Quantum Gravity, An Oxford Symposium, ed. by

C. Isham et al, Oxford U. Press, Oxford, 1975.

4. J. Schwinger, Phys. Rev. 82, 664 (1951).

5. J. Hartle, S. Hawking, Phys. Rev D13, 2188 (1976).



133

Appendix V

1. S. Weinberg, Phys. Rev. Lett. 42, 850 (1979).

2. See M. Yoshimura, in Proceedings of the Fourth Kyoto Summer

Institute on Grand Unified Theories (World Science Publ.,

Singapore, 1981).

3. ibid.



134
0

Table 1. Evolution of the Initial State for Varying M' OBH
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Table 3: Monopole to Entropy Ratio Arising from Initial State Production

s 0 4 2N (kT)
S 45 2 W )3

(19 c)

1091

. lnH)

s 0/k

10-3

10-5

10 7

10~9

Dfi 2 -Rfi
R

4.6x1057 lxlO55

4.6x105 3  10 53

4.6x104 9  1049

4.6x10 4 5 10 46

Dilution
factor

7. 2x10 9

3. 4x10 7

5. 2x10-6

2. 3x10 4

(nM n)

F Max 5 F

7x10-12 7x1019

4x10-12 4xl5 17

5x10 -13 5x10-16

2x10-13 2x10~ 14

7x10 14  7x10 1 7 7x10-24

4.6x10-16 4..6x10 74x10-2 2

2.9x10-10 3x10 1 7 3x10-20

3x10-8 3x10-1 2 3x10-18

1.3x10-6 1.3x10 1 7 1x10 1 7

7x10-5 7x10 -18 7xi0-18

in units X=c=l:

Dilution factor

D 10 2T-2 GeV- 2, n = n (6.8x100 4)GeV3

-1019m (GeV)fl1/2(GeV)
0 0

Tinitial

final

Rf

(-)

T (GeV)

10 14

M0 (kg)

10-4

pBH (kg/M )

1085

10 8 3

1081

10 79

n SV-1

10 89

10 8 7

10 8 5

10 83

10 1 2 10-2

t.o

M

1081

10 79

10 7

10 7 5

10 7

10 71

1083

181
10,~
1079

10 77

10 75

10 73

4. 6x104 9

4. 6x10 4 5

4. 6x10 4 1

4. 6x103 7

10 41

1038

10- 3

10- 5

10 11

10 3



MW

+25 -

L M)

+15 -

(a) t)

E +5 -

(t M-2tc

0

C- / 0 (b)

1(t) and L(t) vs t

(a) Standard adiabatic expansion
(flat radiation dominated)

(b) Exponential expansion phase
-25 - (i.e., inflationary universe

-phase transition)

-35 L
-46 -36 -26 -16 -6 +4 +14

log 10 t sec



138

Veff (*) Veff (#)

/
0

FIG. 2: Effective Potential with Metastable State

Veff (f) - Veff (9)

T=Tc

Tc>T>O

0 D

FIG. 3(a) : Temperature Dependence of Effective Potential;

Second Order Transition

an"zoo", N 01

\I,.. ---/



139

T=T TcT<TC
2 2

T21C
<T<T cT

O

FIG. 3(b): Temperature Dependence of Effective Potential.

First Order Transition



140

T

0

moxTm 0,

pure radiation

Tcritical

black hole
and radiation

E

FIG. 4: T vs. E for an enclosure of fixed volume V showing

Black Hole-Radiation transition



141

I 
12 - TBH

I 2 3 4 5 6

10' -

1010-

Tspace

_BH (kg/ M3 )

- 7.7 x 1081
2 7.7 x 1079
3 7.7 x 1077

109 -4 7.7 x 10T5
5 7.7 x 10"
6 7.7x I0TI

I I I I I I I I

10-38 10-36 -34 10-32 10~3 0 10-28 10-26 10-24
t (sec)

FIG.5(a): Tspace and TBH vs. time for MO=l0-2kg.



142

10'4
TBH

2 3 4

1013 Tspace

a>

i0o2
PBk(kg/M

3 )

I 7.7 x 1Q8 5

2 7.7 x 10a3
3 7.7 x 10"'
4 7.7 x 10 79

loll

100"

10~- 30~8 IT3 10~34 10-32 10~30

FIG. 5(b): T and T vs. time for M0 =10 Kg.
space BH



143

107 R /R. vs t

(o) P*H 7.7 x 10a'kg/M , Mon I0~2 kg

(b) p *. = 7.7 x 10' kg/M', M*= 10~4 kg (a)
8/

106 - (c) P*H = 7.7 x 10 kg /M , M*= 10-2 kg

(d) Pow= 7.7x 106"kg /M 3
1 M*= 10-2 kg (b)

105 
R(t) t/2

/ (c)

t d
104-

0

(d)

103

R ( ).Z t2

102

10'-

10-38 10 ~36 10~34 10- 32 10 30 IT028 10-2

FIGURE 6(a)



144

FIGURE 6(b)

R/Ro v

(a)p = 7.7
SBH

2 (a) p8H= 7.7

I (b) pB0H= 7. 7

2 (b) p H= 7.7

x IK

x I

x I

x I

tde cay

1

(a) (

10'

s Tspoce tdecay of

)S'kg / M , M*= 0IO 4 kg

)'kg/M , M* = 10 2 kg

)T9kg/M , M* = 10 4 kg

) okg/ M 3 , M*= 10-2 kg

R ~Ts P
R/ /

spoce tdecay

2

(a) (b)

I I I
1012 loll

Tspace (GeV)

1010 108

1016

0

103

I0

105 [ &

I



145

Singularity

r = 0
origin of

co-ordinotes

event horizon

\u

f +

FIG. 7: Penrose Diagram for Spherically Symmetric
Collapsing Body



146

y

4----- K
2

> Xv

FIG. 8: Gravitational encounter

C

2r

I

- ---- 0 B

D
FIG. 9: Black Hole Nearest Neighbour Configuration

j

yx



147

Acknowledgement

The list of people to whom I am indebted for having helped

me begin, survive, and at times even flourish during my graduate

years at M.I.T. is long - corresponding both to my good fortune,

and to the importance of people in every aspect of my activity -

even physics.

First, because of his most direct connection with the suc-

cessful completion of this thesis, I thank my supervisor Roscoe

Giles. Our relationship began at an important turning point

when he helped salvage what was beginning to look like another

tragic graduate experience. From that time he has continually

unselfishly devoted his time and energies to helping me, as we

both took on roles that were new to us. Roscoe is one of the

most widely knowledgeable physicists I have met at M.I.T.

Moreover, he has provided an excellent role model, demonstrating

that qualities of excellence and hard work need not be achieved

at the expense of one's humanity.

Next I thank my wife, Kate, for seeing me through every

phase of my graduate career. The fact that she experienced

along with me some of the best, and worst, times, made the

experience more worthwhile. Her faith and support, and per-

spective through these times also made it all possible.

I would also like to thank the many excellent physicists

I have had the good fortune to learn from and work with during

my period at M.I.T. Steven Weinberg taught me continually -

from introductory quantum field theory to the details of gauge

theories. In many ways he indirectly provided directions for

my work, by influencing my perspectives in a way which is clearly



148

demonstrated by this particular body of work. I have also had

the good fortune to get to know Sheldon Glashow, who helped

remind me that physics can be exciting, fun, and creative, and

that at the same time it must and actually does make contact

with the physical world. I have also had the opportunity to

interact with Alan Guth, from whom I have learned many basics

of cosmology, and whose critical comments have often spurred

my thinking. Among the many others from whose knowledge and

company I have benefitted are included, Ian Affleck, John

Preskill, Louis Alvarez Gaumen, Mark Wise, Ken Johnson, David

Gross, Claude Bernard, Marc Sher, Nathan Isgur, Jon Machta,

Bart Lane, Costas Callias, Joe Lykken, and Manu Paranjape,

and the rest of my colleagues among the graduate students.

I look forward to being able to continue interacting with

all of these people in the future.

In addition I thank a long list of people who have

supported and encouraged me. These include my excellent

teachers throughout my academic career, and other academic

colleagues who have gone out of their way to show their faith

in me, including especially Mike Casper and Maurice Careless.

As well I thank my close friends whose constant encouragement

has been vital. I also thank the towns of Sackville, N.B.

and Amherst, Nova Scotia (and Mrs. Kelley for her back room),

where much of this work was done, and Mark Hale at M.I.T.

and Paula Constantine at Harvard for typing assistance. Oh

yes, thanks to Sir James Jeans, and Stanislau Lem for

inspiration.

Finally, I thank my family for the environment in which I

was fortunate to grow.



149

Biographical Note

I was born in New York City on May 27, 1954 - from which I
escaped three months later - my parents having the wisdom to
move to Canada. I attended primary and secondary school in
Toronto, Ontario, and entered Carleton University in Ottawa in
1972. In 1973 I left university and spent a year doing independ-
ent research on the social history of the Communist Party of
Canada during the depression. I returned to university in 1974,
and graduated with a double honors degree in Mathematics and
Physics in 1977, receiving a Carleton University Senate Medal
for outstanding academic achievement. I began my doctoral
studies in Physics at M.I.T. in that year. In January 1980 I
married Katherine Kelley. During my period at M.I.T. in addition
to my research I spent four years as a teaching assistant and
recitation instructor, and ran a T.V. program in physics for
undergraduate students. I also served on the Executive Committee
of the Graduate Student Association, and on several institute
committees and student groups.

My outside professional activities have included public science
education at the Ontario Science Center, writing and lecturing on
the threat of Nuclear War, and involvement in professional
societies including the American Physical Society, and the
Canadian Association of Physicists. I was on the board of
directors of the latter in 1977. On July 1, 1982 I began my
tenure as a Junior Fellow of the Society of Fellows at Harvard
University.


