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ABSTRACT

The variational inequality problem is a general problem formulation

that encompasses a wide range of problems, including optimization problems,
complementarity problems, fixed point problems, and network equilibrium

problems. In this thesis, we propose and analyze several nonlinear pro-

gramming-based algorithms for solving variational inequality problems
with monotone, asymmetric cost functions. The convergence conditions for

most of these algorithms in some way restrict the degree of asymmetry of
the Jacobian of the problem map.

Chapter 3 considers a generalization of the steepest descent al-

gorithm for solving unconstrained variational inequality problems. In

this chapter, we show 2that if the problem mapping is affine, then the

method converges if M , the square of the matrix defining the affine map,

is positive definite. We also establish easy to verify conditions on the

matrix M that ensure that M2 is positive definite, and develop a scaling

procedure that extends the class of matrices that satisfy the convergence

conditions. In addition, we establish a local convergence result for

problems defined by nonlinear, uniformly monotone maps, and discuss a

class of general descent methods.

Chapter 4 considers several algorithms that generalize first-order

approximation methods for solving convex minimization problems. We

device a "contracting ellipsoid" method that solves a variational in-

equality problem by solving a sequence of quadratic programming problems.

We prove convergence of this algorithm for constrained problems defined

by uniformly monotone maps, and geometrically interpret the algorithm in

terms of a sequence of ellipsoidal level sets. The results of the chapter

also show that the subgradient algorithm for solving convex, non-differen-

tiable minimization problems can be used to solve a max-min problem that

is equivalent to the variational inequality problem. Finally, the chapter

discusses a generalization of the Frank-Wolfe method for solving

variational inequality problems, and shows that a variant of the Frank-

Wolfe method will solve a certain class of variational inequality problems.

Thesis Supervisor: Thomas L. Magnanti
Title: Professor of Operations Research and Management
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CHAPTER 1

INTRODUCTION

The variational inequality problem is a general problem formulation

that encompasses a wide range of problems, including, among others, opti-

mization problems, complementarity problems, fixed point problems, and net-

work equilibrium problems.

In this thesis, we propose and analyze several nonlinear programming-

based algorithms for solving variational inequality problems with monotone,

asymmetric cost functions. This introductory chapter first provides a

brief history of the development of the variational inequality problem.

Then, after stating the general variational inequality problem, we define

a number of conditions that are often imposed on the problem data, and

discuss the existence and uniqueness of solutions to the problem. The

following section motivates the use of nonlinear programming-based algo-

rithms as solution procedures by establishing conditions under which the

problem is equivalent to a convex minimization problem. We then discuss

several broad categories of problem types that can be formulated as varia-

tional inequalities, and describe in detail the reformulation of the

topical traffic equilibrium problem as a variational inequality problem.

Finally, we provide some background definitions and list the notational

conventions to be used in the thesis. The chapter ends with a brief out-

line of the thesis.

1.1 Historical Development of the Problem

The theory and methodology of the variational inequality problem

originated primarily from studies of certain classes of partial differen-
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tial equations. In particular, much of the early work on the problem

focused on the formulation and solution of free boundary value problems.

In these settings, the problem is usually formulated over an infinite

dimensional function space; in contrast, this work will discuss problems

formulated over finite dimensional spaces. In this setting, the variational

inequality problem is of particular interest to mathematical programmers

because it includes as special cases virtually all of the classical prob-

lems of mathematical programming: convex programming problems, network

equilibrium problems, linear and nonlinear complementarity problems, fixed

point problems, and minimax problems.

Mathematical programmers' recent interest in the variational inequality

problem stems primarily from the recognition that the equilibrium condi-

tions for network equilibrium problems, such as the traffic equilibrium

problem and the spatially separated market equilibrium problem, can be

formulated in a natural way as a variational inequality problem. For

example, in 1980, Dafermos [1980] recognized that the traffic equilibrium

conditions formulated by Smith [1979] defined a variational inequality

problem.

In the past few years, motivated by the desire to find methods to

solve such equilibrium problems, a number of researchers have developed

algorithms to solve variational inequality problems. The algorithms tend

to fall into four general categories: projection algorithms, nonlinear

programming algorithms adapted to the variational inequality problem,

simplicial decomposition algorithms, and algorithms to solve an equivalent

max-min problem. Chapter 2 of this work surveys some of the recent research

on the development of these algorithms.
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1.2 Statement of the Problem

The variational inequality problem, VI(fC), over a ground set C C Rn

is a specially structured system of nonlinear inequalities; namely,

* * T *
Find x e C satisfying (x- x ) f(x ) > 0 for every x in C, (VI(f,C))

where C C R is generally assumed to be convex and compact (or, in some

cases, convex and closed), and f:C - R is generally assumed to be

(1) either continuous, hemicontinuous (i.e., continuous along

straight lines), or continuously differentiable; and

(2) either

T
(a) monotone on C: (x- y).(f(x)- f(y)) > 0 for every

x s C, y e C;

(b) strictly monotone on C: (x- y) T(f(x) - f(y)) > 0

for every x e C, y £ C with x # y;

(c) uniformly (or strongly) monotone on C: for some

scalar k > 0, (x- y)T (f(x) - f(y)) > kjjx- yj 2 for

every x e C, y c C, where 11-11 denotes the Euclidean

norm; or

(d) monotone on C with strict monotonicity at the solution

*
x .

* * T *
We will refer to any x E C satisfying (x- x ) f(x ) > 0 for all x 6 C as a

solution to VI(f,C).

-More generally, VI(f,C) can be formulated over a real Hilbert space

H with inner product (-,-). Let C be a closed convex subset of H and f be

a mapping from H into its dual H'. In this case, the problem becomes,

* * *
Find x s C satisfying (x- x , f(x )) > 0 for every x s C.

10



The following results specify conditions ensuring that VI(f,C) has a

solution. (Note that if we eliminate the assumption that C is bounded,

ensuring the existence of a solution requires that either a uniform mono-

tonicity condition or a coercivity condition be imposed on f.)

Theorem 1.1 (Existence) (Kinderlehrer and Stampacchia [1980])

If C C R is compact and convex, and f:C - R is continuous, then the

variational inequality problem VI(f,C) has a solution.

Theorem 1.2- (Existence) (Kinderlehrer and Stampacchia [19803)

Suppose that C CR is closed and convex, and f:C - Rn is continuous

and satisfies the following coercivity condition: there exists an x0 E C

such that

O T 0
lim (x-x ) [f(x)-f(x ) = + 0.

xEC

Then, the variational inequality problem VI(f,C) has a solution.

Theorem 1.3 (Existence) (Auslender [1976])

Suppose that C C Rn is closed and convex, and f:C + R is monotone,

hemicontinuous, and satisfies the following coercivity condition on C:

there exists an x0 c C and a scalar k > 0 such that

if x 6 C and )x > k, then (x-xf0 Tf(x) > 0.

Then, the variational inequality problem VI(f,C) has a solution.
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Theorem 1.4 (Existence) (Auslender [1976])

If CCRn is closed and convex, and f is uniformly monotone and hemi-

continuous on C, then the variational inequality problem VI(fC) has a

solution.

The following theorem specifies conditions on the mapping f that en-

*
sure that the solution x is unique.

Theorem 1.5 (Uniqueness)

Let x be a solution to VI(fC). If f is monotone on C and strictly

* *
monotone at x , then the solution x is unique.

Clearly, then, if the mapping f is either strictly or uniformly mono-

tone on C, the solution will be unique.

1.3 Motivation for Adapting Nonlinear Programming Algorithms to Solve

Variational Inequalities: The Role of Symmetry of the Jacobian of f

The mapping f:CCRn -- Rn is a gradient mapping on C (or is integrable

on C) if there exists a Gateaux differentiable functional F:CCRn -- R1 such

that [VF(x)]T = f(x) for every x in C. Gradient mappings can be charac-

terized as follows:

Symmetry Principle: (Ortega and Rheinboldt [1970])

Let f:DCRn + Rn be continuously differentiable on an open convex

subset D' C D. Then f is a gradient mapping on D' if and only if Vf(x) is

symmetric for every x in D'.

If f is the gradient of a convex, continuously differentiable func-

tional F:C C Rn + R1, then x solves the variational inequality problem

VI(f,C) precisely when x minimizes the functional F over C. To demonstrate
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this result, we first note that since F is convex and Gateaux differentiable

on C, then F(x) - F(y) > VF(y)(x- y) = fT (y)(x-y) = (x-y) Tf(y) for every

* * T *
x and y in C. Thus, if x E C satisfies (x- x ) f(x ) > 0 for every x in

* *
C, then F(x) - F(x ) > 0 for every x in C, and, hence, x minimizes F over

C. Conversely, if x minimizes F over C, then the directional derivative

* *
of F at 'x in all feasible directions from x must be nonnegative; i.e.,

* * *
for every x c C, x must satisfy the gradient condition VF(x )(x-x ) =

T * * * T *
f (x )(x- x ) = (x-x ) f(x ) > 0.

If f:C Rn.+ Rn is the gradient of a Gateaux differentiable functional

F:C C R, then the following statements specify the relationship be-

tween the convexity of F and the monotonicity of f:

(i) f is monotone on C if and only if F is convex on C;

(ii) f is strictly monotone on C if and only if F is strictly

convex on C; and

(iii) f is uniformly monotone on C if and only if F is uni-

formly convex on C.

These statements and the symmetry condition stated earlier show that the

variational inequality problem is equivalent to a convex minimization prob-

lem with a (strictly, uniformly) convex objective function whenever f is a

(strictly, uniformly) monotone, continuously differentiable mapping with a

symmetric Jacobian on C. Whenever f satisfies these properties, we can

solve the variational inequality problem using any algorithm that will solve

the equivalent convex minimization problem, either by determining the func-

tion F(x) for which f(x) = VF(x) and using the algorithm to solve the

equivalent optimization problem, or, in some cases, by adapting the algo-

rithm to the variational inequality formulation and solving the problem

directly.
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This thesis studies the following question: When can nonlinear pro-

gramming algorithms be adapted to solve the variational inequality problem

when f is monotone, but not necessarily a gradient mapping? Research by

Ahn [1979], Dafermos [1982a], [1983], and Pang and Chan [1982] show that

certain nonlinear programming algorithms adapted to solve the variational

inequality problem will converge when f is not necessarily a gradient map-

ping as long as f satisfies certain diagonal dominance conditions. The

literature survey in Chapter 2 reviews these methods and other algorithms

for solving variational inequality problems.

1.4 Applications

As we have mentioned earlier, the variational inequality formulation

encompasses a number of problem types. For this reason, a wide range of

problem applications can be cast as variational inequality problems. In

this section, we discuss the relationship between the variational inequality

formulation and a number of classical mathematical programming problems.

We first exhibit the correspondences between variational inequality prob-

lems and complementarity problems, fixed point problems, nonlinear equations,

and minimization problems. Because the reformulation of the traffic equili-

brium problem as a variational inequality problem has stimulated much of

the recent research activity on variational inequality problems, we then

focus our discussion of applications on this reformulation.

1.4.1 Relationship to other Problems

Each of the following well-known problems is closely related to the

variational inequality problem. The results below demonstrate these rela-

tionships. (Proofs of these results appear in Cottle [1974], Kinderlehrer

14



and Stampacchia [1980) and Lemke [1980].)

Complementarity Problems:

n n
Let R denote the nonnegative orthant in Rn, and let f:Rn -+- R . The

nonlinear complementarity problem over Rn is a system of equalities and

inequalities stated as,

* * * T *
Find x > 0 such that f(x )> 0 and (x ) f(x ) = 0. (CP(f))

The nonlinear complementarity problem is a linear complementarity problem

whenever the mapping f is affine, i.e., whenever f(x) = Mx - b, where M is

an nxn matrix and b an nx1 vector.

Theorem 1.6

VI(f,R ) and CP(f) have precisely the same solutions, if any.

Fixed Point Problems:

Let C CRn be a closed convex subset of Rn, and let g:C - C. The

fixed point problem is a specialized system of equations; namely,

* - * *
Find x e C such that x = g(x ), (FP (g,C))

Theorem 1.7

Let C C Rn be closed and convex.

(i) Let g:C -* C, and let f(x) = x - g(x) for every x c C.

Then VI(f,C) and FP(g,C) have precisely the same solu-

tions, if any.

(ii) Let f:C +Rn, and let g(x) = PC[x - f(x)] for every

x E Rn, where PC is the projection operator onto the

set C. Then VI(f,C) and FP(g,C) have precisely the same

solutions, if any.

15



Equations:

Let C C Rn and h:C + Rn. An equation simply seeks a zero of the map-

ping h over C, i.e.,

* *
Find x e C such that h(x ) = 0. (EQ(hC))

Theorem 1.8

Let C be closed and convex, let f:C + Rn, and let h(x) = x- PC~x-f WI

for every x E C. Then VI(f,C) and EQ(h,C) have precisely the same solutions,

if any. (Note that if h(x) = x- g(x), then the solutions of EQ(h,C) and

FP(g,C) Are the same.)

Minimization Problems:

Let C C R be closed and convex, and F:C + R . We seek a minimum of

F over C, i.e.,

Find x P C such that F(x ) < F(x) for every x E C, (MIN(FC))

Theorem 1.9

Let C C R be closed and convex, let F:C + R1 be continuously differen-

tiable, and let f(x) = VF(x).

* *
(i) If x is a solution to MIN(F,C) then x is a solution

to VI(f,C).

(ii) If F is convex, then MIN(F,C) and VI(f,C) have precisely

the same solutions, if any.

1.4.2 Formulation of the Traffic Equilibrium Problem as a Variational

Inequality Problem

Many network equilibrium problems can be formulated as variational

inequality problems. In this subsection, we describe such a formulation

for one network equilibrium problem, the traffic equilibrium problem.

16



(Another important setting for the network equilibrium problem is the

spatially separated economic market equilibrium problem; see, for example,

Florian and Los [1981], Samuelson [1952], and Takayama and Judge [1971].)

For simplicity, we consider a version of the traffic equilibrium prob-

lem with fixed demand, which is usually referred to as the traffic assign-

ment problem. The following analysis can, however, be extended to the more

general problem with elastic demand (see Dafermos [1982b]).

Let G = [N,A] be a network consisting of' a set N of nodes and a set

A of directed arcs. Let W be a set of origin-destination node pairs.

For each w 6 W, let Pw be the set of directed paths joining the OD (origin-

destination) pair w. We assume a fixed demand, dw, for travel from the

origin node to the destination node of OD pair w. Let x be a vector of

path flows:

X (X= p p)Pwp,w£W.

Let C be the set of all feasible path flow vectors:

C = {x: E x = d , x > 0 for every p e P and w E W}.
PP w p w

Finally, we let t (x) represent the marginal cost (i.e., travel time) of a

unit of flow on path p as a function of the flow x on the network.

In this setting, we will define a user equilibrium flow pattern to be

a flow having the property that no user has an incentive to unilaterally

change his or her route. (Wardrop [1952] first formalized this behavioral

assumption.) If we assume that a user's sole criterion for route selection

is travel time, then this equilibrium flow must satisfy the property that

17



for a given OD pair w, if a path p 6 Pw is used (i.e., if the flow x is

positive), then the travel time t (x) on that path must be minimal among
p

travel times on all paths joining OD pair w. This equilibrium principle

*
can be stated mathematically as follows: x is an equilibrium flow if for

each w 6 W and each P 6 Pw, it satisfies

* **
if x- > 0, then t-(x ) = Min{t (x) : p E P 1. (1.1)

p p p w

This condition states that for a given OD pair, the travel times on all

used paths connecting this OD pair are equal and that this travel time does

not exceed the travel time that would be incurred if one vehicle were to

travel on any unused path connecting this OD pair.

Following Smith [1979], we now show that these equilibrium conditions

can be reformulated as the variational inequality problem:

* * T *
Find x E C such that (x- x ) t(x ) > 0 for every x E C,

or, equivalently,

*T * T *
(x ) t(x ) < x t(x ) for every x c C. (1.2)

We may interpret the equation (1.2) as follows: with costs on the network

* * T * *
fixed at t(x ), the total cost (x ) t(x ) for users in flow pattern x is

T *
less than or equal to the total cost x t(x ) for users in any other feasible

flow pattern x. To show that the equilibrium conditions 1.1 are equivalent

*
to the conditions 1.2, first note that if x satisfies the conditions 1.1,

then for each OD pair w, the flow x uses only shortest paths (with respect

*
to costs t(x )). If this is true, we cannot reduce the total cost (again

*
with respect ot costs t(x )) of travel on the system by changing the flow

18



*
pattern to any other feasible flow. Consequently, x satisfies 1.2. Con-

*
versely, suppose that x does not satisfy the equilibrium conditions 1.1.

*
Then there exists an OD pair w and a path p c P such that x > 0 and

w p
* * *

t (x ) > t , (x ) for some p' c P w So with travel costs fixed at t(x )

we could reduce the total travel time of the users by diverting some of the

flow from path p to path p'. The resulting flow pattern x' would have a

*
lower total travel time (with respect to costs t(x )) than the flow pattern

* * T * ,T * *
x , i.e., (x ) t(x ) > (x') t(x ). Thus, if x does not satisfy 1.1, then

it does not satisfy 1.2, and, therefore, the two formulations are equiva-

*
lent. As a result, x E C is a user-equilibrium flow pattern if and only

* T *
if (x- x ) t(x ) > 0 for every x e C.

Solution methods for the traffic equilibrium problem have evolved

through three "generations." The first methods for finding equilibrium

flow patterns attempted to incrementally load the network by adding flow

to paths that were shortest with costs defined with respect to the flow

already loaded. In doing so, these heuristic procedures attempted to use

paths for a given OD pair that were approximately equal in travel time and

that were lower in travel time-than all unused paths for that OD pair. The

underlying models were "separable": they assumed that the travel time on

any given arc in the arc set was a function of the flow on that arc only--

not on the flow on the entire network.

The discovery by Beckman, Winston, and McGuire [1956] that the equi-

librium conditions for the separable model could be interpreted as the

optimality conditions for a convex minimization problem attracted the inte-

rest of operations researchers and spurred the development of a number of

optimization-based algorithms. See, for example, Dafermos [1971], [1972],

19



LeBlanc et al. [1975], and Nguyen [1974]. (The interpretation of the

equilibrium conditions as the optimality conditions for a convex minimiza-

tion problem is also valid for the nonseparable model if the Jacobian of

the travel cost function is symmetric over C.)

The more recent discovery that the problem can be formulated as a

variational inequality problem has once again motivated researchers to study

the problem and develop new algorithms. The variational inequality formu-

lation is an important extension of the previous formulations because it

allows considerably miore flexibility in the problem formulation than the

separable model. Both the separable and nonseparable models allow for

"elastic" demand: the demand for flow between OD pair w is a function of

the shortest path times on that path. The variational inequality formula-

tion, however, allows a number of additional modelling extensions, includ-

ing

(1) asymmetric travel costs;

(2) multiple modes of transit;

(3) multiple user classes;

(4) link interactions; and

(5) destination choice, trip generation, and other complex

demand models.

Aashtiani and Magnanti [1980] and Magnanti [1982] specify how to incorporate

these modelling features into the general model.

1.5 Notation and Definitions

In this section we briefly outline the notational conventions 
and

terminology to be used in this work. Other definitions and notations will

20



be introduced in the text as needed.

Let M be a real nxn matrix. In general, we define the definiteness

of M without regard to symmetry:

(i) M is positive definite if and only if xTMx > 0 for every
n

nonzero x E R -; and

(ii) M is positive semidefinite if and only if x TMx > 0 for

every x c Rn.

If we let M denote the symmetric part of the matrix M; i.e.,

T
M:=M + M

where T denotes transposition and := denotes definition, then, since

T T- n
x Mx = x Mx for every x E R

(i) M is positive definite if and only if M is positive

definite; and

(ii) M is positive semidefinite if and only if N is positive

semidefinite.

An.nxn positive definite symmetric matrix defines an inner product

on Rn

(xy)G:= x Gy.

The inner product defined by G induces a norm on Rn

ST
ixI := (x,x) = (x Gx) ,G G

which, in turn, induces a norm on the nxn matrix A:
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IIA IG:= sup I IAxIIG'

(By writing 11 AlG , it is implicit that A has the same dimensions as G.)

The G norm also induces a projection operator on a subset C of Rn:

G
P (z):= argmin 11 x -z 1GxeC

where

argmin f(x):= {x: f(x) = min f(x)}.
xeC xcC

If C is convex and closed, then PC(z) is the unique point in C that is

closest, with respect to the G norm, to z.

If G is the identity matrix I, then the above definitions become

the Euclidean inner product, (-,-); norm, l - 2 ; and projection operator,

PC(--

2 T
Let G2 be any matrix satisfying (G ) G = G. Then, the following

equivalences follow from the definitions of - JIG For any x E e and

any nxn matrix A,

Ilx1IG = JIG1 x11 2

IA G G A(G ) 1112; and

IA 112 = 11 (G ) 1AG 11G'
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A positive definite symmetric matrix G always has a square root matrix

G satisfying (G ) G = G. The square root of G is not unique. For

1_
example, let G 2= UTD U, where D is a diagonal matrix whose diagonal

entries are the eigenvalues of G and U is an orthogonal matrix whose

T
columns are the corresponding eigenvectors of G. Then, (G ) G =

U TDU = G. A square root matrix defined in this way is symmetric.

In general, however, the square root of G can be asymmetric: for

example, the Cholesky decomposition of G is generally not symmetric.

Let X(M) denote the set of eigenvalues of the nxn real matrix M.

If M is positive definite, then

T T T n
mi.(I) x x < x Mx < a () x x for everyxsR,

nan - - max

where

X . (R):= minimum eigenvalue of N, and

X max():= maximum eigenvalues of 4.

Because M is symmetric and positive definite, all of the eigenvalues of 1

are real and positive, and, hence, the minimum and maximum eigenvalues are

well-defined.

If A is an nxn nonsingular matrix, then (A1)T = (A T) -1, so the

definition

A-T:= (A1)T = (A )-1

is well-defined.
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Finally, if f:Rn + Rn is Gauteaux differentiable, we let Vf(x) denote

the nxn Jacobian matrix of f at x. The (i,j)th entry of Vf(x) is given by

[Vf(x)].. = f.(x).
LJ 3x. :1

J

If F:Rn - 1 is Gauteaux differentiable, the gradient of F at x is the

transpose of the column vector VF(x) with components defined by

[VF(x)]. = F(x), j
J

1.6 Outline of the Thesis

In this section, we briefly review the contents of the thesis.

Chapter 2 contains a unified summary of recent algorithmic research

on variational inequality problems. The review focuses on algorithms

designed to solve variational inequality problems that arise in net-

work equilibrium settings.

Chapter 3 considers a generalization of the steepest descent al-

gorithm for solving unconstrained variational inequality problems. In

this chapter, we show that if the problem mapping is affine, then the

method converges if M 2, the square of the matrix defining the affine

map, is positive definite. We also establish easy to verify conditions

on the matrix M that ensure that M is positive definite, and develop a

scaling procedure that extends the class of matrices that satisfy the

convergence conditions. In addition, we establish a local convergence

result for problems defined by nonlinear, uniformly monotone maps, and

discuss a class of general descent methods.
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Chapter 4 considers several algorithms that generalize first-order

approximation methods for solving convex minimization problems. We

devise a "contracting ellipsoid" method that solves a variational in-

equality problem by solving a sequence of quadratic programming problems.

We prove convergence of this algorithm for constrained problems defined

by uniformly monotone maps, and geometrically interpret the algorithm

in terms of a sequence of ellipsoidal level sets. The results of the

chapter also show that the subgradient algorithm for solving convex,

nondifferentiable minimization problems can be used to solve a max-min

problem that is equivalent to the variational inequality problem.

Finally, the chapter discusses a generalization of the Frank-Wolfe

method for solving variational inequality problems, and shows that a

variant of the Frank-Wolfe method will solve a certain class of

variational inequality problems.

Chapter 5 contains general conclusions that are drawn from the

results of the thesis. We describe geometrically the difficulties

that arise when nonlinear programming algorithms are adapted to solve

variational inequality problems, and show how we can avoid these pro-

blems by restricting the degree of asymmetry of the Jacobian of the

underlying problem map. Chapter 5 also suggests directions for future

research.
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CHAPTER 2

LITERATURE SURVEY

This chapter reviews recent algorithmic research on variational in-

equality problems. We divide the algorithms into four general categories:

(i) projection algorithms, (ii) nonlinear programming-based algorithms,

(iii) simplicial decomposition algorithms, and (iv) algorithms solving a

max-min problem that is equivalent to the variational inequality problem.

The purpose of this review is to present a unified summary of this algo-

rithmic research that will acquaint the reader with existing algorithms

for solving variational inequality problems, and, in doing so, will provide

a contextual framework in which to view the results of this thesis.

In order to motivate each type of algorithm, we begin each of the

following sections with a general overview of the class of algorithms des-

cribed in the papers reviewed in that section. We then discuss the speci-

fics of the algorithms described in each paper: the statement of the

algorithm, the assumptions under which the algorithm converges, the problem

settings for which the algorithm is well-suited, and the relationship be-

tween the algorithm and others.

Because the literature in the field-is extensive, we focus our dis-

cussion on algorithms designed to solve variational inequality problems

that arise in network equilibrium settings. Earlier research on variational

inequalities focused on the solution of partial differential equations.

(See, for example, Hartman and Stampacchia [1966], Lions and Stampacchia

[1967], Browder [1966], and Sibony [19701.) For earlier work on the

traffic equilibrium problem, see Beckman et al. [1956], Dafermos [1971],
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LeBlanc et al. [1975], Leventhal et al. [1973], Nguyen [1974], Florian [19761,

and Magnanti [1982].

2.1 Projection Methods

The variational inequality problem VI(f,C) is equivalent to the fixed

point problem

* * G * -l *
Find x E C satisfying x = PC[x -G f(x )],

CC

where G is any given symmetric positive definite matrix and P is the pro-
C

jection operator onto the set C with respect to the G-norm. To show that

these problems are equivalent, we first recall that z is the projection

of y onto the closed convex set C with respect to the G-norm if and only if

z E C and (x- z, z- y)G = (x- z) TG(z- y) > 0 for every x E C. (See, for

example, Kinderlehrer and Stampacchia [1980].) Consequently,

* C* -l * * * * * -1 *
x = P [x - G f(x )] if and only if x e C and (x-x , x - [x -G f(x

* -1 * * T *
= (x-x , G f(x ))G = (x-x ) f(x .)>0 for every x E C. Figure 2.1

illustrates this equivalence when G = I.

x
x-x*

x*- [x*-f (x*)] *

x*- f(x*) x*

C

Figure 2.1

Variational Inequality Problem as a Fixed Point Problem
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The reformulation of VI(f,C) as finding the fixed point of a projection

mapping motivates the use of projection algorithms to solve VI(f,C). The

general framework for these algorithms can be stated as follows:

Projection Algorithm

Step 0: Select x0 e C. Set k = 0.

Step 1: Given xk c C, let

k+l G k - k
x =Px)C

where w may be considered a "steplength."

Return to Step 1 with k = k+l.

*

This projection algorithm will find the solution x to VI(f,C) if:

(Sibony [19701)

(1) f is Lipschitz continuous and uniformly monotone;

(2) C is closed and convex; and

(3) the stepsize w is sufficiently small.

Since G is a positive definite symmetric matrix, the projection in step 1,

stated as minimizing the squared G-norm of x - [x -w) f(x )] over C,

reduces, after dividing by 2w and deleting the constant term, to the

convex minimization problem:

Min (x-xk )T f(x k) + (1/(2w))(x-xk ) G (x-x k

In general, the rate of convergence of these projection algorithms is

linear.

The first two papers in this section focus on the use of projection

methods for solving variational inequality problems in the traffic equili-
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brium setting. The third paper discusses a method to adapt the projection

method to solve variational inequality problems with monotone, but not

necessarily uniformly monotone, mappings.

2.1.1 Dafermos: "Traffic Equilibrium and Variational Inequalities ."

This paper suggests solving the variational inequality problem VI(f,C)

by solving a sequence of linear variational inequality problems that can be

k k k
reformulated as equivalent optimization problems. Let f (x)= G(x-x ) +wf (x ),

where G is a fixed positive definite symmetric matrix and the "stepsize" w

is a positive scalar. The mapping fk (x) is a linear approximation to f(x)

k
about the point x .

Algorithm

Step 0: Select x0 e C. Set k = 0.

k k+l
Step 1: Given x e C, let x solve the variational inequality

k
problem VI(f 9C).

k .k k
If x is a solution to VI(f ,C), stop: x solves VI(f,C).

Otherwise, return to Step 1 with k = k+l.

k k k
(To see that x solves VI(f,C) if x solves VI(f ,C), note that

k Tk k k T k k k k T k
(x-x ) f (x ) = (x-x ) [G(x -x ) + wf(x )] = w(x-x ) f(x ).)

Although not stated as such, this algorithm is a projection algorithm.

Because Vfk x) = G is a positive definite symmetric matrix, the k h sub-

problem VI(f kC) is equivalent to the convex minimization problem

T T k T k
Min (1/2)x Gx - x Gx + wx f(x ),
xsC

9 



which has the same solution as the convex minimization problem

k T k k T k
Min(l/(2w))(x-x ) G(x-x ) + (x-x ) f(x ),
xEC

since the objective function of the first problem is the objective function

of the second problem multiplied by a scalar and shifted by a constant.

This second minimization problem defines the projection PC k -- k
C

Thus, the variational inequality subproblem of Step 1 is, in fact, equiva-

lent to a projection.

Dafermos shows that the algorithm converges if the following assumptions

are satisfied:

(1) f is continuously differentiable and strongly monotone;

(2) C is a polytope;

(3) the constant w satisfies 0 < w < 2c/k, where

c satisfies (x-y)T[f(x)- f(y)]> c lx-y12 for every x, ye C, and

k is the maximum over C of the maximum eigenvalue of the

positive definite symmetric matrix [Vf(x)]TG [Vf(x) .

The rate of convergence under these assumptions is linear with convergence

1/2
ratio [1- (1/d)w(2c-kd)] , where d is the maximum eigenvalue of G.

Dafermos suggests two possible choices for the matrix G: G a diagonal

matrix or G "as close as possible" to the Jacobian matrix Vf (x).

2.1.2 Bertsekas and Gafni: "Projection Methods for Variational Inequali-

ties with Application to the Traffic Assignment Problem."

m m
In this paper, the authors show that if the mapping g:Y C R + R

and the set Y satisfy the three conditions stated at the beginning of this

section that guarantee that the projection method can be used to find a
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*
solution y to VI(g,Y), then the projection method can be used to find the

solution to the variational inequality problem VI(f,X), where XC Rn is

assumed polyhedral, f = ATgA:X C R + Rn, and A is a linear mapping from

R into R

This result is useful in the following situation. Suppose we are given

the variational inequality problem VI(g(y),Y), where g is Lipschitz contin-

m
uous and uniformly monotone. Instead of solving this problem over y F Y CR

suppose that we would prefer to make a linear transformation of the problem

and work in the space of x E X C Rn, where

y = Ax and Y = AX = {y:y = Ax, x E X}.

That is, we would prefer to solve the equivalent variational inequality

problem

* TT *
(x-x ) A g(Ax ) > 0 for every x c X

or, equivalently,

* T *
(x-x ) f(x ) > 0 for every x c X,

T
where f = A gA.

The results in this paper allow us to use the projection method to

solve the variational inequality problem in the space of x without making

any explicit assumptions about f. Rather, g must meet the required condi-

tions for convergence of the projection algorithm. (The mapping f need
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not inherit all of the convergence conditions imposed on g: In particular,

TT
the mapping f = A gA need not be uniformly monotone unless A TA is non-

singular.)

The paper discusses this situation in the context of the traffic equi-

librium problem. The projection algorithm devised by Dafermos [1980] for

this problem operates in the space of link flows. The authors note that

it is much less costly to carry out projection iterations in the space of

path flows than in the space of link flows. The results in this paper

allow the problem to be solved by the projection method in the space of

path flows as long as the cost function defined on the links of the network

meets the required convergence conditions.

The paper also presents a projection scheme that allows the matrix

norm to be modified whenever the algorithm has made "reasonable progress"

towards convergence.

2.1.3 Bakusinskii and Poljak: "On the Solution of Variational Inequalities."

Most algorithms for solving the variational inequality problem assume

that the mapping f is at least strictly, and usually uniformly, monotone

over the ground set C. As we have seen, under either of these assumptions,

the solution to the problem (if it exists) is unique. In this paper, the

authors consider solving VI(f,C) when f is a monotone, Lipschitz continuous

map. In this case, the solution to the problem is not guaranteed to be

unique. The set M of solutions to VI(f,C) is, however, convex and closed.

The authors discuss projection algorithms for VI(f,C) when f is a

point to set mapping from a Hilbert space into its dual space. The follow-

ing discussion summarizes only the results for problems with single-valued

maps. The projection algorithms in this paper treat explicitly a computa-
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tion (or approximation) error in approximating f(x k), and allow the step

size to vary at each iteration. Below we describe the three types of algo-

rithms proposed in the paper: (1) a basic projection algorithm; (2) a

regularization method; and (3) a method that alternately performs a regulari-

zation step and a projection step.

(1) The basic projection algorithm presented in the paper is

k+l k k
x = PC[x - ak(f(x ) + hk L

where PC is the projection operator onto C, hk is a vector of

computation errors and ak is the step length. The authors show

that the algorithm converges under several different sets of

assumptions. For example, the sequence x converges to the

unique solution x if

(i) C is closed, convex and nonempty;

(ii) f is a single-valued, hemicontinuous, strongly monotone

and Lipschitz continuous; and

(iii) the step size ak and the error size lhkI satisfy

several conditions.

(2) If f is monotone, the authors show that a regularization method

can be used to construct a sequence of variational inequality

problems, the solutions of which will converge to a point in the

set M of solutions. For a given uniformly monotone regularizing

operator g:C + Rn, the kth variational inequality subproblem is

VI(f ,C), where f (x) = f(x) + Ckg(x) + hk, and Ek > 0 for

k= 1,2,... are regularization parameters that approach zero as k o.
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k
The sequence {x } converges to the unique point in M that solves

VI(g,M) under the assumptions that

(i) C is closed, convex and nonempty, and

(ii) f is single-valued, hemicontinuous and monotone.

The authors note that Browder [1966] has developed a similar

result.

(3) The authors propose an improvement of the regularization method

which effectively combines the above projection and regularization

methods and which obviates the need to solve explicitly the se-

quence of variational inequality subproblems generated by the

regularization method. The sequence of iterates {x k} is given

by

k+l k k k
x = PC - ak(f(x ) + C g(x ) + hk

where the regularization parameter decreases on each iteration.

The sequence {x k converges (as in (2)) to the unique solution

to VI(g,M) under the assumptions of the regularization method

and (for example) if:

(i) f and g are Lipschitz continuous with the same Lipschitz

coefficient, and

(ii) Ok' Ek, and Ilhkil satisfy several conditions.

2.2 Nonlinear Programming-Based Algorithms

We have noted earlier that if the Jacobian of f(x) is symmetric on the

feasible region of the variational inequality problem, then f is integrable

and the problem can be reformulated as an equivalent minimization problem
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and solved using an appropriate nonlinear programming algorithm. This fact

motivates questions about whether nonlinear programming algorithms will

converge when less restrictive conditions are imposed on f.

The following works define conditions under which certain nonlinear

programming algorithms adapted to the variational inequality problem will

converge.

2.2.1 Ahn and Hogan: "On Convergence of the PIES Algorithm for Computing

Equilibria."

The authors analyze an iterative algorithm known as the PIES (Pro-

ject Independence Evaluation System) algorithm to compute equilibria in

economic equilibrium problems. When the market demand function is integrable,

the competitive market equilibrium problem they consider is equivalent to

an economic surplus maximization problem. The authors establish convergence

criteria for models for which the supply mapping is monotone and the demand

function is not necessarily integrable.

Thd main idea of the algorithm is to approximate the original market

equilibrium problem (formulated as a fixed point problem) with a sequence

of modified market equilibrium problems that have equivalent formulations

as optimization problems. The modified problem at each iteration is con-

structed by "diagonalizing" the market demand function.

We can restate the PIES algorithm for the general variational inequality

problem VI(f,C) as follows. Define an approximate mapping g(x,y) with com-

ponent functions g (x, y) = f. (y1 9y 2 '' .,'yi-' *i' i+1' ' 'n) for i= 1,2,,...,n.

Note that the ith component function of g depends only on x. The algorithm

can be stated as follows:

35



PIES Algorithm Adapted to the Variational Inequality Problem

Step 0: Select a feasible point x 0 C. Set k = 0.

k k+l
Step 1: Given x k C, let x solve the variational inequality

problem

k+1lT k+l k
(x-x ) g(x ,x ) > 0 for every x in C.

k+l k k *
If x = x , stop: x =x

Otherwise, return to Step 1 with k = k + 1.

The variational inequality subproblem in Step 1 has an equivalent

formulation as an optimization problem because the Jacobian of g(x,x ) is

diagonal, and, hence, symmetric. If C is a rectangular set (C= C 1xC2x...XC n

where each C. C R ), then the problem is particularly easy to solve because

it separates into n one-dimensional variational inequality problems of

k+l k+l T k k+l k
finding x satisfying (x - x ) f (x ,...,x ,.,Xn) > 0 for every

x. e C.. Note that if f is integrable, the PIES algorithm is simply the
1 1

nonlinear Jacobi method applied to the equivalent maximization problem.

The authors prove that the algorithm is globally convergent when the

demand function is linear and the supply function is monotone, and that it

is locally convergent when the demand function is nonlinear and the supply

function is monotone. In terms of the variational inequality problem

VI(f,C) local convergence results can be obtained under the following

assumptions:

(i) C is convex;

*

(ii) a solution x exists;

(iii) f is differentiable on C and f //x (x) > 0 everywhere on C;
1
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*
(iv) f is continuously differentiable in a neighborhood of x

*
and 3f ./ x. (x ) > 0 for every i; and

(v) s = JID-1/2 BD-1/2 112 < 1, where D = diag(Vf(x )), B= Vf(x )-D.

Although this interpretation of the local convergence proof is not given in

the paper, we can view the general idea of the proof in the following way.

(See Chapter 4 for a formal description of this proof technique). The

*
proof shows that if the initial iterate is sufficiently close to x , then

k k * * T k
for each x , g(xx ) points away from x ; i.e., (x -x) g(x,x ) < 0 for

every x e C satisfying Ilx-x 112 > r II x -x 112, where r is a given constant

less than 1. Since any such x cannot solve the approximate variational

inequality problem in Step 1; xk+l must satisfy 11 x k+l-_x * 112 < r llxk-x 112
k *

and the convergence of the sequence {x } to x follows from the contraction

mapping theorem.

2.2.2 Dafermos: "An Iterative Scheme for Variational Inequalities."

This work considers a general iterative scheme to solve the finite-

dimensional variational inequality problem VI(f,C). The proposed scheme

generalizes projection, linear approximation, and relaxation (Jacobi) methods.

Each of these methods generates a sequence of iterates {x k} in C that, with

*

suitable assumptions imposed on f(x), contract toward the solution x with

respect to a given matrix norm. The general scheme given in this paper

allows the matrix norm to vary at each iteration. Dafermos shows that the

sequence of iterates {xk I generated by the algorithm satisfies

l1x k+1_i k+l < r lixk xIk-l for some r E [0,1), where { 1 - Ilk} is a se-

quence of norms in Rn induced by a sequence of symmetric positive definite

matrices {Gk .
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Generalizing Ahn's nonlinear Jacobi method, the iterative scheme con-

sidered here defines a mapping g(x,y) that approximates f(x) about a point

y so that (i) g(x,x) = f(x) for every x c C, and (ii) the variational in-

equality problem solved at the k h iteration, namely,

k+l k+l T k+l k
find x E C satisfying (x-x ) g(x ,x ) > 0 for every x E C,

is easy to solve.

This general algorithm converges if the following assumptions are

satisfied:

(1) C C R is compact and convex;

(2) f : C + Rn is continuously dif f erentiable; and

(3) there exists a "smooth" mapping g(x,y)R:CxC satisfying

(i) g(x,x) = f(x) for every x in C;

(ii) for every fixed x c C and y S C, the nx n matrix

g (xy) is symmetric and positive definite; and

(iii) Sjg 1/2(xY(x 2 y)g/2 (x 3Y3 )112 < 1 for

every x1,y1 ,x2,y2,x3,y3 in.C.

(Note: Dafermos shows that this norm condition on g implies that f(x) is

strictly monotone.)

The algorithm proceeds as follows.

Algorithm

Step 0: Select a feasible point x 0 C. Set k = 0.

Step 1: Given xk c C, let x k+ solve the variational inequality

problem

k+1lT k+l k
(x-x ) g(x ,x ) > 0 for every x in C.

Return to Step 1 with k = k + 1. I
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Since g (x,y) is a symmetric positive definite matrix for every x E C

and y c C, g(x,y) is the gradient with respect to x of a strictly convex

(in x) functional F(x,y), i.e., g(x,y) = F (x,y). The kth variational in-
x

equality subproblem is, therefore, equivalent to the convex minimization

problem

Min F(x,x k
xSC

and can be solved using nonlinear programming techniques.

The algorithm reducea to the nonlinear Jacobi method (see Ahn and

Hogan [1982], for example), if we define g(x,y) = f (y ,.. .,y. x ,yi+1

The algorithm reduces to the nonlinear Gauss-Seidel method (see Pang

and Chan [1982], for example) if we define g(x,y) by g (xy)=f (x,x 2 .''

x ,~yi+19''' n). In this case, the requirement that the matrix g (x,y) be

symmetric is clearly too stringent, since this matrix is lower triangular.

In fact, the assumption that g (x,y) is symmetric is not necessary for the

proof of the algorithm. This symmetry assumption does, however, ensure

that the variational inequality problem subproblem of Step 1 can be solved

as an equivalent convex minimization problem.

If g(xy) = f(y) + (1/w)G(x-y), then the algorithm reduces to the

projection method

k+l G k -l k
x =PxC

where P (z) is the projection of the point z onto the set C with respect
C

to the G norm and w is a positive "steplength." (See Section 2.1)
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The algorithm reduces to the linear approximation method: x k+ solves

the variational inequality problem

k+ T k k+l k k k k
(x-x ) f (x ) > 0 where f (x) = f(x ) + A(x )(x-x )

if g(x,y) = f(y) + A(y)(x-y), where A(y) is an nxn matrix which depends

continuously on y. (See, for example, Pang and Chan [1981).) This method

is a Newton method when A(y) = Vf(y).

2.2.3 Florian and Spiess: "The Convergence of Diagonalization Algorithms

for Asymmetric Network Equilibrium Problems."

In this paper, the authors recast the nonlinear Jacobi method studied

by Ahn [1979] in the traffic equilibrium setting. In this context, f (x)

represents the cost incurred by a single vehicle traversing arc i when x is

the arc flow pattern on the network.

The "diagonalization" algorithm presented is an adaptation of the

PIES algorithm to the variational inequality problem as presented in

Section 2.2.1, and the proof of convergence is demonstrated under the

assumptions stated in that section.

The authors note that when this diagonalization algorithm is used to

solve the multimodal fixed demand network equilibrium problem, the varia-

tional inequality subproblems decompose by mode.

2.2.4 Pang and Chan: "Iterative Methods for Variational and Complemen-

tarity Problems."

This work studies the family of iterative linear approximation

methods to solve the variational inequality problem VI(f,C). These methods

generate a sequence of iterates by solving linear variational inequality
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subproblems. The k th iteration of the algorithm approximates f(x) in a

neighborhood of xk with a linear mapping. The solution of the variational

inequality problem over C with this approximate mapping is the (k+l)st

iterate, x k+1. The algorithm can be stated as follows:

Linear Approximation Algorithm

Step 0: Find a feasible point x E C. Set k = 0.

Step 1: Given xk c C, let f k(x) be the linear mapping

k k k k
f (x) = f(x ) + A(x )(x-x ),

where A(x ) is an nx n matrix depending continuously on x .

k+l
Step 2: Let x solve the linear variational inequality problem:

(x-xk+ T fk (x k+1) > 0 for every x e C.

Return to Step 1 with k = k + 1.

A number of well-known methods can be implemented as linear approxi-

mation methods:

k k
(1) Newton Methods: f(x) is assumed-differentiable and A(x )Vf(x );

(2) Quasi-Newton Methods: A(x ) is an approximation to Vf(x ); and

(3) Projection Methods: A(x k) = G for every k, where G is a fixed

positive symmetric nxn matrix. In this case, the solution xk+1

to the kth linear subproblem is the projection onto thd set C of

the point x k-G f(x k) with respect to the G norm.

Let L(x), U(x), and D(x) be respectively the strictly lower, strictly upper,

and diagonal parts of the matrix Vf(x).

(4) Linearized Jacobi Method: A(x ) = D(x k

(5) Linearized Gauss-Seidel Method: A(x k)= L(xk )+D(x k) or

k k k
A(x ) = U(x ) + D(x );
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k k k
(6) SOR (Successive Overrelaxation) Methods: A(x ) = L(x )+ (1/w)D(x )

or A(x k) = U(x k) + (1/w)D(x k), where w c (0,2) is a relaxation

parameter.

The authors prove local and global convergence under several different

sets of conditions. The main result assumes the following assumptions for

local convergence:

(1) C is closed and convex;

(2) f(x) is continuous;

(3) A(x) is continuous;

(4) there exists a positive definite matrix G satisfying

*
(i) A(x ) - G is positive semi-definite (and, hence, since G

is positive definite, so is A);

(ii)IG [f(x) - f(y) - A(y)(x-y)]1 < b 1 x-yQ for some b < 1

(i.e., the linear approximation is "good" in some neigh-

borhood of x with respect to the G-norm) for all x,y in

some neighborhood of x

Global convergence of the linear approximation algorithm follows from

conditions (1) and (2) above and the conditions

(3') A(x) is bounded on compact subsets of C; and

(4') 1 (x) - f(y) - A(y)(x-y)]II < bj x-y II for some b < 1 forhG~~ [fG ~y l
all x, y in C (i.e., the linear approximation is "good" every-

where on C).

The paper also discusses the nonlinear Jacobi method. The assumptions

and the proof of convergence are very similar to those given in Ahn's study

of the PIES algorithm. In particular, both papers assume that f satisfies

the norm condition ID-1/2 BD- 1/2 2 < 1, where D > 0 and B are, respectively,

*
the diagonal and off-diagonal parts of Vf(x ). Pang and Chan specify a
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sufficient condition for this norm condition to hold. The condition is

*
particularly easy to verify: if Vf(x ) is row diagonally dominant and

strictly column diagonally dominant (or column diagonally dominant and

strictly row diagonally dominant) and has positive diagonal entries, then

1D-1/ 2 BD-1/ 2 112 < 1'

Although the authors do not discuss methods to solve the linear varia-

tional inequality subproblem encountered in Step 2 of the algorithm, they

note that there are many efficient algorithms to solve linear variational

inequality problems. In particular, if C is polyhedral, the linear varia-

tional inequality prbblem can be reformulated as a linear complementarity

problem and solved using any algorithm for the linear complementarity prob-

lem. They mention that Eaves [1978b,c] and Pang [1981] have recently

developed algorithms specifically designed to solve linear variational

inequality problems over polyhedral sets. Aashtiani and Magnanti [1982]

report computational results for algorithms for this problem.

The authors state a number of other sets of conditions that imply

convergence of the linear approximation algorithm. Some of these conditions

are particularly well-suited for showing convergence of some of the methods

(e.g., Newton's, Quasi-Newton's, linearized Jacobi) mentioned above. For

example, local convergence of Newton's method follows under conditions (1)

*
and (2) above and the condition that Vf(x ) is positive definite. Moreover,

* * k
if f(x ) is Lipschitz continuous at x , then the sequence {x } generated

*
by Newton's method converges quadratically to the solution x

2.2.5 Pang and Chan: "Gauss-Seidel Methods for Variational Inequality

Problems over Product Sets."

This paper considers linear and nonlinear Gauss-Seidel type itera-

tive methods to solve the variational inequality problem VI(f,C), where
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n.
CC R is a product set; i.e., C = C xC x.. .xC , where C. C R and n. > 1

1 2 m 1 1
m

for i = 1,...,m, and E n. = n.

i=l
The nonlinear Gauss-Seidel method generates a sequence of iterates

{x } as follows:

k k k k+1 ni
Given x = (x , ...,x) and x. for i < j :_n (where x. S C, CR ),

1 m1 1 -

let xk+ solve the following nonlinear variational inequality problem over

C.:
J

k+1 T kj
(x. - x. f (x 9J) > 0 for every x. E C.,
J J J J J

kj k+l k+l k k
where x (x1  ,...,x ,xj+i''' 'Xm)'

The algorithm is locally convergent if

(1) C. is nonempty, closed, and convex for i =

(2) f is continuously differentiable;

(3) a solution x to the variational inequality problem VI(f,C)

exists; and

(4) there exist positive definite matrices G. for i = 1,...,m such
* .- -

that V.f,(x ) - G. is positive semi-definite andlIG BG 'j < 1,
1 1 1

where

*
G 0 V1f1 (x ) 0

*
G = 2 and B = Vf(x) - 2 f2(X

-*
0 G 0 V f (x

m m m

and the matrix norm hAil is the "block-" norm induced by the

"block-o " vector norm defined by

jixjl = Max lx i112
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That is, hAil = Max hiAx = Max Max 11 (Ax) J 12
1x=1 l<i<m 1lx1l=1

If we assume that each C. is contained in R 1, then condition (4) re-

duces to D > 0 and ID-1/2 BD-1/2 100 < 1, where D = diag Vf(x ), B = Vf(x )-D,

and 11 -11 is the usual matrix c -norm.

The proof of the nonlinear Gauss-Seidel method uses arguments similar

to those in Ahn's convergence proof of the nonlinear Jacobi method.

The linear Gauss-Seidel method generates a sequence of iterates xk

as follows:

k k+l k+l
Given x and x. for i < j < n, let x solve the linear varia-

1 - j+l

tional inequality problem over Cj+1

k+l T k j k~j k+1 k
(x. - x+l ) [((x J) + A.(x )(x. - x. )] > 0

S1 3 j+1 j+

where A .(x) is an n .xn . matrix depending continuously on x and xk,j is

defined above.

Results similar to those in Pang and Chan [1981] are given for var-

ious choices of the mapping A..

2.2.6 Rockafellar: "Lagrange Multipliers and Variational Inequalities."

In this paper, the author shows that by "discretizing" the ground

set C (i.e., approximating C by a finite set of convex inequalities) and

introducing Lagrange multipliers, VI(f,C) can be formulated as a general-

ized set of Kuhn-Tucker optimality conditions, and, hence, as a nonlinear

complementarity problem. Both of these formulations suggest computational

procedures to solve the problem. This paper, for example, focuses on

penalty-duality methods to find a solution satisfying the generalized Kuhn-
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Tucker conditions far the problem. (Auslender [1976] and Bakusinskii [1979]

also discuss penalty methods for this formulation.)

In order to establish the optimality conditions for the problem, we

approximate the ground set C with the finite set of constraints C0: =

IX Rn:gx O,...0g(x) < 01 , where each g is a convex, differentiable

n
function. Let g(x) = (g ,... ,gm(x)) and assume that some point x E R

*
satisfies g(x) < 0. Then x is a solution to VI(f,C0 ) if and only if

* *
-f(x ) is in the normal cone to C 0 at x ,which is true if and only if

* *
-f (x ) is a positive linear combination of the gradients Vgi(x) of the

* * n
active constraints at x ; i.e., if and only if x F R and there exists a

* m
u e R satisfying

* * *
f(x) + Vg(x )u =0,

*
g(x ) < 0,

*
u > 0,

and

* T *
(u ) g(x ) = 0.

The author describes an extension of the Iestenes-Powell penalty-

duality method to solve this system of inequalities. At each iteration,

the method must find an unconstrained zero of an augmented Lagrangian func-

tion. A simple updating rule uses the solution to this subproblem to pro-

duce the next iterate. The problem with using this method to solve varia-

tional inequality problems (as opposed to optimization problems) is that

the convergence proof assumes that the zero to the unconstrained augmented

Lagrangian found at each iteration is an exact solution to the subproblem.
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The author proposes using the proximal method of multipliers, a modi-

fied version of the Hestenes-Powell algorithm, to solve VI(f,C0 ). In this

case, the algorithm must find an approximate unconstrained zero of an aug-

mented Lagrangian at each iteration. (The subproblem reduces to finding

the proximation of the Hestenes-Powell augmented Lagrangian if f is a

gradient mapping.) The rate of convergence of the method is linear for

"almost all" variational inequality problems. Luque [1984] analyzes the

asymptotic rate of convergence of proximal point algorithms.

Rockafellar also shows that the generalized Kuhn-Tucker optimality

conditions for VI(f,C0 ) can be formulated as a nonlinear complementarity

problem. He shows that if f is monotone and continuous and each g. is

convex, then the mapping of the nonlinear complementarity problem is mono-

tone and continuous relative to the nonnegative orthant. However, the map

of the complementarity problem cannot be uniformly monotone (even if f is)

unless the problem is unconstrained, and cannot be the gradient of any

function, even if f is. As Rockafellar points out, this result indicates

a natural way in which nonlinear complementarity problems (and, hence,

variational inequality problems) with neither uniformly monotone nor gra-

dient-type maps arise in optimization theory.

2.2.7 Luthi: "On the Solution of Variational Inequalities by the

Ellipsoid Method."

This paper extends the ellipsoid method of linear programming

(Khachiyan [1979]) to solve VI(f,C). It assumes that the ground set C is

n
a nonempty, closed, convex subset of R and that f is continuous and mono-

tone. Under these assumptions, the solution set to VI(f,C) is the set
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* * T
N = {x E: C: (x - x ) f(x) > 0 for every x E C}

= q {x e C: (x - x )T f (x) > 01,
xeC

*

which is closed and convex. (Note that this formulation replaces f(x )

in the variational inequality problem with f(x). This replacement is

valid for problems with continuous, monotone maps: see Section 2.4.)

Relying on this reformulation, Luthi describes the ellipsoid al-

gorithm for VI(f,C) as follows:

We start with the convex body C included in a ball S(a0,R) = E0

and the monotone continuous mapping f. In the k-th step there

will be a smaller set Ck of C which includes the solution set to

V(f,C) and is contained in the ellipsoid Ek with center xk'

its center xk j C, then we generate a hyperplane through xk which

avoids C. This hyperplane cuts Ek into two halves. We pick the

[half including] Ck and include it in a new ellipsoid Ek+1'

"smaller" than EK. In the case x keC, we cut with the hyperplane

f (xk) Tx = f (x)Tx similarly and take the part with f (Xk) k f( T x

to be included in the new ellipsoid. ...

The volumes of the ellipsoids Ek will tend to 0 exponentially and

this, with the assumption of strong monotonicity, will guarantee

that a subsequence of these centers xk which are in C will tend

to a solution exponentially fast.

When the ellipsoid method is used to solve linear programs, a non-

degeneracy assumption must be imposed on the problem to ensure that the

ellipsoids do not converge to a hyperplane by becoming "flatter and

flatter." When the algorithm is extended to solve VI(f,C), imposing a

uniform monotonicity condition on f avoids this problem.

48



2.3 Simplicial Decomposition Algorithms

A general simplicial decomposition algorithm (see Von Hohenbalken

[1977], for example) is an iterative method that alternatively solves a

master problem and a subproblem. The subproblem generates (in some cases

affinely independent) points contained in the feasible region of the

original problem; the master problem solves a restricted version of the

original problem over the convex hull of these "generator" points and may

reduce the set of feasible points generated by the previous subproblems

by dropping points that are not needed to represent the current solution

of the restricted master problem. In the general framework developed by

Geoffrion [1971], the subproblem represents the "inner linearization" of

the feasible region (the approximation of the feasible region by the

convex hull of points contained in the feasible region); the master problem

represents a "restriction" of the original problem (the original problem

is solved over a restricted subset of the feasible region). The master

problem is usually expressed in terms of the barycentric coordinates of

the set of generator points that define the restricted feasible region.

The following works describe algorithms that belong to the general

class of simplicial decomposition algorithms.

2.3.1 Smith:"The Existence and Calculation of Traffic Equilibria" and

"An Algorithm for Solving Asymmetric Equilibrium Problems with a

Continuous Cost-Flow Function."

In these companion papers, Smith develops a simplicial decomposition

algorithm to solve the traffic equilibrium problem and proposes an al-

grithm to solve the restricted master problem. Smith's algorithm consists

of an outer algorithm that generates an extreme point of the feasible
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region at each iteration, and an inner algorithm that solves the variational

inequality problem over the convex hull of the previously generated extreme points.

General Algorithm

Outer Algorithm (Generates extreme points)

Step 0: Select x0 F C.

Step 1: Given, xk e C, let vk be a solution to the problem

Min (x - xk)T f(x )
xsC

k Tk k T k . k *
If (x ) f(x ) = (v ) f(x ), stop with x = x

Otherwise, go to Step 2.

Inner Algorithm (Solves a variational inequality problem over a

restricted feasible region).

Step 2: Let xk+1 solve the variational inequality problem

1 k . k+1
over the convex hull of v ,...,v ; i.e., x

satisfies (v - xk+l ) Tf(x k+l) > 0 for i = 1,...,k.

Go to Step 1 with k=k+l.

If C is assumed polyhedral, the minimization problem of Step 1 is a linear

program. Smith's major contribution in these papers is a method for solving

the restricted subproblem of Step 2. The inner algorithm is capable of

solving a variational inequality problem over a feasible region whose ex-

treme points are all known. It uses an objective function V(x k) that

measures the "departure from equilibrium" (i.e., the distance from the

solution x ) of a point xk in the feasible region, and defines a direction

of descent Ak from xk for the function V(x). Because the algorithm requires

that all extreme points of the feasible region are known, which is unlikely

to be met in practice, it would be useful only in conjunction with an extreme
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point generating scheme such as that presented here.

Smith formulates the problem over a feasible set C = SflD defined by an

open, convex, bounded set SCRn and a closed and convex set DCR. If DOS

no further conditions on the feasible region are necessary. If D S, a co-

ercivity-type boundary condition is required to ensure that a solution exists.

If we assume that the variational inequality problem is defined over a con-

vex and compact ground set C, then the results require no boundary condition.

The conditions for convergence are, therefore:

(i) C is convex and compact; and

(ii) f is continuously differentiable and monotone on C. (Note that

strict monotonicity is not required).

Given a finite set of extreme points {v }, the function

k i T + 2
V(x) = ([(x - v ) f(x)] ) ,

i=l

where [c] = Max{O,c}, measures the departure from equilibrium of any point

x in the convex hull of the v . Note that V(x) > 0 for every x e C, and

V(x) = 0 if and only if x is an equilibrium point in the convex hull of

the v . Let A: Rn + R be the direction given by

k i T +- i
= ([(x-v ) f(x)] (v - x) k .

k~x = = a .(V- x) where a. > 0, and
E [(x - v ) f(x)] i1

i~l k
i=IfI ft. = 1.

i=l1

If f is monotone, then the directional derivative of V(x) in the
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direction A(x) is negative, because

A(x)VV(x) < -2V(x),

and V(x) < 0 if x is not an equilibrium point. Therefore, A(x) is a descent

direction for V(x) from any nonoptimal point x.

Algorithm (Used to solve the inner problem.)

Step 0: Select xO c C. Let 6 = 0. Set i = 0.

Step 1: Given (x , 6.), where x e C and 6.c(0,1];

if V(x + 6.A(x )) < (1 - 6.)V(x ),

1 1

then x il = x + 6.A(x ) and

i+1 i

if V(x' + 6.A(x)) > (1 - )V(X3,

i+1 athen {x =; x an

Return to Step 1 with i = i + 1.

These papers also prove convergence for this algorithm when the re-

stricted subproblem is approximately solved. This property is of practical

importance because it is unrealistic to assume that the restricted variational

inequality problem could be solved exactly at each iteration.
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2.3.2 Lawphongpanich and Hearn: "Simplicial Decomposition of the

Asymmetric Traffic Assignment Problem"

The general framework of the algorithm presented in this paper is

similar to that of Smith's [1983a,b] algorithm (described in the last sub-

section). In general terms, at each iteration, the algorithm

(1) approximately solves a "master" variational inequality problem

over the convex hull of the current set of "generator points",

and

(2) solves a linear programming subproblem. If the solution from

(1) is not optimal, the algorithm adds this solution to the

current set of generator points. Furthermore, if the "gap

function" (as defined below) evaluated at the current linear

program solution is sufficiently smaller than the gap function

evaluated at all previous linear program solutions, the proce-

dure drops all generator points with zero weight in the ex-

pression of the current linear program solution.

Let f be a monotone, continuous map. The gap function G(x), used to measure

the departure from equilibrium of the point x E C, is defined as

G(x) = (x - y Tf(x)

where y x solves the linear program:

Min yT f(x).
yEC

From the definition of y , G(x) > 0 for every x c C; moreover, G(x) = 0

if and only if x solves the variational inequality problem.

The authors suggest solving the restricted master variational inequality

problem using the projection method of Bertsekas and Gafni [1980] described

earlier. This method allows the linear transformation of the variables
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m
from x e C to z c Z, where x = Az and Z = {z: E z. = 1 and z. > 0 for

i=l11

i = l,...,m}. Here, the z. give a coordinate representation of the vector

x in terms of the extreme points. (A is an nxm matrix whose columns are

the m extreme points of C.) If f(x) is Lipschitz continuous and strongly

monotone in the space of x, then Bertsekas and Gafni's projection algorithm

will solve the variational inequality problem in the coordinate space of z.

Computational results in the paper compare this algorithm with that

of Nguyen and Dupuis [1981] and Bertsekas and Gafni [1980] for four test

problems. The results are promising: the algorithm tends to generate and

retain very few extreme flow patterns.

2.3.3 Pang and Yu: "Linearized Simplicial Decomposition Methods for

Computing Traffic Equilibria of Networks"

This paper describes a simplicial decomposition method to solve the

finite-dimensional variational inequality formulation of the traffic

equilibrium problem. The general scheme is as follows:

Each iteration of the algorithm

(1) solves a linearized version of the.variational inequality

problem over the convex hull of a set of "generator" extreme

points of the feasible region; and

(2) solves a linear program to test for optimality. If the solu-

tion from (1) is not optimal, the procedure adds the solution

of the linear program to the current set of generator extreme

points. (Certain points may also be dropped from the current

set of generator points.)

The algorithm is a modified version of the Dantzig-van de Panne-

Whinston algorithm (van de Panne and Whinston [1969]) for quadratic pro-
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gramming problems. (Pang [1981] shows that using this algorithm to solve

a quadratic program produces the same sequence of primal feasible flow

vectors as the sequence produced by Von Hohenbalken's simplicial decomposi-

tion algorithm [1977] specialized to the same quadratic programming problem.)

Placing this algorithm in the simplicial decomposition framework eliminates

the need to compute shortest paths, which may be time consuming.

The authors prove local and global convergence for the algorithm and

provide extensive computational results. These results indicate that the

method is quite promising for solving large-scale equilibrium problems.

2.4 Algorithms Based on Reformulating the Variational Inequality Problem

as a Max-Min Problem

If f is monotone and hemicontinuous, then VI(f,C) has a number of

equivalent formulations. In particular, VI(f,C) is equivalent to two

"max-min" problems. Thus, even if VI(f,C) is not equivalent to a convex

minimization problem in the "usual" way discussed in Section 1.3, it still

is possible to reformulate the problem as a nonlinear programming problem.

Theorem 2.1 (Auslender [1976]).

Let C be closed, convex and nonempty. If f is monotone and hemicontinuous

on C, then the following problems are equivalent:

* * T *
Find x * C satisfying (x - x ) f(x ) > 0 for every x c C. VI(f,C)

* * T
Find x £ C satisfying (x - x ) f(x) > 0 for every x e C. VI'(f,C)

* T
Find the solution x to max min (y-x) f(x). MM(fC)

xEC yEC

Find the solution x to max min (y - x) Tf(y). MM'(fC)
xeC yeC
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(Hearn, Lawphongpanich and Nguyen [1983] discuss a "duality relationship"

between the two max-min formulations.)

Corollary

Let C and f satisfy the conditions specified in Theorem 2.1. Then the set

M of solutions to VI(f,C) is closed and convex (and possibly empty).

T
Let g (x) = (y - x) f(x), and G(x) = min g (x). Then MM(f,C) is equiva-

yEC
lent to the nonlinear maximization problem

Max G(x)
xEC

The function G(x) is, in general, not concave. For a given x, determining

G(x) requires minimizing a linear objective function over C: this is a

linear program if C is polyhedral.

Let h (x) = (y - x)T f(y), and H(x) = min h (x). Then MM'(f,C) is

ye:C

equivalent to the nonlinear maximization problem

Max H(x).
xEC

Since H(x) is the pointwise minimum of functions that are linear in x, it

is concave. Thus, MM'(f,C) is a convex programming problem. If f is affine,

determining H(x) for a given x requires minimizing a convex quadratic func-

tion over C. In general, the function h y(x) is not convex.

The papers in this section consider using nonlinear programming al-

gorithms to solve the variational inequality problem stated in a max-min

formulation. The first two papers discuss algorithms that approximate
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H(x) by the minimum of a finite number of functions at each iteration. The

third paper discusses algorithms to solve the nondifferentiable, nonconvex

minimization problem of minimizing -G(x) over C. The last paper describes

two descent methods: one for solving an unconstrained variational in-

equality problem, and one for solving a constrained variational inequality

problem by maximizing G(x) over C.

2.4.1 Auslender: Generalization of the Zuhovickii-Polyak-Primack (ZPP)

Method

Zuhovickii, Polyak and Primack (1969] developed a method for solving

n-person games. Auslender generalizes this method to solve VI(f,C) as

follows:

Algorithm

Step 0:

Step 1:

Select a feasible point x 0 C. Set k = 0.

Givenx 1  k k+lGienx .. x, let x solve

Max H k x
xeC

where

Vk(x) Min{(x -x) f ): i = ,

k+l i k+l
If x = x for some i < k, stop: x

equality problem.

Otherwise, return to Step 1 with k = k+l.

solves the variational in-

I

Auslender shows that if
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(1) f is continuous and uniformly monotone on C, and

(2) C is convex and compact,

then this algorithm either terminates after a finite number of steps with

N * k
x = x , or it generates an infinite sequence {x I containing a subsequence

*
that converges to x

The subproblem

Max Hk(x)
xEC

is a convex programming problem with a piecewise linear objective function.

The problem can be reformulated with a linear objective function as

follows:

Max z

subject to: (x - x)T f(x i) > z i = 0,,...k

x E C.

If C is polyhedral, the subproblem is a linear program.

To interpret the method geometrically, consider the max-min formula-

tion of VI(f,C) introduced earlier:

Max Min (y - x) Tf(y). M' (fC)
xeC yEC

*
As noted in Theorem 2.1, if f is a monotone hemicontinuous mapping, thenx

*
solves MM'(f,C) if and only if x solves VI(fC). Letting H(x) =

Min (y - x)T f(y), we can consider Hk(x) as a piecewise linear approximation
yrC
to H(x). As illustrated in Figure 2.2, this approximation is not obtained

k
by making a tangent plane approximation to H(x) at each x .Instead, each
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plane r = (xk _ x)T f(x k) passes through the point x = xk and r = 0.

,e r = (xl-x)Tf(xl)

A
,

H3(x)
x4 x* x3

r = (x2_ T f(x 2

NX2

H(x)

X

1r= (x3_x)Tf (X3)

Figure Z.Z

Hk(x) is a Piecewise Linear Approximation to H(x)

2.4.2 Nguyen and Dupuis: "Un M6thode Efficace de Calcul d'un Trafic

D'Equilibre dans le Cas des Couts Non-symetriques."

The authors present a cutting plane algorithm to solve the variational

inequality problem VI(f,C), and show that the algorithm fits into the frame-

work of Zangwill's [1969] general cutting plane method. Our discussion

will reinterpret this algorithm as a modification of Auslender's generaliza-

tion of the ZPP method. On the kth iteration, Auslender's algorithm moves

to the solution of the subproblem {Max Hk(x): x E C}. In contrast, this

k k k
modified procedure moves to the point on the line segment [x , y ], where x

is the previous iterate and yk is the solution of the subproblem, that solves
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k k
a one-dimensional variational inequality problem on [x , y k. This modified

algorithm can be stated as follows.

Algorithm

Step 0: Select a feasible point x0 c C. Set k = 0.

0 1 k ltk
Step 1: Given x , x ,...,x, let y solve the problem:

Max Hk(x),
xsC

where

Hk(x) = Min{(x - x) f(x ): i = 0,1,...,k}.

k k *
If Hk(y) < 0, stop: y = x

Otherwise, go to Step 2.

Step 2: Let wk solve the one-dimensional variational inequality

k k
problem on the line segment [x , y k: wkE[O,1] satisfies

[[(1 - w)xk + -k][ - wk k + wk Tf[( 1  wk)x

+w k ] > 0 for every we[0,1].

That is, (wk - w)(x k yk)Tf[(1 - wk)x + wk

for every wE[0,1]. Go to Step 1 with xk+l k

+ wk yk and k = k + 1.
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Nguyen and Dupuis show that if

(1) f is continuous and strictly monotone on C, and

(2) C is a nonempty polytope,

then the algorithm either terminates in a finite number of steps with the

* k
solution x , or it generates an infinite sequence {x } that contains a sub-

*
sequence converging to x

Since C is assumed to be polyhedral, the subproblem of Step 1 is a

linear program. The authors use a combination of Dantzig-Wolfe decomposition

and the dual simplex method to reoptimize the linear program from the kth

to the k+lst iteration. To solve the one-dimensional variational inequality

problem in Step 2, they suggest using Newton's Method to calculate the root

of the equation

k k T k k
(x -y ) f[(l-w)x + w yJ =0.

They note that their procedure is the only convergent algorithm under the

hypothesis of continuity and strict monotonicity that does not require

the resolution of a convex or quadratic subproblem.

This method appears to be quite promising. The linear program sub-

problem is easy to solve, yet contains a great deal of information. On

the k h iteration, the subproblem

Max Min (x - x) f(x )
xcC i=1, .. k
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considers all of the points previously generated, and the value of the

function f at each of these points. (In contrast, the Frank-Wolfe method

looks myopically at f(x k).) Although the maximization in this subproblem

is over all x c C, the candidates for the solution are restricted to the

set

Sk = {x C C:(x - x) f(x ) > 0 for i = 0,1,...,k}.

Thus, the size of the feasible region decreases at each iteration.

2.4.3 Marcotte: "A New Algorithm for Solving Variational Inequalities

over Polyhedra, with Application to the Traffic Assignment Problem"

The author reformulates VI(f,C) as the equivalent minimization

problem

min g(x), where g(x) = max (x - y)T f(x).

xsC ysC

The "gap" function g(x) is, in general, nondifferentiable and nonconvex.

Marcotte develops two versions of an algorithm based on nondifferentiable

optimization techniques to minimize g(x).

The algorithms rely on the following result. Let R(x) be the set of

solutions to the linear program max(x - y)T f(x). Then, for any x x in
yEC

C, there exists a convex combination of extreme points of R(x) such that

the direction from x to that point is a descent direction for g(x). If C

is polyhedral and all of the extreme points of R(x) are known, a linear

programming subproblem can be used to find a linear combination of the ex-

treme points which gives a "steepest" descent direction for g(x). If the

extreme points are not all known, then they can be generated as required by

the procedure.
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2.4.4 Auslender: Descent Algorithm-Based Methods

Auslender has developed algorithms to solve VI(f,C) that are based on

descent methods to solve nonlinear programs. Consider the nonlinear pro-

gram

Min F(x) (NLP)

xEC

where

(1) C is a nonempty closed convex subset of Rn

(2) F:C C Rn -*n is finite, cortinuous and inf-compact (i.e.

the level sets S = {x c CIf(x) < a} are compact for every

a c R) on C; and

(3) the directional derivative F'(x;y-x) exists for all x,ycC.

A necessary condition for x c C to solve this minimization problem is that

x is a stationary point of the problem, i.e. that

F'(x; y - x) > 0 for every y e C.

(This condition is also sufficient if F is convex on C.)

The general framework for the descent methods to find stationary points

of the problem (NLP) is as follows:

Descent Algorithm

Step 0: Select x0 c C. Set k = 0.

Step 1: Given xk c C, let dk c D(xk). (The point to set mapping D(x)

specifies a set of feasible directions from x.)
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Step 2: Given xk and dk, let k+l = x + wkdk, where wkT k(x, dk )

The point to set mapping Tk(x,d) specifies a set of step-

lengths from x in the direction d.)

Go to Step 1 with k = k+1.

Two common choices for the steplength mapping Tk are

* *
(1) Tk = T, where T(x, d) = {w :F(x + w d) = min F(x + wd) subject to

w > 0 and x + wdeC}.

(2) Tk(x,d) = Ak, where lim k k = +OD, and Xk
Xk k ' k Xk>

k=l
for k = 0,1,2,...

k
For the first choice of steplengths, the sequence F(x ) decreases at each

iteration: this need not be true for the second choice.

Auslender states conditions under which this general algorithm pro-

duces a sequence of iterates {xk I containing a subsequence converging to a

stationary point. He presents the following two algorithms, which are

based on this general descent algorithm, to solve the variational inequality

problem.

Unconstrained Problem

The first algorithm is appropriate for the unconstrained problem

VI(f,R n), which is equivalent to the problem

* n *
Find x e R satisfying f(x ) = 0.

n
Assume that f is continuously differentiable and uniformly monotone on R

If we define
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G(x) = (1/2) 1 f (x) 2

then the uniform monotonicity of f ensures that G is inf-compact. The

set of stationary points to the problem

inf G(x) (P)
n

xeR

is the set of solutions to the unconstrained variational inequality

problem. To establish this property, first note that G(x) is differen-

tiable, with G'(x) = Vf(x) f(x). x is a stationary point of the problem

(P) if and only if G'(x) = Vf(x) Tf(x) = 0, which is true if and only if

f(x) = 0 (since Vf(x) is positive definite and, therefore, nonsingular).

Thus, we may determine a solution to VI(f,Rn) by finding a stationary

point of (P).

Consider the descent algorithm stated above with D(x) = -f(x) (the

"steepest" descent direction) and Tk the minimizing steplength:

Algorithm

0 n
Step 0: Select x £ R . Set k = 0.

Gie k n k+l
Step 1: Given x e R , let x = X - wkf(x ) where wk solves the

one-dimensional minimization problem

Min G(xk _ )k
w>0

k+l k+l *
If f(x ) = 0, stop: x = x

Otherwise, return to Step 1 with k = k + 1.

65



Auslender shows that if f is continuously differentiable and uniform

monotone, then this descent algorithm determines a stationary point to the

problem (P) and, hence, a solution to VI(f,R ).

Constrained Problem

The second algorithm is appropriate for the constrained variational

inequality problems VI(f,C) under the following assumptions:

(1) f is continuously differentiable and uniformly monotone;

(2) C is compact and strongly convex (i.e., for every x, y in C

with xfy and every Xe(0,1), there exists a scalar r > 0 such

that zeC whenever Xx + (l-X)y - z < r); and

(3) no point in C satisfies f(x) = 0.

Consider the max-min formulation of VI(f,C):

* *
Find x E C satisfying G(x ) Max G(x), (MM(f,C))

xeC

T
where G(x) = min (y-x) f(x). Because f(x) 0 0 on C, the strong convexity

yEC
of C ensures that for a given x, the minimization problem

T*
Min (y - x) f(x) (P (x))
yeC

has a unique solution y , and, hence, that G is differentiable, with

- T T
G'(x) = (y - x) Vf(x) - f (x). The set of stationary points to the

maximization problem

Max G(x) (P )
xCmax
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consists of those x e C satisfying the following inequality for every y e C:

G'(x;y-x) = G'(x)(y-x)

= (y -x) T Vf(x)(y-x)-(y-x)T f(x) < 0.

*
The only stationary point to Pmax is the unique solution x to VI(f,C).

* *
To establish this assertion, first note that if x solves VI(f,C), then x

* * *
solves the minimization problem P min (x ). Thus, G' (x ,y-x ) =

* * T * * * T * * T *
(x - x ) Vf(x )(y-x )-(y-x ) f(x ) = -(y-x ) f(x ) > 0 for every yEC.

Conversely, if x is a stationary point to P , then

T T T T
0 < (y_-x) Vf(x)(y -x)<(y -x) f(x) = min (y-x) f(x)<(y-x) f(x)

yEC

for every ycC,

so x solves VI(f,C), where the first inequality holds because Vf(x) is

positive definite.

Auslender shows that under the conditions on f and C stated above,

the descent algorithm with D(x) = y -x and Tk (x,d) = Xk as described in

(2) above can be used to find a stationary point and, hence, a solution

to VI(f,C). The algorithm can be stated as follows:

Algorithm

Let {X k be a sequence of positive real numbers satisfying EXk = +co and

lim xk 0.
k--

Step 0: Select x0 E C. Set k=0.

Gvnk kStep 1: Given x , let y be a solution to the minimization problem

Min (y-xk )T f(x k

yEC
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k T k k T k k.
If (y ) f(x )=(x ) f(x ), stop: x is a solution to VI(f,C).

Otherwise, go to Step 2.

Step 2: Given x and y , let xk+l + x(yk _ k

Go to step 1 with k=k+l.

In Chapter 4, we show that this algorithm can be interpreted as a

modification of the Frank-Wolfe [1956] algorithn.
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CHAPTER 3

THE GENERALIZED STEEPEST DESCENT METHOD FOR UNCONSTRAINED VARIATIONAL
INEQUALITY PROBLEMS

3.1 Introduction

In this chapter we consider the unconstrained variational inequality

problem VI(f,R):

* n * T * n
find x *R satisfying (x-x ) f(x )>O for every xeR , (3.1)

where f:RnRn is continuously differentiable and uniformly monotone. (If f

is affine, uniform monotonicity reduces to strict monotonicity). The un-

* T *
constrained problem seeks a zero of the mapping f, since (x-x ) f(x )>O for

n *
every x in R if and only if f(x )=0.

If Vf(x) is symmetric for every x in R7, then f(x) = VF(x) for some

uniformly convex functional F:Rn+R (F is a strictly convex quadratic

function when f is a strictly monotone affine mapping), and the unique

* *
solution x satisfying f(x )=O solves the unconstrained convex minimization

problem

Min F(x). (3.2)

xERn

In this case, the solution to the unconstrained variational inequality

problem can be found by using the steepest descent method to find the

* n
point x at which F achieves its minimum over R7.

For notational convenience in describing this algorithm and related

n
results in this chapter, for any two points x and d in R , we let [x;d]
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denote the ray emanating from x in the direction d; i.e.,

[x;d] = {y:y=x+d, >_0}.

Steepest Descent Algorithm for Unconstrained Minimization Problems

Step 0: Select x 0R . Set k=O.

k
Step 1: Compute -VF(xk

k k*
If VF(x )=0, then stop: x =x

Otherwise, go to Step 2.

k+l k k-Step 2: Find x = arg min{F(x): xE[x ;-VF(x)]}. Go to Step 1 with k = k+l.

I
Curry [1944] and Courant [1943] have given early expositions on this

classical method. Curry attributes the origin of the method to Cauchy

[1847], while Courant attributes it to Hadamard [1907]. The following re-

sult (see, for example, Polak [1971]) summarizes the algorithm's convergence

properties.

Theorem 3.1

Assume that the level set S(F,x )={x:xeR , F(x)<F(x )} is bounded and

that F:R 1R is continuously differentiable on the convex hull of S(F,x ).

Then either the sequence {x k} constructed by the steepest descent algorithm

N N
is finite, terminating at a point x satisfying VF(x )=O, or it is infinite,

* k
and every limit point x of the sequence {x } (and there exists at least

*
one) satisfies VF(x )=0.

Local rate of convergence results can be obtained by approximating

F(x) by a quadratic function and using the following result. (See, for

example, Bertsekas [1982].)
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Theorem 3.2

*T *
If F(x) = (1/2)(x-x ) Q(x-x ) and Q is a positive definite symmetric

nxn matrix, then the sequence {x } generated by the steepest descent al-

gorithm satisifes

F(xk+) < A 2 F(xk), (3.3)

where A and a are, respectively, the largest and smallest eigenvalues of

Q. Consequently, the sequence {x k} satisfies

lxk+lx * 11 A-a I k* 1 1

T
XI1Q = (x Qx)

When f is a gradient mapping, we can reformulate VI(f,Rn) as an

equivalent minimization problem as indicated above and use the steepest

descent algorithm to solve the minimization problem; equivalently, we

can restate the steepest descent algorithm in a form that can be applied

directly to the variational inequality problem. To do so, we eliminate

any reference to F(x) in the algorithm and refer only to f(x) = VF(x).

k k k
In Step 1, we compute - f(x ) = -VF(x ), terminating only if f(x _

VF(x k) = 0. Since F(x) is convex, x k+ solves the one-dimensional op-

timization problem in Step 2 if and only if the directional derivative

of F at x k+ is nonnegative in all feasible directions. That is,

x k+c[x k;-VF(x k)] satisfies (x-xk+ T VF(x k+1)>0 for every xE[x k;-VF(x k

or, equivalently,
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k+1 k k k+1 T k+1 k k
x E[x ;-f(x )] satisfies (x-x ) f(x )>O for every xE[x ;-f(x )].

With this reformulation, the following "generalized" steepest descent is

applicable to any unconstrained variational inequality problem.

Generalized Steepest Descent Algorithm for the Unconstrained Variational

Inequality Problem

Step 0: Select x0 eRn. Set k = 0.

Step 1: Compute -f(xk ).

k k *
If f(x ) = 0, stop; x = x

Otherwise, go to Step 2.

Step 2: Find xk+l EiXk;-f(xk ] satisfying

(x-xk4 T f(x k+1)>0 for every xe[xk ;-f(x k

Go to Step 1 with k=k+l.

Our previous observations establish the following result.

Lemma 3.1

When f(x) = VF(x) for every xeRn, the steepest descent algorithms for the

unconstrained minimization problem and for the unconstrained variational

inequality problem are equivalent.

The generalized steepest descent algorithm will not solve every un-

constrained variational inequality problem, even if the underlying map is

uniformly monotone. If f is not a gradient mapping, the iterates gen-

erated by the algorithm can cycle or diverge. The following example il-

lustrates this type of behavior.
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Example 3.1

2 l 11
Let f(x) = Mx, where xcR and M =

Since M is positive definite, f is uniformly monotone. f is not, however,

a gradient mapping, since Vf(x) = M is not symmetric. Let x = and

consider the progress of the generalized steepest descent algorithm. As

long as xkOx () the one-dimensional variational inequality subproblem on

th k+l k+1
the k iteration will solve at the point x at which the vector f(xk+

is orthogonal to -f(x k), the direction of movement. In this example, -f(x )

- ), which implies that x , since f _ = ) is orthogonal'

2 2 -- 1 0 3-

to (2). Similarly, x = _ because f (_) - ( ) -1 ) be-

cause f (), and x = -0 \l/caue f Thus,

(_1~~ 1O -1us

in this case, the algorithm cycles about the four points (i, _) ( _

and ( -A6

043 1 -
f(x 0

f(x3

2 =-l_ f- x
-1 24

f(x2) 1 (1)

Figure 3.1

The Steepest Descent Iterates Need Not Converge If M is Asymmetric

The iterates produced by the generalized steepest descent algorithm do

not converge in this example because the matrix M is "too asymmetric": the

off-diagonal entries are too large in absolute value in comparison to the
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1 -P
diagonal entries. Define the matrix M as MI = . If p=O, the gen-

p 1
eralized steepest descent method will converge (since Vf (x) = MO = I is

symmetric); if p=l, the above example shows that it will not converge.

(Note that M is positive definite for all values of p, since Ap = I for

every p.) An analysis of the vector field of f for various values of p

*
suggests that the iterates move closer to the solution x =0 if and only if

r+1o 1]k
|p1<1. In fact, if f(x) = M x, then xk+l = p 1 xk. Therefore, the

1-1 0

iterates converge to the solution if and only if lpl<l.

2

0

M 0 \Tl/2"

-~0

11 0

//

x*/ /
/ /x\

xl

1(p=l)

(\(=

\(p=2)

Figure 3.2

A Comparison of Movement Directions for Different Values of p.
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In the following analysis, we investigate conditions on f that ensure

that the generalized steepest descent algorithm solves an unconstrained

variational inequality problem, even when it cannot be reformulated as an

equivalent minimization problem. In Section 3.2 we consider a simplified

problem setting in which f is an affine, strictly monotone mapping. Section

3.3 extends these results by assuming that f is a nonlinear, uniformly

monotone mapping. Section 3.4 shows that the convergence conditions for

the generalized steepest descent method may be weakened considerably if the

problem mapping is scaled in an appropriate manner. Finally, Section 3.5

extends the results for the generalized steepest descent method to more

general gradient methods.

k k
In developing these results, we parameterize the ray [x ;-f(x )] as

x kf(x k) for 0>0, and refer to the value ek satisfying

k+l k k
x = x kf(x

th
as the step length at the k- iteration.

3.2 The Generalized Steepest Descent Algorithm for Unconstrained Problems

with Affine Maps

In this section, we consider the unconstrained variational inequality

problem VI(f, Rn) where f is a strictly monotone affine map. Thus, we let

f(x)=Mx-b, where M is an nxn real matrix and bERn, and assume that M is

positive definite.

3.2.1 Convergence of the Generalized Steepest Descent Method

When f is affine, we can easily find a closed form expression for the

th
step length ek on the k-- iteration.
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Lemma 3.2

k th
Assume that f (x) = Mx-b. Let x be the k- iterate generated by the gen-

eralized steepest descent method. Then, if xk does not solve the problem,

th
the steplength determined on the k-- iteration is

-(Mx b) (Mxk-b)
(Mx -b) M(Mx -b)

Proof

Step 2 of the algorithm determines x k+EX ; -f(x )] satisfying

k+l T k+l k k
(x-x ) f(x )>0 for every xe[x _- k)]. (3.5)

k+l k k k
If x = x , then equation (3.5) with x = x - f(x ) indicates that

-fT (x )f(x k)>0. But this implies that f(x k) = 0, so the algorithm would

have terminated in Step 1. Hence, assume that x +l x , an, therefore,ek

k - k k+l k k..
Substituting x = x - ef(x ) and x = x - 0k f(x ) into (3.5) gives

T k k k
(ek-6) f (x )f(x -kf(x ))>0.

Since this inequality is valid for all 0>0, it is equivalent to the con-

dition fT (xk x _k k))=0. Substituting f(x)=Mx-b into this expression

gives

fTk kk kf T(xk )f(x kkf(x k)

=[Mx k-b] [M(x ek(Mx k-b))-b]

=[Mxk-b] [Mxk-b]- k[Mxk-b TM[Mxk - b]

= 0.
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This last equality shows that 0k is given by expression (3.4).

When f is a gradient mapping, convergence of the steepest descent al-

gorithm follows from the fact that F(x k) is a descent function for the

algorithm, where VF(x) = f(x). When the Jacobian of f(x) is not symmetric,

however, no function F(x) satisfies VF(x) = f(x), so, in general, this

proof of convergence does not apply. Instead, we will establish convergence

of the generalized steepest descent method by showing that the iterates

produced by the algorithm contract toward the solution with respect to the

T
M norm, where N = (1/2)(M+M ) denotes the symmetric part of the matrix M.

The M norm is a natural choice for establishing convergence because it

corresponds directly to the descent function F(x) in the case where f(x)

= Mx-b and M is symmetric. In this case, F(x) = (1/2)x TMx-b Tx, while

* 2 * T * *T *
Ix-x f! = (x-x ) M(x-x )= 2F(x) + x Mx ; i.e., F(x) is a descent

function for the algorithm if and only if 1{ x-x * 1 is a descent function.

The following theorem states necessary and sufficient conditions

on the matrix M for the steepest descent method to contract with respect

to the N norm.

Theorem 3.3

Let M be a positive definite matrix, and f (x) = Mx-b. Then the

iterates produced by the generalized steepest descent method is guaranteed

* n
to contract in M norm towards the solution x to the problem VI(f,R ) if

and only if the matrix M2 is positive definite.

Furthermore, the contraction constant is given by

I T T j1/
. ((Mx) (Mx) x M~lx f 36

r 1 - inf (T xT (M (3.6)

X x TMx (Mx)TM(Mx)) /
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Proof:

* th
For ease of notation, let x 0 x be the k-- iterate produced by the

st
algorithm, let 6 = , and let x be the (k+l) iterate, i.e.,

(Mx-b) T (Mx-b)x = x -- e(Ix - b), where.6 = ( T-b) T . We show below that there ex-
(llx-b) 1(Mx-b)

ists a real number re[O,1) that is independent of x and satisfies

I x - x I|. < r 1 x - x %. Because r must satisfy

lx-x Il j
r > T(x):= M

*
for every xfx , we define

r:= sup T(x).
*

xOx

*

r is clearly nonnegative, since T(x)>O for every xfx

2 T
We now show that r<l. Because 0 z A = z Mz for every z, we have that

** T * 4-
x-x* = [(x-x ) M(x-x )2 , and

- * * T* '
x-x Q = [(x-8(Mx-b)-x ) M(x-e(Mx-b)-x )]i

*T * T * * T 2 T
= [(x-x ) M(x-x )-e(Mx-b) M(x-x )-e(x-x ) T M(Mx-b)+2 (Mx-b) TM(Mx-b).

T * 2 TT21T
Thus, T(x = [1 -(Mx-b) M(x-x )+e(x-x ) M(Mx-b)-2 (Mx-b) M(Mx-b)

(x-x ) M(x-x )

* -l
Because the solution to the problem is x *= Mb,

* T *
* [N(x-x )] [N(x-x )]

Mx-b = M(x-x ) and, hence, 0 = * T * *

[M(x-x )] M[M(x-x )1

Substituting this value for 0 in the previous expression for T(x), we

see that the first and third terms in the numerator of the fraction cancel.
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Consequently,

T(x) = 1 -
* T * * T2 * 1

[M(x-x )] [M(x-x )] -[(x-x ) M (x-x )]
* T * * T *

[M(x-x )] M[M(x-x )] -[(x-x ) M(x-x )]J

= [1-R(y) 2 ,

where y = x-x # 0 and R(y) :=
T T 2

[(My) (My)][y M y]

[(My) M(My)][y My]

Therefore, r = sup T(x) = sup [l-R(y)] 2 .
*

xfx y#o

To complete the proof of the theorem, we show that r<l if and only if

M2 is positive definite. We first note that r = [1-inf

y#Q
only if inf R(y)>0.

y#0

Now if M is positive definite, then M2

R(y)] <l if and

is positive definite, so

R(y) = inf T

y y

yTM 2y
T

T
(My) M(My)

T
(MY) i(My) }

inf { f2x
yto_ y _T _ _

- u T

y#001 y y

x (M2)
min

[ max (M)]2

T
sup (My) M(My)

y#0 (My) (My)

- min 2

max(M

where X (A) and max (A) denote, respectively, the minimum and maximum

eigenvalues of the real symmetric matrix A.
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22
Since M is positive definite, M is positive definite and symmetric and,

hence, has real and positive eigenvalues. Similarly, M positive definite

ensures that the eigenvalues of M are real and positive. Consequently,

inf R(y)>O, and, hence r<l.

yOO Conversely, if M2 is not positive definite, then y T 2y< for some

vector y#O. Because M is positive definite, (My) M(My)>O and y TMy>0.

Moreover, y#O ensures that (My)T (My)>O, and, therefore, R(y)<O, which

implies that r>l.

Corollary

The contraction constant r is bounded from above by

1' 1 -T/ 1 -1 ~

X (M ) - .n[(Mi ) M (N ) ]
= Mi-n mn .

- M A M
max L max

(3.7)

Proof

r is defined by r = (1 - inf R(y)] 2 , where

y#O

TM2 T
inf R(y) = inf yT My (My) (My)

y#O y#O y My (My) M(My)

(T2 IT2 2
inf y T M y = inf y M y
y#O TMy y#Oy Ay

yMy

yY y T M T YAT 2

= inf y M y

y#O y)T y

. T - T (/T)

- inf T
z#O z z

inf y M y

yO 0 y MI,

sup (My) T1 (My)

yO( (My)TMy
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m---Tm2 -1- -1
= .(A), where A =m T2) -1

^M2
Now X is a an eigenvalue of A if and only if X is an eigenvalue of ,

since

det(A-XI) = 0

++ det( )T A-I)(12) =0

2A
++ det (M - MX) = 0

++ det (M (M -MX)) = 0

++ det(M1N -XI) = 0.

Thus, inf T (39)

y O T min min
y My

T TA
Finally, since z Mz = z Mz for any vector z, and z = My is nonzero if and

only if y is nonzero,

T
sup (My) M(My) = . ( (3.10)supT max M.(.0
y#O (My) My

The result follows from (3.8), (3.9) and (3.10).

3.2.2 Discussion of M2

The theorem indicates that the key to convergence of the generalized

2
steepest descent method is the matrix M . If the positive definite matrix

M is symmetric, the convergence of the steepest descent algorithm for un-
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2 T
constrained convex minimization problems follows immediately: M 2=M .M is

positive definite because M, being positive definite, is nonsingular. In

general, the condition that the square of the positive definite matrix M be

positive definite imposes a restriction on the degree to which M can differ

from M . To see this, first note that M is positive definite if and only

if

T 2 T T
x T x = (M x) T(Mx)>Q for every x#0.

Thus, M2 is positive definite if and only if for every nonzero vector x,

the angle between the vectors (MT x) and (Mx) is less than 90*.

TMx

Mx

Figure 3.3

2 T T
M is Positive Definite If and Only If (M x) Mx>O for Every Nonzero x.

The positive definiteness of M2 does not imply an absolute upper bound

on the quantity 1- m-M T 11for any norm 1l -11 , because we can always increase

this quantity by multiplying M by a constant. If M2 is positive definite,

then the normalized quantity 11 M-M T [I /II M+M T I1 must be less than 1. This re-

sult follows from the following proposition.

Proposition 3.1 (Anstreicher [1984])

Let M be an nxn real matrix. Then, for any norm M - ,2 is positive

definite if and only if 11 (M-M )xjj < 1 (M+MT)xl for every x#O.
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Proof

4M = (M+M ) 2 + (M-NM) 2 + (M- ) (M+MT ) + (M+M ) (M-MT)

But, [(M-MT (M+M T)] = - (M+M ) (M-M ).

Hence, M2+ (M ) T =2[ M+MT) + (M-) ].

Thus, xT (M )x> O xT M 2 + (M2 ) T)x>O

++ x (M+MT 2 +T (M-T) 2x>0

++ x (M+1 ) (M+M )x > x (M-MT )T (M-)x

++ (M+NT)xl > H(M-T)xl

In particular, if M is positive definite, then

IM-MTj = max (M-MT)xII =II (M-MT)xI < II (M+MT)xII
lix 1=1

< max 1 (M+MT)x = BN M+MT 11, where x = argmax fl (M-MT)xl.

1x =1x 1

Consequently, 1IM-MT1 /11 M+MT <1 for any norm.

3.2.3 Discussion of the Bound on the Contraction Constant

Let us return to the problem defined in Example 3.1. The mapping

f(x) = M x is affine and strictly monotone, since M = is positive

2P 1

definite. For this example, M = [-P 2  - , and M2 = [lP2  2

P 2p .1-p2 P 1 0 1-p 2 
Thus, as we would expect from the observations after the example, M is

positive definite if and only if lp I <1. Moreover,

83



0 -2p

"M -MT122 0 22pM p 2  _ p 0 2 = jpt < 1 if and only if M2 is positive

11M +MTi 2 0
p p 2 0 22

definite.

For this example, the upper bound on the contraction constant given in the

corollary is tight. To see this, first note that M = I, so the M norm
p p

is equivalent to the Euclidean norm. Recall from the example that

x k+ p.- x and x =0. Thus,

k+1 x* M k+ 11x - x i= l kxl2

2 ( Ck T [0 1]To - l1-k)0 1 0 0 1

2 k T k
= (p (x ) X 2

= p xk 2

= p, 1 xk x*II ,

and the contraction constant for the problem is jp . The bound given

-12 1-p 2 0
by the corollary is also Ipi, because X m (M M ) = 0 [ 2 ~

1 - p2 and Xa () = 1 give r = [1-(1)p2 = 1pl.
max

For affine problems with symmetric matrices, the bound r on the con-

traction constant r may be quite loose. If M is symmetric, a tighter

upper bound on r found by diagonalizing M and applying the Kantorovich in-

equality [see, for example, Luenberger (1973)] is
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Xa (M) -X . (M)
r = max mn . In terms of the condition number k = X (M)/r A (M) +XA. (M) max

max mimn
X . (M), r = (k-1)/(k+1), while r = [(k-1)/k] 2 . Thus, for example, if

k=l, then r = r = 0; if k = 1.5, then r = 0.2 and r = 0.58; if k = 3,

then r = 0.5 and r = 0.82; and if k = 10, then r = 0.82 and r = 0.95.
5 s

This tighter upper bound on r cannot be derived in the same way if M is not

symmetric. A matrix M can be decomposed into its spectral decomposition

if and only if M is normal, which is true for a real matrix M if and only

T T
if M TM = MM T . Thus, if M is not symmetric, we cannot necessarily

diagonalize M. If M is not unitarily equivalent to a diagonal matrix, then

we cannot use the Kantorovich inequality to obtain the upper bound rs

3.2.4 Sufficient Conditions for M2 to be Positive Definite

We now seek easy to verify conditions on the matrix M that will ensure

that the matrix M2 is positive definite. The following example shows that

the double diagonal dominance condition, a necessary and sufficient con-

dition for convergence for the problem in Example 3.1, is not in general a

2
sufficiently strong condition for M2 to be positive definite.

Let

2 0 0 , 4 0 0~ 8 2.97 2.97-

M =.99 1 0 .Then M2 2.97 1 0 and 2M=2 2.97 2 0

.99 0 12. 2.97 0 1.. 2.97 0 2 _.

Since det(2M ) = -3.2836, M2 is not positive definite, and, therefore, M2

is not positive definite.

The norm condition 11 D 2 B Di 2 < 1, where D = diag(M) and B=M-D, is

a sufficient condition to ensure that the linear Jacobi method will solve

an unconstrained variational inequality problem with an affine map.
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(II D'BD 112 <1 implies the usual condition for convergence of the Jacobi

method for linear equations, p(D1 B)<l, where p(D1 B) is the spectral

radius of D- B, because p(D~1 B) < 11 D 1 B1D = IID BD Pang and

Chan [1981] have shown that if M is doubly diagonally dominant, then

D 1BD12 <1. The above example, therefore, also shows that 11D -BD 211< 1

is not a strong enough condition on M to ensure that M2 is positive definite.

As shown by the following theorem, stronger double diagonal dominance

conditions imposed on M guarantee that M is doubly diagonally dominant,

2
which, in turn, implies that M is positive definite.

Theorem 3.4

Let M = (MN) be an nxn matrix with positive diagonal entries. If for every

i = 1,2,...,n

2
min{(4..) :i=1,...,n}

7 IM l<ct and- E 1M.. <ct, where t =

jji jii j max{M.. :i1..n

and c = /2 - 1,

then M2 s doubly diagonally dominant, and, therefore, positive definite,

and M is doubly diagonally dominant, and, therefore, positive definite.

Proof

th
Let M.. be the (i,j) element of X.

The (i,j)th element of M2 is

2.
. + - .M if i=j

2n kI
(M ). =j E M ik-k'

IJ k=l
*M.M. + M..M.. + E M. . .
k- Jii ii + k 14. if ij.

86



To show that M2 is doubly diagonally dominant, we must show that

(M)..> EI (M2 .
jfi

i.e., that

and (M2).. > E I(M2
jfl

M 2. > - E 1.NM. + I M. .M. .+M. .M.. + E MikMkJ,
ii kiik ki 11 i 3 ij'jj + ~i

(3.11)

M 2. >-Z M. k . + MM. ... + M..M.. + EZ . M .(3.12)
ii k#i ik. i Ji 3 J' k#i,jk

To show that (3.11) holds, it is enough (by the triangle inequality) to show

that

2
14..

which is true (by Cauchy's Inequality and the triangle inequality) if

2
14.. > E IM Mk+ M..- ':'IM. j+ M.. M.j + E E IM

k#i j i 1J j '3 jfi k#i,j

Because the last term in the righthand side of the above expression is

equal to E
k#i i

righthand side

E I M ,k k the sum of the first and last terms in the
#i,k
is

. Ei k
j~i~k

E IMikl 
'Mkil]

ki j k

Consequently, to show (3.11) is true, we must show that

M 2 . M E
i~i ki ik .*k

and

iM
k~i

(3.13)
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Mk 11 jji jfi i



To establish (3.13) (and, hence, (3.11)), we introduce a quantity t

defined as 2
min{M.. : i=l,...,n}

t = 1

11max{M.. :i=l,. . .,nl

Note that

(i) t < M.. for every i=l,..., n (since t < M ./.. = M.. for every
- 11 1 ii 11

i), and

2
(ii) t * Max{M..: i=l,...,n} < M.. for every i=1,...,n.

The bounds on the off-diagonal elements of M assumed in the statement of the

theorem ensure that the righthand side, RHS, of (3.13) satisfies

RHS < E 1k(ct) + M..(ct) + Max{M..: i=1,...,n}(ct),
.i ikl~t +ii ct)

< c 2t2 + M.. (ct) + (ct) Max{M..: i=1,...,n}

22 2 2
< cN.. + cM.. + cM.. by (i) and (ii).

2 2 2 2
Thus, (3.13) holds if M..(c + 2c) < M.., or, since M.. > 0, If c + 2c-l<0,

which holds if and only if cc[-l-vT,V7-l]. Thus, if c=V-l, (3.13) and,

therefore, (3.11) must hold. Similarly, if c =VT -1, then (3.12) must

hold. These two results establish that M2 is doubly diagonally dominant.

2 2
The double diagonal dominance of M ensures that M2 is doubly

diagonally dominant. Because M2 is symmetric and row diagonally dominant,

by the Gershgorin Circle Theorem (Gershgorin [1931]), M2 has real, positive

22eigenvalues. Since M is symmetric and has positive eigenvalues, M is

positive definite, and, therefore, M 2 is positive definite.
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The conditions that the theorem imposes on the off-diagonal elements

of M also ensure that M is doubly diagonally dominant. Therefore, M is

positive definite.

3.2.5 Comparison of Conditions on M

Because the assumption that M is doubly diagonally dominant is

stronger than the assumption that M2 is positive definite, the conditions

imposed on M in Theorem 3.4 are likely to be stronger than necessary to

show that M2 is positive definite. In Examples 3.2 and 3.3, we compare

the foll6wing three conditions:

(1) the conditions of Theorem 3.4;

(2) necessary and sufficient conditions for the matrix M2 to

be doubly diagonally dominant; and

(3) necessary and sufficient conditions for the matrix M2 to

be positive definite.

From the proof of Theorem 3.4, we know that conditions (1) imply conditions

(2), and that conditions (2) imply conditions (3). The examples suggest

that there is a much larger "gap" between conditions (2) and (3) than be-

tween conditions (1) and (2). Thus, it seems that we cannot find con-

ditions much less restrictive than the conditions of the theorem as long

as we look for conditions that imply that M2 is doubly diagonally dominant

2
instead of showing directly that M2 is positive definite.

Example 3.2 N 0 01

Let M a 1 0 ,where N>0.

b 0 li
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N 2 0 0 N 2

2 2 1
Then M =[(N+l)a 1 0 and M = (N+)a

[N+l) b 0 1 (N+1) b

1
1 (N+l) a

1

0

1 J(N+) b

0

1 1.

Condition (1) requires that for i=1,2,3, E IM.. I and E IM..I are
jfi LJ J

bounded from above by

2
(42-l) Min{N. .: i=1,2,31

Max{M. .: i=1,2,3}
iI

{(T-i) N2
(v7-1) N

if 0 < N < 1

if N > 1;

(v-1) N2

that jal + lb <

(V'2-1)-1N

if 0<N<l

if N>l

(The conditions jal < 1, Jbj < 1 are redundant for all values of N).

Condition (2) requires that

1 1 N2
aI < R+- , bI < and IaI + Ib N+1

(For N>vW, the third condition is redundant, while

for N<l, the first two conditions are redundant).

Condition (3) requires (by requiring that the determinant of each

2
positive principle minor of M be positive) that

2 2 2N 2
a + b < (-+1)N+s

We now consider the regions in the a-b plane allowed by the restric-
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tions imposed by each of the three conditions for several different values

of N.
b

For N = 1

For N = 1,

For N = 2,

Condition (1) + a + Ibi < 0.10

Condition (2) + a + Jbi < 0.16

Condition (3) + -2 + b2 <(0.67)2

Condition (1) + a + Ibi < 0.41

Condition (2)4- a + IbI < 0.5

Condition (3) + 2 + b2 < 1

Condition (1) ai + IbI < 0.21

Condition (2) ai < 0.33, IbI < 0.33

Condition (3) + a2 + b2 < (1.33)2

For N = 10, Condition (1) + a + IbI < 0.04

Condition (2) + a < 0.09, 1bI < 0.09

Condition (3) + a2 + b2 < (1.8)2

(3)

~2

(1 *6 7a

b
(3)

(2)

b
(3)

(2)

(U 1.3 a

b (3)

,(2)

-8

For this example, as N increases, the separation between conditions (2) and

(3) increases, while the disparity between (1) and (2) stays about the same.

In particular, as N - m, conditions (1) and (2) drive Iai and Ibi to zero.

while condition (3) tends to a2 + b2 < 4. I
Example 3.3

1 0 0 1 0 0

Let M =a 1 0 where N>. Then M 2 = 2a L 1 N

[b 0 N1 (N+l) b 0 N2
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and m =

(VW - 1)N2

Condition (1) requires that ai + IbI < 1

(2 - 1) R

if 0 < N < 1

if N > 1

Condition (2) requires that aI < b I ,- and 2tal + (N+1)tbt < 1,

(Note that the second constraint is redundant if N>l,

while the first is always redundant.)

Condition (3) requires that a2 + 2 b2 1.

Again, we consider the regions allowed by these three sets of restrictions

for different values of N.

For N = ,
2

For N = 1,

Condition (1) + jai + Ibi < 0.10

Condition (2) + tbt < 0.17, 2jal + 1.5Ibi < 1
2 2

Condition (3) + a + (1.5b) < 1

Condition (1) + tal + IbI < 0.41

Condition (2) + tal + tbt < 0.5

Condition (3) + a2 + b2 <1

b
.67,

b

(1)

3)

2)

a

3)
(2)
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2

a

1

0

N+1 )b
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0

N
2
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For N = 2, Condition (1) + Ia + IbI < 0.21

Condition (2) + 21al + 31bl < 1

Condition (3) + a2 + (3)b)2 1

For N = 10, Condition (1) + Iaj + IbI < 0.04

(2).-+ 21a + 11 Ibi '< 1

(3)

1 a
(1)

b

(3)

2)

(3) + +(b) <a1
20 1

Again, the separation between conditions (2) and (3) increases considerably

as N increases. As N-*+, condition (1) drives Iai and Ib! to zero, condition

(2) tends to jai < 1, Jbj =0, and condition (3) tends to a2 + ( 1.

In this instance, the discrepancy between conditions (1) and (2) also be-

comes considerable as N-+co.

93

I

b



The conditions that Theorem 3.4 imposes on the off-diagonal elements

of M are the least restrictive when the diagonal elements of M are all

equal. In section 3.4, we show that by scaling the rows or the columns

of M so that the scaled matrix has equal diagonal entries, we may be able

to weaken considerably the conditions imposed on M.

We close this section with a lemma that shows that the positive

definiteness of the matrices M and M2 is preserved under unitary trans-

formations. A consequence of this result and Theorem 3.3 is that, if M

and M2 are positive definite, then the generalized steepest descent method

will solve any unconstrained variational inequality problem defined by a

mapping f(x) = Nx-b, where R is unitarily equivalent to M. In particular,

if T is unitarily equivalent to any matrix M that satisfies the conditions

of Theorem 3.4, then the generalized steepest descent method will solve

VI(f,C), where f(x) = Nx-b.

Lemma 3.3

- T
Let M be a real nxn matrix, and let F = U MU, where U is a real, uni-

tary matrix. Then R is positive definite if and only if M is positive

definite, and 2 is positive definite if and only if M2 is positive

definite.

Proof

Since U is unitary, U TU = I. Note also that since U~1 = U exists,

U is nonsingular. Now M is positive definite if and only if x TMx>O for

every x#O, and, hence, if and only if (Ux) TM(Ux)>O for every (Ux) # 0.

Because U is nonsingular, Ux # 0 if and only if x # 0. Thus M is positive

T TT T
definite if and only if (Ux) M(Ux) = x U MUx = x Nx>0 for every x # 0, i.e.,

if and only if N is positive definite.
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-2
The second result follows from the first because 2 is unitarily

equivalent to M2 , which is true because R2 = (U MU)(UT MU) = U M U.

3.3 The Generalized Steepest Descent Algorithm for Unconstrained Problems

with Nonlinear Maps

If f: Rn + Rn is not affine, strict monotonicity is not a sufficiently

strong condition to ensure that a solution to the unconstrained problem

VI(f,Rn) exists. If, for example, n = 1 and f(x) = eX, then VI(fR 1) has no

solution. Because the ground set Rn over which the problem is formulated is

not compact, some type of coercivity condition must be imposed on the map-

ping f to ensure the existence of a solution. (See, for example, Theorems

1.2 and 1.3). If f is uniformly monotone, then f is strongly coercive:

Theorem 1.4 demonstrates that VI(fRn) has a solution if f is uniformly

monotone and hemicontinuous. Therefore, in this section, we restrict our

attention to problems defined by uniformly monotone mappings.

The following theorem establishes conditions under which the general-

ized steepest descent method will solve an unconstrained variational in-

equality problem with a nonlinear mapping f. In this case, the key to

convergence is the definiteness of the square of the Jacobian of f evaluated

at the solution x

Theorem 3.5

Let f: R - Rn be uniformly monotone and twice Gateaux-differentiable.

* * n
Let M = Vf(x ), where x is the unique solution to VI(f,R ), and assume

that M2 is positive definite. Then, if the initial iterate is sufficiently

*
close in M norm to the solution x , the sequence of iterates produced by the

generalized steepest descent algorithm contracts to the solution in M norm.
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Proof

To simplify notation, we let 11. f denote the M norm throughout this

proof. Let x be the initial iterate. We will show that if the positive

real number e:=Ilx-x~l is sufficiently small, then the iterates generated

*
by the algorithm contract toward the solution x . We assume that 0<c<l.

By Step 2 of the algorithm, the first iterate generated by the al-

gorithm, x, solves the one-dimensional variational inequality problem on

[x; - f(x)], the ray emanating from x in the direction -f(x). The proof

of Lemma 3.2 demonstrates that the solution x to this one-dimensional problem

T
satisfies f (x)f(x) =-0. Thus, if we parameterize the ray [x; - f(x)] as

x - Of(x), then x = x - 0 f(x), where the steplength 0 is defined by

f (x) f(x - 0 f(x)) = 0. (3.14)

By Lemma 3.4, which follows,ithe value 0 satisfying 3.14 is unique.

To show that the iterates generated by the algorithm contract towards

the solution in M norm, we show that there exists a real number re[0,1)

that is independent of x and satisfies

11x - xl < r 11x - x *i.

Because r must satisfy r > T(x):= for every xe S =

{x: fl x - x li = E}, we define r = sup T(x). r is clearly nonnegative, since

xes

T(x) > 0 for every xcS .

We now show that r<l. Since we are using the M norm,
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x - x* 1 2 = (x - x )T M(x - x), and

* 2 *T *
1x- x = (x - T f (x) - x ) M(x - f (x)-x)

* T * - T * - * T
= (x - x ) M(x - X- f(x)M(x - x )- (x - x ) M f(x)

-2 T+ 0 f (W Mf x)

Hence, T(x) = [1 - R(x)] 2 , where

R(x) :=
-T * - * T -2 T

O f (x)M(x- x) +O(x - x) Mf(x) -e6 f (x)M f(x)
* T *

(x - x ) IM(x - x ) (3.15)

In order to determine an expression for 0, we approximate f about x

with a linear mapping as follows:

* * * *
f(x) = f(x ) + Vf(x )(x - x ) = M(x - x

Let V denote the error in linearly approximating f(x) about x , i.e.

*
V = f(x) - M(x - x).

*
Substituting M(x - x*) + V- = M(x - 0 f(x) - x ) + V- for f(x) in (3.14)

x x

implies that f T(x)M(x - x f T (x)Mf(x) + f T(x)V- = 0, and, hence, that
x

0 =

T * T
f (x) M(x - x ) + f (x)V-

x

f T(x)Mf W)

Substituting for T in (3.15) and simplifying, we have that
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T * * T * T TR(x) = {[f (x)M(x - x )][(x - x ) Mf(x)] + [(x - x ) Mf(x)][f (x)V-]x

-[f T(x) M(x - x )][f(x)V] [f (x)V 2} L
x x

T * T *
{[f (x)Mf(x)][(x - x ) M(x - x )}

(3.16)

Since r = sup T(x) = sup [1 - R(x)] 2

xES xES
= [1 - inf R(x)] ,

xeS

r<l if and only if inf R(x) > 0. We will, therefore, show that inf R(x) > 0.
xES xES

Substituting M(x - x ) + V for f(x) in the first term in the numerator

of (3.16) and collecting terms gives

* TT * * T2 -*

R(x) = [(x - x ) M M(x - x )][(x - x ) M (x - x )J - E(x)
T * T *

[f (x) Mf(x)][(x - x ) M(x - x )]

where the error term E(x) contains all terms involving V and V- , and is
x x

given by

-E(x) = *VT * *T 2 *-E~x)= [V M(x - x )][(x .- x ) N (x - x )

* TT *
+ [(x - x ) M M(x - x )][(x

* T T
+ [(x - x ) Mf(x)][f (x)V-]x

- x ) 1V ] + [VT M(x - x*)][(x - x )TMV]x x

T * T
- [f (x)M(x - x )][f (x)V-]x

- [T 2[ f T(x)V-]
x

E(x) can be bounded from above using the triangle inequality, Cauchy's

inequality, and the fact that the matrix norm 11A Il satisfies liAxil < 1lA llIxIl

for every vector x:
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E(x) < lE(x) I< l M M2 x - x*1i3 + 11V I1 IM12 IMT _*3

+ H V 12 1Mil 2 1 x -* 1i2+ IV-1 MI 11 f(x) 2 ix- x 

+ 1 V- Ii Mil if(x) 112 -*11 + IV_ 2 f (ii 2

By Lemma 3.6, we have that for any xcS ,

1 vX1 <C111x - x *112

11 f(x) < C2 11 x i , and

1V- < c x- 2

where c1 > 0, c2 > 0 and c > 0.

Thus, E(x) < K 1 Hx - x 5+ K2'1 x - x*l15 + K311 x - x*1 + K 411 x - x II5 +

+ K5ix * 1 5 + K6 x x* 6

<S K 11x - x* 5

where the K > 0, and, hence, K K + K2 + K3 + K + K5 + K6 > 0.

Thus, R(x) > 5(x - x ) M 14(x - x )][(x - x ) T (x - x K11 x - x *1

[fT (x)Mf(x)][(x - x ) M(x - x

Dividing the numerator and denominator by II x - xl2[(x - x TMTM(x - x)]

gives
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inf R(x) > inf -

xcS xesS

(x - x ) M (x - x)

* T *
(x - x ) M(x - x )

Ku x - x *113

(x - x )MTM(x - x*)

f (x)Mf (x)

(x - x ) M M(x - x )

( * T2 * (
inf (x - x ) M (x - x) sup KI x

xsX *)T * xeS

sup f T(x) Mf (x)
xeS (x TTM(x - x

Considering each of these three expressions separately, we have:

* 3
- x *1
*TT
K)TMT N(x

inf (x - x) M (x -

* T
xS( (x - x)M(x - 2

inf (x x *) T 2  _ (x*
xeS ~ * *$ (x - Xx - x)

* T *
(x- x) (x -x )sup (x *

XES (x -x ) (x - )

X i (M)
nan >0

x ( i)max

2
since M and M are positive definite;

* T T
- x ) MM(x -

*_ = su t
x *) %Es (x -

(x

*
Ku x - x -

x* ) T MM(x -
*

x )

* T x*
-. x ) (x - x )

sup
xcSES K x - x]I

* TT *
inf (x- x ) M M(x- x)

xES * T *

KE:= bE:,
X . (MM)

where b := K/X . (M M) > 0; andmnn
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f (x)Mf(x)

- x* ) T,4 (x - x xE4

sup [M(x - X*) + V I M[M(x - x *) + V

(x- x )TMTM(x - x*)

- x)] + V T (x - x) + (x - x )TMTMV + V TMVx x x X~

(x - x *) TMTM(x - x )

sup -[(M(x -x )TM[M(x - x )]
xeSe [M(x x )]T[M(x - x*)]

j
V M (x - x ) + (x - x )T M TMV + V

sup x x )
x£S (x T MT M~ *)

sup x M2 x - x + x - x* V1MTMI li+ V

- max + xI i * TMTlxxi-ixi)

sup 1
< ax ( x S )

-max 
xes e

= (max

max(M

C1l x - x
- T M TM(x - x*}

sup cl x - xii
xes

inf (x- x )TM (x - x)
x£S * T *

cc T X max() + ae
x (M M)

where c:= cll M21 + c2l MI, > 0, and, hence, a: - c/Xmin(MTM) > 0.

Combining these inequalities gives

min (M2 
b

inf R(x) > ma

101

sup
xeS

sup [M(x - x )] M[M(x

xcS

xeS X (M) + ae
max

9



which is greater than zero if E is sufficiently small, since the denominator

2
is positive, X min(M )/Xmax(M) > 0, and b > 0.

Lemma 3.4

If f is uniformly monotone, then, for a given x 0 x , there exists a

unique 0 > 0 satisfying f (x)f(x - f(x)) = 0.

Proof

e > 0 solves the one-dimensional variational inequality problem

[x - 8f(x) - (x - Tf(x))] f(x - Tf(x)) > 0 for every e > 0,

i.e., e satisfies

-(6 - )f T(x)f (x - f (x))> 0 for every 6 > 0.

Thus, 0 solves VI(g,R ), where g(e):= - fT (x)f(x-Of(x)

The existence and uniqueness of T follow, because, for a given x, g is uni-

formly monotone with modulus of monotonicity a1 f (x) 112

(e2-1)[g( 2)-g( 1 )] = (e2-61)fT (x)2f(x-elf x) - f(x-e2f W)I

= [ (x- 1f(x)) - (x-62f(x))] [f(x-61 f(x))-f(x- 2f(x))]

> all x - 1f(x) - x + e2f(x) 2

= ac(62 - 01)211 f(x) 2

[all f (x)l 2] 02 - 21)2. (3.17)
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Moreover, 0 is positive, because x # x implies that g(0) - f(x)12j 0.

Lemma 3.5

If f is uniformly monotone with modulus of monotonicity a, then for any

* -T- 1
x x , the unique e > 0 for which f (x)f(x - Of(x)) = 0 satisfies T <-.

Proof

By setting 02 = 0 and e = 0, (3.17) reduces to

efT(x)[f(x),- f(x - Tf(x))] > a2 f (x)f(x),

or, since 0 > 0 and f T(x)f(x - Of(x)) = 0,

f T(x)f(x) > aTf T(x)f(x).

Because x # x , f(x) # 0, so aT < 1. Therefore, since a > 0, .

Lemma 3.6

Assume that f has a second Gateaux derivative on the open set

S: = {x1 lix - x *1< 1}. 'Let x = x - Of(x), where 0 is chosen so that

f (x)f(~) = 0. Let V = f(x) - M(x - x ), let V- =f(x) - M(5 - xx x

let i- denote the M norm.

Then, for i = 1,2,3,4, there exist constants c > 0 that satisfy

the following conditions for any x c S:

(i)

I

and

li V II < cll x - x *2
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(ii) fl f(x) fl < c 21 x

(iii) i x i - x < c3 x -

(iv) ii V-i1 < c fl x -

- X

(i) lV = ff(x) - M(x -

= f(x) - f(x ) -Vf(x )(x - x )ll

< sup iv2 f[x
O<t<1

+ t(x - x )]lI Sx - XI 2

< sup
xeS

sup
O<t<1

V2 * + t(x - x )) il 1 x - x *i 2

= cl1 x - x*i2

where the first inequality follows from an extended mean value theorem

stated as Theorem 3.3.6 in Ortega and Rheinboldt [1970]. Clearly, c1 > 0.

(ii) ilf(x)li = i1 M(x - x ) + V

< 1 M11 1l x - x 11+ 1lV 1i

< l| Mi1 l1 x - x 11+ c x - x i2

< (i M1 + c ) lx - xl

by (i)

since 11 x -
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= C211 X - x

C2 : M 11 + c1 > 0 because IliMIl> 0 and c1 > 0.

x- X* - *
(iii) 1 x - x = fl x - Of(x) - xI

<fl x - x + + 0 f(x)jil

< ii x - x + C2 X - x1 by Lemma 3.4 and (ii)

= 3 x -

> 0 because c2 > 0 and a > 0.

(iv) Ii v- = f () - M(x - x*) ii

f* * - *
= f (x) - f(x ) - Vf(x ) (x - x ) Ii

< sup
0<t<1

{ fsup sup x C V f[x

<~1 - <t<1

= c 1 x - x* l 2

< C4 C3 l x - xl 2

k*2- ) * }lx- *x
+ t(x - x )-,

as in (i)

by (ii)

= c .

c > 0 because c > 0 and c > 0.
4- 4 - 3 - I
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3.4 Scaling the Mapping of an Unconstrained Variational Inequality Problem

In this section, we consider a procedure for scaling the mapping of

an unconstrained variational inequality problem that is to be solved by

the generalized steepest descent algorithm. We first consider the problem

VI(f,C) defined by the af fine mapping f(x) = Mx - b. We show below that,

by scaling either the rows or the columns of M in an appropriate manner

before applying the generalized steepest descent algorithm, we can weaken,

perhaps considerably, the convergence conditions that Theorem 3.4 imposes

on M.

When f(x) = Mx - b, the unconstrained problem VI(f,C) is equivalent

to the problem of finding a solution to the linear equation Mx = b. If A

is a nonsingular nxn matrix, then the linear systems Mx = b and (AM)x = Ab

are equivalent. We can, therefore, find the solution to VI(f,Rn) by

solving the equivalent problem VI(Af, Rn), where Af(x) = AMx-Ab. The

generalized steepest descent method will solve VI(Af, Rn) if both AM and

(AM)2 are positive definite matrices. In particular, if we assume that

M has positive diagonal entries, and let D = diag(M), then D is non-

singular. Therefore, the generalized steepest descent method will solve

VI(D 1f, Rn) if (D-l) and (D1 H)2 are both positive definite matrices,

which is true, by Theorem 3.4, if for every i = 1,2,...,n,

E (DY)..I < ct and I j(D'M).i< < ct, (3.18)

jfi jjl

2
min{(DM).. : i = 1,...,n}

where c = v72-l and t = -
max{(D~t4).. :i = 1 -n

iiis

Since D- is diagonal, and (D1 ) (. = N.) then for each i and j,
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(I 1M) .. = M./M. .,ij 1 12.

and, in particular, for each i,

(DM).. = 1.
11

The condition (3.18) can, therefore, be simplified:

for every i = 1,2,...,n,

E IM. I < c M.. and E < c, where c = - i.
. 0 ij 3-1 .o . i .ji J I J i 1jj.

The above argument establishes the following result.

Theorem 3.6

Let M = (M ) be an nxn matrix with positive diagonal entries,

and let D = [diag(M)]~. If for every i =1,2,...,n,

jM
E IM.. < c M.. and - < c, (3.19)

jfi LJjfi di

where c = v - 1, then (D114) and (D'14)2 are positive definite matrices.

The conditions that Theorem 3.6 imposes on M may be considerably

less restrictive than the analogous conditions that Theorem 3.4 imposes on

M; namely,

for every i = 1,2,...,n,
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Z IM..I < ct and I [M.. I < ct,

LJij~

where c = 5 - 1 and t =
min{M 2: i = 1,...,n}

max{M..: i = 1,..., n}i1

The conditions on the row sums of M in (3.20) are at least as

restrictive as those in (3.19), because t < M.. for every i = 1,2,...,n.

This is also true for the column sum conditions: because t < min{M..:

i = 1,... ,n}, E IM..I < c min{M..: i = 1,,...,n}, which implies that

E jMdI < E -M iI

jii ii ji Min{M .:i=l,...,n}
13-

(3.20) are equivalent to those given in (3.19)

diagonal entries of M are identical.

Let us return to Example 3.2 and consider

matrix M, where

N 0 0 1/N 0

M = a 1 0 - Here, D~l= 0 1

b 0 11 0 0

< c. The conditions specified in

if, and only if, all of the

the effect of scaling the

0 1

0 ,and D-lM= a

11 [b

0

1

0

0

0

1

The conditions (3.19) reduce to the inequality

jan + cba < 2 - 1.

In contrast, the conditions (3.20) for the unscaled problem are

jal + [bI < (V2-- - 1) N2

( r - 1) -
N

if 0 < N < 1

if N > 1
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Consider these conditions on M for the unscaled problem for various values

of N:

upper bound on la[ + JbI

1 (

1
-4. (d v - 1)

1 (72 - 1)

N

1

1

2

10

(/5 - 1)

(d- 1)

The upper bound on I a I + IbI is tighter than the upperbound (v'7 - 1) im-

posed on jai + IbI for the scaled problem unless N = 1, in which case the

bounds are the same. As the value of N moves away from 1, the conditions

imposed on Jai and IbI for the unscaled problem becomes increasingly

stringent. (As N + 0 or N + , the conditions (3.19) drive Ja! and Ibi

to zero).

In Example 3.3, we see a similar trend.

Here,
1 0 0 1

M =ra 1 0 . Hence, D = 0

b 0 N 0

In this case, the conditions (3.19 reduce to

jal + b < - ,
N

0

1

0

0 1

0 , and D'M = a
1 b
N IN
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1

0

0
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while the conditions (3.20) on the unscaled problem are

ja + Jbi < (v5 - 1)N 2

(VT - 1)1

if 0 < N < 1

if N > 1.

Consider the two sets of conditions for several values of N:

Scaled Problem

jai + 41bI < V- 1

IaI + 21 b < Y - 1

Jai + jbj < V - 1

ai +- IbI < T- 1

lal + jbI < ' - 1

Unscaled Problem

JaI + jbj < (/- 1)

lal+ IbI <

jai+ Ibi <

(/2 - 1)

I(- - 1)

Again, the conditions on the unscaled problem become increasingly more

stringent than those on the unconstrained problem as N moves away from 1.

Analogous results can be obtained by column-scaling the matrix M.

An argument similar to the above shows that

if for every i = 1,2,...,n,

, M. < c and - E IM. < c M
j i j i yL ii

where c = V - 1.
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1

1

1

2
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jai + JbI < v72 - 1
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then MD~1 and (MD~1)2 are positive definite.

For a given problem, either the rows or the columns of M could be

scaled in order to satisfy one of the sets of conditions that ensure

convergence of the generalized steepest descent method. For a given

matrix, one of these scaling procedures may define a matrix for which the

algorithm will work, even if the other does not. If we column-scale the

matrix of Example 3.2, then

1 0 1

MD-1 a/N 1 0,

b/N 0 1

and conditions (3.21) reduce to

lal + Ibi < N.

Thus, in order to obtain the least restrictive conditions on X, it is

better to row scale if N < 1, and column scale if N > 1.

By using the above row- or column-scaling procedure, it may be possible

to transform a variational inequality problem defined by a nonmonotone

affine map into a problem defined by a strictly monotone affine map.

That is, D~i or MD 1 may be positive definite, even if M is not. The

following example illustrates such a situation.

Example 3.4

1 0.5
Let M =.M is not positive definite, since

8 10
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1 4.25
det M = det = -8.0625 < 0

4.25 10

1_ 1 0.5
However, D M j is positive definite, since

0.8 1

det D~l = det 1 .6 0.5775 > 0.
0.65 1

Note that column scaling does not produce a positive definite matrix, since
10. 05

MD  - , and

-8 1

1 4.025
det MD = det= -15.2 < 0.

4.025 1

'2 1.4 1
Note also that (D M) = is positive definite, since

1.6 1.4

1.4 1.3
det(D~ =)2 det = 0.27 > 0.

1.3 1.4

Consequently, any unconstrained problem defined by f(x) = Mx-b, where M is

the above defined matrix, can be transformed, by row-scaling, into an

equivalent problem that can be solved by the generalized steepest descent

method, even though neither M nor M2 is positive definite.

The above scaling procedures can also be used to transform a nonlinear

mapping into one that satisfies the convergence conditions given in

Theorem 3.5 for the generalized steepest descent algorithm. The algorithm

*
will converge in a neighborhood of the solution x if
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(i) D 1f (or fD~ ) is uniformly monotone and twice Gateaux

differentiable; and

-l * 2 * -12
(ii) [D Vf(x )] (or [ f(x )D ] ) is positive definite.

3.5 Generalized Descent Algorithms

The steepest algorithm for the unconstrained minimization problem,

Nin F(x),
n

xCR

k k+l n
generates a sequence of iterates {x } by determining a point x s R that

k k
minimizes F in the direction -VF(x ) from the previous iterate xk. In con-

trast, general descent methods (or gradient methods) generate a sequence of

k k+1-l n
iterates {x I by determining a point x c R that minimizes F in the direction

d from x , where dk is any descent direction from k x , i.e., dTVF(xk) < 0.
kk

k *
The set of descent directions for F from the point x x is given by

D(x k):= {-AkVF(x k): Ak is an nxn positive definite matrix}.

This general descent method reduces to the steepest descent method when

Ak = I for k = 0,1,2...... If Ak = [V 2F(xk -1 for k = 0,1,2,..., then

this method becomes a "damped" or "limited-step" Newton method. If F is

uniformly convex and twice-continuously differentiable, then this modi-

fication of Newton's method (i.e., Newton's method with a minimizing step

length) will produce iterates converging to the unique critical point of F.

(See, for example, Ortega and Rheinboldt [1970].)

In this section, we analyze the convergence of gradient algorithms

adapted to solve unconstrained variational inequality problems.
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Let Ak for k = 0,1,2,... be a sequence of positive definite symmetric

matrices. The generalized descent algorithm for the unconstrained in-

equality problem VI(f,R n) can be stated as follows:

Generalized Descent Algorithm

Step 0: Select x0s Rn. Set k = 0.

Step 1: Compute - Akf(x ).

kk *
If Akf (x ) = 0, stop: x = x

Otherwise, go to Step 2.

Step 2: Find x k+lx k - Akf(x )] satisfying

(x - x ) f(x ) > 0 for every xS[x; - A k(x - x ) f~x _ ; Af(x)]

Go to Step 1 with k = k + 1.

The following result summarizes the convergence properties for this

algorithm when f is a strictly monotone affine mapping.

Theorem 3.7

Let M be a positive definite matrix, and f(x) = Mx - b. Let Ak for

k = 0,1,2,... be a sequence of positive definite symmetric matrices, and

let {xk I be the sequence of iterates generated by the generalized descent

algorithm applied to VI(f,C). Then,

(1) the steplength ek determined on the kth iteration of the

algorithm is

k T k
(Mx - b) Ak(Mx - b)

k k T k (3.22)
(Mx b) AkMAk(Mx - b)
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(2) the iterates generated by the algorithm are guaranteed to
*A

contract to the solution x in M norm by a fixed contraction

constant r < 1 if and only if

(i) inf [X (MAkM)]>0, and

k=0,1,...

(ii) inf [X (Ak)] > 0; and

k=0, 1,...

(3) the contraction constant r is bounded from above by

r = 1 -

inf
k=0,1,...

sup
k=0,1,...

f-2
X .[(i ) (M A.M)(M)mm K

1/2

T

ax [A% (A )]

Proof

k k+l th s
(1) Let x and x denote, respectively, the k and (k+l)st

iterate, and let Ak denote the kth scaling matrix.

Then,

k+1 k k
x =x - kAkf(x

k+l
where ek is chosen so that x solves the one-dimensional

variational inequality subproblem on [x k; - Ak k

As in the generalized steepest descent method, we can assume that

k+l k k+l
x x , because, if x = x k, then f(x k) = 0, and the algorithm would

have terminated in Step 1 of the k h teration. Since xk+1

unconstrained one-dimensional subproblem,

fT k k+1 0.

solves the
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k k+l k+l
Substituting for f (x k+. and f(x ) in this equation gives

(Mxk _ bTAk[M(xk _ ekAk(Mx - b)) - b] = 0.

The last equality shows that ek is given by expression (3.22).

(2) The iterates generated by the algorithm contract in R normal to
* -l

the solution x = M b if and only if there exists a real num-

ber rE[0,1) that is independent of xk and satisfies
k+1 * k *k *
x - xl < re1 x - x*1 whenever x # x*. Thus, we

define

r:= sup
k=0,1,2,...

xk 
*

T A k
T(x ),
Ak

where
k+l *

k x -xIM k *
T (x ) : k * for x #x.

xk - x

As in the proof of Theorem 3.3, we obtain a simplified expression for

T (x ):
T~ k (

T (xk) = [1 - R (y k

where yk = x - x and

k
R (y) :

[(Myk ) TAk(Myk ) k T M AkMy k

[(My )TAM Ak(Myk )[(y )TMyk]

Therefore, r = sup
xk#x*
k=0,1,..

T k(x) =
Ak

sup
yko
k=0,l,..

[1 - R (yk)] = [1 - inf R (yk
Ak ykO Ak

k=0,1,..
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Consequently, r < 1 if and only if inf R (yk)

k 0 1
y #0

> 0.

k=0,1,..

To complete the proof of (2), we show that we can guarantee that

inf R (yk) > 0 if and only if inf

yko Ak k=0,1,..
k=0,l, ..

inf
k=0,1,..

min (A ) > 0 and

X (MA kM) > 0.

If inf X m (M AM) < 0 or
k=0,1,.. .mi*

inf
k=0,1,.

X (A)
min k

< 0,

then there exists a sequence of nonzero vectors {y k} such that

(yk)TM AkM yk < 0 or infinf
k=0, 1..

inf

y #0
k=0, 1,...

If inf
k=0,1,..

R (yk) < 0;

mi (Ak)

(yAk TA k < 0. In either case,
k=01,..

i.e., r > 1.

> 0 and inf
k=0,1,..

X -n(MAkM) > 0, then

inf (Myk )TAk (Myk]i) i(f k )T AkMyk
k k K

y (MY k )T (Yk y 0 ( k )T yk
k=0, 1, . . 1k=0 , 19,. -..

sup [ (Myk) TAkM Ak k) ]

(MY k ) T(Myk

inf mi (Ak) inf
k=0,1.. k=0,1,..

sup

kk 00
k=0 , 1

[(yk) 
TM yk

(y ) y. kT

Xm (MAk)

supX max Ak)
k=O, 1.

> 0
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because sup
k=0,1...

of M.

X (A M Ak) > 0 and X ()>0 by the positive definiteness
max k kmax

(3) By an argument analogous to the argument in the proof of the

Corollary to Theorem 3.3,

inf (yk )T MAkMyk

y #0 (yk )TMyk (
k=,1,D..(

sup
k

y k 0

k=, 1, .

(MykTA AkM (My )

(MYky ) TAk(My k I
= inf

k=0, 1..

sup

k=0,1..

'i ( -T
Xi[ (M 2 )

( 1) ( 1
(MAkM) (M2

ax A M (A)

The result follows from this inequality and the fact that

r = [1 - inf R (yk

y #0

k=0,1...

The iterates produced by the generalized descent algorithm will converge

to the solution if we replace conditions (i) and (ii) of Theorem 3.7 with

the conditions

(i') lim inf[X (MAkM)] > 0, and
k-+m>

(ii') lim inf[X (Ak
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In this case, the iterates do not necessarily contract to the solution.

3.6 Concluding Remarks

In this chapter, we have analyzed the behavior of the steepest

descent method for unconstrained convex minimization problems when it

is generalized to solve unconstrained monotone variational inequality

problems. The generalized steepest descent algorithm need not converge

when applied to the problem VI(f,Rn) if the Jacobian of f is not sym-

metric, even if f is a uniformly monotone mapping.

When f(x) = Mx - b is a strictly monotone affine map, we show in

2
Theorem 3.3 that the condition that M is positive definite is necessary

and sufficient for the iterates generated by the algorithm to contract

to the solution of VI(f,Rn). Theorem 3.4 establishes double diagonal

dominance conditions on the matrix M that ensure that M and M2 are

positive definite, and, therefore, that the algorithm converges. In

section 3.3, these results are extended to the problem VI(f,R n), where

f is a uniformly monotone, but, not necessarily affine, mapping.

In section 3.4, we describe a scaling procedure that allows a much

wider class of affine maps to satisfy the convergence conditions of the

algorithm. Finally, in section 3.5, we analyze the convergence properties

of a class of generalized descent methods that allow movement in any

"descent" direction from the previous iterate at each iteration.
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CHAPTER 4

GENERALIZATIONS OF FIRST-ORDER APPROXIMATION METHODS

Many algorithms to solve nonlinear optimization problems and systems

of nonlinear equations rely upon the fundamental idea of iteratively ap-

proximating the nonlinear function that defines the problem. In this

chapter we analyze several variational inequality algorithms that gen-

eralize a class of these approximation methods.

Let F:Rn + R be a convex, continuously differentiable function, and

let C be a closed convex subset of Rn. Consider the convex minimization

problem

min F (x).
xsC

At each iteration, a first-order approximation algorithm approximates

F by a function depending on the gradient of F. Linear approximation

methods are classical examples of such methods. Given an iterate x k, a

linear approximation method generates the next iterate by using a linear

approximation Fk (x) to F about xk given by

k k k T k
F (x) = F(x ) + (x - x ) VF(x ). (4.1)

For example, the Frank-Wolfe method, which we formally state in Section

4.3, determines the solution vk to the subproblem

min Fk
xsC

The algorithm then chooses as its next iterate a point x k+ that minimizes

k k
F on the line segment, [x , v].
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A more accurate type of first-order approximation would replace the

(constant) vector VF(xk ) by the (nonlinear) gradient VF(x), giving the

approximation

k k k T
F(x) = F (x) F (x ) + (x - x ) VF(x). (4.2)

In this chapter, we will investigate variations of both of these

first-order approximation schemes adapted to solve variational inequality

problems. Sections 4.1 and 4.2 analyze variational inequality algorithms

that generalize first-order approximation methods using the approximation

(4.2). Our analysis of a "contracting ellipsoid" algorithm in Section 4.1

provides a geometrical framework within which to view a number of variational

inequality algorithms. In section 4.2, we study a subgradient algorithm

that solves a max-min problem that is equivalent to the variational in-

equality problem. This algorithm solves problems defined by monotone

mappings; it does not require strict or uniform monotonicity. Section 4.3

discusses the use of a generalization of the Frank-Wolfe algorithm for

solving variational inequality problems, and establishes the convergence

of a modification of the generalized Frank-Wolfe method.

4.1 A Contracting Ellipsoid Algorithm and Its Interpretation

In this section we discuss a generalized first-order approximation

algorithm for solving a variational inequality problem defined by the

monotone mapping f. If f is the gradient mapping of a convex function

F:R + R ; i.e., [VF(x)]T = f(x) for every xeC, then VI(f,C) is equivalent

to the convex minimization problem

min F(x).
xsC
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Consider an algorithm to minimize F over C that successively minimizes

^k k
the approximation F (x):= F(x ) + VF(x) (x - x ) to F given in (4.2).

That is, the algorithm generates a sequence of iterates {x k} by the re-

cursion

k+l k
x = argmin F (x), k=0,1,...

xeC

or, equivalently,

xk+ = argmin VF(x)(x - xk ), k=0,1,....
xeC

By replacing [VF] with the mapping f, we obtain the following algorithm

that is applicable to any variational inequality problem.

Contracting Ellipsoid Algorithm

Step 0: Select x0 e C. Set k =0.

Step 1: Select xk+1E argmin (x - xk )T f(x).
xsC

k+l k k *
If x = x , then stop: x k= x

Otherwise, return to Step 1 with k = k + 1.

(The name of the algorithm is motivated by the fact that for unconstraifted

problems with certain affine maps, the algorithm produces a sequence of

ellipsoids that contract to the solution. This algorithm should not be

confused with Khachiyan's [1979] ellipsoid algorithm for linear pro-

gramming.)

In this section, we analyze this general algorithm. To motivate the

analysis of the algorithm for the problem VI(f,C), we first consider, in

section 4.1.1, the use of the algorithm for unconstrained variational in-
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equality problems defined by affine maps. In this simplified problem

setting, we describe the geometry of the algorithm and analyze its con-

vergence properties. Section 4.1.2 extends these results to constrained

problems defined by affine maps. Section 4.1.3 analyzes the algorithm

for the constrained variational inequality problem defined by a nonlinear,

strictly monotone mapping f. In section 4.1.4, we discuss the role of

symmetry of the Jacobian of f in the convergence of the contracting

ellipsoid method and the generalized steepest descent method, and compare the

convergence conditions for these two algorithms. Finally, Section 4.1.5

discusses relationships between the contracting ellipsoid method and a

number of well-known algorithms for variational inequality problems.

4.1.1 Unconstrained Problems with Affine Maps

In this subsection, we restrict our attention to the unconstrained

variational inequality problem defined by a strictly monotone affine map.

That is, we assume that f(x) = Mx - b, where M is a positive definite nxn

matrix.

In this case, the minimization subproblem

min (x - xk T x)
n

xCR

is a strictly convex quadratic programming problem. The strict convexity

of the objective function ensures that the first order optimality conditions

are both necessary and sufficient for x k+ to be the unique solution to the

k . k+1 n
subproblem. That is, given x , the next iterate is the unique x k R

satisfying
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k+l k T k+l T k+1
[(x - x )TM + (Mx - b) ] (x-x )

k+lT T k+1
=-(x -x ) [(M + M)x

Tk n
- (M x + b)] > 0 for every x R .

Because this variational inequality subproblem is unconstrained, the

solution xk+1 must be a zero of the mapping

(M + MT)x - (MT xk + b)

that defines the subproblem. Hence, x k+ is given by

k+1 -l T k
x = S (M x + b), k = 0,1,2,... ,

T
where S = M + M ; or, equivalently,

k+1 k -l k
x = x - s (Mx - b)

= xk _ S-1 k),

Before proceeding with a

mechanics of the algorithm in

k = 0,1,. .

convergence analysis, we illustrate the

an example.

Example 4.1

Let M ] and b = . The algorithm generates iterates by

the relation

k+1 -( T k
x =S (M x + b), k = 0,1,..,
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2 0 1/4
where S = M + M = . The solution x isM b =

0 8 (3/8/

0 1 1 1 2 5/8 3 1/4
Let x = - Then x (38) x = , x = ,1

\o 3/89/16/ 9/16

4 1/16 5 1/16 6 5/32

15/32 3/8 21/64

Figure 4.1 illustrates a sequence of iterates {x k} as well as a sequence

k
of ellipses {E } which we now describe.

Because f is affine, the behavior of the algorithm can be described

geometrically in terms of the level sets of the objective function of the

th k T
k subproblem, min (x - x ) (Mx - b). The level set given by

xeRn

k k T
E := {x : (x - x ) (Mx - b) < a}

is an ellipsoid centered about the point that minimizes the objective

function of the kth subproblem. Consequently, each of the ellipsoidal

level sets is centered about the next iterate,

k+l -1 T k
x = S (M x + b).

k k
The level set E is of particular interest. Note that 3Ek (the boundary0 0

k th k *
of Ek) contains both the k iterate x and the solution x to the problem

* k+l
(since Mx - b = 0). Hence, the point x is equidistant, with

k *
respect to the M norm, from x and from x . Because the ellipses

k
E0 are defined by the same matrix M, they have the same structure

k
and orientation. E also has the same structure and orientation as0

*T- *
the ellipse about the solution: E = {x : (x - x ) M(x - x ) c.

Note also that the chord joining xk to any point x on Ek
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is orthogonal to the vector f(x). This is true because, by definition

k k k Tof Ek, if xc Ek, then (x - x ) f(x) = 0. This observation describes the re-

lationship between the vector field defined by f and the ellipsoidal level

sets.

The following theorem summarizes the convergence properties of the

contracting ellipsoid algorithm for unconstrained problems defined by

affine maps.

Theorem 4.1

If f(x) = Mx - b and M is positive definite, then the sequence of

iterates generated by the contracting ellipsoid algorithm converges to the

* -1 -l T
solution x = M b if and only if the spectral radius p(S M ) of the

matrix S~lT is less than one.

Furthermore, for some norm 1j. , the algorithm converges linearly, with

convergence ratio IISlMT II

Proof

k+1 -1 T k
From (4.3), x = S (M x + b), and, because the problem is un-

* -l
constrained, x = M b. Thus,

k+1 * -1 T k T -l
x - x = S [M x + b -(M + M)M b]

-i T k *
= S M (x - x

-l T k+1 0 *
=(S M ) (x - x).
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The matrix (S~1MT k approaches 0 as k -+ o if and only if p(S 1M T < 1. (See,

k
for example, Ortega and Rheinboldt [1970].) Hence, the sequence {x } con-

* -i T
verges to x if and only if p(S -1 ) < 1.

Since p(S1 M T) < 1, there exists a norm 1 1 satisfying IS1 MTl

By Cauchy's inequality, IIx 'l - x* l=S M T(x - x ) 11 < !l S M 11xk - x*

for each k = 0,1,..., and, hence, the algorithm converges linearly, with

convergence ratio jS l S TI.

The following lemma states several conditions that are equivalent to

the condition p(S~ MT) < 1. In addition, the lemma shows that p(S MT) < 1,

and, hence, the algorithm converges, whenever M2 is positive definite. Con-

sequently, if M satisfies the diagonal dominance conditions stated in

Theorem 3.4, then the algorithm will converge. The row and column scaling

procedures discussed in Section 3.4 can also be used in this setting to

transform the matrix M into a matrix satisfying the conditions of Theorem 3.4.

Lemma 4.1

Let M be a positive definite matrix.

Then, (1) the following conditions are equivalent:

(i) p(SlMT) < 1;

(ii) p(MS ) < 1;

(iii) p[(M-T M + I)-l < 1;

(iv) p[(MTM 1 + 1) 1] < 1;

(v) min IX + 11 > 1; and

X E:(M-TM)
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(vi) min
T -1

XsX(M M )

I + 1 > 1; and

(2) if M2 is positive definite, then p(S M T < 1.

Proof

(1) First note that (S MT)T = MS1 , and (M-TM) = M M 1. The follow-

ing equivalences are, therefore, a consequence of the fact that a

matrix and its transpose have the same eigenvalues: (i) +- (ii);

(iii) +(iv); and (v) *-+(vi).

Conditions (i) and (ii) are equivalent because (S 4T) =

(M S) - =(-TM + I)-l.

Conditions (iii) and (v) are equialent because

p[(-TM + I)-'] =

min{X :XEX(M -TM+I)}

min{jX + Ii: X6X(M M)}

<1l

if and only if min{IX + l: XEX(M-T M)} > 1.

(2) The matrix M2 is positive definite if and only if M-TM is

2 T -T
positive definite, since M = M (M M)M, and M is nonsingular.

-T -T
If N M is positive definite, then for every XEX(4 M),

ReX > 0, and, hence,
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2 21/2
J + 1 = [(1 + ReX)2 + (ImX) 1 > 1 + ReXI > 1.

By (1), (v) holds, and, hence (i) holds.

Let us return to Example 4.1. The iterates produced by the algorithm

1/4

are guarantee to converge to the solution x = because

SlMT\ 1 1/2 -1 r (3/8)

P(S = L 1 = < l This example illustrates that the

1/4 1/2 2

condition that M be positive definite is not a necessary condition for con-

vergence: for this problem,

-3 10

M2 ] is not positive definite.

-10 12

The geometrical interpretation of the algorithm discussed in Example

4.1 extends to all unconstrained problems defined by af fine maps. The con-

tracting ellipsoid method generates a sequence of ellipsoidal level sets for

any such problem. Recall from our previous discussion that for each k,

k k+1 * k
the ellipsoid E0 is centered about the point x , and that x 69E0 In ad-

dition, the ellipsoids {E } all have the same structure. Therefore, if M
0

satisfies p(S1 MT) < 1, then the fact that the sequence of ellipsoid centers

x k+ contracts in some norm to x , and that x is on the boundary of each

k *
E , ensures that the sequence of ellipsoids converges to the point x .

0k3l

The distance with respect to the S norm from the center xk+1 of the

k th ellipsoid Ek to any point on its boundary is equal to 11 x k+ x * 1

Therefore, if M satisfies 11 S~1MTIs < 1, and, hence, the sequence of

iterates xk contracts to the solution x in S norm, then the ellipsoids
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must contract to the solution in S norm.

The above observations establish the following result.

Theorem 4.2

T
Let f(x) = Mx - b, and S = M + M . If M is positive definite, and

-1 T k
p(S M ) < 1, then the sequence of ellipsoids {E0} generated by the algorithm

* -l -lT
converges to the solution x = M b. If, moreoever, 11 S M T < 1, then the

k *
sequence {E } contracts to the solution x

0

4.2.2 Constrained Problems with Affine Maps

In this section, we extend the analysis of the previous section to

the constrained problem VI(f,C), where f is a strictly monotone affine

mapping and C is a closed, convex, nonempty subset of Rn. We let f(x) = Mx - b,

where M is a positive definite nxn matrix.

Because f is affine, the minimization subproblem

min (x - xk )Tf (x) (4.5)
xcC

is a strictly convex quadratic programming problem. Thus, the contracting el-

lipsoid algorithm solves the problem VI(f,C) by solving a sequence of

quadratic programs. The work involved in this algorithm is, therefore,

comparable to that of a projection algorithm, which also requires the

solution of a sequence of quadratic programming problems.

The necessary and sufficient conditions for xk+l to solve the kth

quadratic programming subproblem are
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k+lT T k+l Tk
(x - x ) [(M + M )x - (M x + b)] > 0 for every xEC.

Hence, the subproblem is a variational inequality problem defined over C by

the affine map

k T T k
g(x,x ):= (M + M )x - (M x + b).

An alternative interpretation of the algorithm is, therefore, that it solves

a variational inequality problem defined by an affine mapping with an

asymmetric matrix by solving a sequence of variational inequality problems,

each of which is defined by an affine mapping with a symmetric matrix.

The following theorem shows that the iterates generated by the al-

gorithm converge to the unique solution x if 11 S-1 l T S< 1, where

S = M + M

Theorem 4.3

Let f(x) = Mx - b, where M is an nxn positive definite matrix; let

T n
S = M + M ; and let C be a closed, convex, nonempty subset of R . Then,

if 11 S lMTII< 1, the sequence of iterates generated by the algorithm con-

*
verges to the solution x of VI(f,C).

The proof of the theorem has a simple geometrical interpretation. Be-

fore proceeding with the details of the proof, let us briefly highlight

the geometry underlying the argument. Let c = S1TI . We will show

*
that if the distance with respect to the S norm from the solution x to a

k * * - T - k
point xCC is greater than c l x - x , then (x - x) g(x, x ) < 0; that

- k *
is, the mapping g(x, x ) points away from the point x CC. This implies that
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th k+l
x cannot solve the k subproblem, since the subproblem solution x

k+1 I k+l k
must satisfy (x - x ) g(x ,x ) > 0 for every xEC. Therefore, the

* k+l
distance with respect to the S norm from x to x must be less than

c1 x k - x * J , which ensures, since c< 1, that the iterates contract to

the solution in S norm. Figure 4.2 illustrates this geometrical idea.

(The general structure of this proof is similar to that of Ahn's [1979]

proof of the nonlinear Jacobi method.)
k

x

*
C6

g(x,x )

Figure 4.2

The Approximate Map g(x,x ) Points Away from x if X-x Il S > c I x -x

Proof of Theorem 4.3

We show that

x k - x c x - x cj S,

and, hence, that

k+l * k+l 0  *
Ix - x IS< (C) 11 X0 - x* IIs .

Because cc[0,1), the righthand side of this inequality approaches zero as

k -+ co, and, therefore, lim x k x .

k-kx

Recall that x k+ solves the subproblem
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k+l T k+l k
(x -x ) g(x , x) >0 for every x6C.

In particular, this inequality is valid for x = x

k * k *
Let 6 = x - xi. Assume that x x , and, hence, that 6 > 0.

- * - *-
Let x x be a point in C and let c be defined by i x- x*il = C. Then,

* - T - k
(x x) g(x,x )

* T T- T k
= (x -x)T[M + M )x- M - b]

* -T * * -T T- * T* k
= (x - x) f(x ) + (x - x) [(M + M )(x - x ) + M (x - x

* - T - * * - T -l T* k
< (x -x)(M + M )(x- x )+ (x -x) SS M(x - xk)

- *
since x x

* 2 - - -1T * k- x - x S + (x x, S N (x - x ))

-< -c 6 + li x -x S 1 * xk)1S by Cauchy's Inequality

-2 2+~ - SMTI 11 S 1x x ~< -c 6 + c 6I - xk

-2 2 -
= -c 6 + c 6 c 6

2 -
=C6 (c - c).(46

Noi k+1
Now if x = x

* - T - k
then, as noted above, (x - x) g(x, x ) > 0.

134

(4.6)



2 - * -T - kTherefore, c < C, since by (4.6), c6 (c - c) > (x - x) g(x, x ) > 0.

But then,

xk+l - x * = C xk - x < c1j x - x S

The following example considers a constrained variational inequality

problem defined by the same affine map as that in Example 4.1.

Example 4.2

1 2
Let M = and b = , and

-2 4

let C = {xSR : x > 0, x > 0, and x < (1/6)x + 1/8}. The solution xk+l

to the k h subproblem must satisfy

k+1lT k+l T k
(x -x ) (Sx - M x - b) > 0 for every x6C,

[2 ol 0 (l 21/20
where S = M+M = . Let x = 110 Then x = ,

0 8 0 3/10

2 9/10 \ 3 33/40 4 63/80 \ k
11/40 21/80/' 41/160 ... . The sequence {x }

converges to the solution x = because j S'|Mj 2 v2-/2 < 1. Figure

4.3 illustrates the sequence of iterates {x } as well as a sequence of el-

lipses.

We can also interpret the algorithm applied to constrained problems in

k
terms of a sequence of ellipsoids. Given an iterate x , the algorithm

k k+l
selects the center of the ellipsoid E as the next iterate x if the center

0

is a feasible point. Otherwise, we can determine x k+ by finding the smal-

k
lest ellipsoid about the center of E that contains a feasible point. This

0
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Variational Inequality Problem

Lx2

1/2 4

0 1/2

w 4w w

A



k+l
feasible point is the next iterate, x This sequence of ellipses does

3/4

not necessarily converge to the solution x . In fact, the point x =

5/8 (1/4)

determines a set of ellipsoids centered about the point (/ . The(7/161
smallest ellipse in this set containing a feasible point contains the

* *
point x , thus establishing that x is the solution to the problem.

4.1.3 Constrained Problems with Nonlinear Maps

In this subsection we consider the constrained variational inequality

n
problem VI(f,C), where C is~a closed, convex subset of R and f is a

strictly monotone nonlinear map.

For this general problem, the objective function of the minimization

subproblem

min (x - xk Tf(x) (4.7)

xeC

is not necessarily convex. A solution to this subproblem must satisfy the

first-order optimality conditions for problem (4.7); that is, xk+l must

satisfy

k+l T T k+l k+l k k+l
(x - x ) [V f(x )(x - x ) + f(x )] > 0

for every xEC.

In general, the mapping defining this variational inequality subproblem is

neither monotone nor affine. To avoid solving this potentially difficult

subproblem, for k = 0,1,... we modify the contracting ellipsoid algorithm

th .k
at the k iteration by linearly approximating f about x That is, by

replacing f(x) in problem 4.7 with f(xk) + Vf(xk _ k we obtain the

following algorithm.
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General Contracting Ellipsoid Algorithm

Step 0: Select x 0 C. Set k = 0.

k+l k T k k T k k
Step 1: Let x = argmin [(x x ) f(x + (x - x ) Vf(x )(x - x

xsC

k+l k k *
If x = x, then stop: x = x.

Otherwise, return to Step 1 with k = k+l.

The strict monotonicity of f ensures that the kth subproblem is a

k+l
strictly convex quadratic programming problem. The unique solution x

to this subproblem must, therefore, satisfy the necessary and sufficient

optimality conditions.

k+lT k T k k+l k k
(x - x ) [[(Vf(x ) + V f(x )] (x - x ) + f(x )] > 0 (4.8)

for every x £ C.

Let Mk = Vf(x k) and let g(x, x k) be the mapping defining the variational

inequality subproblem on the k h iteration; i.e.,

g(x, xk = ( + M)(x - xk + f(xk (4.9)

The general contracting ellipsoid algorithm, therefore, solves a nonlinear

variational inequality problem by solving a sequence of variational in-

equality problems, each of which is defined by an affine mapping with a

symmetric matrix.

The following theorem establishes convergence conditions for the general

algorithm. The general structure of the proof of the theorem is similar to

that of the proof of Theorem 4.3. Here, we show that if 1 Sl1M T <1, where
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* T
M = Vf(x ) and S = M + M , then there exists a constant re[0,l) such that

x k+l _ * S < r 1 xk xlI . To do this, we again show that if the

*-
distance with respect to the S norm from the solution x to point xEC is

greater than r X x - x* S , then the mapping g(x, x ) points away from

the solution x*, which shows that x cannot solve the variational inequality

subproblem. The convergence proof requires f to be twice Gateaux differen-

tiable in order to use the second derivative of f to bound the error in

making a linear approximation to f. The theorem also assumes that a solu-

tion x to VI(f,C) exists. This assumption is necessary because we do not

assume that f is uniformly monotone or that C is compact.

Theorem 4.4

Let f be strictly monotone and twice Gateaux differentiable, and let

n *
C be a closed convex subset of Rn. Assume that a solution x to VI(fC)

exists, and that S -1MT 11 < 1, where M = Vf(x *) and S = M + MT. Then, if

the initial iterate x0 is sufficiently close in S norm to the solution x

the sequence of iterates generated by the general contracting ellipsoid

algorithm contracts to the solution in M norm.

Proof

We show that there exists an rE[0,1) satisfying

x k+- x, S < r 1i xk - x *11,

and, hence, that

k+ *< (r) k+1 0 *
S-- x
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k+1 k *
Because re[O,l), lin (r) = 0, and, hence, lin x = x ,

k-+0

Let c= S-1M , and

k400

Let K = SU*
Ix-x lk <1I

sup
0 <t< 1

S [V2f(x + t(x - x)] lI

Two extended mean value theorems (3.3.5 and 3.3.6 in Ortega and Rheinboldt

[1970]) show that,

if 1i x - xj1 < 1, then

jjS- 1 f(x) - (f(x) + x )x - x S < K*1 x - X 11 ,

SS1[Vf(x) - Vf(x )Il <

k *1 i-c
Let 6 ! 11 x - x ls , and let y > 0 satisfy y < Min( 5K ' 1 "

1-c > 0, since c < 1.) Assume that 0 < 6 < y . Finally, let
5K

r = (c + 3Ky/1-2Ky). By definition of y, r < 1.

Recall that x k+ solves the subproblem (4.8):

(x - xk+l T k+l k) > 0

(Note that

for every xE C.

In particular, this inequality is valid for x = x . Let x x be a point in

c and let c be defined by 11 i - x11 = c6. Then, we obtain the following
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chain of inequalities:

* - T - k
(x -x) g(x, x)

= - -) [(M + T)(- k) + f(xk)]

* - T * * - T T- * T * k
(x -x) f(x)+(x -x) [(M + M )(x - x )+ M(x - x)

* k k * - k
+ M(x - x ) + f(x ) - f(x ) + (Mk - M)(x - x )

+ (M - MT)( - xk)]

* -T - *
< (x - x) S(x - x ) * - T -liT * k

+ (x - x) SS N (x - x )

* - -1 * k k *
+ (x -x)SS [M(x- x ) + f(x) -f(x)]

* - T -l k
+ (x - x) SS(k - M)(x - x )

+ (- x )SS (Mk M)(x -x),

where the second equality is a result of adding and subtracting terms so that

we can obtain expressions in terms of the S norm, and the inequality holds

- *T *
because (x - x ) f(x ) > 0.

We consider each of the terms in the last expression separately:

* -T- * *2 -2
(x -x) S(x - x ) lx - x 11 = -(CO)
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(x - )Tssl( - xk _

<x x S T(x -1 T _i *k

1 x ,XS N1 (x ( )

-x -x i S 1 MT * k S

c 6 c 6;

(x -x)SS [f(x _(x)- M(x -x)

< x1 x xs -1 [Wxk ) - f(x M(xk x)Ils

* -- * k 2
.f x -X1 K1 x* - x lig

-2
=c 6 K6 ;

(x - x) SS Mk - M)(x - x )

< x -x 11 s 1S(Mk M)11S11x - x s

< lix xl1S K11 xk _ * k

x< x x l -

k_ * - * * k
K1lx - x l( x - xl + x -

by the triangle
inequality

= c 6 K6(c6 + 6);
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as above

by (4.11)



and, similarly, (x - xk T -1(Mk - M)(x - x) < (-C6 + 6)K6c6.

Combining the above inequalities, we obtain

* -T - k - 2-
(x -x) g(x, k 2 - + c + 6K + Kc6 + K6 + Kc6 + K6)

= c62 (c + 3K6 - c(l - 2K6))

- 2
< cy (c + 3KY - c(l - 2Ky)). (4.12)

k+1 * - T - k
Now if x = x , then, as noted above (x - x) g(x, x ) > 0. Therefore,

3+ -2
r = > c, since by (4.12), cy (c + 3Ky - c(1-2Ky)) >

1-2Ky

* - T - k
(x - x) g(x, x ) > 0.

But then,

ii k+1 - * 11 = -x k _ xjS < r* k x S

4.1.4 Further Geometrical Considerations

In this subsection, we interpret the steepest descent method in terms

of the ellipsoidal level sets {E } that are intrinsic in the contracting
0

ellipsoid method, and discuss the role of symmetry in the concentric

ellipsoid algorithm. We also compare convergence conditions for these two

methods.
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Let VI(f,Rn) be an unconstrained variational inequality problem de-

fined by the affine map f. Consider the sequence of ellipses

k k T
Ek= {x:(x - x k) Tf x) < 0.

E0

By definition of E the chord from x to any point xEE k is orthogonal to
0' 0

the vector f(x). In addition, the vector f(x k) is normal to the tangent

k k k
plane of E at xk. Recall that, given x , the steepest descent method

determines the next iterate

k+l k k
x = x -ef6k )

T k+l k th
where ek is chosen so that f (x )f(x ) = 0. Thus, on the k iteration,

k k k+l
the algorithm moves from x in the -f(x ) direction to the point x at

k+l k+l k
which f(x ) is orthogonal to the direction of movement x - x . In

terms of the ellipsoid Ek, the steepest descent method moves from x to
0'

the point on E that is in the -f(x k) direction, since at that point
0

k+1 k+1 k
f(x ) is orthogonal to the direction of movement x - x Figure 4.4

illustrates this interpretation of the steepest descent direction. In the

figure, xk+ denotes the iterate obtained from the point xk by the generalized
SD

k+l
steepest descent direction, while XCE denotes the iterate obtained from the

point xk by the contracting ellipsoid method. Note that the steepest

descent direction is not, in general, the same as the direction of movement

given by the contracting ellipsoid method.
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k+1
SD f (xk)

k
x

k+-
xCE

Ekk
0

Figure 4.4: Relationship Between the Ellipsoid Level Sets and the Steepest
Descent Method

When f (x) = Mx - b, and M is symmetric and positive definite, the con-

tracting ellipsoid method generates the sequence {x I for the unconstrained

problem VI(f,C) by

x k+1 = (2M)~-1 (xk + b)

k*

= (1/2)(x k- x ), k= ,..

Hence, the algorithm moves halfway to the solution on each iteration. In

this case, the ellipsoids E kare tangent to each other at x ,as illustrated

in Figure 4.5. Note that even if M was the identity matrix, the algorithm

would still move halfway to the solution. In this instance, the steepest

descent algorithm would converge to x in a single iteration. In general,

though, we expect that the contracting ellipsoid algorithm would outperform
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the steepest descent algorithm. (See the discussion in Chapter 5)

0
0

* E2  0
x 0

x
2

xo
x0

Figure 4.5: The Contracting Ellipsoid Iterates Move Halfway to the

Solution if M is Symmetric

If the positive definite matrix M is not symmetric, both the steepest

descent method and the contracting ellipsoid method are guaranteed to con-

verge only if some restriction on the degree of asymmetry of M is imposed.

For unconstrained problems, the generalized steepest descent algorithm

converges if and only if M2 is positive definite, while the contracting

ellipsoid algorithm converges if and only if p(S 1MT) 1, where

S = M + MT. For constrained problems, the contracting ellipsoid method

is guaranteed to converge if f1 S-lT 1S< 1. Table 4.1 compares these con-

ditions for 2x2 matrices. Recall that if M2 is positive definite, then

P(S~1MT) < 1, and that 1 SlMTIIS <limplies that p(S~lMT) < 1. Although

in the 2x2 case, the conditions p(SlMT) < 1 and fl S~lMTi <lare identi-

cal, we do not expect this to be true in general.
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'P 'P 
'P '

a b
M =

0 d

1 b
M =

c 1

a b
M=

c d

M positive definite all values of r b < 4ad lb + cl < 2 (b + c)2 < 4ad

M positive definite fri < 1 bj < b 2+c 2<l+b2c2 (a+b)2 (b+c)2

222
< 2 min(a,d) -4bc(a +d )

<4a2 d 2+4b2 c2

p(S 1M ) < 1 irn < i Jbi < /3~ad b 2+c 2<3-bc b 2+bc+c2

<3ad

iS~ I M TIii < 1 Ir < i bI < 3ad b 2+c 2<3-bc b 2+bc+c2

<3ad

Table 4.1: A Comparison of Convergence Condition for 2x2 Matrices

M
1 r]

-r 1J

UA w w



4.1.5 The Relationship Between the Contracting Ellipsoid Method and
Other Algorithms

The contracting ellipsoid algorithm is closely related to several

algorithms for solving systems of equations and variational inequality

problems. In this subsection, we discuss its relationship to matrix

splitting algorithms, projection algorithms, and a general iterative

algorithm devised by Dafermos [1983]. In section 4.2, we discuss the

subgradient algorithm for solving a max-min problem that is equivalent

to the problrm VI(f,C), and show that it iteratively solves the same

subproblem as the contracting ellipsoid method.

Recall that the contracting ellipsoid method solves VI(f,Rn), where

f(x) = Mx - b, by iteratively solving the recursion (4.3):

k+l -l T k
x = S (M x + b),

T
where S = M + M . For the unconstrained problem defined by an affine map,

this algorithm is a special case of a general iterative method to solve

linear equations based on the principle of matrix splitting. For a

linear system Mx = b, splitting the matrix M into the sum

M = A - B,

where A is nonsingular, produces an equivalent linear system

Ax = Bx + b,

or, equivalently,
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x = A 1(Bx + b).

This matrix splitting induces an iterative method defined by

xk+l = A~ (Bxk + b)

k -1 k
=-x - A (Mx - b), k = 0,1,2,...

The Jacobi, Gauss-Seidel, and

examples of iterative methods

splitting

successive overrelaxation methods are

induced by matrix splittings. The matrix

M = (M + MT) - MT

induces the recursion (4.3) that defines the contracting ellipsoid method.

The contracting ellipsoid method solves

by iteratively solving the subproblem (4.5):

VI(f,C), where f(x) = Mx - b,

min (x - xk ) Tf(x)
xSC

The following lemma shows that the subproblem (4.5) is a projection step,

with a steplength of one. Hence, the contracting ellipsoid method for

problems with affine maps is a projection method, with the metric of the

projection defined by the S norm and the steplength at each iteration

equal to one. (If f is nonlinear, the subproblem of the general con-

tracting ellipsoid method is also a projection step with a steplength

of one.)
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Lemma 4.2

If f(x) = Mx - b and M is positive definite, then the subproblem

k+l k T
x = argmin (x - x ) f(x)

xEC

is equivalent to the projection

k+1 S k -1 k
C

T S
defined by the matrix S = M + N and the projection operator P onto the

C

set C with respect to the S norm.

Proof

xk+1 =P [X -s f(x k) if and only if xk+l is the point in C
C

that is closest to X k _ S-if(x k) in S norm; i.e., if and only if

k+1
x = argmin

xEC

xk Slf(x) - xl,

k -l k T k -l k
= argmin (x - S f(x )- x) S(x - S f(x )-x)

.xSC

= argmin (Sxk _ k T -1 k _ k

xEC

= argmin [MTxk + b - (M + M T)x] S [MT xk + b - (M + M )x]

xEC

= argmin{(MTxk + b)T S-1 MT k + b) - 2x T(MTxk + b) + xTSx

xEC

=argmin 2[xTMx - xT(MTxk + b)]

xEC

(dropping the constant term)
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= argmin {xT Mx - b) + xTMT xk
xEC

= argmin (x - xk T (Mx - b) (adding a constant term)
xEC

= argmin (x - xk Tf (x)
xEC

Finally, the contracting ellipsoid method for problems defined by

affine maps fit into the framework of the general iterative scheme

devised by Dafermos [1983]. (See Section 2.2.2 for a more detailed

description of her general algorithm.) The general scheme solves VI(f,C)

by constructing a mapping g(x,y) that approximates the mapping f(x) about

the point y so that

(i) g(x,x) = f(x) for every xsC; and

(ii) g (x,y) is symmetric and positive definite for every xEC,

and y6C, where g (x,y) denotes the derivative of g with

respect to the first component.

The algorithm converges if g satisfies

[g (xT,y1 )T g1, 2  -2 x3 3  1112 < 1 (4.13)

for every x1 ,x2 0x3'ly 2 'y3 oC.

Because the contracting ellipsoid method iteratively determines the point

k+l
x eC satisfying

k+l T T k+l T k
(x-x ) [(M + M)x - (M x + b)] > 0 for every xEC,
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the algorithm fits into the general scheme described above with

T T
g(xy) = (M + M )x - (M y + b).

Conditions (i) and (ii) are satisfied because

g(x, x) = Mx - b = f(x)

and

g (x, y) = M + MT is positive definite and symmetric.

Because g (x,y) = -MT, the conditions (4.13) reduce to

(M )-TMT -12 <1'

Thus, since 11 (S1)-T MT(S ) 11 2 = 1 ( -1S)s)TMT(S ) S ,SlMT11s

the conditions (4.10) reduce to the sufficient condition for convergence

specified in Theorem 4.3.

k
When f is not affine, the mapping g(x,x ) defining the variational

inequality subproblem of the contracting ellipsoid method; that is, the

mapping

g(x,x k) T f(x)(x-x ) + f(x),

is not necessarily monotone in x (as required by condition (ii) stated

above.) The algorithm for a problem defined by a nonlinear map does not,

therefore, fit into Dafermos' general framework. The modification of

152



the contracting ellipsoid algorithm that we discussed in section 4.1.3

does, however, fit into this framework because

g(x,y) = [Vf(y) + VT f(y)](x-y) + f(y)

satisfies

(i) g(x,x) = f(x)

and

(ii) g (x,y) = Vf(y) + VTf(y) is positive definite and symmetric

for every yEC because f is strictly monotone.

The conditions for convergence (4.13) are

([Vf(y 1 ) + VT f(y1 ) -T {[V2 f(y) + (V2f(y2 )) T (x2 - y2) f T (Y2

([Vf(y 3) + VT Y3 ll1 < 1

These conditions are clearly much more difficult to verify than those

specified in Theorem; namely,

jS~ 1 MT1I < 1,

T
where M = Vf(x ) and S = M + M

4.2 Subgradient Algorithms

In this section, we discuss a class of subgradient algorithms that

can be used to maximize nondifferentiable, concave functions. Shor [1964]

originally suggested using gradient methods to solve nondifferentiable
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optimization problems. Polyak [1967] obtained results on constrained

problems that extended Shor's earlier results on unconstrained problems0

Consider the maximization problem

Max F(x),
xEC

where F is a nondifferentiable concave, continuous function and C is a

n k
closed convex subset of R . Given the previous iterate x , a subgradient

kn
algorithm determines a subgradient of F at x ; i.e., a vector Yk e R

satisfying

k k n
F(x) < F(x ) + Yk (x - x ) for every x E R .

st
and a steplength a . It then generates the (k+l) iterate by

klk

x k+= C k - tkyk]*

where P is the projection operator onto the set C. Polyak [1969] proposes
c

the use of a steplength ak given by

* k
F(x )-F(x )

k k IlYxil 2

*
where 0 < e 1 <k< 2 -E2 < 2 and x maximizes F over C. He discusses several

methods for choosing ak, and analyzes the convergence properties of the sub-

gradient algorithm. (In general, the rate of convergence of the algorithm

can be rather slow.)
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Consider the constrained variational inequality problem VI(f,C).

Assume that the problem is formulated over a closed, convex ground set

C C Rn, and that the mapping f:Rn- Rn is monotone and continuously dif-

ferentiable. Recall from Section 2.4 that under these assumptions, the

problem VI(f,C) is equivalent to the max-min problem

Max Min (y-x)Tf(y) (4.14)
xCC yEC

If we define

H (x): Min (y-x) T y)
yeC

then problem (4.14) can be restated as the nonlinear maximization problem

Max H(x). (4.15)
xEC

Because H(x) is the pointwise minimum of functions (y-x) f(y) that are

linear in x, H(x) is concave.- Problem (4.15).is, therefore, a convex

programming problem. Clearly, H(x) < 0 for every xcC; moreover, H(x ) = 0

*
if and only if x solves VI(f,C).

The reformulation of VI(f,C) as the max-min problem (4.14) (or,

equivalently, (4.15)) motivates a number of algorithms to solve VI(fC).

For example, Auslender [1976] and Nguyen and Dupuis [1981] devise algor-

th
ithms that approximate H(x) on the k iteration by the piecewise linear

function
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Hk(x): Min{(x' - x)T f(x i) : i = 0,1,...,k}.

These algorithms assume that either f is uniformly monotone or that f

is strictly monotone and C is compact.

The max-min formulation also suggests using a subgradient algorithm

to solve VI(f,C). The functional H(x):= min (y-x)T f(y) is concave, and,
yEC

in general, nondifferentiable. Thus, the subgradient algorithm can be

applied to problem (4.15). Note that we need not assume that f is

strictly or uniformly monotone on C. f must be monotone, however, so

that VI(f,C) can be reformulated as the max-min problem (4.14).

Let DH(x) denote the subdifferential of H at the point x; that is,

the set of subgradients of H at x. Because H(x) is the pointwise minimum

of the functions (y-x)T f(y), DH(x) is given by the convex hull of the

T Tgradients of those functions (y - x) f(y) for which y = argmin{(y-x) f(y):

yEC}. Therefore, H(x) is given by

DH(x) = f-f(y): y argmin (y-x)(y)
yEC

For most problems, the value of the function at the optimal solution

must be estimated at each iteration in order to specify the steplength at

that iteration. For problem (4.15), however, the expression for the step-

*
length an can be simplified, because the value of H at the solution x is

n

zero. Thus, the subgradient algorithm to solve

Min H(x)
xEC

can be stated as follows:
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Subgradient Algorithm for VI(f,C)

Step 0: Select x 0 C C. Set k = 0.

k+l k -k
Step 1: Let x = PC - akf(x

-k k T
where x = argmin {(x-x ) f(x) : xeC}

k
-X k(x ) -k k T -k

and a = k (x - x ) f(x
k -f(k)11

2  k I1f(-k)I1 2
fx )||f x )|

and 0< 1 < X k < 2 - 2 < 2.
1- k- 2-

k+l k k *
If x x , Stop: x x

Otherwise, return to Step 1 with k = k+l.

-k
(Note that the subproblem that determines x is exactly the same

k+l
subproblem that determines x in the contracting ellipse algorithm.

-k
The subgradient algorithm does not move to the point x ; instead, it

-k k
moves in the -f(x ) direction from x

-k
The idea of solving VI(f,C) by moving in the direction -f(x ) from

x kwhere

-k . k T
x argmin (x - x ) f(x),

xEC

is reminiscent of the "extragradient" algorithm proposed by Korpelevich

[1977]. This modified projection algorithm will solve variational

inequality problems defined by monotone mappings. (The usual projection

algorithm, described in Chapter 2, requires f to be uniformly monotone).

The extragradient method moves in the direction -f (x k) from xk, where
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~k k k
x = PC [ f(x

The algorithm can be stated as follows:

Extragradient Algorithm

Step 0: Select x0 s C. Set k=0.

~k k k
Step 1: Let x PC[x -f(x M.

-k k k *
If x = x , stop: x = x

Otherwise, go to Step 2.

Step 2: Let x k+l = P Cxk -

Go to Step 1 with k = k+1.

Korpelevich shows that the algorithm converges if the following

conditions are satisfied:

(i) C is closed and convex;

(ii) f is monotone and Lipschitz continuous with Lipschitz

coefficient L; and

(iii) the steplength ate(0, 1).

The similarity between the subgradient and extragradient algorithms

is more than superficial. Indeed, if f(x) = Mx - b, then recall from

-k th
section 4.1.5 that the solution x to the k subproblem in the sub-

gradient algorithm is a projection; in fact,

-k S k -1 k
x = PC[x S f(x )],
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where S = M + MT

4.3 The Frank-Wolfe Altorithm

In this section, we consider the constrained variational inequality

problem VI(f,C)

* * T *
Find x e C satisfying (x - x ) f(x ) > 0 for every x 6 C,

where f:CCRn*n is continuously differentiable and strictly monotone

and C is a bounded polyhedron.

If Vf(x) is symmetric for every x in C, then f is a gradient mapping;

T -*R1
i.e., f(x) = [VF(x)] for some strictly convex functional F:C+R . In this

case, the unique solution x to the variational inequality problem solves

the minimization problem

Min F(x).
XEC

Thus, when f is a gradient mapping, the solution to the variational in-

equality problem may be found by using the Frank-Wolfe method to find

the minimum of F over C.

The Frank-Wolfe algorithm is a linear approximation method that

k k -k th
iteratively approximates F(x) by F (x) + VF(x )(x - x ). On the k iteration,

k
the algorithm determines a vertex solution v to the linear program

Min Fk (x),
XEC

k+l
and then chooses as the next iterate the point x that minimizes F over

the line segment [xk vk
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Frank-Wolfe Algorithm for Linearly Constrained Convex Minimization Problems

Step 0: Find x0 E C. Set k = 0.

k k
Step 1: Given x , let v be a vertex solution to the linear program

Min x TVF(x k
xEC

k T k k'T k k *
If (v ) VF(x ) = (x ) F(x ), then stop: x = x

Otherwise, go to Step 2.

Step 2: Let wk solve the one dimensional minimization problem:

Min F((l-w)xk + WV k

C<w<l

k+l k k
Go to Step 1 with x = (1-wk)x + wkv and k = k+l. I

This algorithm has been particularly effective in solving large-scale

traffic equilibrium problems (see, for example, Bruynooghe et al. [1968],

LeBlanc et al. [1975], and Golden [1975].) In this context, the linear

program in Step 1 decomposes into a set of shortest path problems, one for

each origin-destination pair. Therefore, the algorithm alternately solves

shortest path problems (Step 1) and one-dimensional minimization problems

(Step 2). (See section 1.4 for a discussion of the traffic equilibrium

problem.)

The following theorem summarizes the convergence properties of the

Frank-Wolfe algorithm. (See, for example, Martos [1975].)
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Theorem 4.5

If F is pseudoconvex and continuously differentiable on C, and C is

a bounded polyhedron, then the Frank-Wolfe algorithm produces a sequence

x k} fork=1,2,... of feasible points to the problem Min {F(x):xcC}.

The sequence is either finite, terminating with an optimal solution, or it

is infinite, and has some accumulation points, any of which is an optimal

solution.

When f is a gradient mapping over C, we can solve the linearly con-

strained variational inequality problem by reformulating the problem as

the equivalent minimization problem and applying the Frank-Wolfe method.

Equivalently, we can adapt the Frank-Wolfe method to solve the variational

inequality problem directly.

Generalized Frank-Wolfe Method for the Linearly Constrained Variational

Inequality Problem

Step 0: Find x0 E C. Set k = 0.

k k
Step 1: Given x , let v be a vertex solution to the linear program

Min x T fxk

xEC

If (xk )T f(x) = (vk ) Tf(x k), then stop: xk is a solution to

VI(f,C).

Otherwise, go to Step 2.

Step 2: Let wk solve the following one-dimensional variational in-

k k
equality problem on the line :segment [x , v ]

Find w k[0,1] satsifying
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k k k k T k k >
{[(1-w)x + wv k - [(1-wk) +WkV ]} f[(lwk)x+w kv

every wE[O,1].

Go to Step 1 with xk+l = (1-wk + wkvk and k = k+l.

Lemma 4.3

When f(x) = Vf(x) for every x in Rn, the Frank-Wolfe algorithm for the

linearly constrained minimization problem is equivalent to the Frank-

Wolfe algorithm for the linearly constrained variational inequality

problem.

Proof

The equivalence of Step 1 in the two algorithms is clear because

f(x) = VF(x). Furthermore, the one-dimensional minimization problem of

Step 2 in the first algorithm is equivalent to the one-dimensional

variational inequality problem of Step 2 in the second algorithm; because

F is convex, the variational inequality subproblem in the second algorithm

defines the necessary and sufficient optimality conditions for the mini-

mization subproblem in the first algorithm.

If f is not a gradient mapping, the Frank-Wolfe algorithm need not

converge to a solution of the variational inequality problem. The follow-

ing two examples illustrate situations for which the sequence of iterates

produced by the algorithms cycle among the extreme points of the feasible

region. The first is a simple two dimensional example; the second could

model delay time in a traffic equilibrium problem with one origin-des-

tination pair and three parallel arcs. The mapping f is affine and

strictly monotone in each of these examples.
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Example 4.3 -

Let f (x) = Mx - b, where M = r 1jand b =and let

C {X = (yZ): Z < 1/2, z + 3 y > -1, z - y > -}

0
The solution to VI(f,C) is x- .

0

Let x = 1/2/. The linear program of Step 1 of the generalized

Frank-Wolfe algorithm solves at v0  and the variational inequality

subproblem of Step 2 solves at x = j. Continuing in this manner, the

1 3/2 2 r3/2 .2 -32
algorithm then generates v , x I , (

1/2 1/2) 1/2)

-rd/

and x3 =

0 1 2
x , x and x .

2

X. Hence, the iterates cycle
2)

about the three points

Figure 4.6 illustrates this cyclic behavior.

A

f (x3n)

/ I

3n+l
f (x

3n+2
f(x )//.

/

Figure 4.6 The Generalized Frank-Wolfe Algorithm Cycles

163



Example 4.4

0 1 0 0

Let f(x) = Mx - b, where M = 0 1 1 and b = 0

1 0 10

and let C ={x=(x,x2 ,x): x > 0, x > 0, x > 0, x + x + x =
lx2,x3 1- 2- 3- 1 2 2

1/3

The solution to VI(f,C) is x = 1/3 , since

1/3

*T *
(x - x ) f(x ) = (x1-1/3, x 2-1/3, x 3-1/3) 2/3

2/3

2/3

= 2/3(x 1+x2 +x 3-1) = 0 for every x=(x1 ,x2 'x3)EC.

0 0 0 01

Let x = 0]. Then V = 1 x1 = 1 , 1 = 0 , x = j , v = j,

L 0 O J O -1 -1- 0

1
andx = 0 =x 1 .

-0

0 1 2
Hence, the iterates cycle about the 3 points x , x and x. Figure 4.7

illustrates this cyclic behavior.
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x
3

3n+2

C =face of simplex

C2

3n+.l

f (x3n

Figure 4.7 The Generalized Frank-Wolfe Method Cycles on a Traffic
Equilibrium Problem

The generalized Frank-Wolfe method does not converge in the above ex-

amples because the matrix M is, in some sense, "too asymmetric". The al-

gorithm seems to cycle, however, only when the Jacobian of f is very

asymmetric. Because the generalized Frank-Wolfe algorithm reduces to the

generalized steepest descent problem when the problem to which it is being

applied is unconstrained, it is likely that the conditions required for

the generalized Frank-Wolfe to converge are at least as strong as the

condition (see Theorem 3.3) required for the generalized steepest descent

method to converge. That is, it is likely that at least, M2 must be posi-

tive definite. This condition is satisifed in neither of the previous

examples. In Example 4.3, = [-2 2yr3] is clearly not positive definite.

-- 2v73 -2 J
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In Example 4.4,

1 2 K2 3 3M

M 2 1 1 2 and 2M = 3 2 3 j 2

2 1 13 3 2

2 3
is not positive definite because det 3 2 5 < 0.

Several difficulties arise when trying to prove convergence of the

generalized Frank-Wolfe method. First, the iterates generated by the

algorithm do not contract toward the constrained solution with respect

4 *
to either the Euclidean norm or the M norm, where M = Vf(x ), even if M

is symmetric. The following example illustrates this problem.

Example 4.5

Let f(x) = x and let C = {x = (y,z): y < 1, z< 1 and y + z > 1}.

* 1/2 0 1 0 1l
The solution to VI(f,C) is x = 1/2/. Let x = . Then f(x) = ,

and the linear program min xTf(x0 ):xeCI has a vertex solution a.t v0 -1).

0
The variational inequality subproblem also solves at the point v , so

x = ( ) . Thus, 1 x1 - x * 2  F2 x0 - 2 The iterates cannot

A

contract to the solution in Euclidean norm (or, equivalently, in M = I norm)

because 11 x - x *1 2 is not strictly less than 11 xO - x* 112 Figure 4.8

illustrates this example.
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0 
( xx

x

f (x1 Y
xi

Figure 4.8 Frank-Wolfe Iterates Need Not Contract
to the Solution

The proof of convergence of the Frank-Wolfe method for convex

minimization problems demonstrates convergence by showing that F(x k is

a descent function. When f(x) = Mx - b is a gradient mapping, instead of

using the usual descent argument, we can prove convergence of the gen-

eralized Frank-Wolfe method with an argument that relies on the fact that

the solution of the constrained problem is the projection onto the feasible

region of the unconstrained solution with respect to the M norm. This

result is not true if M is asymmetric, so the argument cannot be generalized

to the asymmetric case.

When M is a symmetric positive definite matrix, the equation x TMx < 1

describes an ellipsoid whose axes are in the direction of the eigenvectors
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of M. This is true because the rotation y=U Tx produces the sum of squares

T =T T =T =2 2
x Mx = x UWU x = y Wy (y) +...+Xn (Yn) , where W is a diagonal matrix

n
with diagonal entries X.., and {X .} is the set of eigenvalues of M. The

1 i i=l
T

equations x Mx=c, therefore, describe concentric ellipsoids about the

origin. At each point x on the boundary of an ellipsoidal level set, the

vector f(x) = Mx is normal to the hyperplane supporting the set at the point

x. In this case, the Frank-Wolfe iterates will get closer to the solution

k+1~ th
with respect to the M norm, because the solution x to the k variational

inequality subproblem cannot lie on the boundary of the same level set as

k
the previous iterate x . In contrast, if M is not symmetric, then the

vector f(x) = Mx is not normal to the hyperplane supporting the ellipsoid

T T^
{x:x Mx = x Mx = c} at x. In this case, the solution to the variational

k
subproblem could lie outside of the level set that contains x on its

boundary. Figure 4.9 illustrates the vector fields and ellipsoidal level

sets for a symmetric matrix and an asymmetric matrix.

A2 x2

xk f k)
T k+l

x Mx=c x Txx Tx^

xk xk+l

M Symmetric M Asymmetric

Figure 4.9 f(x) = Mx is Normal to the Tangent Plane to the Level Set if and

Only if M is Symmetric
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Although the Frank-Wolfe algorithm itself does not converge for

either of examples 4.3 or 4.4, the method will converge for these problems

if the step length is reduced on each iteration. In particular, if we

let the step length on the k h iteration equal 1/k; i.e., the algorithm

generates iterates by the recursion

k+l k 1 k k
x = x + k+l

1 k k k
=V + x
k+1 k+l

- 1 k

then the procedure converges. Note that we can interpret this procedure

as the Frank-Wolfe algorithm with stepsize 1/k or as an extreme-point

k.
averaging scheme: x is the average of the extreme points generated by

the linear programming subproblems on the first k iterations. This

variant of the Frank-Wolfe method is called the "fictitious play" al-

gorithm when applied to zero-sum two-person games. The next subsection

discusses this algorithm

4.3.1 Fictitious Play Algorithm

* *
Robinson [1951] shows that an equilibrium solution (x , y ) to a

finite, two-person zero-sum game can be found using the iterative method

of fictitious play. The game can be represented by its pay-off matrix

A=(a..). Each play consists of a row player x choosing one of the m rows
1J

of the matrix while a column player y chooses one .of the n columns. If

the ith row and the jth column are chosen, the column player pays the row
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player the amount a. , i e. the column player receives -a.. and the row

player receives +a...
1J

In this subsection, we show that the Frank-Wolfe algorithm with

stepsize 1/k is a generalization of the fictitious play algorithm, and

establish convergence of the algorithm for a class of variational in-

equality problems. We start by reformulating the matrix game as a

variational inequality problem. To formally define a solution to the

k k
matrix game, let Sk be the unit simplex in R Then an equilibrium

* * * m n
solution (x , y ) to the game is a pair of points x C S , ysS satisfying

T * * T * * T m n
x Ay < (x ) Ay < (x ) Ay for every xES , yCS

In the fictitious play strategy, at each iteration (i.e., for each

play), each player plays the best pure strategy (i.e., selects a single

best row or column) against the accumulated strategies of the other

player. Hence, at iteration k, the row player x chooses the pure

o -k
strategyx that is the best reply to the accumulated strategies played

k srt -J of tha isrthby the column' player; i.e., to the average y = E k y of the first

-k 0  k -k
k plays by the column player. If x is the best response to y , x must

satisfy

T k -k T k m
x Ay < (x ) Ay for every x ESm.

-k
That is, x solves the (trivial) linear program

T k
Max x Ay

xESm
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-k
Similarly, y solves the linear program

k T
Min (x ) Ay, k 1 k-where x = E x

k i=O

Robinson shows that the iterates generated by this strategy converge to

the equilibrium solution of the game, i.e.

k 1 k-lim x = lim E x.
k-+co k-k> i=O

k 1 k-l
lim y = lim -E y
k-xo k-oo j=0

*
x

=y .

* m * n
The saddlepoint problem, find x ES , y ES satisfying

T * * T * * T
x Ay < (x ) Ay < (x ) Ay for every xeS and yESn,

or, equivalently, such that

T * < T
x Ay < (x ) Ay

m n
for every xcS and ysS

can be reformulated as the following variational inequality problem

VI(f,C):

* m n * T *
Find z sC = S xS satisfying (z-z ) f(z ) >0

for every z EC,

171

and



x T0 -A x -Ay
where z = and f(z) = Mz = LAT [ = [ TT

* T * * T * *TT
Then (z-z ) f(z ) > 0 for every zcC if and only if (x-x ) (-Ay )+(y-y ) A x

> 0 for every xESm , ysn , which is true if and only if (x) TAy < (x ) Ay

m n
f or every xcS and ycS

-k
-k x by solving the linear

The fictitious play method first finds z= -k
y

program

Min z Tf(z k).
xEC

-k -k
(This subproblem determines x and y because

T k T T kT k k T
z f(z ) = (x ,y ) -Ay = -x Ay + (x ) Ay, and, hence,

AT xk

-k T k -k T k m
z minimizes z f(z ) over C if and only if x maximizes x Ay over S and

-k mnmz k T n
y minimizes (x ) Ay over S .) The algorithm then determines the next

k+1 1 k -i
iterate z = - i z . Viewing the fictitious play algorithm applied

k+1 i=0

to the matrix game reformulated as a variational inequality problem sug-

gests the following algorithm to solve the general variational inequality

problem VI(f,C) when C is polyhedral.

Generalized Fictitious Play Algorithm

Step 0: Select x0SC. Set k = 0.

k k
Step 1: Given x , let y be a vertex solution to the linear program

Min xT k

xEC
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kTI k kT"f k)so k.
If (y ) f(x _(x )kfx x is a solution to VI(f,C).

k+l 1 k i
Otherwise, go to Step 1 with x = y

1+ =0

1 k k k k 1 k k
k+l k+l k+l

The fictitious play algorithm may be reinterpreted as the Frank-

Wolfe method with averaging. At the kth iteration, the Frank-Wolfe

method solves the same linear program subproblem as in Step 1 above,

k k
and then moves to the point on the line segment [x , y ] that solves

the one-dimensional variational inequality problem on the line segment,

while the fictitious play algorithm moves to the point that is the

average of all of the subproblem solutions y 0. y k thus far generated.

k k
Note that both procedures move in the direction y - x from the point

k
x.

The following theorem shows that the fictitious play algorithm will

solve a certain class of variational inequality problems. Shapley [1964]

has devised an example that shows that the method of fictitious play need

not solve general bimatrix games (and, hence, general variational in-

equality problems). However, the mapping in the example is not monotone.

Theorem 4.6

The fictitious play algorithm will produce a sequence of iterates

that converge to the solution of the variational inequality problem

VI(f,C) if

(i) f is continuously differentiable and monotone;

(ii) C is compact and strongly convex; and
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(iii) no point x in the ground set C satisfies f(x) = 0.

Proof

The algorithm fits into the framework of Auslender's [1976] descent

algorithm procedure (see section 2.4.4), because yk satisfies the sub-

problem min{xT f(x k):xEC} and the stepsize wk = 1/k at the kth iteration

satisfies wk > 0, E wk = +co, and lim wk = 0. Therefore, the algorithm

k-+ow k-cx>

converges if conditions (i), (ii) and (iii) are satisfied.

Two of the conditions specified by the theorem are more restrictive

than we might wish. First, if C is strongly convex, then C cannot be

polyhedral. This framework, therefore, does not show that the algorithm

converges for the many problem settings that cast the variational in-

equality problem over a polyhedral ground set. Since an important feature

of this algorithm is that the subproblem is a linear program when the

ground set C is polyhedral, this restriction renders the algorithm much

less attractive. Secondly, the condition that f(x) # 0 for xcC may be too

restrictive in some problem settings. One setting for which this condition

is not too restrictive is the traffic equilibrium problem. If we assume

that the demand between at least one OD pair is positive, then we can as-

sume that the cost of any feasible flow on the network is nonzero.

Powell and Sheffi [1982] show that iterative methods with "fixed

step sizes" such as this one will solve convex minimization problems under

certain conditions. Their proof does not extend to variational inequality

problems that are defined by monotone maps that have asymmetric Jacobians.

Although we do not currently have a convergence proof for the fictitious

play algorithm for solving variational inequality problems, we believe
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that it is likely that the algorithm will converge. We therefore end

this section with the following conjecture:

Conjecture

If f is uniformly monotone and C is a bounded polyhedron, then the

fictitious play algorithm will solve the variational inequality problem

VI(fC).

4.4 Concluding Remarks

In this chapter, we have analyzed several algorithms for solving

variational inequality problems defined by monotone mappings. All of

these algorithms reduce to first-order approximation algorithms when

they are used to solve variational inequality problems that are equiva-

lent to convex minimization problems.

Section 4.1 analyzes an algorithm that solves a variational in-

equality problem by solving a sequence of quadratic programming sub-

problems, or, equivalently, a sequence of affine variational inequality

subproblems defined by symmetric matrices. This "contracting ellipsoid"

algorithm solves a variational inequality problem if the Jacobian of the

underlying mapping satisfies a condition that restricts its degree of

asymmetry. The algorithm solves an unconstrained affine variational

inequality problem by generating sequence of ellipsoids that contract

to the solution of the problem. We show that the algorithm is closely

related to matrix splitting algorithms, projection algorithms, and a

general iterative algorithm devised by Dafermos.

Section 4.2 discusses a subgradient algorithm for solving a max-min

problem that is equivalent to the variational inequality problem. The
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algorithm requires only that the mapping f be continuous and monotone and

that the set C be closed and convex. We show that the subgradient al-

gorithm solves the same subproblem as the "contracting ellipsoid" method,

but that the two procedures choose different movement directions.

Section 4.3 analyzes the behavior of the Frank-Wolfe method for

convex minimization problems when it is generalized to solve monotone

variational inequality problems. The generalized Frank-Wolfe method

need not converge when applied to a variational inequality problem if

the underlying mapping is not a gradient mapping. We show, however,

a variant of the Frank-Wolfe procedure, the "fictitious play algorithm,"

solves a certain class of variational inequality problems.
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CHAPTER 5

CONCLUSION

A variational inequality problem defined by a monotone mapping is

a generalization of a convex minimization problem. This thesis analyzes

a number of algorithms to solve variational inequality problems. The main

thrust of the work is to determine when nonlinear programming algorithms

can be generalized to solve variational inequality problems. A variational

inequality problem is equivalent to a convex minimization problem exactly

when the Jacobian of the mapping that defines the variational inequality

is symmetric over the feasible set. Therefore, the type of condition

that allows a nonlinear programming algorithm to solve a variational in-

equality problem tends to restrict the degree of asymmetry of the under-

lying mapping.

One such condition, that M , the square of the Jacobian matrix of

the mapping, be positive definite, affects the convergence of several

algorithms. The steepest descent algorithm, generalized to solve un-

constrained variational inequality problems defined by strictly monotone

affine maps, converges if and only if M is positive definite. In addition,

the contracting ellipsoid algorithm solves unconstrained variational in-

equality problems if M is positive definite, and, it is likely that M

positive definite is a necessary condition for the generalized Frank-Wolfe

method to converge.

The reason that the convergence of nonlinear programming algorithms

adapted to solve variational inequality problems requires a restriction

on the degree of asymmetry of the Jacobian is that, in general, nonlinear

programming algorithms iteratively move in "good" feasible descent direc-
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tions. That is, for the minimization problem

min F(x),
xEC

for k = 0,1,..., the algorithms determine a feasible direction dk satis-

fying d VF(x ) < 0. Many algorithms attempt to choose d "as close

k
as possible" to the steepest descent direction -VF(x ). When these al-

gorithms are adapted to solve variational inequality problems, they

determine on the kth iteration a direction dk satisfying d f(x k) < 0, with
k k

dk as close as possible to the steepest "descent" direction, -f(x k). As

long as the Jacobian of f is nearly symmetric, such a direction is a

"good" direction for the problem VI(f,C), because a move in the direction

dk is a move towards the solutions. If, however, the Jacobian of f is

very asymmetric, a move in the direction dk may be a move away from the

solution. Figure 5.1 illustrates the set of "descent" directions for

two problems, one defined by an affine map with a positive definite

symmetric matrix and one defined by an af fine map with a positive

definite asymmetric matrix. The illustrations show that -f(x k), the

direction that a nonlinear programming algorithm considers to be the "best"

direction, can be a poor direction if the matrix is very asymmetric.

178



2 range of descent

f \x2 directions

range of descent k_(xk)
directions k

xl- f(xk)

x x

M Symmetric M Asymmetric

Figure 5.1 The Direction -f(x ) is not a Good Movement Direction
if the Jacobian of f(x) is Very Asymmetric

Projection algorithms are one of the most widely used procedures to

solve variational inequality problems. A fundamental difference between

most of the nonlinear programming algorithms that we consider in this

work and projection methods is that we consider algorithms that use a

"full steplength"; in contrast, projection methods use a small fixed step-

length, or a steplength defined by a convergent sequence of real numbers.

Although these full steplength algorithms, such as the generalized

steepest descent and Frank-Wolfe algorithms and the contracting ellipsoid

method, require more work per iteration that those using a constant or

convergent sequence step size, they move fairly quickly to a neighborhood

of the solution. Taking a full steplength poses a problem, however, when

the Jacobian of the mapping is very asymmetric. In this case, the

"twisting" vector field may not only cause the algorithm to choose a less

than ideal direction of movement, but, having done so, will cause the

algorithm to determine a much longer step than it would choose if the

mapping was nearly symmetric. This asymmetry is not as much of a problem
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is the step size is small, because the algorithm will not pull as far

away from the solution even if the direction of movement is poor.

Figure 5.2 illustrates the affect of asymmetry on the full steplength.

2

x
x

M Symmetric M Asymmetric

Figure 5.2

A Full Steplength Pulls the Iterate Further

From the Solution When the Map is Very Asymmetric

By our previous observations, algorithms that take a full step size will

converge only if a bound on the degree of asymmetry of the Jacobian is

imposed. Projection methods do not require this type of condition. Most

of the algorithms that we consider in this work will converge even if the

monotone problem mapping is very asymmetric as long as the full step-
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length is replaced by a sufficiently small steplength. The steepest

descent algorithm for unconstrained variational inequality problems

becomes a projection algorithm if the stepsize is sufficiently small.

Theorem 4.6 shows that the Frank-Wolfe method will converge for a class

of variational inequality problems if the stepsize is defined by a

convergent sequence. Recall also, Lemma 4.2, that the contracting

ellipsoid algorithm for variational inequality problems defined by

affine maps can be considered as a projection algorithm with a step

size of one at each iteration. Thus, it also will converge even if

the conditions on the symmetry of the Jacobian are not satisfied as

long as the step size is sufficiently small.

We see a number of directions for future research. The convergence

of the generalized Frank-Wolfe method and the fictitious play algorithm

for problems defined over polyhedral sets remain important open problems.

Secondly, we would like to further investigate procedures for scaling

problem maps so that convergence conditions are satisfied and to accel-

erate convergence. We would also like to further investigate generalized

descent algorithms. It may be possible to avoid some of the previously

mentioned problems with asymmetric maps by using these methods to determine

better movement directions. Another interesting research problem is to

analyze how much accuracy is lost by solving a problem that approximates

a mapping that has a nearly symmetric Jacobian by a mapping that has a

symmetric Jacobian.

Conceivably, the major contribution of this work is conceptual: it

enhances our understanding of a certain class of problems. Although the

contracting ellipsoid method should, because of its more complex sub-
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problem, be able to efficiently solve a wide class of problems, the

steepest descent and Frank-Wolfe algorithms are likely to be good

algorithms only for problems that have nearly symmetric Jacobians.

This work mainly contributes to the understanding of the role of

symmetry of the Jacobian in the convergence of nonlinear programming

algorithms generalized to solve variational inequality problems.
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