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Abstract

This thesis develops an integrated system model for a continuous cold rolling
manufacturing process. Variation in the centerline strip thickness has been a major
quality concern in the steel industry. Large variations can cause failure in downstream
processes, such as jamming in stamping steps. The goal of this thesis is to determine the
impact of the manufacturing system variation on output thickness, and to predict the strip
thickness variation prior to production. Traditionally, statistical approaches have been
adopted for such applications. A statistical model has also been developed in this thesis
using the Principal Component Analysis. Even though it calibrates well, this model
cannot be used as a predictive model. Output thickness variation is mapped to variations
in process variables, which cannot be determined prior to production. To solve this
problem, the concept of an Integrated System Modeling (ISM) is utilized in this thesis.
ISM is a physics-based modeling technique, and it has been proven effective in
determining sensitivity of the output to process variables in a manufacturing system
consisting of multiple operations. This technique was originally developed for discrete
manufacturing systems. Besides applying this technique to a continuous manufacturing
system, other improvements have been made to this modeling technique. First, an
algorithm is developed in this thesis to determine the frequency at which the model
should be calibrated. Second, Monte-Carlo simulation is used to determine the sensitivity
between output and process variables in the system. This avoids the limitation of Taylor
series linearization around an operating point. Third, the controllers used in the
manufacturing system are included in the model. This allows prediction of process
variables, and hence a predictive model based solely on the input properties of the
manufacturing system can be built. A virtual mill that predicts output thickness of the
cold mill with geometric and material properties of the input steel strip is constructed.
The model predicts output thickness variation to within 15% from that measured at 1Hz.
Sensitivity analysis on this model identified that the input thickness variation is the
largest contributor in exit thickness variation below 1Hz.

Thesis Committee: Prof. Kevin N. Otto, Chairman
Prof. David E. Hardt
Prof. Anna C. Thornton
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Chapter 1: Introduction

Over the past few decades the expectations for quality in manufactured products has

increased steadily. One important aspect of quality is the consistency of product

specifications. Thus the manufacturing industry has responded by developing techniques

to reduce the variations in products, leading to significant improvements in performance.

Statistical approaches are one category of methods that have been successfully used to

target and reduce variations in manufacturing processes. Examples of effective statistical

approaches include the 6-sigma production and SPC. Implementation of SPC has

resulted in significant improvements in quality. However, despite these advances in

variation reduction, it has become increasingly difficult to identify the causes of quality

loss, due to the growing complexity of manufacturing systems. Therefore, new

techniques to detect and control variations in production are necessary.

One technique that has been introduced to specifically address complex manufacturing

systems is the physics-based Integrated System Model (ISM). This model maps the

system inputs and operating parameters to the system outputs. It has been successfully

applied to various systems to identify major sources of variation and to evaluate different

variation reduction strategies.

However, previous applications of ISM have been limited to discrete manufacturing,

where each work piece is processed independently from the previous and successive

pieces, and where the quality is defined by the performance of the individual work piece.

In many situations, manufacturing systems are not discrete but rather the work piece is

passed from one production line to another. There exist many opportunities for variations

to accumulate. This research project proposes to expand ISM to a continuous

manufacturing system in order to deal with the variations that are passed from one

processing unit to the next. By applying ISM to continuous manufacturing systems, one

can significantly increase the scope of the modeling capability. The specific continuous

system that is studied in this thesis is cold rolled steel production.
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The steel industry enjoyed phenomenal growth during the 1970's. However, due to

fierce competition and over-capacity, steel companies must compete heavily on price and

quality. The most important determinant of quality of cold-rolled steel is the centerline

exit thickness variation. Reducing this variation would lead to a considerable

improvement in product performance.

This thesis performs variation analysis to identify the sources of variation in centerline

exit thickness of cold rolled steel strips, the prime component of steel strip quality. The

sensitivity between the total output variation and the variations in each processing step

are investigated, in order to assess the contribution of each step toward the overall

variation. Furthermore, a model is constructed to predict output thickness variation

without actual processing of the strip. In this way, variables that can potentially affect

the output thickness can be identified before the strip is processed. An ultimate

application for this variation prediction model is to avoid processing steel strips that are

likely to have high output thickness variation. The overall quality of the steel strips

would therefore be improved.

The achievements in this thesis are:

1. Developed Monte Carlo methods to analyze variation on continuous

manufacturing processes. (Chapter 7)

2. Included the influences of on-line controllers in a variation prediction

model. (Chapter 6)

3. Developed sufficient sampling frequency criteria for process variables

to capture data stream variance. (Chapter 4)

4. Built a statistical variation model of cold rolling stand with Principal

Component Analysis. (Chapter 2)

5. Performed sensitivity analysis using the Monte-Carlo simulation of the

large manufacturing system (cold mill). (Chapter 7)
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1.1 Flat-Rolled Steel Production

About half of the rolled steel products made in the United States are flat-rolled. (Roberts

1987) The flat rolling manufacturing of steel has been developed since the nineteenth

century and has evolved into a complex series of processes. The processes include blast

furnace, hot rolling, pickling, cold rolling, and galvanizing.

Raw Materials Blast Furnace Continuous Casting

Coil Up Hot Rolling

Pickling Cold Rolling

Roughing Mill

Final Product

Figure 1.1 Flat Rolled Steel Manufacturing Process'

To produce steel, first iron ore pellets are melted in a blast furnace. Coke and oil are used

to generate the energy in the furnace and limestone is used to remove impurities. Proper

chemicals are then added to the molten iron at specific temperatures to produce the

desired alloys in ladle metallurgy facilities. This stage determines the material properties

and the grade of the product. Low-carbon steel has less than 0.1% of carbon and 0.2% to

0.5% of manganese, Carbon steel has a carbon content of 0.1% to 0.8%, and HSLA steel

is low-carbon steel microalloyed with niobium, vanadium and titanium.

'Figure from "Steel Manual" by Bolbrinker (Bolbrinker 1992)
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The molten alloy is then poured into either a slab caster or a continuous caster. The alloy

is cast into about 20-ton steel slabs, with thicknesses ranging from 2 to 12 inches and

widths ranging from 27 to 72 inches. The slabs from continuous casters enter hot rolling

mills directly and the energy loss is minimized. On the other hand, the slabs from slab

casters are often reheated in reheat furnaces to raise the temperature to about 2200*F, a

practice called hot charging. In both cases, the temperatures of the slabs are carefully

controlled to ensure consistent material properties of the product.

After the slabs reach the proper temperature and are relatively easy to deform, they are

fed into the hot-rolling mills. The hot-rolling mills usually consist of several reduction

stands. The most common form of reduction stand is the 4-high stand, which is made of

two work rolls and two back-up rolls. (Figure 1.2)

Gear spindle

Rail - crossing device

Thrust - supporting device

Figure 1.2 4-High Reduction Stand2

The multiple reduction stands enable the mill to reduce the slabs into strips with thickness

of around 0.06 to 0.5 inches progressively. Some mills, in addition to the multiple stands,

use alternating forward and reverse rolling to achieve the same result. At the end of the

2 Figure from "Flat Processing of Steel", Roberts, W. 1987 (Roberts 1987)

12



hot-rolling mill, each steel strip is rolled into coils for easy transportation. Therefore, a

steel strip is also referred to as a steel coil.

Due to the high temperature, a layer of oxides, also known as mill scales, form on the

surface of steel. There are three types of oxides: ferrous oxide (FeO), ferrous-ferric oxide

(Fe30 4) and ferric oxide (Fe2O3). Ferrous oxide, which occurs at the layer next to the

metal surface, constitutes about 85% of the scale thickness, the ferrous-ferric oxide about

10% to 15%, and the ferric oxide about 0.5% to 2%. These oxides must be removed prior

to the cold-rolling mills to ensure finishing quality and to lengthen equipment life.

These scales are removed in the pickling process. The strips are submerged in acidic

solutions such as sulfuric acid (H2SO 4) or hydrochloric acid (HCl). The pickling lines are

usually equipped with mechanical scale-braking devices to facilitate the process. The

chemical reaction produces water-soluble salt and hydrogen. The temperature and the

concentration of the solutions are carefully calibrated. The time that the strip stays in the

solution, which is determined by the strip's speed, also determines the amount of the

metal that dissolves in the pickling solution.

The pickled strip is then trimmed to the desired width and sent to the cold-rolling mill to

be reduced to the final desired thickness. There are many different types of cold-rolling

stands. For example, a 2-high is a stand with only two work rolls, a 4-high is a stand with

two work rolls and two back up rolls, and there are also 6-high stands, with two work

rolls and four back up rolls. There are also 12-high 20-high, and Z-high designed to

provide higher rigidity to the mill and produce higher reduction. The 4-high mill stands

are the most commonly used type of stand for cold reduction. They are usually used in a

series of four to six stands to apply progressive thickness reduction. The multiple stand

mills enable the output thickness to have different finishes, bright or matted, by changing

the rollers on the last stand.
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The cold rolling process is intended to produce strips of specific thickness. However, this

process also work-hardens the strips and leaves residues of the lubricant on the surface.

The residual stress in the material creates complications in the downstream process, such

as stamping, on the strip. The cleanliness of the strip is important because it significantly

affects the corrosion resistance of the product. The annealing process not only removes

the residual stress in the steel, but also vaporizes the lubricants remaining on the surface.

The annealed steel strips can be shipped as a final product or galvanized to increase rust

resistance of the product. Rust resistance of a steel product is very important in consumer

products such as automobiles and food cans. Chromium oxide has been used for coating

since the 1960's, but zinc is the most commonly used coating material. The zinc coating

is usually deposited on a steel surface either electrolytically or by the traditional hot-dip

method. Another way to form this metallic coating is by the vapor-deposition process.

1.2 Cold Rolling Mill of Thesis

The cold rolling mill discussed in this thesis consists of five reduction stands. All stands

are 4-high stands, with two work rolls and two back-up rolls. The work rolls of the last

stand can be changed to make products with different surface finishes. The data used in

this thesis are all collected from coils with smooth finishing.

Sophisticated controllers called automated gauge controllers (AGC) are installed in this

mill. There are two types of AGC's: Force AGC and Mass-Flow AGC. The Force AGC

monitors the gap between rollers and adjusts the roll forces accordingly. The Mass-Flow

AGC predicts the output thickness at the next stand based on the assumption of

conservation of volume flow. Based on the prediction, the Mass-Flow AGC changes the

roll speed to achieve the target thickness. The control system constantly monitors the

process by measuring entry tension, exit tension, roll force, roll torque, and roll speed for

all five stands. The entry strip thickness, along with strip thickness at the exit of stands 1,

4, and 5 are also measured. The sampling rate currently in use for each process variable

was decided based on failure monitoring criteria, not gauge variation monitoring.
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Chapter 4 will discuss an algorithm that determines a sampling frequency at which

variation in each variable can be observed sufficiently.

1.3 Quality Concerns of Cold Rolling Process

Even with the sophisticated control systems, cold rolling mills are constantly under

strong pressure to meet the increasingly stricter customer requirements. There are several

modes of quality loss that cold rolling mills suffer from. These modes are profile,

flatness, and centerline thickness of the strip. The profile is the cross section of the strip.

A common, and often tolerated, problem is the thickening in the center of the strip, a

phenomenon known as crown. This is due to work roll deformation as its ends are

pushed toward the strip while the reaction force is concentrated in its center. The flatness

measures the warp of the strip. A flat strip lies in a two-dimensional plane, without wavy

edges or curled ends. Poor flatness is caused by residual stress in the strip, which might

be caused by temperature history of the strip or uneven placement of the rolls. Strips

with severe curl can damage the cold rolling mill.

The most important quality of the steel strips is the consistency of the output centerline

thickness. Large variations in centerline thickness can cause catastrophic failures in

downstream processes, such as jamming in stamping steps. Unlike the flatness, it is

difficult to compensate for large thickness variation. The requirements for low centerline

thickness variation has raised so much that the industry standard for the allowable

variation is now a quarter of the tolerance set by ASTM. For a thin steel strip with target

thickness less than 600pm, the tolerance set by ASTM is ±80pm from the target thickness

(Ginzburg 1993).

1.4 Related Works

Shewhart, Deming and Juran describe variation in processes through separation into two

basic categories: special causes and common causes (DeVor 1992). The special causes

are problems that arise unpredictably, and they interfere with routine operation. On the

15



other hand, the common causes are the problems that are inherent in all manufacturing

systems. Special causes are correctable locally while common causes will influence all

of the production until found and removed.

Shewhart introduced the concept of statistical control. A process is in a state of statistical

control when a phenomenon's future variance can be predicted within certain limits, by

using the history of the phenomenon. The resulting technique, SPC, detects special

causes in a manufacturing system by monitoring the mean shifts or changes in variation.

Chen has applied SPC to control IC fabrication processes (Chen 1998), and Sachs has

combined SPC and Feedback Control and developed the concept of Run by Run process

control (Sachs 1995).

Another technique that is commonly used to monitor quality loss in manufacturing

processes is the Exponentially Weighted Moving Average (EWMA) (Crowder 1989).

This tool helps visualize the shift in manufacturing states. Smith and Boning have

applied this technique to control semiconductor processes (Smith).

Response Surface Modeling (RSM) is an established tool that helps engineers to

statistically model variations in manufacturing systems. The output variation is fit to that

of process variables. The resulting surface is useful for identifying the relationships

between system variation and variation in each process variable. The data space, to

which the response surface is fit, can be actual process data or the result of Design of

Experiment, DOE (Boning 1993). Lei has used a quadratic equation to model variance

in statistical circuits (Lei 1998). Evolutionary Operation (EVOP) technique is a

continuous form of RSM. It involves performing several designs of experiments and

determining a new operating point using the accumulated data (Box 1957).

Several techniques have been developed to identify the elements in a system that have the

most significant impact on output quality. Frey and Otto have defined key inspection

characteristics that identify the subset of quality characteristics required to identify yield
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(Painter). Thornton defines key characteristics as the product features that are most

sensitive to the existing process variation (Thornton 1996). Hu has introduced the

Stream-of-Variation theory, which is a fault diagnosis technique for assembly plants (Hu

1997).

Some research on variation in manufacturing systems is based on physical models of the

system. Mantripragada and Whitney use state Transition models to calculate variation

propagation in assembly lines (Mantripragada 1999). Wei and Thornton have

investigated the variation stack-up in tube bending process (Wei 2000). Frey et al has

developed the concept of capability matrix along with a modeling technique using block

diagrams to optimize manufacturing procedures (Frey). The physics-based Integrated

System Model (ISM), developed by Suri and Otto, maps system output variation to

variations in process variables for manufacturing systems with multiple operations. The

variation model is derived through linearization of the nominal model for the

manufacturing system (Suri and Otto).

Numerous studies have focused on the rolling process. Lubrano and Bianchi have

developed a finite element model to predict the behaviors of the elastic and plastic

deformation of both steel and rolls (Lubrano 1996). Edwards has developed an energy

balance model that is useful for mill setup. (Carlton, Edwards et al.) A model that is

suitable for rolling thin gauge strips is developed by Fleck et al (Fleck 1992).

MacAlister has developed a framework to use rolling models for manufacturing system

automation (MacAlister 1989). Orowan constructed a model to closely calculate the roll

pressure distributions in a roll bite (Orowan).

To improve the quality of cold rolled steel many researchers have tried to identify the

sources of disturbances in the cold rolling mill. Pinkowski focuses on the sources and

causes of mill roll marks (Pinkowski 1996). Nessler, Richard, and Nieb tried to identify

the sources for the vibration and chatter in rolling processes (Nieb 1991; Richards 1992;

Nessler 1993). Cory focuses on monitoring the vibration due to roll eccentricitiy (Cory
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1990). Since disturbances in rolling processes tend to be periodic, Shim performed

frequency analysis on strip thickness (Shim and Park 1998).

Some researchers have developed control algorithms in production to reduce the

thickness variations in cold rolled steel. Lynn has utilized the statistical process control

methodology (Lynn 1991), and John et al developed an H' control loop on a cold rolling

mill to improve the thickness quality of cold rolled steel (John 1998). Other than the

centerline thickness, flatness and shape of steel strip is also a quality concern for steel

industry. There are many shape control devices to adjust the crown of steel strip, such as

CVC rolls, and inflatable crown back-up roll (Guo 1996). Egan has developed a flatness

model for steel rolling (Egan 1996), and Kamada uses pair cross mill to control the edge

profile of steel strips (Kamada 1996).

1.5 Thesis Goal

The goal of this research is to use the concept of ISM on a continuous manufacturing

system. This task leads to many major challenges. One of the challenges is to determine

a sampling frequency at which sufficient variations in the systems are observed. To

illustrate the importance of sampling frequency, two extreme cases can be considered.

First, if the sampling rate is once per production, there will be no information on the

quality of each product other than a bias value from other products. On the other hand, if

there are infinite samples in a production, the data will contain too much high frequency

system dynamics such as sensor noise and vibrations. It is important to determine an

optimum sampling-rate that returns the proper amount of information in the data.

Another challenge in this research is to include the controllers in the manufacturing

system. Modern manufacturing systems rely heavily on automatic controllers to

attenuate errors occur in manufacturing systems. These controllers create further

complication in modeling variations because the variation observed in a signal may be a

control action, a disturbance in the system, or a combination of both. It is necessary to

separate the variation due to control actions from that due to system noise.
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A cold rolling mill simulator will be constructed in this thesis as an application of the

solutions for these two challenges. The simulator predicts output thickness based on

geometric and material properties of input steel strip. The control models combine with

physical models, predict the values of process variables for each stand at the sampling

frequency that is sufficient to observe the variations in the system.

Monte-Carlo simulation is used to detennine the sensitivity coefficients between the

system output and the process variables. These sensitivity coefficients can also be

determined from an approximation of the system model, which is derived by linearizing

the physical model at an operating point. The shortcoming of this method, other than

being an approximation, is that the linearized model is only valid at a vicinity of the

operating point. On the other hand, a linearization provides rapid information, often by

mere inspection of the coefficients.

Scenarios with various input variations will be simulated with the cold rolling mill

simulator. The simulation outcomes are used to confirm the sensitivity values obtained

from Monte-Carlo simulations. From these simulation results, optimum improvement of

the system can be identified.

1.6 Thesis Overview

This thesis is composed of eight chapters. This chapter serves as the introduction of the

field of variation analysis and cold rolling. The outline of this thesis is shown in Figure

1.3. Chapter 2 discusses the statistical approaches to predict variations. SPC and PCA

have been applied to this thesis and the results and the limitations of statistical

approaches to predict output variation are presented in this chapter. The limitations lead

to the need for physical modeling of the manufacturing system.
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Chapter 1:
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Chapter 2: Chapter 3:
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Chapter 5:
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Variation Model

Chapter 6:
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Controllers

Chapter 7:
Virtual

Cold Mill]

Figure 1.3 Thesis Overview

In Chapter 3, the physical models for cold rolling process are discussed. This chapter

presents well-established models such as Roberts' model, Stone's model, and Carlton's

energy balance model. This chapter also lists the assumptions and variables used by each

model. The pros and cons of these models are also discussed. This provides the

underlying physical model for the integrated system model.

Two challenges are encountered when applying a rolling model to study the variation in

output of a continuous steel rolling process. The first challenge is to define a sampling

frequency at which the model should be calibrated and explored. The second challenge is
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that yield strength and the hardening coefficient of steel, which are required by the

physical model to predict output thickness, are not measured. These challenges and their

solutions of are discussed in Chapter 4.

Once the sampling frequency is determined and the unmeasured variables are modeled,

an integrated model can be constructed by linking models for each process. A variation

analysis is performed on this integrated model through Monte-Carlo simulation to

determine the sensitivity between output thickness variation and process variations. The

details are presented in Chapter 5.

This integrated model at that point cannot be used to predict output thickness variation

because it requires the values of process variables such as force and velocity of each

stand. Since the values of these variables are determined by the controllers, the models

of these controllers should be combined into the integrated physical model. The resulting

model will predict output thickness purely based on the geometric and material properties

of the input steel strip. Chapter 6 discusses about modeling these controllers, including

feedforward and feedback control algorithms. A model for each controller is determined,

with statistically fit coefficients.

In Chapter 7, the predictive model constructed by integrating controller models and

physical models is discussed. This is a cold rolling mill simulator that predicts output

thickness from geometric and material properties of input steel strips. The mean and

standard deviation of predicted thickness distributions are compared with that of

measured values. Sensitivity analysis is performed on this model to study the impact of

variation in each process variable on the output thickness variation.

This thesis is concluded in Chapter 8. The values and limits of this simulation model are

discussed.
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Chapter 2: Statistical Techniques

Variation in processes can be separated into two basic categories: special causes and

common causes (DeVor 1992). The special causes are problems that arise unpredictably,

and they interfere with routine operation. Special causes are the sources of variations that

can be detected and removed. On the other hand, the common causes are the problems

that are inherent in all manufacturing systems. The common causes are the variations

whose sources cannot be identified.

Special causes are correctable locally while common causes influence all of the

production until found and removed. In this chapter, statistical tools for understanding

variations in a manufacturing system, such as SPC and RSM, are discussed. A statistical

model that maps output thickness variation to the variation in process variables is

constructed at the end of this chapter.

This chapter focuses on the statistical approaches to identify the sources of output

thickness variation for a cold rolling mill. The techniques used are statistical process

control and principal component analysis. The statistical process control is used to

identify the correlation among the spikes in each process variable. A high correlation

will suggest high sensitivity between variables. The principal component analysis is

used to regression fit a equations that maps output thickness variations of steel strips to

the mean and standard deviations of process variables. This model predicts output

thickness variation of the cold rolled steel strip once the values of process variables are

known.

2.1 Statistical Process Control (SPC)

Shewhart developed Statistical Process Control in the 1950s. Shewhart states that

processes under statistical control are driven solely by common causes of variation. A

system showing instability or a lack of control is afflicted with assignable special causes.

The state of being in statistical control is when the process is free of special causes of

23



variation. This allows the operator to state the probability that the observed phenomenon

(output production) will fall within given limits.

The SPC method is based on two time-varying control charts, which plot process mean

and range over time. Each chart has an upper and a lower control limit drawn at ±3

standard deviation of the mean and a range of observed data points. These charts enable

operators to observe mean shifts in the process and determine if corrective action is

necessary. However, the control charts identify the presence of a problem, but does not

aid in determining the cause. Statistical detection of correlation between input and output

variables is attempted in this thesis to trace the sources of variations.

2.1.1 Application of SPC on Continuous Cold Rolling

A goal of this thesis was to determine the sensitivity of output thickness to each process

variable. However, a straight calculation of the correlation among variables resulted in

low correlation values. Table 2.1 is the correlation coefficient between each variable and

exit thickness. The variable that has the largest correlation to the exit thickness is roll

force at Stand 4, with value of 51%.

Correlation with Exit Thickness
Entry Thickness 6% Stand 3 Roll Force 5%
Entry Tension 18% Stand 3 Roll Speed -19%
Tension btw Stand 1-2 2% Tension btw Stand 4-5 -3%
Stand 1 Force -5% Stand 4 Roll Force -2%
Stand 1 Roll Speed 16% Stand 4 Roll Speed 51%
Stand 1 Exit Thickness -23% Stand 4 Exit Thickness 37%
Tension btw Stand 2-3 -8% Exit Tension 7%
Stand 2 Roll Force 4% Stantd 5 Roll Force 5%
Stand 2 Roll Speed -8% Stand 5 Roll Speed 2%
Tension btw Stand 3-4 8% Exit Thickness 100%

Table 2.1 Correlation between Process Variables and Exit Thickness

Even though the correlation can be easily calculated, it does not explain the causality

between variations in process variables and the output thickness variation. The variation

in a process variable may be control efforts trying to remove thickness variation.
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Therefore, high correlation may only show that the output thickness is effectively

influenced by control efforts, instead of suggesting sources of variations. Therefore, it is

necessary to exclude the impact of controller in the computation of correlation. In this

thesis, SPC is used separate the controlled variation from the noise that adds variation to

the exit thickness. The SPC analysis is a side project in this thesis, done to first see if

such a simplistic approach was possible.

SPC is effective in identifying the existence of mean shifts in both output thickness and

process variables. A sudden mean shift is considered outside the bandwidth of the

controllers. If sudden mean shifts in output thickness coincided with that in another

variable, their correlation suggests causality. The SPC techniques found in the literatures

were modified to apply to a continuous system with controllers to identify sudden mean

shifts. Each data point is compared with the mean and standard deviation of a window of

past production. The data point is determined to be a sudden mean shift, or a spike, if it

lies outside of ±3 standard deviation range of the previous window. The determination of

the mean and ±3 standard deviation is shown in Figure 2.1. The size of the window can

be experimentally determined to ensure that a reasonable number of data points fall

outside the control limits.
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Figure 2.1 Average and ±3 Standard Deviations of a Signal
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The moving average, Y , and standard deviation, a, is expressed in Equation 2.1 and 2.2;

w is the number of data points in the moving window.

i+w

3 i~ ,:- k~i(2.1)
w

i+w

Ya(k _ i+W 2

or+ =i (2.2)

After the average and ± 3 a range is determined, the original data were overlaid on the

control chart. The data points that lay outside the 3 a range are identified as spikes

(Figure 2.2).

Figure 2.2 Determination of Spikes in a Data Stream

This procedure was performed on all process variables and thickness measurements from

the cold rolling mill. The spikes in all data streams were then compared based on its

location on the coil. The strip was split into M sections and the number of spikes in each

section was determined for each data stream. A spike matrix, .S, was generated to show

the locations of the spikes (Equation 2.3).

26



sil S1,2  ... SI,N

S s2,1  (2.3)

SM,1 SM,N

Each element sj was the number of spikes, M was the number of the sections down the

strip, and N is the number of data streams. A symmetric correlation matrix, C, is then

calculated based on each column, 9j, in S (Equation 2.4).

A typical spike matrix, S, is shown in Figure 2.3.

18
a Output thickness

16 0 Exit Strip Speed
1 Exit Tension
" Torque 5

14 Roll Speed 5
* Roll Force 5
* Tension 4-5

12 : Strip Speed 4-5
* Torque 4
C Roll Speed 4

41O * Roll Force 4
M Tension 3-4
8 StpSpeed34
.Torque 3
* Roll Speed 3

6 6 Roll Force 3
0 Tension 2-3
z Strip Speed 2-3

4 o Torque 2
* Exickness 1

2 Roll Force 1-2
Tension 1-2
Strip Speed 1-2

0 Torque I
0 % e Roll Speed

o Roll Force 1
m Entry Tension

Length down the coil 0 Entry Thickness
100 % a Entry Strip Speed

Figure 2.3 Typical Spike Analysis Result

[1 C2,1  ' CN,l1
C C

C C2,1  1 (2.4)I . CN,N-1

CN, CN,N-1 J

where
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ci= cov(Yii) (2.5)

COV(§,,§jy)= MskJ- p~j,, sj,-Jp,, (2.6)

A typical result of the correlation matrix is shown in Appendix A.

As would be expected, correlation matrix showed that there was high correlation between

speed changes and process variables such as torque. This observation was confirmed

when Figure 2.3 was overlaid with the roll speed data for the production of the strip

(Figure 2.4).
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Figure 2.4 Spikes in Data Streams and Roll Speed Data

The operators conducted the speed changes upon observing surface stains entering the

cold rolling mill. The SPC and correlation analysis also showed, however, that the

correlation between the output thickness variation and speed changes was 30%. When

operator made speed changes, there was reasonable likelihood that thickness

perturbations result on the strip, even with the sophisticated control system employed.

The analysis above indicated that speed changes caused by the operator introduced spikes

in most of the process variables, and somewhat on output thickness. A recommendation

was to minimize speed changes, which is obvious, but also to limit the rate of change of

speed. Speed should be raised and lowered as slowly and continuously as possible, to

enable the on-line controllers to work.
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A further analysis was then employed to examine the smaller regions of steady velocity,

outside of where the operators make speed changes. A typical result of spike analysis on

steady state region is shown in Figure 2.5. No clear correlations among process variables

were observed.
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85%

Output thickness
Exit Strip Speed
Exit Tension
Torque 5
Roll Speed 5
Roll Force 5
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Strip Speed 4-5
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Strip Speed 3-4
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Roll Spee 3
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Strip Speed 2-3
Torque
ExtrThickness 1
Roll Force 1-2
Tension 1-2
Strip Speed 1-2
Torque 1
Roll Speed 1
Roll Force 1
Entry Tension
Entry Thickness
Entry Strip Speed

Figure 2.5 Typical Spike Analysis in Steady Velocity Section

The correlation coefficients of the spike data in the constant velocity section suggested

the sensitivity of output thickness variation to each process variable. For example, stand

5 torque's spike correlation with output thickness was 0.57; that of stand 1 torque was

only 0.04. Other process variables that had significant spike correlation with output

thickness were stand 3 roll- force, stand 4 torque, and stand 4 exit-tension. Their spike

correlation coefficients with output thickness were 0.24, 0.30 and 0.30 respectively.
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SPC was helpful in identifying the problems, and spike correlation was effective in

determining the relative impacts of each process variable spikes to the output thickness

spikes. Even though these analyses provided interesting insights about the system, they

did not provide information on the causalities between the variations. For example, the

observed fluctuations in a process variable may be a result of control actions. Therefore,

high correlation between output thickness and a certain variable might suggest an

effective control action instead of identifying a source of quality loss.

2.2 Parameter Fitting

Another statistical approach to identify sensitivity between output thickness variation and

process variation is fitting parameters of an equation that maps variation in output

thickness to statistical characteristics of process variables. In this thesis, the form of the

equation is a linear combination of the mean and standard deviation of process variables.

This would make for a very simple analysis of variation, should it prove effective.

O5, = Ai +fI p, + E flai (2.8)

Second order terms such as pi2 , a 2, and piu can be included in the model. They are

not included in here in the attempt to keep the number of fitting variable small relative to

the number of data points. This model is based on two assumptions. The first is that the

operation was stable and varied in a small region around an operating point. The second

assumption is that the data streams are independent. The first assumption of modeling

complex manufacturing systems has been applied widely. However, the second

assumption is not true in the case where a controller is present. The controller's function

is to reduce output variation based on the observed process variables by constantly

changing the process. Therefore, the measured ori's in the system are not independent.

Therefore, principal component analysis is required to construct a data space without

statistical dependence. A statistical model that predicts output thickness variation can

then be fit with this new data.
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2.3 Principal Component Analysis

Principal component analysis, originally developed by Pearson, is often used to address

these multicollinearity problems in regressio (Dunteman 1989) (Wold, Esbensen et al.

1987). Principal component analysis is used in the situation where there is coupling

among the inputs which appeared as a co-linearity in the data space. It rotates the data

space to generate a new set of input variables that are linearly independent while also

determining the insignificant modes for simplifying the regression process. It searches

for a new set of uncorrelated linear combinations of the original variables that describes

the most of the information in the original variables. The new set of variables is

generated by assigning weights to the original variables. Principal component analysis

transforms a data matrix with p data streams, X = {xI, x 2,***,x, I into a new q-

dimensional space Y = {y1, y 2 ,-', Yq I while each vector yi is calculated by multiplying a

weight vector, a, to X (Equation 2.9).

yj = ajjx, + ai2x 2 + .aix, (2.9)

The weight aij's are determined mathematically with the method discussed later.

Geometrically, the first principal component is the closest linear fit to the observed

outputs, minimizing the squared difference between the observation and the prediction.

The second principal component adds more information to describe the behavior of the

observed outputs, being the closest fit to the residuals from the first principal component.

The first principal component carries the most information in original data set, X, and

each additional principal component will provide diminishing information. The number

of principal components is chosen based on the information contained in them. The

maximum number of principal component is the number of data streams in the original

data set. The procedures for calculating principal components are described as follows.

To determine the transfer function, the first step is to determine the eigenvalues, 2, of the

matrix X (Equation 2.10).

Xa = la (2.10)
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The number of A should be the same as the rank of X, and the matrix a is composed of

the respective eigenvectors (Equation 2.11, 2.12).

a={aI, a2 , , ak} (2.11)

Xa, = A 1a, (2.12)

Each eigenvector is also normalized so that the length is unity (Equation 2.13).

2 =1 (2.13)
j=1

In the case where X is not square, singular value decomposition can be used to calculate

the matrix a. For example, a m x n matrix X with rank r can be decomposed into three

matrices involving eigenvectors and eigenvalues (Equation 2.14).

Xn, 1 =UmxmmxnVx,, (2.14)

X is a diagonal matrix formed by the singular values, a,, which are equivalent to the

eigenvalues in the case with a square X (Equation 2.15). The singular values are the

square roots of the real positive eigenvalues of XX H (Equation 2.16).

al 0 --- 0

0 U 2  0

(2.15)

Or

0 0 --- 0

a, = F i =1, 2,3,-, r (2.16)

The singular values are arranged in the order that a, U2 ... Orr

The U matrix is composed of left singular vectors, ui, and V is of right singular vectors,

vi.

U ={UIU 2 ,-,,Um} (2.17a)
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V = {vI, ,V2 , .. . ,V} (2.17b)

The right singular vectors are equivalent to the eigenvectors in the case with a square X,

and they are calculated with the following equation.

X 'Hvi =o vi (2.18)

Once each principal component is calculated, different criteria can be used to determine

the number of principal components that simplifies the problem while maintaining

sufficient information of the original data. Kaiser recommends dropping those principal

components with associated eigenvalues less than one for a normalized X. On the other

hand, Jolliffe has argued that Kaiser's rule tends to discard too much information and

suggested the cutoff to be 0.7. Cattell proposed a "scree" graph, which plots the

eigenvalues and determines a proper number of principal components based on the

change in the slope. Another criterion that was suggested by Duntman is to retain enough

principal components to account for a given percentage of variation.

All of these rules are arbitrary and involves some personal judgements. As a general

rule, the more principal components that are retained, the more complete the description

of the data. Furthermore, as suggested by Duntman, smaller principal components are

harder to interpret than larger ones.

2.3.1 Application of Principal Analysis Regression on Cold Rolling Model

This regression and principal component analysis technique was applied in this thesis to

modeling the cold rolling mill. It was assumed that the model for the five reduction

stands are repeatable; therefore, it was applied to a single stand instead of the connected

five stands.

Data streams for 21 coil productions were available at the time of analysis. 14 of them

were used for calibration, and the obtained equation was validated against the remaining

seven coils. For each data set, six process variables were available for Stand 1, on which
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the analysis was performed. They were input thickness, roll force, entry tension, exit

tension, roll speed, and roll torque. Mean, p,, and standard deviation, o, were

calculated for each data stream, and the output of the model was output thickness

variation, represented by its standard deviation. A 14x12 matrix X was then generated

with these observations. (Equation 2.19)

Ii a1,1  p2,1 a2,1 ... O6

P 1, 2  1,2  o" 2 , 2  a 6 ,2

X = I,3 a1 ,3  (2.19)
JU1,4

-P1,14  U1,14  .. a. 6,14 j

This data matrix is highly correlated, with coefficients of correlation ranging from -0.60

to 0.94. Principal component analysis was therefore applied to address this problem.

First, the matrix X was normalized and the singular values and singular vectors were

calculated. Kaiser's criterion was then used to determine the number of principal

components. It turned out that there were ten singular values that were bigger than unity,

so ten principal components were calculated using Equation 2.9. Second, regression was

performed to map observed outputs to the principal components. In addition, t-test, with

a = 0.05, was included in the regression analysis to ensure each that component was

significant. As the result, five principal components were significant and the output was

regenerated and the equation predicted the output thickness variation with r2 of 0.85 and

RSME of 0.11pm (Figure 2.6). Since the principal components were difficult to

interpret, the resulting equation was converted into the original set of variables

(Equation 2.20).

tout-_hick =2.867 +0.159p +0.0687entry thickness +0209ro orce

- 0.085ar,foe - 0. 2 6 9pentry +0. 14 4 ent tension(
(2.20)

-0.1 6 6 ,,speed +0.1 3 3 -,,llspeed + 0.02 6 9 ,Utoque - 0.02155aque

- 0.0483ue,, tension + 0.0271 aexi tension
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The equation was then validated with another seven sets of production data streams. The

model predicted the output thickness variation with r2 of 0.81 and RSME of 0.08pm

(Figure 2.7). This result is quite good in fit.

Figure 2.6 Calibration of Equation 2.20
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Figure 2.7 Validation of Equation 2.20

2.4 Limitations of Statistical Approach

As demonstrated in the previous section, the principal component analysis in conjunction

with regression was effective for building a statistical model for a complex system with

correlated data streams. However, there were limitations to this approach. The observed

variations in process variables are composed of the actions of controllers and noises in
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the system. The control actions attenuate disturbances in the manufacturing system and

the noises contribute to the output variation. Equation 2.20 does not reflect this

phenomenon. This meant that we could not perform sensitivity analysis with this

equation. The result would show whether thickness variation is highly sensitive to, for

example, force, but not force errors. Most of the force variation is "good" variation,

requested by the control system to take out variations in thickness.

An attempted solution was to split the data streams into high-frequency and low-

frequency components based on the observed transfer function, and then to perform the

same analysis on these new set of data. One could interpret the low-frequency part of the

data as control actions, and the high-frequency component as system noise. The cutoff

for high and low frequency was determined based on the transfer function between the

process variable and the output thickness. For example, the transfer function from

normalized stand 1 roll force to the normalized output thickness was shown in Figure 2.8.

In this figure, the dashed line was the ratio between the magnitude of normalized force

and the magnitude of the normalized output thickness. Since the plot was too noisy in the

high frequency region, a moving average line, drawn in black, was added to the plot. It

was observed that the magnitude of the transfer function was below Odb at the low

frequency range. This suggested that the change in the force observed at those

frequencies did not contribute to the variation of output thickness. On the other hand, the

magnitude of the transfer function was above Odb in the higher frequency range, and this

meant that the change in force resulted in increased output thickness variation. Based on

these observations, the cutoff frequency was defined as the frequency where the plot

crossed the Odb line.
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Figure 2.8 Transfer Function From Roll Force to Exit Thickness

After the cutoff frequency for each variable was determined, each data stream was

filtered into high frequency and low frequency components. The mean and standard

deviation for each component was then calculated as performed in the previous analysis.

This time, the principal component analysis resulted in 15 principal components using

Kaiser's criterion. The regression analysis and t-test identified 4 of them to be significant.

The new model calibrated to a statistical fit with r2 of 0.85 and RSME of 0.11, which

roughly equaled to the result obtained without filtering the data. (Figure 2.9)
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Figure 2.9 Calibration of Equation 2.21
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However, the new equation only validated to r2 of 0.46 and RSME of 0.12. (Figure 2.10)

.. 3.1

S3.0

*E -+- measured
S- validated

jL 2.9

>2.8

Figure 2.10 validation of Equation 2.21

It was possible that the filtering had introduced error into the model. In addition, even if

the model were able to validate to the same correctness, it would still be difficult to

interpret the model. (Equation 2.21)

Ch = 3 .39 1-0.0585 e.,ty tensionconto, +0. 2 16aentr.yensonise +0.01 36 e,,t tensioncontrol

+ 0.212oetts nise -8.47 x 10-4 ,rofoco,tro - 2.419 x 10-6 Ifrofe noise (2.21)

-0.0 7 4 3 Hwfquency -0.0 7 8 9 Hhighfrequency -0.0586,, speed -0.0118(width)

The signs for some of the variables did not make physical sense. For example, according

to the equation, the noise in roll force reduced the output variation, and this was

counterintuitive. Regression analysis only searches for a set of , 's that minimize error

between model prediction and measurements regardless the actual relationships between

the variables. Therefore, the physical insight that could be drawn from the statistical

model was limited.

2.5 Chapter Summary

This chapter has shown two statistical approaches to determine the sensitivity of variation

in output thickness to that in process variables. The SPC spike analysis has identified

that spikes in process variables strongly correlate to speed change, but it cannot explain
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the causality between the variation in thickness and that in process variables. The

second statistical approach, principal component regression, successfully maps output

thickness variation to the mean and standard deviation of process variables. However,

the variations in process variable contain both control actions and noises. Therefore, this

statistical equation cannot be used to identify the sources of variation in output thickness.

Another limitation of statistical equation is that it cannot be used to predict output

thickness variation. The amount of variation in each process variable can be determined

only after the actual processing of the strip.

Because of the reasons discussed above, it is clear that a physic-based model is necessary

for predicting output thickness. The development of such a model is discussed next.
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Chapter 3: Cold Rolling Models

Chapter 2 has shown that the information obtained from a statistical equation is limited

despite the fact that it can predict the output. On the contrary, equations derived from

physical principals provide strong confidence that it correctly reflects the system once it

is properly validated. The challenges in constructing such a model are to make realistic

assumptions and to identify the correct variables.

The approach for building a physics-based model that predicts output thickness variation

based only on the characteristic properties of input strip is as follows. The first step is

constructing a physical model that explains the behavior of a reduction stand. This model

will be expanded to all five reduction stands, and the five models can be integrated as one

model that predicts output thickness based on the values of process variables. The

second step is to predict the values of process variables. This is performed by

constructing models of the on-line controllers, since the values of process variables are

results of control actions. The target values of each controller are functions of

characteristic properties of the input strip and the process variables in previous stands.

The last step linking the controller models with the physical models of reductions stands.

With this, sensitivity analysis can be performed to identify the sources of variation and

their impacts on the output thickness.

Chapter 3 focuses on the physical models for an individual reduction stand that have been

developed over the years: plane strain force balance model, Roberts' Model, Stone's

Model, and Carlton's energy balance model. These models are studied and a suitable

model for predicting the behavior of an individual reduction is selected.

Modeling of the cold rolling process is a very mature field of study. Stone, Roberts,

Orowen, Ford, and Ekelund have derived models for predicting roll force or torque based

on the desired thickness reduction (Wusatowski 1969). Hitchcock has derived an well-

accepted model to predict the deformation of work rolls (Roberts 1978). Numerous
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studies have focused on the deformation of steel under rolling conditions (Lindholm

1965).

WI
h .

V ,

hf Wf

Figure 3.1 Strip Deformation in a Cold Rolling Stand

Figure 3.1 is a schematic of the rolling process. The top roller is not shown in the figure

for better visualization of the strip. From conservation of mass and the assumption that

the density is constant, the volume flow is conserved.

hOxW xVO =hf XWJ XVf (3.1)

The change in width is insignificant compared to the thickness and length change during

the rolling process. Therefore, plane strain is usually assumed in the models and only

dimensional changes in the vertical and transverse directions are considered in the

models.

The region where the rolls touch the strip is called the roll bite. Both elastic and plastic

deformations of the strip take place in this region. However, the elastic deformation is

insignificant compared to the plastic deformation and is ignored in this model. The point

where the strip first touches the roll is called the entry point while the point where the

strip leaves the roll bite is called the exit point.

The entry speed is the strip speed at the entry point, and the exit speed is that at the exit

point. Since the width is relatively constant, the reduction in thickness causes the exit

velocity to accelerate to higher than the roll speed, while the entry velocity is slower than

the roll speed. The point where the strip speed equals the roll circumference speed is
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defined as the neutral point (Figure 3.2). The region between the entry point and the

neutral point is called the entry zone, where the strip speed is slower than the roll

peripheral speed. On the other hand, the region between the neutral point and the exit

point is called the exit zone, and the strip speed is faster than the roll peripheral speed.

Neutral point

Entry point 
m ta o

0a

Exit point

o ho

Rolling direction

Figure 3.2 Strip Speed Change during Deformation

3.1 Plane Strain Force Balance Model

This simple model assumes plane stress in rolling process and models the rolling process

in a 2-dimensional model (Kalpakjian 1995). The assumptions of this model are listed as

follows:

1. Conservation of volume is assumed.

2. The work roll radius is assumed to be rigid.

3. Strip width is constant before and after the rolling process.

4. The effect of entry and exit tension is ignored effective yield strength.

5. The effect of roll speed is neglected.
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6. Work hardening occurs during the rolling process and the effective yield strength is

assumed to be the average.

7. The coefficient of friction is assumed to be constant in the roll bite.

8. The rolling angle, a, is within a couple of degrees; therefore, the angle of reduction,

#, is small. (sin q = #,cos # = 1)

Nomenclature for Force Balance Model

a: roll angle

ho entry thickness

hf :exit thickness

p friction coefficient

L: contact arc length

#: angle of reduction

a: effective yield strength

F : roll force

p: roll pressure

R: roll radius

W : strip width

T: tension in transverse direction

Figure 3.3 shows a section of the strip that is under deformation. The roll peripheral

speed is faster than the strip speed in the entry zone; therefore, the frictional pressure,

up, is in the forward direction. The situation is opposite in the exit zone, so the force is

pointing backwards.

h+ dh

T+dT -

P

h

I

p

h + dh

T T+dT

P

h

P14P
Entry zone Exit zone

Figure 3.3 Force Balance on a Section of Strip under Deformation
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From the force balance, the following equation is derived. The ± sign is due to the

opposite directions of frictional forces in the entry and exit zones.

(T+dTXh+dh)- 2FRd# sin0 -Th± 2uFRd cos#0 =0 (3.2)

The second order terms are dropped since their magnitudes are insignificant relative to

the others. The equation is then reorganized into a differential equation.

d(Th) = 2FR(sin # T pcons#) (3.3)
do

Since # is small, the following is assumed: sin # = # and cos# =1. This assumption

resulted in the following differential equation.

d(Th) = 2FR(# T P) (3.4)
do

From the geometry and the assumption that the roll is rigid, the following equation is

derived.

h = hf + 2R(1-cos p)= hf + 2R# 2  (3.5)

This equation is combined with Equation 3.3, and integrating the resulting differential

equation results in the following expression for roll pressure, p.

p = -he (3.6a)

P = o--hie f (3.6b)

Equation 3.6a is for the roll pressure in the entry zone, and Equation 3.6b is that for the

exit zone. Figure 3.4 shows the general shape of these two curves, and the area under the

curve is the rolling force per unit width.
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Figure 3.4 Pressure Distribution in Roll Bite

With the knowledge of roll pressure, the roll force can be calculated by integrating the

pressure along the contacting arc.

F =f WpRdo + fWpRd# (3.7)

The angle , can be calculated by equating Equation 3.6a and 3.6b, and the solution is

shown below.

,= -tan 2 -tan a - In (3.8)
@m {2 R J4 fnf hj

This equation is useful for determining the roll force when the thickness reduction is

known. However, it is very difficult to use this equation to predict output thickness based

on measured roll force. The determination of roll force, F, requires the knowledge of the

entry and exit pressure profiles, to calculate which requires the location of neutral point,

, . Both of these values are function of exit thickness, hf, as shown in Equation 3.7 and
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3.8. It will be a set of simultaneous equations with integration. One crude solution is to

use the average pressure, pave, to describe the pressure profile, resulting in Equation 3.9.

F = LWp., (3.9)

Since the average force is a function of thickness, an expression of thickness can be

derived as a function of force, coefficient of friction, roll radius, input thickness, and

effective yield strength.

The effective yield strength, o-, is used in place of yield strength because the strip

hardens during deformation. One model that predicts the work hardening of steel is the

exponential function of true stress (Ginzburg 1989).

a = Ke" (3.10)

where e is the true strain. The parameter n is called strain-hardening exponent, and the

parameter K is the strength coefficient. Both parameters are material properties of steel.

The effective stress is also called the flow stress, which is the required stress to continue

plastic deformation. For plane stress compression, this number has been shown to be

1.15 times the annealed yield strength of the material.

This plane stress force balance model over simplifies the rolling process. Neglecting the

impact of tension, roll speed, and roll deformation is not a reasonable assumption when

accurate prediction of output thickness is desired. This model is useful when rough

estimation is desired, but not suitable for the tasks of this thesis.

3.2 Roberts' Model

Roberts' model is a more sophisticated model than the force balance model. The

assumptions that it is based on are as follows.

1. The volume of the strip remains constant.

2. The friction effect is neglected.
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3. Elastic deformation of the strip is negligible compared to the plastic deformation of

the strip under rolling.

4. The work roll deforms elastically during the rolling process, with a constant deformed

roll radius.

5. Tensile stress applied on the strip reduces the effective compressive yield strength of

the strip as predicted by Tresca's maximum shear theory.

6. Plane strain conditions are assumed. In other words, width is assumed to be constant

through the production.

7. The process conditions are symmetrical about the pass-line of the mill stand.

8. Forward slip is neglected, i.e., the strip exit speed equals the roll circumference speed.

Nomenclature for Roberts Model

ho : entry thickness

hf :exit thickness

F : roll force

L: contact arc length

e :strain rate

o : minimum deformation pressure

fR : specific roll force

D: roll radius

A: strain rate sensitivity coefficient

E: Young's modulus

V : roll circumference speed

Since the reduction ratio is defined b

calculated with Equation 3.12.

UO : annealed yield strength

a : effective tensile stress in roll bite

Or : dynamic constrained yield strength
D': deformed roll diameter

r: reduction ratio

W : width

al entry tension

U 2 : exit tension

#8: roll deformation conatant

CL : Lode's constant

y Equation 3.11, hf can be determined once r is

ho -hf (3.11)

(3.12)

From the geometry of the roll bite, the following equation can be derived such that
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2L2
r = 2(3.13)

D'ho

where D' is the deformed diameter of the roll, which can be predicted with Hitchcock's

equation (Equation 3.14).

D'= D(1+ fl(fR/(Ehor))) (3.14)

The specific roll force, which is defined as the roll force per unit strip width, is used to

simplify the model. This is valid because geometrical symmetry and plane strain are

assumed.

L, the length of the contact arc, is also necessary to determine the reduction ratio. It is

known that the specific force is the product of deformation pressure and contact arc

length.

fR PL (3.15)

The deformation pressure is a function of material yield strength, tensile stress in the

strip, and strain rate. Von Mises and Tresca have developed different criteria to predict

yield stress under compressive deformation with tension. (Kalpakjian 1991) In Roberts'

model, Tresca's criterion has been recommended.

Ua = (a, +(1- r)a 2 )/(2 - r) (3.16)

While many complex relationships between yield strength and strain rate are proposed,

Roberts propose a statistical model.

ac = CL (aO + Aloglo(1000e)) (3.17)

The Lode's constant, CL, is multiplied because of the plane strain condition (Khan 1995).

The strain rate, e, can be calculated geometrically (Figure 3.5).
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D'

ho hf

Figure 3.5 Variables used in Roberts' Model

e=V 2 (3.18)
D'ho

The deformation pressure is the difference between the dynamic constrained yield

strength and the effective tensile stress in the roll bite.

,a = o- - U- (3.19)

This results in eight simultaneous equations that can be used to model a cold mill stand.

The Roberts' model is often used in the steel industry for its accuracy and simplicity.

This thesis used this model to describe the thickness reduction of the steel strip in the first

four stands.

3.3 Stone's Roll Force Model

Even though Roberts' model returns reasonably good results, some assumptions are not

always applicable. First, neglecting friction in rolling model leads to underestimation of

strip hardness. Second, the neutral point shifts toward the middle of roll bite when exit

tension is decreased. The assumption of no slippage ignores this phenomenon. Stone

derived a roll force model that does not assume the exit speed to be the same as roll

circumference speed from the pressure distribution in the roll bite. This enables the
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rolling models to be applied to a wider range of productions. The assumptions of Stone's

force model are listed below.

1. The volume of the strip remains constant.

2. Elastic deformation of the strip at the start and the end of the roll bite.

3. Tensile stress applied on the strip reduces the effective compressive yield strength of

the strip as predicted by Von Mises' shear theory.

4. Plane strain conditions are assumed. In other words, width is assumed to be constant

through the production.

5. The process conditions are symmetrical about the pass-line of the mill stand.

6. The neutral point, where the strip speed equals the roll circumference speed, occurs at

the midpoint of the contact arc.

7. The pressure distributions in the roll bite are symmetrical about the neutral point.

8. The friction coefficient is constant in the roll bite.

Nomenclature for Stone's Force Model

ho : entry thickness r: reduction ratio

hf: exit thickness a- entry tension

F: roll force a2 exit tension

L: contact arc length fR specific roll force

o, : minimum deformation pressure V : roll circumference speed

p :coefficient of friction XL : distance betwen neutral point
and exit point
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Figure 3.6 Schematic for Stone's Model

Similar to the force balance model, Stone's model is derived based on the force balance

of a finite piece of the strip. First, an element with length dx at distance x from the exit

point is identified. The point where roll speed equals the strip speed is defined as the

neutral point, and it is located at distance xL from the exit point. While Roberts assumes

the pressure distribution within the roll bite is uniformly distributed, Stone assumes the

following equations to describe the incremental change of pressure.

dp = 2ppdx
ho (1- r)

(3.20)

where p is the normal pressure on the strip, m is the coefficient of friction, and ho (1 - r)

is the exit thickness of the strip, hf

Since it is assumed that no deformation occurs during plastic deformation, the pressure at

distance x from the exit point, Px, can be expressed by the following integral.

2pux

px = a = o e
"X
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Once the pressure at each location x is determined, the force exerted by the roll on the

strip between the exit point and the neutral point is as follows.

XL__ 2L a o(1 .- _r) __ 1

fR 0x 0(I-r) P - e ho(I-r (3.22)

The assumption that xL occurs at the middle of the contact arc and the geometrical

similarity with respect to the pressure distribution on each side of the neutral point leads

to the final equation for the specific force equation.

fR 0 h (3.23)

This force model can be rewritten to calculate the contact arc length in the cases that the

roll force is known.

One major difference between Stone and Roberts' model is the location of neutral point.

Stone has derived a model for the rolling conditions that neutral point is near the center of

the roll bite. While Roberts' assumption that neutral point is near the exit or roll bite is

reasonable for Stand 1 through 4, Stone's assumptions is valid for the last stand because

the exit tension of the last stand is much less than its entry tension. In this thesis, StOne's

Force model is used in combination with Roberts' model to express the behavior of the

last stand in the mill.

3.4 Carlton's Energy Balance Model

Carlton, et al, has developed a model based on energy balance instead of force balance, in

the 1970s (Carlton, Edwards et al.). This model is intended to predict the necessary roll

force to achieve the target exit thickness. The assumptions that this model is based on are

listed below, and the schematic drawing of the model is shown in figure 3.7.

1. The energy from mechanical shafts and tension goes to friction and steel plastic

deformation.
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2. Plane strain conditions are assumed. All deformation of the strip is in transverse and

vertical direction.

3. Negligible elastic recovery and constant pressure distribution is assumed when

calculating the location of the neutral point.

4. For calculation of frictional energy, the forward slip is ignored, and the pressure

distribution in roll bite is assumed to be linear.

5. 50% of the frictional heating energy is assumed to transmit to the strip.
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Nomenclature for Carlton's Energy Balance Model

a: specific roll force coefficients

b, frictional heating coefficients

c,: forward slip ratio coefficients

c: elasticity constant

C, : specific heat of strip

E: Young's modulus of roll

E, : Young's modulus of strip

Ef : specific frinction energy

Em : specific shaft energy

Er : specific reduction energy

E, : specific tension energy

f : forward slip ratio

ho : entry thickness

hf :exit thickness

hm : minimum strip thickness in roll bite

h : average strip thickness

k(r): plane strain yield stress at reduction r

k: sensitivity of yield stress to temperature

k, yield stress coefficients

Ak : yield stress offset

Ak: strain rate component of yield stress

Ak : temperature component of yield stress

k*: effective yield stress

L: contact arc length w/o roll deformation

L, : contact arc length with roll deformation

F total specific force

F, elastic recovery component of roll force

F,: plastic compresstion component

of roll force

r : thickness reduction ratio

R: work roll radius

R': deformed work roll radius

T : shaft torque

T, T2 : entry, exit tension force

aO,12 : entry, exit tension stress

U 2 ': tensile stress at boundary between

plastic and elastic deformation

V,,V2 : entry, exit roll speed

x, : normalized neutral angle

a: strain rate constant

8: strip thickness reduction

e : true strain

e : true strain rate

01,02 : entry, exit strip temperature

A: dimensionless parameter

p : coefficient of friction

v : Possion's ratio

p: strip density

On neutral angle

01 angle of entry point

w: work roll angular speed
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Figure 3.7 Schematics for Carlton's Model

From the first assumption, an energy balance equation can be written (Equation 3.24).

Er+Ef =Em + E (3.24)

where specific energy is defined as energy per unit volume of strip rolled.

The mechanical energy, E., is a function of torque, deformed roll radius, exit strip

thickness, and forward slip ratio.

the following.

Therefore, the previous equation can be re-written as

T=R'hff(Er+Ef -E,) (3.25)

Torque can be measured from the current supplied to the motor and each term in this

equation is calculated with the following models.

The deformed roll radius, Ri, is another form of Hitchcock's equation.

R'= R(1+ c P/8) (3.26)
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where c is the elasticity constant in Hitchcock's equation and 8, is a fictitious thickness

change.

c = 16(1-V2)/,rE (3.27)

h = m hm + h-h,,, Y (3.28)

The minimum thickness hm, shown in figure 3.7, is given by Equation 3.29.

hm =h 1-_(1- v 2)(k(hf )- -2)/EsI (3.29)

The variable, k(hf), is the plane strain yield stress of the strip at thickness hf. Roberts

has suggested a polynomial equation, has developed an exponential expression. The

equation recommended by Carlton is the following.

k(hf )= k(r(h0 ,h, ))= k,(k 2 + r)'3 +Ak (3.30)

where r is a function of hf. The ki's are statistically fit constants and are material

properties of each strip. The yield stress offset term, Ak , allows the inclusion of

temperature and strain rate effect in the calculation of effective yield stress of the strip.

Ak = Ak, + AkO (3.31)

The effect of strain rate on the yield strength is a very active area of research (Manjoine

1944; Marsh 1963; Ishikawa 1996). An example is Fuller's equation, which is obtained

statistically from empirical data (Fuller 1969).

Ak. = 0.164[1 - 0.33c + 0.7e(- ISE)f.15

100O (3.32)

The temperature's impact on the yield strength is assumed to be linear to the medium

temperature of the strip.

Ak0 = -k, 1 (o, - 02 )/2 (3.33)
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While the entry strip temperature can be measured, the output strip temperature has to be

calculated on-line with the following equation.

02 =01 + (E, + 0.5Ef )/pC, (3.34)

The strip density, p, and specific heat, C,, and the statistically determined coefficient,

k,,, are material properties. The forward slip ratio,f, is defined as the ratio between strip

exit speed and the roll peripheral speed, f =V2/Rw. A dimensionless x,, 05 x, 1, is

introduced to calculate the slip ratio. x, is defined as the normalized distance from the

end of the plastic compression zone to the neutral point. Besides x",f is also a function of

the entry strip thickness, minimum strip thickness in roll bite, and the exit strip thickness.

f = [1+Xn2 (hO -hm)hm] hm/hf (3.35)

Prior to calculating x,,, it is necessary to know the location of the neutral point in the roll

bite. Assuming constant pressure in the compression zone, the location of x, is calculated

as follows, using the force equilibrium condition in the transverse direction.

S o2 'h, -pi
x = 0.5 1- + (3.36)

"2pLp 2p ( Fp )

Carlton then modifies the equation to compensate for modeling error by adding arbitrary

statistical variables, ci, which are fit statistically.

C345 c2 (0'2 'hf - lh
xn =C I I-- + (3.37)

" 2yp, 2p(Fp )

The horizontal stress at the exit edge of the plastic zone, derived by Ford et al, is

calculated with the following equation. (Ford 1951)

O2'=o2 - 2pFe/hf (3.38)

where the elastic recovery force, Fe , is
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F, 2 R'h f Qk~zf )-O 2) (1- v2)/E, (3.39)

The force in the plastic deformation zone is calculated with the following equation.

F, = [ak(F)-a 2 (a, + a3U 2 ')]L,(hf /h + a 4 "a ) (3.40)

The coefficients a,'s are statistically fit, and A is a dimensionless parameter

(Equation 3.41).

A =pL,./h (3.41)

The term k() is the mean yield stress of the strip in the plastic deformation zone

(Equation 3.42), calculated by substituting the average reduction in the plastic

deformation zone, F, in Equation 3.30. The average strip thickness in plastic

deformation zone, h , can be calculated with r or the following equation if a circular

contact arc is assumed.

ho h
r =1-- -0.6 (3.42)

ho ho

L = + 2 hf (3.43)
3 3

The amount of energy per volume used to reduce the strip thickness, Er in Equation

3.44 is a function of yield strength at the original thickness, medium thickness, and the

exit thickness of the strip, along with the amount of reductions.

k ho + hf

Er = k(h) - 2 + (3.44)
'6 ho ho + h hf

The frictional energy per unit volume, Ef , is a function of the speed of the strip relative

to the roll and the normal force along the two contacting arcs. The function p(x) is the

pressure at the location x.
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Ef = 2 LAV 4p(x)dx (3.45)
'"V

By neglecting the forward slip and assuming linear pressure distribution in the roll bite,

the integral for calculating frictional energy in the rolling process can be expressed by the

following equation.

Ef = 1 {-[ 2 -i-tan' + fIn I1+ ±4- - p

(3.46)

+ I - In I +- (p
L- 8 h,

The term p, is the difference between the yield strength of the strip at the elastic

recovery zone and entry tension stress.

p = k(he)- t- (3.47)

The thickness of the strip at the elastic recovery zone is statistically determined with a

coefficient # .

he =fAhO +(1- 3)hf (3.48)

The last term in Equation 3.* is the specific tension energy supplied by the mill. This

energy is simply the difference between exit and entry tension.

E, = a2 - Ol (3.49)

It has been shown to predict the roll force with reasonable accuracy, and it has been

adapted in commercially available software for simulating the cold rolling process. This

model is useful for predicting the necessary roll torque based on the desired reduction.

However, this model requires many statistical parameters that need to be fit from process

data. Furthermore, this model is very computationally intensive.
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3.5 Chapter Summary

This chapter has discussed the rolling models that have been developed for decades.

Roberts' model and Stone's model are used in this thesis to model individual stands in

the cold rolling mill. This is the first step for constructing a model that predicts output

thickness from the characteristic properties of input strips. In next chapter, these models

can be linked as an integrated model. The inter-stand models that predict the input

material properties of strip for each stand will also be discussed.
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Chapter 4: Cold Mill Modeling

In the previous chapter, the model for each reduction stand was developed. As will be

argued, Roberts' model is used to model the behavior of Stand 1 through 4, while Stone's

model is suitable for Stand 5. In this chapter, the five individual stand models are

integrated. The material equations that describe the hardening of steel after each

reduction stand are discussed in Chapter 4.

However, two problems need to be solved before the integrated model can be used to

predict output thickness variation based on process variables. The first problem is to

determine at what frequency the model should be calibrated and explored. This

frequency determines the amount of variation that will be observed. The second problem

is that two critical process variables required by the integrated model are not measured.

These variables are the yield strength, so and the hardening coefficient a,. This chapter

will also discuss the solutions for these two problems.

Once these two problems are resolved and an integrated physical model of the cold

rolling mill is constructed, output thickness can be calculated given the values of process

variables. Models of controllers can be developed to predict these values. A model that

predicts output thickness based on characteristic properties of input strip will be

constructed by combining these controller models with the integrated physical model.

4.1 Stand Model

As discussed in the previous chapter, the force balance model over-simplifies the rolling

process. Neglecting the tensions in the strip leads to errors in estimating the yield

strength of the strip. Also, the deformation of work roll, which is ignored in the model,

has a significant impact on the strip production. On the other hand, Carlton's energy

model, while sophisticated, has too many variables that are unmeasured in the system.
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Given this, Roberts's model is a good model for this system. It addresses the basic

physical phenomenon that takes place in the rolling process, such as roll deformation and

effective yield strength. It has been successfully applied in this thesis to describe the

behavior of the rolling stands 1 through 4. Stone's model is utilized in the last stand for

the reason discussed in section 4.4. This model includes friction and is based on slightly

different assumptions, but it has manageable complexity and has been shown to have

reasonable accuracy. (Lin 1996)

4.2 Inter-stand Model

In the entire cold-mill system model, the outputs of each stand model become the inputs

of the next model. These variables are the geometrical characteristics and material

properties of the steel. The geometrical characteristics include the thickness and width,

which is assumed to be constant throughout the entire production. The thickness can be

calculated based on the models discussed above. This section discusses the material

model, as it relates to inter-stand connectivity of the individual stand models.

The material properties that propagate down the production line are the yield strength,

o , and the sensitivity to strain rate, A (Equation 3.17). The yield strength increases as

the strain in the workpiece increase, a phenomenon known as work hardening. It has

been shown that work hardening takes place after deformation in each stand (Bentz and

Roberts 1966). Two models are explored to predict the yield strength of the steel strip

entering each stand. The first is an exponential model,

a] = OE"; (4.1)

where n is the material property known as the strain-hardening exponent and e the real

strain that has been applied to the strip (Khan 1995). The second model is a polynomial

equation (Equation 4.2).

o = Oo + ar, + a 2r +a3rX (4.2)
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where ai, a2, and a3 are material properties, and r, is the total reduction prior to the stand

(Roberts 1978). Both have been applied and the polynomial model returned a better

result in the integrated model developed in this thesis.

Another material property that propagates down the production is the strain rate

sensitivity coefficient, A. Figure 4.1 shows the relationship between yield strength,

strain, and strain rate for steel. The slope indicated on the curve is the strain rate

sensitivity. The slope decreases as the strain in the workpiece increases. A linear model

is proposed to describe the change in A (Equation 4.3).

A =AO -cr, (4.3)

where c is a constant.

Ao Al

Figure 4.1 Strain and Strain-Rate Hardening Surface of Steel3

With the models discussed in this section, input variables for each rolling stand can be

calculated from the process of the previous stands. The stand models can be then linked

and generate an integrated model.

3 Figure from "Strain Rate Effects in Dynamic Loading of Structures" by Bodner (Bodner 1965)
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4.3 Sampling Frequency Determination

Before calibrating the models, it is important to identify the data stream to be used. Series

of sampled points are used to describe each variable in continuous manufacturing

processes. The model can be calibrated at each sampled point if all data streams are

synchronized. In the actual system, sensors have different response times and the sampled

data for the variables are stored at different rates. In this thesis, raw data from the sensors

are averaged into data streams with identical numbers of bins for two reasons. The first

is to block out the high frequency sensor noises and the high frequency dynamics of the

mill, such as vibrations, that cannot be modeled. Taking the average of data over a time

period has a similar effect as a low-pass filter. The second reason for splitting sensor

data into bins of averaged values is the asynchronization among data. If the size of each

bin is significantly larger than the offsets among data storage devices, the impact of these

offsets in time is reduced. Figure 4.2 is a schematic of the averaging process, with the

bin size 5 times the original sampling period.

Bin Size

time

time

Figure 4.2 Averaging of a Data Stream

The averaging process reduces the variation that is observed in each variable. It is

necessary to determine how much information is contained in the averaged data stream,

and what a sufficient sampling rate would be. From this point forward in the thesis, the

sampling rate of a data stream will refer to the inverse of the duration of a bin. For

example, a data stream with bin size of 0.5 second has a sampling rate of 2Hz.
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In this thesis, the strip thickness standard deviation is the direct concern. Therefore, a

ratio between standard deviations, r, is proposed in this thesis as an indicator for the

amount of variation retained in a sampled data stream. (Equation 4.4)

r = asampled (44)
aactual

Of course, aacI can never be known, only sampled measurements. For any measured

stream of data, one can consider its sampling rate adequate to represent Gacea if halving

its data causes no reduction in information on a. Therefore, the quantity in Equation 4.5

is considered.

_ reduced sampling (4.5)
Uoriginal sampling

One can show r is monotone with the information content in the signal, and so is

theoretically a good measure, while yet practically remaining focused on a. From

information theory, the information content of a continuous random variable, Y, is

expressed as

H (Y)= -f p(y) In p(y)dy (4.6)

where p(y) is the probability density distribution of Y. If p(y) is a Gaussian distribution

with mean of Y and standard deviation of a, the information in Y can be represented as a

function of a, as shown in Equation 4.7 (Blahut 1987).

( (r )2 ' ( -_ )2_ _

H(Y )=f 1 e 22 Il 1 2a2 dy
242;2 422j

1 21
=-n 2ro2 +- (4.6)

2 2

= 1 n(2irea2)
2
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The difference between information from the new and the original data streams is

represented in Equation 4.8.

AH = H(Y2)-H(Y) (4.8)

where 1 denotes the original data and 2 denotes the new data obtained through taking

averages of data in bins.

The probability density distribution associated with each Y2 is narrower than that with Yj

due to the averaging effect. As an example, a normally distributed random signal, shown

in Figure 4.3, is sampled at iOHz, 2Hz, and Hz. The standard deviation

decreases as the sampling rate slows. The resulting probability density functions of Y are

shown in Figure 4.4 and they vary as the sampling frequency changes.

3

2-

-2-

-3-

Time [Sc)

Figure 4.3 Normally Distributed Signal
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Figure 4.4 pdf Calculated from Samples with Different Frequencies

The ratio r, defined as the ratio between standard deviations between the original and the

averaged data streams, can be derived. Equation 4.7 is substituted in Equation 4.8 to

represent the difference in the information content between the two data streams only

with their standard deviations.

-AH = H(Y,)- H(Y2)= ln(2Ireu,2)_!ln(2 rea22)2 2

1 (2/reu2= -1In 2 (4.9)
2 2reU2

= In(
(a2

Equation 4.9 is then rearranged to express r in terms of information content in the

original and new distributions.

r =2

a, (4.10)

= AH

Therefore, ensuring the ratio r remains adequate is the same as ensuring the information

loss AH is not excessive. However, r is practically a better measure, as it has ready

interpretation.
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In this thesis, an empirical approach is introduced to express r based on the sampling

frequency, Q (Equation 4.1).

r =fi + ln( +i 2 ) (4.11)

The values of r are calculated for various 9i, and the coefficients f3, are regression fit

over these r and 9i.

This expression is valuable not only because it gives an indication of the amount of

variation that is observed at a given sampling rate, but it also allows determination of a

sampling rate that is sufficient for observing variations in a data stream. The derivative

of Equation 4.10 represents the gain in r per unit increase in Q. Since the derivative is a

monotonically decreasing function, a threshold can be set to define a sufficient sampling

rate, beyond which faster sampling returns little additional information.

4.3.1 Examples

Two examples are used to demonstrate the validity of Equation 4.10. The first example is

a normally distributed random signal sampled at 100Hz for 10 seconds (Figure 4.5). The

power spectrum density of this signal is shown in Figure 4.6.

The standard deviation of this normally distributed signal is 1.0313. As the sampling rate

falls, the averaging effect washes out the variations in the high frequency regions. The

standard deviation is calculated for each down-sampled data stream, and the ratio

between the new standard deviation and the original standard deviation is calculated

(Table 4.1).
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Sampling r
Frequency (Hz)

100 1.00
50 0.71
25 0.48

12.5 0.34
6.3 0.22
3.1 0.12
1.6 0.08
0.8 0.05

Table 4.1

5

4

3

1

-2

-3

-4-

0 2 4 6 8 10
Time (sec)

Figure 4.5 A Random Signal

5 10 15 20 25 30 35
Frequency (Hz)

40 45 50

Figure 4.6 Power Spectrum of the a Random Signal
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An equation is fit to trace these series to predict r as a function of sampling frequency

(Equation 4.12)

r = -1.2021 + 0.4623(ln(Q + 14.5141)) (4.12)

This curve and its derivative are plotted in Figure 4.7. The left y-axis is the ratio r, and

the right y-axis is its derivative. The values from Table 4.1 are plotted on the same

graph, shown as red circles.

1.40 - -0.025

1.12 0.02

0.84 0.015 dr
r 

dQ

0.56 ------------------------------------------- 1:I1

0.28 0.005

0 0
0 24.2: 48.4 72.6 96.8 121

slope=0.01 @30.59 H Frequency (Hz)

Figure 4.7 r Calculated by Averaging the Random Signal

This model predicts that the higher the sampling rate, the more variation will be observed

(Equation 4.13).

lim r = -1.20 + 0.46(ln(oo + 14.51)) = 00 (4.13)

However, since the derivative monotonically approaches zero, a sufficient sampling

frequency beyond which the increase in r is negligible can be determined from the

derivative. In this example, a threshold for the derivative is set arbitrarily at 1%. This

leads to the conclusion that increasing the sampling rate beyond 31Hz results in less than

1% gain in the observed variation.
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The first example has shown that Equation 4.11 can describe the amount of information

that is contained in a normally distributed random signal sampled at different frequencies.

However, most manufacturing systems contain more than these kinds of random noises.

Instead, vibrations or noises at certain resonance frequencies are often observed. The

second example is designed to mimic such situations.

In this example, a 2Hz sine wave is added to the previous signal. The resulting data

stream in time domain is plotted in Figure 4.8, and its power spectrum density is shown

in Figure 4.9.
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Figure 4.8 Random Signal with a Superimposed 2Hz Wave
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Figure 4.9 Power Spectrum of the Random Signal with a Superimposed 2Hz Wave

The ratio between the standard deviation of the new signal to that of the original signal is

listed in Table 4.2. An equation is regression fit based on these numbers and is plotted in

Figure 4.10 along with its derivative. It is observed that this curve increases faster than

the curve in the previous example, but it flattens at lower frequencies also.

Sampling r
Frequency
100 1.00
50 0.76
25 0.59
12.5 0.46
6.3 0.41
3.1 0.20
1.6 0.13
0.8 0.09

Table 4. 2
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Figure 4.10 r Calculated by Averaging the Random Signal with a

Wave

Superimposed 2Hz

In the case that a periodic pattern is linearly imposed on the random noise, Equation 4.11

is used to fit the points that are above the periodic pattern's Nyquest frequency. A

sufficient sampling frequency for that signal can then be determined based on the curve's

derivative.

4.3.2 Application to the Cold Rolling Mill

This technique for identifying sampling rate was applied in this thesis for each variable

measured in the cold rolling mill. Some of the variables had most of their variations in

low frequencies. An example is the entry strip thickness, whose power spectrum is

shown in Figure 4.11. In such cases, curves similar to that of the first example were

observed (Figure 4.12).

75

1. 12

0.84

0.56

0.28

A

dr

1.40



0 1 2 3 4 5
Frequency (Hz)

Figure 4.11 Power Spectrum of Entry Thickness
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Figure 4.12 r Calculated by Averaging Entry Thickness Data

On the other hand, some variables contain variations at certain frequencies. An example

is the stand 1 roll force, whose power spectrum is shown in Figure 4.13. Due to the

variations in certain frequencies, curves similar to that in the second example is observed

(Figure 4.14).
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Figure 4.14 r Calculated by Averaging Stand 1 Force

The technique discussed was applied to each process variable to identify the sufficient

sampling frequency. The sufficient sampling rate for output thickness was found to be

9.8Hz. However, it was not possible to calibrate the model at that sampling rate for two

reasons. The first reason was the hardware limitation. Most sensors in this mill were

designed to operate at 5Hz; this meant that the model could be calibrated at 5Hz at best

without needing to interpret the data. The second reason was the data storage

synchronization. The multiple streams of data were stored in different storage devices

and they were only synchronized to within a few tenths of a second. Therefore, all signals
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were re-sampled at 1Hz to reduce the effect of the lack of synchronization. This reduced

the amount of variation that was observed. The standard deviation of output thickness

measured at 1Hz is 43% of that measured at 5Hz, and 36% of that measured at 10Hz.

While the model is only explored at 1Hz, the algorithm can be easily expanded to explain

10Hz data streams should an adequate sensor system become available. This can be seen

in Figure 8.1, which is the waterfall chart of the exit thickness. It plots the power

spectrum density of output thickness in a vertical plane at each location down the strip.

1.5-

Q 1

0.5 A
0-

1

Frequency (Hz)
0 40 % process time

Figure 4.15 Waterfall plot of Stand 1 Exit Thickness

The impact of input strip thickness disturbances and the control actions concentrate in

low frequencies (up to about 1.5Hz). Above 1.5Hz, the added variations can be seen to

be roll eccentricities, such as at 3Hz in Figure 4.15. Other variations are insignificant and

can be modeled as random noise in the simulation model. The eccentricity of rolls can be

included in the current model by adding a periodic gain to the roll radius variable, with

the observed frequency.
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4.4 Model Calibration

The first problem in implementing the physical model to describe the behavior of the cold

mill is determining at which sampling frequency to calibrate the model in order to

observe the output thickness variation sufficiently. This problem has been addressed in

the previous section. The second problem is that both the yield strength and hardening

coefficient of the strip are not measured. To solve this problem, the values of these

variables are modeled in terms of known process variables. The details are presented in

this section.

In the cold rolling mill, entry and exit tensions, roll speed, and roll force are measured at

each stand. Thickness measurements are only available at the entry of the mill, the exit

of the 0 stand, the exit of 4th stand, and the exit of the 5th stand (Figure 4.16). As such,

the cold rolling model is split into three models: Stand 1, Stand 2-3-4, and Stand 5

models. This allows each model to be calibrated to the nearest measured output

thickness.

Stands: 1 2 3 4 5

Strip 
6

Thickness
Sensors

Figure 4.16 Thickness Sensors at the Cold Rolling Mill

It has been shown in previous chapters that a physical model is required to model the

behavior of the cold rolling mill. However, there are unmeasured material properties ao,

a1 ,a2 , and a 3. Therefore, before one can construct a model for each stand and use the

output of one stand model as the input of the next, statistical expressions for co and a,

must be determined. The simplest approach is to attempt a single, constant value for each
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strip. It is a poor fit, since the material properties substantially vary down the strip, and a

single constant best-fit value is not adequate. Figure 4.17 shows the result of a model fit

of Stand 1 exit thickness with constant material properties.

Figure 4.17 Model Stand 1 Exit Thickness with Constant Material Properties

4.4.1 Calibration Theory

Since oro and d significantly impact the rolling process, their changes should be reflected

in the process variables. In this thesis, they are expressed in terms of measured variables

as shown in Equation 4.14.

(o = ao + Xacp
j

(4.14.a)

a, =)60 +I fijpj (4.14.b)

Now the task is to find regression coefficients a, A that minimize least square error

between thickness prediction of the model and actual measurement for the entire strip,

while satisfying the equations in Roberts' model that describe the physical behaviors of

the mill. That is, a single set of constants (a, A) is sought for each strip. Figure 4.18

illustrates the setup of this minimization problem for Stand i.
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Find 62 = mii(hi measured - hi pedicted )2

such that
D= Di (1 + 13(fR /Eh_,r))

or Pi km, -o07a

L= fR 1i/p,

e, =Vj VrD'i h-1

Uai = (ai, + (1+ r )a2,)/(2 - r )

r, =2L 2 /D' hi1
hi =hh,,(I - r)

r = (ho - h)/ho
+-j~ 2 +- 3ai = O0 +ar,, xi+2ra2 +a3 r

(o= ao + ap

ii = A + E fipJ

Figure 4.18 Calibration Technique

Note this is a very difficult problem, maintaining 11 x N simultaneous nonlinear

equations while minimizing over d and /1 for each Stand i. N is the number of samples

for a strip, and is typically over 200.

Given this, the minimization is split into two steps.

1. Solve nonlinear simultaneous equations for the necessary (oT, )Requed.

2. Fit (co, a)Required to process variables, p.

That is, first solve for the necessary (Ood) such that output thickness of each stand hi

predicted by the model is exactly as measured, as illustrated in Figure 4.19.
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Vsample point n, Find (aO ,)Requimd

such that V Stand i
D' = Di(1 + /$(fR /Eh,_-r,))
ap, = kmi -o*

L= fR 1i/p,

e, =V j(rD7'3h_)

aai = (al, + (1+ r )a,,)/(2 - r

r, =2L2 /D'i h,
hi =h,(1- r )

x= (ho - hi)/ho
a = a0  rxi a 2 x, +a 3  r,

Figure 4.19 Split Calibration Technique - Step 1

Next, determine expressions for (Oo ,) Required

variables, jb .

by regression fitting them to process

The regression for co is illustrated in Figure 4.20, where n is the index

for each sample point, and N is the number of sample points. The setup of regression for

d is shown in Figure 4.21.

Find (a)

such that

= m~int (UOn,Required On,Regression

On,Regression a0 + I jna j

Figure 4.20 Split Calibration Technique - Step 2, o- equation

Find (/)

such that

f= m In (fn,Required

FnRegrssion = + Pi 2 ea

Figure 4.21 Split Calibration Technique - Step 2, di equation

82

- an,Regression



4.4.2 Step 1: Determination of Values of Unmeasured Variable Values

In the first stand, there are 17 variables where 15 of them are either described by an

equation or measured. There are two degrees of freedom, which are fit over two

unknown variables, yield strength, o-, and the strain rate sensitivity coefficient, A. If

there is no degree of freedom, all values need to be exact for the simultaneous equations

to solve. With any error, that is not possible. It is therefore desired to have just one

degree of freedom so that any and all errors in the model will be pushed into one variable.

Therefore, we hold A constant at an expected value of 32N/mm 2. The remaining

unknown variable, o-, is then the only unmeasured variable, which is adjusted to make

the model's thickness prediction equal to that measured while satisfying all Roberts'

equations at each sampled point. The degree of freedom ensures that the model's output

can be made same as the measurement while pushing all modeling and measurement

errors into the unknown variable. Figure 4.22 is an example of calibrated cro.

286
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280

'278

276
274

.0272

268
1 27 53 79 105 131 157 183 209 235 261 287

Process time (sec)

Figure 4.22 Calibrated o

Since there is no thickness measured at the second or third stand, the middle three stands

are combined into one model. There are 71 variables in this three-stand model where 68

of them are either described by an equation or known. The unknowns area, , a2, and a 3

in Equation 4.2. For the same reason discussed above, two constraints are added to

reduce the degree of freedom to one by fixing a 2 and a 3constant. a, becomes the only
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unmeasured process variable in the Stand 2-3-4 model. It is adjusted to make the

predicted thickness of stand 4 equal to that measured through the simultaneous equations

of Roberts' model. An example of calibrated a, is shown in Figure 4.23.

104

103

102

1100

S990

980
1 27 53 79 105 131 157 183 209 235 261 287

Process time (sec)

Figure 4.23 Calibrated a,

The stand 5 model has 16 variables where all variables are either measured or calculated

by Roberts' equation or the material equations. However, some assumptions in Roberts'

model are not applicable to Stand 5. The first reason is that Roberts' model neglects the

coefficient of friction. Due to the higher rolling speed in Stand 5, the influence of friction

is significant. The second reason why Roberts' model is not applicable to Stand 5 is that

the neutral point of Stand 5 is not close to the exit point. The neutral point shifts toward

the middle point of the roll bite because the exit tension on this stand is significantly

smaller than the entry tension.

Stone's force model is used for the fifth stand instead of Roberts'. This results in a set of

simultaneous equations with 17 variables, and the coefficient of friction, p, in this model

provides one degree of freedom. The coefficient of friction is also an unmeasured

variable, whose value is searched so that the model's thickness prediction equals the

measured output at each sampled point. Same as og and a,, the value of p will be

mapped to measured process variables. Figure 4.24 is an example of calibrated p.
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Figure 4.24 Calibrated p

This analysis provides the required (oo,alp) to make the simultaneous equations

produce the measured h using the measured process variable values. In effect, this is a

transformation from h to (co , a ,p) for regression fitting purposes. We can now find a

single set of regression parameters, for the entire strip to predict the (ro,alp) we have

just calculated, and thereby find the regression parameters that minimize h error through

the simultaneous equations.

4.4.3 Step 2: Modeling Unmeasured Process Variables

The required values of ao and 4 that allow the model predictions to match the measured

values are the calibrated values. Once these values are determined, they are regression fit

over the available process variables. The yield strength is fit to the measured process in

Stand 1, such as entry thickness, entry tension, exit tension, roll force, and roll speed.

This analysis is performed over six coil productions. The r2 values for the regression is

shown in Table 4.2.
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(-0 a, p1
Coil 1 0.957 0.998 0.987
Coil 2 0.893 0.997 0.983
Coil 3 0.984 0.997 0.996
Coil 4 0.928 0.994 0.968
Coil 5 0.848 0.987 0.977
Coil 6 0.946 0.998 0.980

Table 4.2 Regression Results for the Unmeasured Variables

The relationship between the calibrated o- and its ideal values

Figure 4.25. The number of sample points in Coil 1 is 288.

for Coil 1 is shown in

Calibrated Value (N/mm 2)

Figure 4.25 Regression Result for o

The strain-hardening coefficient, aj, for the first coil is calibrated to r2 of 0.99. Its

regression result is shown in Figure 4.26. The unmeasured variable al is fit over entry

tension, exit tension, roll force, roll speed, in Stand 1 through 4, along with entry

thickness, exit thickness at Stand 1.
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Calibrated Value (N/mm 2)

Figure 4.26 Regression Result for a,

In addition to all variables that are used to fit a,, the coefficient of friction in Stand 5 is fit

over exit thickness at Stand 4, plus roll force, entry tension, exit tension, and roll speed of

Stand 4. The regression result is shown in Figure 4.27.

CF

Calibrated Value

Figure 4.27 Regression Result for p

4.4.4 Thickness Predicted from Measured Variables Only

In the previous section, the ideal values of unmeasured variables ao,a 1 , and p were

modeled with measured process variables. By substituting these models into the

corresponding locations in Roberts'model, a mapping of output thickness from solely the

measured process variables can be constructed.

Figure 4.28 compares the measured Stand 1 exit thickness to the prediction of the model

using only measured variables as inputs. Figure 4.29 plots the predicted versus the
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measured Stand 1 exit thickness. The horizontal and vertical axes are identical.

Figure 4.30-4.34 compare subsequent stands. Figure 4.31 and Figure 4.34 plot the

predicted versus measured thickness at Stand 4 and 5 respectively. The vertical and

horizontal axes of each graph are identical. The error bar on the measurement plot is the

magnitude of rated thickness sensor error. The error bar on the thickness prediction is the

amount of error that is caused by the measurement errors in the process variables. It is

determined from the sensitivity, S,, and the range of measurement error, AP , of process

variables. The mathematical expression is shown in Equation 4.15.

Ahs = S -Ap, (4.15)

The sensitivity is determined from the ratio of an artificially introduced small

perturbation in each process variable and the resulting thickness prediction in a Monte

Carlo simulation. The sensitivity for a variable is calculated by dividing the differences

in output thickness prediction by the magnitude of the perturbation in the variable.

-4-Measured

-- Predicted

1 19 37 55 73 91 109127145163181199217235253271
Process Time (sec)

Figure 4.28 Stand 1 Exit Thickness Prediction with Error Bars
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Figure 4.29 Stand 1 Exit Thickness Prediction
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Figure 4.30 Stand 4 Exit Thickness Prediction with Error Bars

Measured (mm)

Figure 4.31 Stand 4 Exit Thickness Prediction
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Figure 4.32 Stand 5 Exit Thickness Prediction with Error Bars

Measured (mm)

Figure 4.33 Stand 5 Exit Thickness Prediction

The output of Stand 2-3-4 model has the largest error due to its complexity.

While these results give one pause, on the other hand a prediction of thickness based

upon process sensors is of limited use in any case, since the process measurements are

not known until processing. What this thesis seeks instead is a prediction of the process

values a priori, using controller models, which will be discussed in Chapter 6.

Figure 4.28 through Figure 4.33 show substantial error, r2 are generally below 0.6. This

demonstrates the difficulty in attainment of a predictive model capable of sample-by-
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sample down-the-strip thickness prediction using process measurements. There is

substantial error due to the accuracy of the measurement sensors on the system. One can

compare the thickness sensor error to the error in predicted thickness caused by process

input sensor errors. For Stand 1 model, the ratio between the error due to thickness

sensor uncertainty and the process input sensor errors propagated through the model is

92%. This ratio for Stand 4 and Stand 5 model are 65% and 355% respectively. This is

one strong cause of the large discrepancies between the predicted and measured

thickness: sensor errors are preventing agreement between the input and output

measurements in the extremely small range of variations being analyzed.

Therefore, the large measurement error in all sensors prevents prediction of output

thickness using the variables currently being measured using the current sensors.

However, the goal of this thesis is to predict the variation parameters of the exit

thickness, not the actual thickness profile down the strip. For example, as shown in

Chapter 3, the mean thickness of a strip can be easily predicted. The issue is whether

other strip parameters, such as variance, can be also predicted. Furthermore, the mill

simulation model developed in this thesis will include a controller model that predicts the

values of process variables that were measured with sensor error. The simulation

model's thickness prediction will not be influenced by the sensor errors in the process

variables.

4.5 Chapter Summary

In this chapter, the five individual stand models were integrated by linking the outputs of

one stand with the inputs of subsequent stand. The models that describe the material

property changes of the steel strip during the rolling process were introduced. In addition

to constructing an integrated model for the cold rolling mill, two topics were covered in

this chapter. The first was developing a method to determine a sampling frequency that

allows sufficient observation of variations in the rolling mill data stream. The variation

in exit thickness can be sufficiently when sampled at 9.8Hz. Due to synchronization

limitations of the data storage devices in the mill, the model can only be calibrated at
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1Hz. Nevertheless, a frequency analysis indicates the models developed here will apply

well at 10Hz as well, should faster sensors become available.

Another topic discussed in this chapter was determining the values of unmeasured

process variables, yield strength and hardening coefficient of steel. These two variables

are statistically modeled as functions of known variables. By substituting these two

equations in places where the yield strength and hardening coefficient are used in

Roberts' model, the output thickness can be calculated.

Sensitivity analysis can also be performed on this model to identify the sources of

variation in the output thickness, and will be discussed in Chapter 5. This model cannot,

however, predict the output thickness without values for the process variables. Chapter 6

will discuss controller models, which will predict values of the process variables.
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Chapter 5: Variation Analysis

In Chapter 4, an integrated cold rolling model that predicts output thickness given the

values of process variables. Even though this model still relies on the production data to

calculate the output thickness, it explains the physics of the cold rolling process.

Performing variation analysis on this model helps understanding the sensitivity between

output thickness and each process variable. With this information, once can determine

what are the major sources of variation.

There are several techniques to perform variation analysis. The most basic method is

modeling overall variation as a sum of all variations in each process variable. A more

complex method is modeling output variation as linear combination of variations in

process variables. In this thesis, the relationships between output variation and the

variation in the system are determined through Monte-Carlo simulation.

5.1 Related Works in Variation Modeling

Before discussing each technique, the basic ideas in variation analysis should be

explained. A manufacturing system is composed of a series of operations. Each

operation changes some characteristic properties of the workpiece, which can be

geometrical or material. A schematic representation of an operation is shown in

Figure 5.1, where F is the function mapping output vector 42 to input vectors P and 41.

-- -10 F lo 2

Figure 5.1 Schematic Representation of a Manufacturing Operation

Vector 41 contains information on material properties or geometrical characteristics of the

workpiece. The workpiece can be either raw material or an output from previous
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processes. The vector P contains values of process variables of this particular process.

The output vector 42 describes important geometric characteristics and material

properties of the workpiece as the result of this process. This can be expressed

analytically with Equation 5.1.

4 2 = F(p,4,) (5.1)

This equation describes the mapping between the input and output variables of the system

at their nominal values, such as the models discussed in previous chapters. To describe

the variation in the system, each input variable in jb and 4, is considered a random

variable with associated probability density function, pdf.

The average output variable is therefore the expected value of process F (Equation 5.2).

E(42)= E(F(j, ))=f F(, P, ) pdf(jP)pdf (4, j)dpd, (5.2)

From this equation, the variance of the output vector q2 can be determined

(Equation 5.3).

( 2)= (F(P,4)- E(F(p,4,)))2 pdf()pdf ( 1 )dpdi, (5.3)

The probability density distribution of a function y = f(5), where X is a vector of

random variables, can be calculated via a convolution integral of X.

pdfY(y) = --dpdy1,- ( y)--x ---n X .. dxiIdxi---dxn (5.4)

where f, -'is the inverse function off which returns a value of xi given y while holding

other values of x constant, and n is the number of elements in X.

5.1.1 Linearization

Analytical expressions in the form of Equation 5.4 for a complex multivariate

manufacturing systems are difficult to derive. Therefore, the process is often linearized

based on the assumption that the system is operating linearly in the vicinity of the
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Since manufacturing systems are rarely linear over large

ranges, it is common to model their variation in a small range of operations using a linear

model.

The general equation that describes the mapping between output and input variables,

equation 5.1, can be linearized with Taylor series expansion.

(p-P*)+
(a -* *

42 +
a pb 1 4,

(5.5)

where H.O.T. stands for higher-order terms, which are ignored in later analysis. The

nominal term, P and the partial derivatives, and , are evaluated at
(ab a3

the operating point, b(5c *,4J*. The resulting equation is as follows.

42 =42* +[F . (P -,0* +F .(41 -41*

The equation is an approximation since H.O.T. is dropped.

(5.6)

Defining the following new

variables in Equation 5.7 enables rewriting Equation 5.6 into an equation based on

deviations, and can eliminate the nominal values (Equation 5.8).

'&4= 42- 2

A2= q2 - 4*

A4 2 = [F

(5.7a)

(5.7b)

(5.7c)

AP + [F1 . A41 (5.8)

The matrices [F. j and [Fl j are also known as sensitivity matrices.
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5.1.2 Root Sum Square (RSS)

The Root Sum Square technique is a simplified method to calculate variance. Instead of

identifying a probability density for each random variable, all random variables are

treated as normally distributed. The variance, o.2 , of each variable represents its

variation. This technique applies to systems with independent input random variables.

Based on the linearized model (Equation 5.8), the output variance is predicted with the

following equation.

61 = [p 2 d 2 + [I 2] . 2 (5.9)

This equation is known as the Root Sum Squares formula, mapping the variance of

output variable to that of input variables.

5.1.3 Integrated System Model (ISM)

The Integrated System Model is composed of two layers of linked mathematical models

of each operation in the manufacturing process. (Figure 5.2) The first layer is called the

predictive model, which predicts nominal output values based on nominal input values,

such as the models developed in chapters 4 and 5. These models can be either physically

or statistically derived. The second layer of models is called the variation models. These

variation models are derived from the predictive models through sensitivity analysis or

Jacobians. Similar to RSS, ISM also uses variance to represent variation of each random

variable, and assumes that variances of outputs are linear functions of that of inputs.
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Figure 5.2 Variation Model

A general form of variance model is shown in Figure 5.3.

. 2  [_ o 2 [Fj 2

t t
2

or-
2

Figure 5.3 Integrate System Model by Linking Inputs and Outputs

The equation that predicts the output variance is shown below.

4 2 [F2. _ .- + [F 2 ]. .&-Gi GP p, ,q,_, Pi ,qd-I p1 q_, Q-
(5.10)

The term [Fw 2. . stands for the sensitivity matrix of operation w with respect to the

variable z evaluated at the operating point (i* j*). The input variance is a function

of variances in previous operations. The general form of output variance at operation i is

derived by substituting input variances as output of the previous operation.
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2* 2LF]~. + I F-] )[F l -1 2]

Gm=Or n=O 
(5.11)

n=O

Other than the linearization technique discussed above, an equation for o.2 can also be

analytically derived via convolution. Another way to determine the sensitivity matrix is

via Response Surface Methods. This technique will result in an equation predicting

output variances as linear functions of variances of input variables. The coefficients of

these functions are statistically determined instead of being derived from predictive

equations. This was the approach taken in Chapter 2.

The sensitivity matrix shows how sensitive the output is to variation in each variable.

However, a more practical information is how much variation is caused by each variable.

With the knowledge of sensitivity matrices, the contribution of each variable to the total

output variation can be determined. The contribution is expressed as the ratio between

2
the magnitude of each term in equation 5.12 over the total predicted variation, oa . This

information is critical for improving existing manufacturing systems because it identifies

the major sources of variation.

5.1.4 Monte-Carlo Simulation

The previous techniques avoid deriving analytical expression by assuming linearity. Yet

another way to determine the variation in the output variables is through numerical

Monte-Carlo simulation. The simulation returns a distribution for each output variable

formed by conducting many trials. Each trial calculates the output with the predictive

model of the system, and values of input variables of this model are randomly selected

from pre-determined random distributions. The larger the trial number, the more accurate

the output distribution. The disadvantage of this approach is that the simulation tends to

be computationally intensive. However, it allows an approximation of the probability
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distribution of the output variable as shown in Equation 5.4 via the histogram of the trial

results.

To approximate the pdf in Equation 5.4 with simulation, first construct a histogram with

bin width Ax with the trial outputs. Second, define Nx to be the number of trial resulted

in the range {x, x + Ax}. The probability that the output will be smaller than b can be

calculated with the Equation 5.12.

b

~NAx

P(x < b)= Xn (5.12)

2 N1Ax

where xr is the smallest simulation trial result and xm is the largest. The probability

that the output value will fall in the range of (a <x < b) can be calculated with

Equation 5.13.

P(a < x < b)= P(x < b)- P(x < a) (5.13)

A probability of x, P(x), can be approximated from the histogram by setting a = x - Ax,

b = x in Equation 5.13. The expression for P(x) is shown in Equation 5.14.

P(x) = P(x - Ax < x < x)

(5.14)

~N,Ax

As the size of Ax decreases, the approximation becomes more accurate. Because it helps

avoiding derivation of complex analytical expression for output pdf, Monte-Carlo

simulation is used to identify the probability density function of the output variable in this

thesis. Since all variables are treated as normally distributed random variables, the

variation and standard deviation are synonymous from this point of the thesis.
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The Monte-Carlo simulation is also useful for calculating the sensitivity matrix in ISM.

The sensitivity values can be determined from the coefficient of correlation between each

variable and the output. The equation for calculating the coefficient of correlation is

shown in Equation 5.15.

njpq-Ep~q
Cpq= 2 P= _=1 2 (5.15)

n n2rY~ n2 q2nEp2- p - nq _
i=1 i=1 i=1 i=1

In this formula, n is the number of trials, p and q are the input and output variables

respectively. Correlation coefficients provide a measurement of the degree to which the

input and output vary together. The coefficients range from -1 to +1. In the case of

negative coefficients, the change in the input and output variables are in opposite

directions. The larger the magnitude of the coefficient, the more correlated the input and

output variables are. Commercially available software packages such as Crystal Ball@

or Matlab@ can quickly calculate these correlation coefficients via Monte-Carlo

simulation.

5.2 Sensitivity Analysis on Cold Rolling Mill

Sensitivity analysis with Monte-Carlo simulation was performed using the predictive

model. The outputs of one stand, including material and geometrical characteristics,

serve as inputs to the next. (Figure 5.4)

4- h[

Or- F] a- F2  -- F - F4  -- r- F5
a, A0A A3 L J A

fRa,, V , fl1 2 V2a, f 1,3V3 02 3  f5 14 V4 U4  fq V 025

Figure 5.4 Random Variables in the Cold Rolling Mill Simulation

All input variables for each stand are treated as normally distributed random variables

with the standard deviation calculated from the sampled 1Hz data. A schematic
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representation of stand 1 model is shown in Figure 5.5. These input variables include roll

force, input and exit tension, roll speed, and thickness measurements. The material

properties, ao and a,, were also used in the simulation as inputs. The values of these

two variables were solved for at each sampled point.

The sensitivity of the output thickness to each process variable was calculated based on

Equation 5.12. Since the model was nonlinear, the contribution, 2, could not be

calculated using the linearized method of section 5.1.1. Instead, an Monte-Carlo

simulation was used, and the sensitivity of each variable calculated as the ratio between

the square of the sensitivity of that variable over the sum of squares of all variables

(Equation 5.16).

2 = , 2 (5.16)pq r

In Equation 5.16, r is the total number of input variables and 2, is the contribution of

input variable q to output variable p.

D'= D 1+ 2(fR/(Ehnr )Y2 + 2 fR/(Ehr)
P L =fR/cT

e = V(r/(Dh)) /2 h

£1 =a* -a
p c a

070 = (Tl, (1- r)r , Y(2- r) 2 3~Ji~O'~.15(U 0 Alog 0 (lO~e) u= cr+air +a2r, +asr,
ar = 1. 155(or, + A 1og,,(000e

r = 2 -L!D'h0

ar=h-h h A]= A - cr,

V
Rn

Figure 5.5 Random Variables and Equations for Stand 1 Simulation
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For a Monte-Carlo simulation of 2000 trials, the resulting predictions are plotted as a

histogram (Figure 5.6).

Figure 5.6 Simulated Output Thickness Variation

The distribution, which appeared very close to a normal distribution, had a mean of

0.2459mm and a standard deviation of 0.0213mm. A typical strip has mean of 0.3mm

and standard deviation of 0.0005mm. The predicted standard deviation is off because the

influences of controllers are not modeled in the simulation. The observed variation in

each process variable is treated as disturbances in system, while significant portion of the

variation is the controller's effort to attenuate input disturbances.

Contributions
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Figure 5.7 Contribution of Each Variable
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The observed variation of the input variables was again a combination of control actions

and noise. For example, the force was varied throughout the production of a coil

because the force controller commanded the actuator to compensate for deviations in

thickness. However, there was noise and disturbances in this force control and actuation

system, which was part of the observed variation. In order to separate the random

variation from the variation commanded by the controller, it is necessary to model how

the controller responds to incoming strip thickness and material variations. On the other

hand, it is useful to know which variables can have a large impact on thickness, and so

require tight control.

The sensitivity analysis for the cold rolling mill identified the contribution of variation in

each process variable to the output thickness variation (Figure 5.7). The output thickness

variation has high sensitivity to material properties ao and a,. These two variables

accounted for 70% of the total output thickness variation. Other significant sources of

variations are second stand roll force, entry thickness, and first stand roll force, which

accounted for 12%, 10% and 3% of the total variation respectively. All variations in

other variables contributed to the remaining 5% of output variation.

5.3 Chapter Summary

In this chapter, Monte-Carlo simulation was applied to the integrated cold rolling model

to identify the sensitivity between variation in output thickness and that in process

variables. The material properties, yield strength and hardening coefficient, of the steel

strip turned out to have the largest impact on the output thickness. While the simulation

identified the relationship between variations in process variables and output variation, it

overestimated the output variation because the controllers were not included. The

variation in each variable was simulated as noises entering the mill. In reality, the

variation in process variables could be results of control efforts, which were designed to

reduce exit thickness variation.
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It is necessary to separate the control actions from the noises in each variable for truly

simulating the variation propagation in the mill. Including the controller model in the

integrated mill model also enables prediction of process variables. With the knowledge

of the process variables and the physical model that predicts output thickness, the output

thickness can be predicted prior to actual production of the strip. The development of

models for the controllers will be discussed in Chapter 6.
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Chapter 6: Modeling Control Systems

In the previous chapter, the sensitivity of the output strip thickness to each process

variable is calculated via Monte-Carlo simulation. From the sensitivity, the variation that

each variable contributes to the final output variation is derived. However, this

sensitivity is calculated with the observed variation in the process variable such as force,

tension, and velocity, which are controlled variables. The changes in these variables may

be results of control actions, which reduce instead of augment variation in the system.

As a result, the simulation predicts more output variation that what is actually measured.

The simulated output thickness has standard deviation 5.8 times of that measured. To

accurately simulate the cold rolling process, it is necessary to model the controllers and

separate the random variation in the system from control actions. This will enable a

variation analysis that reflects the variation propagation in the cold rolling mill. From

such an analysis, the contribution of variation in each process variable to the output

thickness variation can be determined.

The controller models also predict the values of process variables, which are the inputs of

the physical cold rolling mill model. The combination of the physical model and the

controller model allows the prediction of output thickness before a strip is actually being

processed. This helps avoiding processing steel strips that are likely to have high exit

thickness variation.

6.1 Controllers in Manufacturing Systems

Modem manufacturing systems utilize computerized control systems to reduce variations

in the processes. A control system consists of sensor, actuator, amplifier, and the

manufacturing plant. The sensor measures a characteristic property of the workpiece or

process variable. The measurement is compared against a reference, which is the desired

value, and the difference is defined as error. The error is then amplified by multiplying a

gain, which can be a constant or function of other process variables. The resulting

product is the controller command, which specifies how the actuator will respond based
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on the error. The output of the actuator is the process variable discussed in the previous

chapter. However, the output of the actuator usually differ from what the controller

commands intends to achieve. The cause of this discrepancy includes the model of

actuator that the amplifier bases on to determine and the disturbances from the

environment. The discrepancy is modeled as a noise added to the actuator output. A

schematic representation is shown in Figure 6.1.

10 Operation

Controller
Reference + Error ApmmAndt + Noise

- Measurement

Sensor

Figure 6.1 Controller in an Operation

The algorithm of the amplifier is the essence of all controllers. The value of gain

determines if the overall system is stable, as well as how, and if, the output reaches the

desired value. The stability and transient response of the system output can be calculated

with modem control theories (Ogata 1990; Kuo 1995). This thesis focuses on modeling

the variation in the manufacturing system. The measured process variables are treated as

the sum of desired value and system noise. The transient behaviors of all process

variables are ignored.

To model the control system in a manufacturing system, it is necessary to know what

variables are measured and what are actuated. The actuated variables are outputs of the

control system and the measured variables are the inputs. Control systems can be

categorized into two types: Feedforward and Feedback, based on what is being measured.
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6.1.1 Feedforward Control Systems

The Feedforward control systems measures the characteristic properties of workpiece

prior to the operation. The schematic representation of Feedforward control system is

shown in figure 6.2. For operation i, the algorithm for calculating the gain is expressed

as H, and the model for actuator is Mi. The error between the reference values, R,_ ,

and the sensors' measurements is defined as e,. The product of e, and Hi is the controller

commands, e,, and the output of the actuator model is j,. Noise is added to

Pi simulating the disturbances in the system and this leads to the process variables, i,

for the operation.

4i_2 4i-I 4i
F_;- --- Fj

Hi Mi

Measurement

S,

Figure 6.2 Feedforward Controller

Feedforward control systems allow the operation to be set the operating condition to

compensate for variations observed in earlier stages. This prevents the variations from

propagating through the manufacturing line. An analytical representation of a

Feedforward control system is derived.
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From the previous chapter, it is shown that the output vector 4, can be expressed as

equation 6.1.

4, = F (p~,,4,_1) (6.1)

In the case that the process variables are controlled, the vector p, is described in terms

variables prior to operation i (Equation 6.2, 6.3).

Pi = P + N, (6.2)

p, = M,(C,)+N, = H,(M,(ei))+ R, (6.3)

The error, J,, is the difference between the reference and the values measured by the

sensors.

ji = R,_1 - S, (4,_1 (6.4)

Substituting Equation 6.3 and 6.4 into equation 6.1 results in the following expression.

4, = F(HM ( 5 (k-1 - S,(,_)))+ &, _,) (6.5)

The above equation is useful when the controller model, Hi, and the actuator model, Mi,

can be obtained separately. In the case that the model of the controllers needs to be

experimentally determined from process data, 4 and p, a model Gi that maps f, to i, can

be introduced. In that case, Equation 6.5 is rewritten as follows.

4i = F (G, (A,- - S, (4, ))+ N,4j,) (6.6)

6.1.2 Feedback Control Systems

Another common type of control system is the Feedback control system. Instead of being

a function of process variables or characteristic measurements of workpiece in prior

operations, the Feedback controller is a function of the output of current operation. The

advantage of Feedback control system is that the control action takes place at the

operation that directly influence the characteristic property that is being measured. The
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controller adjusts values of Pi as the workpiece is being worked. On the other hand, the

operation Fi system with Feedforward control is open loop, which means that there is no

adjustment will be done even if 4i deviates from targets. The system relies on a precise

model of Fi in order to determine a set of P, for the operation to produce the output with

desired specifications. The disadvantage of the Feedback control systems is that there is

always a delay before the output reaches the desired target. The controller updates its

gain based on the product that has past. Therefore, instead of setting the process to

incorporate what is about to come, the controller uses the previous error Ji to predict

what the process variables ought to be assuming e, is same for the next moment. In the

case when the input material properties change rapidly, the system is not able to adjust

Pi quickly enough to achieve the target value.

A schematic drawing of the Feedback control system is shown in Figure 6.3.

J Measurement 
H 

1 M

Si

Figure 6.3 Feedback Controller

The analytical expression for this system is derived below. The output and process

variables are expressed the same way as the Feedforward system (Equation 6.1, 6.3).

q, = F(j,,4i_ ) (6.1)
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p = Mi(O,)+N, = H,(M,(j,))+ 9 (6.3)

The error, on the other hand, is the difference between the reference values and the sensor

measurements of the output of the operation i.

e, = Ri - S,(4,) (6.7)

Therefore the output for operation with Feedback control system is as follows.

4, = F,(Hi (M,(j, - S,(i,)))+&,4,i1) (6.8)

Again, a model Gi that maps Y, to ji can be introduced in the cases that the controller

model, Hi, and the actuator model, Mi, cannot be obtained separately. The resulting

expression for the output of the operation is shown below.

4, = F (Gi (jN - S,(W4,)) +'FI4,4 (6.9)

6.2 Model Control Systems in Cold Rolling Mill

In the cold rolling mill, velocity and force are adjusted to control the output thickness.

Feedforward and Feedback control systems are found in both types of control systems.

Each controller has a single output, and the sensor locations and process variables that the

controller uses are identified. However, the control algorithm and the information on the

actuators are not available. Therefore, functions mapping controller inputs to the control

commands, Gi, are statistically determined. The control systems are modeled as linear

combinations of characteristic measurements of the workpiece and process variables.

The controller takes input from some variables that are not measured. In practice, models

are incorporated in the controllers to predict these values based on process variables and

upstream process data are used to obtain these numbers. In this thesis, such variables are

Oo and a,. The values of these two variables are the number that allows the

simultaneous equations to converge with minimum error. In this thesis, these values are

considered as if they were actual measurements. Both oo and a, are known to be

110



function of the steel's chemical compositions and the cooling history after hot rolling

process. These models can be constructed and integrated into the existing models once

the measurements of o0 and a, are available.

The control systems in the cold rolling mill is adaptive, which means that the coefficients

are constantly changing based on the result of previous coil production. Therefore, a

statistically obtained controller model will not validate on all production coils. The

controller equation fit with a set of production data for one coil is only valid on the

production of coil immediately after it. Of the available data, there are two coils

manufactured back to back on one day and another three coils produced two days later.

The first coil from each of these two bathes is used to regression fit the control models,

which are validated on the following coils.

6.2.1 Velocity Controller

The speed controller is installed on Stand 1,2, and 4. The speed controller in stand one is

a Feedforward system. The controller uses the information of input thickness, input strip

speed, and yield strength of strip to calculate the gain for the controller. A schematic

representation is shown in Figure 6.4, and the equation describing the process variable is

in the following form.

V, =/#o+#iho +#i2 Vso + 3 a o +N (6.10)

hois the input thickness, Vso is the input strip speed, and o- is the yield strength of the

steel. The #, are statistical coefficients and N is the noise, which is assumed to be

normally distributed. The noise is a result of disturbances in the mill that the controller is

not able to eliminate. Therefore, the value of N should stay constant with in a small batch

of production. The regression process identifies a set of #, that minimizes the error

between the predicted V, and that measured, leaving the N term as lack of fit. The

calibration and validation results for stand 1 speed controller are shown in Figure 6.5 and

Figure 6.6.
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S1

Figure 6.4 Stand 1 Speed Control Diagram

The regression for the first batch calibrated to r2 of 0.81. Applied the same equation on

the subsequent coil resulted in r2 of 0.84. For the second batch, the model calibrated to r

of 0.84 and for validated to or 0.82 and 0.80 on the second and third coil respectively.

The calibration and validation result for the first batch plotted below as an example.

193.2
C192.8

192.4

192.0

1191.6

L 191.2
190.5 191 191.5 192 192.5 193 193.5

Measured (m/min)

Figure 6.5 Calibration of Stand 1 Roll Speed Control Model
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200.5
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Measured (rn/mn)

Figure 6.6 Validation of Stand 1 Roll Speed Control Model

Figure 6.6 showed that Stand 1 roll speed could be predicted from the statistically

constructed controller equation. Bias was observed in the validation coils because each

coil has a unique target thickness, and the process variables are set to operate at different

nominal values. These nominal values were the /l coefficient in equation 6.10, and

these nominal settings could be easily obtained in practice.

The roll-speed control system in stand 2 and 4 are more sophisticated. In addition to

using the process variables and characteristic properties of workpiece, these controllers

introduce a thickness prediction variable. Based on the conservation of mass, and the

plane stress condition, i.e. constant strip width, the following relationship is derived.

hiVs_I = hiVs (6.11)

Since the strip speeds between stands are not measurable, a forward slip ratio, f, is

introduced to approximate the strip speed based on the measured roll speed, V.

Vs1 = (I + f, )V (6.12)

The forward slip ratio for each stand is calculated with the following equation prior to

production based on material properties and mill settings. These values are constant

through out the production of a coil.

f i tan d s " in (6.12)

Hn is known as the Neutral point function and is defined as the following.
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D'2 h_~ -h1  1 (h 1  a -a)H - tan - ln- - (6.13)
ni hi 2y 2p hi ac - Or

Based on Equation 6.11 and 6.12, a rough prediction of h, is derived.

A hi-1 V>1 (I i -h ,_V_( + f _) (6.14)

This variable is used in speed controller in both stand 2 and stand 4. A diagram for speed

control in stand 2 is shown in figure 6.7, and the controller model is in the following

form.

V2 = f 0 + #1h2 + f 2V, +8 3h, +N (6.15)

Both V, and h, are measured, and h2 is calculated with Equations 6.14. Again, a set of #6
determined via regression, minimizing the error between predicted V2 and that measured.

S 2 P42
--67te FC -

V,,h,

V2

R, e Y N
G2

h2

S2 P2

Figure 6.7 Stand 2 Speed Control Diagram

The model for stand 4 roll-speed controller is a Feedback loop. Figure 6.8 is a diagram

for the controller, and the model for stand 4 roll-speed is as follows.

V4 =goe +Pih5 +1# 2 h4 + N (6.16)
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Figure 6.8 Stand 4 Speed Control Diagram

The model Calibration and validation of the model was performed the same way as stand

1 roll speed controller model. Both batch calibrated to r2 of 0.99 and validated to r2 of

0.99 excepted the last one in the second batch which validated to r2 of 0.98. These high

r2 values suggested that the statistical model was what was very close to the actual control

algorithm and the system disturbances in these variables were small.

The calibration and validation for the first batch is shown in Figure 6.9 through 6.12.

Same as the stand 1 roll speed controller model, the biases in the validation are due to the

difference in the mill's nominal operation settings. These biases do not affect the validity

of these controller models.

1 31

30

30:

S30

306 307 308 309 310
Measured (m/mIn)

Figure 6.9 Calibration of Stand 2 Roll Speed Ctrl Model
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Figure 6.10 Validation of Stand I Roll Speed Ctrl Model
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Figure 6.11 Calibration of Stand 4 Roll Speed Ctrl Model

699
.5 698
E697
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Figure 6.12 Validation of Stand 4 Roll Speed Ctrl Model

6.2.2 Force Controller

In the cold rolling mill, roll force control is active on Stands 1 through 4, each with a

unique control algorithm. The stand I force is the controlled based on the input
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thickness, input strip speed, and yield strength (Equation 6.17). Schematic of this

controller is shown in Figure 6.13.

F, =#o+#hl +#2V + #3ao + N (6.17)

The equation regression fit to find the combination of f, that leads to the least error

between predictions and measurements. Same as the speed controller models, these roll-

force models are adaptive, which means the coefficients keeps changing based on the

production of previous coil.

40 4

O, VO, ho 
F,

RO + el G,

S1

t

Figure 6.13 Stand 1 Force Control Diagram

The same batches of coil productions are used to calibrate and validate the roll-force

models. The first batch calibrated to r2 of 0.95 and validated also to r2 of 0.95

(Figure 6.14, 6.15). The noise term, N, in 6.17 accounts for the lack of fit, and the

magnitude of N is consistent. The second batch calibrated to 0.92 and validated on the

second and third coil in this batch to 0.95 and 0.94 respectively. Again, bias was

observed in the validation, but that is due to the nominal setting change in the mill, which

could be easily adjusted in the model by updating #B .
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Figure 6.14 Calibration of Stand 1 Roll Force Ctrl Model
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Figure 6.15 Validation of Stand 1 Roll Force Ctrl Model

The second roll-force is a function of the first roll-force, along with other variables such

as stand 1 exit thickness, h, strip input yield strength, o-, and hardening coefficient, a,

(Equation 6.18).

F2 =o +$F + fl 2 h, +f$3 0o + $ 4a, +N

The schematic of stand 2 roll-force controller is shown in Figure 6.16.
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Figure 6.16 Stand 2 Force Control Diagram

The stand 2 roll-force model of calibrated on the first coil in the first batch to r2of 0.97

and validated on the second coil in the same coil to r2 of 0.93 (Figure 6.17, 6.18). That

model calibrated on the first coil in the second batch fit to r2of 0.89, and the model

validated on the remaining coils to rlof 0.91 and 0.89.
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11300
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Figure 6.17 Calibration of Stand 2 Roll Force Ctrl Model
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Figure 6.18 Validation of Stand 2 Roll Force Ctrl Model

Stand 3 force control model is based on roll-force in stand 1 and 2, along with stand 1

exit thickness, strip input yield strength, and hardening coefficient (Equation 6.19). The

controller diagram is shown in Figure 6.19.

F3 =fo3+fF +fl2h +fi 3 o-+#f4 a, +/3 5F2 +N (6.19)

F0 -- -- 2 F2-- F

~o Ra,

F, F2 P

-++ G+, N

Figure 6.19 Stand 3 Force Control Diagram

The model was fit to production data from the same batches as previous models. The

first model calibration had r2of 0.57 and it validated on the second coil of the batch with

rof 0.82 (Figure 6.20, 6.21). For the second production batch, the model was calibrated

on the first coil to a r2of 0.61, but it only validated on the following coils to r2of 0.30 and

r2of 0.23.
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Figure 6.20 Calibration of Stand 3 Roll Force Ctrl Model
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Figure 6.21 Validation of Stand 3 Roll Force Ctrl Model

The force controller in stand 4 is function of the roll force in stand 2 and 3, stand 1 exit

thickness, strip input yield strength and the hardening coefficient (Equation 6.20). The

schematic representation of force controller in stand 4 is shown in Figure 6.22.

F4 =fio +fF 2 +#2kh +f#3o0 +13 4a, + fiF3 +N (6.20)

q - Fi F2 Sa -+ Ft Diagram

60,al F
2 FF

JI, R RG4 F + N

Figure 6.22 Stand 4 Force Control Diagram
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This model calibrated to r2of 0.65 on the first coil of the first batch, and it validated on

the second coil of the batch with r2of 0.34 (Figure 6.23, 6.24). For the second production

batch, the model was calibrated on the first coil to a rlof 0.61, but it only validated on the

subsequent coils to r2of 0.30 and r~of 0.23.
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Figure 6.23 Calibration of Stand 4 Roll Force Ctrl Model
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Figure 6.24 Validation of Stand 4 Roll Force Ctrl Model

Most of the controllers modeled in this thesis predict the process variable accurately. The

force controller model for stand 3 and 4 are less accurate in comparison. One reason can

be that the actual control algorithm is nonlinear and the linear model is not valid.

Another possibility is that a prediction variable is introduced in the actual controller, such

as the case for the speed controller in stand 2 and 4. Without the knowledge on this

prediction variable, an accurate model for the controller cannot be constructed. Modeling

these controllers is trivial once the original controller algorithm is made available. This

thesis is intended to shows the importance and the techniques for modeling complex

multi-operation manufacturing systems for variation analysis.
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6.3 Chapter Summary

In Chapter 6, the models of the on-line controllers are constructed. These controllers are

designed to removed variations in the exit thickness. Their values are determined by the

geometric and material properties of incoming strip, along with the process variables of

previous stands. By combining the models of the controllers with the physical cold

rolling model, the output thickness of a strip can be predicted without being processed.

The sensitivity analysis of this model can separate the variations in process variables into

control actions and system disturbances. The variations in the system that were

compensated by the controllers would not appear in the output thickness. This allows the

variation analysis to correctly identify the sources of variation in the output thickness.
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Chapter 7: Cold Rolling Model with Control Systems

In chapter 6, the simple variation propagation analysis resulted in larger output thickness

variations than the actual values. This was due to the lack of controller model. The

observed variations in the cold rolling mill, such as force and speed, do not directly

propagate through the system and cause quality loss. Instead, most of the observed

variations of these variables are results of control actions intended to reduce the final

output variation.

The algorithms of these controllers were derived in Chapter 6. In this chapter, the control

algorithms are now incorporated in the cold rolling model and a complete, large scale

virtual cold rolling mill simulation is constructed and explored. Since this complete

model simulates the behavior of the cold rolling mill, the output thickness of a steel strip

can be predicted prior to production, given only its geometric and material properties. A

variation analysis on this model separates the noises from control actions in each process

variable and identifies the sources of variations in exit thickness.

7.1 Virtual Cold Mill Simulation

In chapter 6, the inputs of each model are upstream workpiece properties and process

variables. In chapter 7, it is shown that some of the process variables are results of

control actions that comply with specified algorithms. By expressing these controlled

variables with the control algorithms, a virtual mill can be constructed. The schematic

representation of this cold rolling mill model is shown in figure 7.1.
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Figure 7.1 Schematics of the Complete Cold Rolling Mill Model

As discussed in the previous chapter, the control algorithms are constantly adaptive,

based on the production of the previous coil. Therefore, the statistically derived model is

only valid on the coil produced immediately after the calibration coil. The same batches

of coils in Chapter 6 are used in this chapter to demonstrate the techniques for simulating

variation propagation in a complex manufacturing system.

Similarly as in previous chapters, the cold rolling mill is split into three models: Stand 1,

Stand 2-3-4, and Stand 5. Each model is discussed in the following sections. After being

validated individually, these models are integrated to form a model that simulates the

behavior of the cold rolling mill based on the steel strip's input geometrical and material

properties. Sensitivity analysis is then performed to determine the contribution of

variation in each process variable.

7.1.1 Stand 1 Simulation

The Stand 1 simulation model is based on the model discussed in chapter 4. The values

of roll forces and roll speed are now predicted based on the control models derived in

chapter 6, instead of using the measured values, which are not know a priori. The noises

in these two variables are normally distributed random variables. The magnitude of the
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noise is tuned so that the simulated output thickness has the same variance as the

measured output thickness. The amount of these noises, which propagate through the

manufacturing system, depends on the effectiveness of the controllers. Therefore, the

amount of variation calibrated on one coil should be valid on the subsequent coil

production. In this thesis, the variations in these controllers are calibrated on the first coil

of each batch. These variations are then validated with the following coils in the batch.

The uncontrolled variables, such as entry and exit tension, are treated as constant in the

simulation. The entry thickness is measured prior to processing, and the values of o- and

a, are determined from the statistical Equations 4.14. Practically, there are models

underway to determine o- and al prior to production through chemistry and the

temperature history of the strip. The schematic of stand 1 simulation is shown in

Figure 7.2.
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U, =1.155(oT0 +A log (10WO e)) £7a

r = 2 -L/D'ho

a, r, ( -h k hO Al = A - Cr.

X (h

tf~RIV
Figure 7.2 Random Variables and Equations for Stand 1

Since some noise is randomly generated, this simulation is not intended to compare the

thickness measurements at each sampled point down the strip. Instead, the goal is to

predict the mean, standard deviation, and histogram of the output based on the

information on the input variables. In both batches, the noise in stand 1 force is
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calibrated to be a normally distributed variable with variance of 0.061%, and the variance

for the noise variable in roll speed is 0.013% of its nominal value, determined

experimentally. The calibration and validation results of the first batch are shown below

as an example. The histograms of the actual measurement and simulation result of stand

1 exit thickness of the first coil are shown in Figures 7.3. The difference in the standard

deviations between these two distributions is 2.5%, and the mean offset is 0.0057%.
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Figure 7.3 Stand 1 Exit Thickness Distribution of a Calibrated Coil

The noise and control algorithms calibrated on this coil are validated on the subsequent

coil in this batch. There are 250 samples in the second coil and the simulated output

thickness has standard deviation 0.6% from that measured, and the mean offset is

0.0017%. The histograms of the measured and predicted output thickness of the second

coil are shown in Figure 7.4.
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Figure 7.4 Measured Stand 1 Exit Thickness Distribution of a Validated Coil

In the second batch, the difference between predicted and measured stand 1 output

thickness standard deviation for the first coil is 0.1%, with a mean offset is again

insignificant (0.0034%). The mean offsets between measured and predicted thickness

distributions are negligible, and therefore not mentioned in the remaining of this section.

The noise and control algorithms calibrated on this coil are validated on the two

subsequent coils. The simulated stand 1 output thickness for these two coils have

standard deviations of 5.3% and 1.8% from the measured values respectively. Given

these results, one can conclude that an effective simulation of cold mill stand can be

done, given only the incoming material properties, localized in time.

7.1.2 Stand 2-3-4 Simulation

Stands 2, 3, and 4 are combined into one model because of the lack of inter-stand gauge

measurements after stand 2 and 3. The Stand 2-3-4 model is based on the Roberts' model

discussed in chapter 5. The input thickness is the measured stand 1 exit thickness. The

input hardened yield strength, o, and strain rate sensitivity, A, are calculated using the

models discussed in chapter 5. The controlled variables, roll forces in stands 2 through 4

and roll speed in stands 2 and 4, are modeled as described in chapter 7. The uncontrolled
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variables, such as tensions and stand 3 roll speed, are held constant. The standard

deviation of the noise added into each controlled variable is modeled as a constant ratio

of the variable's nominal value. (Equation 7.1)

aN, = (Fi)x R (7.1)

The ratio R is tuned to minimize the error between the predicted and measured variation

using the data from the first coil in each batch. The value is then validated on preceding

coils. The value of R should be consistent in a short time span, when little has changed in

the operation settings. A schematic representation of the model is shown in Figure 7.5.

D'1 I+(r/(Eh,,)1+2 h/(',' ) f-- f:2(f./(Iv)+21/(I,) n-v 2(G,/0v)?'+2 dsv

L-

Figure 7.5

The controller algorithm and variation ratio, R, is validated on the first coil of each batch.

For the first batch, R is experimentally found to be 0.0009%; the measured and calibrated

stand 4 output thickness distribution for the first batch is shown in Figures 7.6. Even

though the value of R seems small, the outcomes of simulations were sensitive to changes

inR.

During the simulation of this sample coil, a small perturbation was necessary for the

model for Stand 2-3-4 to converge. A small perturbation of +0.18% was added to the

Stand 2 force to help convergence. This contributed to the mean offset observed in

Figure 7.6.
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Figure 7.6 Stand 4 Exit Thickness Distribution of the Calibrated Coil

The difference between the standard deviation of the measured and calibrated

distributions of the stand 4 output thickness is 6.4%, with mean offset of 0.1%. The

controller models and R are validated on the next coil and the resulting difference in

standard deviations is 2.5%, the mean offset between measurement and prediction is

0.06% (Figure 7.7).
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Figure 7.7 Stand 4 Exit Thickness Distribution of the Validated Coil
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The error between standard deviations of measured and simulated thickness for the

calibration coil in the second batch is 2.2%. For the two validation coils, this number is

7.8% and 7.6%. Here, one can see larger errors than Stand 1. This is expected, since 3

rolling stands are compounded into one model.

7.1.3 Stand 5 Simulation

Since there are no controllers installed in Stand 5, all process variables are designed to

stay at their setup value. Therefore, the value of each input variable is held constant, and

the stand 5 output can be calculated based on conservation of volume. (Equation 7.2)

hVs = hiVs,_, (7.2)

where Vs is the strip speed.

The strip speed is the product of forward slip ratio, f, and the roll speed, V. The roll

speed can be determined from the setup value, but the forward slip ratio is a complex

function of the operating conditions, such as friction and roll radius. Since the operating

conditions are relatively stable within a short period of time, the forward slip ratio

calculated from one coil is close to the preceding coil, given the operation setups are

similar.

The resulting expression for the stand 5 model is as follows.

h5 = h4Vs4  h 4f4 V4  (7.3)
Vs5  fAV

The slip ratios are calculated from the first coil of each batch. The roll speed is the setup

value for each coil. The input strip thickness of this model is the measured exit thickness

at stand 4. Again, the forward slip ratios are calibrated on the first coil of each batch and

used for validation on following coils. The measurement and calibration result for the

first batch is shown in Figures 7.8. The difference in standard deviation is 0.8%.
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Figure 7.8 Stand 5 Exit Thickness Distribution of the Calibrated Coil

The forward slip ratio calibrated on this coil is substituted in Equation 7.3 to predict the

thickness output on the following coil. The difference between the measured and

predicted standard deviation of the output thickness is 0.8%, and mean offset of 0.007%.

For the second batch, the error between measured and predicted output thickness

variation is 13% for the calibration coil. A special variation, which is not monitored,

might have occurred at Stand 5 during the production of this coil. On the other hand, the

two validation coils predict the output thickness variation to within 1% and 6.3% error

from that measured.

These results show that each stand, with physical stand and control models, can predict

the nominal value of the output thickness very accurately, and the output thickness

variation to within 13%. A summary of the error between predicted and measured

thickness variations is shown in Table 7.1.
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Error between measured variation
and variation predicted by Individual

model
Batch Coil Thickness Thickness Exit

1 Calibration 2.5% 6.4% 0.8%
1 Validation 0.6% 2.5%, 2.7%
2 Calibration 0.1% 2.2% 13.0%
2 Validation #1 5.3% 7.8% 1.0%
2 Validation #2 1.8% 8.6% 6.3%

Table 7.1 Thickness Variation Prediction Results

7.1.4 Five-Stand Virtual Mill

In the previous sections, each stand model was calibrated and validated individually. The

thickness measurement at exit of stand 1 is one of the inputs for Stand 2-3-4 model, and

the thickness measurement at exit of stand 4 is used in Stand 5 model. It is desired to

predict the final output thickness variation for the entire mill solely based on the

geometrical and material properties of the strip prior to the production. Therefore, the

output thickness predicted by the Stand 1 model is fed into the Stand 2-3-4 model, whose

thickness prediction then becomes the input of the Stand 5 model.

The integrated model uses the same calibrated values obtained in the previous sections,

such as the magnitude of each noise variable and the forward slip ratios. Since the

thickness prediction of each model becomes the input of the next model, error in the

models is compounded. This leads to larger error in the prediction of thickness at Stands

4 and 5.

As an example, the measured thickness and the integrated model's simulation results of

the validation coil in the first batch are shown below. The measured thickness and

simulated Stand 1 thickness of the integrated model are shown in Figures 7.9.
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Figure 7.9 Stand 1 Exit Thickness Distribution of the Validation Coil

Figures 7.10 is the measured thickness and the thickness predicted by the integrated

model at exit of Stand 4. Figures 7.11 is the thickness distributions of the measured

Stand 5 thickness and the thickness predicted by the same model. The variation of Stand

4 output thickness prediction is 9.7% different from that of measured thickness, and the

mean offset is 0.05%. This error for Stand 5 output thickness prediction is 11.2%, with

mean offsets of 0.03%.
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Figure 7.11 Stand 5 Exit Thickness Distribution of the Validation Coil

Table 7.2 compares the error between thickness variation calculated from data and that

predicted by both individual and integrated models. The error in thickness prediction at

Stand 4 and Stand 5 are significantly larger for the integrated model since the error in the

upstream model is compounded in the downstream model.
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In summary, a complete cold mill simulation was developed and tested. Generally, given

no more information that strip geometry and materials, final gauge of the entire mill can

be predicted to within 15%. This is all for variations below 1 Hz.

BtStandard Deviation Difference Mean Offset
Batch Coll 1h1 h4 h5 1h1 h4 h5

1 Calibration 2.3% 11.6% 10.7% 0.00% 0.16% 0.17%
1 Validation 4.5% 9.7% 11.2% 0.00% 0.05% 0.03%
2 Calibration 4.3% 13.4% 11.3% 0.00% 0.40% 0.93%
2 Validation 8.2% 7.8% 7.0% 0.00% 0.08% 0.48%
2 Validation 5.4% 5.1% 0.9% 0.03% 1.55% 1.76%

Table 7.2 Thickness Variation Prediction Results with Integrated Model

7.2 Sensitivity Analysis on Virtual Cold Mill

Sensitivity analysis is performed on the integrated model with the methods discussed in

Chapter 6. The preliminary analysis in Chapter 6 has determined that output thickness is

insensitive to tension. Therefore, sensitivity analysis in this chapter focuses on the

relationship between the variation in output thickness and the variation in each controlled

variable and input strip's characteristic properties.

The sensitivity analysis described in Chapter 5 is repeated with this integrated model with

on-line controllers. The sources of variation in output thickness are identified, and the

results are shown in Figure 7.13.
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Figure 7.12 Percent Contribution of Variation in Output Thickness

137

. . ... .... ............. ... .. ............ _ _ _ . ............. ..... ....



Contrary to the results in Figure 5.7, the analysis shows that most of the output thickness

is most sensitive to the variations in input thickness, which contributes 60% of the

observed output thickness variation, given the cold mill control system. The second

largest contributor is the yield strength variation, which accounts for 23% of the observed

output variation, given the cold mill control system. From this, one can conclude that the

cold mill, with its current control system, does not add in variation, and that all output

variation is primarily due to remaining input coil variation. This statement is valid for

data averaged at 1Hz. The difference between Figure 5.7 and Figure 7.13 is that the

analysis in this chapter included the influences of controllers. The variations in og and

al are removed by the controllers and the entry thickness variation propagates through

the mill.

7.3 Simulating Various Scenarios

It is logical to reduce variations in the variables to which output thickness is sensitive.

The integrated model is used to simulate the amount of reduction in thickness variation

based on the reduction in input variables. Figure 7.24 shows the reduction in output

thickness in the cases that variations in entry thickness, input yield strength, and Stand 1

roll force are reduced from 0 to 50%.
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r- 90.0 no Vield Strength
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Figure 7.13 Output Thickness Variation Reduction by Improving Input Strip
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As predicted by the sensitivity analysis, the reduction in entry thickness variation has the

most significant improvement on the output of the mill. Since both yield strength and

input thickness are determined at the hot rolling stage, it should be possible to reduce

their variations at the same time. Figure 7.25 shows the resulting variation reduction

when variations in entry thickness and yield strength are reduced from 0 to 40%.
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Figure 7.14 Output Thickness Variation Reduction by Reducing Entry Thickness

and Yield Strength Variation

The conclusion from this analysis enables engineers to determine the most efficient way

to reduce the variation in the system. If the cost to reduce variation in each input variable

is known, an optimum point can be calculated that utilizes the least cost to achieve the

most variation reduction. A matrix C can be introduced as the product of the new

resulting variation and the cost required.

Figure 7.26 is generated with a quadratic expression for cost. The x-axis is the reduction

in entry thickness variation, and the y-axis is the reduction in yield strength. The z-axis is

the value of C. The values of this curve are normalized so that C for the original

condition, 0% variation reduction in each input variable, is unity.
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Figure 7.15 Normalized Cost-Quality Improvement Surface

The minimum point of this curve is the optimum improvement of the mill.

7.4 Chapter Summary

This chapter has shown that by combining the controller models and the physical stand

models, the strip output thickness can be predicted from the geometric and material

properties of incoming strips. Monte-Carlo simulation is used to identify the sources of

variation and perform sensitivity analysis. The sensitivity analysis suggests that the

entry thickness variation contribute the most to the output thickness variation, followed

by the yield strength and hardening coefficient variation. Confirming the sensitivity

analysis, reducing input thickness variation results in the best improvement in output

thickness variation in the simulation.

140

- -=;- --- --- - - I - - -.- ...... .... ........... . ............ _ tI4



Chapter 8: Conclusion

This thesis has developed techniques for modeling variations in complex continuous

manufacturing systems. The techniques have been successfully applied to cold rolled

steel manufacturing. The sensitivities between output thickness variation and variations

in process variables were determined through Monte-Carlo simulation in this thesis. A

limiting factor for continuous controlled manufacturing systems is that often statistical

models cannot be used to predict output since the values of the on-line controlled process

variables cannot be obtained prior to actual production. Therefore, physical simulation

models must be constructed to predict output. In this thesis, the thickness variation of a

cold rolling mill was done based solely on the input steel strip's geometrical and material

properties. This simulation model includes both the physics of cold rolling, and models

of the on-line controllers in the cold mill.

To construct simulation models, the concept of an Integrated System Model is utilized,

linking up the inputs and outputs of individual operation models in the entire

manufacturing system. An aspect of continuous systems is that the measured data

streams must be split into bins so that high frequency sensor noises and unmodeled

system vibrations are masked from the data. On the other hand, one cannot discard real

data that impacts the output. A novel information content preserving algorithm is

developed to judge sufficiency of a sample size.

A second issue in determining sampling frequency occurs with parallel measured data

streams. The offset errors between the data streams must also be considered. In the

considered cold mill, there were significant offset errors.

Due to the clock offsets in data storage devices, the finest bin size that is achievable with

currently available data is one second. The output thickness variation in the binned data

stream is 36% of the sufficiently observed variation, which is determined using the

method developed in Chapter 4. As was shown, roll eccentricity is the primary cause of
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the remaining high frequency variation, which can be readily modeled. Roll

eccentricities cause the remaining 64% of the measured variation.

To analyze for sources of variation within complex continuous manufacturing systems,

Monte Carlo analysis can be applied. For the considered cold mill, within the 36% of the

measured variation the sensitivity analysis has shown that remaining input thickness

variation is the dominant contributor to output thickness variation. For continuous

controlled manufacturing systems, sensitivity analysis must be performed through Monte-

Carlo simulation. In previous non-continuous system work, sensitivity coefficients were

derived from linearized physical models through Taylor series expansion. The approach

here extends these thoughts to more complex controlled systems.

Through simulation models, the output distribution can be predicted for a complex

controlled continuous manufacturing system, given the input distributions. With the

predicted output distribution, the expected c, and Cpk can be calculated prior to the actual

production. This enables operators to determine the likelihood of the product meeting the

design specifications. Furthermore, the virtual mill can predict the final variation for

scenarios with different magnitudes of variations in input variables. By combining the

simulation results and the cost required to achieve that scenario, engineers can determine

what is the optimum improvement that can be applied to the system.

As a further study in this thesis, statistical models were explored for use in describing

complex controlled continuous manufacturing systems. Such models map output

variation directly to process variations without frequency considerations. Such analyses

can serve as tools for quickly calculating the output variation parameters when the

process variables are not on-line controlled. Furthermore, since a statistical variation

model is a linear combination of variation in process variables, the coefficients for each

term is a good indication of the sensitivity of the output thickness to that process variable.
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In summary, this work has developed analyses for studying variation in complex

controlled continuous manufacturing systems. It was shown that physical models of the

system could be combined with controller models to predict output parameters, given

input measurements, for large complex controlled systems.
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