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ABSTRACT

DYNAMICS OF AN OIL CONTAINMENT

BOOM IN A WAVE FIELD

by

Samuel H. Drake

Submitted to the Department of Mechanical Engineering on

June 4, 1970 in partial fulfillment of the requirement for

the degree of Master of Science.

A theoretical model was developed for the magnitude and phase

of the surge or horizontal displacement of an elastically con-

strained flat plate boom model. An experiment was set up and

data was taken in an attempt to verify the theoretical model. The

resulting data supported the theoretical model within the range

of the experiment.
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INTRODUCTION

In recent years there has been a large increase in the amount

of oil both transported across the oceans in tanks and produced

on offshore platforms. Along with this increase has come the seem-

igly inevitable increase in the amount of oil spilled on the oceans

and bays with the attendant destruction of wildlife and the contam-

ination of beaches. Some of these oil spills such as those caused

by the practice of pumping contaminated ballast water overboard, can

be easily prevented. While greater care might prevent some of the

accidents, particularly those occuring during loading and unloading,

it is highly probable that oil spills will continue to be a serious

pollution problem.

In the past, three approaches have been taken to control oil

slicks; chemical dispersants or emulsifying agents, burning, and

mechanical containment. While the detergents and emulsifying agents

may cause a disappearance of the physical oil slick, the oil is not

removed from the oceans but rather it is only dispersed and mixed

with the water or allowed to sink to the bottom. The oil must still

be removed by natural decomposition. Also some of the chemicals

that have been used have also proved to be harmful to the natural

environment. Burning or partially burning off the oil slick is some-

times possible particularly if the slick is composed of the more

volatile compounds and if the slick is not too thin. The primary

problem with burning off the slick is that the heat loss thru the

slick to the water is so great that the temperatures needed to sus-

tain the combustion cannot be maintained. Recently materials have
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been introduced that are designed to act as a wick for the oil and

thus draw some of the oil up away from the cold water by capillary

action permitting the necessary temperatures for combustion to be

sustained. Even in this case it is unlikely that all of the

heavier or less volatile materials will be burned. Also, there is

a large amount of oily smoke produced which would be objectionable

near populated coastal areas.

The best alternative might be mechanical containment and sub-

sequent collection if it were possible, as not only would the oil

be totally removed from the ocean but the economic value of oil

could also be recovered. In the past, a number of different de-

signs of both solid (although flexible) and pneumatic or inflatable

oil containment booms have been tried ranging from a simple line

of logs chained together to a structure made by lashing a long

string of barges together. The use of air bubble curtains has

also been considered although the power needed appears to be too

great for any large scale use. Some of the mechanical booms have

worked quite well inside harbors or other protected waters, but thus

far the booms have not been satisfactory when higher winds, waves,

or currents are present.

The purpose of this thesis was to study the dynamics or motion

of an oil containment boom model under the influence of waves. A

theoretical model is presented which predicts the magnitude of the

ratio of the surge or horizontal displacement to thewave height and

the phase lag between the surge displacement and the uave height for
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an elastically constrained flat plate boom model aligned parallel

to the incident waves. This theoretical model considers the

elastic constraining force, the inertial force, the exciting force

due to the incident wave and both a drag and added inertia force

due to the reflected wave. As the exciting force due to the in-

cident wave and the forces due to the reflected wave are expressed

in terms of a damping coefficient and an added mass coefficient

which are a functions of the nondimensional term Ka where K is the

wave number and a is the boom draft, the nondimensional ratio of

the surge displacement to the waveheight is presented as a function

of Ka.

Experimental data on this motionwere taken with a suitably

scaled flat plate boom model suspended in a wave tank varying the

parameter Ka over an order of magnitude range in the area of in-

terest and varying the waveheight to the point of breaking waves.

This data was then used in an attempt to experimentally justify

the theoretical model. This theoretical model could then be used

to predict the motion of a boom with a more complicated shape if

the damping and added inertia coefficients can be experimentally

determined as a function of Ka. This coupled with a knowledge of

the boom behavior under conditions of wind and current should per-

mit the designing of oil containment barriers to operate satis-

factorily under open sea conditions.

I*
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THEORY

As the theoretical values for the damping and inertial coeffi-

cients for a swaying or surging (the horizontal motion of a boom

being referred to as surge and the vertical motion being referred

to as heave) flat plate are presently available, the model was

limited to a flat plate. The forces on the boom considered by the

theory were limited to the constraining forces, the inertial force,

the force due to the incident wave and the forces due to the re-

flected wave. Only one degree of freedom was considered, that of

surge. However, a similar theory would hold for heave and roll.

The boom or flat plate was constrained by an elastic member

at each end such that the forces were purely tensional at zero

displacement (see Figure 1). If x is the horizontal or surge

displacement, the constraining force in the x direction is

-x L(x) where T is the tension force applied by the elastic

members and L is the length of the elastic members. If L >> x,

then the variation in length and the change in T are both small

and both L and T may be considered as constants or

F =2Tx
c L

In order to determine the appropriate tension force, a nondi-

mensional force coefficient, J, was defined as the ratio of the con-

straining force per unit length of boom to the exciting force of

the incident wave. As will be shown the exciting force per unit

length of boom is proportional to pgAa where p is the water density,

I
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g is the gravitational acceleration, A is the waveheight and a

is the boom draft. Therefore the nondimensional term, J, for the

two dimensional flat plate model parallel to the incident waves is

= 2Tx (2)
Lk pgAa(2

where Z is the length of the boom.

In the full scale case, the boom cannot be considered as a

rigid body and the constraining force per unit length must be

found in terms of a differential displacement. It is assumed

that the displacement from the relaxed position is proportional

to the waveheight and is sinusoidal with the same wavelength as the

incident waves or

A sin ( 2rx (3)

where is the displacement from the relaxed position and X is the

wavelength of the incident wave. Considering a small element Ax

of boom, the components of the tension force that are acting to

constrain boom to its relaxed position are |1 and |2 where the
a1 ax 2

subscripts 1 and 2 refer to the left and right end of the boom

element (see Figure 2). Therefore the constraining force per unit

length on this element of boom is

(1 - KI)

F =T' 2 1
c Ax
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where the use of the prime mark indicates the full scale conditions.

At the limitAx+ 0

2
F = T' 3
c 2

(5)

or using Eq. 3

F T'A' (2)2
c ,2

(6)

Remembering that the displacement was proportional to the wave-

height:

F ' ~T'x'(27) 
2

c ,2
(7)

Therefore the ratio of the constraining force to the exciting

force for the full scale case is

, T'x' (2r) 2

X, 2 pgA'a'
(8)

Setting J and J' equal, the value T/L for the model can be found

in terms of T' and '

2Tx T'x'(27) 
2

Lk pgAa X 2pgA'a'
(9)
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T T'(2r) 2a (10)
L 2X 2 a'

where it was assumed that the ratio x'/A' was equal to x/A.

While the force coefficient J is nondimensional, it is a

function of the nondimensional ratio x/A, the horizontal displace-

ment divided by the waveheight. As will be shown, the term x/A

is in turn a function of the nondimensional term Ka. A somewhat

more convenient relationship that expresses the tension force in

nondimensional terms and avoids this problem is

T = - (11)
x/A

or making use of Eq. 2

2T
T= (12)

LUpga

The inertial force is simply

2
F =- md x (13)

dt

where m is the mass of the boom.

If the boom is assumed to surge back and forth with a sinusoidal

motion (if the motion is cyclic but not sinusoidal it can be broken

down into Fourier components), the motion can be represented as

iwt 1
x = X cos wt or x = Xe . For this motion Ursell gives the gen-

erated wave elevation as
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Tl(x,t) = X ra I 11 (Ka)

(14)

+ L1(Ka)I Re [eikx + iwt -itanl (G/-H)

where

= 1/7 [ 1 (Ka) + K (Ka)] 1/2

= - Kab I(Ka) + L (Ka)

G = 2 aI (Ka)a 2 /Ka

H = K 1 (Ka)G/nI1 (Ka) = nra 2 K (Ka)/Ka

and Il, K1,

number

2L 1are functions defined by Watson .K is the wave

K 1/X = w /g (19)

and a is the depth or draft of the flat plate in the undisturbed

fluid. Kotik3 defines the dimensionless damping and added inertia

coefficients PD(Ka) and PM(Ka) respectively where

D__ M
PD(Ka) = 2 and PM(Ka) - 2

Ma WX Ma WXa a

(20)

(16)

(17)

(18)

(15)

F F



- 9 -

F and F are the amplitudes of the force per unit length exertedD M

by the plate on the fluid in phase with the velocity and the accel-

eration of the plate and Ma is the mass of a semicircle of fluid

of radius a

Ma = pfra /2 (21)

The coefficients are given as:

27rx
2

PD(Ka) = 2 111 (Ka) + L1 (Ka)I (22)
(Ka)

P (z) dz

M M Tf z- Ka
0

Values for PDand PM along with values for -tan (G/-H) are given

by Kotik as a function of Ka in tabular form (see Table 1).

Therefore, if the boom motion is given by x = X e it, the

damping force exerted on the boom is

F D = PD(Ka)MaW X ei t --P (Ka)Maw Xeist + i (/2

and the added inertia force on the boom is

FM =P M(Ka)Maw X eiot = -P (Ka)Maw2 X eist + i ( 25)

Knowing the velocity potential for waves caused by a forced

oscillation of the plate in calm water, it is possible to determine

the exciting force on the plate due to incident waves by using
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Haskind's4 relations. If the velocity of the plate during the

forced oscillation is represented as V eiot, the asymptotic radiated

potential for x - o is given as

<p = V Y± eKz - iKx + iwt (26)

where the function y is only a function of the wave number K and

the boom geometry and the superscript ± refers to the case at

x +± 0. For the case of a symmetric body y = - y . From Eq. 26

it follows that the far field surface elevation is

n(x,t) = V y -ikx + it (27)
it1

This can also be written as

n(x,t) = V1y I T eikx + t + $ (28)

where IP is the phase angle due to Y~. Integrating the expression

for the velocity of the plate to obtain the displacement,

x = e (29)

it is seen that 4) is the phase angle by which the surface eleva-

tion at x + ± 0 leads the body displacement.

If the velocity potential of an incident wave is considered

to be



- 11 -

. E kz - ikx + iwt
0 W

(30)

where A is the wave amplitude, the exciting force per unit length

for a two dimensional body is given by Newman5 as

F = pg A y- e-iWt

Using the

to y the

(31)

same notation as before where $ is the phase shift due

exciting force can be written as

F = pgA Iy I eiWt + i*
x

(32)

From the velocity potential of the incident wave the surface eleva-

tion is seen to be

n (x,t) A -ikx + iwt
0

M - iA e-ikx + iwt

0 (x,t) = A e-ikx + iwt - i7/2 (34)

Comparing this result with the equation for the exciting force, it

can be seen that the phase angle between the exciting force and the

surface elevation is $~ + 7/2. As y = -Y , $ = $, - 7. If e is

defined as the phase angle between exciting force and the surface

elevation,

or

(33)
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6= $~ + -n/2 = t+ -n/2 (35)

A damping coefficient, which is the force in phase with the

velocity of the oscillating plate divided by the velocity, can be

determined as a function of y by considering the energy carried

in the radiated waves. For a symmetrical, two dimensional body,

this is given by Newman as

B = p(y-)2  (36)

Therefore the damping force per unit length is

FD - B V e iWt=PWIY 2 Veit (37)

From Eq. 24 this damping force is seen to be

F = IP (Ka) MW it (24)
D D a

or as V e = iWX et

B = PD(Ka)Ma w (38)

or using Eq. 36

plyI 2 = PD(Ka)Ma w (39)

[PD(Ka)Ma 

(1/2

p(40)
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2
as M = p2Ta

a 2

I~I = [P (Ka) 'ra 1/2 (41)D 2

As the surface elevation for the radiated waves was given in Eq.

14 as

fl(xt) = X rarI1(Ka) + L 1 (Ka)IRe[eikx = iwt - i tan-1 (G/-H)] (14)

the phase angle between the surface elevations at x - co and the body

motion is - tan (G/-H). This is exactly the same angle as $+, the

phase angle shift due to y+

Therefore the exciting force per unit length due to an incident

wave with a surface elevation

n(x,t) = A e-ikx + iwt (42)

is

2
=p A a PD(Ka) iwt + ie

F = pgA 2 e (43)
x 2

where e is the phase angle of the force with respect to the sur-

face elevation of the incident wave

+ - = - tan~1 (G/-1 ) - (44)a I - -tn G-H 2(4
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Assuming that the forces due to the incident waves and the

radiated waves are linearily additive and that the incident wave

is of the form A e t and the boom displacement is X eiWt where

A is the wave height and X is a complex expression containing both

amplitude and phase information, the equation of motion can be

written as

2
F = F + FD + FM+ FC 2 (45)

x D 14 C dt2

or substituting the expressions derived for FX, FC, FM, FC and F :

a st+ 02 iwt + inr/2
Pg A at PD(Ka) et+i - P (Ka)M w X e

2 D D a

(46)

2 iwt + ir 2T eit 2 iWt + iT
-P14(Ka)Maj X e -- 7X e -MLO X eM a L

where the forces that were.previously expressed as forces per unit

length are multiplied by the length of the boom, £. For the forces

due to the motion of the boom, F and FM, this is accomplished by

considering the apparent mass term Ma to be

M 2 I a2 (47)
a 2

Dividing all the terms of the equation of motion by e , com-

bining terms and simplifying
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7 K+ X[(M + )2TpgAa -i P D(Ka) e [M+P m(Ka)M a )W T
(48)

- i P D(Ka)M aW2] = 0

or

A

-pg at 2P (Ka) e
2 D

(M + P m(Ka)M a ) Ti D(Ka) Ma
(49)

If this is written in the form

X Se10

A Q + iR

where S = -pg at j PD(Ka)

22 2T

Q = [(M + P (Ka)Ma)W -- ]
m a L

R = - PD(Ka)Ma 2

- can be expressed as
A

X
A

Q2 + R2)1/2 i tan (-R/Q) ie

2 2Q + R

or

(50)

(51)

(52)

(53)

(54)
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X _Se10 + i tan (-R/Q)

A (Q2 + R )1/2

As S, Q, R and 0 are only a function of Ka, the magnitude and phase

of X are therefore a function of the nondimensional term Ka which

is the desired result. With this information it is possible to

predict the motion of a flat plate or any other shape if the func-

tions PD(Ka) and PM(Ka) are known or experimentally determined.
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EXPERIMENT

The experimental part of this thesis consisted of taking data

on the motion of an elastically constrained flat plate boom model

suspended in a wave tank. The basic design constraints were that

the apparatus be designed to make use of the precision wave tank

of the Naval Architecture and Marine Engineering Department and

that the data would be first taken on film with 16 mm motion pic-

ture equipment and then transferred onto computer cards.

The precision wave tank is approximately three meters long

with a cross sectional width and height of 30 cm and 20 cm re-

spectively. The mean operating water depth used during the experi-

mental runs was 15 cm. The waves are generated with a sinusoidal-

ly driven paddle that pivots from the bottom of the tank. Both

the frequency and the amplitude of the oscillation are variable,

the practical amplitude being limited to the case of breaking

waves and the frequency range being limited by both the finite

depth effects and the reflection coefficient of the wave absorbing

beach for the long wave lengths and the rate at which the paddle

could be driven for short wavelengths. The scaling ratio between

the experimental model and the full scale conditions is largely

determined by the acceptable range of wave lengths that can be

generated in the wave tank.

This range was from approximately 10 cm to 100 cm with the

longer wavelengths well inside the area where the wavelength as a

function of the frequency must be corrected for the effect of
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finite depth. The relationship of frequency to wavelength for

finite depth is

V2 = --- tanh (27Th (56)

or

2 g~r 2Th
2 = tanh ( ) (57)

where V is expressed in cycles per second and w in radians per

second. At a wavelength of 100 cm and a depth of 15 cm the finite

27Th
depth correction term tan H(- --h) is approximately equal to 0.73

and does not closely approach one until a wavelength of 30 cm

(tan H( ) = 0.995).

If the wavelength region of interest for full scale waves is

approximately 3 to 30 meters and the full scale boom height or

draft is approximately one meter then, keeping the nondimensional

ratio of the wavelength to boom height constant, the height of

the boom model should be approximately 3 cm. Assuming an effective

specific gravity of the boom of 0.8, then 2.4 cm of the boom height

will ride below the calm water level or a = 2.4 cm and the range of

Ka for the experiment-is approximately 0.15 to 1.5.

The constraining force for the boom model is found by using

the nondimensional ratio of the constraining force to the exciting

force, J, as expressed in equations 2 and 8

- m
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2Tx (2)
L pgAa

T'x' (27) 2  (8)
,2 pg'a'

where, as before, the prime marks are used to indicate the full

scale conditions. Equating J and J' yields the relationship

given in equation (10)

2
T = IT (27r) a (10)
L 2X,2 a'

If typical full scale conditions are assumed to be a tension force

of 5000 lb or approximately 2.5 x 109 dynes (this condition is found

by considering a full scale boom to be anchored at the ends and in

a current), a wavelength of 30 meters and a ratio of a/a' as 1/30,

T/L should be approximately 5 x 103 dynes. The length of the

elastic constraining members is somewhat arbitrary, the main limita-

tion being that the length be much greater than boom displacement

so that the constraining force remains linear with the displacement.

With the expected boom displacement not to exceed 5 cm., the length

L was set at 50 cm. The tension force for the model was therefore

5
set at 2.50 x 10 dynes. This tension force was divided by two and

effectively applied at one centimeter above and below the centerline

of the boom in order to provide a roll constraint or restoring moment.

This two centimeter separation was somewhat arbitrary although

-

L
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representative of the full scale booms which have a cable at top and

bottom. The separation distance could have been modified had it been

necessary to change the roll resonance frequency.

It was originally considered desirable to correctly model

the moment of inertia of the boom. The nondimensional parameter

that governs this is the ratio of the moment of inertia per unit

length of the boom about its roll axis to the moment of inertia

per unit length of a semicircular cylinder of fluid of radius

around its axis.

I 4 (58)

npa /4

where (D is the nondimensional parameter and I is the moment of

inertia per unit length to the boom. If the full scale boom is

considered to be rectangular in cross section and of uniform den-

sity then the moment of inertia per unit length is

1' M'h'2  (59)
4

where M' is the mass per unit length and h' is the height of the

boom. Therefore

M' 2
e, . 'h'2  (60)

ipa'4

-4

Setting D equal to '
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I M'h'2  (61)
4 ,4

TPa /4 7rpa

I= M'h'2 a  (62)
4 a'4

Taking as typical full scale conditions a mass per unit length,

M', of 1.6 x 103 gm/cm, a boom height, h', of 100 cm, and a boom

draft of 80 cm, the moment of inertia per unit length of a model

boom with a draft of 2.4 cm should be 3.24 gm cm. Multiplying

this by the length of the boom, 30 cm, the total moment of inertia

should be approximately 100 gm cm2

The final boom model was a flat plate 30 centimeters long,

3 centimeters wide and 0.7 centimeters thick. The thickness is

determined by the buoyancy necessary to float the boom and the

supporting members such that 20% of the boom is out of the water in

still conditions. In order to transmit the constraining force

over the side walls of the tank and allow the boom 5 centimeters

of vertical motion an elongated horseshoe shaped piece was added to

each end of the boom. To shift the center of mass of the assembly

below the center of buoyancy such that the boom was stable in an

upright position, a counterweight mass was added to a piece of

thin aluminum tubing projecting down from the outside arm of the

support member on either end of the boom. (see figure 3). The

boom was made of laminated balsa wood with the end support members

made of a lamination of balsa wood and adhesive backed aluminum
I
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foil. The boom and support members were painted with a thin epoxy

base paint to waterproof the balsa wood. With the brass counter-

weights added, the total mass was 39 grams.

The amount of inertia of the .actual boom model was measured

by constructing a torsional pendulum using a length of fine piano

wire. The torsional spring constant was calculated by measuring

the period of oscillation with a body of known moment of inertia.

The measured moment of inertia for the final boom model was ap-

2
proximately 2200 gm cm or approximately 22 times too large. This

large moment of inertia is largely due to the mass of the end sup-

port members and their counterweights.

The effect of the large moment of inertia was not deemed im-

portant, however, as the roll resonance occurred at a wavelength

of approximately 150 cm or outside the region of interest and the

surge and roll were not strongly coupled in the region of interest.

An experimental test was run at a wavelength of 66 cm using two

2
boom models, one with a moment of inertia of 5200 gm cm and the

2
other with a moment of inertia of 2200 gm cm . Similar results

were obtained in both cases.

On one end of the boom the tension forces were applied by a

pair of thin rubber strips which were held clamped 50 centimeters

from the end of the boom. On the other end of the boom the ten-

sion forces were applied by a pair of lightweight nylon cords which

were also clamped 50 centimeters from the end of the boom. The

exact length of the nylon cords was adjustable with screws such

that the boom could be centered in the wave channel. The tension
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is adjusted by running the rubber strips over a ball bearing

pulley and attaching a weight pan and laboratory weights and then

clamping the strips when the correct tension is obtained.

A 25 centimeter long section of one wall of the wave tank was

made of transparent plastic so that the motion of boom and the water

could be photographed from the side perpendicular to the travel of

the waves. In order to reference the position of the boom and the

wave height and to provide a reference length the plastic plate was

scribed with a set of lines (see figure 6). A set of pointers

was attached to one of the support members of the boom so as to

mark the relative position of the boom.

The boom motion was photographed using a Hycam high speed 16 mm

movie camera run at approximately 100 frames per second. The pri-

mary reason for using the high speed camera and the relatively fast

framing rate was to obtain a shutter speed fast enough such that the

motion of the boom would not be blurred. On motion picture cameras

the shutter speed is a function of the framing rate. As the cam-

era needed approximately 10 seconds to achieve a regulated speed,

the camera was run approximately 12 seconds for each data run with

the last few seconds of the film being used for data. Prior to

making a sequence of data runs a calibration run was made to record

the exact boom position and watr height under still conditions.

After processing the film, positional data was read off the

individual frames using a machine that projects an image of the

frame on a ground glass screen with an x and y cursor. By moving

the cursors to the point to be read and pressing a button the
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information is punched directly on computer cards in a form suitable

for data processing. In this way the x and y postion of a reference

point are marked on, along with the y position of the water surface

along the left reference line, the x and y position of the top boom

pointer and the x position of the bottom pointer. By marking on a

reference point on each frame, it is not necessary to precisely align

each of them. The number of frames of film read for each data run

depended upon the wave frequency with enough frames being read for

at least 1 1/2 complete wave cycles. The format for the calibration

frames was the same with the addition of the x position of the

right reference position in order to calculate a scaling factor.

Five frames of data were read for each calibration point.

The frequency of the water waves was measured using a capaci-

tance probe and a paper chart recorder. The probe consisted of an

insulated wire sticking down into the water with the water acting as

the outer conductor. The change in capacitance caused by the change

in water height as the wave swept past caused a change in the fre-

quency of an oscillating L-C circuit which is beating with a refer-

ence circuit. The beat frequency provided a measurement of the amp-

litude of the wave. As the information from this probe was only

used to provide a measurement of the frequency or the wavelength

using Eq. 57, it was not necessary to synchronize this information

with the data taken on film.

The data was analyzed using a Fortran program which calculated

the horizontal and vertical displacement of the center of mass of

the boom plus the roll displacement and the waveheight for each
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data frame. (See Appendix A for a list of the equations used).

After computing the number of frames in one wave cycle, a Fourier

analysis was performed on the wave height and the horizontal and

vertical displacement using the IBM system 360 scientific subrou-

tine for the Fourier analysis of a tabulated function. The wave-

height and the horizontal or surge displacements were each plotted

as the tabulated function (actual data) and as the function gen-

erated by using the first Fourier coefficients (i.e., x(t) - a0

+ a1 cos wt + b1 sin wt) and by using the first and second coeffi-

cients (i.e., x(t) = a0 + a1 cos wt + b1 sin wt + a2 cos 2wt

+ b2 sin 2wt) using the Calcomp plotter (see figures 9 and 10).

The ratio of magnitude of the horizontal displacement to the wave-

height was found by using the square root of the sum of the squares

of first Fourier coefficients.

2 2
aX1 + bX1 (63)

aA2 + bAAl

The phase angle of the waveheight and the horizontal displacement

was taken to be the arctangent of the first Fourier sine coefficient

divided by the first Fourier cosine coefficient or

ca = tan 1 (bAl/aAl) (64)

C = tan (b X1/aXl) (65)
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Therefore the phase lag between the horizontal displacement and

the waveheight is

C= A - C (66)

Data was taken for values of Ka of approximately 0.15, 0.20,

0.30, 0.40, 0.50, 0.75 and 1.40. At each value of Ka except

Ka = 1.40 several runs were taken varying the amplitude of the

waveheight up to the case of nearly breaking waves. At Ka = 1.40

only one run was possible as the wave would break with the ampli-

tude of the paddle drive set to any position other than the

lowest.

1i
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III

RESULTS

Theoretical values for the magnitude and phase of X/A were com-

puted for Ka from 0.05 to 5.0 making use of Eq. 55

1X S + itan 1(-R/Q)
X=.Se (55)
A 2 + R2)1/2

where Q, R, and S are defined by Eq. 52, 53, and 51. (See Appendix

B for the computation scheme.) These values were computed for

T = 0, T = 0.071, T = 0.142, and T = 0.281 where T is the nondimen-

sional tension parameter:

2T (12)
Lk 7rga

The results are expressed in tabular form in Table 2 and graphically

in figures 7 and 8. From figure 7 it is seen that the parameter

has little effect on the magnitude of X/A for Ka greater than 1 and

that the effect is not strongly pronounced until Ka is less than 0.4.

The reason for this can be seen looking at Eq. 49

X 2-pga PD (Ka) e (

A [M+P (Ka)M I 2 2T_ (Ka)MW 2

M a L D a

Both the damping force term and the inertial force term are a func-

tion of w2 while the constraining force term is constant. Thus for

small values of Ka where w is small, the constraining force term is

the dominant term in the denominator of Eq. 49. The exciting force
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is not directly dependent on w either, although the value of PD is

a function of Ka. Thus the damping forces and inertial forces domi-

nate at large values of Ka and the ratio X/A becomes small.

Varying the value of T causes a small shift in the phase of

X/A with the magnitude of the shift declining with increasing Ka

as can be seen from figure 8. The small oscillations in the phase

curves that occur for small values of Ka with T not equal to zero

2T
are caused by Q being less than zero when the - term dominates

Q = [M + P (Ka)M 12 - 2T (52)
M. a L

A total of 16 different experimental runs were made varying the

ratio Ka by changing the wavelength and varying the waveheight. The

results of these runs are displayed in tabular form in Table 3 and

graphically in figures 11 and 12. The letter prefix to the run num-

ber is just for identification and has no other significance. The

number simply refers to the pin position used on the apparatus that

generates the wave. The waveheight is not a simple function of this

number as it also depends on the wave frequency. The smallest value

of Ka used was approximately 0.15 and the largest value available

was approximately 1.4.

The experimental results seem to fit the theoretical curve for

the magnitude of X/A quite well (see figure 11) although there is

some scatter. It would have been desirable to have taken data nearer

the predicted peak and on the other side of the peak if this had

been possible. However, this would have meant operating with waves
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several meters long in a tank only 15 cm deep. Also, it would have

been better to have taken a few more points in the range of Ka from

0.8 to 1.4 although the range of Ka from 0.15 to 0.5 was considered

more interesting from the point of checking the theory. The results

might have been better in regard to scatter if either a larger

film format had been used or if a different focal length lens had

been used with small amplitude waves such that the range of motion

came closer to filling the entire film frame (owing more to the

nature of the machine used to read the film than to the actual film

resolution).

The experimental results for the phase of X/A are certainly of

the right order of magnitude, with all except one point being with-

in 0.2 of a radian (-12*) of the theoretical value, but do not show

any clear trend as the theoretical results do not have much variance

in the range of Ka from 0.15 to 1.5 (see figure 12). In order to

perform a better experimental test of the phase data, it would be

necessary to extend the range of the experiment out to Ka equal to

5 or more to see whether the phase shifts from approximately -7r/2 to

- ir. This was not possible, however, with the existing apparatus

as the paddle was being driven at the maximum frequency to obtain a

value of Ka equal to 1.4. Again, better results with regard to scat-

ter could have been obtained with better filming.

III
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CONCLUSIONS

The response of the boom to a sinusoidal exciting force was

found to be sinusoidal. Even for the worst case with nearly

breaking waves when the magnitude of the second harmonic of the

wave amplitude was 25 percent of the magnitude of the first har-

monic of the wave amplitude, the magnitude of the second harmonic

of the response was less than 10 percent of the first harmonic of

the response (the accuracy of measurement was about the same order

of magnitude).

As the motion was sinusoidal, the problem is analogous to a

driven harmonic oscillator with a damping term and an added mass

term that are a function of the driving frequency. As can be seen

from the data, the response is proportional to the wave height

amplitude for constant values of Ka. Therefore a linearized theory

can be used to describe the magnitude and phase of the response of

the boom to the wave-induced forces. Within experimental accuracy,

the data supported the detailed theoretical model presented for the

magnitude and phase of the ratio of the surge of the boom to the

wave height of the incident waves.

III
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APPENDIX A

For each frame of data, the x and y position of a reference

point, the wave height along a reference line, the x and y position

of the top boom marker and the x position of the bottom boom marker

were read. The x position of a second reference point was also

read for the calibration frames. These seven points and the grid

lines are illustrated in Figure 6. The first step in the data

reduction is the determination of a scaling factor KCAL.

KCAL = XB (A-1)
XCAL2 - XCAL1

where XCALl and XCAL2 are the measured x positions of the reference

lines and XB is the known distance between them. The boom position

and water height for static conditions are then found. The water

height, HCAL, is given by

HCAL = KCAL (YH - YCAL) (A-2)

where YH is the measured reference value and YCAL is the water

height along the reference line. The boom roll angle SIGCAL is

given by

SIGCAL = SIN 1  (X2 - X 1  (A-3)

where X1 and X2 are the measured x positions of top and bottom

boom markers. The static x positions of the top boom marker, X1CAL,

is given by
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X1CAL = KCAL (Xl - XCALl) - XA (A-4)

where the factor XA is used to transfer the x reference position

to the center grid line. The static x position of the center of

the boom, XGCAL, is given by

XGCAL = X1CAL + A sin (SIGCAL) - cos (SIGCAL) (A-5)
2

where A is the distance from the tip of the pointer to the center

line of the boom. The static y position of the boom is found in

a similar manner.

After determining the position of the boom and the waterline

for static conditions, the surge, heave and roll displacement of

the boom and the ware height were found for the dynamic conditions

by using the same equations and subtracting the static or calibra-

tion values. This data was then plotted as a function of the

frame number if so desired.

The next step was the calculation of the wavelength from the

frequency using a recursive technique to correct for the finite

depth effect. The initial approximation, XLAM1 , the infinite

depth value was

XLAM = G 2 (A-6)

27T(FREQ)

The correction factor, CORR, for finite depth was

'III
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CORR = tanh 2 iDEP (A-7)XLAM

where XLAMswas the current wavelength approximation where DEP was the

depth of the water. From these an err function, ERR, was generated

ERR = - XLAM (A-8)
CORR 1

The next approximation to the wavelength was taken to be

XLAM = XLAM - 0.7 x CORR x XLAM (A-9)

This was repeated until the err function was less than the desired

limit.

Prior to calculating the Fburier coefficients it was necessary

to calculate the number of data points per cycle. This was done by

counting the number of data points from the place where the wave-

height first changed the sign or went thru the origin until it

changed sign for the third time. The first and second Fourier coef-

ficients were then found for the waveheight and the surge and heave

displacements by making use of a subroutine from the IBM scientific

subroutine package. A function was generated by using the first coef-

ficient and by using the first and second coefficients. These two

functions were plotted along with the actual data for comparison.

The final step was to calculate the magnitude and phase of

X/A. The magnitude of X/A was found by dividing the square root of

the sum of the squares of the first Fourier coefficients of the
III
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surge displacement by the square root of the sum of the squares

of the first Fourier coefficients of the wave height.

2 2
ACOFXG(2) + BCOFXG(2) (A-10)

A 2 2
ACOFH(2) + BCOFH(2)

where ACOFXG(2) and BCOFXG(2) are the first fourier coefficients

of the surge displacement and ACOFB(2) and BCOFH(2) are the first

Fourier coefficients of the wave height. The phase of X/A was

found by taking the difference between the phase of surge displace-

ment and the phase of the wave height after the phase of the wave-

2ir(XA)
height was shifted an amount to correct for the fact that

the wve height data was taken along the left grid line instead of

the centerline (XA is the distance between these two lines). The

phase of each was found by taking the arc tangent of the first

Fourier sine coefficient divided by the first ourier cosine coef-

ficient. For example

-l BCOFXG(2)
XGPHAS = tan ACOFXG(2)

where XGPHAS is the phase of the surge displacement. A listing of

the program follows.

III



DIMENSION H(300), SIG(300), XG(300), YG(300),
$HR(300), FRBRD(300), ACOFH(5), BCOFH(5), ACOF
$ACOFYG(5), BCOFYG(5), XGFOR(300), XGVEL(300),
$YGFOR(300), YGVEL(300) , YGACC(300)

C
C INITIAL SETUP
C

NOP = 0
G = 980.35
PI = 3.14159
DEP = 15.0
YAC = 10.0
YA = 10.0
D = 2.40
XA = 5.0
XB = 10.0
A = 1.30
B = 3.0
KCALA = 0.0
N = 0
HCALA = 0.0
SIGCA = 0.0
X1CALA = 0.0
YLCALA = 0.0
READ(5,1) NMON,

1 FORMAT (514)

Z(300)
XG (5)

XGACC

, YO(300),
BCCFXG(5),
3CC),

U'

NDAY, NYEAR, NRUN, KAL

C
C CALCULATE CALIBRATION FACTORS
C

00 3 1 = 1, KAL
READ(5,2) XCAL1, YCAL, YH, X1, Y, X2, XCAL2

2 FORMAT (7F10.9)
XCAL = XCAL2 - XCAL1
KCAL = XB / XCAL
KCALA = KCALA + KCAL
HCAL = KCAL * (YH - YCAL) - YAC



HCALA = HCALA + HCAL
SIGC = ARSIN (KCAL * ((X2 - Xl) /
SIGCA = SIGCA + SIGC
X1CAL = KCAL * (XI - XCALl) - XA
X1CALA = X1CALA + X1CAL
YICAL = KCAL * (Yl - YCAL) - YAC
Y1CALA = YICALA + YiCAL
N = N + 1

B))

3 CONTINUE
KCAL = KCALA / N
HCAL = HCALA / N
SIGCAL = SIGCA / N
X1CAV = X1CALA / N
XGCAL X1CAV + A * COS(SIGCAL) + (B /
YlCAV = YlCALA / N
YGCAL YlCAV + A * SIN(SIGCAL) - (B /
WRITE(6,4)

4 FORMAT ('ICALIBRATION DATA ')
WRITE (6,5)

5 FORMAT ('0 KCAL HCAL SIGCAL
WRITE(6,6) KCAL, HCAL, SIGCAL,

6 FORMAT (5F10.4)

2) * SIN(SIGCAL)

2) * CCS(SIGCAL)
0%

XGCAL, YGCAL
XGCAL YGCAL')

C
C SETUP FOR DATA RUNS
C

00 25 L = 1, NRUN
READ(5,7) MRUN, M, FREQ

7 FORMAT (214, F10.4)
WRITE(6,8) MRUN, NMON, NCAY, NYEAR

8 FORMAT ('1DATA RUN',15,' DATE:',13,'/',12,'/',12)
WRITE(6,9)

9 FORMAT ('0 N H SIG XG YG')

DATA REDUCTION

DO 12 I = 1, M

C
C
C



READ(5,10) XCAL, YCAL, YH, Xl, Ylv, X2

10 FORMAT (6FI0.9)
H(I) = KCAL * (YH - YCAL) - HCAL - YA

SIG(1) = ARSIN(KCAL * ((X2 -
X1CAL KCAL * (Xl - XCAL) -
XG(I) = X1CAL + A * COS(SIG(I
YICAL = KCAL * (Y1 - YCAL) -
YG(I) = YlCAL + A * SIN(SIG(I

Z(I) = I
YO(I) = 0
J = I
WRITE(6,11) J, H(I), SIG(I),
FORMAT ('0', 13, 4F10.4)

CONTINUE

Xl) / B)) - SIGCAL
XA
)) + (B / 2) * SIN(SIG())

YA
)) - (B / 2) * COS(SIG(I))

XG( I), YG(I)

- XGCAL

- YGCAL

PLOT REDUCED DATA (OPTIONAL, IP = 1 FOR PLOT)

IF (NOP) 13,
13 CALL NEWPLT (

IP = 0
IF (IP - NOP)

13, 15
'M7754','8427' ,'WHITE

15, 15, 14

, 'BLACK')

14 CALL PICTUR (15.0,10.0,'FRAME',5,'AMP',3,Z,H,IP,C.15,-6,Z,SIG,M,
$0.15,?-5, Z, XG, M,0.*15, - 3,Z ,YG, M, 0.15,- 1,ZIYO,9M, 0 vKS)

15 CONTINUE

CALCULATE WAVELENGTH

WRITE(6,16)
16 FORMAT ('1')

XLAM = G / (2 * PI * FREQ ** 2)

XLAM1 = XLAM

17 CORR = TANH((2 * PI * DEP) / XLAM)
ERR = XLAM / CORR - XLAMI
XLAM = XLAM - (0.7 * CORR * ERR)

WRITE(6,18) XLAM
18 FORMAT ('OXLAM = ',F9.5)

11
12

C
C
C

C
C
C

I



IF (ABS(ERR) - 0.0001) 19, 19, 17
19 CONTINUE

WRITE(6,20) XLAM, XLAM1, ERR

20 FORMAT ('OLAMDA = ',F9.5,' LAMDAI = ',F9.5,' ER

$R = ',E9.3)
C
C CALCULATE NUMBER OF DATA POINTS IN 1 CYCLE

C
CALL NPCINT (H,NI)
NR = NI
NP = 2 * NR + 1
WRITE(6,21) NP

21 FORMAT ('INPOINT =',14)

C
C CALCULATE FIRST AND SECOND ORDER FOURIER COFFICIENTS
C

WRI TE(6,22) 00

22 FORMAT ('0 ACOF(1) ACOF(2) ACOF(3) BCOF(?)

$ eCOF(3)')
IT = 3
CALL FORIER (HNR,IT,ACOFHBCOFHNOP)
CALL FORIER (XGNR,IT,ACCFXGBCOFXG,NOP)
CALL FORIER (YGNRIT,ACOFYGBCOFYGNOP)

C
C CALCULATE AND PRINT KA, MAGNITUCE X/A, PHASE X/A

C
K = 2 * PT / XLAM
KA = K * D
X = SQRT(ACOFXG(2) ** 2 + BCOFXG(2) **2)
HA = SQRT(ACOFH(2) ** 2 + BCOFH(2) ** 2)
XDH = X / HA
XGPHAS = ATAN2(BCOFXG(2), ACOFXG(2))

HPHAS = ATAN2(BCOFH(2), ACOFH(2))
PHASE = HPHAS + 2 * PI - XA / XLAM - XGPFAS
WRITE(6,23)

23 FORMAT ('1 KA MAGNITUDE X/A PHASE X/A MAG X M



$AG A PHASE X PHASE A')
WRITE(6,24) KA, XDH, PHASE, X, HA, XGPHAS, HPHAS

24 FORMAT ('O',F8.4,2F15.4,4F12.4)
25 CONT INUE

IF (NOP) 26, 26, 27
26 CALL ENDPLT
27 CONTINUE

STOP
END



SUBROUTINE FORIER (FNNR,!TACOFBC
DIMENSION HFOR1(300), HFCR2(300), A

$YO(3CC), FN(300)
PI = 3.14159
NP = 2 * NR + 1
NX = 0
W = 2 * PI / NP
CALL FORIT (FN,NRIT,ACOFBCOF,IER)
IF (IER - 1) 3, 1, 1
WRITE(6,2) IER
FORMAT (O0ER = ',11)
WRITE(6,4) ACOF(1), ACOF(2), ACOF(3
FORMAT ('0',F8.5,4F15.5)

OFNOP)
COF( 5),

),

BCOF( 5),

BCOF(2) i

z(300),

BCOF (3)

C
C PLOT EATA WITH 1ST AND IST + 2ND FOURIER COMP. CURVES (CPTIONAL)
C

IP = I
IF ( IP - NOP) 7, 7, 5

5 DO 6 1 = 1, NP
HFOR1() = ACOF(l) +
HFOR2(I) = HFOR1(I) +

$SIN(2 * W * NX)
Z(1) = I
YC(I) = 0

6 NX = NX + 1

ACOF(2) * COS(W * NX)
ACOF(3) * COS(2 * W

CALL PICTUR (10.0,10.0,'FRAME
$NP,O.10,-2,Z,HFOR2,NP,O.10,-1
7 CONTINUE

RETU RN
END

+ BCOF(2) * SIN(W * NX)
NX) + RCOF(3) *

,5,'AMP ' , 3,ZFN ,NP,0. 15 ,-3 ,Z ,HFOR1,
,ZYO,NP,0.0,KS)

1
2
3
4

.0



SUBROUTINE
DIMENSICN

IF (H(i))
1 IF (H(l))
2 1 = + I

GO TO 1
3 IA = I
4 IF (HI))
5 1 = 1 + I

GO TO 4
6 IF (HI))
7 I =1 + 1

GO TO 6
8 IF (H(I))

1 = I +
GO TO 8

10 IA = I
11 IF H I))
12 I = I + 1

GO TO 11
13 IF (H(I))
14 1 = I + 1

GO TO 13
15 IB = I

IC = IB -

ID = IC /
IE = 2 * 1
IF (IC -

16 IG = +B +-
IF (H(18)

17 IF (H(IG)
1 NP = IC -

GO TO 24
19 NP = IC +

GO TO 24

NPOINT
H(300)

8,
3,

8,
3,

(H,NR)

1
2

5, 6, 6

15, 15, 7

9, 10, 10

13, 13, 12

14, 15, 15

IA
2
0
[E) 16, 16, 23
1
- H(IA)) 17, 17, 20
- H(IB)) 18, 18, 19

1



20 IF (H(IG) - H(IB)) 21,
21 NP = IC + 1

GO TO 24
22 NP = IC - I

GO TO 24
23 NP = IC
24 NR = (NP - 1) / 2

RETURN
END

21, 22

1
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APPENDIX B

The theoretical values for the magnitude and phase of

were computed as a function of Ka using a Fortran program.

Eq. 53, the relation for the magnitude is given by

x S

A 2 2 1/2(Q + R )

/A

From

(B-1)

where Q, R, and S are as defined in Eq. 52, 53, and 51. Also from

Eq. 55 the phase angle, C is seen to be

S = 0 + tan~ (-R/Q) (B-2)

where e is defined by

A listing of the

symbols were used

AD

AMASS

BL

BM

CHI

DEP

PHASE

TN

XKA

XL

Eq. 44.

actual program used follows in which these

boom draft

added mass of fluid

boom length

boom mass

magnitude of X/A

water depth

phase of X/A

tension force

Ka

length of tension members
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YPD pd, drag coefficient

YPH tan 1 (G/-H)

YPM PM, added mass coefficient

I



DIMENSION
$XKA3(50),
$PHASE1(50)
$Z(50)

XKA(50),
XKA4( 50),
, PHASE2(

YPD(50
CHIl(
50), P

), YPM(50)
50)-, CH12(
HASE3( 50),

, YPH(50), XKA1(50), XKA2(50),
50), CHI3(50), CHI4(50),

PHASE4(50), X(50), Y(50),

C
C READ IN VALUES OF PD, PM, ARCTAN(G/-H)
C

DO 2 I = 1, 29
READ (5,1) XKA(I), YPD(I),

1 FORMAT (4F10.4)
2 CONTINUE
READ (5,3) Ti, T2, T3, T4

3 FORMAT (4F10.2)
WRITE (6,6) Ti
WRITE (6,7)

YPM(I), YPH(I)

C
C CALL SUBROUTINE TO CALCULATE MAGNITUDE AND
C

CALL CALC(T1,XKA,
WRITE (6,6) T2
WRITE (6,7)
CALL CALC ( T2 ,XKA,
WRITE (6,6) T3
WRITE (6,7)
CALL CALC(T3,XKA,
WRITE (6,6) T4
WRITE (6,7)
CALL CALC(T4,XKA,
DO 5 1 = 1, 22
READ (5,4) X(I),
FORMAT( 3F10.2)
CCNTI NUE

C
C PLOT CATA
C

CALL NEWPLT

PHASE OF X/A

XKA1,YPOYPM,YPHCHIL,PHASEl)

XKA2,YPD,YPMYPH,CHI2, P-ASE2)

XKA3,YPDYPMYPHCHI3,PHASE3)

XKA4,YPDYPM,YPHCHI4,PHASE4)

Y(I), Zil)

(IM7754','8427','WHITE ',BLACK')

Ln

4
5



CALL PICTUR(15.5,10.0, 'KA',2,'MAGNITUDE X/A ', 13, X, Y, 22,O.2,-4, XKAl
$ ,CHI 1 ,29,).0 ,J,XKA2 ,CHI2 ,29,0. , J,XKA3, CHI3, 29,0.0,J ,XKA4,C HI4,

$29, 0 .0, J )
CALL PICTUR(15.5,10.I,'KA',2, 'PHASE X/A',9,X,Z,22,0.2,-4,XKAI,PHAS

$El,29,O. ,J, XKA2,PHASE2,29,0.O,J,XKA3,PHASE3,29,O.0,JXKA4,PHASE4,
$29,0.0,J)
CALL ENDPLT

6 FORMAT (1T = ',F10.2)
7 FORMAT ('0 KA MAG X/A PHASE LAMDA OMEGA

$ R S ZETA TI-ETA')
STOP
END



SUBROUTINE CALC(TXKAXKAN,YPOYPMYPHCH[,PHASE)
DIMENSION XKA(50), XKAN(50), YPD(50), YPM(50), YPH(50),

$PHASE(50)
CHI (50),

INITIAL SETUP

RHO = 1.0
G 980.35
9L = 30.0
BMASS = 39.8
PI = 3.14159
AD = 2.4
DEP = 15.0
XL = 50.0
AMASS = RHO * PI

C
C CALCULATE VALUES
C

1
2

* AD ** 2 * BL / 2

FOR MAGNITUDE AND PHASE OF X/A

DO 2 1 = 1, 29
XKAN(I) = XKA(I)
S = RHO * G * AD* BL * SQRT(PI * YPD(I) / 2)
XLAM = 2 * PI * AD / XKA(I)
OMEGA SQRT(((G * 2 * PI) / XLAM) * TANH((2 * P
Q= ((BMASS + YPM(I) * AMASS) * CMEGA ** 2) - (2
R = - (YPD(I) * AMASS * OMEGA ** 2)
CHI(I) = S / S QRT(Q ** 2 + R ** 2)
ZETA = ATANf- R / Q)
THETA = (PI / 2) - YPH(I)
PHASE(I) = THETA + ZETA - PI
WRITF (6,1) XKA(I), CHI(I), PHASE(I), XLAM, CPEG

$THET A
FORMAT ('0' ,F5.2,4F10.4,3F15.4,2F8.4)
CONTINUE
RETURN
END

I DEP) /XLAM))
* T / XL)

A, Q, R, S, ZETA,

C
C
C

I
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-tan 1(G/-H)

0.05

0.1

0.15

0.2

0.25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0.0043

0.0176

0.0423

0.0808

0.1350

0.2133

0.4302

0.7244

0.0046

1.1934

1.2505

1.2095

1.1211

1.028

0.940

0.852

0.778

0.707

0.641

0.585

0.534

0.489

0.451

0.330

0.245

0.195

0.158

0.127

0.099

1.0436

1.1041

1.1710

1.2334

1.2980

1.3690

1.4706

1.4750

1.3361

1.0837

0.8063

0.5722

0.4012

0.2940

0.2079

0.1580

0.1260

0.1058

0.0936

0.0870

0.0835

0.0826

0.0839

0.1026

0.1279

0.1527

0.1758

0.1950

0.2142

Table 1: Values of P D' PM, and -tan 1(G/-H) for Ka = 0.05

through 5.0.

pp
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Ka

0.0050

0.0160

0.0345

0.0660

0.1075

0.1547

0.2854

0.4549

0.6476

0.8385

1.0060

1.1407

1.2439

1.3216

1.3796

1.4232

1.4560

1.4811

1.5003

1.5151

1.5267

1.5357

1.5428

1.5615

1.5676

1.5684

1.5692

1.5700

1.5707



Ka

0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.50
3.00
3.50
4.00
4.50
5.00

Magnitude of

0.725
5.077
2.979
1.569
1.209
1.056
0.912
0.846
0.800
0.767
0.740
0.718
0.700
0.678
0.657
0.641
0.624
0.610
0.599
0.586
0.575
0.563
0.549
0.467
0.380
0.300
0.234
0.183
0.141

RX/A Phase of X/A

-1.577
-1.634
-1.521
-1.542
-1.551
-1.550
-1.556
-1.560
-1.572
-1.584
-1.598
-1.614
-1.632
-1.657
-1.669
-1.693
-1.717
-1.747
-1.780
-1.815
-1.852
-1.892
-1.933
-2.135
-2.352
-2.520
-2.655
-2.765
-2.860

-8003.6
-2309.2
-6086.2
15959.2
26672.5
38096.7
60763.7
79552.3
88529.1
85457.8
74516.8
61727.9
50739.8
43739.8
37169.8
33908.3
32318.7
31981.9
32616.4
34036.0
35927.8
38289.8
41119.7
59082.9
81314.9

106158.0
132996.8
160451.0
190033.9

Theoretical values for magnitude and phase of /A along with values for Q, R, and S

for Ka = 0.05 through 2.0 with T = 0.142.

S

-7.2
-108.2
-516.4

-1519.9
-3427.0
-6768.8

-18823.9
-40004.0
-66756.8
-92592.7

-110908.7
-120689.1
-124300.4
-125376.4
-125066.2
-122804.5
-120764.4
-117582.4
-113712.8
-110264.6
-106572.6
-103013.6
-100008.8

-91471.5
-81492.8
-75671.9
-70072.7
-63364.8
-54882.9

5801.1
11736.2
18194.6
25146.6
32504.2
40857.2
58024.0
75294.2
88668.4
96641.9
98926.9
97291.6
93668.8
89695.2
85770.2
81656.8
78030.1
74384.4
70827.4
67662.3
64646.3
61862.5
59410.2
50819.4
43788.1
39065.2
35164.3
31526.4
27834.9

U,
c>

Table 2



- 51 -

Run

A2

A6

A10

B2

B6

C2

C5

C8

D2

D3

D4

El

E2

F1

G2

G4

Ka

0.142

0.139

0.144

0.202

0.202

0.291

0.299

0.300

0.467

0.536

0.536

0.784

0.767

1.376

0.391

0.388

Table 3: Experimental values of magnitude and phase of X/A

along with values of wavelength and wave height.

Magnitude X/A

3.169

2.172

1.885

1.770

1.425

0.963

1.027

0.910

0.836

0.775

1.043

0.808

0.646

0.824

1.042

1.015

Phase X/A

-1.329

1.365

-1.318

-1.772

-1.547

-1.731

-1.419

-1.497

-1.605

-1.582

-1.284

-1.433

-1.461

-1.004

-1.349

1.395



BOOM MODEL
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Fig. 1 Schematic of constraint forces on model boom.
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Fig. 2 Schematic of constraint forces on full scale boom.



Fig. 3 Close-up photograph of boom in wave tank during experimental run C5 (Ka = 0.30).

I



UPI

AJ .

Fig. 4 Overall view of boom in wave tank showing elastic constraint support arms and

capacitance wave height guage (on carriage behind the boom model).



a b

0i

c d
Fig. 5 Sequence of boom positions during experimental run C5 (Ka = 0.30). Photographs were

taken with a motor-driven 35 mm still camera showing the same view as the data films.
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Fig. 6 Drawing of measurement grid lines and boom pointer

illustrating measurement points.
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Fig. 7 Plot of the theoretical values of the magnitude of X/A for Ka = 0.05 through 5.0 with
T = 0, 0.071, 0.142, 0.281.
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Fig. 8 Plot of the theoretical values for the phase of x/A for Ka = 0.05 through 5.0 with
T = 0, 0.071, 0.142, 0.281.
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RUN C5
+ DATA

I St FOURIER COMPONENT FIT
I st + 2 nd FOURIER COMPONENT FIT

E
U

w
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-J

0~

I.-
I

w
I
Lii

I I I | I|
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
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Fig. 9 Example
and the

32 34 36 38 40

of wave height data from run C5 with curves using the first fourier coefficients

first and second fourier coefficients.
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2.0 RUN C5
1.8- + DATA

st FOURIER COMPONENT FIT
Ist + 2nd FOURIER COMPONENT FIT

1 .2 -

I .0I
E 0.8 -

0.6-

0.4 /
4- 0.2 -

a- 0.0
/+

-0.8 -1%

- 1.0 -- I
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

FRAME NUMBER

Fig. 10 Example of surge displacement data from run C5 with curves using the first fourier

coefficients and the first and second fourier coefficients.



~i it'IiI~fl'1JuTLJI]I L I 111J11in111U1i1h111L5E1.

5.5

5.0

4.5

4.0

I I I I I I I I I I I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Ka
1.6 1.7 1.8 1.9 2.0

Fig. 11 Plot of the theoretical values of the magnitude of X/A with the experimental data points
for Ka = 0.05 thru 2.0 and T = 0.142.
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Fig. 12 Plot of the theoretical values of the phase of X/
obtained for Ka = 0.05 thru 2.0 and T = 0.142.
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