
* Uji

L IB RAR

THE PERTURBATION THEORY OF SOME VOLTERRA OPERATORS

by

John Markham Freeman

B.A., University of Florida
(June, 1957)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1963

Signature of Author,

Certified by.

Accepted by........

.........
De'lartment of Mathema tics, May 15, 1963

Thesis Supervisor f

Chairman, Departmental Comrittee on
Graduate Students



The Perturbation Theory of Volterra Operators

John Markham Freeman

Submitted to the Department of Mathematics on May 17, 1963 in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

ABST RACT

A general procedure is derived for obtaining sufficient
conditions for the similarity of operators T and T + P. This
is applied to obtain sharp conditipns for the similarity of
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INTRODUCTION

In (3 ] Friedrichs studies perturbations of the self-

adjoint operator T: f(s) -+ sf(s) on L2 (a,b) by Fredholm

integral operators P with regular kernels. In order to de-

termine conditions on the perturbation P sufficient to en-

sure the similarity of T + P and the unperturbed operator T,

Friedrichs used a method which has since been abstractly formu-

lated by Schwartz [21] and applied to the perturbation theory

of a number of self-adjoint operators.

In Chapters II and III of this thesis the perturbation

theory of certain non self-adjoint operators will be approached

in a manner similar in broad outline to these methods of

Friedrichs-Schwartz. Chapter II will be concerned with the

quasi-nilpotent Volterra operator "indefinite integration" on

LP(0,1), and Chapter III with the discrete Volterra operator

"shift right" on tP(Q, io) .

In the paper of Friedrichs mentioned above it is assumed

that the kernel p(s, t) of the perturbing Fredholmoperator

b
(1) P: f(s) -+/a p(s, t) f(t)dt

be regular in the sense that H6lder conditions of order

a (0 < a < 1) be satisfied;

fp(sl t) - p(s2,t)t < K js,- s2'

(2)

jp(s,t 1 ) - p(s,t 2 )| < Kit 1- t2 1a
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It Is then proved that T: f(s) -+ sf(S) is similar to the

perturbed operator T + P provided that INt is small enough,

where

|p(s,t )-p(st2)1 |p(s 1,t)-p(s29t)(3) iP| = _upp__t)_+_p +_u

it 1 t 2 1 C "l'21a

The crux of the method used in proving this result lies

in the observation that for a regular Fredholm integral opera-

tor A, the commutator equation

(4) TF~(A) - F~(A)T = A

is solved by the singular integral operator,

b
(5) F~(A) f(s) = (c) /a askt) f(t)dt

(where (c) denotes the Cauchy principal value).

Chapter IV will deal with the solvability of (4) when

T is any normal operator--without restrictions as to type

and multiplicity of spectrum. A singular integral analogous

to (5) will be defined which solves (4) for operators which

are "regular" with respect to T.

II -
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CHAPTER I

SPACES OF REGULAR PERTURBATIONS

Let T and P be fixed bounded operators on a Banach

space. The operators T and T + P are said to be similar

provided that there exists a bounded invertible operator S

such that

T = S (T + P)S

In terms of the notion of a "regular perturbation of T" to

be formulated in this chapter, it will be possible to state

sufficient conditions for the similarity of T + P and the

unperturbed operator T.

The basic observation leading to the abstract notion

of regularity with respect to an operator T is the following.

If X simultaneously solves the two operator equations

(1) TX - XT = A

(2) A + PX = -P,

then (I + X)T = (T + P)(I + X). (This is seen by multiplying

out both sides and collecting terms according to (1) and (2).)

Hence T + P is similar to T provided that I + X is in-

vertible (e.g. if |IXII < 1 or merely lim ,,jijll/n <
n-+oo

In order to apply this observation to the perturbation

theory of T, one first determines a class CZ of "regular"

operators A for which the commutator equation (1) is explicitly
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solvable by a bounded operator X = F~(A).

chapters it will be seen that the operator

rule, "Isingular", i.e. does not belong to

Now, having determined a2 and a map FT

the bounded operators such that

In the following

f(A) is, as a

.

from (,into

(3) T[~(A) - r~(A)T = A,

the equations (1) and (2) then reduce to

(A) A+ PF~(A) = -P ;

any solution A e a of this equation also satisfies

(5) [I + f~(A)]T = (T + P)[I + r(A)I

and hence T and T + P are similar provided that

(I+ r~(A)]O- exists.

In terms of the map

(6) r~ : A - Pf(A)

equation (4) becomes

(I + p)A = -P

which is solved formally by the Neumann series

A = Z ( 1 )n r-n(.p)
n=O

However, in order to make even the individual terms of

the series meaningful one must assume first that P e ,

I - mt=t=t= - i"Mma - A -, ' - - -
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(so that F. (P) is defined) and also that the "singular"

operator r(A) be "smoothed" by left multiplication by

P a , i.e. if P and A e (2 , then Jp(A) = Pr(A) e

These considerations suggest the definition (below) of a space

of regular perturbations of an operator T.

Let T be a fixed (bounded) linear operator on a Banach

space X , and denote by B ( X ) the Banach space of

bounded linear operators on X . Throughout 11*| will de-

note the norm on 6 ( ).

Definition 1.1. A linear set a c 8 ( ) is called

a space of regular perturbations (s.r.p.) of T if there

exists a norm te| on a and a linear map ,: Q -+ 6 (X )

such that

(a) L, is a Banach space under | .|
(b) Tfl(A) - [(A)T = A

(c) I|lr(A)H| < KjAf

(d) if P, A C ( , then Pr(A) C , and

|P[-(A)| I K1|P| JAI .

In what follows 2 is assumed to be an s.r.p. of T

and P Ca. The map 1 given by (5) is then a bounded

operator on 2 . Its norm and those of its iterates will be

denoted by |n. n = 12,...
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Proposition 1.2. A sufficient condition for the (unique)

solvability of'

(7) (I + [~p)(A) = P

for A C'( is that

li FE-n I1/n
urn tPh/ < 1
n-+oo

Proof: If this condition is satisfied, then the series

n (-1) fpn converges (absolutely) in the operator norm.
n=O

Its sum is (I + F-P)"' .

The following lemma (cf. [2], page 518) will be needed

several times in the next chapters.

Lemm . Let (S, Z, V) be a positive measure space and

k a measurable function on SxS with

ess-sup / |k(s,t)J '(dt) < M < o and
s S

ess-sup / Ik(s,t)II(ds) < M.
t S

Then Kf(s) = / k(s,t) f(t)dt defines a bounded linear opera-
S

tor on LP(S, Z, )(1 <p : oo) and ||K| P M.
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CHAPTER II

THE OPERATOR J: f(x) + 0 f(y)d

In this chapter perturbations of the
x

J: f(x) /0 f(y)dy

y

Volterra operatar

on LP(O,l) will be treated. Sufficient

conditions which are in a precise sense sharp will be obtained

for the similarity

operator

1.

of J and
X

J + P, where P is also a Volterra

P: f(x) J+ /' p(x,y) f(y)dy.

Preliminaries

Given two Volterra

x
L: f(x) / / 4(x,y)

operators

f(y)dy then

x
f(x) -* /0 k(x,y) f(y)dy arnd

(under restrictions to be

st.ated below on the kernels k and 4) KL is the Volterra operator

x
KL: f(x) -+ V/

k*4(x,y) =
X

/ k(x,n)
y

~1,y)dn

To begin with we prove several facts concerning the

sition k*4'. By 'kernel' we will mean simply a (measurable )

real or complex valued function k(xy) on 0 < y < x < 1.

a > 0, let

(2) | Jk| I

Lemma 2.1.

a = sup
19 03<<1

If IIk I , < Q

is a bounded operator on LP(0,1) (1 < p < 00) and

K < I| | tk I

where

(1)

f(y)dy

c ompo-

For

then K:
x

K:

lk(x,y)(x-y) 1-a

atoo



Proof: We have ,

ess-sup
O<x<l

immediately from (2),

Ik(x,y)Jdy < IIk! I sup
O<x< 1

and

ess-sup
<y_< 1

1
1'

and hence by

Lemma 2.2.

(x,y)fdx <

1.4 we get

If k and t

IkI a 00  sup
0 Y.1l

IlK! I p: C

are kernels

I
dx

( x-y )1-a

I kf L,00 with C

for which II k I!
11" P 0 0

< 00, then

I Ik*0i I I E+ctOu -:1 B(Ia a )u|k I I| P 00

(where B(a,@) is the beta function).

Proof: Since lk(xsn) 4 (r1,y)J
I JkJ Ica 001 11 4,00

(x-n) 1 ( i-y )

it follows that

x
J|k*(-(x,y ) I dn

(x-'i) (-y

= I Ik I( -I VI)a+p

Since this last integral is

1
./0

dt

t11a~lt(1 )l"P

B(ap), this is equivalent to the

asserted inequality.

The following (known) facts will be used freely and with-

out explicit ention.

. 2.

x
/e dy

(x-y )

1
-/o

dx

x a

and

:< I k IIa9uII IIP O



(A) If k, 4, and m are kernels with 1k| L.

ImJ !y , all finite for some a, p, Y > 0, then

(B) If ||kja and lV4I1 are finite, and K and L are the

Volterra operators defined by k and 4 respectively,

is a Volterra operator and its kernel is ki4-.

For a kernel k with I jkfj a9

(3) = k*k*. .*k

< 0 we define

(n factors).

For example, the iterates of J: f (x) / 0 f(y)dy are

x
f x) -+ / (n )(x,y )

n-1
(n) . (x- )n-

xy=) - ( n -1

If I|k|Jl,0 < then

I Ik(n)
al |kI In

r n - aS"0IIna, -<

(where r denotes the gamma function).,

Proof: This holds for n = 1. Assuming inductively that it

holds for n, we have by 2.2

1 ( )k I I(n+1l)a,- < B(na.*a)

< B(nasca)

k|k(n+l) II(n+l)a, =

I k | IkJ |ltW

S(a )n+l

= { ( n1)

11.3

l| i 1 ,, and

then KL

(L[) Jn:

where

f(y)dy

( k*J-)-,m = k*(44m)

r (a_)n 
r na )

I . n+1
alkoo,

n+1
I Ik| .a
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Lemma 2. . If Ik|l ,
x

: f( x) -+ /0

then the norms

k(n) (x,y)

of the operators

f(y) dy

K p-IAL- r a) n Itk I .nO0

Thus lim lKnl 1/n
n-oo p

on LP(0,l).

= 0, i.e., K is a quasi-nilpotent operator

Proof: By 2.1, |IKnI < 1
p a

. By the preceding

lemma, this in turn is majorized by I k, I .

That lim
n-+o

I|Kn I/ln = 0
p

now follows since lim
n-+o

r(na) l/n

when a > 0.

Lemma 2 If kernels k and 4 are continuous on 0 < y < x < 1

and I|k| , ItIP < 0,o then k*t is continuous on

0 < y < x 1. If a + 0 > 1, then k*4 is continuous on

0 < y < x < 1 with k*L(x,x) = 0.

Proof: By the assumptions, k(x,y) and

( x, y) = n where m and n are continuous and bounded on

0 < y < x < 1. When y < x the variable change ni = y + t(x-y)

gives

k*4-(x,y) (x-y)a+p-l 1 m[xy+t(x) n

(1-t)l-a

XY)(t) dt

Thus, if 0 < y0 < X f 1 and (xy) converges

satisfy

S00

r (a) n
a r (na-)

=M(X* .
(x-y)1a

[Y+t (x-1),yd

=(x-y)a+,-1 )- f

to (x Oy0), then
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the number k*((x,y) converges to k*L(x0,yo), by the dominated

convergence theorem.

For we have

(xy)-(x(xy (t) (yf ) (t) when 0 < t < 1

and If ()M < constant /(l-t)l-a 1-P

That k*-t converges to 0 as (x,y) converges to (x0 ,xO) follows

also from the above expression for k*i providing a + > 1.

Lemma 2.6. If k(x,y) is continuous on 0 < x < y < 1,

k (x,y) = a k(x,y) and C(x,y) are continuous on 0 < y < x < 1,

and ||k, |I t o < W , then

k*4 (x,y) = kl*4 (x,y) + k(x,x)4(x,y).

Proof: For 0 y < x < 1,

k*'dx+hhy) - k*4(xy) =
h

X k(x+he1n) - k(x Tl),(11y)dn + x+h

y h h x

x+h k(x+h) - k(xn)

As h -+ 0, the first integral converges to k *C(xy) by dominated

convergence, the second to k(x,x)-t(x,y) by continuity of the

l 1-11. Ti -1 la i i na -ilmself lisailm I -Il |

k( xtn) t(1qqy)d n
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integrand (recalling that y < x), and the third to 0 since the

integrand is integrable, uniformly in h, in an interval about x.

§2. Solution of the Commutator Equation.

Let U, (a > 0) be the class of kernels a satisfying
a

(i)

(ii)

(iii)

a and a1 are continuous on 0 < y < x< 1

a(x,x) = a1 (x,x) = 0

a1 1 exists and is continuous on 0< y < x < 1 and

||all Iat

(The subscript 1 continues

respect to x.)

By (ii) it follows that a1

hence, by 2.2,

(5)

to denote differentiation with

= 1*a 1 1 and a = 1 * a and

|IaIay ||a o

||a||a+2, I all+1I

| lal|l + I a s *

From this it is clear that jaj = | a11! ||00"
(and not just a pseudo-norm) on R2  and that

on G2 to the norma

is a norm

I *I is equivalent

( aIa = IIa Ia+2,o + IIaIIa+1,+ I ato *(6)
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Proposition 2.. 2 is a Banach space under 1-.1 .

Proof: By the remark made above, it suffices to show that

a is complete in the norm *J. So let an e CL be a

I *-Cauchy s equenc e;

,an - am| = Ian - a |ax -+ 0 as m, n -+ 0

By the definition of 11.*1 this means that

[a 1(xy) - a (x,y)](x Y1-a converges uniformly to 0 on

0 < y < x 1. Hence a n(x,y)(xa 1-a converges uniformly

on 0 < y < x < 1 to a function c(xy)(x-y) 1-, continuous

and bounded there. Now setting a =', we have a c ,

a1 = c and

an a| = an c -+ 0 as n- oo11 1 a ,0

We now solve the commutator equation

(7) Jr(A) - r(A)J = A

when A is a Volterra operator with kernel a e a

By the general remarks made earlier (7) becomes

(8) l1*r(a) - r(a)*l = a

if one assumes a solution to (7) of the form

x
(9) 1-(A): f (x) -+ j 0 (a)(x,y) f(y)dy.
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Proposition 2.8.

(10) r (a)(x,y)

If a e a as

a2

axay

then the kernel r~(a) defined by

0 < y < x < 1

satisfies (8), is continuous on 0 < y < x < 1, and

Thus r(a) represents a bounded quasi-I (a) t .Ea

nilpot ent operat or r-(A) on LP(0,1) with t|r(A) I |1a| .

Proof: Since a and a are continuous on 0 < y +

(c > 0) the Leibniz rule for differentiating an

parameter can be applied twice to
y
/0 a(F,+x-y, )

integral with

dt. This gives

(applying either a2
aX8Y

a 2
or y

r(a)(xy)

From this

0

follows the continuity of r-(a)

+ a(x,y).

on 0 <y < x <l

+ I jalIa+1 ,O(Xmy)

+ Ia ||a+1 ,
(x-y) 1-a

IIr(a) I <

Since

le[~(a) (x,y)

Ia|

x 2 y
=/ dn[ a (+-y,)d ]

y
=-f 

= a(x,y)

+

+ a~nay) 7

y y
.- al (+x-y, ) d+/al(

y
/ a(+x-y,)d

1

)

and

f y I|a ll a , <"
0(x-y)1a

and hence

I 1 I ~ alIIC 0

C < X <

a 11(F+x-y.,5)dF

I -(a) (x,y)|I _<

a, (9n-,) dt

jal
< . a

( X-Y) 1-a
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and
x 2 71

71 Tj = X

1 a1 ((+x-iT,()dCj

y1=

=/ (,)d /0 al(9+x-y,9)dt

we have

x
1*r~(a) - fl(a)*1 = a(x,y) -/ a

But the last two terms vanish since a e a so that (4t) is

satisfied by fl(a). The last assertion now follows directly

from 24.1.

Remark. For a kernel k of the form k(x,y) = m(y)/m(x),

it can be shown that the commutator equation

k*r(a) - r(a)*k = a

is formally solved by

r(a)(x,y) = m ( 1 a(t+x-y,t) M ,2 d]

provided a(x,x) = a 1(xx) = 0. By using this,

results analogous to those of the present chapter can be

obtained for Volterra operators K with kernels k of the

above type.



Solution of the Operator Equation A + PF (A)

For Volterra operators

and a e cz
P and A

the equation A + PF-(A)

with kernels p C Q,

= -P is equivalent to

a + p*r (a) = -p ,

i.e. to the integro-differential equation

x
a(x,y) + sy1

Lemma 2.9.

C a 2

p(x, i) aIay

If p zC

y
/ a(g+n-y,)didri =

and b e a , then

p r* (b) Ca +, and

|p * r(b) I : B(G,)

Proof: Using 2.6 we differentiate p * r(b) twice with

respect to x.

ax p*r(b)(xy)

This yields first

= p 1*[~(b)(xy) + p(x,x) F(b)(x,y)

(since p(x,x) = 0),

and then

F(b) (x,y)
- p 1 1*F(b)(x,y)

=pli 41- ~( b) ( x,y)

+ pl(x,x) F~(b)(x,y)

(since pl(x,x)

Thus by 2.5 and 2.8, p*[f~(b)

continuous

continuous

on

on

0 < y < x <

and (p*r~(b)) 1 =b)
1 and (p*[(b)) 11 = lpl*'F(b)

are

is

0 < y < x < 1. Three applications of 2.2 now

yield

§3 .

II.10

(11)

= 0P

-p(x,y) .

I| a

2
ap

= 0).

A

= pl-*[~(b) (x,y)

|bI .



I Ip*F(b) I 1U+9+2Soo - B(C+2,9) |I IP| Y+2,ol IF (b) I |

I I(p*F(b)) 1 11C+ +, 00 : B(a+ljp) ||p, I a+ 1ol ||1 (b)II

I I(p*r(b)) ,I IO+Poo

Finally, using the fact that

B(Y,9) < B(aY2)

I 1p11 Icy I r(b) I

bI

when Y > c, we get

Ip*~F(b)j I B(U, )

by adding the

lpla Ibt

three inequalities.

The next lemma will give bounds for the norms

iterates of the operator

a -+ p * r-(a) .

Lemma 2.10. If p C0.0 and a c (2 ,t then fl(a) eanc+ap
and

I1n(a) IpI jal

Proof: Taking P = a and b = a

p(a)

(since B(G,a) =

in 2.9 yields

Now assume inductively that the lemma holds

P= n + a and b = F.(a) in 2.9.
p

for

II.11

0

and

(12)

of the

n and take

.: B(C0,9)

r (a(n)r

| I [~( b) I "

ric Y ra) I P|, |al

r'(a) r'(a)/ r' ((C+a)).



Then +1 a)
p r (b) ea Cp (n+1) c+a

Pn+1(a)| I B(c,na+a) lp I

* B(c,na+a) |p.1

r (n+) C+a]

l11~(a)I

ja) 
nf

jp1n+1

the last inequality following by induction assumption.

Proposition 2.11. If p C az , then r:CL p
a -+ pir- (a)

bounded operator on Z and

11 1 Fn I1/n = 0
n-o p a

Proof: By (2) and (6) it is clear that the norms

crease with a. Thus for a c aa

1 F~(a) I ( (n+l) r n+1

#r i JTIF)Ip In al

the last inequality being a special case of 2.10.

r'(a)n+l1 from which 2.11 follows since

lim '(na) /n=
n-+w

11.12

and

is a

I *!a in-

[ -n|

Hence

, [ (n+l) a I
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4. The Similarity of J + P and J.

Having now established the axioms 1.1 for G., we pass

to the question of similarity of the perturbed and unperturbed

operators.

Theorem A. If p e Cl C, then the operators J and J + P,

where

J: f(x) 0 f(y)dy

and
Y

P: f(x) -/0 p(x,y) f(y)dy

are similar on

Proof: By 2.7,

A with kernels

LP (O,1) for any p with 1 < p < oo.

2.8 and 2.9, the class of Volterra operators

a C a and

|AI = |aa

[(A): f(x) --,/o r~(a)(x,y) f(y)dy

is a space of regular perturbations of J. By 2.11 and 1.2,

A + P F(A) = -P is solvable for A with a C a given P

with p C a . Since FE(A) is quasi-nilpotent,

(I + |~(A)] exists. Hence by the general considerations of

Chapter I, J and J + P are similar.

The preceding theorem can be strengthened by a procedure

used by Volterra-Peres [22) and Kalisch ( ].
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x
Let G: f(x) -+ /, g(x,y) f(y)dy be a Volterra operator

whose kernel satisfies

(1) g(x,y) and gl(x,y) are continuous on 0 < y 5 x < 1
1

(ii) g(x,x) > 0 and /0 g(x,x)dx = 0

(iii) Z t g(t) and d gi(t) are continuous on 0 < t < 1.

where g~(t) = g(t,t) and g1t = gl(tt).

(iv) g11 (xy) is continuous on 0 < y < x < 1 and

11g1 ,O < o where 0 < a < 1.

Corollary A': G is similar to cJ.

This will follow easily from the next lemmas.

Lemma 2.12. Let G be as above with c = 1, and set
x

r(x) =0 g(t,t)dt. Then Sr: f(x) -+ f(r(x)) is a bounded

non-singular operator on LP(0,l). Moreover H = S1lGSr is
a Volterra operator whose kernel h satisfies h(x,x) = 1

and the conditions (i) to (iv) above.

Proof: Since g(t,t) is continuous and > 0 on 0 < t < 1,
1 -1

and /0 g(tt)dt = 1, m = r"w exists and both r and m

are continuously differentiable:

dr= g(x,x) and dm =1
dx dx g~iT7~ii"xTT3

Thus Sr and S 1 = Sm are bounded operators on LP(0,1)rd r d

(bounds < d~j/ and IIjX1c1AP respectively).



Moreover, since

1G
S 4* 6GS f( X)r r

m(x)
0 g(m(x),y) f(m(y) )dy

f(y)dy ,

H = S ;GSr is a Volterra operator with kernel

h(x,y) = M s

Now

h (xy) M(y))
g(m(y))g~(m(x))

h 11 (x,y)

atis fying h(x,x) = 1.

and,

g1 (m(x) m(Y)1 81(m1

g(m(y)) ( X) )

In view of the above expression for h., the continuity of

and dih 1/dt follows from the continuity of g and dg~ /dt.

Similarly, h11 is continuous on 0 < y < x < 1 by the assump-

tions (i) - (iv) on g. To see that h satisfies the proper

growth condition at the diagonal, h 1 (x,y)

notice that in the above expression for h i, only the term

containing gll(m(x),m(y)) can be unbounded near x = y.

by the assumption (iv)

But

on

g1 1 (m(x),m(y))
(m(x)-m(y))l,

which in turn

is 0( 1 since x-y = r(m(x))-r(m(y))
(x-y)

m(x)
S/(y)

d ()-Ft(M( x)

X
/0 x).m(v.)

m iy Om.
-.g

-

= 0 ( 1 -- I
(X-y)

g( tqt)dt.e
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Lemma 2.12. Let H be a Volterra operator whose kernel h

satisfies h(x,x) = 1 and (i) to (iv) above and set

k(x) = exp / h (tt)dt. Then M f(x) -+ k(x)f(x) is a

bounded non-singular operator on LP(0,1). Moreover,

M= HMk is a Volterra operator whose kernel q satisfies

(i), (iv) and q(x,x) = 1, ql(x,x) = 0.

Proof: Since

M kIMk: f(x) -+ / h(x,y) f(y)dy

Q is a Volterra operator with kernel

x
q(x,y) = h(x,y) exp[-/ h 1 (tt)dt]

so that q(x,x) = h(x,x) = 1 and

ql(xy) = [h 1 (xy)-h1 (x,x)h(x,y)] exp(-/Y hl(t,t)dt]

qll(xy) = [h 1 1 (x,y)-h(x,y)t- (x) + f1 (x)2h(x,y)]exp[- 1  (tt)dt

Thus q1 (x,x) = h 1 (x,x) - h 1 (x,x)h(x,x) = 0. That the proper-

ties (i) and (iv) hold for q follows from the above expres-

sions for q, q1  and g and the assumptions (i) to (iv)

on h.

Proof of A': Multiplying by 1/c, G can be normalized so

that /0 g(tt)dt = 1. Then by the lemmas, G is similar to

a Volterra operator Q. whose kernel satisfies q(x,x) = 1,

ql(x,x) = 0, and (1) and (iv). But then the operator P = q - J

has kernel p = q-1 e a and hence by Theorem A, Q = J + P

is similar to J.
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§5. Applications.
x

The Volterra operator G: f(x) -+/ g(xy) f(y)dy is

similar to J if, say,

g(x,y) = eX(Xmy) (where X is any complex number)

or if

4-1

g(x,y) = 1 + where > 2.

This latter example shows that J is similar to J + JP

when p > 2 where J is the fractional integral operator

P x
J": f(x) 1 / (x-y) " f(y)dy

By a result of Kalisch [i I], J is not similar to J + JP

when P < 2. Thus Theorem A is sharp with respect to the

allowable algebraic singularity of p1 1 at the diagonal.
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CHAPTER III

THE SHIFT OPERATOR

In the present chapter perturbations of the isometric

operator

S: (X l ,x2 *'''

by certain trace class operators will be shown

to be similar to the unperturbed operator S.

§1. Preliminaries

With respect to the basis [On: n =0,1,2,...] where

= (1,0,0,...),

by the

= (0,1,0,...), etc., S is represented

matrix

0 0 0

0 0 0

1 0 0

0 1 0

The matrix of the operator

on 4P(Oo)

00

0

1

0

0 0*~

0.-i

01

S =

a

0

Itshif t lef t",9

S: (X ,x ,Xlx2pe*** - l'KP2'''
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is

1 0 0 0

o 1

o o
0 0

1 Q

It is well-known tat S and S * both have norm 1

and satisfy S S = I and SS" E where E

the projection

E 1 : (x0 ,x 1 x2 ,...) -+ (0,xlx 2 ,''')

More generally,

Sn = E n

where

En: (x 0 .x ll''''xn,...

The projections

en

) -+ (0,0...PXn'Xn+'0'* ) *

En are represented by the matrices

n-zeros

diag(0,0, ... ,0, ,

For an infinite matrix a = [a, we define

Ia I
00

ms n0O

the class of matrices

s

* S S

S..

0

0

0

LP( 0,oo)

on

is1

0

1, 1,.. )

(1)

a with Ja I < ".*and will denote by M
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The matrices a e M represent bounded operators on 0(0,o):

A: (x0,x 0 ,x2 '.)-' (yo-yl'y2 ... ) ,

m0

As an operator on 42(0,o),

Its trace is given by

tr(A) =

A is of trace class (see [13J).

ann *E0
n=0

Lemma 3. If a M , then the series

E SkAS
k=O

converges (conditionally) in

Y(A) satisfies IIY(A)Il <

matrix

the

1a

norm of

and is

6 (t); its sum

represented by the

Y(A) = [tr(S~nASMl

Proof: We first observe that the operation a -+ as shifts a

matrix left one column, and a -+ s*a shifts up one row. Hence

a + S*kask shifts a matrix k units diagonally upwards. Thus
N *

the partial sums YN(A) = E S AS have matrices
k=0

N

Y N (ak) = 0
k=0

S as =

Now to establish 3-1, we

a bounded operator Y(A) on

N
[ r an+k,m+k
k=O

first show that Y(a) represents

0(0,00) with IIY(A)If I j al.
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We ha ve

rItr(?AS"'
n=0

00

E |tr(S*nASm)J
M=O

< sup
m>O

< sup
n>O

n=0 k=0

r E
m=O k=0

ian+km+kI < IaI

lan+km+kl <

which, using 1-3, establishes the assertion.

Finally we show that

To do this we observe that

YN(A) -+ Y(A) in the

Y(A) - YN-l(A)

norm of

is represented

'6 (4 p).

by

the ma trix

r-
m=0

= sup
n>N

Y(a ) - YN-1(a ) =

Itr(S*N+nASN+m) sup
n>O

m=N k=0

tr (S"" 'ASN~

00 00

m=0 k=0

s NasN

I N+n+k,N+m+kI

and (similarly)

n=0
ltr(S*N+n ASN+m )I .: aI

*N N

Hence (again by 1-3) we have

>..kT wr
IY(A) -YN-(A )Ip : Is as14 0

But the latter converges to 0 as N -+ 10, which proves

sup
m>O

a nd

sup
n>O

a nd

sup
n>O

sup
m>O

I a I

*N

thbe lemma .



*2. Spaces of Regular Perturbations

For a matrix a c M

r (a)

is thus the matrix of

we define

= s"Y(a).

F(A) = S"Y(A), i.e. of the

operator

(A)

= 1,Since ||S'1|1

= Z S AS
k=0

we have by 3.1,

satisfies the commutator equation

if and only if tr(ASn)

Proof: Recalling that S

SF(A) - T- (A)S

But (I-E1 )Y(A)

(I-e 1 )Y(a) =

- 0 for n = 0,1,2,...

S = I and SS" =E we have

= B1 Y(A) - S*Y(A)S

= Y(A) - S Y(A)S - (I-E )Y(A)

= A - (I-E )Y(A).

has as matrix

~tr(A) tr(AS) tr(AS2 )

0 0

9

0

0

from which the result

III .

of S

(2)

F(a)

jai .

F(A)

Sfl(A) - F(A)S = A

Proposition 0..

IJ (A)| I I ! |IIY(A )|| I I

follow immediately.
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Lemma 3.3. If p and a e M, then pF-(a) c M and

|pr~~(a)l < jpj|aj

Proof: By definition (1),

00 00 00

|pF(a)I = 2 | 2I pnk tr(S ASm
n=0 m=0 k=0

00 00 00 00

< Z : 2k P Z |ak+1+Jm+j
n=0 m=0 = nk j=

00 00 00 00

nz z0 1Pnk' I Z0 Z~ Iak+l+jm+jI]

< jp|ja| .

We are now in a position to determine some spaces of regu-

lar perturbations of S. Let a denote the space of matrices

a c M whose entries vanish on and above the main diagonal.

More generally, Q (a > 0) will be the space of a e MCta

whose entries vanish on and above the ath sub-diagonal.

First, it is clear that the a are Banach spaces under

the norm '*1 of M. Moreover, since tr(asn), n = 0,1,2,...,

are the diagonal and super-diagonal sums of the entries of a,

it follows from 3.2 that for a C Q , r(a) surely solves

sr(a) - f-(a)s = a.

Lemma 3.-4 If p and b c q then pr(b) e

and

IpF(b)t I fe ,p I bI.
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Proof: If b e a , then the entries of r(b) vanish on

and above the (0-1)th sub-diagonal. For r(b) = s"Y(b) and

Y(b) has only O's on and above the Pth sub-diagonal when

b c q P (see 3.1). Thus pF(b) has entries vanishing on

and above the (V+P)th sub-diagonal. In particular pr_(b)

has only Os on and above the (a+P)th row. Hence

pr(b) = e pr(b) so the result now follows by 3.3.

We now investigate the bounds of the iterates of the

operator

on a *

Lemma 3. .

and

If pe (2, and ae(q, the Fn(a)

n

t (a)| < I -r Ieka+LP|] raj
p k=l

Proof: By 3.4 this is true for n = 1.

for n and taking b = rn(a) and =
p

F ~(b)a ana
= (b) e (n+) + and

n+1

( I Ieko+ajp|] tat
k=-1

Assuming validity

na+a in 3.4 gives

As an immediate consequence of 3.5 we have

:a -+ p I'(a)



111.8

Proposition 3.6. Let p ea
a

and I njp a
denote the

norms of the powers of fl as operators on the Banach spacep
Then n

T
k--lp a te(k+l)p

Hence a+pF(a)

provided that

= -Mp is (uniquely)

n

lrn TT le(k+l)aP 1/n
n-+x* k--1

solvable for

<1

a C 2

0

Similarity of S + P and S

We can now easily deduce some sufficient conditions

the similarity of S + P and S.

Theorem B. If p e 0 and jpI < -1 then S + P and S

are similar.

P f | <1Proof:. IPt 2 we have by 3.6 that

Hence a+pr (a) = -p is solvable for

so that |al < 1. But then

11r(A)I|P < ta.

[I + T(A)]

IrnIp
a c Q .

a

< jp3 < n
0 -

Moreover,

exists, since

Hence by the considerations of Chapter I,

s + P and S are similar.

Proposition Bt. If p e 2 6 1 and p has only 0 entries be-

low a certain row, then S

aa.

*3 .

for

0

S are similar.+ P and

1jal < jpj+jpF-(a)j < (1+lal)lpl : (1+jaj)-
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Proof: By assumption enp = 0 for n large enough. Hence,

by 3.5, Fn(p) = 0 for large n. Thus a = Z (- 1 )F _P)
p n=0

is a finite sum and satisfies a + pfl(a) = -p. Moreover,

since p vanishes on and above the first sub-diagonal and

below a certain row, the same is true of a. Thus |(a)

vanishes on and above the main diagonal and below some row.

Such a matrix is nilpotent and hence [I + fl(A)]" exists.

Thus by Chapter I, S and S + P are similar.

Remark. Theorem B refers to perturbations of s of the form

0 0 0 0 ... 0 0 0 0. .

1 0 0 0 ... pi 0 0 0

s+p 0 1 0 0 ... + 2 0 P2 1 0  0

0 0 1 0 ... p3 0 p3 2 p3 2 0

Stronger results can be obtained from 3.6 when the first sub-

diagonal of s is not perturbed, i.e. when p C a with

a > 1. For then, instead of the estimate

IEn 1 pn

given by 3.6 when p e (since e= I) we have
00
n

But, since left multiplication by the projections em replace

the first m rows of p by rows containing only O's, we have

le pI -. 0 as n -+ao when a >0.

P
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CHAPTER IV

THE OPERATOR EQUATION SX-XT = A

Introduction: In this chapter we will obtain solvability

conditions for the comrtutator equation

(1) TX - XT = A

when T is a normal operator on a Hilbert space H. The results

will apply equally well to

(2) SX - XT = A

when S and T are both normal.

For two bounded (not necessarily normal) operators S and

T on H we define

(3) JX = SX - XT

for X 8B(H). Then r is a bounded operator on the Banach

space B(H)and, by a result of Kleinecke (see [17]), has

bs spectrum

(4) a(0) =(S) - S(T).

For C one has the Dunford operational calculus f - f()

defined by

(5) f(0) = - / f(z)(E-mz)"*dz
aD

for functions f holomorphic on a neighborhood D of a(EJ).

A more useful representation of f(0) is obtained by Rosenblua

(J'7];

(6) f(O)A = 1+r / f(S-z)A(z-T) 1 dz
5G
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where G is a certain neighborhood of a(T). In particular,

when 0 ' a(O), (6) gives the explicit inversion formula for

DX = A,

(7) (A) = 1 (S-z)" A(z-T) dz,
c -G

In [8] Heinz shows that if T + T < b < a < S + S", then

-1 exists as a bounded operator on S(H) and is given by

010 tS -tT(8) O"I(A) = - / e Ae dt
0

where the integral is absolutely convergent:

00(9) / 1 |e tsAe-.tT||dt < 1(a-b)' ||A|| .

We, on the other hand, are principally interested in

solving (1), i.e. OX = A when S = T. By Kleinecke's result

()4), 0 then belongs to the spectrum of Q, so that 01will

not exist as a bounded operator on b(H). Thus the above

formulas do not apply to the problem of inverting the commuta-

tor equation (1).

It is the object of this chapter to construct an opera-

tional calculus for 0 when S = T is normal and, from this,

deduce sufficient conditions for the solvability of OX = A.

The explicit solution will have the form of a singular integral

operator |(A) analogous to (5 ) of page 0.2.

By carrying through the analysis to include the case

S # T, we will also be able to formulate the question of ex-
istence of the wave operators
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(10) U+ = w -lim e e

in a new way. These are the unitary (or partial-isometric]

operators which implement the unitary equivalence of S and

T [or of their absolutely continous parts) in the Kato-Cook-

Rosenblum treatment of self-adjoint perturbations S = T + P

of a self-adjoint operator T.

In what follows operators X -+ SX and X -+ XT will be

denoted by S+ and T. Using this notation we have

O S+ - T * From (41), IV. 10 below it f ollows that, as oper-

ators on the Hilbert space of Schmidt class operators, S+ and

T W have as their adjoints (S+) (S*) + and (T-)* = (T )

and hence

El = (S*)+ - (T )

This implies that if S and T are normal operators on H,

then El is normal as an operator on Schmidt class.

The goal of the next few sections is to calculate expli-

citly the spectral resolution of 0 in terms of those of S

and T.

§1. Preliminaries on Rectangles

Given two sets S and S2, the subsets of S, x S2 which

are of the form 6xY with 8 C S1 and Y c S2 will be called

rectangles. The symbol 10' will denote a union whose summands

are pairwise disjoint.
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Lemma If 1 x Y and 62 X2 are non-void, then a third

rectangle 6xY is their disjoint union, 6XY=(61 y1 )rj( 62 Y2 ) if

and only if

either 6= 61 0 62 and Y = Y = Y2

or 6= 61 = 82 and Y = Y 0 Y2

Lemmal.. ( bxy )-(6 ix 1 [ (6) 1)XY-Y 1) IOU (_ 6-1 )X

Proofs: (See Halmos [5 1.)

Lemm . If (6xy)fl( 8xY1 ) is non-void, then (6xy)-( 6 
1 Y1 )

is a rectangle if and only if either 6 C 68 or Y C y 1 ,

Proof: If 8 C 81, then (8xY)-(61xY1 ) = x(Y-Y 1 ) by 4.2. The

argument is the same if Y c Y .

Conversely, suppose (8xY)-(61 yi) is a rectangle. If

61 J and Y-Y 1  O, then 4.2 expresses this rectangle as

the disjoint union of two non-void rectangles. Hence by 4.1

we must then have either Y = Y-Y 1 or 6-. = n 6 81 But this

is impossible since Y n Y, 0 and 6 n 0 (recall that

the rectangles 6xY and 1 Y, were assumed to have a non-

void intersection). Thus either 6-8 = $or Y-Y = $, and

this proves the lemma.

Lemm The smallest rectangle containing a union U( i xyi)

of non-void rectangles is the rectangle (U6 I)x(UY ).
i i

Proof: (Straightforward.)
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Lemma . if 6 
1xY1 , i = 1,2,3, are non-void pairwise dis-

joint rectangles whose union is a rectangle 6xY, then

(6xY)-( 1 xy1 ) = tj 6 xY is a rectangle for some I = 1,2, or 3.

Proof: By 4.3 it suffices to show that either 6 = 61 for some

I or Y = Y for some 1.

We first show: if 6 1 8 6 0, then either 6 c 8 or

6 c 6,0 For example: if 6 1 n 62 0 , then either 6 1 C2

or 62 C 81. Suppose, on the contrary, that 81 62 and

62 61 and take x 1 f1 - 62 and x2 62 ' 61 . Since

61 n 2 0, we must have Y1 f y2 = 0 (by the assumption that

6 1 1and 62xY2 are disjoint). Take y1 e Y, and Y2 2*3 3
Now by 4.4, 8xY = U W)x( U Y ) and hence (x1 ,y2 ) and (x2 ,yl)

i=1 i=1
belong to 6xY. But then, since x1  81, (x1 ,y2 ) and (x2,yl)

must belong to 3xY3  But this is also impossible -since, by

assumption

0 = (6 35 xy 3 )n(6 1 ) = (8 3 n )(Y 3 ly 1)t

and hence either 6 fl = or Y = so that either3 1 ' y3 fy
(x 1 ,y 2) 3 xY3 or (x2,yl) 6 63 xy3 * This contradiction es"

tablishes the assertion made at the beginning of the paragraph.

The analogous assertion holds for the Y1 .

Case I: 6 n6 = $ for i 7 J. Then Y =Yi For suppose
3

y C Y-Yy. Then (x,y) c 6x8 for all x e 6 = 6 1 (see 4.).
1=1

In particular (x,y) c 6xY for x e 81. But this is impossible

since x c 61 implies that (x,y) / 2 xY2 and (x,y) / 3 Y3 , and

y Y1 implies that (x,y) / 1 Y 1 .
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Case II: 65 C 6 for some i and j with i / j, say

2 C 6i. Then either 6= or 3=6 or Y = 3 From

the above we know that if 6 6 3 then either 6 C 63

or 6 c 61. Since 62 C6 and 6= U 6i, 6 c C3 implies
1=3

that 6=6 and 6 c implies that 6=61. Hence we can

assume that 6 1 n = 3 Then 6 2 n = 0' also, since

6 2 C 1 This implies that Y = Y . For otherwise take

y e Y0%3. Then (x,y) e 6xY for all x e 6 and, in particular,

for x e 6 * But this is a contradiction, since x e 63 implies

that x p (6 1 Y1 )U(62 y2 ), and x X Y3 implies that (x,y) X 63 xy
It follows from the first part of the proof that Cases I

and II are exhaustive, so the lemma is proved.

§2. The Tensor Product E (.

Let F denote the 0-ring of Borel subsets of the complex

plane C . A resolution of the identity on a Hilbert space

H is a function E(.) .on (3 whose values are (orthogonal)

projections on H and which satisfies

(1) E(O) = 0, E(C) = I

(ii) E(6f6t) = E( 6 )E( 6 1) for all 6, 6' e i.e. if
cc

6 e6 and 6  6n then
n=1

E(6)f= z E(n )f for every f e H.
n=1

Let be the ring generated by the rectangles 6xY with

6, Y 15 , i.e. f is the set of finite disjoint unions of

Borel rectangles. If E( *) and F(*) ars resolutions of the

k
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identity we define the (bounded) operator E ® F(6xY) on

4(H) by

(I) E & F(6xY)A = E(6)AF(Y).

n
Lemma k.6. If 6xY =3 (%xYi) then

i=l

n
EOF(6 xY) = Y E ® F ( 1 xY)

i=1

Proof: If 6xY = (61 xy)0(2 xY 2) then by 14.1 we can assume

that, say, 6 = 56 2 and Y = Y1 = Y2. We then calculate

directly

E(61 )AF(Y)+E(62 )AF(Y) = [E(%1)+E(6 2 )]AF(Y) = E(6 )AF(Y)

3
If 5xY = 0 (6 xY i), then by 1 . we can assume that, say,

i=1
(62 xY2)( 3 xY 3 ) is a rectangle. Thus the case n = 3 follows

by applying twice the case n = 2.

Now assume the result for k < n - 1. Since

n
6xY = ( xY1 )n (6ixY ) = (61 Y 1 ) J 1 2

i=2

where A= 81 (Y-Y 1) and A2 = (bm1)xY, we have by an appli-

cation of the case of three disjcint summands

E ® F(byxY) = E ® F(5
1xY1)+E ® F( 1 )+E ® F(A2)*

n n
Now = [1 xY )A1a] and A= 2 0 [(( Y i)n 2]. Thus, since

i=2 i=2

the intersection of two (Borel) rectangles is again a (Borel)

rectangle, we can apply the inductive assumption to get
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n n
E ® F(A1)+EOF(A 2 ) Z E ® F[(6 xY )lA]+ Z E ® F[(6 1 Y )na 2]1=2 1=2

n
and this is equal to Z E ® F( 6 xy ) since for i > 2,

1=2

6 xY = [(6 xy )Ao[(6 xY )n62

n
Hence E 9 F(6xY) =2 E F(i xy )

1=1

Lemm .. If A (I = 1,...,n) and A (j = 1,2,...,m) are

two families of pairwise disjoint Borel rectangles and

n m n m
S= A A ,then Z E F(A ) ZE F(A').

1=1 j=1 3 =1 j=l

Proof: A, a n A (i 1,...,n; j = 1,2,...,m) is a
ii 1

family of disjoint rectangles and A = UP a = I A.

Moreover that E ) = 2 E ( F(® ) and E F( =
j i

Z E ® F( A) follows from 4.!5. Hence both Z E ® F(A1 ) and

Z E ® F(A ) are equal to Z E ® F(A .
a ii,j

In virtue of this lemma we can define the operator

E ® F(A) on B(H) for any A ' \ by

n
(2) E ® F(A)A = ZE(6 )AF(Yi)

i=1

where 6 1xY (i = 1,...,n) is any finite family of disjoint
n

Borel rectangles with A = t 61 xY. Then as a consequence
1=1

of 1.+.7 we have
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Lemma 4... The operator E ® F(A) on 6 (H) is a finitely

additive function of A e

Lemma 14.9. (1) E 9 F(O) = 0, E ® F(c x .) = I.

(ii) E ® F(A nl At) = E 9 F(A)E ( F(A') for all 4te p.

m
Proof: (i) is clear from (1 ). If A = i b XY then for

A e 13(H)

E ® F(A)E ® F(AI)A = Z E(8 i n )AE(Y ifY 3 ) E ® F(4fA 1)A,

since 3 (6 nf6) x(y fYP,); = 3 (6 xy )(6 xy' ) =A 2
911, j i ii i

§3. Complete Additivity of E ( F( *) on Schmidt Class

Let H now be a separable Hilbert space and [n] a com-

plete orthonormal set in H. An operator A on H is said

to be of Schmidt class if

JJAJ 12 00

s| l = Z I |Anj 12<
n=l

The Schmidt class of operators forms a Hilbert space with

(AB)8 Z z (An, Bn )
n=.

This Hilbert space is independent of [0 ] and is (unitarily

equivalent to) the tensor product H ® H* If we denote the

linear functional (., g) by ', then the elements of H ® H* of

the form f ® g are identified with the operators h -+ (hg)f
n

on H. More generally, Z ci f ® i is the operator on H
i=l
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of finite rank given by

n n
( Z 1 f g )h = z c1 (h,g )f.

iJ~l

H 9 H" is the closure of the set of operators of finite rank

in the norm || ||s. For these remarks and the facts which we

list next the reference is Schatten [gO].

(i) If Xe b3(H) and A cH®H, the AX and

XA C H 9 H*. In particular X(f ® ) = (Xf) ® and

(f e 1)X = f X*g.

(ii) If X e B (H) and A,B e H ® H , then

(XA,B)s = (AX B) and (AX,B)5 = (ABX )8 .

(iii) For A c H H, (A, f ® g)s = (Ag, f). In partiou-

lar, (0 ® ', f ® 1g) s *(0,f)(T.

Lemma I+.10. For each A e Pt , E ® F(A) is an orthogonal

projection on H ® H * Moreover, if 4, &1 e it and A c At.

then E F(6) < E 0 F(').

Proof: From 4.9 it follows that E ® F(A) 2 = E 0 F(A).
n

If a = 6 xY and A,B e H ® H", then, by (ii) above,

n
(E ® F(A)AB)5 = 2 (E( 8i)AF(Yi),B), =

i=1

n
i=l (A,E( 6 i)BF(Yi)), = (A,E ® F(A)B)8
i=1

and hence E 0 F(A) = E ® F(A). Thus E ® F(A) is an ortho-

gonal projection.
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If A a A I, then 6 ' = A U (At-A) and hence, by the

finite additivity of E ® F( * ) on ) ,

E ® F(A t) = E 0 F(A) + E ® F(A ..A)

from which the last assertion of the lemma follows.

From now on the E ® F(A) with A e will be inter-

preted exclusively as operators on H H* (and not on 8B(H)).

Lemma 0.. E ® F(*) is strongly completely additive on V .

Proof: If A n C TL an d An O , then by 4.10, E ® F(An) is an

increasing sequence of projections on the Hilbert space H H*.

Thus E ® F(A ) converges strongly to a projection P onn

H ® H". We now show that if A U An £ E , then E ( F(A) = P.
n=l

Since E ® F( *) is, by 4.8, finitely additive on , this will

prove the lemma.

From (i) above we have E ® F( 6 xY)f ®g = [E(6)f] .
n

Thus, if A = xY, then

1E F(A)f Z |E(6 )f F(Y)g|I
i=l

= J I|E(6 )fII 2 |F(Yg)gl|2
i=1

- (p. x v ()

the cartesian product of the two measures

P(O)= |IE( *)f|| 2 and v(.) = I|F( R)g1 2

Hence, if An, A e and An o A, then
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(AE ® F(A-A )f I) A 1 12,1E F(A-.nA)f' 2

I IIA 12( xV)(v- ) -+ 0 as n

since PxV is a finite measure and A-a %. Thus

lim E ® F(An)f ® g = E ® F(A)f 4i so that E ( F(A) = P at all
n-ow

elements of H 0 H of the form f ® '. But then, since H 0 H'

is the closed linear span of elements of this form, we have

E F() = P throughout H H".

Proposition h.12. E 9 F( *) has a unique extension to a reso-

lution of the identity on H H', i.e.

(i) E ® F( *) is defined and strongly completely additive

on the a-ring 8 x13 of Borel subsets o (C x

(ii) E ® F(AfA') = E ® F(A)E ® F(A 1) and

E 9 F(A)" = E ® F(A) for all A,A' 9 15 xl.

(iii) E ® F(O) = 0 and E F( x C) = I.

Proof: The set functions 4A,B( *) = (E F( *)A,B)s are com-

pletely additive on the ring ( of Borel rectangles and by

Schwartz's inequality fIA,B(A)| . |1A1111B||, for all A ev1.

Hence by standard theorems (see e.g. 12t , p. 136) on the ex-

tension of measures IAB(.) can be uniquely extended to a

measure on 6 x ' . The extended measure also has the bound

11A|| 3|1B|1 8. That tAB(A) is linear in A and conjugate linear

in B for fixed A e )5 x6 follows from the uniqueness of the

extended measure and the fact that AB (A) has this property

for A c . Hence for each A e 1B x)3 there exists a unique
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bounded operator E ® F(A) on H ® H* such that "AB(6) =

(E ® F(A)A,B). That the E ® F( *) thus extended satisfies (ii)

follows again from the uniqueness of the measures PAB(*) and

the fact that E ® F( P) satisfies (ii) on R . Thus the ex-

tended E 9 F(O) is a weak resolution of the identity. How-

ever, the strong complete additivity now follows, since (ii)

implies that I |E ® F( *)At I2= (E 9 F( *)4,A)5 and hence for

A e e x13 with An * A we have

n n
||E ® F(A.-on)A| -+ O as n -+ c.

Remark 4.13. In the case of Schmidt class operators of rank

one, A = and B = f ® g , we have

(E ® F(A)AB) = (Px )(A)

where P(e) (E( *),f) and v( ) = ( TF(TT,). This follows

immediately for A e TI using that

(E ® F( 6 xY)0 e Y, f ®g) = (E(6)g,f) (F(Y) 7,) . Then by

uniqueness the two measures are equal on ) x 1 .

14.. Solvability of 7X = A when A is of Schmidt Class

Let S and T be normal operators on H with resolutions

of the identity E( o) and F( e) respectively. Then E ® F( #) has

support included in (S)xa(T). For a function f(X,§), bounded

and measurable on G(S)xa(T), we define the operator f(S+,T_)

on H H 4by

(1) (f(S+,T_)AB) / f d(E ® F(*)A,B)s
-I(S)xG(T)
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For two functions f(X,) and g(X,), bounded and measurable

on a(S)xa(T), we have

(2) (f 9) (S+IT.) = f (S~qT.)g(S~tT.)

This follows from (ii) above by approximating f and g uni-

formly by simple functions. A similar argument shows that if

h(X) is bounded on a(S) and k( ) is bounded on 0(T) then

(3) h(S+) = h(S)+ and k(T.) = k(T)

where h(S) =/hdE and k(T) =/kdF.

Theorem C. Let S and T be bounded normal operators on H

with spectral resolutions E( P) and F( .) and let A be a

Schmidt class operator on H. If

(*) F(A) = (c)/ . dE ® F( *)A exists in the weak operator

topology of H, and

(**) E 0 F( 6)A = 0 where 6 is the diagonal of 0(S)xO(T),

then SF(A) - r(A)T = A.

Proof: Let X be the characteristic function of

Ae= [(X,t):IX-fI > el and set fe(X,9)

Then f. is a bounded function on a(S)xa(T) and the assumption

(*) means that the Schmidt class operators f (S+.,T)A converge

in the weak operator topology of H to F~(A). We have by (2)

and (3) above

3[fr(S, T.)A) [fe(S+,T.)AJT =

= (S gT )f(S+,T)A = E ( F(A )A
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which converges in 1|*11, to A - E 9 F(8 )A. But then since

F(A) = w - lim f,(S+,T)A we have

Sr~(A) - F~(A)T = A - E ® F(8 )A,

from which the theorem follows.

Examples. Let H = L2 (-l,1) and S = T be the operator

f(s) -+ sf(s) and
+1

A: f (s) + a(s,t)f(t)dt where 7/a(s,t)I2dsdt < "0
.1

For a subset A of the square, E '0 E(A)A is the integral oper-

ator with kernel '(a a. More generally, f or a bounded func-

tion f(s,t) on the square, f(T+,T_)A is the operator with ker-

nel f(s,t)a(s,t). Thus the operator r-(A), if it exists, is

the weak operator limit of the Schmidt class operators

/ 1 dE ® F(*)A: f(s) Y /( ) f(t)dt,
is-tl>Ct Is-t|ze t

+1
i.e. fl(A)f(s) = (c) 4 s-t) f(t)dt.

Here E OE(5)A = 0, since its kernel is X 6 a = 0, so that

the condition (**) is vacuously fulfilled.

The situation is reversed if H is finite-dimensional.

In this case, E ® F(6) = 0 is necessary and sufficient for

the solvability of SX-XT = A. For a(S)xa(T) consists of just

a finite number of points so that f(X,) = where

A= [(, X): X / is bounded on a(S)xa(T). Thus r~(A) A

f(S+,T.)A exists and Sr(A) - r~(A)T = (S+-T.)f(S+,T_)A =

E 9 F(A)A = A - E ® F(6)A, so that E ® F( 6 )A = 0 is sufficient.



IV.16

It is necessary since E @ F(6)[SX-XT] = g(S+,T. )X where

,= (A-C) 2(.6 (x -) 0.

Remark. The conditions (*) and (**) are easily shown to be

also necessary for the solvability of SX-XT = A for X in

Schmidt class where the operators f(S+,T.) and E ®F(A ) are

defined. The difficulty in showing the necessity of these

conditions for solvability in b(H) stems from the fact that

we may well have solvability in '6(H) but not in Schmidt

class. It can be shown that in the first example considered

above TX-XT = A possesses a Schmidt class solution if and only

if

41 , 1 t) 12dsdt < GO,

a property not enjoyed by the regular Fredholm kernels

studied by Friedrichs, for which, on the other hand, the

commutator equation is solvable in a(H)

These difficulties will be partially overcome in the

last section of the chapter. By other devices, the condition

E 9 F( 6 )A= 0 will be shown to be necessary for solvability in

* (H).

§5. The Convolution E * F(*) and Applications

We now assume that S and T are self-adjoint operators on

H with resolutions of the identity E(*) and F(*). E F()

is then defined on the Borel subsets of RxR where R is the real

line. For a Borel subset 8 of R we define
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E * F(6) = E ® F(A)

where A = [(X, ): X-9 e 6]. Then E * F(*) is a resolution

of the identity on H ® H" defined on R. For functions f(x)

bounded and measurable on C(S)-a(T) we have (recalling that

0 = S+ - T)

/
O(S)xa(T)

f(X- )d E ® F( *) = / f(x)d E * F( )
o(S)-a(T)

Thus, in particular, we have the expression

*it] /40 itx d E *F( *)

itC] its -itT%
for e. (A) = e Ae-o , interpreted as an operator on H ® H".

Thus for A e H ® H" and f, g e H we have

its -itT +0itX(a Ae- gf) = d (E * F( *)A, f g)s

and hence

Theorem D. If A is of Schmidt class then (e itsAeitT gf)

is the Fourier transform of the finite Borel measure

(E * F(*)A, f ®j)

Examples * If A = 0 ® , then

(E * F( *)A, r ® g) = ( puv)( *)

where P(.) = (E(*)$,f) and v(.) (F( *)Yg),

since by 4.13,

(E 9 F( *)A, f s PXV)

f(!) =
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If S and T have absolutely continuous spectrum i.e.

(E( *)V,f) and (F( e)Y,g) are absolutely continuous measures on

R, then

d±*(8) = f[(E(*)$,f) (F(*)Y,g)]dx

so that

itS -itT it x ) x( F(*)y
(e Ae. g9f) e' e -E J]d

If, finally, S T is the operator f(s) -+ sf(s) on

L2 (,+o) then

(eitT Ae-itT itx[(Of)*(Tg)]dx

Solvability of DX = A

Since de = ito we have

il /eiso (A)ds = A - e (A)
0

this suggests, as a solution of OX = A, the integral

r~(A) = -i / e (A)dt
0

If this integral exists in the sense of the weak operator topo-

logy of H, then 01~(A) = A. Thus sufficient conditions for

solvability can be expressed as integrability conditions on the

functions (a Ag,f) which, if A is of Schmidt class, are the

Fourier transforms of the finite Borel measures (E F(*)Af 0 g) .
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Existence of the Wave Operators U .

Define U = eitS e-itT and set P = S - T.

Then = eitS Pe-itT it (P) so thatdt t

U= I + i / te is(P)ds
0

Thus the existence of U+ = w - lim U depends on the existence

00itO]
of / e (P)dt as a weak operator integral, for which, if P

0
is of Schmidt class, sufficient conditions are again expressible

in terms of the integrability of the Fourier transforms of

finite Borel measures (E 4:- F( *)P, f 9 g) .

Remark. These considerations suggest how to formulate ab-

stractly the notion of "regularity" or "smoothness" of a

Schmidt class operator A with respect to a self-adjoint opera-

tor T (or self-adjoint operators T and S) in such a way that

regularity of A => solvability of OX = A (or the existence of Uk).

Namely, the Fourier transforms of certain finite Borel measures

on R should be integrable. The H6lder-regularity of the kernels

a(s,t) assumed in the Friedrichs example T: f(s) -+ sf(s) is

clearly expressible in the above terms.
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