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Optimal Prediction of Stationary Time Series and
Application in a Stock Market Decision Rule

by Stuart Allen Rooney

ABSTRACT
Submitted to the Alfred P. Sloan School of Management on

May 3, 1965, in partial fulfillment of the requirements for the
degree of Bachelor of Science.

This thesis encompasses all known methods of pre(

and derives a general attack that will best deal wil

predictive situation. Both fundamental and technical

are considered. The standard correlation techniqu

found to be optimal for fundamental predi

Autocorrelation techniques prove far superior to av

and smoothing methods for technical prediction. The

evolves and is implemented in MAD for the M.I.T. Comp

Center's 7094.

The theory was tested on the most conceivably di

example, prediction of the New York Stock Ex

Professor Paul H. Cootner has suggested that stock

are random, or almost random, in fluctuation. 1 Yet

random" means in some way predictable, and with great

it was found possible to predict NYSE prices.

The theory, tools, and degree of success o

approach are the subject of this work.
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Chapter 1

THE THEORY OF STATISTICAL PREDICTION

A general statement of the prediction problem is

twofold: determine the statistics of the process, and then

minimize a selected error criterion by the calculus of

variations. Wiener's2 theory, employing a squared error

criterion, considers weakly stationary random time

functions. Such processes are essentially characterized by

their second moment properties which must exist, be

continuous, and be independent of any time origin.3  For

example:

x(t)*x(t) = x(t+T)*x(t+T)

This thesis involves an extention of Wiener's theory to

predict finite, time-discrete observations of continuous,

stochastic processes4 (in theory), industrial situations (in

general), and the stock market (in particular).

Autocorrelation Functions and their SLectra:

The autocorrelative prop

will first be stated.

time-discrete samples of a co

and their ramifications noted

is the most useful statist

process in the Wiener theory.

erties of a continuous function

Then the same properties of

ntinuous function will be cited

. The autocorrelation function

ic to describe a stochastic

If fc(t) is a bounded and



PAGE 6

continuous, stationary, random function of t, then its

autocorrelation function is:
T

0c(x) = lim f fc(t)fc(t-x)dt (lA)
T-->- 2T f

-T
if fs(k) is a bounded, stationary, random vector of samples

over t, its autocorrelation vector Os(y) is:

T

Os(y) lim 1 fs(k)fs(k+y) (1B)
T-42T 7.

K=-T

Note that the limits on the above summation are not "-s ".

Business and stock market data can only be assumed

stationary over an even shorter time period than their

briefly recorded history. An analagous situation exists in

the continuous case. There signals are often terminated at

some point in past history by multiplying by a delayed unit

step function, u-1 (t-T).

To this point, the phrases "truncation" and "truncation

error" have been painstakingly avoided. A nonrigorous

explanation for this is: the error bears little relation to

the time series truncation; it is more the change in the

Fourier transform of the time series. What is lost in

Shannon's5 sense is the additional information about the

statistics of the process contained in the truncated portion

of the frequency domain of the series transform. If a

tighter bound, dependent on the truncation of the series,

could be found, an optimal vector length and sampling rate

could be determined. The tightest bound I can develop is:

0 Ej (t+a)*e( E13(t+a]i (2)



This is only dependent upon the prediction period, a

the stock market example as large a number of samp

possible was taken to avoid this problem.

The value of the autocorrelation function at the

is the mean square value of the time function:

(0 = = f(k)

The value of the autocorrelation

arguments of the dependent variable

power of the time function.

(3)

function

approaches

= ( = f(k)P (4)

The greatest value of the autocorrelation function is

at the origin.

0(0) I0(T)1

The autocorrelation function

the origin.

VT

Is

(5)

even or symmetric about

0(-N) 0( N) (6)

This fact allows us to express the Fourier transform in

terms of cosines only and introduces the next equations.

The continuous autocorrelation function and the power

density spectrum are Fourier transforms of each other.

Oc(T) =

$c(w) =

fs c(w)cos wT dw

f0

(7A)

Oc(T)cos wT dT

PAGE 7
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Higher Order Correlates:

Similar statements can be made of all

correlates. The nth order correlates of a

averaged nth order integral of the n + 1st

the shifted function. For example,

correlates are computed as follows:

W W W

c(x'y'z)=sj .1J f f fc(t)fc(t-x)fc(t-y

As usual, the sampled data case

pattern with integrals going to summations

vectors.

the higher order

function are the

order product of

the third order

)fc(t-z)dxdydz (8)

follows the same

and functions to

The Prediction Problem:

Wiener6 suggests that the input-output relation of any

nonlinear, time-variant system may be represented by a

Volterra Functional Power Series. Thus:

y(t) = ho + f h, (s; )x(t-s,)ds

+ff h,(s, ,sZ)x(t-s )x(t-sg)ds +

+ ff.. .f h(s, , s.,

x(t-s )ds ds ...ds

6...,s /)x(t-s,)x(t-s )*...

(9)

where x(t) is the input to the system
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y(t) is the output

ho is a constant

and the kernel hm is a function of m variables and {hm}

characterizes the system.

If fi(t) is the input to a nonlinear system and fo(t)

is its output, the minimization of the error, e, between

input and output with respect to the characteristic kernel

of the system will yield an optimal continuous predictor for

the period "a" according to any selected criterion.

e = fo(t) - fi(t+a) (10)

The solution of the above for a linear, time-invariant

filter yields the familiar Wiener-Hopf equation when a

squared-error criterion is chosen.

00

0(t+a) = h(x)0Ct-x)dx (11)
0

7 A
Parente proved that the error, e = y-y, between a

desired output, , and an actual output, y, for a given

input, x, IS A MINIMUM MEAN SQUARE ERROR REPRESENTATION IF,

AND ONLY IF, ITS KERNELS kn(S),nEN ARE SUCH THAT

E [y(t)*X (t-R)] n(S)LErX (t-S) X (t-R)j d] (12)

n( A

for each mEN and all REA

where E denotes an ensemble average

and Xnkt-S) denotes the nth order shifted product of

the function X as follows:

XI(t-S) = J x(t-s1) (13)
T=1



PAGE 10

n
an ds denotes the nth order integral as follows:
A

n

dS =

A

an+ an-1 + a 2 + a1 +
f f f f ds 3ds 2 .. ds

an- an-1- a 2 - a,.

where the a's denote the bounds

space

and the selected summation, n N, is as

of the

follows:

fn = + n n2+ fn+3
nCN

Equation (9) is rewritten I

demonstration of its use.

.. + fn 

n the above

(15)

notation as a

yn(t) =(S)*X T (t-S)
nC N

dS (16)

The solution to the above equation (12) for some input

function, x(t), and desired output, y(t) = x(t + a), yields

an optimal nonlinear, time-invariant predictive filter for

the period "a." The next section derives nonlinear

prediction in the sampled data case. This is done under the

assumption of a strictly stationary time series, a

constraint which could be relaxed further.

Nonlinear Prediction:

A general expression, selected for its adaptability to

the computer, for the nonlinear prediction of the next

sample, x(S), of an ergodic and stationary time series from

(14~)

vector
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the previous M samples, x(1)...x(M), is:

x(S) = Ao+ZA (M+1-K)*x(S-K)

K=1

M
+ E A2 (M+1-1, M+1-J)*x(S-1)*x(S-J)
1=1J=1

M M M

+Z A 3 (M+1-F, M+1-G, M+1-H)*x(S-F)*x(S-G)*x(S-H)

F=1G'1H=1

+... (17)

The general expression for linear prediction in the above

format is:

x(S) = A + A 1 (M+1-K)*x(S-K)

K al

(18)

The general expression for quadratic prediction as above is:

X(S) = A0 + Z A1 (M+1-K)*x(S-K)

K=1

M M

+ A, M+1-I, M+1-J)*x(S-I)*x(S-J)
I-1J=1

(19)

In the stock market application the relati

the predicted terms is taken as an indicator of

utility of considering higher order correla

prediction. In practice this means to try the

prediction and see if there is significant error

Also, a priori knowledge of the statistics of

ve size of

the economic

tes in the

next order

reduction.

the market
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suggests that third order nonlinear prediction, which

corresponds very roughly to the acceleration in the rate of

change of the predicted price, may not be of great value.

Moreover, since there are tP equations to be solved in an

M-term, nth-order prediction, it is rarely practical to

examine further than the quadratic (second order) prediction

case. Choosing the time average of the square error as a

criterion, we next calculate the weighting coefficients (the

A's). The general method is to solve each of the orders of

correlation separately using only the residual data after

the last phase. Thus an orthogonal functional

representation of the signal is developed that is the best

that can be done to the selected order of correlation.

= [ x(K) /M (20)

Next, transform the time series vector by subtracting A

yielding a new vector with a zero mean. Applying

orthogonality and limiting the problem to quadratic

prediction, this new data vector has only linear and

quadratic terms.

To minimize the selected criterion and select

A1(1)...A1(0), we first consider the general square error

term, * 2

<e = < X(S) AI(M+1-K)*X(S-K) > (21)

K 1

2
Next we set the derivative of~e2with respect to Al equal to

zero.



,=< 2 IX(S)
a A 1 (P) -

Then defining,

(M+1-K)*X(S-K1 * -X(S-P) P = 0 VP-A

K=1

Y(P) =4 X(S)*X(S+P)> (23)

we solve 2

< e> = 2y( ) (24)

Since Y(O) is always positive (square average), the values

of Aj(P) found as solutions to the above M simultaneous

linear equations yield a minimum error according to the

selected criterion.

Therefore solve:

Y(-P) = Al(M+1-K)*Y(K-P)

K=1

To write out this solution we will

the Al's by subtracting S and adding M.

predict >jH from M samples, X1) ...X(M)

most recent. The A1 index is likewise

the ergodic theorem is applied and the

taken as equal to the ensemble averages

<' =.1 x2. *

The M linear equations now take on

A1,T2 + A1XX2 + A XX +...+

A X2X1 + A 1,2X2 + A 1,3X2X 3 +

A XX A X + A X +...+A1 , 1 X3 X1 " -$ 3 -2t

VP (25)

change

We th

, where

change

time

. For

2

the index

us attempt

X(M) is

d. Final

averages

example:

of

to

the

I y,

are

6)

the following form:

A,mXlXm = X 1X)n

A, X A 2=~
A1,m X2m X3X6+1

A1,m X3Xm =X X+

+ A1 +..+ A1,M 

PAGE 13

(22)

Al 1XMX1 + A1,2X X
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The solution to the above equations (27) yield the M linear coefficients

of correlation, A A To this point we have transformed the time1 1' 1, M
series vector by subtracting A 0 from each term. Now we further transform

it by subtracting the linear prediction from each term. This is the previously

described orthogonal approach. To proceed with quadratic prediction we

must deal with the following residual time series term:

(28)X. = A. . (X. - A ) .j i, 3 0

We desire to predict the next term of this new series:

Xm+i

M M

z Z A 2 ,
i=1 j=l

i,ji xixj (29)

The general squared error term is then:

M

[E:2] ZE E

M M

j=1 k=l

M

A= 1

A A 2
X i X XkX-9 + Xm+i

M M

-2 E

i=1 j=l

Xm+i A 2 , i, j xi jx

We now employ calculus to solve for the A's that will yield a minimum

square error.

Xi Xj XkX1 A2 i, j a, k 6.

M

2, k,f i, a j3

6 i. 6 jP Xm+i XiXj

(equation continued)

(30)

E E 2

aAzI1f
M

i=1

M

j=l

M

k=l

M

j=1

M

-zZ

i=1



M M

, i j Xi Xj Xa XP
i=l j=l

M M

+ A2 k , I
k=l =1

XkX9 Xa Xp -2 xm+1nXa Xp

Setting the derivative equal to zero:

M M

i=1 j=1
A 2 ,i, j Xa XpXj - 2 Xm+i Xa X13

1 a ,p M

Thus, the two following equations allow us to solve for the A :

M M

i=l j=l

A2, i, j Xi Xj Xa Xp

A V .

Xm+l Xa Xp 1 ! a , 0 - M

A2 j, i

The following similar attack is the solution for the cubic case:

N N N N N N

i=z j=1 k=1 1=1 m=l n=1

A3,i, jpk A3,e, m.n

Xi Xj Xk XkX m Yn

N N N

-2 ZZ

i=1 j=1 k=l

+ 2
Xn+ 1

Xn+l A3, i, j, k Xi Xj Xk

a E [2
a A Z~.
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= 0

(31)

(32)

E [E2]



3, 30, s, t

N N N

Y33
i=1 j=1 k=1

N N

z
N

E X i j k Xj X m Xn
.f=1 m=1 n=1

i,j,k 6r,i sj t,k

NN

+ A3,Ivm,n 6r, svm 6 t,6n

N

Xn+1 X i Xj k 6. 6 6r,1 s, j to k
i=1 j=1 k=1

N N N

j=1 k=1

A 3 , i, j, k Xi Xj Xk Xr Xs Xt

N N N

1=1 m=1 n=1

A3,, mn X Xm XnXr Xs Xt

- 2 Xn+ Xr Xs Xt

N N N

2 ZZY

i=1 j=1 k=1

A3, i XjXk X i Xj Xk Xr Xs Xt

- 2 Xn+ Xr Xs Xt

= A 3 j, i k
A 3 k , i, j

= A 3 , k, j, i

= A - A
3, j,k, i 3, i,k, j

PAGE 16

(A3 )

-z
i=1

A 3 , i, j, k

(33)
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N N N

z A 3 i, j k XiX j Xk Xr Xs Xt Xn+ir Xs Xt (34)

i=1 j=1 k=1
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The A's are thus optimally derived, under the

assumptions and constraints stated, in terms of the

statistics of . the time series. Unfortunately, no

simplifying assumptions of any great magnitude can be made

past the linear case, which was solved by Wiener and Hopf.

The greatest problem proved to be elimination of redundant

terms among the correlates, which, if allowed to exist,

caused singular matrices. A solution was reached, but not

without many complications, brute force techniques, and the

Il. I. T. 7094.
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Chapter 2

Implementation of Statistical Prediction

First, a brief word about the organization of this

chapter. It begins with a general introduction to the

programs printed in the appendix. These are a

representative sample of the fifty to one hundred working

programs developed in the'course of this thesis. Then, with

reference to these programs, a chronological picture of the

problems and pitfalls encountered is presented. Since the

programs were written in the Michigan Algorithm Decoder

(MAD) without use of abbreviations, an interested reader can

read them as he would English text for a full description of

what was attempted.

The Proarams:

NONLIN is representative of a class of foreground (real

time, on-line) programs run on the Compatible Time Sharing

System (CTSS). 8 This is a general predictive program not at

all related to the Stock Market or any other application.

It emphasizes man-machine interaction with points of rapport

between the program and the user. (The program as listed in

the appendix is the actual calculation flow. However,

because it is so long, it will not fit all at once into the

core of the 7094.) A working version of this program with
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enlarged dimension statements and the necessary program

manipulation would have been hopelessly confusing to any

reader. The technique for this manipulation will be

discussed in the section on problems and pitfalls. For the

present, it is sufficient to say that NOLUN is a working

program that needs the handling discussed at the end of this

chapter.

UTOPL. like NONLIL4, is a foreground CTSS program that

needs larger dimension statements and program manipulation

to produce correct answers. As it stands, UTOPIA is a

complete stock market prediction program without

preprocessing of data, but with man-machine communication.

PREDLN is a background (off-line, batch-processed,

stacked job) program typical of those on which much of the

theory was tested. It is a general prediction program and

runs as it stands.

PREDOD is a background quadratic prediction program

which accepts the cards punched out by PREDLN and predicts

the second order case. It also works as it stands.

EXTRAP is a nonlinear multicorrelation and

extrapolation program of a completely general nature. It

will solve for weighting constants for up to eleven

variables of regression using from linear to fourth-order

fit as specified by the user. For instance, one might wish

to extrapolate one variable regressed on a second linearly,

a third quadratically, and a fourth cubically.



PAGE 21

The GO card specification for this (see EXTRAP line 60)

would be:

(observations) (regressed variables) (orders of fit)

GO 100 3 1 2 3

SIGTST is a correlation and significance testing

program that will be discussed under Prediction of Volume in

Chapter 3.

PREDCT is almost the same program as PREDLN except that

the preprocessing of the data is contained within it instead

of being in another phase.

Problems and Pitfalls:

As it has already been noted, the most difficult

problem encountered involved the redundancy inherent in the

correlates. The switching circuits, lines 1690-2110 of

NONLIN, and the external function ARRAY are typical of the

tedious solution to this problem. In retrospect, the

solution was quite simple, but it took a long time to get

this area of the program debugged. If the computer treats

0(3,2,1), 0(2,3,1), 0(1,2,3), etc. all as the same correlate

and is programmed to read the terms of the correlate in

ascending order, the redundancies that cause a singular

solution matrix disappear.

Two functional methods of correlation and

autocorrelation of vectors were conceived and tested. The

first, dubbed a "fixed window method," can be visualized as

the passing of a vector by another which is half as long and
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dividing the sum of the product of adjacent vector

components by the length of the shorter. The amount of

shift determines the term of the correlate (e.g. no shift =

0(0)). The second method, termed "a variable window

method," can be thought of as the consecutive shifting and

dropping of the last term of the shorter vector. Thus, one

sums the multiples of all the adjacent components of the

vectors and divides by the current length of the shorter

vector. If statements 0380 and 0410 of PRED.LR ended in N/2

instead of N-D, the fixed window method would be programmed.

The variable window method works better in AUj cases and is

employed.

To predict more than one sampling period in the future,

three methods were considered: iteration, varying the

sampling rate, and adjustment of the formulae. Of these,

only iteration was discarded because of the long program run

time and large process error due to round-off in the 32K

program. It was found that the best combination of the

remaining two was independent of a theoretical error bound

such as equation 2. Four 7094 hours of experimentation on

hourly common stock prices showed the following table as

representative of the area of predictive combinations that

yield the lowest relative error in the prediction of the

price for their respective prediction periods. Samples were

taken on the hour from 10 a.m. to 3 p.m.
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Table 1

Prediction Period

1 day

Sampling Rate

hourly

No. Samples Predicted

6

Mean Error

1%

2 days

3 days

4 days

5 days

6 days

7 days

8 days

9 days

10 days

6 months

hourly

bi-hourly

bi-hourly

tri-hourly

bi-hourly

tri-hourly

bi-hourly

tri-hourly

tri-hourly

tri-hourly

tri-hourly

daily

tri-hourly

daily

tri-hourly

daily

bi-daily

tri-daily

4-daily

weekly 25

12 1%

6

9

6

12

8

15

10

12

14

16

8

18

9

2%

1%

2%

1%

3%

2%

3%

3%

4%

4%

6%

5%

6%

5%

20

10

64

42

32

15%

13%

100

11%
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Stationarity is not really a problem or pitfall in the

present sense. When the time series becomes nonstationary,

no technical method, whether chart or computer-oriented,

will produce anything logical. At this time fundamental

considerations must rule. There are two advantages of the

computer technique over the chartists'. First, the

correlation against the error is right there in EXTRAP.

This program is then relieved of its "slavery" to PREDCT and

PREDQDa and becomes the master prediction program. Second,

there is definite proof of nonstationarity as correlates

begin to take on large and fast-changing values. Normally,

the 0(M) 0(0), and the values of the correlation vector

exponentially taper off toward zero. When nonstationary

effects begin, such typical behavior Is destroyed.

The second major problem uncovered in this thesis seems

to have been a stumbling block to previous works.
9  It seems

that at least 500 to 1000 terms must be considered in

calculating the correlates. Diminishing returns in the

reduction of the relative error term come into effect when

2000 samples are used. Because any single correlate appears

M times in the normal equations of prediction, and the

computation of the correlates requires two-thirds of the

total computer time, care must be taken to eliminate their

recalculation whenever possible. The slow version of PREDOD

includes some recalculation of the third-order correlates to

obtain greater accuracy In the final prediction. The fast

version of PRE-DQ contains no redundant calculations.
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Finally, major modification of the CTSS executive

routines was necessary to fit all of the programs except

EXTRAP and the slow version of PREDOQ into core memory.

Background operation ran with an executive routine that

used unblocked input-output and possessed no Fortran I Post

Mortem. The use of unblocked records in 1/0 required

replacement of half of the normal Fortran Monitor System,

and increased run time by twenty or thirty per cent.

Foreground operation was run under a one- or two-tract

executive routine. Two such private commands were

investigated. The first and simpler attempt combined

various phases of the prediction into a master program. A

file, RUNRUN BCD, was created in the following form:

DELETE .TAPE. 2, .TAPE. 3, .TAPE. 4, .TAPE. 5, .TAPE. 6

LOADGO PHASE1

LOADGO PHASE2

LOADGO PHASE3

LOADGO PHASE4

LOADGO PHASE5

LOADGO PHASE6

LOGOUT

The command RUNCOM RUNRUN1 0 will cause sequential loading of

the various phases. The program of each phase will call

from private disk file the needed data in a pseudo tape

form. If PHASE1, this is raw data; otherwise, the called

pseudo tape has just been written by the previous phase.

The phases, except for the data preprocessing of PHASEl,

.........
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which will be discussed in the next chapter, are simply a

split version of PREDCT or NONLIN:

PHASE1 - preprocessing of data

PHASE2 - calculation of linear correlates

PHASE3 - computation of linear coefficients

PHASE4 - calculation of quadratic correlates

PHASE5 - computation of quadratic coefficients

PHASE6 - error analysis

The program tends to run for over an hour, printing out

notes of its progress on the console, in the course of

predicting fifty times. Execution of this hour of computer

time on the M.I.T. CTSS system takes approximately one day.

For this reason, the program is set to chain to logout when

finished. Sufficient error checks are built into the

programs of the various phases that the operation is

sel f-runni ng.

A second faster and extremely complicated executive

routine was written. This program directs the chaining of

the various phases without writing out intermediate data on

pseudo tapes. The chaining procedure is also different in

that each phase is chained through for each prediction;

that is, a partial core image must be swapped three hundred

times for fifty normal predictions. Intermediate data is

stored in program common and the executive routine overlays

the next program phase over the last. The core image of the

intermediate data is preserved between phases. This program

takes fifty minutes of computer time for fifty predictions,



PAGE 27

and runs on CTSS for three hours.

Because of the length of the foreground run time, all

theory was checked in background operation.
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Chapter 3

SUMMARY OF STATISTICAL PREDICTION

IN VLEW OF APPLI-CATION

In General:

sides to any prediction, the fundamental

and the technical. To proceed without a full

of both is only half preparation. A technical

produced by looking back over past variations

to be predicted and determining those characte

signal that are innately identified with it.

prediction is developed by looking back over p

of the signal to be predicted and noting

signals correlate with these variations.

Programming a fundamental prediction

multicorrelation techniques is quite simple.

EXTRAP is the first attempt at a compl

knowledge of

prediction is

of the signal

ristics of the

A fundamental

ast variations

how external

by nonlinear

Nevertheless,

etely general

fundamental approach. It will solve

arbitrary number of variables, each

(programmer selected) powers of fit

cubic, etc.)

General statistical prediction,

programmed. For this reason

exponential smoothing and moving a

been used in the past to achieve

for

cons

(e.g.

regressi

dered to

linear,

on on an

arbitrary

quadratic,

however, is not easily

other methods such as

verage techniques have

technical prediction.

There are two
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Whether one is viewing the stock market, sales volumes, or

inventory levels, smoothing and averaging techniques have no

basis in fact. They are easy-to-use mathematical crutches

that give fairly logical answers, which relieve the user of

the responsibility of prediction. Nevertheless, the human

mind can usually produce a far more accurate prediction in

less time and at a lower cost than these tools.

Another conceptual view of technical prediction is the

weighting of past data. The above techniques can be

visualized as follows:

lovi ng Average:

,-fdata

(to = present time)

ti-T to

loving averages equally weight

metaphysically determined and mystically

This is a bold statement but is usually

the period is theoretically determined,

period is correct for smoothing seasonal

past data

significan

correct.

as a twel

effects.

over a

it period.

Sometimes

ve month

Exponential Smoothing:

% weighting
U p

1001

(to = present, T = time constant)

U~tLi~1

to-T t
t0
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Exponential smoothing weights past data exponentially

with an empirically-determined time constant.

There is really no reason to believe that the value of

past data in predicting future data should be such a clear

and easy thing, in fact, one would intuitively expect that

an optimal weighting of past data would be quite messy and

different in every case. Example:

% w ighting
of data

100
T

0

One thing that is clear from these graphs is that all

the time series that they attempt to technically predict

should be stationary; that is, time independent. Thus no

pure technical method will be able to predict a pure linear,

quadratic, etc. trend, since a trend by its nature is a

function of time. The reason for this is that the total

area under any of the weighting curves is one or one hundred

per cent, depending on semantic terms used. Even if all the

weight is put on the last sample, that is the largest number

that may be predicted. Thus, in general:

x ,* 6 fx) (35)

DATA PREPROCESS ING:

This leads us to the subject of preprocessing of the

data. Many types of preprocessing were tried. It was

- I - - 11 11 : 1 -11- - .1 - 1 -11- -_- __ - __ " - -- - --- _"_-_' - , 6i4 ' -
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of the

relative

change i

price wa

n

s

the price..

found to be

Of these,

the best

the relative

predictor of

change in

the market,

this too was unable to predict a pure trend. This is

since this type of pr

time-dependent action.

preprocess the rel

mathematically elimi

functions of time. Th

and became a permanent

We can go further

"optimal" technical

eprocessing wi

It was finall

ative change

nating both

is brought abou

preprocessing

if we would

11 always

y decided

in the

linear and

t satisfacto

scheme.

intuitively

leave so

to furth

price

quadrat

ry resul

expect

scheme to have a messy weight

function of past data, why would we not expect it to also

have a messy weighting function of all combinat

data? Thus it is so, and from this start the

attacked.

ions of

problem

In View of the New York Stock Exchanr-e:

UTOPIA may be a program in the appendix, but is is only

in jest that it can be suggested that utopia has arrived.

Originally, this program had following it a simple

profit-maximizing decision rule, but this is beyond the

sophistication of the program. The following is therefore a

review of what was accomplished in the light of the chosen

application.

the

but

clear

me

er

by

i c

ts

an

ng

past

was

i
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Predi-cti-on of Volume:

I had originally hoped to build my principal prediction

upon price and volume, but this method produced lower

profits than dealing with price alone. When I was

confronted with these results, I set about to test my

original ideas of how the market works. It was believed

that high volume and increasing price signified a strong

market, and so forth. In other words, I believed in the

concepts of accumulation and distribution. S.IQST, a

significance testing program, was developed to correlate a

future high positive rate of change of price to a present

high rate of change of price and high volume.

In terms of SIGTT:

X = % change in price for one period a in advance

Y = % change in price for one period at the current

rate

Z = present volume level

The multiple correlation coefficients of the above ranged

from -.1 to +.5 for various predictive periods (a) for both

strong and weak markets, even when only the first and fourth

quartiles were used. But while there was correlation, it

was not enough to yield a profit. None of these predictive

ranges were significant at the .1 level in an F-test.
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Burst Error Effects:

I have used the term "burst error" to describe the

phenomenon whereby the predictive tool tends to make a large

number of errors at one time. The following is a graphical

sketch of this effect:

E(t)

The assumption at the outset of this investigation was that

lack of improvement in these burst error effects would be

taken as an indication of a nonstationary time series.

While quadratic prediction lowered the mean error of

prediction by approximately 30% of the residual error, there

was NO reduction of the error bursts. It may be concluded

that no form of prediction would reduce such errors as they

are the product of earnings announcements, President

Kennedy's death, and the like. Furthermore, these burst

errors account for almost 50% of the residual error after

quadratic prediction, indicating additional time spent in

technical prediction would be to little avail.
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Sinnificance of Resul-ts-:

Father Time plagued this thesis as well as most others.

Only one run of fifty predictions could be made for each of

the combinations of prediction period and sampling rate of

Table 1. Some of these runs included only 25 predictions.

Two runs were made on the one day prediction period. The

mean error is a monotonically increasing function of the

prediction period ranging from one to ten per cent over the

range studied. The error was automatically tabulated by the

prediction program as follows:

ERROR = ERROR + x(k) - x(k))/x(k)

ERROR = ERROR/NUMBER OF PERIODS PREDICTED

where k was indexed as the prediction proceeded

in other words:

xlk)-x(k)

ERROR = x(k. (36)
# periods predicted

After these runs had been made, an improved technique

allowed inclusion of many times as much data and generated

even better results. This was accomplished by not dropping

any samples when going to a bi- or tri-hourly sampling rate.

The calculation of the correlates is then done by shifting

two or three units instead of one. While giving less error,

these results seem incorrect from a pure mathematical

viewpoint. Holbrook Working~l has shown that averaging in

calculation of correlates gives artificial results.



PAGE 35

Pragmatically, this technique reduced error in the six month

prediction case by fifty per cent. Later, Professor Cootner

pointed out that in fact what was done was correct in that

averaging was carried out after calculation of the

unnormalized correlates. An example of program modification

which accomplishes the above in Nonlin at line 580:

THROUGH ENDD, FOR D = 0,2,D.G.2*M (bihourly)

THROUGH ENDD, FOR D = 0,3,D.G.3*M (trihourly)

SUmmary:L

Optimal prediction has been derived in theory and has

been implemented. Theoretically, this is the best that can

be done, but the theory seems almost mystical in application

except through the concepts of electrical engineering. The

best explanation I can give of what was done is that

Wiener's work for a linear predictive filter has been

modified to solve for a nonlinear predictive filter with

sampled-data inputs.

This predictive method is technical in nature but is

different from the traditional technical approach to stock

analysis. It is true that little "feeling" is developed for

the nature of the market, but in trade for this loss of

feeling, much of the human adjustment of data is lost. One

of the greatest weaknesses of the human mind in stock

analysis is that it is subject to affect completely

unrelated to the market. Of course, the great advantage is

its relative low cost.
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When the

one case, you

computer makes a decision about the market in

can bet if those conditions ever exist again,

it will give the

advantage of this

output of the ana

be fundamentall-y

market. The resi

may be as small a

error is more lik

same answer.

method of techni

lysis then has an

correlated to oth

dual error after

s the computer er

ely to be a funct

This fact

cal analysis,

error history

er events that

a technician

ror, but the

ion of his

is a major

because the

which may

effect the

's analysis

technician's

rose-colored

glasses than the market itself.

If the reader does not understand the theory of Chapter

1, perhaps the following words of explanation will give some

insight to the technique. The stock market analyst expects

market history to repeat itself in two ways, technically and

fundamentally. He is as lost as the computer if this does

not happen. For instance, neither the computer not the

technician could have predicted President Kennedy's death,

and both would have had large errors that day. The theory

of Chapter 1 claims not perfect prediction, but a minimum of

error. This method of prediction works by extending &Ui the

statistics of the past market and price fluctuations,

expecting history to repeat itself. The statistics which

are extended are both technical and fundamental.

either would be a great loss of information.

The following is a sketch of the general pr

Loss of

ocedure:
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Section One:Preprocessing of Data (PREDCT)

Phase One: Calculation of relative price changes over

time

Phase Two: Extraction of any linear trend with time

Phase Three: Extraction of any quadratic trend with

time

Section Two: Linear Prediction (PREDLN)

Phase One: Calculation of the Correlates

Phase Two: Construction of Matrix and its inversion

Phase Three: Preprocessing of data for next phase

Section Three: Quadratic Predition (PREDQD)

Phase One: Calculation of correlates

Phase Two: Construction of Matrix and its inversion

Phase Three: Calculation of Prediction

Section Four: Insertion of prediction into running error

analysis

Section Five: Fundamental correlation of error with market

(EXTRAP)

Section Six: Insertion of prediction into running error

analysis

WA1hat was done is not related to correlation techniques,

harmonic analysis, orthonomal functionals alone; it

encompasses all these techniques. To quell a few

misconceptions, linear correlation is in no way related to

linear prediction. Linear correlation considers only the

first and second moments of any distribution. Linear

prediction considers the first one hundred as programmed,
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all in theory. Linear prediction is simar to harmonic analysis,

however, and will give the same answer when given the same data

to assimilate. Nonlinear prediction builds up knowledge of past

market history in orthonomal functionals and is the complete rep-

resentation of a stock's history in a single formula.

With final reference to Professor Cootner's work, all that

can be predicted from past history is stationary time signals--

that is, that things will happen in the future as they did in the

past. Using any error criterion, the technique of nonlinear pre-

diction is the only complete mathematical or functional representa-

tion of history. I contend that Professor Cootner is right; the

stock market is almost a random process, but not quite. On the

floor of the exchange the brokers will only conduct about one

million transactions per hour before they will shut down the

exchange. Thus, high frequency effects have been eliminated.

In effect, we are trying to predict band-limited noise or a

band-limited random process. The technique of prediction con-

tained herein is the optimal prediction of band-limited noise.

I refer the interested reader to Y. W. Lee and C. A. Stutt,12

"Statistical Prediction of Noise," M.I.T. R.L.E. Report #102,

for a discussion of this in electrical engineering terms.

jF
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APPENDIX
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R NONLIN - FOREGROUND NONLINEAR PREDICTION PROGRAM
NORMAL MODE IS INTEGER
FLOATING POINT X ,X1X29XA1,XA2,XB1,XB2,ZLINMATCONVRT,
1 A0,AO1,AOA,A0QAVPRD1,AVPRD2,ANSWERARRAY,
2 VECTORLIN1,LIN2,A02
DIMENSION X(100),X1(100),X2(100),XA1(100),XA2(100),Z(100)
DIMENSION VECTOR(100),XB1(100),XB2(100)
DIMENSION LINMAT(784,L1DIM),CONVRT(784,LlDIM)
VECTOR VALUES LlDIM = 29l,28
VECTOR VALUES L2DIM = 2,1,1
DIMENSION LIN1(28,L2DIM), LIN2(28'LlDIM)
DIMENSION ARRAY(9261,ARY1)
VECTOR VALUES ARYl = 391921,21
PROGRAM COMMON ARRAY
VECTOR VALUES STRING = $ 81H THE OUTCOME OF THE PREDICTION
1 DOUBTFUL. CAN YOU SUPPLY MORE DATA OR REDUCE M.*$
EXECUTE SETBRK.(HERE)
PRINT COMMENT $ NONLINEAR PREDICTION - STUART A. ROONEY $
OFF = 0
I = 1
THROUGH ENDA' FOR A = 0t1,A.G.100
X(A) = 0.
X1(A) = 0.
X2(A) = 0.
XA1(A) = 0.
XA2(A) = 0.
Z(A) = 0.
PRINT COMMENT $ INPUT DATA $
READ DATA
WHENEVER N.G.P-1
PRINT COMMENT s TUFF LUCKHUCKIT CANNOT
TRANSFER TO START
OR WHENEVER N.L.4*M/3 .OR. N-M.L.4
PRINT FORMAT STRING
READ FORMAT $A3*$, TYPEIN
WHENEVER TYPEIN.E.$YES$
TRANSFER TO START
OR WHENEVER TYPEIN.E.$NO$
PRINT COMMENT $ GOOD LUCK, HUCK* AWAY WE
TRANSFER TO GOGOGO
OTHERWISE
TRANSFER TO GOOF
END OF CONDITIONAL
OTHERWISE
TRANSFER TO GOGOGO
END OF CONDITIONAL
S = 0
AOA = 0.
A01 = (X(P) - X(P-N))/N
THROUGH ENDB9 FOR B = 1,1,B.G.N
AOA = AOA + X(P-N+B)

BE DONE.

GO.

AO = AOA/N
PRINT COMMENT
PRINT RESULTS
THROUGH ENDC,

IS

TRY AGAIN.$

$

$4ALPHA ZERO $
A09 A01
FOR C = 1.1,C.G.N

HERE
START

ENDA

GOOF

GOGOGO

ENDB
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1

X2(C) = X(P-N+C) -AO
ENDC XA1(C) = X2(C)
RETURN THROUGH ENDD' FOR D = 01*D.G.M

THROUGH ENDEP FOR E = 01,E.G*100
ENDE X1(E) = 0.

THROUGH ENDF9 FOR F = 1919F.G.N-'D
ENDF X1(F) = X2(F) * X2(F+D)

Z(D) = 0.
THROUGH ENDG. FOR G = 191'G.G&N-D

ENDG Z(D) = Z(D) + X1(G)
ENDD Z(D) = Z(D)/(N-D)

WHENEVER S.E.O
TRANSFER TO RAW
OR WHENEVER S.E.1
TRANSFER TO ONE
OR WHENEVER S.E.2
TRANSFER TO TWO
END OF CONDITIONAL

RAW PRINT COMMENT $4AUTOCORRELATION OF THE DATA $
PRINT RESULTS Z(0)...Z(M)
THROUGH ENDKK.FOR KK = Oi1'KK.G.M

ENDKK XB1(KK) = Z(KK)
S = 1
THROUGH ENDH' FOR H = 1,1,H.GoN
XA2(H) = X(P-N+H) - X(P-N+H-1) - A01

ENDH X2(H) = XA2(H)
TRANSFER TO RETURN

ONE PRINT COMMENT $4AUTOCORRELATION OF THE FIRST DIFFERENCES $
PRINT RESULTS Z(O)...Z(M)
THROUGH ENDLLP FOR LL = 01'LL.G.M

ENDLL XB2(LL) = Z(LL)
5 = 2
THROUGH ENDRP FOR R = 11.R.G.N

ENDR X2(R) = X(P-N+R) - 2*X(P-N+R-1) + X(P-N+R-2)
TRANSFER TO RETURN

TWO PRINT COMMENT $4AUTOCORRELATION OF THE SECOND DIFFERENCES $
SWITCH = 0

SECOND THROUGH ENDT9 FOR T = 0,1,T.G.100
X(T) = 0.
X1(T) = 0.
X2(T) = 0.

ENDT Z(T) = 0.
WHENEVER SWITCH.E.0
AOQ = AO
THROUGH ENDUtFOR U = 1.1,U.G.N

ENDU Z(U) = XA1(U)
THROUGH ENDV# FOR V = 0,1,V.G.M

ENDV X(V) = XB1(V)
OR WHENEVER SWITCH/2 + SWITCH/2&NE. SWITCH
AOO = A01
THROUGH ENDW, FOR W = 1,1,W.G.N

ENDW Z(W) = XA2(W)
THROUGH ENDAA, FOR AA = 0919AA.G.M
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2

ENDAA

ENDBB

ENDMM

ENDNN

ENDPP

ENDCC

ENDDEF

ENDGH

ENDI I

ENDJJ

ENDQQ

ENDT2

X(AA) = XB2(AA)
THROUGH ENDBB9 FOR BB = 0,1'BB.G.M-1
XA1(BB) = XA1(BB+1)
XAl(M) = AVPRD1 + AVPRD2
OR WHENEVER SWITCH/2 + SWITCH/2 *E. SWITCH
AOQ = A0
THROUGH ENDMMv FOR MM = 1'1'MM.G.N
Z(MM) = XA1(MM)
THROUGH ENDNNo FOR NN = 0,19NN.G.M
X(NN) = XB1(NN)
THROUGH ENDPP' FOR PP = 0,19PP.G.M-1
XA2(PP) = XA2(PP+1)
XA2(M) = AVPRD1 + AVPRD2
END OF CONDITIONAL
SWITCH = SWITCH + 1
THROUGH ENDCCo FOR CC = 1'1'CC.G.M
LIN1(CC,1) = 1.0
LIN2(1,CC) = X(CC - 1)
THROUGH ENDDEF, FOR DD = 11'DD.G.M
THROUGH ENDDEF, FOR EE = 11.EE.G.M
CONVRT(DDEE) = 0.
THROUGH ENDDEF' FOR FF = 11'FF.G.1
CONVRT(DDEE)=CONVRT(DDEE)+LIN1(DDFF)*LIN2(FFEE)
THROUGH ENDGH9 FOR GG = 11tGG.G.M
THROUGH ENDGH, FOR HH = 1.1'HH.G.M
WHENEVER GG*LE.HH
LINMAT(GGHH) = CONVRT(GGHH - GG +1)
OTHERWISE
LINMAT(GGqHH) = CONVRT(GGGG - HH +1)
END OF CONDITIONAL
CONTINUE
THROUGH ENDII' FOR II = 191'II.G.M
CONVRT(IIl) = X(II)
SCALE = 1.0
TEST1 = XSMEQ.(28,M,1,LINMATCONVRTSCALEX1)
PRINT RESULTS TESTi
AVPRD1 = 0.
AVPRD2 = 0.
A02 = 0.
THROUGH ENDJJ' FOR JJ = 191'JJ.G.M
X(JJ) = LINMAT(M+1-JJ,1) * Z(N-M+JJ)
PRINT RESULTS LINMAT(M+1-JJ,1),Z(N-M+JJ),X(JJ)
AVPRD1 = AVPRD1 + X(JJ)
PRINT RESULTS AVPRD1
ANSWER = AOQ + AVPRD1
PRINT RESULTS ANSWER
THROUGH ENDQQO FOR QQ = 1.19QQ.G.M
X(QQ) = Z(N-M+QQ) - X(QQ)
A02 = A02 + X(QQ)
THROUGH ENDT2, FOR T2 = 1,1T2.G.M
X(T2) = X(T2) - A02/M
PRINT RESULTS X(1)...X(M)
COUNTR = L*(L+1)/2 + 1
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THROUGH ENDAB19 FOR Al = ltl*Al.G.L
THROUGH ENDAB1 FOR Bi = loloBloG.Al
LINMAT(AloBl) = 0o
THROUGH ENDClt FOR Cl = lilsCl*G.M-Al

ENDC1 LINMAT(AlB1) = LINMAT(AlBl) + X(Cl)*X(Cl+Al)*X(Cl+Al-Bl)
COUNTR = COUNTR - 1

ENDAB1 CONVRT(COUNTR9l) = LINMAT(AlB1)/((M-Al)*(M-Al))
INT = L*(L+1)/2
THROUGH ENDAB2, FOR A2 = ll9A2.G.L
THROUGH ENDAB2# FOR B2 = ltlB2.G.A2
THROUGH ENDAB2, FOR AB = l'19AB.G.B2
ARRAY(A2,B2,AB) = 0.
WHENEVER A2.GEsB2 *AND. A2.GE.AB
AC = M - A2 + 1
OR WHENEVER B2.G.A2 *AND. B2.G.AB
AC = M - B2 + 1
OR WHENEVER AB#G.A2 *AND. AB.G.B2
AC = M - AB + 1
END OF CONDITIONAL
THROUGH ENDC2, FOR C2 = llC2*G.AC

ENDC2 ARRAY(A29B29AB) = ARRAY(A29B2*AB) +
1 X(C2)*X(C2+AB-1)*X(C2+A2-1)*X(C2+B2-1)
ARRAY(A29B2,AB) = ARRAY(A2 B2,AB)/(AC*AC*AC)
WHENEVER A2*GE.B2 *AND. B2.GE.AB
ARRAY(A2PABB2) = ARRAY(A29B2,AB)
ARRAY(B2,ABA2) = ARRAY(A29B2,AB)
ARRAY(B2,A2,AB) = ARRAY(A29B2,AB)
ARRAY(ABA2,B2) = ARRAY(A2,B2,AB)
ARRAY(ABvB29A2) = ARRAY(A2#B2*AB)
END OF CONDITIONAL

ENDAB2 CONTINUE
SS = 1
SSS = -1
THROUGH ENDFED, FOR D2 llD2.G.INT
WHENEVER SSS.E.L-SS
SSS = -1
SS = SS + 1
END OF CONDITIONAL
SSS = SSS + 1
SSSS = 0
THROUGH ENDFED, FOR E2 = 1l1E2.G.L
THROUGH ENDFED# FOR F2 = l'l9F2.G.L
WHENEVER E2.E.F2
SSSS = SSSS + 1
LINMAT(D2,SSSS) = ARRAY(SSS+1, ABS.(E2-SSS-SS)+1,1)
OR WHENEVER E2.L.F2
SSSS = ssss + 1
LINMAT(D2#SSSS) = ARRAY(SSS+,..ABS.(E2-S5S-SS)+1,F2-E2+1)

1 + ARRAY(SSS+1,.ABS.(F2-SSS-SS)+1F2-E2+1)
END OF CONDITIONAL

ENDFED CONTINUE
SCALE = 1.0
TEST2 = XSMEQ.(28tINT,1,LINMATCONVRTSCALE9Xl)
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PRINT RESULTS TEST2
THROUGH ENDQ19 FOR Q1 = 1,1'Q1.G.L
LIN1(01,1) = X(M-L+Q1)
LIN2(1,Q1) = X(M-L+Q1)
THROUGH ENDRTUFOR RR = 1J.RR.G.L
THROUGH ENDRTU, FOR TT = 1,1,TT*G.L
CONVRT(RRTT) = 0.
THROUGH ENDRTU, FOR UU = 1'1,UU.G.1
CONVRT(RRTT) = CONVRT(RRTT)+LIN1(RRUU)*L
COUNTR = 0
THROUGH ENDSTU, FOR STU = 1,1,STU.G.L
THROUGH ENDSTU, FOR ROO = 1919ROO.G.L
WHENEVER STU.L.ROO
COUNTR = COUNTR +1
VECTOR(COUNTR) = 2*CONVRT(STUROO)
OR WHENEVER STU.E.ROO
COUNTR = COUNTR + 1
VECTOR(COUNTR) = CONVRT(STUROO)
END OF CONDITIONAL
CONTINUE
THROUGH ENDEND9 FOR END = 1,1,END.G.INT
PRINT RESULTS VECTOR(END),LINMAT(END,1)
AVPRD2 = AVPRD2 + VECTOR(END)*LINMAT(END,1)
PRINT RESULTS AVPRD2
ANSWER = AOO + AVPRD1 + AVPRD2
PRINT RESULTS ANSWER
WHENEVER SWITCH/2 + SWITCH/2.NEaSWITCH
PRINT COMMENT $1PREDICTION OF THE NEXT FIRS
TRANSFER TO
OR WHENEVER
TRANSFER TO
OR WHENEVER
TRANSFER TO
OR WHENEVER

SECOND
SWITCH/2.NE.I
SECOND
SWITCH/2.Eo.AND. OFF.E.0
START
SWITCH/2.E.I.AND.OFF.E.1

IN2(UUTT)

T DIFFERENCE

EXECUTE EXIT.
END OF CONDITIONAL
END OF PROGRAM

251

TOTAL 251

ENDl

ENDRTU

ENDSTU

ENDEND

$
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R UTOPIA - STOCK MARKET DECISION RULE PROGRAM
NORMAL MODE IS INTEGER
FLOATING POINT X9X1,X2,ZLINMATCONVRT,AO1,A02,AVPRD1,AVPRD2,
1 ANSWERARRAYVECTORLIN1,LIN2,INPUTOUTPUT
DIMENSION X(100) ,X1(100),X2(100),Z(100),VECTOR(100)
DIMENSION LINMAT(784,LlDIM),CONVRT(784,LlDIM)
VECTOR VALUES LlDIM = 2*1*28
VECTOR VALUES L2DIM = 2*191
DIMENSION LIN1(28,L2DIM), LIN2(28,L1DIM)
DIMENSION INPUT(185,INDIM),0UTPUT(50,OUTDIM)
VECTOR VALUES INDIM = 2,1,37
VECTOR VALUES OUTDIM = 2,1,10
DIMENSION ARRAY(9261,ARYl)
VECTOR VALUES ARYl = 3%1,21s21
PROGRAM COMMON ARRAY
EXECUTE SETBRK.(HERE)
PRINT COMMENT $1 STOCK MARKET DECISION RULE PROGRAM$
PRINT COMMENT $ STUART A. ROONEY$
L 6
M 13
N = 27
P = 28
NSTOCK = 5
PERIOD = 10
PRINT COMMENT $ INPUT DATA $
READ DATA
THROUGH FINISH, FOR S = 1,1,S.G.NSTOCK
TRIGER = 1
THROUGH BITTER, FOR I = 1919I&G.PERIOD
THROUGH ENDA9 FOR A = O,1,A.G.100
X1(A) = 0.
X2(A) = 0.
Z(A) = 0.
WHENEVER TRIGER.Esl
TRIGER = 0
THROUGH ENDB' FOR B = 1,1B.G.P
X(B) = INPUT(SB)
TRANSFER TO AGAIN
OTHERWISE
THROUGH ENDC, FOR C = 1,1,C.G.P-1
X(C) = X(C+1)
X(P) = INPUT(SP+I-1)
END OF CONDITIONAL
A01 = (X(P) - X(P-N))/N
PRINT COMMENT $4ALPHA ZERO $
PRINT RESULTS A01
THROUGH ENDH9 FOR H = 1,1,H.G.N
X2(H) = X(P-N+H) - X(P-N+H-1) -A01
THROUGH ENDD9 FOR D = 0,1,D.G.M
THROUGH ENDE, FOR E = 0,1,E.G.100
X1(E) = 0.
THROUGH ENDFo FOR F 1,19F.GoN-D
X1(F) = X2(F) * X2(F+D)
Z(D) = 0.
THROUGH ENDG' FOR G = 1919G.G.N-D

HERE

ENDA

ENDB

ENDC

AGAIN

ENDH

ENDE

ENDF
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ENDG
ENDD

ENDT

ENDCC

ENDDEF

ENDGH

ENDI I

ENDJJ

ENDQQ

ENDT2

ENDC1

ENDAB1

Z(D) = Z(D) + X1(G)
Z(D) = Z(D)/(N-D)
PRINT COMMENT $4AUTOCORRELATION OF THE FIRST DIFFERENCES $

PRINT RESULTS Z(0)...Z(M)
THROUGH ENDT9 FOR T = 0,19T.G.100
X1(T) = 0.
THROUGH ENDCCt FOR CC 191,CC.G.M
LIN1(CC,1) = 1.0
LIN2(1,CC) = Z(CC - 1)
THROUGH ENDDEF, FOR DD = 1'19DD.G.M
THROUGH ENDDEF, FOR EE = lolsEE.G.M

CONVRT(DDEE) = 0.
THROUGH ENDDEF9 FOR FF = 11'FF.G.1
CONVRT(DDEE)=CONVRT(DDEE)+LIN1(DDFF)*LIN2(FFEE)
THROUGH ENDGH9 FOR GG = 1'1'GG.G.M
THROUGH ENDGHs FOR HH = 11'HH.G.M
WHENEVER GG.LE.HH
LINMAT(GGHH) = CONVRT(GGsHH - GG +1)
OTHERWISE
LINMAT(GGHH) = CONVRT(GGGG - HH +1)
END OF CONDITIONAL
CONTINUE
THROUGH ENDIIs FOR II = 1'1'II.G.M
CONVRT(II,1) = Z(II)
SCALE = 1.0
TESTi = XSMEQ.(28,M,1,LINMATCONVRTSCALEX1)
PRINT RESULTS TESTi
AVPRD1 = 0.
AVPRD2 = 0.
A02 = 0.
THROUGH ENDJJ9 FOR JJ = 191'JJ.G.M
X1(JJ) = LINMAT(M+1-JJ,1) * X2(N-M+JJ)
PRINT RESULTS LINMAT(M+1-JJ,1),X2(N-M+JJ),X1(JJ)
AVPRD1 = AVPRD1 + X1(JJ)
PRINT RESULTS AVPRD1
ANSWER = A01 + AVPRD1
PRINT RESULTS ANSWER
THROUGH ENDQQ' FOR QO = 191'QQ.G.M
X1(QQ) = X2(N-M+QO) - X1(QQ)
A02 = A02 +Xl(OQ)
THROUGH ENDT2* FOR T2 = 1,l1T2.G.M
Xl(T2) = X1(T2) - A02/M

PRINT RESULTS Xl(1)...X1(M)
COUNTR = L*(L+1)/2 + 1
THROUGH ENDAB19 FOR Al = lglAl.G.L
THROUGH ENDAB1, FOR Bl = l'1B1.G.Al
LINMAT(AlB1) = 0.
THROUGH ENDC19 FOR Cl = 1919C1.G.M-Al
LINMAT(AlB1) = LINMAT(AlBl) + X1(Cl)*X1(Cl+A1)*Xl(Cl+Al-B1).
COUNTR = COUNTR - 1
CONVRT(COUNTR,1) = LINMAT(AlB1)/((M-Al)*(M-A1))
TNT = L*(L+1)/2
THROUGH ENDAB2, FOR A2 = '1,1A2.G.L
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THROUGH ENDAB2# FOR B2 = 11vB2.G.A2
THROUGH ENDAB2# FOR AB = ltlAB.G.82
ARRAY(A2#B2,AB) = 0.
AC = M - A2 + 1
THROUGH ENDC29 FOR C2 = llC2.G.AC
ARRAY(A29B29AB) = ARRAY(A2,B29AB) +
1 Xl(C2)*X1(C2+AB-1)*X1(C2+A2-1)*X1(C
ARRAY(A2,B2,AB) =
WHENEVER A2.GE.B2
ARRAY ( A2 9A~B2) =
ARRAY(B2#AB9A2) =
ARRAY(B29A2,AB) =
ARRAY(AB#A2,B2) =
ARRAY(ABoB2,A2) =

ARRAY(
*AND.
ARRAY (
ARRAY(
ARRAY(
ARRAY(
ARRAY(

ENDC2

ENDAB2

ENDFED

ENDQ1

ENDRTU

A2
82
A2
A2
A2
A2
A2

.B2#AB)/(
*GE.AB
'B2vAB)
*B2.AB)

B2*AB)
#B2sAB)
.B29AB)

A
2+B2-1)
C*AC*AC)

= 11.D2.G.INT

= 11'E2.G.L
= 1'1F2.G.L

(SSS+loABS.(E2-SSS-SS)+1,1)

(SSS+1 .ABS.(E2-SSS-SS)+1,F2-E2+1)
1 + ARRAY(SSS+1,.ABS.(F2-SSS-SS)+1,F2-E2+1)

END OF CONDITIONAL
CONTINUE
SCALE = 1.0
TEST2 = XSMEQ.(28,INT91LINMATCONVRTSCAL
PRINT RESULTS TEST2
THROUGH ENDQ19 FOR Qi = llQ1.G.L
LIN1(Q011) =X1(M-L+Q1)
LIN2(1,Q1) =X1(M-L+Q1)
THROUGH ENDRTUsFOR RR = 11'RR.G.L
THROUGH ENDRTU, FOR TT = llTT.G.L
CONVRT(RRTT) = 0.
THROUGH ENDRTU, FOR UU = 1.1.UU.G.1
CONVRT(RRTT) = CONVRT(RRTT)+LIN1(RRoUU)*
COUNTR = 0
THROUGH ENDSTU, FOR STU = 1,1,STU.G.L
THROUGH ENDSTU, FOR ROO = 11,ROO.G.L
WHENEVER STU.L.ROO
COUNTR = COUNTR +1
VECTOR(COUNTR) = 2*CONVRT(STUROO)

EsVECTOR)

LIN2(UUTT)

END OF CONDITIONAL
CONTINUE
SS = 1
SSS = -1
THROUGH ENDFED, FOR D2
WHENEVER SSS.E.L-SS
SSS -1
SS = 55 + 1
END OF CONDITIONAL
SSS = SSS + 1
SSSS = 0
THROUGH ENDFED, FOR E2
THROUGH ENDFED# FOR F2
WHENEVER E2.E.F2
SSSS = SSSS + 1
LINMAT(D2vSSSS) = ARRAY
OR WHENEVER E2.L.F2
SSSS = SSSS + 1
LINMAT(D2#SSSS) = ARRAY

.. 1 -... , , 111
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OR WHENEVER STU.E.ROO
COUNTR = COUNTR + 1
VECTOR(COUNTR) = CONVRT(STUROO)
END OF CONDITIONAL

ENDSTU CONTINUE
THROUGH ENDEND# FOR END = 1,1,END.G.INT
PRINT RESULTS VECTOR(END),LINMAT(END,1)

ENDEND AVPRD2 = AVPRD2 + VECTOR(END)*LINMAT(END,1)
PRINT RESULTS AVPRD2
OUTPUT(SI) = A01 + AVPRD1 + AVPRD2
PRINT RESULTS OUTPUT(SI)

BITTER CONTINUE
FINISH CONTINUE

PRINT COMMENT $1 RESULTS$
THROUGH ENDPNT, FOR PNT = 1,1,PNT.G.NSTOCK

ENDPNT PRINT RESULTS OUTPUT(PNT,1)...OUTPUT(PNTPERIOD)
PRINT COMMENT $1 THAT IS ALL.$
EXECUTE EXIT.
END OF PROGRAM

180

TOTAL 180
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R PREDLN - LINEAR PREDICTION PROGRAM
NORMAL MODE IS INTEGER
FLOATING POINT XX1,X2,XA1,XA2,XB1,XB2,ZLINMATCONVRT,
1 AOAO1,AOAAOQAVPRD1,ANSWERLIN1,LIN2
DIMENSION X(500 ,X1(500) ,X2(500),XA1(500),XA2(500) ,Z(500)
DIMENSION XB1(500),XB2(500)
DIMENSION LIN1(100,L2DIM),LIN2(100,LlDIM)
DIMENSION LINMAT(1000, L1DIM),CONV
VECTOR VALUES LlDIM = 2,1,100
VECTOR VALUES L2DIM = 291*1
VECTOR VALUES OUTPUT = $5HX(1)=,25
1 7HANSWER=,E15o8*$
PRINT COMMENT $1 LINEAR PREDICTION
OFF = 0
I = 1
M = 100
THROUGH ENDA, FOR A =

X(A) = 0.
X1(A) = 0.
X2(A) = 0.
XA1(A) = 0.

R T ( 10000 9LlDIM)

(4(E15.8i2H9

- STUART A* ROONEY$

0,1,A.G.500

XA2(A) = 0.
Z(A) = 0.
PRINT COMMENT s INPUT DATA $
READ AND PRINT DATA
S = 0
AOA 0.
A01 (X(P) - X(P-N))
THROUGH ENDB9 FOR B =

AOA = AQA + X(P-N+B)

/N
1 91,9B.oG.*N

START

ENDA

ENDB

ENDC
RETURN

ENDE

ENDF

ENDG
ENDD

RAW

G.N

G.M
G.500

G.N-D
X1(F) = X2(F) * X2(F+D)
Z(D) = 0.
THROUGH ENDG' FOR G = 191.G.G.N-D
Z(D) Z(D) + X1(G)
Z(D) = Z(D)/(N-D)
WHENEVER S.E60
TRANSFER TO RAW
OR WHENEVER S.E.1
TRANSFER TO ONE
OR WHENEVER S.E.2
TRANSFER TO TWO

END OF CONDITIONAL
PRINT COMMENT $4AUTOCORRELATION OF THE DATA $
PRINT RESULTS Z(O)...Z(M)
THROUGH ENDKKFOR KK = Ot1.KK.G.M

AO = AOA/N
PRINT COMMENT $4ALPHA ZERO $
PRINT RESULTS AOt A01
THROUGH ENDC9 FOR C = 1,1,C.
X2(C) = X(P-N+C) -AO
XA1(C) = X2(C)
THROUGH ENDDv FOR D = O.1vD.
THROUGH ENDE, FOR E = 019E.
X1(E) = 0.
THROUGH ENDF' FOR F = 1,19F.
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ENDKK XB1(KK) = Z(KK)
S = 1
THROUGH ENDH9 FOR H = 11tH.G.N
XA2(H) = X(P-N+H) - X(P-N+H-1) - A01

ENDH X2(H) = XA2(H)
TRANSFER TO RETURN

ONE PRINT COMMENT $4AUTOCORRELATION OF THE FIRST DIFFERENCES s
PRINT RESULTS Z(O)...Z(M)
THROUGH ENDLL9 FOR LL = 091,LL.G.M

ENDLL XB2(LL) = Z(LL)
S = 2
THROUGH ENDR# FOR R = 11'R.G.N

ENDR X2(R) = X(P-N+R) - 2*X(P-N+R-1) + X(P-N+R-2)
TRANSFER TO RETURN

TWO PRINT COMMENT $4AUTOCORRELATION OF THE SECOND DIFFERENCES S
SWITCH = 0

SECOND THROUGH ENDT* FOR T = 0,1,T.G.500
X(T) = 0.
X1(T) = 0.
X2(T) = 0.

ENDT Z(T) = 0.
WHENEVER SWITCH.E.O
AOQ = AO
THROUGH ENDUFOR U 1,1,U.G.N

ENDU Z(U) = XAl(U)
THROUGH ENDV, FOR V = 019V.G.M

ENDV X(V) = XB1(V)
OR WHENEVER SWITCH/2 + SWITCH/2.NE. SWITCH
AOQ = A01
THROUGH ENDWs FOR W = 1,1,W.G.N

ENDW Z(W) = XA2(W)
THROUGH ENDAA, FOR AA = 0,19AA*G.M

ENDAA X(AA) = XB2(AA)
THROUGH ENDBB# FOR BB = Og1tBB.G.M-1

ENDBB XA1(BB) = XA1(BB+1)
XAl(M) = AVPRD1 + AVPRD2
OR WHENEVER SWITCH/2 + SWITCH/2 .E. SWITCH

AOQ = AO
THROUGH ENDMM9 FOR MM = 1*1'MM.G.N

ENDMM Z(MM) = XA1(MM)
THROUGH ENDNN# FOR NN = 019NN.G.M

ENDNN X(NN) = XB1(NN)
THROUGH ENDPP# FOR PP = 0,1'PP.G.M-1

ENDPP XA2(PP) = XA2(PP+1)
XA2(M) = AVPRD1 + AVPRD2
END OF CONDITIONAL
SWITCH = SWITCH + 1
THROUGH ENDCCo FOR CC = 11'CC.G.M

LIN1(CC,1) = 1.0
ENDCC LIN2(1,CC) = X(CC - 1)

THROUGH ENDDEFo FOR DD 1,1'DD.G.M
THROUGH ENDDEFs FOR EE 1919EE.GoM
CONVRT(DDEE) = 0,



PAGE 50

2

ENDDEF

ENDGH

ENDI I

ENDJJ

ENDQQ

ENDT2

OUTPUT, X(1)...X(M),ANSWER
TCH/2 + SWITCH/2.NE.SWITCH
T $1PREDICTION OF THE NEXT

SECOND
SWITCH/2.NE.I
SECOND
SWITCH/2.Eo.IAND. OFF.E.0
START
SWITCH/2.E.I.AND.OFF.E.1

FIRST DIFFERENCE

PUNCH FORMAT
WHENEVER SWI
PRINT COMMEN
TRANSFER TO
OR WHENEVER
TRANSFER TO
OR WHENEVER
TRANSFER TO
OR WHENEVER
EXECUTE EXIT.
END OF CONDITIONAL
END OF PROGRAM

COUNT
REM
ENTRY
ENTRY

WRFLXA TSX
WRFLX EQU

END

5
PROGRAM TO DISABLE FOREGROUND COMMUNICATION
WRFLX
WRFLXA
sEXIT,4
WRFLXA

158

TOTAL 158

THROUGH ENDDEF# FOR FF = 1'19FF6G.1
CONVRT(DDEE)=CONVRT(DDEE)+LIN1(DDFF)*LIN2(FFEE)
THROUGH ENDGH, FOR GG = 1919GG.G.M
THROUGH ENDGH, FOR HH = 1,1'HH.G.M
WHENEVER GG.LE.HH
LINMAT(GGHH) = CONVRT(GGHH - GG +1)
OTHERWISE
LINMAT(GGHH) = CONVRT(GGGG - HH +1)
END OF CONDITIONAL
CONTINUE
THROUGH ENDII FOR II = 1,1II.G.M
CONVRT(II,1) = X(II)
SCALE = 1.0
TESTi = XSMEQ.(100,M,1,LINMATCONVRTSCALEX1)
PRINT RESULTS TESTi
AVPRD1 = 0.
AVPRD2 = 0.
A02 = 0.
THROUGH ENDJJ, FOR JJ = 1'1'JJ.G.M
X(JJ) = LINMAT(M+1-JJ,1) * Z(N-M+JJ)
PRINT RESULTS LINMAT(M+1-JJ,1),Z(N-M+JJ),X(JJ)
AVPRD1 = AVPRD1 + X(JJ)
PRINT RESULTS AVPRD1
ANSWER = AOQ + AVPRD1
PRINT RESULTS ANSWER
THROUGH ENDQQ9 FOR QQ = 1#1'QQ.G.M
X(QQ) = Z(N-M+0Q) - X(QQ)
A02 = A02 + X(QQ)
THROUGH ENDT2, FOR T2 = 1,1,T2.G.M
X(T2) = X(T2) - A02/M
PRINT RESULTS X(1)...X(M)

$
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R PREDQD - QUADRATIC PREDICTION PROGRAM (FAST)
NORMAL MODE IS INTEGER
FLOATING POINT XLINMATCONVRTAVPRD2,ANSWERARRAYVECTOR,

1 LIN19LIN2
DIMENSION X(100),VECTOR(100),ARRAY(21200)
DIMENSION LINMAT(2500,LlDIM),CONVRT(2500.LlDIM)
DIMENSION LIN1(50,L2DIM) LIN2(50tLlDIM)
VECTOR VALUES LlDIM = 2,1,50
VECTOR VALUES L2DIM = 29191

START PRINT COMMENT $1 QUADRATIC PREDICTION PROGRAM$
READ AND PRINT DATA
COUNTR = L*(L+1)/2 + 1
THROUGH ENDAB1, FOR Al = 1'1.A1.G.L
THROUGH ENDAB1, FOR Bl = 1'1'Bl.G.Al
LINMAT(AlB1) = 0.
THROUGH ENDC1' FOR Cl = 1'1'C1.G.M-Al

ENDC1 LINMAT(A1,B1) = LINMAT(AloB1) + X(Cl)*X(Cl+A1)*X(Cl+Al-B1)
COUNTR = COUNTR - 1

ENDAB1 CONVRT(COUNTR,1) = LINMAT(A1,Bl)/((M-A1)*(M-A1))
INT = L*(L+1)/2
THROUGH ENDAB2, FOR A2 = 1'1A2#G.L
THROUGH ENDAB2, FOR B2 = 191B2.G.A2
THROUGH ENDAB2, FOR AB = 1*1'AB.G.B2
CC = 1 + 2500*(AB-1) + 50*(B2-1) + (A2-1)
ARRAY(CC) = 0.
WHENEVER A2.GE.B2 .AND. A2.GE.AB
AC = M - A2 + 1
OR WHENEVER B2.G.A2 .AND. B2.G.AB
AC = M - B2 + 1
OR WHENEVER AB.G.A2 .AND. AB.G.B2
AC = M - AB + 1
END OF CONDITIONAL
THROUGH ENDC2o FOR C2 = 1,1'C2.G.AC

ENDC2 ARRAY(CC)=ARRAY(CC)+X(C2)*X(C2+AB-1)*X(C2+A2-1)*X(C2+B2-1)
ENDAB2 ARRAY(CC) = ARRAY(CC)/(AC*AC*AC)

SS = 1
SSS = -1
THROUGH ENDFED, FOR D2 = 1,1,D2.G.INT
WHENEVER SSS.E.L-SS
SSS = -1
SS = SS + 1
END OF CONDITIONAL
SSS = SSS + 1
SSSS = 0
THROUGH ENDFED, FOR E2 = 1'1E2.G.L
THROUGH ENDFED, FOR F2 = 1'1PF2.G.L
WHENEVER E2.E.F2
SSSS = SSSS + 1
LINMAT(D2,SSSS)=ARRAY(WHICHR.(SSS+1,.ABS.(E2-SSS-SS)+1,1,
1 RET))
OR WHENEVER E2.L.F2
SSSS = SSSS + 1

LINMAT(D2,SSSS)=ARRAY(WHICHR.(SSS+1,.ABS&(E2-SSS-SS)+1,F2-E2+
11RET))+ARRAY(WHICHR.(SSS+1,.ABS.(F2-SSS-SS)+1,F2-E2+1,RET))
END OF CONDITIONAL



P&A&GE 52

ENDFED CONTINUE
SCALE = 1.0
TEST2 = XSMEQ.(100,INT,1,LINMATCONVRTSCALEVECTOR)
PRINT RESULTS TEST2
THROUGH END01, FOR Qi = 1,1.Q1.G.L
LIN1(Q1,1) = X(M-L+Q1)

ENDQ1 LIN2(1,Ql) = X(M-L+Q1)
THROUGH ENDRTUFOR RR = 1.19RR.G.L
THROUGH ENDRTU, FOR TT = 1.1,TT.G.L
CONVRT(RR#TT) = 0.
THROUGH ENDRTU, FOR UU = 1.1,UU.G.1

ENDRTU CONVRT(RRTT) = CONVRT(RRTT)+LIN1(RRUU)*LIN2(UU,TT)
COUNTR = 0
THROUGH ENDSTU, FOR STU = 1,1,STU.G.L
THROUGH ENDSTU, FOR ROO = 1'1.ROO.G.L
WHENEVER STU.L.ROO
COUNTR = COUNTR +1
VECTOR(COUNTR) = 2*CONVRT(STUROO)
OR WHENEVER STU.E.ROO
COUNTR = COUNTR + 1
VECTOR(COUNTR) = CONVRT(STUROO)
END OF CONDITIONAL

ENDSTU CONTINUE
THROUGH ENDEND9 FOR END = 191.END.G.INT
PRINT RESULTS VECTOR(END),LINMAT(END,1)

ENDEND AVPRD2 = AVPRD2 + VECTOR(END)*LINMAT(END,1)
PRINT RESULTS AVPRD2
ANSWER = ANSWER + AVPRD2
PRINT RESULTS ANSWER

RET TRANSFER TO START
EN-D OF PROGRAM

* MAD
EXTERNAL FUNCTION-(XYZ)
NORMAL MODE IS INTEGER
ENTRY TO WHICHR.
A X
B Y
C =Z
WHENEVER A.LE.B .AND. A.LE.C

D = A
WHENEVER B.LE.C
E =B
F C
OTHERWISE
E =C
F B
END OF CONDITIONAL
OR WHENEVER B.LE.A .AND. B.LE.C
D = B
WHENEVER A.LE.C
E =A
F C
OTHERWISE

. ......................
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E =C
F =A
END OF CONDITIONAL
OTHERWISE

D = C
WHENEVER A.LE.B
E =A
F B
OTHERWISE
E =B
F A
END OF CONDITIONAL
END OF CONDITIONAL
K = 1 + 2500*(D-1) + 50*(E-1) + (F-1)
WHENEVER K.G.O .AND. K.L.21200
FUNCTION RETURN
OTHERWISE
ERROR RETURN
END OF CONDITIONAL
END OF FUNCTION

COUNT 5
REM PROGRAM TO DISABLE FOREGROUND COMMUNICATION
ENTRY WRFLX
ENTRY WRFLXA

WRFLXA TSX $EXIT,4
WRFLX EQU WRFLXA

END
135

TOTAL 135
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R PREDQD - QUADRATIC PREDICTION PROGRAM (SLOW)
NORMAL MODE IS INTEGER
FLOATING POINT XLINMATCONVRTAVPRD2,ANSWERVECTOR*LINi LIN2
DIMENSION X(100),VECTOR(100)
DIMENSION LINMAT(2500,LlDIM),CONVRT(2500,LlDIM)
DIMENSION LIN1(50,L2DIM),LIN2(50L1DIM)
VECTOR VALUES LIDIM = 2,1950
VECTOR VALUES L2DIM = 29191
PROGRAM COMMON X, M

START PRINT COMMENT $1 QUADRATIC PREDICTION PROGRAMS
READ AND PRINT DATA
COUNTR = L*(L+1)/2 + 1
THROUGH ENDAB19 FOR Al = lglgAl.G.L
THROUGH ENDAB1, FOR B1 = lgl*Bl.G.Al
LINMAT(AlBl) = 0.
THROUGH ENDClt FOR Cl = llgCl.G.M-Al

ENDC1 LINMAT(A1,Bl) = LINMAT(A1,Bl) + X(Cl)*X(Cl+A1)*X(Cl+Al-Bl)
COUNTR = COUNTR 1

ENDAB1 CONVRT(COUNTR,1) = LTNMAT(AlB1)/((M-Al)*(M-A1))
INT = L*(L+1)/2
SS = 1
SSs = -l
THROUGH ENDFED9 FOR D2 = ltlD2.G.INT
WHENEVER SSS.E.L-SS
SSS =-1
SS SS + 1
END OF CONDITIONAL
SSS = SSS + 1
SSSS = 0
THROUGH ENDFED, FOR E2 = 11,E2.G.L
THROUGH ENDFED, FOR F2 = 11.F2.G.L
WHENEVER E2.E.F2
SSSS = SSSS + 1
LINMAT(D2,SSSS)=ARRAY.(SSS+1,.ABS.(E2-SSS-SS)+ll)
OR WHENEVER E2.L.F2
SSSS = SSSS + 1

LINMAT(D2,SSSS)=ARRAY.(SSS+lABS.(E2-SSS-SS)+lF2-E2+1)
1 + ARRAY.(SSS+19.ABS.(F2-SSS-SS)+1,F2-E2+1)

END OF CONDITIONAL
ENDFED CONTINUE

SCALE = 1.0
TEST2 = XSMEQ.( 50,INT,1,LINMATCONVRTSCALEVECTOR)
PRINT RESULTS TEST2
THROUGH ENDQ1' FOR Qi = ll*Ql.G.L
LIN1(Q1*1) = X(M-L+Q1)

ENDQ1 LIN2(1,Q1) = X(M-L+Q1)
THROUGH ENDRTUFOR RR = l1lsRR.G*L
THROUGH ENDRTU, FOR TT = ll#TT.G.L

CONVRT(RRTT) = 0*
THROUGH ENDRTU, FOR UU = ltl*UU.G.1

ENDRTU CONVRT(RR9TT) = CONVRT(RRTT)+LIN1(RR.UU)*LIN2(UUTT)
COUNTR = 0
THROUGH ENDSTU, FOR STU = 11,STU.G.L
THROUGH ENDSTU, FOR ROO = 11ROO.G.L
WHENEVER STU.L*ROO
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COUNTR = COUNTR +1
VECTOR(COUNTR) = 2*CONVRT(STUROO)
OR WHENEVER STU.E.ROO
COUNTR = COUNTR + 1
VECTOR(COUNTR) = CONVRT(STUROO)
END OF CONDITIONAL

ENDSTU CONTINUE
THROUGH ENDEND, FOR END = 1,1,END.G.INT
PRINT RESULTS VECTOR(END),LINMAT(END,1)

ENDEND AVPRD2 = AVPRD2 + VECTOR(END)*LINMAT(END,1)
PRINT RESULTS AVPRD2
ANSWER = ANSWER + AVPRD2
PRINT RESULTS ANSWER
TRANSFER TO START
END OF PROGRAM

* MAD
EXTERNAL FUNCTION (ABC)
NORMAL MODE IS INTEGER
FLOATING POINT X, Y
PROGRAM COMMON X, M
DIMENSION X(100)
ENTRY TO ARRAY.
D A
E B
F =C
WHENEVER D - E .L. 0
H = E
OTHERWISE
H = D
END OF CONDITIONAL
WHENEVER H - F *L. 0, H = F
J = M - H + 1
THROUGH ENDo FOR K = 11'K.G.J

END Y = Y + X(K)*X(K+D-1)*X(K+E-1)*X(K+F-1)
Y = Y/(J*J*J)
FUNCTION RETURN Y
END OF FUNCTION

COUNT 5
REM PROGRAM TO DISABLE FOREGROUND COMMUNICATION
ENTRY WRFLX
ENTRY WRFLXA

WRFLXA TSX $EXIT,4
WRFLX EOU WRFLXA

END
99

TOTAL 99,
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R EXTRAP - NONLINEAR MULTIPLE CORRELATION PROGRAM
NORMAL MODE IS
DIMENSION M(ll
DIMENSION MATR
FLOATING POINT
VECTOR VALUES
VECTOR VALUES
VECTOR VALUES

INTEGER
)oARRAY(6600ARYDIM),X(150),Z(50)
IX(2500*MATDIM), COLMAT(2500MATDIM)
ARRAY#MATRIX9COLMAT9SCALEXtZ

ARYDIM = 3s1.4911
MATDIM = 2o1,50
INPUT = $A2,5XI3o5X,12,3X,11(I192X)

VECTOR VALUES OUTPUT = $7H-ALPHA(,I2lH,,Il,4H)
PROGRAM COMMON ARRAY
DATANO = 0
M(O) = 1
GO = $NO$
READ FORMAT INPUT, GO
WHENEVER GO.NE.$GO$
PRINT COMMENT $1 THAT
EXECUTE EXIT.
END OF CONDITIONAL
DATANO = DATANO + 1
PRINT COMMENT $1 NONL
PRINT RESULTS DATANO
THROUGH ENDA9 FOR A =

READ FORMAT $12F6*$#X
THROUGH ENDB9 FOR B =
THROUGH ENDB9 FOR D =
THROUGH ENDBo FOR C =

= ,E13.6*$

Pt No M(1)...M(11)

IS ALL.$

INEAR MULTIPLE CORRELATION

10
A)
1
1,
2o

ARRAY(BC#D) = ARRAY(B#
MAT = 0

1 oA.G.P
9ARRAY(Atll
1 B.G*P
1 ,D.G.N
1 9C.G.M( D)

PROGRAM$

)* ARRAY(A.1.11)

C-1,D)*ARRAY(Bt1tD)

START

ENDA

ENDB

ENDE

ENDL

ENDJ
ENDI

COLMAT(1#1) = COLMAT(1,
TRANSFER TO ENDI
END OF CONDITIONAL
THROUGH ENDJo FOR J = 1
Z(I) = Z(I) + ARRAY(JC
COLMAT(I.1) = COLMAT(It
CONTINUE
CNT1 = 0
CNT2 = 0
THROUGH ENDFo FOR F = 1

CNT2 = CNT2 + 1
WHENEVER CNT2.GaM(CNT1)

AT

1) + X(L)

.1 .J.G#P
NT69CNT5
1) + X(J )*ARRAY(J ,CNT6,CNT5)

1 ,F.G.MAT

THROUGH ENDEt FOR E = Ot1.E.G*N
MAT = MAT + M(E)
CNT5 = 0
CNT6 = 0
THROUGH ENDI FOR I = 1#19I.G.M
CNT6 = CNT6 + 1
WHENEVER CNT6.G.M(CNT5)
CNT6 = 1
CNT5 = CNT5 + 1
END OF CONDITIONAL
Z(I) = 0.
COLMAT(Il) 0.
WHENEVER CNT5.E.O
Z(I) = P
THROUGH ENDL* FOR L = llL.G.P

*$
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CNT2 = 1
CNT1 = CNT1 + 1
END OF CONDITIONAL
CNT3 = 0
CNT4 = 0
THROUGH ENDFt FOR G = 1*19G.G.MAT
CNT4 = CNT4 + 1
WHENEVER CNT4.G.M(CNT3)
CNT4 = 1
CNT3 = CNT3 + 1
END OF CONDITIONAL
WHENEVER F.E.1
MATRIX(FtG) = Z(G)
TRANSFER TO ENDF
OR WHENEVER G.E.1
MATRIX(FG) = Z(F)
TRANSFER TO ENDF
END OF CONDITIONAL
THROUGH ENDH, FOR H = 1,1H.G.P

ENDH MATRIX(FG) = MATRIX(FG) +
1 ARRAY(HCNT4,CNT3)*ARRAY(HCNT2,CNT1)

ENDF CONTINUE
SCALE = 1.0
T = XSMEQ.(50,MAT,1,MATRIXCOLMATSCALEZ)
WHENEVER T.NE.1
PRINT COMMENT $2 YOU LOSE.$
WHENEVER T.E.2
PRINT COMMENT $ MULTIPLICATION OVERFLOW IN INVERSION.$
OR WHENEVER T.E.3
PRINT COMMENT $ THE MATRIX IS SINGULAR.$
END OF CONDITIONAL
TRANSFER TO START
END OF CONDITIONAL
CNT7 = 0
CNT8 = 0
THROUGH ENDKt FOR K = 1,1,K.G.MAT

CNT8 = CNT8 + 1
WHENEVER CNT8.GoM(CNT7)
CNT8 = 1
CNT7 = CNT7 + 1
END OF CONDITIONAL

ENDK PRINT FORMAT OUTPUT, CNT7, CNT8, MATRIX(K,1)
TRANSFER TO START
END OF PROGRAM

COUNT 5
REM PROGRAM TO DISABLE FOREGROUND COMMUNICATION
ENTRY WRFLX
ENTRY WRFLXA

WRFLXA TSX $EXIT,4
WRFLX EOU WRFLXA

END
106

TOTAL 106
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R SIGTST - SIGNIFICANCE TESTING PROGRAM
INTEGER ABNDATANOTESTXSMEQ.,GO
DIMENSION X(1000) ,Y(1000) ,Z(1000)
DIMENSION MATRIX(9,DIM) ,COLMAT(9,DIM)
VECTOR VALUES DIM=2.1,3
VECTOR VALUES INPUT = $3(F5,5X)*$
DATANO=0

START DATANOwDATANO+1
GO 1 1
PRINT COMMENT $1MULTIPLE CORRELATION PROGRAM$
PRINT RESULTS DATANO
READ FORMAT $Il1I4*$,GON
WHENEVER GO.NE,0v EXECUTE EXIT.
THROUGH ENDA, FOR A=1,1#A.G.N
READ FORMAT INPUT, X(A), Y(A), Z(A)

ENDA PRINT RESULTS X(A)t Y(A), Z(A)
SUM1=0.
SUM2=0.
SUM3=0.
SUM11=0.
SUM12=0.
SUM13=0.
SUM22=0.
SUM23=0.
SUM33=0.
A123 = 0.
B123 = 0.
B132 = 0.
THROUGH ENDB9 FOR B=1,1,B.G.N
SUM1=SUM1+X (B)
SUM2=SUM2+Y(B)
SUM3=SUM3+Z (B)
SUM11=SUM11+X(B)*X( B)
SUM12=SUM12+X( B)*Y( B)
SUM13=SUM13+X(B)*Z(B)
SUM22=SUM22+Y( B)*Y( B)
SUM23=SUM23+Y(B)*Z(B)

ENDB SUM33=SUM33+Z(B)*Z(B)
PRINT RESULTS SUM1,SUM2,SUM3
PRINT RESULTS SUM11,SUM12,SUM13
PRINT RESULTS SUM22,SUM23,SUM33
MATRIX( 1,1)=N
MATRIX( 1 2)=SUM2
MATRIX(2,1)=SUM2
MATRIX(2 '2)=SUM22
COLMAT( 1,1)=SUM1
COLMAT( 2.1) =SUM12
SCALE=1.0
TEST=XSMEQ.(3,2,1,MATRIX, COLMAT, SCALE, X)
PRINT RESULTS TEST
WHENEVER TEST.NE.l
PRINT COMMENT $1 YOU LOSE$
TRANSFER TO START
END OF CONDITIONAL
A12=MATRIX(1,1)
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B12=MATRIX(291)
MATRIX( 11)=N
MATRIX(1s2)=SUM3
MATRIX(2,1)=SUM3
MATRIX(292)=SUM33
COLMAT(lt1)=SUM1
COLMAT(2 1)=SUM13
SCALE=1.0
TEST=XSMEQ.(392ol MATRIX# COLMAT, SCALE, X)

PRINT RESULTS TEST
WHENEVER TEST.NE.1
PRINT COMMENT $1 YOU LOSE$
TRANSFER TO START
END OF CONDITIONAL
A13=MATRIX(191)
B13=MATRIX(2,1)
MATRIX(1.1)=N
MATRIX(l2)=SUM2
MATRIX(1,3)=SUM3
MATRIX(2l)=SUM2
MATRIX(292)=SUM22
MATRIX(2,3)=SUM23
MATRIX(3,1)=SUM3
MATRIX(3.2)=SUM23
MATRIX(3,3)=SUM33
COLMAT(1,1)=SUM1
COLMAT(2o1)=SUM12
COLMAT(3,1)=SUM13
SCALE=1.0
TEST=XSMEQ.(3,3,1,MATRIXtCOLMATSCALEX)
PRINT RESULTS TEST
WHENEVER TEST.NE.1
PRINT COMMENT $1 YOU LOSE$
TRANSFER TO GOOF
END OF CONDITIONAL
A123=MATRIX(1,1)
B123=MATRIX(2,1)
B132=MATRIX(3,1)

GOOF R21 = (A12*SUM1+B12*SUM12-SUM1*SUMl/N)/
1 (SUM11-SUM1*SUM1/N)

R31 = (A13*SUM1+B13*SUM13-SUM1*SUM1/N)/
1 (SUM11-SUM1*SUMl/N)

R321 = (Al23*SUM1+B123*SUM12+8132*SUM13-SUM1*SUMl/N)/
1 (SUM11-SUM1*SUM1/N)
R12 = SQRT.(R21)
R13 = SQRT.(R31)
R123 = SQRT.(R321)
S12=SQRT.((SUM11-A12*SUM1-B12*SUM12)/N)
S13=SQRT.((SUM11-A13*SUM1-B13*SUM13)/N)
S123=SQRT.((SUM11-Al23*SUM1-8123*SUM12-B132*SUM13)/N)
F12 = R21/((1-R21)/(N-2))
F13 = R31/((1-R31)/(N-2))
F123 = (R321/2)/((1-R321)/(N-3))
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2

PRINT COMMENT $4ANSWER$
PRINT RESULTS R129R13#A12 A13,B12.B13
PRINT RESULTS R1239 A123, B123, B132
PRINT RESULTS 512,S13,S123
PRINT RESULTS F12#F13,F123
TRANSFER TO START
END OF PROGRAM

*EOF
INPUTM4008,3519,PREDCTsMAD,1

NORMAL MODE IS INTEGER
FLOATING POINT X9X1,X2,YZLINMATCONVRTLIN1,LIN2,AVPRD1
FLOATING POINT ERROR9SUM.W
DIMENSION X( 700), X1(600), X2(600),Y( 60),Z(600)
DIMENSION LIN1(100,L2DIM), LIN2(100,LlDIM)
DIMENSION LINMAT(10000,LlDIM),CONVRT(10000,LlDIM)
VECTOR VALUES LlDIM = 291,100
VECTOR VALUES L2DIM = 29191
1 = 1
M = 100
SUM = 0.
ERROR = 0.
READ DATA
THROUGH ENDC9 FOR C = 1.1.C.G*P-1

ENDC X(I) = X(I+1)/X(I) - 1.0
THROUGH END* FOR B = 01*B.G.P-N-1
THROUGH ENDA. FOR A = 091.A.G.600
X1(A) = 0.
X2(A) = 0.

FNDA Z(A) = 0.
THROUGH ENDH. FOR H = 1,1.H.G.N

ENDH X2(H) = X(H+B)
THROUGH ENDD. FOR D = 091,D.G.M+I-1
THROUGH ENDE. FOR E = 01.E.G.600

ENDE X1(E) = 0.
THROUGH ENDF. FOR F = 1,1.F.G.N-D

ENDF X1(F) = X2(F) * X2(F+D)
Z(D) 0.
THROUGH ENDGs FOR G = 1,1,G.G.N-D

ENDG Z(D) = Z(D) + X1(G)
ENDD Z(D) = Z(D)/(N-D)

PRINT COMMENT $4 AUTOCORRELATESS
PRINT RESULTS Z(O)...Z(M+I-1)
THROUGH ENDT, FOR T = 0,1,T.G.600

ENDT X1(T) = 0.
THROUGH ENDCC, FOR CC = 11.CC.G.M
LIN1(CC,1) 1.0

ENDCC LIN2(1.CC) = Z(CC - 1)
THROUGH ENDDEF, FOR DD = 1,1.DD.G.M
THROUGH ENDDEF9 FOR EE 1g1.EE.G.M
CONVRT(DDEE) = 0.
THROUGH ENDDEF. FOR FF = 191.FF6G.1

ENDDEF CONVRT(DDEE)=CONVRT(DDEE)+LIN1(DDFF)*LIN2(FFEE)
THROUGH ENDGH. FOR GG = 1.19GG.G.M
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THROUGH ENDGH9 FOR HH = 191'HH.G.M
WHENEVER GG.LE6HH
LINMAT(GGHH) = CONVRT(GGHH - GG +1)
OTHERWISE
LINMAT(GGHH) = CONVRT(GGqGG - HH +1)
END OF CONDITIONAL
CONTINUE
THROUGH ENDII, FOR II = 191'II.G.M
CONVRT(II,1) = Z(II+I-1)
SCALE = 1.0
T = XSMEQ.(100,M,1,LINMATCONVRTSCALEX1)
WHENEVER T.NE.1
PRINT COMMENT $2 YOU LOSE.$
WHENEVER T.E.2
PRINT COMMENT $ MULTIPLICATION OVERFLOW IN INVERSION.$
OR WHENEVER TbE.3
PRINT COMMENT s THE MATRIX IS SINGULAR.$
END OF CONDITIONAL
EXECUTE EXIT.
END OF CONDITIONAL
AVPRD1 = 0.
THROUGH ENDJJt FOR JJ = 11'JJ.G.M
X(JJ) = LINMAT(M+1-JJ,1) * Z(N-M+JJ)
PRINT RESULTS LINMAT(M+1-JJ,1),Z(N-M+JJ),X(JJ)
AVPRD1 = AVPRD1 + X(JJ)
Y(B) = AVPRD1*X(N+B) + X(N+B)
W = X(N+B+1)*X(N+B) + X(N+B)
SUM = SUM + W*W
ERROR = ERROR + (X(N+B+1)-Y(B))*(X(N+B+1)-Y(B))
ERROR = ERROR/SUM
PRINT RESULTS ERRORY(0)...Y(P-N-1)
EXECUTE EXIT.
END OF PROGRAM

194

TOTAL 194

ENDGH

ENDI I

ENDJJ

END
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R PREDCT - PREDICTION PROGRAM
NORMAL MODE IS INTEGER
FLOATING POINT XX1,X2,YZLINMATCONVRTLIN1,LIN2,AVPRD1
FLOATING POINT ERRORSUMW
DIMENSION X( 700), X1(600)' X2(600),Y( 60),Z(600)
DIMENSION LIN1(100,L2DIM)4 LIN2(100.LlDIM)
DIMENSION LINMAT(10000,LlDIM),CONVRT(10000,LlDIM)
VECTOR VALUES LlDIM = 2,1,100
VECTOR VALUES L2DIM = 2,1,1
I = 1
M = 100
SUM = 0.
ERROR = 0.
READ DATA
THROUGH ENDCo
X(I) = X(I+1)
THROUGH END#
THROUGH ENDA9
X1(A) = 0.
X2(A) = 0.
Z(A) = 0.
THROUGH ENDH#

FOR C = 1.1.C.G.P-1
/X(I) 1.0
FOR B = 0.1'B.G.P-N-1
FOR A = 0,1,A.G.600

FOR H = 1.1,H.G.N
X2(H) = X(H+B)
THROUGH ENDDo FOR D = 0,1,D.G.M+I-1

THROUGH ENDE9 FOR E = 0,1,E.G.600
X1(E) = 0.
THROUGH ENDF FOR F = 11.F.G.N-D
X1(F) = X2(F) * X2(F+D)
Z(D) = 0.
THROUGH ENDGo FOR G = 1.1.G.G*N-D

Z(D) Z(D) + X1(G)
Z(D) = Z(D)/(N-D)
PRINT COMMENT $4 AUTOCORRELATES$
PRINT RESULTS Z(O)...Z(M+I-1)
THROUGH ENDT9 FOR T = 0,1,T.G.600
X1(T) = 0.
THROUGH ENDCC9 FOR CC = 1919CC.G.M

ENDC

ENDA

ENDH

ENDE

ENDF

ENDG
ENDD

ENDT

ENDCC

ENDDEF

ENDGH

ENDI I

1,1 DDaG.M
1,1, EE.G.M

1,1 FF.G. 1
EE)+LIN1(DDFF)*LIN2(FFEE)
1,1 GG.G.M

THROUGH ENDGH* FOR HH = 1,1,HH.G.M

WHENEVER GG.LE.HH
LINMAT(GGHH) = CONVRT(GG*HH - GG +1)
OTHERWISE
LINMAT(GGHH) = CONVRT(GG.GG - HH +1)
END OF CONDITIONAL
CONTINUE
THROUGH ENDII* FOR II = 1,1'II.G.M
CONVRT(IIs1) = Z(II+I-1)
SCALE = 1.0

LIN1(CC,1) = 1.0
LIN2(1,CC) = Z(CC - 1)
THROUGH ENDDEF# FOR DD =
THROUGH ENDDEF, FOR EE =
CONVRT(DDEE) = 0.
THROUGH ENDDEF, FOR FF =
CONVRT(DDEE)=CONVRT(DD.
THROUGH ENDGH, FOR GG =
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I

T = XSMEQ.(100,M,1,LINMATCONVRTSCALEX1)
WHENEVER T.NEsl
PRINT COMMENT $2 YOU LOSE.$
WHENEVER T.E.2
PRINT COMMENT $ MULTIPLICATION OVERFLOW IN INVERSION.$
OR WHENEVER T.E.3
PRINT COMMENT $ THE MATRIX IS SINGULAR.$
END OF CONDITIONAL
EXECUTE EXIT.
END OF CONDITIONAL
AVPRD1 = 0.
THROUGH ENDJJ% FOR JJ = 1#1,JJ.G.M
X(JJ) = LINMAT(M+1-JJ,1) * Z(N-M+JJ)
PRINT RESULTS LINMAT(M+1-JJ,1),Z(N-M+JJ),X(JJ)
AVPRD1 = AVPRD1 + X(JJ)
Y(B) = AVPRD1*X(N+B) + X(N+B)
W = X(N+B+1)*X(N+B) + X(N+B)
SUM = SUM + W*W
ERROR = ERROR + (X(N+B+1)-Y(B))*(X(N+B+1)-Y(B))
ERROR = ERROR/SUM
PRINT RESULTS ERRORY(0)...Y(P-N-1)
EXECUTE EXIT.
END OF PROGRAM

COUNT 5
REM PROGRAM TO DISABLE FOREGROUND COMMUNICATION
ENTRY WRFLX
ENTRY WRFLXA

WRFLXA TSX $EXIT,4
WRFLX EQU WRFLXA

END

TOTAL 85

ENDJJ

END

85
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