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Abstract

Modeling and simulation of fires are useful in determining their impact on nearby and dis-
tant objects, quantifying their environmental impact, improving fire suppression techniques,
etc. Fires, essentially naturally aspirated combustion phenomena, are buoyancy driven dif-
fusion flames in which the fuel supply rate is governed by the burn rate itself. It has been
observed experimentally that the complex interaction between the flow, transport process
and chemistry in a fire leads to large scale "puffing"; an unsteady phenomenon manifested
in the periodic ejection of bellowing smoke. The complexity of the phenomenon defies ana-
lytical treatment except at the very coarse grain level essentially using similarity principles.
Numerical solutions based on ensemble averaging/closure and flow-combustion interaction
models are encumbered by uncertainty and unproven hypotheses. A viable alternative is a
numerical simulation of the unsteady governing equations with sufficient resolution to cap-
ture the important scales. In this work, contributions to a grid-free Lagrangian approach to
simulate numerically fire plumes are suggested. The physical model incorporates unsteady
buoyancy dynamics, transport of heat and mass by diffusion and convection, radiative trans-
port of heat, and a single-step, infinite-rate chemical reaction with exothermic heat release.
The numerical approach is based on the vortex method in which the unsteady conservation
equations of vorticity, chemical species and energy are solved using a set of moving compu-
tational elements carrying time dependent quantities. A compatible approach is proposed
to solve the radiative transport equations. Simulations of an axisymmetric plume are used
to identify the dynamic mechanisms leading to "puffing", the processes which govern en-
trainment into the rising unsteady plume, burn rate, and overall observable quantities such
as the flame height, radiation flux, etc.

Thesis Supervisor: Ahmed F. Ghoniem
Title: Professor
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Chapter 1

Introduction

Fires result in human, environmental, and economic losses. Minimization of these losses

has mainly been empirically based. Fire science, being a relatively young subject, is gaining

more interest in recent years due to its clear benefits. According to the study conducted by

Shaenman[81], a total annual savings of $5-9 billion could be traced to the National Institute

of Standards and Technology program, costing less than $9 million per year. Fire science

extends beyond the combustion process itself to include study of their effects. According

to Cox[23], "fire is such a complex subject that its study forces together many otherwise

disparate specialisms. The subject of fire science includes contributions from structural

engineers, behavioural psychologists, toxicologists and statisticians." Among the objectives

of fire science are determining the impact of fires on nearby and distant objects, predicting

their growth and propagation, quantifying their environmental impact, improving fire sup-

pression techniques, etc. According to the International Standards Organization[74], fire is

defined as:

(i) A process of combustion characterized by the emission of heat accompanied by smoke

or flame, or both.

(ii) Combustion spreading uncontrolled in time and space.

The subject of this thesis is numerical modeling and simulation of fires. Fires differ from

human controlled combustion processes in three major aspects: (1) They are uncontrolled

in the sense that the rate of fuel supply is determined by the positive feedback of heat

(dominated by thermal radiation) from the products of the fire. (2) They are buoyancy

driven and naturally aspirated. (3) They are diffusion flames where mixing of fuel with air
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is controlled by buoyancy dominated convection which, along with stoichiometry, results in

inefficient combustion in the form of long flames. This inefficiency results in large volumes

of hot products that contain large quantities of soot particles due to the inefficient partial

oxidation of fuel. Thermal radiation from these large exposed combustion volumes may ig-

nite potential fuel and thus increase the possibility of fire spreading, especially in enclosures

[23].

Natural fires are characterized by Fr < 1, where the Froude number, Fr = u 2 /gD

represents the ratio of inertial to buoyant forces. Fire flows are predominantly turbulent.

The corresponding length scales vary between the Kolmogorov scale, of the order of few

millimeters, and the fuel dimension or plume width, associated with large eddies. Based on

the corresponding turbulence Reynolds number, fires tend to be at the lower end of fully

turbulent flows.

Diffusion flames, including fires, are controlled by diffusion rather than chemical reac-

tion. For fires, typical diffusion time scale is of the order of few seconds, whereas chemical

time scales are in the range 10- 5-10- 6 s. This justifies for the assumptions of local equi-

librium and infinite rate chemistry. It has been observed experimentally that fire plumes

exhibit large scale unsteady motion in the form of "smoke" puffs which are shed periodically

within a pool diameter above the fuel pool. These products of combustion form as a result

of the complex interaction of buoyant fluid dynamics, heat and mass transport via convec-
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tion and diffusion, radiative heat transport, and complex hydrocarbon oxidation chemistry

(Figure 1). Contrary to most other combustion processes, the fuel supply rate in a fire,

governed by the evaporation/sublimation or pyrolysis, is determined by the heat flux back

to the pool, with a significant contribution from radiation. Radiation also contributes to

the loss of a significant fraction of the heat released within the fire. The release of heat

within the plume also generates strong buoyancy currents which determine the rate of air

entrainment towards the fuel pool. Mixing within the plume is driven by the shear layers

which form along the plume boundaries, and their role in enhancing the diffusion controlled

fluxes of heat and mass along the stretched material interfaces. Clearly, a physical model

designed to simulate fire dynamics must account for the unsteady interactions among these

processes, namely buoyancy, convection and diffusive transport, radiation, and chemistry.

This chapter is organized as follows. Experimental observations are discussed first fol-

lowed by analytical methods. Next, comparison between grid-based and grid-free numerical

methods is discussed. The objectives are then stated. An overview of vortex methods

follows. Numerical methods for solving radiative transfer are then described. Finally, a

roadmap of the thesis is laid out.

1.1 Experimental work

Experimental study of pool fires has been conducted over wide ranges of parameters [41, 12,

103, 102] for the purpose of determining the dependence of the burn rate, the flame height,

the heat release rate and radiative flux on the size of the pool and the fuel characteristics.

These experimental studies have shown that most fires possess strong dynamics, charac-

terized by the shedding of large burning structures, often referred to as puffing. These

structures depend strongly on the pool diameter and weakly on the fuel type, and their

formation is believed to impact the entrainment and hence the burning rate and products'

composition.

The following sections summarize some of the important experimental observations,

covering the unsteady behavior of the fire in terms of the puffing frequency, intermittency

and flame height, air entrainment, and radiative heat loss.
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1.1.1 Puffing

The dependence of the puffing frequency on the fuel pool diameter and fuel type has been

compiled experimentally (see Hamins et al [41].) The puffing frequency, f, represented in

the form of a Strouhal number St = fD/wo, has been described by St oc Fr-n, where

the Froude number, Fr = wa/gD with m = 0.38 and 0.57 for non-reacting plumes and fire

plumes, respectively. The fuel source diameter is D, the fuel outflow speed from the source

is wo, and the gravitational acceleration is g. The dependence of the Strouhal number on

the Froude number has later been derived by Delichatsios[27] using dimensional analysis.

Despite several attempts to determine the mechanism leading to puffing and predict its

characteristics, e.g. the phenomenological analysis by Weckman[98] based on assuming the

presence of a vortex near the pool outside the diffusion flame, the modeling by Bejans[7]

based on the theory of buckling of inviscid flows, the linear stability analysis of diffusion

flames conducted by Lingens et al[64] which showed that instability of this flow close to the

fuel source is absolute, etc., a comprehensive approach for prediciting the puffing frequency

and explaining mechanistically the processes leading to the unsteadiness is not yet available.

1.1.2 Intermittency and flame height

The intermittency, I, defined as the fraction of time during which at least part of the flame

lies above a horizontal plane located at a specified elevation, Z, above the fuel source, and the

flame height, Zf, defined as the height at which I = 0.5, have been studied experimentally

[103, 68]. The extent of intermittency, normalized by the average flame height, was shown

to increase with the fuel source diameter.

Data on flame heights is available for wide ranges of fuels and burner diameters[45, 104,

100, 57]. Correlations[45, 8, 9, 44, 43], obtained from fitting the experimental data, relate

the average flame height, normalized by the fuel source diameter, to the dimensionless heat

release rate Q* =Qf /p.CpTv DD2 , where Qf , po, C, and T) are the heat release

rate in the fire, the ambient density, ambient temperature, and the constant pressure specific

heat respectively. This correlation shows two distinct regions where the flame height scales

differently: Zf/D a Q*2/3 for Q* <1 and Zf/D Ce Q*2/5 for Q* > 1.
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1.1.3 Entrainment

Entrainment, while driven by the fire dynamics, determines the burn rate, and hence must

be quantified accurately in a fire model. However, current entrainment correlations which

are based on experimental results suffer from a large scatter. Results obtained by Thomas

et al[89] differ by up to 50% from those obtained by Delichatsios[28] and about 35% from

those obtained from Caltech[13]. This large scatter is attributed to the differences in the

definition of entrainment utilized in connection with different measurement techniques, and

the difficulties facing experimental measurements.

One technique is based on experimental measurements of density and velocity at different

locations to estimate total mass flux in the plume[103]. However, measuring simultaneously

the instantaneous profiles of temperature and velocity is difficult because physical probes

with fast time response often can not survive the high temperature environment of the

plume. Another technique, which uses the Ricou and Spalding apparatus[78], is based on

regulating the air supply to a fire-surrounding hood until the pressure differential across

the hood vanishes. This technique is a poor choice when measuring entrainment close to

the pool surface due to its sensitivity to flame oscillations. Furthermore, the selection of

the diameter of the circular opening at the top of the surrounding box is critical to this

technique as it affects the flow in the neighborhood of the fire. A third method which uses

the hood technique[13] suffers its own shortcomings as well, especially if determining the

mass flux in the plume is required.

Recently, a theoretical model for predicting entrainment rates based on prior knowledge

of heat release and vorticity distributions within the plume has been suggested by Zhou et

al. [102]. However, measurements of these quantities in fires have been most challenging due

to the lack of accurate instruments for direct measurement of vorticity, and errors associated

with available instruments used for indirect measurements.

1.1.4 Radiation

Experimental work focused on measuring the ratio of the total energy lost by radiation to

the total heat released for a variety of fuels and a range of burner diameters. This ratio

was found to be roughly independent of the burner diameter and to depend strongly on the

fuel. Its values vary from 0.25 for methane flames[10, 75] to as large as 0.5 for acetylene
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flames. These results reveal the significance of radiation in studying fire dynamics and its

impact on its surroundings. However, measurements of the instantaneous radiative flux are

not available.

Clearly radiation is one of the primary mechanisms for the supply of heat to the fuel

pool and the loss of heat from the plume. Radiative flux depends non-linearly on the

instantaneous composition of the combustion products, their optical properties, and the

temperature. Therefore, prediction of the radiative flux within the fire and to surrounding

objects requires accurate knowledge of distribution of these quantities.

1.2 Analytical models

Algebraic models, limited to estimating the average velocity and temperature fields for the

nonreacting buoyant plume rising above the top of a fire, have been developed. In the point

source model[80, 71], the plume is assumed to rise from an equivalent point source, which

allows determination of similarity solution; a reasonable description of the flow far above

the source. The solution is obtained using the integral form of the conservation equations

along with the following assumptions: (1) Gaussian radial profiles of vertical velocity and

temperature, (2) Boussinesq approximation, and (3) entrainment rate per unit height is

proportional to the ambient density, the centerline velocity, and the scale of the width of

the plume at that elevation[71].

The point source properties, the elevation and the initial enthalpy and momentum fluxes,

however, have to be determined such that the far-field characteristics of the point source

plume asymptotically approach those of the real plume above the top of the fire. Although

the enthalpy flux must be equal to that produced by the fire, the equivalent point source

elevation (effective origin) and the initial momentum flux are not so easily determined and

one must rely on correlations based on experimental data[13, 44] to determine the offset of

the effective origin from the real origin by matching the initial mass flux.

Incorporation of unsteadiness into the point source model is limited to steady input of

buoyant fluid at the source[95] and allowing the top of the plume to rise to accomodate the

entrained flow.
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1.3 Numerical methods

Experimental observations showed that the fire flow-field is characterized by the shedding of

large burning structures above the pool. These structures are thought to contain regions of

high vorticity, which control the entrainment of air into the reacting zone, and hence mixing

and burning rate. These observations suggest that accurate representation of vorticity is

a primary requirement of numerical computation of this flow. The numerical approach we

choose to compute the flow field is the vortex method (in axisymmetric coordinates.) Vortex

methods may be classified as grid-free, Lagrangian, vorticity based, and conservative.

Vortex methods have been successfully used to investigate the evolution of vortex sheets

[18, 83, 35], high Reynolds number wakes [86, 15], three dimensional problems [53, 67, 33, 2],

non-reacting buoyant plumes[36], reacting flows in shear layers [84], co-axial jets [65], and

fires [59, 36].

In these methods, convection is simulated by transporting conserved quantities such as

circulation along particles' trajectories. Vortex methods differ from conventional grid-based

methods in various ways. Vortex methods requires elements in regions of non-zero vorticity

only, hence endowing the method with spatial adaptivity and maintained numerical res-

olution. The Lagrangian aspect of vortex methods avoids the introduction of numerical

diffusion induced by the discretization of convective derivatives on a fixed grid. This ad-

vantage is especially important when "high Reynolds number" flows are considered, where

numerical dissipation might destroy the small scale features of the flow produced by the

convection processes. Further, conventional numerical methods require special treatment

of the far-field boundary conditions for flows in unbounded domains. These conditions are

naturally satisfied in the vortex method by using the proper Green's function of the Pois-

son's equation relating the velocity to the vorticity. An overview of vortex methods can be

found in [19, 34, 63].

While grid-based numerical methods are highly developed, vortex methods are still under

development, especially for complex flows such as combustion. Some of the challenges in

simulating reacting flows using a vortex method include incorporating the effects of variable

diffusion properties, the dynamic impact of large heat release, and radiative heat transfer.

For the problem at hand, some development in the numerical algorithm has been made

and some assumptions had to be enforced regarding the unresolved problems. These are
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described next.

1.4 Objectives and tasks

The objectives of this work are

" to develop a grid-free Lagrangian computational tool (based on the vortex method)

for the numerical simulation of fire plumes in an axisymmetric domain, in which

buoyancy, combustion, and radiation are incorporated, and

" to utilize this tool to reveal mechanisms in fire dynamics such as puffing, entrainment,

flame height, etc.

Meeting the above objectives requires carrying out the following tasks:

1. Formulate an accurate vortex method in an axisymmetric domain. This includes

determining an axisymmetric "adaptive" core function, development and implemen-

tation of an accurate diffusion algorithm, and extending the method to transport a

reacting scalar field.

2. Extending the formulation to account for nonlinear source terms in variable density

radiating flows.

3. Solve the energy equation with the radiation source term. This presents a significant

challenge on two levels. First, the evaluation of the radiation source term, which

involves a volume integral of the black body radiation attenuated by the radiation

kernel, in a grid-free manner (to be compatible with the grid-free form of the rest of

the scheme). Second, coupling the solution of the vorticity transport equation and

the energy equation.

4. Using simulation results to investigate fire dynamics leading to the experimentally

observed phenomenon of puffing and intermittency in flame height, dependence of

the average fire properties on pool and fuel characteristics, and the origin of the

entrainment mechanism.



1.5 Vortex methods

In the vortex methods, the equations governing conservation of vorticity, energy, and species

are numerically solved via operator splitting. The stability and convergence properties are

discussed in chapter 3. The splitting results in the requirement to solves three processes

separately. These processes are convection, diffusion, and generation. Next, we discuss

briefly the various methods currently used to solve each substep.

1.5.1 Convection

In the convection step, the elements, carrying conserved quantities, are convected according

to the velocity field. The velocity field is determined using Biot-Savart summation[3] over

all the elements. The direct summation is an expensive process where the computational

cost is of the order of N 2 , where N is the number of elements. For the purpose of reducing

the cost, fast methods[38] were developed with a cost of the order of NlogN.

1.5.2 Diffusion

Grid-free Lagrangian numerical modeling of diffusion involves solving the diffusion equation

on an irregular distribution of vortices. Some of the current methods for diffusion mod-

eling are random walk, core spreading, diffusion velocity, particle strength exchange, and

redistribution method.

Random walk method

Proposed by Chorin[17], the random walk method is applied by giving the positions of

vortices random displacements of, a process which spreads out vorticity similar to diffusion.

The solution of random walk method converges to that of the Navier-Stokes as the number

of elements increases. The random walk method is simple to use and conserves the total

circulation. However, the random walk method suffers from several drawbacks. First, it

does not conserve the mean position of vorticity. Second, it leads to noisy solutions. The

performance of the method improves for larger number of elements resulting in an increase

in the overall computational cost of a simulation.
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Core spreading method

The core spreading method[63] solves the diffusion equations by associating for each element

a basis function with a core radius that expands in time. The core function, based on the

Green's function of the diffusion equation, solves the diffusion equation accurately. However,

as the elements expand in time, the convection process becomes inaccurate, as proved by

Greengard. Rossi proposed splitting the elements into smaller vortices in a symmetrical

fashion, which reduces the error due to convection but on the expense on an exponential

increase in the number of elements.

Diffusion velocity method

The diffusion velocity method[37, 73, 52] is based on simulating diffusion as a part of

the convection process. This is done by determination of an artificial "diffusion" velocity

derived by absorbing the diffusion term in the convection term in the vorticity equation. The

diffusion velocity method has the following disadvantages: the diffusion velocity may become

infinite in regions of vanishing vorticity or large vorticity gradients. Further the method is

not divergence free and requires an large number of vortices for accurate simulation.

Particle strength exchange method (PSE)

The PSE method[77, 16, 22, 25] is based on determination of the circulations of the elements

in time by approximating the diffusion operator by an integral operator, and discretizing

the latter using the particles positions as quadrature points. The PSE method requires large

overlap as a condition for accuracy resulting in a large number of elements. Further the

method requires periodic remeshing to maintain accuracy leading the interpolation errors.

Redistribution method

The redistribution method[86] simulates diffusion by transferring fractions of the circulation

of the element to be diffused to neighboring elements. The fractions are obtained by solving

a linear system of equations based on conserving various moments of vorticity. The redis-

tribution method however is based on a point representation of the vorticity field making it

difficult to recover the pointwise vorticity field. In practice, the vorticity field is recovered

by determination the appropriate core radius by trial and error.
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1.5.3 Generation

The source terms are the baroclinic vorticity generation in the vorticity equation, rate of

reaction in the species conservation equation, and heat of reaction and the divergence of

the radiative heat flux in the energy equation. The source term is in general a function of

the pointwise distribution of vorticity, temperature, species, and their gradients. Since the

quantities transported by the elements are integral quantities, then the pointwise source

term distribution has to be cast into these transported quantities. One way of performing

this task is to calculate the circulation by integrating vorticity over physical area, assuming

uniform distribution within physical area[85]. Another way is to determine the circulations

by solving a linear system obtained by evaluating the vorticity representation equation at

the elements locations. Methods for solving the linear system are discussed by Marshall

and Grant[66].

1.6 Grid-free modeling of radiative transport

Radiative transport in a participating medium transforms the energy equation into an

integro-differential equation. In combustion problems, the temperature gradients are so

steep that the region where the radiative flux, which is proportional to the fourth power

of temperature, is significant only in a small subset of the entire flow domain. Especially

when utilizing a grid-free scheme to perform the convective-diffusive-reactive simulations,

it is desirable to develop a compatible scheme which does not require a grid to compute

the radiative flux and its divergence (needed in the energy equation.) We have developed

the discrete-source method[58] in which the radiative flux and irradiance are computed

by summing over a collection of radiating elements distributed over the region of high

temperature. In an axisymmetric domain, the irradiance and radiative flux, being triple

integrals of the radiation kernel over the elemental volume, are reduced to double integrals

which are then approximated by single integrals that are evaluated semi-analytically.

Methods currently used to solve radiative transfer include the method of spherical har-

monics, the discrete ordinates method, the zonal method, and the Monte Carlo method. A

brief description of these methods is presented next.
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1.6.1 The method of spherical harmonics

The method of spherical harmonics[51, 55, 24, 72] transforms the equations of transfer into

a set of simultaneous partial differential equations. The method has the following disad-

vantage, lower-order approximations are only accurate in optically thick media, whereas for

higher-order approximations accuracy improves slightly with a rapid increase in mathemat-

ical complexity. The method of spherical harmonics is based on decoupling direction and

location by expressing the intensity as a two-dimensional Fourier series. The expression in

the summation is a product of a position-dependent coefficient and a spherical harmonic

which is direction-dependent. Exploiting the orthogonality properties of spherical harmon-

ics, the equation of radiative heat transfer is convoluted with these functions to yield an

infinite system of coupled partial differential equations in the unknown position-dependent

coefficients. The infinite series is the truncated retaining retaining N terms, where N is the

order of the method.

1.6.2 The discrete ordinates method

First proposed by Chandrasekhar[14], the discrete ordinates method[93, 94, 30, 31] also

transforms the equation of transfer into a set of partial differential equations. It differs

from the method of spherical harmonics in that the directional variation of the intensity is

discretized over a finite set of discrete directions spanning the total solid angle. Thus, the

method may be thought of as a finite difference approximation of the directional dependence

of the equation of transfer.

1.6.3 The zonal method

In the zonal method[46, 47], the medium is subdivided into a finite number of isothermal

volumes and surface area zones. Energy balance is then performed for the radiative exchange

between each two zones, leading to a linear system with the temperature or heat flux as

the unknown. The method requires calculation of "exchange areas" [61] between each two

zones. Evaluation of these exchange factors is a difficult and expensive process.
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1.6.4 The Monte Carlo method

The Monte Carlo method[32, 49, 48, 97] is a statistical method in which the history of a

statistically meaningful random sample of photons is traced from their point of emission to

their points of absorption. As the complexity of the problem increases, the Monte Carlo

method requires less computational effort and less complex formulation that conventional

methods. However, it is subject to statistical error

1.7 Roadmap

This thesis may be divided into two parts: numerical development and application. The

development part is covered in chapters 2 through 7 as follows: the governing equations are

stated in chapter 2. Vortex methods are discussed in chapter 3 followed by scalar transport

in chapter 4. Diffusion, convection and radiation modeling are discussed in chapters 5, 6,

and 7 respectively. The application part covers chapters 8 through 11 as follows: Isothermal

and reacting plumes are discussed in chapters 8 and 9 respectively. Examples of stokes flow,

vortex ring, reacting fuel ring, and reacting radiating fuel ring are discussed in chapter 10

and 11. Conclusion and future work are stated in chapter 12.
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Chapter 2

Governing Equations

In this chapter, the conservation equations governing the flow of a multicomponent reacting

mixture of ideal gases in an axisymmetric domain are presented. The equations governing

conservation of mass, momentum, and energy are described in sections 2.2, 2.3, and 2.4

respectively, along with the underlying assumptions. In section 2.5, the species conservation

equation is presented, along with the chemical reaction and expressions for the rate of

reaction and heat release. Density effects in large heat release buoyant flows in unbounded

domains are discussed in section 2.6. The dimensionless form of the governing equations

is presented in section 2.7. In section 2.8, the equation governing vorticity transport is

presented. The Shvab-Zel'dovich formulation, used to eliminate the reaction source terms

in the energy and species conservation equations, is presented in section 2.9. The special

case of infinite rate chemical reaction is discussed in section 2.10. Expressions for the rates

of change of material integrals of scalar and vector quantities are shown in section 2.11.

The symbols appearing in the equations are described in Table 2.1.

2.1 Conservation equations

The laws of conservation for a multicomponent reacting mixture[99, 3] of ideal gases are:

1. Conservation of mass (continuity).

2. Conservation of momentum (Newton's second law).

3. Conservation of energy (first law of thermodynamics).

32



Symbol Description
a acceleration
A the frequency factor in the Arrhenius expression
B a constant in the frequency factor (A)

CP Specific heat of the mixture at constant pressure
D mass diffusion coefficient
Dij binary mass diffusion coefficient for the pair or species i and j
Ea activation energy for the reaction

g gravity, g = -gi, where g is gravitational acceleration
hQ heat of formation per unit mass for species i
k specific reaction rate constant

Ai molecular mass of species i

Ai average molecular mass of the mixture
Ns total number of chemical species present

p thermodynamic pressure

qr radiative heat flux
r position vector in axisymmetric coordinates; r _ rf + zi

r radial coordinate
RO universal gas constant
9 mixture fraction
T temperature
t time
u velocity vector (ur, Uz)
Ur radial velocity component
UZ axial velocity component
U reference velocity
Xi mole fraction of species i

Yi mass fraction of species i

z axial coordinate
a thermal diffusivity a = A/pcp

exponent determining the temperature dependence of the frequency factor
for the reaction

I circulation
A thermal conductivity

A coefficient of (shear) viscosity
V kinematic viscosity v = p/p
W vorticity vector
W vorticity

<p fuel to air mass fraction fractio

p density
6 coordinate in azimuthal direction

a rate of heat generation per unit volume due to chemical reaction
V (mole) stoichiometric coefficient
wui reaction rate
X chemical symbol for a species

Table 2.1: notation
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Symbol
subscripts
i

f
0

p
d
0
sz
superscripts

accents

operators
Vv
Dv/Dt
V x v
V-v
dimensionless numbers
Le
Pe
Pr
Re

Description

refers to ith species (i = 1, ..., N,)
fuel
oxidizer
product
diluent
refers to free stream conditions
refers to a Shvab-Zel'dovich conserved scalar

denotes a dimensionless variable
refers to reactants
refers to products

denotes a unit vector

gradient of vector v
the convective (material) derivative; Dv/Dt = Ov/&t + (u - V)v
curl of vector v
divergence of vector v

Lewis number, Le a/D
Peclet number, Pe roU/a
Prandtl number, Pr - v/a
Reynolds number, Re - roU/v

Table 2.2: notation
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4. Conservation of species.

The unknowns are the velocity u, the thermodynamic pressure p, the absolute temperature

T, the species concentrations Xj, i = 1, N,, where N, is the number of species. The knowns

are the chemical equilibrium constants, reaction rates, heats of formation, and boundary

condition for u, p, and T.

2.1.1 Thermodynamic properties

The conservation equations also contain the thermodynamic properties: density p, enthalpy

h (or internal energy e), and the transport properties p, A, Dij. Assuming thermodynamic

equilibrium, these properties are uniquely determined by the pressure and temperature.

Thus the system is completed by assuming knowledge of the state relations

X = X(p, T) (2.1)

where X denotes any of the properties p, h, p, A, and Dij. The state relation for density[82]

in differential form is
dp- = 3dT + rdp, (2.2)
p

where for an ideal gas, the coefficient of thermal expansion, 3, and the isothermal com-

pressibility, r,, are given by

11 (2.3)
p T T P (P T P

2.1.2 Laws of chemical reaction

Determination of the source terms in the energy and species conservation equations requires

modeling of the rate of reaction and knowledge of chemical-equilibrium constants and heats

of formation.

2.1.3 Boundary conditions

The boundary conditions for u, p, T, and Xi must be specified for a particular problem.
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2.2 Conservation of mass

The equation of continuity is
D p
-+pV -u = 0 (2.4)Dt

where V is the gradient operator and D/Dt is the material derivative + u V);

the time derivative following the motion of the fluid.

2.3 Conservation of momentum

Assuming that

1. the fluid is Newtonian,

2. the fluid is in thermodynamic equilibrium,

3. the only body force is gravity, g,

4. the coefficient of viscosity, p, is constant, and

5. the effect of bulk viscosity is negligible,

the momentum equation is
Du

p_ = pg-Vp+ pV 2u (2.5)
Dt

2.4 Conservation of energy

Assuming that

1. the reversible compression component due to equilibrium pressure is negligible,

2. the irreversible expansion component, due to departure of mean normal stress from

equilibrium pressure, is negligible, and

3. the dissipation of mechanical energy into heat, due to the interaction of deviatoric

stress component with the non-isotropic strain component, is negligible,

4. the Dufour heat flux1 is negligible,

'the component of heat flux due to the concentration gradients of the chemical species.
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the energy equation is
DT

pcP Dt = V - (AVT) + E - V -qr, (2.6)

where E is a source term corresponding to the rate of generation of energy per unit volume

of a material element due to external agents or chemical reaction, and -V - q, is the source

term due to radiative transport; qr is the radiation heat flux.

2.5 Combustion

In addition to the conservation equations of mass, momentum, and energy, combustion

formulation characterizing flow of a viscous, heat-conducting mixture of diffusing, reacting

gases entails

1. description of chemical reactions among the species,

2. development of the mass conservation for each species, and

3. development of the relevant source term in the energy equation due to these chemical

reactions.

2.5.1 Chemical reaction

The chemical reaction, assumed single-step and irreversible, accounts for consumption of

reactants, fuel (f) and oxidant (o), in the presence of a diluent (d) , and production of

products (p) according to

VfXf +'V Xo +V /Xd -4 V Xp +VXd, (2.7)

where vo and v ' are the stoichiometric coefficients for species i, appearing as a reactant

and as a product, respectively; i = f, o, d,p. The stoichiometric coefficients specify the

molecular proportions in which the reactants participate. The chemical symbol for species

i is denoted by Xi.

2.5.2 Conservation of species

Consider the individual components of the mixture, denoting the density of the i-component

by pY, where Y is the mass fraction and i = 1, ... , N,. Assuming that
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1. the binary diffusion coefficients of all pairs of species are equal, D = Dij,

2. the pressure gradient diffusion 2 is negligible, and

3. the Soret effect 3 is negligible,

then the equation governing conservation of chemical species is

D Y = V - (pDVYi)+ P . (2.8)
Dt

The mass production rate per unit volume of the ith component, Pi, may be expressed as

Pi= Mivizu, (2.9)

where Mi is the molecular mass of the ith component, Mivi is the mass stoichiometric

coefficient; vi = v' - v , and w is the reaction rate. Thus the conservation equation for

species i is

p DY = V - (pDVY) + Miviw. (2.10)
Dt

2.5.3 Rate of reaction and heat release

The reaction rate is proportional to the product of the concentrations of the reactants,

zz=k(T)N XYR OT (2.11)

where Xi is the mole fraction of species i, and k(T), the specific reaction rate constant, is

given empirically by the Arrhenius expression

k = Ae-Ea/ROT (2.12)

where R0 is the universal gas constant, Ea is the activation energy, and A is the frequency

factor given by the approximation

A = BTO (2.13)

2contribution of pressure gradient to concentration gradients when the mass fractions differ from the mole
fractions.

3The contribution of thermal diffusion to concentration gradients.
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where B and 3 are constants, 0 <f3 < 1.

The heat release E is
N

P=i/ hZ (2.14)

where h9 heat of formation per unit mass for species i. If the reaction is exothermic and

the heat of reaction of the fuel (hO) is large compared to that of all other species, then the

heat release may be expressed as

0 = M V'hom. (2.15)

2.5.4 Equation of state

The ideal gas equation of state, relating the density to the temperature, is

pROT
P = , (2.16)M

where the average molar mass, M, is given by

1
M = .s / (2.17)

i=1 Yi AM

The mole fraction is related to the mass fraction via

M
Xi = Yi . (2.18)

2.6 Density effects

In this section, we discuss the effects of density variation on the momentum and energy

conservation equations, and the sources of change in density. The discussion will be focused

on flows involving large heat release in a unbounded domain in the presence of gravity.

In natural convection, a local change of density is the agency that initiates motion.

Therefore, p must be allowed to vary in the expression for the gravitational force, f = pg,

even if it is treated as a constant parameter elsewhere. Further, in the presence of gravity,

spatial variation in density will result in nonuniform acceleration. Therefore, p must be

allowed to vary in the term pDu/Dt.
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There are three ways to change the density of a given fluid particle: (1) isentropic com-

pression, (2) viscous dissipation, and (3) heating by conduction or radiation '. Isentropic

compression is important in high speed flows, and in sound waves propagating in either

liquids or gases, viscous dissipation is important in high-speed gas bearings and in super-

sonic boundary layers, and heating by conduction or radiation is important in fires and in

boundary layers on very hot or cold bodies. Dimensional analysis of the problem of free

convection over a flat plate leads to the dimensionless numbers gz/a 2 , (AT/T) (gz/a 2 ), and

AT/T reflecting the relative importance of (1), (2), and (3) with respect to the divergence

of the velocity, respectively. Obviously for operating conditions of fires, gz/a 2 << 1 and

(AT/T) (gz/a 2 ) << 1, leaving heating by conduction or radiation as the dominant source

of density variation. For a fire of elevation 5 meters with a maximum relative temperature

change of 5, the values are 0.0004, 0.002, and 5 respectively.

The term anelastic flow[82] implies that the density of a particle varies only as a result

of isobaric thermal expansion, so that equation 2.2 is approximated by

Dp DT (2.19)
Dt Dt

Together with the continuity and energy equation, equations 2.19 yield the result

V-u + PV -q = 0 (2.20)
cp

The effect of the anelastic approximation is to remove the acoustic phenomena from theoret-

ical consideration, while still allowing an accurate accounting for the buoyancy and inertial

effects of variable density, the modification of viscous forces and heat conduction by the

variation of transport properties, and the velocity induced by moderately slow expansion

or contraction of the fluid particles.

For a thermally perfect gas (,3T = 1), equation 2.19 becomes

D(pT) -0 (2.21)
Dt

This thermodynamic conclusion does not imply, however, that the pressure is absolutely

uniform. Pressure gradients my be large enough to be important in momentum balance, but

4 viscous dissipation and heating by conduction or radiation are usually accompanied by thermal expansion

40



simultaneously small enough to have no significant influence on the variations of density or

temperature. So, assuming anelastic flow of a thermally perfect gas, the continuity equation

reduces to

V - (Pu + (1 - 7-1)(AVT - qr)) = 0, (2.22)

and the equation of state is approximated as

pT = P a constant, (2.23)

where -y = cp/c, and the value of P is determined by the initial state of the fluid.For

unbounded domains, P = po; the farfield pressure.

2.7 Dimensionless form of the governing equations

Using the reference length' ro, reference ciruclation 6 ro = rov/g , reference velocity

U =- o/ro, reference time7 to = ro/U, and other properties at freestream conditions

po, Po, To, Mo, poI k, Do, the dimensionless variables, denoted by asterisks, are as follows:

r
r* =r- V* = roV

ro

* = UuU

t
- ro/U

T* = T
TO

* = 0
Pa

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

5 pool radius in th fire problem; initial radial location for the vortex ring problem.
6for the vortex ring problem, To is the initial circulation.
7Oscillatory effects which are intrinsic to the flow pattern, such as the shedding of vortices in a buoyant

plume, are not fundamental external parameters but are part of the solution to the flow problem. Thus the
Strouhal number of the plume vortices is uniquely determined by the flow.
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p* = I,
'o

Mo

* P + pogz - Po

poUl

P0 UQ* = Cp

cho

= ToM '

Do

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)(V -qr)* = V -qr
pocpoToU

After omitting the asterisks, the conservation equations, in their dimensionless form,

are described as

Conservation of mass:
DPv
D+ pV - U = 0
Dt

(2.35)

Conservation of momentum:

Du
p = -Vp + (2.36)1 1V2U + (1 -P)Z

Reo

Conservation of energy:

Conservation of species

DY
Dt Le

Ideal Gas equation of state:

+ Qfzf - V -qr

I V - (pDVY) + Aiwf,
oPeo

pT

M

i = 1, .. , N

1
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Pc, Dt = -- V - (AVT)

DiPeo
(2.37)

(2.38)

(2.39)



where Af = -1, AO = -(Mov')/(Mv) -, Ap = (Mpvt')/(Mfv')

Ad = 0. The Reynolds, Prandtl, Peclet, and Lewis numbers are respectively

Reo = 5
i/O

Pro = -, U = O
ao poc,0

Peo = roU = ReoPro
ao

Leo = ao
'Do

2.8 The vorticity equation

The vorticity vector is defined as the curl of the velocity,

W = V x u.

1 + #, and

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

In axisymmetric coordinates, the vorticity vector points in the azimuthal direction, 0, and

is given by

/aur
az

(2.45)

The vorticity equation[20], obtained by taking the curl of the momentum equation 2.5

and using the continuity equation 2.4, may be described as

Dw _ Vp\ DuN
Dt - ((W -V)u - W (V -u)) + x ( Du + vV 2w (2.46)

Noting that the reference vorticity is

* w (2.47)
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the vorticity equation, in dimensionless form, after omitting the asterisks, is given by

Dw Vp I DuN _

Dt ((W - V)u - w(V - )) + x -z - D + V 2 w (2.48)
Dt p Dt Reo

Noting that w - Vu = (wur/r)9, then

Dw_ ur Op p v U)---- V-u w+- a -- ar + v (2.49)
Dt r p Or a Oz Reo r 2

where

ar = Du (2.50)
Dt

= -1 - Du (2.51)

Assuming that pT/M = 1, and that p is constant, then

- = ---, -u) -- I az t- ar at + t V2W--' (2.52)
Dt r T Or Oz Reo r2

where T = TIM.

2.9 Shvab-Zel'dovich formulation

The energy and species conservation equations are complicated by the presence of source

terms. These "reactive scalars" equations can be simplified using the Shvab-Zel'dovich (S-

Z) variables[99]. These variables are constructed from combinations of the primitive scalars

such that their transport equations do not contain the source terms. Define the following

S-Z variables:

77sz = - #Yf (2.53)

ysz = T - 1 + <Y (2.54)

Ssz =Yd (2.55)
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Then, the S-Z scalar transport equation are obtained from algebraic manipulations of

equations (2.37) and (2.38) as follows:

pD - pDIV. (P , Vn7sz) (2.56)Dt Peo Leo

p DI= V - (AVT - p V 1Y+ (2.57)
Dt Peo Leo V + I

D6sz 1 ('PD ) (2.58)
Dt Peo Leo

Assuming that

Le =- = 1 (2.59)
'D

the Shvab-Zel'dovich scalar transport equation have the following general form:

pD- 1 V2g (2.60)
Dt Peo

where 9 is a S-Z variable. Moreover, if all these variables can be normalized such that the

resulting normalized variables have the boundary conditions, then equation (2.60) can be

solved once for all the S-Z variables. The S-Z variables imposes some limitations on the

problem. This is because a necessary condition for obtaining the reduced equation 2.60

is that the mass diffusion coefficients must be the same for all the species and the Lewis

number must be unity.

Now define the following normalized S-Z variable; the mixture fraction

s = ' (2.61)
sf,O - So,O

for 9 = 7sz, sz, and Js, where the subscripts o, 0 and f, 0 refer to the boundary conditions

on the fuel side and oxidizer side of reaction, respectively. The normalized form of the S-Z

scalar transport equation becomes:

p-ds 1 V 2 s (2.62)
dt Peo
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with the following boundary conditions: s = 1 on the fuel side, and 0 on the oxidizer side.

The normalized equation has the characteristic that its boundary conditions are the same

for 9 = 7sz,7sz, and &z. Once s is obtained, 7sz,ysz, and 6sz are obtained from equation

2.61.

2.10 Infinite rate chemistry

The number of scalars is N. + 1 (N, species and T). Solving equation (2.62) provides us

with N, - 1 linear equations (2.53, 2.54, 2.55). Another equation is the identity

Yf + Yo + Y + Yd = 1. (2.63)

Obviously, an additional equations is required to solve for the scalars. If the chemical

reaction rate is assumed to be infinite, then, according to equation 2.11, VfYvo = 0,

i.e. the fuel and oxidizer do not co-exist, and the reaction occurs across an infinitely thin

interface characterized by

7lsz,F = 0 (2-64)

The fuel and oxidizer mass fractions are then determined as follows

YJ = 0, Yo = 7sz if 77sz > 0 (.5ifi~ 8 ~>0(2.65)

Yf = -sZ/Y =0 if 7sz < 0

The average molecular mass is independent of the sign of qsz and is given by

M= ( + ) 7 sz + Yd) (2.66)
MP MO MP Md Mp

where

MMO(1 + 6)
M= (2.67)

M 0 + #Mf

2.11 Rate of change of material integrals

An area or volume integral of some quantity along the path which moves with the fluid

and consists always of the same fluid particles is a material integral. Material integrals

are needed to represent the total amount of some quantity associated with a given body of
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fluid, and their rates of change with respect to time are also relevant. The rates of change

of area and volume material integrals[3] of a quantity 0 are respectively

d fdA= D dAf+ Vu- dA (2.68)
dt JA JADt A r

and

dj OdV DO dV+ O(V.u)dV. (2.69)
dt 6V fsv Dt 'v

if 0 = W, then

d wdA J dA+ W V. u- dA (2.70)
dt 6A A Dt

if 0 = pT, then with use of the continuity equation,

d pTdV = DT dV (2.71)
dt 6V fsv Dt

if 0 = p, then

--- pdV = 0 (2.72)
dt 6V

2.12 Summary

In this chapter we presented the governing equations in dimensionless form. The underlying

assumptions are stated in terms of their relevance to each equation. Development of the

radiation source term in the energy equation is presented in chapter 7. In the next chapter,

the vortex method is discussed, whereas the numerical implementation is left for a later

stage.
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Chapter 3

The Vortex Method

In this chapter, we review the vortex method in an axisymmetric domain and summarize

its advantages.

3.1 Introduction

In an inviscid flow without external forces, according to Kelvin's circulation theorem[3, 20],

the circulation around a contour moving with the flow is invariant in time. Then, by Stokes'

theorem, the flux of vorticity across a surface moving with the fluid is constant in time:

Ic(t) = f u - ds = w -dA (3.1)

where u is velocity and A(t) is a surface whose boundary is an oriented contour C(t). In

two dimensional inviscid flows vorticity is convected by the velocity field. Thus, viewing

inviscid fluid dynamics in terms of elements of vorticity which induce motion on each other

is mathematically correct and often very convenient. This observation constitutes the basis

of the vortex method; a Lagrangian numerical method in which the computational elements,

carrying vorticity, follow the motion in the fluid.

A large class of fluid problems involves flows that are characterized by small regions of

vorticity imbedded in an otherwise irrotational fluid. Examples include jets, vortex sheets,

wakes, buoyant plumes, and fires. Generation of vorticity may be due to an imposed velocity

differential at a boundary (jets, vortex sheets), or due to an external body force acting on

a region of non-zero density gradient (buoyant plumes and fires), or at boundaries such as
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flow over a cylinder (separation - wake).

Vortex methods have the following advantages:

1. computational elements exist only in regions of nonzero vorticity; these constitute

small portions of the flow field, which results in savings in computational time.

2. they are grid-free and thus more suited to problems involving flow around complicated

geometries.

3. they are adaptive; since vorticity follows motion, numerical resolution is maintained.

4. no direct discretization of the spatial velocity gradients is needed; this avoids intro-

duction of numerical diffusion and possible destruction of small scale features in high

Reynolds number flows.

5. they satisfy far field boundary conditions in unbounded domains; grid based methods

are forced to used a computational domain of finite size.

3.2 The vortex method

The approach we choose to compute the fire plume flow field is simulation using the vortex

method. Vortex methods have been successfully used to investigate the evolution of vortex

sheets [18, 83, 35], high Reynolds number wakes [86, 15], three dimensional problems [54,

67, 33, 2], reacting flows in shear layers [84, 85], and co-axial jets [65].

Vortex methods simulate flows of this type by discretizing the vorticity field into vortex

elements and convecting these elements in a Lagrangian reference frame. The required local

velocities are computed as the solution to a Poisson equation for the stream function, often

in terms of a Green's function or Biot-Savart integration. As the vortex elements move with

the flow, the vorticity field is then updated by integrating the vorticity transport equation

in time, and so on. An overview of vortex methods can be found in [19, 34, 63]. The

vorticity equation, equation 2.52, is discussed in section 2.3.

An additional contribution to the velocity field is the potential component which is

imposed by satisfying the boundary conditions. Furthermore, In the case of low Mach

number compressible flows, compressibility enters into the picture in terms of accounting

for density variation in the above formulation. Spatial density gradients contribute to the
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destruction or creation of vorticity, whereas temporal variation adds an expansion compo-

nent to the velocity field, which is required to satisfy continuity. The decomposition of the

velocity field into a rotational, potential and an expansion component, called the Helmholtz

decomposition, will be discussed in section 2.5.

3.3 Discretization of the vorticity field

The vorticity field is modeled as a collection of vortex elements initially discretizing an initial

vorticity distribution, such as the case of a non-reacting jet, or distributed initially in the

region of non-zero density gradients, such as the interface between the fuel and oxidizer in a

diffusion flame. The vorticity field can be written as a sum of functions of small support[19],

N

w a Z wi(r). (3.2)
i=1

The support of a function wi is the neighborhood where it does not vanish.

A special, useful choice of functions wi(r) is

wi= Fi 3(r - ri), (3.3)

1 (r\
05 = # (r), 6 small, (3.4)

where Pi are the coefficients and # is a smooth function such that

I drdz = 1. (3.5)

3.3.1 points

A special case is representation of the vorticity field using a collection of N point vortices.

In this case, #, = 6(r) = Dirac delta function, and

N

w(r, t) = r3 Ii6(r - ri(t)), (3.6)

This representation is numerically problematic due to the following reasons:

1. reconstruction of the vorticity field is not possible unless a smoothing function is em-
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ployed. The size of the smoothing function, not known a priori, is usually determined

by trial and error.

2. determination of the velocities at the location of the points is not possible due to the

singularities associated with Dirac delta functions. Again, a smoothing function has

to be introduced.

3.3.2 blobs

An alternative is to use vortices with finite cores (vortex blobs) with a specified vorticity

distribution within the vortex known as the smoothing or core function. For a collection of

vortex blobs, the vorticity field is approximated by

N

Wj (r, t) = 2J'j#3(r, ri), (3.7)

where the core function #j is characterized by core of size 6 and Fi is the circulation of

element i located at ri. The smoothed or approximated vorticity can be related to the

exact vorticity via the convolution

w6(r, t) = J5(r, r')w(r', t)dr' w (3.8)

3.4 Vorticity transport

In this section, vorticity transport using a collection of Lagrangian computational element

is discussed. For a specified form of the core functions, determination of the vorticity

field, discretized according to equation 3.7, requires knowledge of the locations, cores, and

circulations of the computational elements. The locations are obtained by integrating the

velocity field in time. Knowledge of the core size and its role will be clear in chapter 5.

The circulations of the computational elements are obtained by integrating the vorticity

equation over the elements areas.

Recall that the equation governing the transport of vorticity, presented in section 2.8,

is

Dw Ur 1 Up __ W-V - r az---ar- + 2- (3.9)
Dt r p r z Reo r
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where

ar Dur (3.10)
Dt

az = -1- (3.11)
Dt

The vorticity equation 3.9 updates the circulations of the computational element that are

used to calculate the velocity field. The baroclinic and buoyancy terms, expressed as the

first term of equation 3.9, contribute to the creation and destruction of vorticity. Fur-

ther, the diffusion term, expressed as the second term of equation 3.9, corresponds both

to molecular diffusion that changes the vorticity distribution and to decay of the vorticity

near the axis of symmetry. The diffusion term differs from the corresponding term in two

dimensional cartesian coordinates in the sense that the later is responsible only for vorticity

redistribution without affecting its conservation. This will be discussed further when the

numerical implementation of diffusion is laid out in the following chapter.

The vorticity equation is solved in three steps: convection, diffusion, and generation.

These steps are described below and the details of their numerical implementation are

discussed in chapters 4 (diffusion) and 5 (convection).

3.4.1 Convection

In this step, we solve the equation

Dw (Ur = 0 (3.12)
Dt (r

for a material element with vorticity w(r). Integrating over the area of the element, then,

using equation (2.65), we get
d = 0, 

(3.13)
dt

where the circulation is given by

F = f wdA. (3.14)
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The computational elements are transported in time according to

d =i 0 (3.15)
dt

and
dri (3.16)

= ui 3.6dt

where ri is the location of a computational element of circulation Fi and its velocity ui

is obtained from the Helmholtz decomposition, discussed in section 2.5. In this step the

assumptions have been made that computational elements retain their shape and they move

according to the velocities of their centers.

3.4.2 Diffusion

In the diffusion step, the computational elements are assumed stationary. Diffusion of

vorticity is then governed by the equation

_ 1 _

at - Reo (r217)

where the kinematic viscosity is assumed to be constant. Recall that the objective is to

solve for (ri, Pi, 6i) 1 such that the vorticity representation (equation 3.7) approximates the

solution of equation 3.17. This will be the topic of chapter 5.

Of special interest is the Green's function of equation 3.17. The Green's function, which

is the solution for an initial point source of vorticity located at (ro, zo) of the form

wO = W(r, z, t = 0) = 6(r - ro)6(z - zo)6(t), (3.18)

is
27rro r -r2+z zQ rro

w(r, z, t) = (41rVt) 3 /2 e- 4zO I, ( , (3.19)

where v = 1/Re, 6 is the Dirac delta function, and 1 is the modified Bessel function of the

'Even though the elements locations are fixed in this step, new elements may be introduced.

53



second kind of order one. The circulation, as a function of time, is given by

1(t) J j wdrdz = (1 - e- 4 . (3.20)

Unlike the case of diffusion of point vortex in cartesian coordinates where the circulation

is conserved, the circulation in axisymmetric diffusion is not conserved. Due to radial

symmetry, the circulation decay in time proceeds at a larger rate the closer the point vortex

is to the axis of symmetry.

The Green's function given by equation 3.19 provides the basis for diffusion by core

expansion and serves as a candidate smoothing function.

3.4.3 Generation

In this step, the vorticity is updated according to

=9w - 1 az 2  - ar (3.21)
at p 0r 9Z

where

a r (3.22)
Dt

az = -1 - Du, (3.23)
Dt

According to the above equation, vorticity is generated (or destroyed) if the flow ac-

celerates (or decelerates) in a direction of a non-zero density (temperature) gradient. The

spatial gradients of the density are obtained using the scalar-transport method described

in chapter 4. The acceleration terms are usually determined by first order backward Euler

differentiation of the velocity.

For convenience, let's express express equation 3.21 as

Ow= () (3.24)
at

Again, the objective is determine the elements circulations such that the vorticity repre-

sentation (equation 3.7) approximates the solution of equation 3.24. Using the vorticity

54



representation 3.7 we get
N

0j#(r, ri) = E(r) (3.25)
i=1

Approximating the time derivative using a first order forward Euler discretization, we get

N

ZArio6(r, ri) = AtE(r) (3.26)
i=1

where A]i -- Li(t + At) - Ti(t). One way to solve equation 3.26 is to satisfy it at a specified

set of points, more specifically at the centers of the elements. This leads to the linear system

N

ATjq#3(rj, ri) = AtE(rj) for j = 1, .., N. (3.27)
i=1

The coefficient matrix #6 (rj, ri) is, in general, ill conditioned (interpolation matrix), such

that the solution with a fairly smooth source field (6(r)) leads to large variations in cir-

culations of nearby elements. An alternative to solving system 3.27 directly, the iterative

scheme proposed by Marshall and Grant[66] is used to obtain a smooth fit to the source

field. In this scheme, it is temporarily assumed that surrounding each element j, there

exists a set of elements Q(j) for which the elements amplitudes are nearly the same as that

at element j. The set Q(j) contains the elements that are within a characteristic distance,

P*, selected to be the core size 6. Letting P(j) denotes the complement of Q(j), i.e. the

set of elements that are located at distance more that * from element j, the linear system

3.27 is approximated by

ArMl) 1: g6(rj, ri) + 6 AF "0#$(rj, ri) = At0(rj) for j = 1, .., N. (3.28)
iGQUj) iEP(j)

where m is the iteration index. Thus, given the amplitude values at iteration m, the

amplitudes at level m + 1 may be obtained according to

T(m+1) -AtO(r 3 ) - ZEiPt) AF. " 6(rj, ri)
AZcQj - q$3(r3 S for j = 1, .., N. (3.29)

3 Ei(EQ(j) 06(rj, ri)

The set Q(j) typically includes 8-10 elements. Convergence is usually reached within about

5-8 iterations where the maximum relative change in element amplitudes is less than 10-6.

This method is fast and accurate for large values of N.
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3.5 Velocity Field: Helmholtz Decomposition

The velocity field is needed to update the vortex element position, r, governed by equa-

tion 3.16. The velocity field is expressed in terms of its components using the Helmholtz

decompostion[3]:

U = Up + Uw + Ue (3.30)

where up, uk, and Ue are the potential, vortical, and volumetric expansion components of

the velocity, respectively.

3.5.1 Potential velocity component

The potential velocity is obtained from the velocity potential 4 p according to

up = v4P, (3.31)

where the velocity potential 5p satisfies the Laplace equation

VkrP = 0 (3.32)

subject to the boundary condition

= - (u, + ue) - nan (3.33)

at the solid boundaries.

3.5.2 Rotational velocity component

The velocity induced by the vorticity field is obtained by taking the curl of the stream

function %F,

UW = V x Ti, (3.34)

where the stream function satisfies the Poisson equation

V2T' = _W. (3.35)
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3.5.3 Expansion velocity component

The velocity field induced by volumetric expansion is obtained from its potential (e, ac-

cording to

Ue = VDe, (3.36)

where the velocity potential satisfies the Poisson equation with the local time variation of

the density as the source

V2(e Dp (3.37)
p Dt

Denote G, and Ge as the Green's functions of the Poisson equations 3.37 and 3.35, the

expansion and vortical velocity component are then given by the convolutions

UW= K * w J K,(r; r')w(r', t)dr (3.38)

and

Ue = Ke * P J Ke (r; r')p(r', t)dr (3.39)

where L = -p,

K, = V x G, (3.40)

and

Ke = VGe. (3.41)

Using the vortex blob representation, equation 3.7, then the vortical and expansion velocity

components are approximated by

N

,= FiK,,w(r; ri) (3.42)
i=1

and
N

Ue = PK,(r; ri), (3.43)
i=1

where the superscript n refers to numerical solution, and

K,,= Kw * <6 (3.44)
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and

KUP= Ke * <JP. (3.45)

Selection of the core functions is performed and discussed in chapter 4. Expressions for

the kernels K,, and K,,, and subsequently numerical tools to evaluate the velocity will be

developed in chapter 5.

3.6 Convergence and accuracy

Two questions arises. The first one relates to the error involved in splitting the vorticity

equation into three steps and its convergence characteristics. The second question relates

to the accuracy of the vortex method in terms of blob representation of the vorticity field

and numerical evaluation of the convolution integrals relevant to the velocity field.

3.6.1 Convergence

We shall state results obtained by Beale and Majda[4] for the rates of convergence for viscous

splitting of the Navier stokes equations governing an unbounded incompressible flow in two

dimensions. Define the solution operators of Euler's equations (E(t)) and the heat equation

(H(t)) such that

E(t)vo = v(t), where (3.46)

Vt + V + Vp = 0 (3.47)

V - = 0, v(O) = vo (3.48)

and

H(t)wo = w(t), where (3.49)

Wt = vV 2w, w(0) = WO. (3.50)

The viscous splitting algorithm, which is the underlying basis for the random vortex

method, is given by the approximation

fi = (H(At)E(At))nUo, (3.51)
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where u is the velocity and n denoted the numerical solution at time nAt. Another algorithm

(Strang) with an improved rate of convergence is

Un = (H(At/2)E(At)H(At/2))nUo. (3.52)

For an arbitrarily large time T and a fixed nonnegative integer s, convergence rates for

viscous splitting using the two algorithms 3.51 and 3.52 are2

max |u(nAt) - itnk| CIvIAt, (3.53)
O<nAt<T

max lu(nAt) - UnI, C2 vAt 2 , (3.54)
O<nAt<T

where the constants Ci, i = 1,2 are independent of v and depend only on luos+, T,

and IV x uoIL1. Thus simulating the effects of viscosity through splitting algorithms can

significantly improve the quality of the approximate solution even for small viscosity.

3.6.2 Accuracy

In conventional methods, errors in finite difference integrations produce numerical viscosity

(and dispersion). The error in vortex methods, however, has a different structure, because

there is no differencing of the advection terms in space. A summary of the results available

in the literature[19, 40, 6, 5] are presented in this section. The results were obtained for a

two dimensional incompressible unbounded flows. The following two observations can be

made:

" The error in the vortex methods is primarily due to the error in the evaluation of the

convolution integrals 3.42 , and

" accuracy depends on the smoothness of the flow, the initial approximation of vorticity,

and on the choice of the the smoothing function < and its properties.

Define the error in the particle trajectory to be

ei(t) = ri(r9, t) - ii(r?, t) (3.55)

| is the L 2-Sobolev norm of order s of a given function. u E H' when Jul, < oo.
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where ri and fi are the exact and numerical positions of particle i, and the superscript 0

denotes initial conditions. Then the error in the velocity 3 is given by:

de
S r- -UM) = Cm + ed + e, (3.56)
dt

with

em = J K(r, r')w(r')dr' - f K, (r, r')w(r')dr' (3.57)

e= f K, (r, r')w(r')dr' - Ij K, (r, rj) (3.58)

e.= ZFjK,(r, rj) - ZFjK,(fi, ij) (3.59)

where em is the smoothing error due to replacing K with Ka, ed is the discretization error

which results from the replacement of the integral by a sum, and e, is the "stability error"

which arises because the sum is evaluated at the computed rather than the exact locations

of the blobs. The stability error, e,, can be bounded in such a way that the over-all error

is bounded by a constant times (Iled + Ileml); thus

IIerrorIILl < constant. 0P + (h 0] (3.60)

where the first term on the right hand side of the inequality is the smoothness error. The

order of the core function is p; the number of vanishing moments, i.e.

Jrmo(r)dr = 0, form= 1,...,p-1. (3.61)

or q(k) = 1 - O(kP) (3.62)

The moments conditions 3.61 are the guidelines for constructing core function of arbitrary

order p .The second term is the discretization error, where L is the smoothness of #; the

number of derivatives, and h is a measure of the elements spacing. If L is large enough,

such as the case of a nearly uniform grid4 , one can choose h/a < 1 (thus making the blobs

overlap) so that the error in the trajectories of the blobs is close to O(hP). However, the error

in the blob methods does grow in time. One factor in this growth is the growing irregularity

3we omit the subscript i for brevity
4 For sufficiently smooth integrands, the trapezoidal rule is of high order accuracy.
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of the blob distribution and the resulting growth in the derivatives that enter the error in

the trapezoidal rule. In general, the local strain field may distort the particles locations

resulting in the violation of the overlap condition in some regions. Perlman[76] proved that

if a was chosen to be close to h accuracy is lost in relatively short time, and suggested that

a should increase with time. Since the discretization error decreases as a increases and the

smoothing error increases with a, a large value of a can be chosen to preserve the accuracy

over a fixed time interval. An alternative remedy is periodic remeshing onto a uniform grid

or a grid correction procedure as in the PSE [21]. Remeshing is performed by conserving

the circulation as well as the linear and angular momentum of the vorticity field.

3.7 Summary

In this chapter, we argued that the vortex-element method is a convenient approach to-

wards numerically simulating the axisymmetric fire plume problem. Its advantages over

other methods based on velocity-pressure considerations have been pointed out. The basic

components of the vortex method, its convergence and accuracy have been presented. The

details of the numerical implementation of the vortex-element method will be discussed in

chapters 5 and 6, where we present the solution of the vorticity diffusion equation as well

as the various components of the velocity field. Scalar transport is discussed next.
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Chapter 4

Scalar Transport

The equation governing scalar transport is

Ds 1 V +E (4.1)
p-= --- Vs+ (4)Dt Peo

where s is a scalar that can be a Shvab-Zel'dovich variable or any of the primitive scalars

such as species mass fraction or temperature, and e is a source term either due to finite

rate chemical reaction or radiative transport or both.

4.1 Discretization of the scalar field

Analogous to the discrete representation of the vorticity field, equation 3.7, the scalar field

is approximated by
N E

s3(r, t) = 0 $#3(r, ri) (4.2)

where the core function #6, characterized by core of size 6, does not necessarily have the

same form as that utilized in vorticity transport, and Ej is the energy of element i located

at ri. Recalling that the core function has the general form

05 = 1 , (r) , (4.3)

the smooth function q satisfies in this case the condition

f rdrdz = 1 (4.4)
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4.2 Scalar transport

Scalar transport involves determination of the locations, cores, and energies of the compu-

tational elements such that the discrete scalar field representation given by equation 4.2

provides an approximate solution to equation 4.1. The equation governing scalar transport

is solved in three substeps: convection, diffusion, and generation.

For convenience, we write the scalar transport equation as

Ds 1 1 (45)
+sV-u= .s+-e+sV-u.(4)

Dt pPeo p

4.2.1 convection

In this step, we solve the equation

Ds+ V - U = 0 (4.6)
Dt

for a material element. Integrating over the volume of the element, and using equation 2.66,

we get
d E

= 0 (4.7)
dt

where the energy is given by

E = Asrdrdz, (4.8)

where A is the cross sectional area of the element.

4.2.2 diffusion

In this step, the diffusion equation

-s = V 2 s (4.9)
at pPeo

is solved. Numerical implementation is presented in chapter 5.

We present the Green's function of the diffusion for the case of uniform density,

Os _1 Vs
-- = - V2s (4.10)
Ot Peo
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The Green's function, which is the solution for an initial scalar source located at (ro, zo) of

the form

s - s(r, z, t = 0) = J(r - ro)6(z - zo)6(t), (4.11)

is given by
27r r2+r2+(z ZO2) rro

s(r, z, t) = e 4at Io (4.12)
(47rat) 3/2 2at

where a = 1/Peo and Io is the modified Bessel function of the first kind of order zero.

4.2.3 generation

In this section, the scalar is updated according to

as 1 p (4.13)
t p Dt

This equation is solved in the same way the vorticity generation equation is solved in section

3.4.3.

4.3 The transport element method

An alternative to transporting the scalar is to transport the scalar gradient. The transport

element method[34, 85, 56, 35] solves the scalar transport equation, with initial conditions

s(r(t = 0), t = 0) = so(ro) by transporting the scalar gradient gs, g, = Vs. Similar to the

vorticity, scalar gradients exist over a small subset of the domain, and evolve around regions

of strong shear, or mixing. The idea behind the method is to transport the gradients field,

g., from which the scalar field can be recovered by solving the Poisson equationi:

V2 S -V. g, (4.14)

Once the gradient field is obtained, the scalar field is recovered by convoluting V - g, with

the Green's function of Poisson's equation according to

s(r,t) = JV - g.(r', t)G(r, r')dr' (4.15)

'The scalar field need not be recovered unless it is needed, such as the case with the finite rate chemical
reaction and radiative transport
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Figure 4-1: Discretization of material layer into elements.

integrating by parts, and noting that the product of the green's function and the gradient

vanishes at infinity and at the axis of symmetry, then

s(r,t) = - gs(r', t) -VG(r, r')dr' (4.16)

The equation governing the scalar gradient is obtained by taking the gradient of equation

4.1
dg, - -g 8 , -Vu - g, x W + 1 V2 

8
dt Peo

(4.17)

Attempts to integrate equation 4.17 proved problematic. A successful alternative is the con-

servative approach, in which the magnitude and direction of g, are transported separately.

If the material lines are chosen to coincide with isoscalar lines, then for a material

elements i, the equation

(4.18)

follows from the definition of the gradient, where ft is the unit normal vector in the direction
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normal to the material line oriented along unit vector i, i - n = 0, see Figure 4-1. For

flows with variable density, the equation describing the magnitude of the gradient across a

material element and the product of the density (pi) and the length of the element (11|i) are

similar, so that

Pillil Pz

where the superscript 0 denotes initial conditions. The initial gradient, Igij1, may be related

to the initial scalar differential across the element by Ig ,ij = As/In,9, where InI is the

initial thickness of element i. The evolution of the length and orientation of a material

element is numerically implemented by transporting its endpoints. Thus, for an element i,

the scalar gradient is given by

gS8i - (ri, t) = pA n(4.20)

Numerical solution of Poisson's equation is discussed in chapter 6.

4.4 Discussion

We note the advantages and disadvantages of the transport element method.

4.4.1 Advantages

1. like the vorticity, gradients of the scalar exist in small regions of the domain. Com-

putational elements are concentrated in these regions.

2. For computations where the scalar field is not needed, transporting the gradient in

computationally cheap.

3. Recovering the scalar field can be recovered by solving the Poisson equation 4.14.

4.4.2 Disadvantages

1. The transport element method requires connectivity of each layer at all times. This

puts restrictions on diffusion modeling. One way to model diffusion of scalar gradients

is core spreading. The core spreading method is discussed in the next chapter.
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2. The number of elements can become large inside vortical structures due to the spinning

of the material layer. This requires refinement of the time step to provide sufficient

resolution for regions of strong gradients.
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Chapter 5

Diffusion

5.1 Background

Fundamental to the vortex element method is the representation of the vorticity field. As

discussed in section 3.3, this is mainly done in two ways: point vortices and vortex blobs.

Each of the two methods has its advantages and disadvantages. In general, representing the

vorticity field by a system of point vortices is numerically problematic, due to the singularity

at the location of the vortices. As an alternative, investigators have used vortices with finite

cores (vortex blobs) in their simulations with a specified vorticity distributioni within the

vortex. The core size, 0-, can be thought of as measure of the region of influence associated

with a certain element. The objective of this core function is to provide smooth solutions

near or at the element locations. Selection of core function, its advantages, and estimates

of the smoothing and discretization errors are discussed in section 5.3.

For a deep understanding of the roles of vortex points and vortex blobs, it is essential

to understand how the properties of each of these two representations are manifested in

numerical solution of diffusion and convection separately.

5.2 The redistribution method

Solving the diffusion equation using a collection of point vortices is possible. The redistribu-

tion method[86, 87] accounts for diffusion by distributing fractions of the element circulation

to neighboring elements. This is done by solving a linear system derived from conserving as
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much moments of vorticity necessary for the order of accuracy required. A positive solution

of the system imposes the requirement that the neighborhood of the element (Rd ' 16vot)

should be represented by elements with an average spacing of (h ~ v/'8vAt), which necessi-

tates the injection of new elements to fill the gaps2 . The error involved in the distribution

method is of the order of the time step At. The redistribution method is accurate and

efficient for problems where the pointwise vorticity distribution is not needed in the course

of a numerical simulation. If the pointwise vorticity is needed, however, the redistribution

method has to utilize a smoothing function to reconstruct the vorticity field, and the size

of the core radius is not known a priori and has to be determined by trial and error. Thus,

for problems where pointwise values of vorticity are needed, such as the case when there is

vorticity generation, the redistribution method cannot be used in its original format and

has to be extended to allow for a systematic way of recovering vorticity accurately.

Evaluation of the elements velocities in the convection step is faced with arising sin-

gularities when using point vortices. In this case desingularization is required and a core

must be introduced in the convection step. Evaluating the stream function requires sum-

mation of the contributions over all elements, with an average spacing h. The contribution

of each element is obtained by convoluting the core function with the Green's function of

the Poisson equation governing the stream function. The discretization error involved in

this process is of the order of O(hL/UL), where L is the smoothness of the core function.

In this work, we propose to extend the redistribution method for a vortex blob rep-

resentation of the vorticity field. The method has the advantages that in addition to its

capability to recover the vorticity field, it provides the flexibility of controlling the core size.

On the other hand, using vortex blobs to solve the diffusion equation introduces a smooth-

ing error associated with order of the core function used, in addition to the discretization

error associated with convection.

5.3 Core function

The use of a core function yields a smooth vorticity field and results in a bounded induced

velocity field. The core function has to satisfy the following conditions: conservation (equa-

tion 5.3), it should allow representation of the field to a certain degree of accuracy (moments

2This turns out to have an advantage in solving the convection part.
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conditions 2.61) , and it should be smooth 3 enough, L >> 1.

It is convenient to select a core function that satisfies identically the viscous part of

the vorticity transport equation for a viscous fluid. For a point vortex, the solution of the

vorticity diffusion equation is given by equation 3.19. In this case, the spread of vorticity

due to diffusion is v\4/t. Thus, it seems reasonable to construct a core function with a core

size o that spreads in time accordingly. Indeed, it can be shown that a core function of the

form
2rro (rro)2+(-zo)2 _2rr 2rr0 o

/ (r r, t) = 23 e a2 e ,2 2) (5.1)

with a core that expands in time according to

d(u2 ) =4
= 4v or 2 = 0 + 4vt (5.2)dt

satisfies the vorticity diffusion equation exactly, where aO = a(t = 0). The constant C,

introduced to satisfy the conservation condition

Jj .(r; ro, t)drdz = 1, (5.3)

is given by

C1= . (5.4)
1 - e-r/ 2

2

The vorticity distribution given by equation 3.19 assumes that the element has undergone

diffusion over a period of o2 /4v and consequently its circulation has decayed by a factor of

(1 - e-r/ 2 ). Thus, initial the core function should be scaled by the factor C. Using the

moment conditions, given by equation 3.61, it can be shown that the core function 5.1 is

second order accurate, i.e. p = 1.

Equation 5.2 is the basis of the core spreading method for diffusion.

5.4 Core spreading

Using the core function given by equation 5.1 produces a smoothing error of the order a 2

Obviously this puts a constraint on the allowable size of the core. On the other hand, in

assigning a core size for the vorticity distribution in a certain element, it is assumed that the
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core retains the same shape for all times and that it moves with the center of the element. If

the overlap is such that a < h, then this assumption applies to the material contained within

the element. In physical terms, expanding the core according to equation 5.2 introduces

error because this element my suffer considerable strain in realistic flows. Even though the

initial vorticity may be set up such that ao > ho, the strain will push elements apart at

longer times especially for relatively high Reynolds numbers, despite the fact that the core

size increases at the rate given by equation 5.2. Notice that the core expands at a rate

of 4At/Re per convection time step At. In this respect, Greengard[39] showed that even

though vorticity is correctly diffused, it is incorrectly convected. Greengard proved that

the core spreading algorithm converges to a system of equations different from the Navier-

Stokes equations. Thus core spreading suffers from an increasing smoothing error at a rate

of the order of vt from one side, and a possibly increasing discretization error of the order

of a (h/a)L. The remedy is to keep a bounded and to maintain overlap at all times, with

a preferable element distribution closest to that of a uniform grid.

5.5 The smoothed redistribution method

As seen from the previous discussion, the core size a and the overlap a/h are the critical

convergence parameter for a vortex method. Thus, it is necessary that the cores do not grow

too large and that overlap be maintained at all times. Realizing that core expansion spreads

the vorticity in accordance to the diffusion equation, limiting the size of the core does not

serve this purpose anymore and hence resorting to a different way of spreading the vorticity

is a must. The method we use to solve the diffusion equation is the Smoothed Redistribution

Method. Implementing the diffusion step for a certain element involves transferring fractions

of its circulation to its neighboring elements. The equations governing the redistribution of

circulation are obtained from conserving the zeroth, first, and second moments of vorticity.

A schematic of the redistribution procedure is shown in the Figure 5-1, where the element

to be diffused, located at (ro, zo), has circulation 17o and core size ao . It is convenient to

separate the process into two stages. In the first stage, the expansion stage, the element

undergoes core expansion and circulation decay. The core of the element expands such that

oO(At) 2 = UO + 4vAt, where At is the time step, and its circulation decays according to

Io(At) = Fo (1 - e-r0/( 04v )) / (I - e-r/u ). In the redistribution stage, the objective
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Figure 5-1: Schematic

is to replace element (Fo(At), ro, zo, a(At)) with neighboring elements (Fi, ri, zi, i).

5.5.1 diffusion stage

The objective is to diffuse an element using core expansion over a time step of At with

initial condition (ro, ro, zo, oo) at t = 0 and vorticity distribution

(r-rO)+(z-zO) -2reo
0O e 0Oliwo(r; r0 ) = 2 2

1 - ers/01 -1/2 3

2rro
20 ) (5.5)

At time t = At, the core expands yielding a vorticity distribution of the form

w o 2r o  (r-rO)2+( zO)2 _rroU)At(r; r,,) = 2 e ,2 e ,
- 0-r/00 *7r1/2U3

2rro
(5.6)

where

a2 .=g + 4vAt. (5.7)

Thus, the circulation at t = At is

r~1 ]P er/
'At J wAt(r; r0 )drdz = Po2

-o f 00 o 1 - erO/%o
(5.8)
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The vorticity distribution may written in the alternative form

At 2ro _(r-rO+(z-zO -2rr 2rro
wAt(r; r,) = - -r2/7 2  e ,2 . (5.9)

1 - e-r /0 7r /23

5.5.2 redistribution stage

In the redistribution stage, the diffused element ("At, r 0 , zo, uAt) is to be replaced by a

set of N neighboring elements characterized by (Fl, rj, zi, ui) for i = 1, N. The vorticity

distribution for element i is

ri 2ri c- +2- - 2rri
wi(r;ry) = 2r 3 e i e ("i2I1. (5.10)

A condition on this process is that the neighbors core sizes -i are specified a priori, and thus

are input to the redistribution process. Further, the neighbors locations are mainly inherited

from the previous time step. Conditions for creating new neighbors will be explained in the

following section. Thus, the problem reduces to determining the fraction of rAt that goes to

element i, i.e. Pi. The redistribution process is constrained by conserved quantities, namely

the moments of vorticity. We choose to conserve the zeroth, first and second moments of

vorticity:
N 00 00 00

E J jf rnwi (r; ri)drdz = J j rn wAt(r; ro)dr dz, (5.11)

for n = 0, 1, 2. Conservation of higher moments is not expected to lead to improvement in

accuracy since the error is limited by the smoothness error of the second order core utilized.

5.6 The redistribution equations

Carrying out the various integrals in equation 5.11, and defining fraction fi as

fi = * (5.12)
FAt'

the following equations may be obtained:

Zeroth moment (conservation of circulation)

N

E i=1. (5.13)

73



First r moment

N (e I + +11 (

9i 1 - e-Z / t
(5.14)

roe 2- Io ( -21 51 2

_ --r2 /22

where 1 and 1 are modified Bessel functions of first kind of orders 0 and 1 respectively.

First z moment (mean axial position)

(5.15)
N

fiz = zo.
i=1

Second r moment (radial impulse)

N 2 2

Zf
i1 (i - e-r /e) _ i e-r /e2

(5.16)

Second z moment (axial impulse)

(5.17)f Zi + = (zo + 1 2)

Cross rz moment

N r zie I - 1 )
Z fif %1 2 T -1- e -o

rozoe (-o -Q)u2- To()

-r2/,2)

Recall that o 2 = +4vAt and PAt = Fo(1 - e-ro/ 2 )/(2 -

It is recommended that positive fractions are only allowed, since negative fractions

represent diffusion in the opposite direction, which is not physically plausible. Equations

5.13 -5.18 can be cast in a linear system of the form

Af = b subject to f > 0, (5.19)

where the coefficient matrix A has M = 6 rows and N columns, the solution vector f

consists of N fractions corresponding to N elements, and the right hand sides compose

vector b of size M. A necessary (but not sufficient) condition for the system to be solvable
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is that the number of neighbors has to satisfy

N > M. (5.20)

This condition is justified physically by the fact that away from the axis, the linear system

can be solved with a configuration if 6 neighbors uniformly distributed on a circle of radius h

around the element to be diffused, where h, the elements spacing, is a typical diffusion length

of 0( vAt). To establish the sufficient condition, we proceed with a physical observation.

In general, the distribution of elements is distorted by convection possibly creating gaps of

size larger than h2 . In this case, diffusion into these gaps is not possible, since there are no

neighbors to receive fractions. This problem is solved by filling the gaps with new elements

and consequently condition 5.20 is always satisfied and the system 5.19 is solvable. Injection

of new elements is done one element at a time on a circle of radius h around the element to

be diffused. The element is selected from a prescribed set of candidates, distributed evenly

on the circle, in such a way that the distance to the closest neighbor is maximized over all

candidates.

Discussion of the relevant size of diffusion length, in addition to selection of the "neigh-

borhood radius", which determines what elements are involved in the redistribution process,

will be presented in the next section.

The linear system 5.20 is solved using the non-negative least squares method[62]. Usu-

ally, the L 2 norm of the error is selected to be less than 10-6. Notice that for elements

close to the axis of symmetry, some of the equations are singular. Treatment of diffusion of

elements close to the axis of symmetry is discussed in section 4.9.

5.7 Various diffusion lengths

In the implementation of the diffusion scheme discussed thus far, it is crucial to decide on

various length scales related to diffusion and discuss their relevance. For this reason, the

following parameters are defined:

* Element spacing h: The element spacing h reflects the diffusion length of the diffusion

process. If the core were to expand to account for diffusion, the expansion over time

step At is v4vAt. Thus it is expected that for a neighboring element to receive a
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fraction of the circulation of the element to be diffused, then distance between the

two elements, h, must be of the order of l"4-vAt. Numerical experiments yielded an

optimal value of h = v8vAt.

" Neighborhood radius R: The neighborhood radius associated with a certain element is

the radius within which all elements are considered as neighbors, and thus candidates

to receive fractions of the circulation. Noting that in the 2D cartesian case, the

core radius may be mathematically described as the standard deviation of a normal

distribution of vorticity representing the core function, it convenient to choose the

neighborhood radius to be twice the standard deviation, the location at which the

function decays to less that 1% of its value. Thus a typical value for the neighborhood

radius is R ~ vl6vAt.

" Core radius a: The core radius represents the extent of the basis function for vortic-

ity. Thus, within the core, satisfactory vorticity discretization requires at least the

presence of few neighborhood elements, otherwise the convolution suffers. For smooth

flows, we select o- to be of the order of R. For flows that experience large strain , a

more conservative core size should be selected to maintain overlap especially at longer

times.

5.8 Diffusion of the scalar

The equation governing the diffusion of the scalar is

a- = a + + (5.21)at ( r2 r ar az2

The scalar core function and the expansion equation are, respectively,

2r r2 r2 +(zzo)2 (rr
t) 27r + + 0 2rro (.2<7(r; r0, t) = 1r3/ 203  1 2 )(5.22)

and

= 4a. (5.23)
dt
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It should be noted that the conserved quantity4 in this case is rs, such that

J0 (r; ro, t)r dr dz = 1. (5.24)

Consequently, conservation of moments of the scalar is governed by

N 0 00

rsi(r; ri)rdrdz = f j rsAt(r; ro)r dr dz
i=1 T-0f

for n < 2. (5.25)

Defining fi = E/E, and assuming that a = v, the corresponding redistribution equa-

tions in discretized form would then be

Zeroth moment (conservation of energy)

(5.26)
N

=fi=1.
i=1

First r moment

+ o) () I ,) 2 + U2) 0 r2)+e 2 (o 0 1oO

First z moment
N

fizi = zo.
i=1

r2I ( ))

(5.27)

(5.28)

Second r moment

r ? + = +

Second z moment

(Z + -2)

Cross rz moment

N zie 2

A f

( + -0 I ( r?2,j) + ,- )) zoe 2 ((r +O') - ( +-- r0 -2-o(07
0(

(5.31)

4
1f s represents temperature, the conserved quantity is the thermal energy of the element.
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N

Zfi

ZfN= 1 2)z? +

(5.29)

(5.30)
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5.9 Treatment near the axis of symmetry

If an element is close to the axis, then it is possible to simplify the various equations by

expanding the circulation decay equation and the moment equations in Taylor series of ro

around zero. To order of (ro/Uo) 2 , we get

Circulation decay

v = 2 1 + r -- ( (5.32)

Zeroth moment (conservation of circulation)

N

fi=1. (5.33)

First r moment
N 2C

fi - + 2 r- +C(5.34)

First z moment
N

Efiz = zO. (5.35)

Second r moment

f, ( + Cr) = u2 + Cr (5.36)

Second z moment

Nf z + O) = (zo + o 2). (5.37)

Cross rz moment
N /0 2)\ 0 2)

fizi O-i + 2 r =O a-+ 2 1.2 (5.38)
i=1 Z

where C = 1 for the scalar and 1/2 for the vorticity. Since the core is second order, this

special treatment can be applied to elements of ro < co with error of order of o. Numerical

experiments showed that solving the system 5.20 with the moment equations 5.13-5.18 is

problematic for ro < h/2. In this case, using the approximate moment equations 5.33-5.38

proved to be stable and accurate.
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5.10 Scalar gradients

The scalar gradient is required to calculate the baroclinic term in the vorticity equation.

The scalar at location r is obtained by the summation

N

s (r) = O Es,, (r; ri) . (5.39)
i=1

Thus the scalar gradient may be obtained as

N

Vs (r) = > EiVos,, (r; ri) (5.40)

where Vor,,, (r, ri) = 2-s,, (r, ri) i + 220,, (r, ri) z and

(4E 2rri 2rri
-rst (r, ri) = - 1/25 e r10r 2 -ri 1  (5.41)

r r ____ (z2 2 2

a 4Ej 2rri
a-#s,, (r, ri) = ~- 2 (z - zi) e i 0  ) (5.42)

5.11 Remarks

We make the following remarks:

1. The circulation is not conserved in the half plane 0 Kr < oo, -oo < z < oo, whereas

the energy is. Both the circulation and energy are conserved in full plane -oo < r <

00, -00 < z < 00.

2. Since the axial behavior of the scalar and vorticity core functions is the same, the

corresponding moment equations are the same. The radial moment equations are

different, however. The overall impulse of the energy increases at a rate of 4vt, whereas

the overall impulse of the circulation decays at the same rate as the circulation.
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5.12 Accuracy

Following on the discussions of sections 2.6.2 and 4.4, the following advantages of the smooth

redistribution method are stated:

1. By incorporation of a smoothing function, recovery of pointwise vorticity and scalar

fields is possible. The core function is second order accurate.

2. The method offers control on the spatial as well as the temporal values of the core

size, thus allowing local balancing of the smoothing and discretization errors. This

balancing can be done by deciding on the smallest core radius such the overlap o- = ch

is maintained, where h may be thought of as the average local elements spacing, an

indication of local diffusion rate.

3. The introduction of new elements is done in way to promote the uniformity (or

smoothness, i.e. larger L) of the flow, which has a significant impact on reducing

the discretization error.

80



Chapter 6

Convection

The flow, represented as a collection of vortex elements, moves in time according to dr/dt

u, where r is the position and u is the velocity. Thus determination of the velocity field

is required to transport the vortex elements (or the vorticity field) in time. The velocity

field satisfies the mass conservation equation, the circulation equationi, and the boundary

conditions: zero flow normal to solid boundaries, u -i, and a prescribed velocity at the pool

base, u(O < r < ro, z = 0), where ii in the unit vector normal to a solid boundary. Solving

this system of partial differential equations can be facilitated through the use of Helmholtz

decomposition. The Helmholtz decomposition[3], discussed briefly in chapter 3, expresses

the velocity into its various components according to

u = uW ue + up, (6.1)

where uk, u., and up are the vortical, expansion, and potential components of the ve-

locity, respectively. The problem reduces to solving the Poisson equation relevant to each

component.

In this chapter, we will present the formulation for establishing the velocity field. The

vortical component is discussed first. Then, we present the solution for the expansion

component. Finally, we put the convection part in perspective in the overall picture of the

vortex method and more specifically we briefly discuss the scheme used to integrate the

velocity in time to update the elements positions.
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6.1 Vortical velocity component

The vortical velocity component satisfies the continuity equation of an incompressible fluid

in an unbounded domain 2

V - U,, = 0. (6.2)

A vector potential 1I(r, t) = )$(r, t)b, also called the stream function, may then be defined

according to

V x 40 = U6 (6.3)

or

Uw = (uw,r, Uw,z) ( ,a , (6.4)
r Bz' r or

where 6 is the unit vector in the azimuthal direction. Using equation 6.3 and the definition

of vorticity, the stream function can be shown to satisfy the Poisson equation

V 2 ( = -w, (6.5)
r

where w is the vorticity field.

Using the Green's function method, equation 6.5 can be solved to obtain V) as the

convolution

(r,t) = G (r; r') (r', t) dr' dz'. (6.6)
-o 0

The Green function is the solution of equation 6.5 for a Dirac delta vorticity distribution,

6 (r - r') 6 (z - z'), and may be obtained using Fourier/Hankel transform as

G (r, r', z - z') = (ri + r 2 ) [K (A) - E (A)], (6.7)

where r, (r + r')2 + (z - z') 2 , r2 (r - r') 2 + (z - z')2 , A (r2 - ri) / (r 2 + ri), and K

and E are respectively the complete elliptic integrals of the first and second kind.

The vortical velocity uw (uw,rUw,z) obtained from equation 6.4, is

1 00 00 09
Uw,r = - 1J j -G (r, r', z - z') w (r', t) dr' dz', (6.8)

r -oo 0aZ

2 The vortical velocity component is solenoidal.
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1 c00
uw,z = G (r, r', z - z') w (r', t) dr' dz' (6.9)

fr0 -oo 09Br

where

G (r, r', z - z')= (Z - z r + r2 K (A)- -i + r2 (6.10)
Oz 27r rir 2  2 (r2 ri

and

& 1 fr-r' r~r' ~ r+r2 (r-r' r+r'
G (r, r', z - z') = + r' K(A) - 2 E(A) 2 + 2/ (6.11)or 2r ri r2 2 r 2

6.1.1 Velocity of a point vortex

If the vorticity field is represented by N point vortices, then

N

w (r', t) = Z iFj (r' - ri) 6 (z' - zi) . (6.12)
i=1

The corresponding velocity field is given by

1 N , +r2 ' ( +i r2)]

UW'r = 2 E i {(z - zi) [K (A) - E + - , (6.13)
27rr i=rir2 -2 r2 r1

1 N r - ri r + ri _r, + r2 r - ri r + ri (.4
UW= i2rr ri + r2 )K(A) 2 E (A)( r 2 + r (6.14)

2 2 +rr ri) r2 )2 i r2_ i

where r, (r + ri)2 + (z - z -)2 , ri (r - ri)2 + (z - zi)2 , and A = (r 2 - ri) / (r 2 + ri).

The point vortex solution is singular at the locations of the points, and desingularization

has to be employed if the vorticity field is represented by point vortices. The point vortex

solution, however, provides an approximation for the far field solution due to a vortex blob

with a core function of compact support, such as the one given by equation 6.16. More

specifically, for thin elements, i.e. for -i/ri < 1, or for locations far from the element, i.e.

for (r - ri)2 + (z - zi)2  o, representing the blob by a point vortex located at its center

and carrying the same circulation provides a good approximation. This advantage will be

instrumental in deciding on the appropriate ranges of the variables for construction of the

tables for vortex blobs, as discussed below.
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6.1.2 Velocity of a vortex blob

As discussed in Chapters 2 and 3, the vortex element method is based on the representation

of the vorticity field by a collection of elements according to

N

w (r', t) = io, (r'; ri) (6.15)

where 0, is the core function characterized by core radius a. In the previous chapter, we

showed that diffusion of a vortex element can be modeled by redistributing the necessary

fractions of circulation to neighboring elements. The core function, selected to satisfy the

viscous part of the vorticity equation, is

1 2r, 2r'ri# 1 / 1 (r',ri)=+22 2 e ( 2 . (6.16)

Substituting equations 6.15 and 6.16 into equations 6.8 and (6.9 results in the following

expressions for the vortical velocity

1 N 00 00
Uw,r = r fo o i G (r, r', z - z') 0, (r', ri, z' - zi) dr' dz', (6.17)

1N 00 ao
-WZ =f ri G(r,r',z-z') $,(r',ri,z' -zi)dr'dz'. (6.18)

The double integrals in equations 6.17 and 6.18 are complicated and no closed form solu-

tion is attainable. Note that the variables into the two integrals are r, ri, z - zi and ou.

Normalizing by the core radius aj reduces the dimensions to three, namely r/ai, ri /ai, and

(z - zi) /ai. We propose to solve the double integrals numerically for appropriate ranges of

these variables and store the results in the form of a three dimensional table.

Numerical integration and convergence

Numerical integration of equations 6.17 and 6.18 was performed using the trapezoidal rule.

The domain used is a square of size 5o centered at the element. At the edge of the integration

domain, the core function decays to less than 10-8% of its maximum value. The convergence

characteristics obey those of the trapezoidal rule. Figure 6-1 shows the relative percent error

in the self induced velocity as a function of r0 /u, where r, is the radius of the element and
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Figure 6-1: Convergence properties of the self induced velocity of a vortex blob.

a is the core size. As the grid size increases from 20 x 20 to 50 x 50 to 100 x 100, the error

decreases by the square of the ratio of the grid sizes. The reference grid size is 200 x 200.

The grid size used in constructing the tables is 100 x 100, corresponding to less than 1%

relative error.

Using the numerical integration method described above, the vortical velocity compo-

nents were evaluated for the following ranges:

" Element radius: 0 < r 0 /u < 20, with spacing of 0.2.

" Solution grid: r/a - 5 < r/a < r0 /a + 5 and 0 (z - z,) /a < 5.

We expect that outside these ranges, the point vortex solution should provide a good

approximation of the solution. It should be noted that evaluating the velocity in the neigh-

borhood of the center for elements where r,/a > 20 requires desingularization. This is

implemented in using the following expressions for r1 and r2

(r + r) 2 + (z -z) 2 +0.56a 2 6.19)

r - + 0.5602
2r2 (r _-o) + (Z _z 0 )2 +0.56U 2 (6.20)
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Figure 6-2: Self induced velocity.

The desingularization constant, obtained by matching the desingularized solution a con-

verged numerical solution, applies to all values of r 0 /u . This is confirmed in Figure

6-2, where the self induced velocity is presented over the range 1 < r,/o/ < 100. The

exact3 solution is plotted along with the numerical solution (tables + point vortex solu-

tion). Saffman's[79] expression of the self induced velocity for a thin ring, given by

_ 'o ( 8 ro\
Wself - .log ) -- 0.558 , (6.21)

47rro 01

is also presented. The deviation of the solution obtained by Saffman for large a/ro is due

to the error involving in the approximation.

Figure 6-3 shows the performance of the numerical solution in terms of radial profiles

of the axial vortical velocity component through the center of the element. The exact and

numerical values are plotted for two element radii, r, = 5 and r, = 21, over a range of

10 around the element center. Dimensions are normalized by the core radius a. The case

of r0 = 5 corresponds either to interpolation using the tables for Ir - rol < 5 or to the

3Numerically obtained using a 200 x 200 grid.
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Figure 6-3: Comparison of numerical and exact radial profiles (at z 0) of axial velocity
component for r, = 5 and r, = 21.

desingularized point vortex solution for Ir - rol > 5. The other case, r, = 21, corresponds

to a range outside those of the tables and the desingularized point vortex solution is used

throughout. The error due to this approximation in the vicinity of the element center is

not expected to produce significant errors when evaluating the velocity induced by a large

number of elements.

6.2 Expansion velocity

The expansion velocity component satisfies the mass conservation equation for an irrota-

tional compressible flow given by

V Ue (6.22)
-p Dt

This gives rise to the scalar potential, 1D, defined as

V4p = Ue, (6.23)
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or

Ue - (ue,r 7e,z) = 1- , 9) (6.24)

Using equations 6.22 and 6.23, the Poisson equation governing the potential is obtained as

V24 = -, (6.25)

where o = (1/p) Dp/Dt. The potential is then obtained as the convolution

1(r, t) = J G (r; r') o (r', t) dr'dz', (6.26)
-00 0

where the Green function, G, defined as the solution of equation 6.25 for a Dirac delta

scalar distribution, 6 (r - r') 6 (z - z'), is given as

G (r, r', z - z') =- r K (A), (6.27)
7 (r 1 + r 2 )

where r, (r + r')2 + (z - z')2 , r2 = (r - r')2 + (z - z') 2 , A (r 2 - ri) / (r 2 + ri), and K

is the complete elliptic integrals of the first kind.

The expansion velocity Ue (Ue,r, Ue,z), obtained from equation 6.24, is

Ue,r = J G (r, r', z - z') y (r', t) dr' dz', (6.28)

-o0 00 0r

Ue,z = J j -G (r, r', z - z') o (r', t) dr' dz', (6.29)

where

-G(r,r', z-z')= 1 rr' r+r') K(A)+ r r 2 E(A)> (6.30)Or 2r r1 r2 r 12 r 2  r2

and

G (r, r', z - z') = 2 r'(z - z') 1 K(A) - I r1 + r2 E (A) (6.31)
5-z 7r ri r2 r1 + r2 2 rir2
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6.2.1 Expansion of a point source

If the expansion field, o, is represented by a system of point sources, then

N

o (r', t) = ZEi E (r' - r) 6 (z' - zi)
i=1

(6.32)

where Ei is the strength of the element. The corresponding expansion velocity is given by

1N

Ue,r - 27r E
2ir1

{( _r -

r1l

- r r'
r2 )

and

r1 + r 2 (r &rK (A) + 2l +2r+r
2 r 2

2 N
Ue,r = - ZEi

Si=1

r (z - Z')

rlr2
S1 2K(A)
LrT + r2

1 - E (A)
2 rr 2 I

where r, - (r + ri) 2 + (z - z -)2, r (r - ri)2 + (z - zi)2, and A - (r2 - ri) / (r 2 + ri).

6.2.2 Expansion of a vortex blob

Representation of the scalar field by a collection of elements is according to

N

o (r', t) = ZE/, (r',r), (.5

where 0, is the core function characterized by core radius o-. The core function used is the

scalar core function developed for scalar diffusion discussed in the previous chapter,

27r
k(r', ry) = .7 3/2c73e

r/
2

+r +(z' - z,)
2

Substituting equations 6.35 and 6.36 in equations 6.28 and 6.29 results in the following

expressions for the expansion velocity

N

Ue,r =

N

Ue,z =

00 E aG (r, r', z - z') 0,(r', ri, z' - zi) dr' dz',
f- Jo ar

00I(z
E -G (r, r', z - z') 0, (Tr', ri, z' - zi) dr' dz',

(6.37)

(6.38)

where the gradient of the Green function G is given by equation 6.30 and 6.31.
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Numerical integration and convergence

Numerical integration of equations 6.37 and 6.38 is conducted in a similar fashion to that of

the vortical velocity, and the results were stored in a three dimensional table. In Figure 6-4,

the radial component of the expansion velocity at the center of an element for 0.01 < o-/ro <

1, evaluated using the tables or the point solution, is compared to a converged numerical

solution, referred to as the exact solution in the figure. As the elements gets closer to the

axis, the magnitude of the radial component of the expansion velocity at the center of the

element decreases. This is due to symmetry at the axis, where the radial velocity is zero.

Figure 6-5 shows the performance of the numerical solution in terms of radial profiles of

the radial expansion velocity component through the center of the element. The exact and

numerical solutions are plotted for two element radii, ro = 5 and ro = 21, over a range

of 10 around the element center. Dimensions are normalized by the core radius 0-. The

case of r, = 5 corresponds either to interpolation using the tables for Ir - rol < 5 or to the

desingularized point vortex solution for Ir - rol > 5. The other case, r, = 21, corresponds

to a range outside those of the tables and the desingularized point vortex solution is used

throughout. The error due to this approximation in the vicinity of the element center is

not expected to produce significant errors when evaluating the velocity induced by a large

number of elements.

6.3 Numerical Algorithm

6.3.1 Strang splitting

Solving the vorticity and energy equations is done using the Strang splitting algorithm,

discussed in section 3.6.1,

Un = (H(At/2)S(At)H(At/2))un_1 (6.39)

where u is the velocity, n denoted solution at time nrt, S(t) and H(t) are the solution

operators of Euler's equation and the heat equation respectively.
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Figure 6-4: Convergence properties of the radial component of the expansion velocity at
the center of a blob.
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Figure 6-5: Comparison of numerical and exact radial profiles (at z = 0) of radial expansion
velocity component at the center of the element for r0 = 5 and r, = 21.
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6.3.2 Solving the convection-generation step

The convection-generation step may be represented by

dy= f (t, Y) (6.40)

where y denotes element location r, circulation r, and energy E. Correspondingly f(t, r) =

u, f (t, F) = 1g , and f (t, E) = Eg, where P9 and Eg represent the source terms for the

circulation and energy respectively. Equation 6.40 is solved numerically using a second

order Runge-Kutta method[1]:

LAt
Yn+1 = yn + -(fi + f 2 ) + O(At) (6.41)2

fi = f (tn, Yn) (6.42)

f2 = f (tn +t, y + fl) (6.43)

6.3.3 Numerical algorithm

Incorporation of Strang (viscous) splitting and second order Runge-Kutta integration in

time into the vortex method may done according to the algorithm shown in Figure 6-6.
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Idiffuse = - Idiffuse

(r3, , I
rN =3
ON =a(EN 3

EN = B3

-7
p = density(r, a, E1)
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r2 =r, +At /2(ui+ula)
02 =1
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2
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E =E2

Figure 6-6: Numerical algorithm.
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Chapter 7

Radiation

Radiative transport in a participating medium transforms the energy equation into an

integro-differential equation which must be solved if radiation is considered as an important

mechanism of heat transfer in a convective-diffusive-reactive environment. In most cases,

especially in combustion problems, the temperature gradients are so steep that the region

where the radiative flux, which is proportional to the fourth power of temperature, is sig-

nificant in a small subset of the entire flow domain. Especially when utilizing a grid-free

Lagrangian scheme to perform the convective-diffusive-reactive simulations, it is desirable

to develop a compatible scheme which does not require a grid to perform the computations

of the radiative flux and its divergence (needed in the energy equation.) We have developed

the discrete source method in which the radiative flux and irradiance are computed by sum-

ming over a collection of radiating elements distributed over the region of high temperature.

In an axisymmetric domain, the irradiance and radiative flux, both are triple integrals of

the radiation kernel over the elemental volume, are reduced to double integrals which are

then approximated by single integrals that are evaluated semi-analytically. We demonstrate

the accuracy of the scheme by comparing the results with direct numerical evaluation of

the original integrals for cases relevant to combustion problems.

7.1 Radiation in a Gray Non-Scattering Medium

For a gray non-scattering medium, the specific intensity I(r, A), the energy transfer rate per

unit area per unit solid angle, of a radiation field at the point r in the direction s is given
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by[70]

I(r, .) = I (r') e- f a(s") ds" + j g (r', .) e- L, a(s") S"a(s') ds', (7.1)

where a is the absorption coefficient. The black body intensity, ib, is given by ib = -T4/

where - is the Stefan-Boltzmann constant (the refractive index of the medium is assumed

to be unity). The source and target are defined by vectors r and r' respectively, and s = ss

is the coordinate along the ray emanating from r' at the boundary (E) and passing through

target r, see Figure 7-1. The outer integration in the second term of the right-hand side of

equation 7.1 is along s from a point s' = 0 at the boundary to the target point s' = s inside

the medium.

boundary E

s

dM s

dA' -'

0
r

Figure 7-1: Schematic.

The total radiative heat flux vector is the intensity integrated over all solid angles Q

q(r) = f I(r, s)s dQ, (7.2)
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where the solid angle dQ = dA'/ Ir - r'12 and the unit vector s = (r - r')/ Ir - r'I.

The divergence of the heat flux, the negative of which is the radiation source term in

the energy equation, is given by

V - q(r) = a(r) (47rib(r) - G(r)), (7.3)

where G, the irradiance, is given by

G(r) = j I(r, s) dQ. (7.4)

Assuming that the incident intensity crossing the boundary is zero, the irradiance is

expressed as[88]

G(r) = ]a(r')ib(r') , 2 dV(r'). (7.5)
V |r -r|

7.2 The Discrete Source Method

Our objective is to simulate radiative transport using a grid free scheme compatible with

the vortex method. To meet this objective, we propose the Discrete Source Method. This

method enables the calculation of the heat flux and its divergence, induced by a collection

of computational elements that discretize the temperature field. The solution is presented

in terms of a "Biot-Savart" summation over the computational elements decomposing the

domain.

If a volume V is selected to be large enough such that it is surrounded by a cold medium,

Figure 7-2, the incident intensity crossing the boundary can be neglected, and the irradiance

is given by equation 7.5.

Decomposing volume V into N elemental volumes, and assuming that the tempera-

ture Ti and absorption coefficient a3 are uniform within each element, j = 1, N, then the

irradiance may be expressed in the following discretized form,

N

G(r) ~ E G(r), (7.6)
j=1
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Figure 7-2: Decomposing the participating medium into computational elements.

where Gj(r) is the irradiance induced by computational element j,

Gj(r) ~ ajib 3 , e r2rl dV(r'), (7.7)
fvsj |r - r | 1

where C., defined as the "effective attenuation coefficient", is given by

r-r-Ia(s)ds
j _fo r - rjl(78

The effective attenuation coefficient is obtained by assuming that Ir - r' _ I r - rj I in

evaluating the inner integral of equation 7.5. This approximation, justified by selecting

small enough computational elements, simplifies computing the integral considerably. For a

source-target configuration, the effective attenuation coefficient is calculated once, according

to equation 7.8, and is then used as a constant in the triple integral 7.7.
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7.3 Solution for a Spherical Element

Consider a spherical radiative source of radius ro and absorption coefficient a. The irradi-

ance at distance r from the center of the sphere is given by[90]

Gr = a a- r2 - r2) AE - 1e-aro asnh(ar) ) + ---- + a cosh(ar)), (7.9)
47rzb d 4r 2 \ ar d~

Gr>ro __a 2 ) 1 / / r
r r) AE + -e~dr sinh(dro) ( - + cosh(dro) , (7.10)

47rib 4r d d2r dr

where AE = Eil (d(r + ro)) - Eii (a Ir - rol), Eii(x) = f 7 e-xt-1 dt is the exponential

integral, and a = for a(s) ds/r. Of special interest is the "self-induced" irradiance, defined

as the irradiance at the center of the sphere. The self-induced irradiance is given by

Gself sphere _ -ar0. (7.11)
47rib

7.4 Solution for an Axisymmetric Element

Consider a ring of radius ro, cross-section radius 6, blackbody intensity ib, and absorption

coefficient a, as shown in Figure 7-3.

In polar-cylindrical coordinates (s, 0, o), the irradiance at location r(r, 0, z) is

G(r) = aib j7j f KG(r, r) s (ro + s cos 0) ds dO do, (7.12)
fo 0 fo

where
-s 2

_2s(z sin 0-(ro-r cos V)) cos 0)-2rro cos +d2
KG (r, 2 = 2 (7.13)

s2 _2s(z sin - (ro - rcos$) cos0) - 2rro cos @+ d2,

= r2 + z2 + r, and = f0 a(s) ds/jr -r'.

7.4.1 Thin Ring Approximation

For the case of a thin ring, characterized by s/ro <; 6/ro < 1, and if the effective atten-

uation coefficient is such that d6 < 1 (optically-thin), an approximation is obtained by

expanding the integrand of integral 7.12 in Taylor series in s around zero to second order.
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Figure 7-3: Ring in polar cylindrical coordinates.

The irradiance is then approximated by

27r 21T f (eA 1-K2 CoS 2 0

G(r) = 4aiJ e- sro +0 ((is)2 ds dO d3, (7.14)o o o A2 (1 _ ,2 cos 2 3)

where A2 = (r + ro)2 + z, , 2 = 4rro/A2 , and V) = 2/3. Integrating in s and 0 directions

leads to

G(r) = bi7r 2 ro f(a, K) + 0 ((dj)3), (7.15)

where a = &A and /ir/2 - ii-x cos2 ~
f, =10 .- _2 cos 2 3 d13. (7.16)

fo 1 - 02 cos2 p

The thin ring approximation provides a "good" approximation of the heat flux and its

divergence away from the core for values of a satisfying d6 < 1. This is clearly observed in

Figure 7-4, where radial profiles of the irradiance at two elevations are presented for a thin

ring with the following parameters: ro = 1, a = 1, 6 = 0.02. Inside the core, however, this

approximation diverges, and it is singular at the center of the core (r, = 1). In the following
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Figure 7-4: Irradiance due to a thin ring with small a

two sections, approximate solutions for G for large values of a and/or inside the core are

presented.

We note that desingularization of the integrand of equation 7.16 proved ineffective,

especially for large values of the effective attenuation coefficient a. The reason is that small

perturbations in this integrand get magnified due to the "exponentiation effect" of 6. For

example, consider the case where a6 = 5. Here, the kernel of G is negligible at the edge of

the core, and the sole contribution at the center of the element is due to the element itself.

In this case, we require better than just killing the singularity for an accurate representation

of the radiation field. The solution to this problem is presented in the next section.

7.5 Treatment of large absorption coefficient

For large d, the integral decays fast and the contribution of sources with d6 > 1 is in their

immediate vicinity. Thus, it is convenient, under the condition d6 > 1, to approximate G

by its value corresponding to a spherical element centered at ro with a radius 6.

To show the usefulness of the sphere solution, equations 7.9 and 7.10, for rings with

d6 > 1, radial profiles of irradiance due to a ring with ro = 1, 6 = 0.02, a = 100 are
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Figure 7-5: Ring and sphere solutions for large a

presented in Figure 7-5 along with those obtained for a sphere located at ro = 1 and of

radius 6 = 0.02. The two profiles show good agreement.

7.6 Solution inside the core

The solution outside the core of an optically-thin computational ring has been presented

in section 4.1. Further, an approximation of the solution for an optically-thick ring was

proposed in the previous section. In this section, we propose an approximation inside the

core of an optically-thin ring using a scaling of the spherical element solution to match the

induced irradiance at the center of the element. According to equation 7.12, the self induced

irradiance is given by

a lr /2 p2ir [3 -a s2+4 sin 2 /3(s cos 0+1)
Gself ring = r 21r S 2 +4 sin2 3(S COS 6+1)s(1 + s cos 0) ds d d3, (7.17)

7 o I fo s2+ 4sin2,( #(COS + 1) 8(

where s, a, and 6/ro, are non-dimensionalized by ro, and Gself ring = G(ro, 0)/(47rib). Integral

7.17 was calculated numerically for the ranges of 6 C [0.01, 1] and a C [0, 100]. The solution

is presented in Figure 7-6, showing that ln(Gsef ring) is a linear function of ln(a6) for ln(a6) <

-3, while it approaches the optically-thick limit non-linearly for ln(a6) > -3. In the same
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Figure 7-6: Gself for both a ring and a sphere as a function of a6.

figure, the value for a spherical element is presented.

Knowing the value of the self induced irradiance, and observing that as a6 increases the

solution for G approaches that for a spherical element, the solutions for an optically-thick

ring (a6 > 1), or inside the core of an optically-thin ring (a6 < 1) are approximated by

the corresponding spherical element solution scaled by the ratio of the ring self-induced

irradiance to the sphere self-induced irradiance, i.e.

G Gself ring Gsphere for a6 > 1 or a6 < 1 and s < 6. (7.18)
Gself sphere

Recall that the solution outside the core of an optically-thin ring is given by the thin ring

approximation, equation 7.15, discussed in section 7.4.1.

Using the model just laid out, approximate vs. exact calculations of the radial profiles of

G at various elevations are presented in Figure 7-7 for values of a of 1,10 and 100 respectively.

7.7 Extension to Cartesian Coordinates

In three dimensional Cartesian coordinates, the medium may be decomposed into spherical

computational elements. The solution due to sphere is given by equations 7.9 and 7.10. For
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Figure 7-7: Exact vs. approximate solutions of G for a =1,10 and 100.

two dimensional rectangular geometries, the computational elements are infinite circular

cylinders. The irradiance due to a infinite cylinder[42] of radius ro and absorption coefficient

a at radial location r is given by

Gr__ro = 'o 1i( iyro)Ko(aiyr). I r dy
47rZb J Y

Gr>ro = *0 pIi(6yr)Ko(dyr) + Io(dyr)(pKi1(dyr) - K1 (ayro))
G f aro dy4 lrib J1 y

(7.19)

(7.20)

where I and K are the modified Bessel functions of first and second kind respectively,

p = r/ro, and a is the "effective attenuation coefficient" given by equation 7.8.

7.8 Example I

To validate our model and check its accuracy, we use the following example in which the

absorption coefficient is assumed to be constant throughout the domain.

We consider a ring with square cross section, as shown in Figure 7-8, with radius ro = 1

and side w = 1. The objective is to compare the irradiance calculated using the model with

that computed using exact numerical integration. The comparison is done in terms of radial
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Figure 7-8: Schematic for example I.

profiles of G passing through the center of the domain for three values of the absorption

coefficient: a = 1, 10, and 100.

The mesh used to perform the numerical integration was tested for each case to obtain

a mesh independent solution. As expected from the nature of the kernel, the number of

points in each dimension required for an accurate solution is proportional to a, the reason

being the steeper gradients due to the exponential term. For a = 1, for example, we use a

100 x 100 x 100 mesh. To cut down the cost, we used a cutoff distance to alleviate computing

the contribution of those points of the domain that are at a distance d from the target point

such that ad = 6.

Implementation of our model demands discretizing the domain into N computational

element that are essentially rings characterized by a radius ri and core radius 6j, i = 1, N.

The rings are constructed by discretizing the domain using a rectangular mesh, and repre-

senting each cell by a ring located at the center of the cell with a core radius selected such

that the thermal energy of the cell is conserved. We are interested in values of 6 that are

typical to a those used in flow and/or combustion calculations. We choose 6i = 0.02, i.e.
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Figure 7-9: Exact vs. approximate solutions of G for a =1,10 and 100.

we use 50 x 50 rings for all the cases (independent of a). The use of cutoff distance is also

implemented in these computations.

The results are presented in Figure 7-9 where the irradiance normalized by the black

body intensity is plotted versus the radial location r. For the case of a = 1, the value of

G on the z-axis is non-zero which is due to low attenuation (a = 1) experienced by the

intensity in a certain direction. Due to the same reason, the maximum value of G occurs

on the side of the domain that is closer to the axis, where the azimuthal distribution of the

domain has a significant contribution. This would not be the case for higher values of a, as

seen in Figure 7-9. In this case, the domain is optically thick and the attenuation is large

leading to a fast decay in the vicinity of the domain. This explains the sharp rise (drop)

in the value of G around r = 0.5 (1.5). The behavior is even more obvious in the case of

the optically thick limit where a = 100. In this case, the irradiance has a top-hat profile,

where no intensity escapes the domain. Obviously, for the three cases, the model compares

satisfactorily with the exact solution.
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Figure 7-10: Exact vs. approximate solutions of G for a = 1, 6 = 0.01, 0.02, 0.04, 0.08, 0.1.

7.8.1 Convergence

The accuracy of the discrete source method depends on the "optical core radius" of the

computational element, i.e. d6. According to the model, accuracy is expected to improve

as a6 departs from unity, i.e. 66 < 1 or &6 > 1. On the other hand accuracy is expected

to be least when &6 ~ 1. To prove that the model behaves as expected, we solve for the

irradiance induced by the isothermal ring of square cross section, see Figure 7-8 for the

schematic. The results are presented is in Figures 7-10 and 7-11, corresponding to values

of a of 1 and 5 respectively. In Figure 7-10, where a = 1, radial profiles of the irradiance at

z = 0 are plotted for different core sizes of the computational elements. Numerical results

shows a satisfactory agreement with the exact solution for all selected values of 6. This

behavior is expected since a6 < 1 for all selected core sizes. Departure of the numerical

solution from the exact solution, however, shows in Figure 7-11, where a = 5, as the core

size increases (6 = 0.08, 0.1 for example). In this case, the optical core radius a6 is of the

order of unity (a6 = 0.4,0.5). Convergence to the exact solution occurs as 6 decreases,

which corresponds to a6 < 1.

106



1 a=5
r0 =1

0.8 w=1

exact
0.6 -

0 6=0.02
0=0.04

0.4 - =0.08
- =0.1

0.2

0
0 0.5 1 1.5 2

r

Figure 7-11: Exact vs. approximate solution of G for a = 5, 6 = 0.01, 0.02, 0.04, 0.08, 0.1.

7.9 Example II

Even though the example presented above provides the validation required for the suggested

model, it was based on the assumption that the absorption coefficient is uniform in space

and that the volume of gas considered has a uniform temperature that is higher than that

of the cold surrounding. A more realistic example would obviously be that of a medium

associated with a temperature distribution within and correspondingly variable absorption

coefficient. Here we consider methane fuel ring, Figure 7-12, that is reacting with the

atmosphere.

The objective is to determine the radiation source distribution. The reaction is assumed

to be single-step and to proceed at an infinite rate: CH4 + 2(02 + 3.76N 2) -- C02 +

2H 20 + 7.52N 2 . Based on a one dimensional model, the corresponding species distributions

are shown in Figure 7-13.

The absorption coefficient is obtained according to the following equation[70]:

a(T) = E ap,i(T)pi (7.21)
f,o,p,d

where i corresponds to a species, and ap,i is the Plank-mean absorption coefficient of species
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Figure 7-13: Species distributions of 1-D diffusion flame.
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Figure 7-14: Dependence of the Plank-mean absorption coeffcient on temperature [91].

i, and pi is the partial pressure of the species. The Plank-mean absorption coefficient is

defined as

a =_ fool ibqa 7 dr (7.22)
fo ib, dq

where q is the wavenumber, ib, is the Plank function, and a, is the spectral absorption

coefficient.

The temperature dependence of ap for the various species, obtained using narrow band

averaged values for the absorption coefficient[9 1], is presented in Figure 7-14. The absorp-

tion coefficient of air is negligible for the range of temperature we are interested in.

The temperature and absorption coefficient distributions we select for our example are

presented in Figure 7-16. These distributions are based on the 1-D distributions.

The exact solution for the divergence of the heat flux is based on direct numerical

integration of equation 7.5. The numerical parameters were selected along the same lines

discussed in Example I. In obtaining the discrete source method solution, three sizes of

computational elements were used: 6 = 0.01,0.02 and 0.04. As mentioned before, the

effective attenuation coefficient was obtained using equation 7.8. The results are presented

in Figure 7-17. The solutions obtained using the discrete source method agree well with

109



fuel

T/T-
------------------------a

-0.25 0
x (measured from flame)

0.25 0.5
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Figure 7-16: Temperature and absorption coefficient distributions used in Example II.
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Figure 7-17: Radiation source distribution for Example II.

the exact solution for the element sizes used. The slight deviation for the case of 6 =

0.04 is due to assumption involved in evaluating the effective attenuation coefficient, i.e.

when evaluating the inner integral of equation 7.5, we assume that the source element is

represented by its center (s' = 0).

7.10 Conclusion

A grid-free Lagrangian scheme for calculating the radiative source term in the energy equa-

tion has been presented. The Discrete Source Method is compatible with the vortex and

transport element methods. The solution is presented in terms of "Biot-Savart" summation

over a collection of elements discretizing the domain. The field induced by each element is

expressed in two forms depending on the "optical thickness" of the element, and the fields

can be obtained from analytical expressions or a tabulated integral in two dimensions. In

three dimensions, only analytical expressions are used, equations 7.9 and 7.10. An attrac-
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tive feature of the method is the use of the concept of "effective attenuation coefficient"

which proved to be a useful tool of analysis.
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Chapter 8

Computations of Isothermal

Buoyant Plumes

Abstract

Numerical investigation of the pulsation frequency of an axisymmetric isothermal buoyant

plume was conducted for various ranges of pool diameter, initial velocity, and Reynolds

number'. The effect of pool diameter on the pulsation frequency was shown to match the

experimental data in the literature over the corresponding pool diameter ranges. A similar

correlation has been obtained for the Strouhal number as a function of the inverse Froude

number, for a Froude number range of 5 x 10-5 to 0.27. The effects of the Reynolds number

on the puffing frequency has also been investigated for a Reynolds number range of 50 to 700.
No vortical structures formation was observed for low values of Reynolds number, when the

flow is laminar. However, periodic shedding of vortical structures has been observed once

the transition to turbulence is established for higher values of Reynolds number, and the

corresponding variation of the puffing frequency was found to be small. Finally, the effect

of initial velocity was investigated for various pool diameters. The critical velocity needed

to initiate pulsation was shown to decrease significantly as the pool diameter increases. The

influence of the initial velocity on the pulsation frequency for a certain pool diameter was

proven to be weak for low values of Froude number.

8.1 Introduction

The periodic motion observed near the surface of an axisymmetric pool fire has recently

gained much attention and has been investigated experimentally, theoretically, and analyzed

dimensionally. It has been related to the formation of large scale vortical structures whose

size is of the order of the pool diameter, and is believed to affect the rate of entrainment of

'based on pool diameter and buoyancy characteristic velocity.
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ambient air into the combustion zone. As a result, the periodic shedding of these structures

influences the downstream behavior of the flame in terms of the combustion efficiency, the

flame height fluctuations, and the radiation field which is essential in determining the fuel

velocity at the pool surface.

The objective of this study is to investigate numerically the effect of the pool diameter

and the initial fuel velocity on the pulsation frequency for a non-reacting buoyant plume,

and comparing the numerical results obtained with experiments. The numerical method

used is the vortex element method described in Chapter 3. The transport element method,

discussed in section 3.3, is used for scalar transport. The core spreading method is used for

diffusion. For the case of an isothermal plume, the scalar transported is the inverse of the

density, 1/p, governed by
D1121l1

= (1)V1)2 (8.1)
Dt p ReSc (p)

where the Schmidt number is Sc = v/D, v is the kinematic viscosity and D is the mass

transport coefficient 2

Experimental studies have been conducted by many investigators for both the reacting

and the non-reacting cases, and various visualization and measurement techniques have been

used to collect data on the time dependent flow. For the reacting case, these studies have

shown that the puffing frequency, f, depends strongly on the pool diameter, D, according

to f - D .5 , for a wide range of pool diameter and fuel type, as shown in Figure la,

leading to the conclusion that this correlation arises mostly from the fluid mechanics of the

problem rather than the combustion chemistry. This observation has been suggested by

Weckman et al.[98], and has been proven experimentally by Cetegen et al.[11], and Hamins

et al.[41]. The latter covered a wider range of pool diameters, and showed that the puffing

frequency and the pool diameter follow the above relation. They also showed that the

Strouhal number, St = fD/Vo, where V is the outward fuel velocity at the pool surface,

is related to the Froude number, Fr = Vo/V7gD, where g is the gravitational acceleration,

for both the reacting and non-reacting cases over a wide range of Fr , according to the

relation St - 1/Fr' , where m = 0.57 for the reacting case, and m = 0.38 for the non-

reacting case, as shown in Figure 1b. The importance of the Strouhal and Froude numbers

2Equivalently, we could have assumed air rising at a high temperature, pfTf = poTo, in which case the
energy equation leads to a similar equation, with 1/RePr instead of 1/ReSc. However, unlike the isothermal
case, there is volumetric expansion in this alternative formulation.
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Figure 8-1: Schematic.

have been investigated by Emori and Saito[29] in their dimensional analysis of the puffing

frequency of pool fires. It has further been shown by Hamins et al. [41] that the burner exit

fuel velocity has a small but finite influence on the puffing frequency, with this influence

being negligible for some diameters, provided that the exit velocity is larger than the critical

velocity required to initiate pulsation for a certain pool diameter.

The nature of organized vortical structures in reacting and non-reacting buoyant plumes

and the associated driving mechanism have not been fully investigated yet. This will be

discussed in the next chapter.

8.2 Numerical Parameters and assumptions

A schematic of the plume is shown in Figure 8-1. We consider the rise of a lighter fluid (or

fuel of density pf) into the atmosphere (of density po). The flow is assumed axisymmetric

and isothermal. Both the lighter fluid and air are assumed ideal gases, with constant and

115

1 -1-4 D -



equal mass transport coefficients and kinematic viscosities. It is assumed further that the

Schmidt number is unity.

The numerical parameters are selected as follows: the spatial discretization, h = 0.02,

the time step, At = 0.02, the initial core radius, o = 1.3h, and the number of material

lines, nL = 1. The most restricting is representing the scalar gradient and the vorticity by

a single material line. However, for the numerical measurement of the pulsation frequency,

it proved to be enough. For all the cases, the number of time steps was 5000, over which

the velocity history shows the formation of a considerable number of vortical structures for

unbiased estimation of the pulsation frequency.

The cases investigated, shown in table 8.1, cover wide ranges of pool diameter, Froude

number, and Reynolds number.The air to fuel density ratio was kept constant for all cases,

po/pf = 7.075. Notice that a necessary condition for buoyancy to dominate the inertia is

Fr < 1.

Data set D (m) Vo(m/s) v (m 2 /s) Fr Re
1 0.01 - 50 0.1627 4.47 x 10-6 - 1.5811 0.27 - 5.4 x 10-5 700
2t 0.01 - 0.1 0.3 0.0001414 0.9184 - 0.09184 22.135 - 700
3 1 0.5146 0.0626 - 0.00447 0.027 50 - 700
4t 0.025 0.05 - 0.4 0.0001414 0.01 - 0.653 87.5
5t 0.05 0.0005 - 0.5 0.0001414 5.1 x 10-7 - 0.51 247.48

t Kinematic viscosity corresponds to Helium.

Table 8.1: Parameter values used in numerical simulation.

8.3 Results and discussion

The time history of the horizontal velocity component at a specific location is used to

estimate the frequency of oscillation which corresponds to that of the vortical structure

formation. The location3 selected was at r = 0.4D and z = 0.8D The frequency is obtained

using the "Weltch" method of power spectrum estimations. This method involves the

application of Fourier transform with smoothing and averaging so that more reliable spectral

estimates can be obtained. The frequency associated with a certain velocity history is shown

as a plot of the power spectral density ((m/s)2 /Hz) versus the frequency (Hz), with the area

3Experiments show that vortical structure forms within a pool diameter above the pool base
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under each peak representing the energy of the signal. A typical power spectrum is shown in

Figure 8-2, where the dominant frequency is 7 Hz because it is associated with the highest

energy.
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Figure 8-2: frequency

8.3.1 Effect of pool diameter

In data set 1, the Froude number was varied by varying the diameter while keeping the

outflow velocity constant. The Reynolds number is kept constant by varying the kinematic

viscosity accordingly. Figure 8-3 shows log-log plot of the pulsation frequency against the

pool diameter. A strong dependence is apparent and a power fit yields f ~ D-0-7,

represented by the dashed line. Experiments were conducted by Hamins et al.[3] for

an isothermal buoyant stream of helium for diameters = 0.025, 0.035, 0.05, 0.075, and 0.1

m with Froude number in the range of 10-3 - 1 and Reynolds number based on V in the

range of 1 - 100. These experiments yielded a Strouhal-Froude number relation in the form:
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Figure 8-3: Dependence of pulsation frequency on pool diameter.

St Fr-0 .38 , corresponding to a frequency-diameter relation of f ~ D-0 .62. Restricting

the diameter range to 0.01 - 1 m yields the correlation f ~ D-0 -
6 3 , represented by the solid

line in figure 8-3.

Figure 8-4 displays a plot of the Strouhal number against the inverse of Froude number,

with a power law fit of St ~ Fr-0 .
37 for the diameter range mentioned. A simple comparison

between the current results and the experimental measurements of Hamins et al.[41] is

shown in table 8.2. The above comparison shows that at low Froude number, the pulsation

frequency is strongly dependent on the pool diameter and the influence of other parameters

such as Reynolds number, initial velocity, and fluid viscosity is weaker.

Data set 2 corresponds to varying the pool diameter, while keeping all other parameters

constant. Thus reduction in the pool diameter reduces both the Froude and Reynolds

numbers. Helium is the working fluid. The outflow velocity is 0.3 m/s. The diameter

ranges from 0.01 - 0.1 m, and consequently the Reynolds number ranges from 22 to 700

and Froude number from 0.91 to 0.091. Thus, the condition for buoyancy to be dominant,

Fr << 1, does not apply for all the above cases. The effect of this deviation is shown in

118



16
14
12
10

8

6

4
0

0
St aFr 03

Helium
2

10 101 102 13
Fr1 ( = g D / V )

Figure 8-4: Dependence of Strouhal number on Froude number, Re =constant.

Figure 8-5, where the Strouhal number frequency is plotted against the Froude number,

where the arrow along the dashed line indicates increase in Reynolds number and thus

decrease in the momentum. The solid line and symbols represent data set 1. It is apparent

that the two plots approach each other as D increases, or Fr decreases. For D > 0.05

m , or Fr < 0.18, the difference between the two curves is less than 15 % and reaches 5

% at Fr = 0.091. The considerable difference between the two curves for relatively high

values of Froude number is expected since the fuel-air shear layer near the pool and the air

entrainment mechanism become more dominated by the forced velocity field rather than

buoyancy.

8.3.2 Effect of Reynolds number

In data set 3, for a diameter of 1 m and an initial velocity of 0.5146 m/s, Reynolds num-

ber, Re = DVg~D/v is varied from 50 to 700 by changing the kinematic viscosity. The

corresponding value of the Froude number is 0.027. A plot of the Strouhal number against

Reynolds number is shown in figure 8-6.
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Working Fluid arbitrary Helium
Diameter range 0.01 - 1.0 m 0.025 - 0.1 m
Re = Dv'IgD/v 700 87.5 - 700
Rev = DVo/v 36.37 - 363.7 1 - 100
Fr 0.27 x 10-2 - 0.27 10-3 _ 1
f - D relation f ~ D-0.63 f ~ D-0.62

St - Fr relation St ~ Fr-0.37 St ~ Fr-0 .38

Table 8.2: Comparison between current study and the experiment done by Hamins et al.

For Re < 225, the flow is stable and no formation of vortical structures is observed.

For Re ~ 225, vortical structures start to appear with the instability becoming stronger for

higher values of Re. The Strouhal number for Re > 400 ranges from 4.0 to 4.2, indicating

that the Reynolds number has a weak influence on the pulsation frequency once transition

has been established.

8.3.3 Effect of outflow velocity

The effect of varying the outflow velocity on the periodic formation of the vortical structures

has been investigated for D = 0.025, and 0.05 m corresponding to data sets 4 and 5

respectively. In either case, it was observed that there exists a critical outflow velocity, V,

below which no instability was observed. For D = 0.025 m, V = 0.2m/s . For D = 0.05m,

periodic shedding of vortical structures is observed for the entire velocity range. This implies

that the critical velocity Vc is less than 0.0005 m/s. It can be concluded from the above that

for relatively large pool diameters, the critical initial velocity required to initiate shedding

of vortical structures is very small. The smaller the pool diameter is the larger is V.
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Chapter 9

Computation of Fire Plumes

Abstract

In this chapter, numerical simulation of an axisymmetric fire plume is presented. A schematic
is presented in Figure 9-1. The vortex method is used to compute the flow field, given the fuel
velocity at the pool surface. The transport element method is used to transport the scalars. The
chemical reaction is assumed to be infinitely fast and Shvab-Zel'dovich variables are used to reduce
the combustion formulation to a single transport equation. Radiative transport is approximated by
reducing the enthalpy of reaction. At the edge of the pool, computational elements, discretizing
the mixture fraction gradient within the fuel-air interface, are injected with zero circulation. This
assumption is based on the fact that a fire is buoyancy dominated; the Froude number is smaller
than unity.

Numerical results show that the plume dynamics are dominated by the shedding of large vortical
structures, of size of the order of the pool diameter, which originate within a pool diameter above
the pool. Vorticity generation is mainly due to the interaction between radial density gradient
and gravity. While the formation rate of vorticity is buoyancy dominated, the instability resembles
that of the Kelvin-Helmholtz type. The structures appear to control the entrainment process, and
burning occurs on their outer edges, with zones of high fuel concentration inside. The flame diffusion
thickness, except for zones of intense strain close to the large eddies, increases gradually from the
pool edge upwards. The fuel is pinched off the rising plume in large puffs as the entrained air
reaches the plume centerline, causing the flame height to oscillate at the same frequency as the shed
structures.

Numerical Predictions of the puffing frequency, averaging flame height and oscillations, and
motion of the large structures are compared with experimental data.

9.1 Introduction

Large fires occur when a large supply of fuel which may be in the form of oil spill, an oil well,

a dense forest, etc., is ignited. Besides their danger to human life and material, massive

fires represent an environmental hazard, especially when they are induced for the purpose

of cleaning up fuel spills or disposing of unwanted debris. In such cases, the composition of

the combustion products, the soot concentration and the amount of unburned or partially
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burned fuel injected into the atmosphere is of major concern. Since fires are naturally

ventilated combustion phenomena, product formation in the reaction zone depends strongly

on the local flow field established, and the amount of air entrained into the flame zone.

Thus, the problem of determining the burning rate and the fire impact on the environment

becomes strongly tied to determining the flow and combustion field in the neighborhood of

the fuel pool.

Experimental investigation[41, 12, 103, 104] of laboratory fires, which maintain the

characteristics of massive fires, has been conducted over a range of parameters for the

purpose of investigating their dynamics and the factors determining the composition of

their products. Experimental and numerical studies' [36, 60, 69] have shown that a large

fire possesses persistent dynamics which can be characterized by the shedding of large

burning structures near the pool. The formation of these structures is believed to impact

'Including the present study.
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the entrainment and hence the burning rate and products composition strongly.

Due to the complexity involved in modeling these interactions, simplifications 2 are made

in terms of modeling chemistry and accounting for radiative losses.

In the previous chapter, the flow in an isothermal plume was computed using the vortex

method. Results of this formulation showed good agreement with experimental results on

non-reacting plumes. In this chapter, combustion is introduced using an infinite rate for-

mulation of the chemical reaction. The dynamic effects of combustion, including volumetric

expansion and vorticity generation were also included in the formulation. To account for

the effect of radiation, including heating the fuel pool and reducing the heat added to the

plume, the enthalpy of reaction was reduced by 35% of its adiabatic value. In this chap-

ter, we report on this infinite chemistry results of fire plume simulations, and focus on the

entrainment field created by the formation of the large scale structures.

The chapter is organized as follows. Assumptions are stated in section 9.2. The gov-

erning equations are presented in section 9.3. The vortex-element method, the basis for

computing the buoyant fluid mechanics, is discussed in Section 2. The transport-element

method, which is used to compute the transport of non-reacting and reacting scalars, is

presented in Section 3. An example is presented and analyzed in Section 4. Conclusions

and suggestions for future work are summarized in Section 5.

9.2 Assumptions

" The fuel pool is circular and homogeneous, the surrounding is unbounded with no

cross wind: the coordinates used are the axisymmetric cylindrical coordinates.

* The chemical reaction is assumed to be single-step and irreversible and to proceed at

an infinite rate according to

Xf + b*X0 + O*Xd -+ *X (9.1)

where X is species, f stands for fuel, o for oxidizer, p for product, and d for diluent,

and 0* (= no/n) is the molar stoichiometric coefficient while 0*(= nd/nf) is the

2 These simplifications will be stated later in this section.
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diluent/oxidant molar fraction.

" Radiative loss is accounted for by reducing the the enthalpy of reaction by 35% of its

adiabatic value.

" Lewis number for the various chemical species is equal to unity.

" Prandtl number is equal to unity.

" Low Mach number compressible flow.

" Reynolds number is constant.

" Non stratified atmosphere.

" The fuel outflow velocity at the pool surface is constant and small enough such that

inertia is negligible compared to buoyancy.

" Baroclinic vorticity generation is ignored.

9.3 Governing Equations

The fire plume flow field is largely inviscid, turbulent and unsteady. Except for the ground,

it is unbounded. Accordingly, and based on the assumptions stated above, the equations3

governing conservation of mass, momentum, energy, and chemical species, written in di-

mensionless form, are respectively:

Dp+ pV - U = 0 (9.2)
Dt

Du + V2U - (9.3)
Dt pOr Re r 2

Du, + -P+ 1V2Uz (9.4)
Dt p z p Re

DT LvT± W~
DT = -pV2T+Q - (9.5)Dt Pe p
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DYk 1 W

Dt - V2 Yk + Ak (9.6)
Dt LekPe p

where the velocity u = (ur,uz) is nondimensionalized with respect to U = gD , g and

D are the gravitational acceleration and the pool diameter, respectively. The Reynolds

number is Re = DU/v, v being the kinematic viscosity. The density, p, is nondimension-

alized with respect to the ambient density po. The difference between the local pressure

and the atmospheric pressure, p, is nondimensionalized with respect to pogD. The heat

release is Q = Ahr,f/cpTo, while Ahr,f and W are the enthalpy of reaction per unit of

fuel mass and rate of reaction, respectively, Y is species mass fraction, k = f, o, p and d.

Af = -1, AO = -, AP = 1 + q, Ad = 0, q and 4 are the mass stoichiometric coefficients

of the oxidizer and diluent, respectively. The temperature, T, is nondimensionalized by

the ambient temperature To. The thermal diffusivity, Peclet and Lewis numbers are, re-

spectively: a = A/pCp, Pe = DU/a, Lek = a/Dd,k , where A is the thermal conductivity,

c, is the constant pressure specific heat, Dd,k is the mass diffusion coefficient of species k.

The ideal gas law in dimensionless form is given by: pT = M, where M = 1/ Ek(YkI/M),

Mk is molecular mass of species k, and M is the average molecular mass. Variables are

nondimensionalized with respect to values on the oxidizer side.

9.3.1 Boundary conditions

The boundary conditions are:

At infinity:

Wr-+oo = 0 and sroo = so. (9.7)

At axis of symmetry:

r=O = 0 and (= 0. (9.8)
( r) r=O

At the ground, except for the pool, the normal velocity is zero; at the pool the velocity

is prescribed:

uz(z = 0,r > 1/2) = 0 and uz(z = 0,r < 1/2) = wo (9.9)

Boundary conditions 9.7 and 9.8 are naturally satisfied since the core function used is the

solution of the diffusion equation. Boundary condition 9.9 is satisfied by the treatment of

the potential velocity component discussed in sections 3.5.1 and 6.3.
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9.4 The vortex method

The equation governing the time evolution of the circulation of an element i, obtained by

integrating the vorticity equation over the physical area of the element, Aj, is

DFi A + Du, Op Dur ap 6Ai 2= 1I++ Vw- - (.
Dt Pi Dt /Or Dt Ozj i Re r2 (

where the vorticity w = V x u = w0, 0 being the unit vector in the azimuthal coordinate.

It is assumed in equation 9.10 that the generation is uniform over the physical area of the

element.

The circulation equation is solved in three steps: (i) convection, (ii) generation, and (iii)

viscous diffusion. In the convection step, the elements are convected such that dFi/dt = 0.

In the generation step, the circulation of an element in updated according to equation 9.10

without the diffusion term. In the diffusion step the core spreading method, discussed in

section 5.4, is used. The core function, assumed the same for both vorticity and scalar, is

assumed to correspond to the Green's function of the diffusion equation in two dimensional

Cartesian coordinates
1 (r-ro2+(z-zo2

(r, ro) = 2e (9.11)

where a is the core radius. The density and its gradients are obtained using the transport-

element method described in section 4.3.

The vorticity field is modeled as a collection of vortex elements distributed along a

number of layers initially placed at the interface between the fuel and oxidizer. These

elements are transported in time according to dr/dt = u, where r is the location of a

computational element and the velocity u is obtained from the Helmholtz decomposition

discussed in chapter 6. Once the elements locations are found, the circulation is updated

using equation (9.10).

The connectivity between the elements describing a layer, and the condition that the

distance between neighboring elements must not exceed the core radius, are maintained by

inserting elements whenever two neighboring elements move further apart due to stretching.

The core overlap must always be maintained by choosing the core radius to be larger than

the distance between neighboring elements to guarantee the smooth distribution of the

computed vorticity field. Insertion of an element is performed such that circulation and
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its first moment are conserved and that the distance separating neighboring elements is of

the order of the initial spatial discretization [56, 35]. For an element at a certain location

and of a length 111, the physical area A and the element thickness Inl are updated via the

conservation of mass. In the case of buoyancy-driven plume, the initial circulation for all the

elements is zero since inertia effects are negligible. The initial velocity field is the potential

field induced by the outflow at the pool surface.

9.5 Example

The parameters for this example are:

1. the Froude number, Fr = wO/gD = 0.01, where wo is axial velocity at pool surface,

2. the buoyancy-based Reynolds number is 700,

3. the mass stoichiometric ratio, <0 = 4.0,

4. the heat of reaction normalized by the initial temperature and specific heat, Q = 70.

The initial and boundary conditions are:

1. the fuel-air density and temperature ratios are: pf/po = 0.1975, Tf/To = 3.0,

2. on the fuel side: Yf= 0.9, Yo= 0.0, Y,= 0.1, and Yd = 0.0,

3. on the air Side: Yf= 0.0, Y= 0.2, Y,= 0.0, and Yd = 0.8.

The fuel considered is methane, and the molar masses are taken to correspond to

methane-air mixture: Mf = 16, M = 32, Md = 28, and Mp = 26.62. The heat of

reaction is reduced from its adiabatic value to account for incomplete combustion and ra-

diative losses, and the fuel temperature at the pool surface is taken to account for intense

radiative heating of the evaporated methane.

The interface between the fuel and air is represented using 9 layers of elements. The

average length of an element along a layer is 0.02 (nondimensionalized with respect to the

pool diameter). The unsteady calculation proceeded with a time step of At = 0.02.
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9.5.1 The early stages and the mushroom

During the transient stage between the onset of the simulation when the interface is hori-

zontal and the time the flow reaches a stationary state, the interface between the fuel and

air, i.e. the flame, rises to form the familiar mushroom cloud observed in buoyant flows.

Although the rising horizontal interface is, in principle, Rayleigh-Taylor unstable, no sign

of instability growth is observed and instead, it is convex towards the outside. On the other

hand, the vertical surface of the plume, where the density gradient is perpendicular to grav-

ity, is where all the vorticity is generated. The vertical vortex sheet, or sleeve since the flow

is axisymmetric, rolls up close to the leading edge of the plume. Thus, the underlying flow

leading to the formation of this mushroom is a strong vortex ring structure which forms at

the leading edge of the rising plume. The ring forms as the vorticity generated along the

rising interface spirals around a common center.

Vorticity is generated by the action of the gravity acting on the rising vertical interface[36.

Vorticity generation is best explained using equation 9.10. As mentioned before, the baro-

clinic term, corresponding to vorticity generation due to interaction between the density

gradient and the hydrodynamic pressure gradient, was not included in the calculation so as

to investigate the impact of the interaction between the density gradient and the gravity

term. The baroclinic term is expected to play a secondary role to the gravity term.

The formation of the spiral appears to be due to the growth of an intrinsic instability

along the vertical vortex layer of the Kelvin-Helmholtz type. There is another form of

instability in this flow; it is the Rayleigh-Taylor instability of the initial horizontal interface

between the fuel and air. As mentioned before, the mushroom appears to be a consequence

of the action of the Kelvin-Helmholtz instabilities acting on the vertical vortex sheet. As the

mushroom rises above the pool a distance of several pool diameters, the vertical interface

rolls up again to forms new vortex rings near the pool. Eventually, the effect of the initial

mushroom on the flow near the pool surface becomes negligibly weak (in the computations,

as the entire mushroom passes through the exit boundary of the domain, which is located

5 - 6 plume diameters downstream, it is deleted). This starts the stationary state phase of

the simulations.

As a time saving tool, we limit the vertical extent of the computational domain and delete

the computational elements as they pass through this virtual boundary. The location of
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this boundary is chosen such that it exceeds the expected average flame height. The later is

estimated from experimental data which relates the normalized flame height to the quantity

Q* defined as Q*= 7rpfQFr1 / 2 /4, which characterizes the overall Richardson number of

this flow[103].

9.5.2 Time dependent structure of the plume

The flow eventually turns quasi-periodic with the regular formation of large vortical struc-

tures forming near the pool. The size of the vortical structures is of the order of the pool

diameter. The frequency of formation of the vortical structures, known as the puffing fre-

quency, has been investigated both experimentally[41, 12] and numerically[36, 60]. The

dependence of the puffing frequency, f, represented in the form of a Strouhal Number, St =

f D/wo, on the Froude number has been shown to be reasonably described by St = Fr-",

with m = 0.38 and 0.57 for non-reacting plumes and fire plumes, respectively[41]. Within

the computational domain, at any moment in time, there are three or more large structures.

While it is a rarely observed event, structures of different sizes and frequency are shed near

the pool. Also, pairing between neighboring structures is observed, although infrequently.

Figure 9-2 shows a typical cycle of vortical structure formation in terms of locations of

computational elements that coincide with the sharpest density and product mass fraction

gradients, where a color code is used to indicate the local temperature. These layer of ele-

ments depict the reaction interface between fuel and air, which is convenient for representing

diffusion flames. The figure shows both the linear and nonlinear stages of the growth of the

instability mentioned before, the former is characterized by a downstream propagating wave

with a growing amplitude, and the second starts as soon as the wave breaks and a spiral

center is formed. The group velocity of the wave in non zero, and it appears to increase as

the structure matures. The latter is due to the increase in the buoyancy as lighter products

are formed inside these large structures. The figure confirms that the formation of the large

structures is due to an instability which grows along the vorticity layer established by the

plume buoyancy. The buoyancy is due in part to the initial buoyancy of the fuel plume and

in part to the formation of hot products as the air and fuel mix and burn across the flame.

Figure 9-2 also shows the enormous stretch induced by the rollup of the vorticity layer

which is experienced at locations between the large scales. The material initially contained

between these layers is now pulled towards the rolling vortical structures. It also shows
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the combustion enhancement within the large structures where higher temperatures are

indicated. The large structures act as intense mixing zones within which the air they

entrain is mixed with the fuel, and with fast chemistry, products are formed. Another

interesting observation is the relative position of the flame with respect to the vorticity

layer. As expected from stoichiometry, the flame is located on the air side of the vorticity

layer since it needs more air to consume a certain amount of fuel. Similar observations are

reported in reacting jet and shear layer experiments.

The results show that the vortical structures are responsible for air entrainment deep

inside the rising fuel layer, leading to high product concentration within these structures.

This is observed in Figure 9-3 where the product concentrations are shown to reach their

maximum values around the outer edges of the evolving structures. These results indicate

that while the products accumulate within the diffusion flame structure, the diffusion flame

established between the rising fuel and air is convoluted by the evolving large vortical

structures. The spiraling of the diffusion flame inside the structures is limited by the

combined effects of volumetric expansion and vorticity generation, as observed in reacting

shear layer results[84, 85]. Contrary to the latter, however, no paring is observed, most

likely due to the downstream (upward) acceleration of the eddies. Product concentration

continues to increase inside the eddies until all the fuel is burnt.

The fact that the highest products concentration corresponds to regions of high vorticity

is confirmed in Figure 9-4, where vorticity distribution is presented for the same cycle. The

vorticity distribution in this figure is obtained by differentiating a grid-based velocity field

which is recovered from the vortex elements. The establishment of a vertical vortex sheet

due to the buoyancy generated torque is clear near the pool, and the first sign of the growing

instability is also detectable at this stage. Vorticity continues to accumulate inside these

structures as more burning takes place, and the core of maximum vorticity grows. The

vortical core vertical acceleration is responsible for its elongation. Eventually, and as most

of the fuel is burnt, vorticity generation and its accumulation inside the structures slow

down and diffusion lowers the value of the maximum vorticity. Instead, vorticity is spread

outwards over the area on the entrained fluid.

The density distribution depicted in Figure 9-5 shows that even before much burning

has occurred, i.e., close to the pool, a sufficiently high rate of vorticity generation should

be expected. This is because not only is methane density lower than that of air, methane
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temperature rising from the pool is assumed to be higher than the ambient temperature

due to the implicit effect of the radiative heat flux. This is taken as a boundary condition

in this study since it has been shown to be true in many experimental measurements of

different pool fires. It should also be mentioned that in our previous studies, we have shown

that the similarity between isothermal plumes and fire plumes, over a relatively wide range

of conditions stems form the similarity between the density fields in both cases[36]. Results

in Figure 9-5 indeed shows this similarity.

The fuel concentration is depicted in Figure 9-6. Two interesting observations can be

made here: (1) fuel concentration can reach zero instantaneously at some locations along

the plume axis while its value is nonzero above these locations, and (2) the large structures

are responsible for this penetration of the entrained air all the way to the plume axis. The

figure also shows that the center of the large eddies is formed of fuel and products and that

air entrainment towards these zones is relatively slow. It is worth mentioning here that

while there is small fuel zones on the upper sides of the large eddies, there are large fuel

zones on the lower side. This is consistent, while not conclusive, with the experimental

observation that the higher soot concentration zones should be expected on the lower sides

of the large eddies[92].

As mentioned before, the formation of the large structures is due to the growth of pertur-

bation via the Kelvin-Helmholtz instability mechanism. The Kelvin-Helmholtz instability of

nonreactive, homogeneous shear flow is of the convective type, i.e., it is a spatially growing

instability, and its mechanism can not explain the evolution of self-excited oscillations. Lin-

ear stability analysis of diffusion flames has been conducted by Lingens et al.[56]. In their

analysis, they found that the instability of this flow close to the burner rim is absolute; i.e.

the flow exhibits a temporally growing instability mode of zero group velocity. Moreover,

experiments on the effect of chemical reaction and heat release on the instability of a plane

reactive shear layer showed that transition from convective to absolute instability occurs

when the heat release is sufficiently large[50). Thus, there is evidence that the instability

observed in our simulations is an absolute linear instability of a diffusion flame separating

two streams of different densities. On the other hand, the numerical results do not show

a classical absolute instability since the waves appear to move while growing in amplitude.

Clearly, the properties of the instability are not well understood yet, and more work is

needed.
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9.5.3 Puffing frequency

The above results, presented in terms of the distributions of the computational elements, the

chemically active species, and vorticity, show that the most significant feature of the plume

dynamics is the presence of time-dependent structures that determine the instantaneous

structure of the fire. The characteristics of the periodic structures, in terms of their size,

speed and frequency, observed for the cases investigated in our simulations are supported

by experimental studies[96]. Periodic shedding of vortical structures whose size is of the

order of magnitude of the pool diameter forming at nearly one pool diameter above the pool

surface has been reported in experiments. The Strouhal number of this shedding, based

on the buoyancy velocity and pool diameter, corresponding to the shedding frequency of

the vortical structures for the case investigated is 2.8. This is obtained from the results

shown in Figure 9-7 where the radial velocity component history at a point located at

(O.4D, 0.8D) above the pool surface and its Fourier transform are depicted. This result,

along with cases investigated in our previous simulations, are shown in Figure 9-8, where

the Strouhal number is plotted against the inverse of the square root of the Froude number.

The straight lines shown in the figure represent the best fit obtained by Hamins et al.[41]

for a large number of experiments.

As mentioned before, the puffing phenomenon is connected with the shedding of large

vortical structures as the vorticity layer established by buoyancy rolls up due to a Kelvin-

Helmholtz instability. The universal scaling law of this instability suggests that the insta-

bility properties are indeed intrinsic to the flow. While it has been hypothesized before

that these flows could be linearly unstable, the actual observation of linearly growing waves

along the vortex layer has not been reported before. In previous studies, we showed that

similar phenomena are observable in isothermal plumes, and we used the similarity between

the density fields established in both cases to explain the origin of the similarity. While it is

tempting to discuss the phenomena as if it was a density interface instability, we iterate that

all evidence confirms that it is a vortex layer instability. This can also be supported by the

vorticity distribution contours shown in Figure 9-4 where it is clear that the roll up occurs

following the establishment of a finite layer. We should also add that the dependence of the

Strouhal number on the Froude number, the latter is a measure of the effect of buoyancy on

this flow, is consistent with the fact that it is the properties of the vorticity layer, formed
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by buoyancy, which determine the instability properties.

The speed of these vortical structures increase upwards, as can be seen from the results.

Similar observations were made experimentally, and they are consistent with the generation

of more light products as combustion proceeds within the large structures. Comparison

between our predictions of the eddy-speed dependence on the vertical location and those

obtained experimentally show good agreement.

9.5.4 Radial temperature profiles

A sample of the radial temperature profiles at different heights along the flame are shown

in Figure 9.6. These profiles were obtained for a case for which To = 278K and D = 5.7cm.

The profiles are reminiscent of diffusion flame temperature profiles in cases when the strain

rate exerted on the flame is relatively low. A steep temperature drop is observed on both

sides of the reaction front, with higher steepness on the air side. This is in qualitative

agreement with corresponding temperature profiles obtained experimentally by Venkatesh

et al.[101], presented in the same plot for a fire of 5.7cm pool diameter with 1-propanol as

fuel. In our case, the fuel-air temperature ratio converges to a value of 3.0 at r = D/2,

which is the ratio provided to the setup of the fuel-air interface as an initial condition.

These profiles serve to show the extent of the flame structure within the fire zone, and

to emphasize the significance of the high resolution achieved using the transport element

method in capturing the evolving combustion field in the fire.

9.5.5 Average flame height

The observed flame height has been defined as the point above the pool where most of the

fuel has burnt. Our simulations show that the flame height fluctuates around a plane nearly

three diameters above the pool, as seen in the distribution of the instantaneous fuel mass

fraction shown in Figure 9-6, and the averaged fuel mass fraction distribution presented

in Figure 9-10. As mentioned before, flame fluctuations are due to the shedding of the

large structures which tend to divide the evaporating fuel plume into segments and at times

separate parcels of the plume from the rest. The flame height, Zf /D, has experimentally

been correlated to the normalized heat of reaction Q* according to the plot shown in Figure

9-11 which was compiled by Zukoski[103]. For our case, the flame height of Zf /D = 3,

corresponding to Q* = 1.0, is in good agreement with the experimental data.
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Other average distributions are shown in Figure 9-10 as well. These include the products

mass fraction, temperature and velocity. In all cases, the results obtained over a uniform

grid were averaged over a large number of time steps which correspond to several large

scale sheddings. The similarity between the products mass fraction and the temperature

contours is due to our assumption that the Lewis number is unity. Another noteworthy

observation is the average velocity distribution which shows a sharp increase in the value

of the velocity within the flame zone and within a small vertical distance above the pool.

9.5.6 Velocity field

The instantaneous velocity fields at dimensionless times t = 45.386 and t = 47.386 are

shown in Figure 9-12 to help shed some light on the properties of the entrainment field.

The velocity on the air side indicates the entrainment of air by the vortical structures

into the reacting zone. The entrainment velocity is maximum around the locations of

the vortical structures shown in Figures 9-2 and 9-4 for the corresponding time instants.

There, the instantaneous velocity field on the air side show downwards values and in some

places air is driven away from the plume; a surprising result which has been confirmed by

recent experimental results[101]. The fact that these values are all induced by the vortical

structures forming along the plume edge explain these trends. The results also show the

strong acceleration which coincides with the flame front. This acceleration is concomitant

with the large drop in the density across the reaction front.

The average velocity field, depicted in Figure 9-10 and in larger scale in Figure 9-13,

shows that the velocity rises to a maximum at an axial location of about two plume diameters

and then falls. This behavior is expected, and is confirmed by experimental results, as the

heat of reaction deposited within the zone of combustion lowers the density of the products

and accelerates the flow, followed by a zone of nearly pure entrainment without measurable

combustion which leads to lower temperatures and lower velocity. The ratio of the velocity

of the air entrained into the flame zone at an axial location of 0.7D is about four times

the velocity of the air entrained at the pool base. This agrees with corresponding values

obtained by Zhou et al.[101] for a 7.1 cm toluene fire. Furthermore, the values of the velocity

corresponding to a 7.1cm diameter pool ranges from ~ 6 cm/s on the air side at the pool

base to 25 cm/s at z ~ 0.7D, which is in good agreement with the corresponding values

obtained by Zhou et. al and shown in Figure 9-14.

135



9.5.7 Entrainment

Finally we use the average velocity field to compute the entrainment rate into the fire zone.

The entrainment rate is defined as the mass flow rate of air entering the flame region at a

well defined radius; ment = d (fo 21rpwrdr). Clearly the selection of the radius at which

the integration is performed is crucial. Figure 9-15 shows the entrainment rate computed

from our results for different choices of the radius R, normalized by the Froude number, the

stoichiometric ratio and the fuel mass flow rate injected at the pool. On the same plane,

we show the results from reference [101]. Plots showing a wide range of entrainment rates

have been published in the literature[103] , confirming the need for a precise definition of

this important quantity. Finally, we show on Figure 9-16 a sample of this wide discrepancy

in the experimental results, along with Delichatsios' correlation and our results.

9.6 Conclusions

Fire plume simulations show that the plume dynamics are dominated by the shedding of

large vortical structures which originate in the vertical vorticity layer that forms above the

pool. While the vorticity formation rate is buoyancy induced, the instability appears to be

of a linear, Kelvin-Helmholtz type with accelerating group velocity. These structure govern

the far field entrainment process, and burning occurs on their outer edges in the form of a

gradually thickening diffusion flame. Within the large structures pockets of hot, high fuel

concentration are observed. Fuel balls are "pinched" off the rising plume in the form of large

puffs as the entrained air reaches the plume centerline causing the flame height to oscillate

at the same frequency as the shed structures. Dynamic similarity between isothermal and

intense fire plume is discussed in light of the density fields in both cases. Predictions of the

puffing frequency, averaging flame height and oscillations, and motion of the large structures

compare well with experimental data.
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Figure 9-2: Typical cycle showing the computational elements at four times. Color denotes

temperature. Major ticks with 0.5 spacing.
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Figure 9-3: Product mass fraction distribution at four times. Major ticks with 0.5 spacing.
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Figure 9-4: Vorticity distribution at four times. Major ticks with 0.5 spacing.
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Figure 9-5: Density distribution at four times. Major ticks with 0.5 spacing.
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Figure 9-6: Fuel mass fraction distribution at four times. Major ticks with 0.5 spacing.
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Figure 9-7: Upper figure: radial velocity component history at a point located at (r, z) =

(0.4,0.8). Lower figure: the power spectrum density vs. frequency.
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Figure 9-9: Radial temperature profiles.
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Figure 9-10: Average distributions of velocity, temperature, fuel and product mass fractions.
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Figure 9-13: Average velocity field. Color denotes speed.
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Figure 9-16: Comparison of present numerical results concerning entrainment mass flow-

rates with experimental data[104] and Delichatsios' correlation[26].
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Chapter 10

Solutions Using the Smoothed

Redistribution Method

In chapter 10 and 11, numerical results for three problems of increasing complexity are

presented. In this chapter, computations of Stokes flow and propagation of a vortex ring

are considered. In the next chapter, combustion of a fuel patch with and without the role

of radiative transfer is considered. The stokes flow problem involves solving the diffusion

equation, and thus provides a basis for a convergence study of the smoothed redistribution

method. The vortex ring problem, involving diffusion and convection, enables validation of

the velocity tables, assessment of the convection accuracy for a smoothed discretization of

the vorticity field, and the impact of the regularity of the distribution of elements imposed by

the smoothed redistribution method. The problem of combustion of a fuel patch involves, in

addition to convection and diffusion, coupling the vorticity and energy equations represented

in generation of vorticity. This allows validation of the treatment of the source term, as

well as the volumetric expansion velocity tables.

10.1 Stokes flow

To validate the smoothed redistribution method for diffusion, diffusion of a vortex ring

carrying a passive scalar is considered. Using the initial circulation 'o, energy E0 , and

radius, ro, the vorticity and scalar diffusion equations in dimensionless form are respectively

OW 1 2W
(w- ) (10.1)
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and

- = V2 s (10.2)
t RePr

where the Reynolds number is Re = Fo/v, the Prandtl number is Pr = v/a, and v and

a are respectively the kinematic and thermal diffusivities. The Passive scalar is defined as

s = (T - To,)/To, where T.. corresponds to the farfield.

The initial conditions corresponds to a vortex ring located at ro = 1, zo = 0 with initial

circulation Fo = 1 and energy Eo = 1. The Reynolds and Prandtl numbers are Re = 50 and

Pr = 1 respectively. The redistribution length is selected to be h = V8Ar, where T = vt.

The objective is to investigate the impact of the spatial resolution' AT (or h) and the ratio

of core radius to elements' spacing (the overlap), -/h. We present the following two sets of

calculations:

1. Effect of spatial resolution: 0.00025 < AT < 0.1, h = \8Ar, o- = 3ho, ho = V8Aro,

ATO = 0.0005.

2. Effect of spatial resolution with fixed overlap: 0.00025 < AT < 0.02, h = V8AT,

a = 2h.

3. Effect of core size: AT = 0.0005, h = V8Ar, h < a 10h.

The numerical results are compared to the exact solution in terms of contours and

profiles of vorticity and scalar, as well as the time evolution of the global moments. The L 2

norm of the error on a uniform mesh is also presented. The exact solution of the diffusion

equations 10.1 and 10.2 is

r2 r2 +(z -z00 27
#n = Cn e a In ( (10.3)

where n = 1 corresponds to vorticity and n = 0 to scalar. The constants C, are C=

Foro/(1 - e-r/6) and Co = 1.

One way to measure the global error is to calculate the integral of the L 2 norm of the

pointwise error. Numerically, the pointwise values are obtained on a uniform mesh of side

and thus the temporal resolution
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6or centered at the initial location, the global error is then determined by

N2 1/2

jIIL2= ArAz (fe(j) _ fn(i))2 ) (10.4)

where f denotes vorticity or scalar. The subscripts e and n refer to exact and numerical

solutions respectively. The uniform mesh is of size Ar = Az and dimension N 2 , where

N = N, = N, = 100 has been used for all the cases discussed.

10.1.1 Vorticity and scalar

For a fixed core size, refining the spatial resolution results in a smoother and more accurate

solution. This is shown in Figures 10-1 and 10-2 where the vorticity and scalar contours

at T = 0.2 are respectively shown for time step values of A tau = 0.018, 0.0045, 0.001125,

and 0.0005. The corresponding overlap values, u/h, are also shown in the figures. For

Ar = 0.018, where the core size is half the initial elements spacing, the numerical solution

is noisy and characterized by oscillations around the exact solution. As the time step is

reduced, and correspondingly the overlap ratio increased, the oscillations gets more and

more damped and the solution converges to the exact solution. For Ar = 0.0005, for

example, the numerical solution is almost coincident with the exact solution. This behavior

is expected since for values of a/h < 1 there is not enough overlap resulting in oscillations

with maxima at the elements locations. In the extreme case where the elements are Dirac

delta functions, the solution is singular at these locations.

The corresponding error, as defined in equation 10.4, is shown in the log-log plot versus

time step in Figure 10-3. The error may be correlated to h according to 161L 2 2x h 2 19 . The

arrow on the plot indicated direction of increasing overlap ratio.

In order to confirm the argument that the overlap ratio is the key parameter for smooth-

ness and accuracy of the solution, a set of simulations was conducted in which both the

time step and the core size vary such that the overlap ratio is constant, cr/h = 2. The global

error proved to be weakly dependent on the initial element spacing, as seen in Figure 10-

4. The total circulation versus time, plotted in Figure 10-5, shows this weak dependence.

This proves that error behavior experienced for the case of variable h and constant cr is

predominantly due to the variation of the overlap ratio a/h. This is further shown when

the initial elements spacing is kept fixed, h = A/8 x 0.0005, and the overlap ratio c/h is
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varied by varying the core size o-. The error behavior in the case, shown in Figure 10-6,

yields the correlation 1C1L 2 oc (a/h)2 , similar to that obtained for the case of variable h and

constant a.
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Figure 10-6: Global error versus overlap ratio. Time step is constant Ar = 0.0005. Circles
denote vorticity. Squares denote scalar.

The impact of large overlap ratio is presented in terms of radial and axial profiles of

vorticity and scalar shown in Figures 10-7 and 10-8 respectively, for overlap ratio c-/h = 5

and at time r = 0.2. The radial profiles are at z = 0. The axial vorticity profile is at r = 1

whereas the axial scalar profile is at r = 0. The numerical solution, denoted by the symbols,

follows the exact solution closely.

10.1.2 Scalar gradient

In some problems, the scalar gradients may be required. This is the case in buoyant variable

density flows, where the baroclinic and buoyant vorticity generation are functions of the

density (or temperature) gradient. Thus accurate evaluation of the scalar gradient is a

necessity. For the scalar gradient, the error incurred in the numerical solution of the scalar

is magnified due to differentiation. Thus, it is expected that the scalar gradient numerical

solution gets more accurate and less noisy as the overlap ratio increases, similar to the

behavior of the scalar, but at a smaller rate. While the solution for the scalar at r = 0.2

is accurate for the case of or/h = 2, as seen previously in Figure 10-2, the gradient solution

is noisy and oscillatory. The radial and axial components of the scalar gradient are shown
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in Figure 10-9. However, increasing the overlap further results in smoother and more

accurate scalar gradients. This is clear in Figure 10-10 where the scalar gradient solutions

are presented for -/h = 3.54 and -/h = 5.

10.1.3 Number of elements

The impact of resolution of the number of elements is presented in Figure 10-11. The plot

shows that the number of elements is inversely proportional to the number of elements, i.e.

N oc 1/AT. The size of the core, on the other hand, proved to have less influence on the

number of elements. According to Figure 10-12, the number of elements decreases at a slow

rate as the core size increases, except for very large cores, where the number of elements

decreases rapidly.
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Figure 10-7: Upper figure: radial vorticity profile at z = 0, T = 0.2. Lower figure: axial

vorticity profile at r = 1, T = 0.2. Solid lines are exact solution. Symbols are numerical

solution.
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10.2 Vortex ring

In this section, computation of the evolution of a vortex ring carrying a passive scalar is

presented. Even though it is a relatively simple axisymmetric flow, it is fundamental to

more complex flows such as jets and plumes. The domain is unbounded and the flow is

incompressible. The governing equations are conservation of mass, momentum, and passive

scalar, given respectively by

V - u = 0, (10.5)

Du _ 1 1
D - VP + 1V 2u, (10.6)
Dt p Re

and
Ds = V2s. (10.7)
Dt Re

Since there is no vorticity generation due to buoyancy or baroclinicity, solution of the

vorticity equation involves only the convection and diffusion steps.

The initial conditions correspond to an axisymmetric point vortex, located at ro = 1

and zo = 1, that has diffused for a time ro = 0.002, where T = t/Re. The initial circulation

and energy are Fo = 1 and EO = 1 respectively. The Reynolds number is Re = o/v = 50.

The redistribution length is h = /8Ar. The initial distribution, shown in Figure 10-13,

was obtained by diffusing a point vortex using the smoothed redistribution method with

ATO = 0.0002, ao = 0. The initial vorticity and temperature distribution are almost two-

dimensional Gaussians with core radius of -/-b-j.

Since the initial core size is zero, overlap is attained by expanding the cores over a

specified fraction of the diffusion time step, x. So the diffusion step is split into two substeps

according to:

(a) expansion: or = U + x(4AT).

(b) redistribution over (1 - x)AT, with a = uA.

An upper bound for the overlap is usually desired, of, then the fraction x is set to zero

once a = of .

The numerical solution, obtained using the vortex method, is compared to a converged

numerical solution obtained using finite differences. To avoid confusion, we shall call the

former the numerical solution and the later the exact solution. Comparison of vorticity and

scalar between numerical and exact solution is done in terms of (i) contours at two times:
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Figure 10-13: Initial elements distribution.

-r = 0.1 and r = 0.2, (ii) radial and axial profiles at selected locations, (iii) global moments,

and (iv) a measure of the global error.

The distribution of computational elements at different times is shown in Figure 10-14

for the case Ar = 0.0005, c-f = 2ho, x = 0.1. The distribution is characterized by denser

and disordered elements near the center due to the straining effect of the flow. The two

circles shown in the lower right are the initial elements spacing (ho) and the final core radius

(of). The number of elements grows form 415 initially to 5720 at r = 0.2, the time at which

30% of the initial circulation has decayed across the axis of symmetry.

10.2.1 Vorticity and scalar

Figure 10-15 shows the vorticity and scalar at different times. The scalar contours are

overlaid on top of the colored vorticity distribution. The contour values are the same for

both vorticity and scalar. Notice that away from the axis, the scalar contours are close to

the vorticity contours, which reflects that the solution is close to two-dimensional. However,

near the axis, the vorticity and scalar behave differently. While the vorticity vanishes at

the axis, the scalar does not, but alternatively, its radial gradient does. Note also that for

the same reason the center of vorticity is farther from the axis than that of the scalar. At

longer times, the vorticity at the center decays faster than the scalar due to the combined

effect of spreading and axis cancellation of vorticity.
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Moments of vorticity and scalar The decay of circulation for different spatial resolutions

and fixed overlap ratio (set 2) is shown in Figure 10-16. The solid line is the exact solution.

At early times, the flow, almost two-dimensional, is away from the axis. Later, at T ~ 0.05,

the flow reaches the axis, and vorticity cancellation proceeds at larger rate. At large times,

the solution approaches that of a stokes flow and the circulation decays as O(r-1). Notice

that for the three spatial resolutions tested the circulation decay is accurately computed

with slight improvement for smaller Ar.

The average axial position for the vortex ring, based on the conservation of impulse, ide

defined as

_~ _ ]Pi ir?ziz %= % (10.8)
Ej=1 Fizi

The axial mean position of vorticity for different spatial resolutions and fixed overlap ratio

(set 2) is shown in Figure 10-16. Again improvement in the accuracy of the numerical

solution is observed for smaller Ar.

The impulse of the vortex ring, I,, EN 1 Pr, shown in Figure 10-17, is conserved with

errors less than 7 x 10-5 , 3 x 105 and 10 5 for Ar = 0.002, 0.001, and 0.0005 respectively.

The axial expansion, defined as E 1 FPjz 2 is shown in Figure 10-17.

The error in the total energy is shown in Figure 10-18. Conservation of energy is

maintained with a relative error less than 8 x 10--5, 4 x 10 5 and 2 x 10 5 for Ar = 0.002,

0.001, and 0.0005 respectively. The mean axial position of the scalar, shown in Figure

10-18, follows that of vorticity. The improvement in the numerical solution for finer spatial

resolution is still seen.

The radial expansion of the scalar is shown in Figure 10-19. Unlike the impulse, the

scalar radial expansion is not conserved. Figure 10-19 shows the axial expansion of the

scalar which follows that of vorticity. It is expected that the behaviour of axial moments

is similar for both vorticity and scalar in view of the similarity in the corresponding term

in the diffusion equation of each. Also differences in the radial moments is attributed to

different radial terms in the diffusion equations for vorticity and scalar.

10.2.2 Convergence and accuracy

Convergence study is based on varying the spatial resolution Ar, overlap ratio oj/ho,

and core expansion fraction x. Correspondingly, computations were conducted using the
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AT h0  Uf Of /ho x N |E |E|

0.0005 0.0632 0.245 3.873 0.075 7423 3.33 x 10-4 2.46 x 10-1
0.001 0.0894 0.245 2.738 0.075 3990 3.31 x 10-4 2.46 x 10-4
0.002 0.1265 0.245 1.936 0.075 2175 3.30 x 10-4 2.55 x 10-4
0.005 0.2000 0.245 1.225 0.075 1330 4.27 x 10-4 4.33 x 10-4
0.01 0.2828 0.245 0.866 0.075 910 7.27 x 10-4 8.09 x 10-4

0.0005 0.0632 0.1265 2.0 0.1 5720 1.82 x 10-4 1.74 x I0-
0.001 0.0894 0.1789 2.0 0.1 3069 2.63 x 10-4 2.34 x 10-4
0.002 0.1265 0.2529 2.0 0.1 1688 3.91 x 10-4 3.16 x 10-4

0.0005 0.0632 0.0632 1.0 0.1 7047 3.61 x 10- 4  4.01 x 107-
0.0005 0.0632 0.0949 1.5 0.1 6926 3.77 x 10-4 1.92 x 10-4

0.0005 0.0632 0.1265 2.0 0.1 5720 1.82 x 10-4 1.74 x 10-4

0.0005 0.0632 0.1581 2.5 0.1 4674 2.21 x 10-4 2.05 x 10-4

0.0005 0.0632 0.2236 3.535 0.1 6159 3.52 x 10-4 2.83 x 10-4

0.0005 0.0632 0.1265 2.0 0.02 7315 1.64 x 10-4 1.61 x 10-
0.0005 0.0632 0.1265 2.0 0.1 5720 1.82 x 10-4 1.74 x 10-4
0.0005 0.0632 0.1265 2.0 0.18 7567 7.20 x 10-4 5.97 x 10-4

0.0005 0.0632 0.1265 2.0 0.5 6961 5.29 x 10-4 2.28 x 10-4

Table 10.1: Parameters.

following sets of parameters:

1. AT = 0.0005, 0.001, 0.002, 0.005, 0.01, a = uO = 0.245, x = 0.075.

2. AT = 0.0005, 0.001, and 0.002, Uf = 2ho, x = 0.1.

3. Ar = 0.0005, af /ho = 2, 2.5, and 3.54, x = 0.1.

4. AT = 0.0005, af /ho = 2, x = 0.02, 0.1, 0.18, 0.5.

The global errors in vorticity and scalar, as defined by equation (10.4), are presented in

Table 10.1.

Variable ho, fixed af, fixed x

For a fixed core size (of) and expansion fraction (x), reducing the initial elements spacing

ho (or AT) results in smoother and more accurate solution for overlap ratio greater than

two. Figure 10-20 shows vorticity and scalar contours at T = 0.2 for AT = 0.01, 0.002, and

0.0005 respectively. While the solutions for AT = 0.0005 and 0.002 are similar in terms

of accuracy and smoothness, the solution for AT = 0.01 is noisy with oscillations around

the exact solution. This behaviour may be explained in terms of the overlap ratio. For

176



Ar = 0.0005 and 0.002 the overlap ratios, 3.873 and 1.936 respectively, are larger than one.

On the other hand, the overlap ratio forAr = 0.01 is 0.866 < 1. This is in accordance with

the behaviour witnessed in the stokes problem, as discussed in the previous section. The

global error for vorticity and scalar is presented in Figure 10-21. For Of /ho < 2, the error

decreases according to . Increasing the overlap ratio beyond two has little impact on the

error. This may be explained in view of error bound, discussed in section 3.6, given by the

expression

serrorIL < constant. o + - o (10.9)

Since a = Uf is constant, it impact does not vary as h = ho varies. As h decreases, h/a

decreases, resulting in a decrease in the error until a point is reached where the discretization

error due to overlap is smaller than the smoothness error due to core size at which the error

is approximately only a function of a.

Variable ho, fixed af/ho, fixed x

Increasing the initial element spacing and core size such that the overlap ratio is kept fixed

results in smoother less accurate solutions. This is due to the smoothness error associated

with the core size. Notice that the discretization error is frozen due to the constant overlap

ratio. The impact of using larger cores is shown in Figure 10-22 for af = 0.1265, 0.1789,

and 0.2529 and cf /ho = 2. The corresponding global error in vorticity and scalar is shown

in Figure 10-23.

Fixed ho, variable af/ho, fixed x

Fixing the initial element spacing and varying the overlap ratio results in a variable core

size. According to the inequality 10.9, this introduces both smoothness error and discretiza-

tion error. For small overlap ratio the core size is small and consequently the discretization

error is dominant. On the other hand, for large overlap ratio, the core size is large and con-

sequently the smoothness error is dominant. Between these two extremes, one would expect

moderate values of overlap ratio and core size that result in minimum error. Qualitatively,

this is shown in Figure 10-24 where for cf /ho = 1, the discretization error is dominant and

the numerical solution is noisy and oscillatory, whereas for Uf /ho = 3.535, the smoothness

error is dominant and the solution is smooth with a deviation form the exact solution. How-
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ever, for af /ho, there is a balance between the two errors and the solution is most accurate.

Quantitatively, this error behavior is shown in Figure 10-25, where for AT = 0.0005, the

optimal solution seems to lie in the neighborhood of af /ho = 2.

Fixed ho, fixed Cf/ho, variable x

Increasing the core expansion fraction, while fixing ho and af, means that the core radius,

initially zero, is increased at a larger rate until it reaches its desired upper bound of. Thus,

large values of x results in large cores and consequently introduction of error dominated

by its smoothness component into the solution at early times. Consequently, this error

propagates in time resulting in smooth numerical solution with large error. Smaller values

of x may lead to the dominance of discretization error at early times. This is seen in the

vorticity and scalar contours at T = 0.2 for x = 0.02, 0.1 and 0.5 shown in Figure 10-26.

The values x = 0.02 results in a slight noisy solution, while the value x = 0.5 results in a

smoother solution with larger error. The global error is presented in Figure 10-27.

10.2.3 Number of elements

The number of elements at T = 0.2 for all the cases considered is shown in Table 10.1. For

constant initial element spacing, the number of elements does not vary much as the core

size and/or the core expansion fraction vary. However, for variable initial element spacing

(or time step), the number of elements increases linearly with the inverse of the square root

of the initial element spacing (or the inverse of the time step.) This seems to be the case at

early times as well, as shown in Figure 10-28, where the number of elements, as a function

of time, is plotted for three different time steps. Notice that at early times the number of

elements increases quadratically in time, whereas for longer times it increases linearly.
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Chapter 11

Solutions Using the Discrete

Source Method

The example considered is that of an axisymmetric "ring" of methane reacting with air.

The fuel ring consists initially of a region of fuel surrounded by air. Buoyancy is expected to

play a dominant role since it is the major source of vorticity generation. The density change

in time is also a source of volumetric expansion. The vorticity and energy equations are

coupled via the density and its gradients. The chemical reaction across the flame produces

sharp density gradients and products of lower density.

The objectives are to establish numerical convergence and to investigate the impact of

radiation on a reacting buoyant flow.

11.1 Assumptions

1. Unbounded axisymmetric domain.

2. Reynolds number is constant.

3. Prandtl number is unity.

4. Lewis number of all species is unity.

5. Chemical reaction is single step, irreversible and of infinite rate.

6. Gases are ideal, gray and non-scattering.
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11.2 Governing equations

The governing equations, in dimensionless form, are then given by

Dp+ pV -u = 0,
Dt

Du 1
- = -- Vp

Dt p

(11.1)

(11.2)
12

Re

and
Ds 1

Dt Re
(11.3)

where s corresponds to a Shvab-Zel'dovich scalar.

11.3 Parameters

The parameters are:

" Reynolds number: Re = 50.

" The mass stoichiometric ratio: # = 4.0.

" Heat of reaction: Qf = ho/cpoTo = 80, where h is the heat of reaction of fuel per

unit mass.

" The fuel is Methane.

e The chemical reaction is:

CH4 + 2(02 + 3.76N 2) - C02 + 2H 20 + 7.52N 2 (11.4)

and the molar masses are: Mf = 16, M = 32, Md = 28, and Mp = 26.62.

11.4 Initial conditions

The initial vorticity is zero. The initial temperature and species distributions, shown in

Figure 11-1 correspond to diffusion of a Dirac delta source located at ro = 1, zo = 0 over

a time ro = 0.002, where r t/Re. The initial distribution, consisting of 756 of elements,
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shown in Figure 11-2, was obtained by diffusing the point source using the smoothed re-

distribution method with Aro = 0.0002, and the core radius was increased from o- = 0 to

ro0 = V20ATo. Contours of the mixture fraction are also shown in the figure. The mixture

fraction varies from zero on the air side to one on the fuel side. The boundary conditions

are:

on the fuel side: Yf = 1, Y = 0, Y, = 0, Yd = 0, T = 1.

on the air side: Yf = 0, Y = 0.2, Y= 0, Yd = 0.8, T =1.

11.5 Boundary conditions

" At infinity:

Wr4 = 0 and sr-o = SO. (11.5)

* At axis of symmetry:
/s

wr=o = 0 and = 0. (11.6)

11.6 Numerical parameters

The computations were conducted with the following numerical parameters: h = v8AT,

AT = 0.0005, 0.001, 0.002, and 0.005, and the final time is Tf = 0.2, where h is the initial

elements spacing. The core expansion fraction of the diffusion step and the upper bound

of the core radius were chosen to be x = 0.1 and c-max = 4h. Unless otherwise specified,

results discussed correspond to AT = 0.0005.

11.7 Results and discussion

The case of the reacting fuel ring without radiation is discussed first. The role of radiation

is discussed next.

11.7.1 Vorticity

In the early stages, the temperature distribution resembles that of a two dimensional planar

problem; it is symmetrical around the r and z axes passing through the ring center. The

corresponding vorticity distribution, generated due to the interaction between temperature
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gradients and gravity, is also symmetric. This is confirmed in Figure 11-3, where vorticity

contours are overlaid on top of the temperature distribution. Note that positive vorticity

is associated with negative temperature gradient and vice versa. These two symmetrical

regions of opposite vorticity balance each other so that the flow is dominated by diffusion

and convection plays a minor role. However, as the vorticity spreads, it starts dissipating

across the z axis. Thus, diffusion across the axis causes the negative vorticity to decrease in

absolute value, so that the net overall circulation is positive causing the overall structure to

rotate clockwise. This is confirmed in Figure 11-4 where the vorticity contours are plotted

at four times r = 0.05, 0.1, 0.15 and 0.2. The symmetrical character of the vorticity at

initial times can still be seen at T = 0.05. At later times, the structure rises and rotates

clockwise. Assuming that diffusion is the dominant process initially, and knowing that

vorticity is generated at the outer edge where products form, then according to the solution

of the diffusion equation, it takes r - 0.06 for the negative vorticity region to reach the z

axis and start decaying. Indeed, this is the case as can be seen in Figure 11-5, where the

192



r = 0.05

6F6

4H

N

2

0

vorticity

-2.5
-1.5
-0.5
-0.1
0.1
0.5
1.5
3

0 2 4
r

4

N

2

0-

0
I I I I -

2
r

4

t = 0.15

6k

4

N

2

0

I I

r
42

'p

20

Figure 11-4: Vorticity contours at r = 0.05, 0.1, 0.

outwards): -2.5, -1.5, -0.5 & -0.1. Solid contours (red

15, and 0.2. Dashed contours (blue
inwards): 0.1, 0.5, 1.5 & 3.

193

6

4

N

2

0

0
r

4

'r= 0.1



4

positive

3

total
2-

0'

negative

-2

0 0.05 0.1 0.15 0.2
i r

Figure 11-5: Total circulation versus time for AT = 0.0005.

194



positive, negative, and total circulation (positive + negative) are plotted. The net total

circulation stays close to zero until r ~ 0.05 after which it starts increasing.

11.7.2 Scalars

The fuel is consumed at the rate it diffuses to the reaction zone. At the early stages, the

solution of the scalar diffusion equation is given by the Green's function

27E ++z-z20 ( 2rro
s(r; ro, t) = Er3/2e 10 ( 2 ) , (11.7)

where E is energy and Io is the modified Bessel function of the first kind and order zero.

Starting with the initial scalar distribution, the scalar at the center of the ring, i.e. at

r = 1, z = 0 decreases to 10 % of its initial value at r = 0.015. This is confirmed in

Figure 11-6 where at r = 0.015, the fuel at the center of the ring is about 8 % of its initial

value. The fuel mass fraction distribution presented in the figure shows that most of fuel

consumption occurs at the early stages. This is reflected by the symmetry in the distribution

that resembles the solution of the diffusion equation. The fact that the numerical value is

less that obtained by pure diffusion may be attributed to the combined role of volumetric

expansion and convection.

The temperature distribution at times r = 0.05, 0.1, 0.15, and 0.2 are shown in Figure

11-7. As mentioned in the previous section, most of the fuel has been consumed before

~ T = 0.02, and consequently no chemical reaction occurs afterwards. The temperature

distribution is then governed by diffusion and convection, the later due to vorticity and

volumetric expansion. Contrary to the early stages where temperature is largest in the

reaction zone as seen in Figure 11-3, large temperatures at later stages are associated with

regions of high products concentration, as seen in Figure 11-7. Regions of large vorticity

are associated with high temperature gradients as seen in vorticity and temperature dis-

tributions shown in Figures 11-4 and 11-7 respectively. Finally, the impact of volumetric

expansion is manifested in larger volume of hot gas with a mean center moving away from

the axis.
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11.7.3 Convergence

To investigate numerical convergence the following time steps were used: AT = 0.0005,

0.001, 0.002 and 0.005. The results are compared in terms of vorticity and scalar contours

at the last time step, i.e. at T = 0.2. The vorticity contours presented in Figure 11-8 show

that the the numerical solution converges in a nonlinear fashion. This is confirmed in Figure

11-9 where the mixture fraction contours are shown. Using the solution with Ar = 0.0005

as a reference, the departure of the solutions for AT = 0.001, 0.002 and 0.005 from this

reference is measured in terms of an L-2 norm of the total error evaluated on a uniform

mesh. The errors for both vorticity and scalar are presented in Figure 11-10 as a function

of AT. The error behave s A", where m = 1.52 for vorticity and 1.27 for scalar.

The number of elements as a function of time is presented in Figure 11-11 for o =

0.0005. The increase in number of elements is linear. Further, it was observed that it

decreases linearly with At. For example, the number of elements at r = 0.2 is 13368, 7764,

and 4173 for At = 0.0005, 0.001 and 0.002 respectively.
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11.8 The role of radiation

In order to investigate the impact of radiation, the same example has been simulated, in

which the radiation source term in the energy equation is determined according to the

discrete source method described in the numerical methodology section. The medium is

assumed to be gray, i.e. wavelength independent. The absorption coefficient is determined

according to[70]

a = Zap,(T)pi (11.8)

where i corresponds to chemical species, and ap,i is the Plank-mean absorption coefficient

of species i, and pi is the partial pressure of the species. The temperature dependence of ap

for the various species, obtained using narrow band averaged values[91], is shown in Figure

7-14. The absorption coefficient of air is negligible for the range of temperature of interest.

The vorticity distribution, shown in Figure 11-12, resembles that of the non-radiating

ring except that slightly lower values of vorticity are noticed. This is attributed to smaller

vorticity generation associated with weaker temperature gradients. The temperature distri-

bution is presented in Figure 11-13. Radiation contributes to the temperature field in two
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ways: first it results in thermal energy loss to the surrounding and second it redistributes

the thermal energy in an equilibrating manner, resulting in smaller temperature gradients.

A comparison of the time variation of the total circulation with and without radiation

is shown in Figure 11-14. Radiation results in reduction in the absolute value of the total

negative and positive circulation generation with a reduction in the net overall circulation.

This may be thought of as a measure of the role of radiation in reducing vorticity generation

via lower temperature gradients.

The total energy loss due to radiation is plotted as a function of time in Figure 11-15.

During the stage where -r < 0.05, the rate of energy loss is large as can be seen from the

steep rate of energy lost. Later, for r > 0.05, energy loss approaches a steady state value

reflecting the decaying role of radiation. This can be explained in terms of the corresponding

fuel consumption. The maximum fuel mass fraction in the field is plotted as a function of

time in the same figure. It can be noticed that the rate of energy loss due to radiation starts

approaching zero by the time all the fuel has been consumed, represented by the dashed

line in the figure. The shift in the radiation loss profile is due to the high thermal energy

of the products of reaction right after the complete consumption of the fuel.

11.9 Conclusion

Grid-free Lagrangian computations of a reacting fuel ring with and without radiation have

been presented. Radiation modeling is based on the discrete source method; a recent

development in vortex methods. Radiation plays the roles of redistribution of thermal

energy and losing part of it to the surrounding. Initially, the vorticity generated by buoyancy

is symmetrical. Later diffusion causes the negative vorticity close to the axis to decay

in absolute value resulting in rise and clockwise rotation of the structure. Radiation, via

reducing temperature gradients, results in smaller generation (in absolute value) of positive,

negative, and net overall circulation. Future works involves investigation of the impact of

higher Reynolds number and heat release.
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Chapter 12

Conclusion

In this thesis, we used available state of the art vortex methods to compute isothermal

and reacting fire plumes. The results show agreement in the qualitative instantaneous and

average behavior of the flow as well as quantitative parameters such as the puffing frequency,

average plume height, and entrainment rates of air. The strengths and the weaknesses of the

methodology used, which is based on the transport element method, have been pointed out.

It has been concluded that further development is needed which objectives are accurate,

grid-free, and flexible modeling of diffusion and grid-free modeling of radiative transfer. To

meet these objectives, we have developed tools that are useful for numerical modeling of

reacting flows in which radiative transfer plays a significant role. The major contributions

are development of the smoothed redistribution method for accurate modeling of diffusion

and the discrete source method for grid-free modeling of radiative transfer. We have also

applied these tools to numerically compute various flows with the intent to validate the

methodologies and investigate their convergence and accuracy.

The smoothed redistribution method is an extension of the redistribution method for

a smooth representation of the vorticity field. The basis function assigned to each is the

Green's function of the diffusion equation. Thus the method may be thought of as combina-

tion of the core spreading method and the redistribution method. It differs from the former

in that instead of injecting new elements based on a predetermined geometrical pattern, it

exploits the neighbors of the element to be diffused and injects a new element only in the

presence of a gap (manifested by the impossibility to obtain a positive solution of the linear

system). It differs from the redistribution method in terms of blob representation of the
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field (as opposed to points), thus allowing smooth, accurate, and efficient recovery of the

vorticity and scalar fields, and their gradients.

Accurate grid-free modeling of diffusion presents a challenge to vortex methods. Use

of the core expansion method is not recommended since it introduces errors in convection.

Accurate computation of the elements velocities required the field to be sufficiently resolved

via enough overlap between the elements. The velocity field is determined using a Biot-

Savart summation over all the elements. Essentially an integration, this summation provides

an accurate approximation of the integral provided there are enough collocation points.

Obviously, the uniformity plays an important role. For a uniform distribution of elements,

the summation is very accurate. In grid-free methods, however, the elements are moved

according to the velocity field and consequently controlling elements is out of question. Two

exceptions arise, however. The first exception is periodic remeshing (particle to grid) of the

field. This is a step that is needed in deterministic methods such as the PSE. The second

exception is in the redistribution method, and more specifically in the injection step. As

discussed before, the redistribution method injects elements in gaps which is manifested by

the unsolvability of the linear system. It is how the element is injected that offers control

on the location of this element location. The injection is implemented by promoting the

uniformity of distribution of the elements by local search and optimization of the inter-

elements distances. This feature endows the redistribution method with an advantage.

Indeed, the method not only offers an accurate and efficient solution for diffusion, it also

improves the accuracy of the convection step via promoting the uniformity of the elements

distribution.

The discrete source method for grid-free numerical modeling of radiative transfer is novel.

While current methods are tailored for a structured mesh, the discrete source method is

designed to compute the divergence of the radiative heat flux based on Lagrangian distribu-

tion of computational elements, which renders the method compatible with vortex methods.

The radiation source term in the energy is computed using a Biot-Savart summation over

all the elements. Axisymmetric elements are rings of finite cores, two dimensional elements

are infinite cylinders, and three dimensional elements are sphere. Accordingly, the method

exploits fundamental solutions available or developed for these basic configurations. The

introduction of the concept of the "effective attenuation coefficient" reduces the complexity

and order of integration with insignificant loss in accuracy.
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Suggested further work includes extending the smoothed redistribution method to ac-

count for variable diffusivity, numerical treatment of the source terms in a more accurate

and robust manner, and applying this set of tools to more complicated problems.
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