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ABSTRACT

The initiative to complete the sequencing of the human genome is bringing the

need for high-throughput sequencing capabilities to the forefront. We at the

BioMEMS engineering group at the Whitehead Institute are designing and

building a new sequencing machine that uses a 384 glass "chip" to dramatically

increase sequencing rates. This thesis describes the design and implementation of

two of the machine's software components. The first is a prototype application

for the control of a robot used to automate sample loading. The second is a

software filter that allows us to generate quality scores from data processed by

Trout using Phred. I present the algorithm used to perform the filtering and

show that the results are comparable to the processing of data with the Plan-

Phred processing package.
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Chapter 1

INTRODUCTION

1.1 The Human Genome Project

The Human Genome Project (HGP) is an international effort coordinated by the

U.S Department of Energy and the National Institute of Health (NIH). It started

in 1990 as a 15 year effort aimed at: identifying the more that 100,000 genes (the

human genome) that constitute Othe human DNA, determining the sequence of

chemical base pairs that form these genes, storing this information, and building

tools to access this information in an efficient manner to allow for data analysis

[1]. Researchers working on the HGP have their sights on a completed sequence

of the human genome by 2003, and already have a rough draft of the sequence.

The project's early years put a lot of effort into optimizing the existing methods

and developing new technologies to increase DNA sequencing efficiency [1].

Work completed in the last 3 years at the Whitehead Institute for Biomedical

Research has extended this technology by allowing the use of micro-fabricated

electrophoretic devices for sequencing and genotyping [2]. These micro-devices

have intricate micro-channels cut into glass, allowing for many more sequencing

lanes to exist on one plate than before, in effect increasing sample throughput.

We are currently developing a DNA sequencer that utilizes 384 such micro-

channels on one plate. We are also developing tools for improved accuracy

evaluation.
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1.2 DNA, sequencing and base-calling

A human chromosome has around 108 base pairs (bp). On the other hand, the

largest piece of DNA that can be sequenced in the laboratory with current

technology is approximately 800bp long. Each strand of DNA is made up of a

helix of complementary base pairs. At present nearly all DNA sequencing is

done using the enzymatic dideoxy chain-termination method of Sanger [4]. In

this method, a single strand of DNA (amplified using polymerase chain reaction)

has a primer reacted to a specific region on it from which the sequencing will

begin. An enzyme called DNA polymerase (an enzyme that catalyzes the

elongation of any given strand of DNA) is used to react the cloned strands with a

mixture of 4 bases A, C, G and T; the bases that make up DNA. This reaction is

terminated at varying points along the original DNA template strand with

fluorescent dye molecules hence forming a mixture of labeled, single-stranded

fragments of varying lengths, each complementary to a segment of the original

template strand and extending from the primer to the occurrence of a base.

These samples are then placed into a gel medium and separated along the micro-

channels described above using a strong electric field formed by an applied

voltage across the ends of the channel. Since DNA is negatively charged the

strands migrate along the gel under the application of the electric field with a

speed that is approximately inversely proportional to their size. As the fragments

reach the end of a channel, a laser beam that scans channels at a fixed frequency

excites the dye molecules terminating the DNA fragments and a set of four

photo multiplier tubes (PMTs) collect the emission intensities at four different

wavelengths.

The raw data obtained from the wavelength reads is processed to generate a

sequence of bases that represent the original DNA template.

1.3 Aims of our work

7



The aim of the Whitehead Institute BioMEMS Engineer Group is to design and

fabricate a fully functional sequencer. This thesis implements control software

for a robot that automates sample loading in the sequencing machine under

development. In addition the design and implementation of a software filter to

allow for base-calling of the data obtained from the sequencer using third party

software.

Chapter 2 explains the problem at hand. In section 2.1 I discuss the sequencer

machine hardware in addition to the software aspects of data acquisition,

machine, and robot control. In section 2.2 I discuss the problem of base-calling

with confidence estimation.

In chapter 3 I present the robot control software specifications that were needed,

then go through the design and implementation process that was undertaken to

satisfy these requirements. In short, by following the well-understood concept of

the software life cycle I will describe the design and implementation of the

control software. In addition, I discuss how this method of development was

suited to our project and suggest ways of changing the cycle to better suit

software development in a project with similar characteristics (in both time

constraints and requirements) as ours.

In Chapter 4 I discuss the design and development of a software filter that maps

the output of Trout, a base-calling software package developed at the Whitehead,

to a trace that is suitable for processing by another third-party software package,

Phred, in order to generate confidence levels.
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Chapter 2

PROBLEM STATEMENT

This chapter consists of two sections. The first discusses the sequencer machine

and the general requirements of the software necessary for its operation. The

second section of this chapter introduces the base-calling software and the

problem I am solving.

2.1 Sequencer machine

2.1.1 Sequencing Plate

The 384-lane glass "chip" is at the core of the sequencing technology being

developed in our lab. The chip is made of two glass plates. Wet chemical etching

creates the channels in one sheet of glass by defining channels with the required

geometry using photolithographic techniques developed in the lab [5]. Access

holes to the channels are then drilled using a laser-drilling technique in the other

plate. The plates are then bonded together to enclose the channels. The channels

converge at the base of the chip for scanning by the spinner laser. This

sequencing technology is expected to dramatically increase the daily throughput

of base-calls as shown in Table 2.1

ABI 377 Slab gel 96 800 8 2 153600

ABI 3700 capillary 96 500-600 2 10 576000

Micro device 384 600-800 083 26 7987200

Table 2.1. Improvements with the new microchip array for sequencing over older technology.
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2.1.4 Robot hardware and software

To automate the process of loading samples into 384 lanes, the group designed

and built a robot (refer to Figure 2.2.) The robot is made of a pipette head and

four axes: X, Y, Z and 0.

Figure 2.2. Robot.

The X and Y axes are driven by Yaskawa Sigma Series SGMP 3000rpm, 0.13hp

servo motors with mounted breaks, while the Z axis is driven by a Yaskawa

Sigma II Series SGMAH 3000rpm servo motor also with mounted break. The X

and Y servomotors are controlled by a Yaskawa Sigma Series SGDA

speed/torque control servo amplifier. The Z axis motor is controlled by a

Yaskawa Sigma II series SGDH torque, speed and position control servo

amplifier. The servo amplifiers are in turn connected to a Parker Automation 6K

8-axis controller. This controller is connected to a PC through a serial port.

Each axis (except for the 0 axis) has a home switch and an end of travel limit
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switch. Both are Hall effect switches that are triggered by a metal attachment on

the movable part of an axis. The home switch is positioned at the desired home

location along the axes and the end of travel switch is placed at the points beyond

which motion is not permissible on an axis. The 0 axis is a custom built pipettor

with 96 needles and is the component used to move samples around the

sequencing machine.

The X, Y and Z axes move the pipette head in their specified direction. Directing

the 0 axis allows the 96 needles of the pipette head to aspirate and inject water,

buffer and DNA sample into the reservoir base of the sequencing plate. The 6K

controller comes with a windows-based graphical interface called Motion Planner,

that allows a user to test and control the robot from a command shell interface.

The Motion Planner software comes with a comprehensive library of low-level

functions that control the robot and set various run motion parameters.

However the program does not provide a user-friendly interface and requires

extensive knowledge of low-level robot parameter details, making it difficult for a

non-specialized user to work with. The program also lacks flexibility for our

testing purposes. For example, we must be able to stop and start the robot at

different times, to rearrange the steps of the loading protocol and to define

completely new protocols on the fly. In other words the notion of a typicalprotocol

was not completely defined from the start and testing had to be performed to

find out what exactly was required. The Motion Planner interface requires

rewriting programs each time we want to change a protocol (Figure 3.2);

additionally the interface doesn't give the user the ability to pause the run and

restart it at a point further ahead.
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repeat

User interface provided is command line. Programs can be
uploaded but require knowledge of the library functions and are
very inflexible for development purposes. A simple run which
requires two actions (program shown here) needs to have loops
rewritten if the run order is changed making it very impractical.

varl=varl+4.5
var2 = var2+4.5;
;wash station
;reach
d(varl) (var2),,
goll,,
;lower
d,,(var4)
go,,1,
;wait
t20
;raise
d,,(var3)
go,,1,
;Sampleload
;reach
d(var5)(var6),,
go11

,,
;lower
d,,(var8),

go,,1,
;aspirate
d,,,(var18)

go,,, l
;raise
d,,(var7),
go,,1
;end loop
until(varl9=4)

end

varl=varl+4.5
var2 = var2+4.5;
;Sampleload
;reach
d(var5)(var6),,
go1 1

,,
;lower
d,,(var8),
go,,1,
;aspirate
d,,,(varl8)

go,,,l
;raise
d,,(var7),
go,,1
;wash station
;reach
d(varl) (var2),,
go11

,,
;lower
d,,(var4)

go,,1,
;wait
t20

;raise
d,,(var3)

go,,1,
;end loop
until(var19=4)

end

Figure 2.3. Command shell UI of Motion Planner + Sample program to demonstrate need to
reorganize loops making it very inflexible for simple reordering of events and useful mostly for

testing and calibration purposes.

2.1.5 Automation of run

To automate the entire sequencing run we developed a software package called

the Housekeeper. This package integrates all the steps of a sequencing run

(Figure 2.4) including the sample loading steps performed by the robot and the

operation of different pumps and valves. A second package called the Sequencer

was also developed to control the data acquisition operation.

Figure 2.4. Automated run cycle protocol.
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Although our initial design incorporated the robot control routines into the

Housekeeper design, it became clear that this was not suitable for testing

purposes and did not provide an intuitive interface for the robot because it relied

on the development of an instruction file offline, which could then be fed into

the Housekeeper for processing (thus providing minimal user functionality once a

run started with the Housekeeper.) We therefore decided to separate robot

functionality from the rest of the software. It was clear that the robot operations

were first to execute in the run protocol and did not require coordination with

other events. The design of this stand-alone software package is the focus of the

following chapter.

2.2 The base-calling effort

The ability to generate base calls with their associated quality scores is an

important feature of any base calling software. These quality scores are used by

sequence assembly programs to evaluate the relative quality of different segments

of a sequence and decide accordingly whether or not to include those segments in

the finished product. Currently, the Phred base caller is the industry standard

base-caller as it is capable of generating base calls with quality scores. A quality

score for a called base is defined to be:

q = -10xlog(p)

Wherep is an estimate of the probability that the called base is erroneous, which

means that a higher quality score equates to a lower probability of error at that

position [6]. Phred is tuned to work with chromatogram files generated by the

AB1373 and AB1377 slab gel machines and preprocessed by either ABI

preprocessing software or by Plan.

Trout is preprocessing and base-calling software that was developed locally at the

Whitehead Institute to base-call AB1373 and AB1377 files. Our group has
13



successfully been able to tune Trout to work with the output of the micro-

channel based system we have developed and we were able to report read lengths

of up to 800 bases with only 2% error rate [7]. However, Trout doesn't produce

quality scores. The problem therefore boils down to developing a software

package that gives meaningful confidence scores specifically for the chemistry we

are using and does the preprocessing and base calling at the same time.

Instead of reinventing the wheel, and in the spirit of software-reuse I combined

the Phred and Trout software packages as the core of a final product application

but with the following proposed modification: linking the preprocessing stage of

Trout to a special Trout-to-Phred filter stage that prepares the preprocessed

Trout output and passes it to Phred which can then call bases and generate

confidence estimation levels. Future work will likely involve the implementation

of a separate confidence estimation package for Trout.

A flow diagram of these two approaches is shown below Figure 2.5. It is hoped

that implementing such a software tool will maintain a much-needed balance

between advancements in sequencing hardware and speed - which our microchip

based sequencer is doing - and software.

Trout

Pre-processing Base-calling Confidence estimation

Filter Phred
Plan --- ---

Pre-processing Base-calling Basecalls + confidence values

From sequencing machine

Figure 2.5. Flow diagram of two options of software packaging to base call with confidence

estimation.
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Chapter 3

ROBOT CONTROL SOFTWARE & PROTOTYPING

Before describing the robot control software, to see the differences in our

development cycle I will describe some basic theory of the software life cycle and

how prototyping fits into the model.

3.1 The standard software development cycle

The standard software life cycle model states that software development should

consist of five distinct stages: requirements analysis, specifications, design,

implementation, and verification. Requirements analysis is concerned with

deriving, from the intended user, what the expected use and functionality of the

system should be. It involves direct contact with the user to shape the idea.

Specifications involve stating the functionality and constraints of the system in a

very precise and unambiguous way. This may be in the form of a mathematical

notation or a textual description. Design is coming up with a solution that

satisfies the specifications and then modifying it if the need arises.

Implementation is realizing the design in a programming language that can be

executed on the target machine. Finally, validation is the process of checking the

implementation to ensure that it has fulfilled the specifications laid out by the

user.

Software development using this standard model may be disadvantageous

however because of the following [8]:

1. The earlier an activity occurs in a project the less we understand about the

nature of that activity.
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2. The earlier an activity occurs in a project the poorer the notations used for that

activity.

3. The earlier in a project that an error is made, the more catastrophic the error is.

So for example early requirements and specifications errors have typically cost a

hundred to a thousand times more that those made during the implementation

and have in fact led to many projects being cancelled completely after years of

effort in development.

4. Because a user is unable to visualize the final results of a system that has been

formally described in a specification document by the programmer, it often

becomes very hard to validate the work that comes very early on by checking

with the end user.

5. Finally, an important aspect of the work being done in our group was the need

for rapid development as the full functionality of the software empowered the

rest of the group to evaluate and modify other important elements of the system.

3.2 Prototyping

The solution to many of the problems mentioned above is software prototyping;

a method of development that is usually used at the early stages of full

development and considered a learning stage that involves a lot of interaction

between the user and developer. For this stage to be successful, feedback from

the user about desired features is essential and the interaction with the developer

will give the user himself a better understanding of the available capabilities.

Of the available and established prototyping methodologies, I chose to follow the

evolutionary model. Evolutionary prototyping argues that the system starts as

one entity and slowly evolves into another entity adding and perhaps invalidating

original requirements as new information about the system comes to light. In

effect, it allows the functionality of a software system to be introduced

incrementally with regards to the final version of the software. However the
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difficulty with this implementation methodology (which could later in the

development cycle become an advantage) is that it requires the design to be

flexible enough to allow for continuous changes during and after the

implementation stage. Additionally, prototypes in general do not necessarily

implement all the features of the final version.

3.2.2 Prototype objectives

In our work the required functionality was not clear and kept evolving with time.

The constant changes in hardware and procedures made our selection of a

prototype approach a natural one. The specific motivations behind a prototype

approach were:

1. Need for rapid development.

2. Specifications laid out by the user (in this case a chemist) who was testing the

sequencing machine kept changing with time as changes in hardware and loading

protocol occurred. Such changes were expected of a new experimental system of

hardware components.

3. Need to analyze the feasibility of features specified in the initial specifications

and during the course of development. A sort of complementary tool to the

software design and development stages of the software life cycle.

3.3 Prototype

The prototyping of the application ended up being a recursive cycle of

development with each part of the cycle consisting of modifications to the

original specifications. In the following discussion, a gcle or run protocol refers to

the set of ordered steps (each with an associated location) taken by the robot

during a sequencing run.

17



The first version I developed, v1.0, was based on the following simple

specifications:

1. The robot had to, on user demand, be movable to four separate locations on

the sequencing apparatus. The user should be able to set each such location.

2. The user needed manual control over the robot, giving him the ability to

move it at will to specific locations on the sequencing apparatus.

With these specifications in mind, the UI that was developed is shown Figure 3.1.

It provided a simple interface that met the initial requirements mentioned above.

M a n u I MWx3

Figure 3.1. Version 1.0 user interface.

After initial testing by

addressing:

the user, the following issues were raised and needed

1. There were in fact many more locations the robot would need to visit.

2. The notion of a cycle was introduced to represent the idea that the robot can

visit different locations in a defined sequence and execute a certain pipette action

at each location.

18
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The fastest way to incorporate more robot positions was to introduce the notion

of a position cycle which could be made up of any number of uniquely

identifiable positions. This foresaw (correctly) the idea that elements of a cycle

may have to be removed or added at any position in a run protocol. In addition,

it made the idea of many positions more feasible because a list of items is

essentially limited only by disk space. However, the ability to create an infinite

number of positions to which the robot could move to also meant changes in the

GUI because the dynamic nature of the cycle creation meant that unlike the V1.0

GUI, the positions could not be viewed and activated by static buttons and edit

boxes.

R d CN.

CoJoIm _ e(/10m
F- f4 /Ir

ALe, Locio

D .elet oao

So- L--

Figure 3.2. V2.0 User Interface.

To allow for differentiation between different positions on the board, each

position would have a unique label associated with it (e.g. Waste, Buffer, Samplel

etc.) The GUI was also modified to give simpler manual movement control on

all the axes by adding fine control capability. The product of these modifications

is shown in Figure 3.2.

The system was then tested for some basic functionality by the user. This testing

introduced more required functionality.
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1. The pipettor needed to be programmed to aspirate and inject programmable

volumes of liquid, then cycle over this operation a user-set number of times.

2. The user wanted the ability to stop and restart a cycle at any time and at any

position in the cycle in addition to having a visual indication of the current step of

the cycle being executed by the robot.

The second specification required the program to communicate continuously

with the robot controller in a master-slave fashion. Requests to execute

instructions sent by the master (the program) to the slave (robot controller) had

to be synchronized because execution of the master's command by the robot

controller often involved motion of several mechanical components. If

command synchronization, as illustrated in Figure 3.3, is not accurately achieved

commands could be skipped causing mishaps. In Figure 3.3 command B is not

processed because it arrived while A is being serviced.

20



Command A

Command B M

4 - Reply A

Command C -*

Reply C

t

Service A

Service C

t

Client thread Robot thread

Command A - * -

Service A

Reply A at t1

t

Command B at t1 i0

Reply B

Service B

t

Figure 3.3. Controlling command synchronization.

The final version V3.0 saw the following specifications come to light:

1. Need to store cycles and load them at will.

2. Need to store calculated positions, which could later be used to create cycles.

21
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And had the GUI shown in Figure 3.4.

[L". Root N@x]

Figure 3.4. Final GUI V3.0.

3.5 Object Model

Having come up with a prototype implementation that was tested and shown to

be satisfactory by the user, I developed a design using what was learned during

the prototype development to come up with a modular design that is more easily

maintainable. The object model that was developed is shown in Figure 3.4. The

robot contains four axes, each of which has a pre defined home position that is

valid for a run. It is not possible to capture this relationship within the diagram

but it is an important consideration because once the robot is reset, the home

position must also be reset, i.e. there is no stored state between robot resetting.

Associated with the axes are a velocity and acceleration. There are many more

parameters that can be set, but these two are the ones I consider first. The home

Position object encapsulates the idea that each axis has a fixed associated home

location, while the xPosition, yPosition, zPosition and thetaPosition objects

22



Figure 3.4. Object model for the robot control software.

incorporate the idea of a time variable position (which varies depending on what

step in the run protocol we are at also) also associated with the axes.

The Reservoir Board (rboard) into which samples are injected for electrophoresis,

the buffer solution container, which holds the buffer that is needed for pre-

electrophoresis are also objects that have a position associated with them. The

rboard has two types of associated positions; the waste wells positions, and the

sample wells positions.
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Lastly there has to be a notion of a cycle in the picture of things. A cycle, as

described above, is defined by the positions that it must cycle through.

Additionally a cycle has an associated start and stop time.

3.6 Code Model

Having generated the object model, which displays the major components of the

system it is time to look at the code model, which displays objects from an

implementation point of view, i.e. what objects are necessary for the development

of a final product. The code model user is shown in Figure 3.5. The code model

allows us to look at the interaction between the different components of the

system. The discussion that follows is on the main model objects, and why the

model takes the form it has.

Apparatus: Introduces the notion of a physical component of the machine.

Apparatus is an abstract class, and is sub-classed by Robot, which is the biggest

single machine component. The robot itself is made up of four axes, but these

are contained within the Robot object.

Runner: The runner is the "main" of the software tool. It is the class that

coordinates the action between the different components. The runner receives

events from the GUI and acts upon them causing the robot to carry out a manual

action or run through a sequence of steps by calling the compiler which generates

the program that needs running. GUI: The user interface class provides an

interface for the user for the system to the system. The GUI communicates with

the runner using and event system. So for example any action on the user

interface will trigger an event, which is sent to the handling runner. Cycle: This

class supports the notion of a run a cycle. A cycle has two types of actions: a

PositionAction and a PipetteAction. The separation of these two actions was

necessary because, as described earlier, it became clear that the movement of the
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o axis was not only associated with a position but also a cycle of aspirations and

injections of sample. To reduce the number of Position objects

Key:
x y : Dependency between classes x and y exists

x y : x is a subclass of y

Cycle

Compiler

MotiFn Pl i.nner g

Figure 3.5. Code model.

necessary to encode this movement it was decided to separate functionality by

introducing two different classes.
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In the following section I formalize the requirements of the code model objects.

The representation (rep) of an object refers to its representation in software (e.g. the

representation of a List object may be an array.) The abstraction function describes

the contents of this representation (e.g. for a List object this would correspond to

a statement about how to access the elements of the List.) The representation

invariant (rep Invariant) refers to the restrictions imposed on the representation of

an object (e.g. for a List object this might translate to a restriction on the number

of elements in the List.)

The rep for a cycle is:

rep = array[Actions]

The abstraction function is:

Af(c) = if(c.isEmpty( =} []
else

[c.Actions.getElementAt(1), c.Actions.getElementAt(2),..., c.Actions.getElementAt(i)]
where

i e [1, c.Actions.getLengtho]

The rep Invariant is:

repI( ) = c.Action.getElementAt(i).getLabel( ) # c.Action.getElementAt(j).getLabel(

Vi, j e [1, c.Actions.getLength( )]: i # j

In other words, the names of the elements of a cycle cannot be the same. This is

a restriction that is imposed for safety purposes because the only way of

identifying a position from the GUI is by their names, which are listed in the

cycle window.

Database: A database is an interface class that describes an object that stores

information about a given cycle. There are three classes of database, a
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PipetteActionDatabase, a PositionActionDatabase and a CycleDatabase. Since a

database is a flat file implementation it was necessary to separate these objects

because of the differences described above between a PositionAction and a

PipetteAction. The CycleDatabase holds information about a created cycle.

The rep for a database object is:

rep = filename, array[Actions]

The abstraction function is:

Af (c) = [c.Actions.getElementAt(i),c.Actions.getElementAt(2),..., c.Actions.getElementAt(i)]

where

i e (1,c.Actions.getLength( )]

Also:

filename.getLine(l)=c.Actions.getElementAt(l).toString( )

filename.getLine(2)=c.Actions.getElementAt(2).toString( )

filename.getLine(i)=c.Actions.getElementAt(i).toString( )

where

i e 1, c.Actions.getLength( )]

The rep invariant is interesting because it contains a cross class constraint. It is:

repI(c) = if (c.isTypeOf (CycleDatabase))

3e, d: e.isTypeOf (PipetteActionDatabase), d.isTypeOf (PositionDatabase),

(d.filename = (c.filename+" _ pi"))e (e.filename = (c.filename+" - p"))e

(d.Actions[i]e c.Actions)e (e.Actionsi]e c.Actions)

V i e [1, j.Actions.getLength( )] V j e {c, d, e}
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The necessity of this relationship became apparent when evaluation of the

prototype was taking place. For example, a user can create any number of

different cycles. Before creating a cycle they must first generate a position

database (call this database PDB1) that will be used to create the cycle. If one

allows the positions of another position database (PDB2) to be incorporated one

has the following problems:

1. A position in PDB1 could have the same name as in PDB2 but in fact be

associated with a different position. This may be due to:

a) Small changes in hardware position between runs. A problem that

can be solved by a simple calibration step after loading the

databases which modifies the database entries to account for

movements in hardware.

b) Differences in naming convention between runs. Creating a

naming protocol for different positions on the hardware can

easily solve this problem.

2. A position in PDB1 could have a different name to one in PDB2 but

correspond to the same position.

Compiler: The compiler was a new addition to the way of thinking about the

problem. Because of difficulties involved with getting feedback from the robot,

an option deemed feasible and effective was having a compiler that translates a

cycle setup to a program that is then run by the robot. The compiler is controlled

by the Runner class through events telling it what type of compilation is

necessary. The compiler is in effect proxy to the robot; able to generate code on

the fly which can then sent to the robot controller for execution.
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The full specification of all the objects is shown in Appendix A. The interface

between the objects and the outside world is documented here also.

29



Chapter 4

BASE-CALLING

4.1 Rational

In this chapter I discuss the design and testing of the filter stage proposed in

chapter 2.

To approach the problem of designing a filter that allows Phred to generate

quality scores from data preprocessed by Trout it is important to understand the

differences between the preprocessing steps Trout implements and those of the

Plan. Figure 4.1 shows just the pre processing steps taken by both Trout and

Plan. Background subtraction, color separation, smoothing filter, mobility

correction.

Trout preprocessing

B o b oo rS ntio-------------------------------------------------------------

Background subtraction Color separati M on Smoothing filter Mobility correcton

Background sbacin Clr separation Mobility cocion :1~iI Smoothing filter

Nonmalize peak spacing

--------------------------------------------------------------- I

Figure 4.1. Plan and Trout processing steps.

While the general functionalities of each step carry many similarities across the

two packages, the underlying algorithms are different. Plan depends heavily on
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lookup files to get the color separation matrix, mobility shift correction and peak

spacing factors. These lookup files are machine and chemistry specific, which

makes it very difficult to adopt Plan for our equipment. Trout on the other hand

estimates the color separation matrix and mobility correction factors from the

data. Trout however does not have a peak spacing normalization module and the

design and implementation of the filter stage depends on understanding how Plan

does this function.

4.1.1 How Plan performs space normalization

Normalization of spaces in Plan is done using a predetermined lookup table that

assumes certain characteristics of all data. Plan first weights the entries in the

lookup table by a factor that it calculates using average location and average ipacing

variables found by analyzing the data as follows:

1. Find the peak spacing at a "good point" in the trace. This is

accomplished by first dividing the trace into windows and taking the

average spacing of the window with the lowest peak spacing standard

deviation as the average spacing.

2. Taking the midpoint of this window and setting that to be the average

location.

Using the weighted lookup table, Plan maps, using a linear interpolation, the data

to another trace with an average spacing profile defined by the new lookup table.

The normalization of peak spaces by Plan is important for both the Phred base-

calling and quality estimation modules. The Phred base-caller first finds idealized

peak locations (predicted peaks.) To do this it uses the fact that, on average,

fragments are locally evenly spaced to predict the idealized evenly spaced

locations of bases along the trace. These predicted peaks are then matched with

observed peaks leaving unmatched peaks. These unmatched observed peaks are
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incorporated into the called sequence if it is obvious that they are peaks but were

not predicted. However Peaks that are observed but not predicted may be

discarded [3]. The quality estimation module then uses an uncalled/called ratio

(uncalled bases are those that were observed and discarded), amongst other

parameters, to determine the quality of a called base [6].

Normalizing peak spacing and bringing it closer to what one predicts thus

improves the base-caller results, in effect reducing the uncalled/called ratio that

Plan uses resulting in better quality scores.

4.2 An algorithm for peak normalization

After analysis of Plans' method of normalizing peak spaces, I decided that

perhaps a more systematic normalization algorithm would be more suitable. An

algorithm that was able to effectively normalize peaks using only features of the

data itself and not a lookup table that is chemistry and machine specific.

The philosophy behind our approach was to smooth the average spacing of the

trace data. Figure 4.2 shows the peak spacing function, ps(x) of data obtained

from an ABI 377 machine. Peaks were found using an algorithm that calculates

the second derivative of the function and finds the zero crossings. Notice how

peak spacing is initially quite variable yet small, the variation falls between bases

200-500 then rises again. This is a fairly typical profile for the peak spacing of

trace data and is explained by the following [3]:

1. Irregular migration of small DNA fragments down the channel caused by the

dye used to mark the fragments and unreacted dye-primer or dye-terminator

molecules causing the first 50 or so peaks to be unusually noisy and unevenly

spaced.
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Figure 4.2. Peak spacing function ps(X) from a sample sequenced with an ABI 377 machine.

2. Less well resolved peaks at the end of the trace caused by increased diffusion

effects and falling relative mass between DNA fragments causing peaks to be less

easily distinguished and leading to the detection of combined and broad peaks in

turn leading to bigger and uneven spacing at the end of the trace.

Our initial approach to the problem of smoothing out the peak spacing was to

map the old trace to one whose peaks were all spaced equally at some value k.

But this proved to be inappropriate for two reasons:

1. The fairly wide variation of spacing along the trace meant that some peaks

were disproportionately shifted giving rise to big distortions.
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2. Quite often, peaks will overlap significantly even after mobility shift

corrections. Trying to separate peaks that have such an overlap could also lead to

misleading peak definitions.

I decided to break the original trace up into windows of peaks. Then map each

window of data in a manner that took into account the variations in peak spacing

from window to window, thus averting the distortions mentioned above.

In the following analysis I will describe the algorithm more formally. A variable

with a superscript 'n' refers to the newly mapped trace and one with a superscript

'o' refers to the old trace (i.e. the one being mapped.) The variable newavgspacing

refers to average spacing desired in the new trace. Now consider the original

trace to be a tabulated function with N data points y" = f "(x") , x" =1,..., N. If

the total number of peaks in yo is P, we first divide y" into windows of a

peaks, [WO wj,..., wn], n = P/a. Each window has 1,,k' Wk =OVk <0 data

points. To perform the mapping we traverse and evaluate y" at incremental

steps A x,, (which depends on the window we are currently in.) If w' ,1 i 5 a

is the i th peak in window Wk , we have:

Ax0 = median((w; -w))/newavgspacing

To find y we assume that we have an interpolation function for any x e 91:

15 x ! N gives us a value for y". We call this function I and it is a function of

the original trace. We have:
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I(fo (x )= yxE 9 :1 xj N

x' is the point at which we want to evaluate, by interpolation, y" and it is located

in the k th window of y". The value ofxj is:

t=k-1

xk = j*Ax",+(1-A 0) l,A 0,

The overall algorithm steps are therefore as follows:

1. Choose an average peak spacing for the new trace, newavgspacing

2. Find peak locations.

3. Break up the original trace into windows of a peaks.

4. Find the median peak spacing of these windows.

5. Map, by interpolation of the old trace to find the new trace values, each

window of the old trace to a trace whose average peak spacing is the ratio of the

median peak spacing found in step 4 and newavgspacing set in step 1.

Interpolation was done using cubic spine interpolation with the natural cubic

spline, which has zero second derivatives at both of the boundaries of the curve.

Cubic spline interpolation was chosen because it gives an interpolation formula

that is smooth in the first derivative and continuous in the second, both within an

interval and at its boundaries, thus producing a smooth final trace. The effect of

the mapping algorithm on the original peak locations at the window edges is

shown in Figure 4.3. Figure 4.4 shows the effects on the trace.
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Figure 4.3. Mapping from old trace to new trace. Points shown are the peak locations at the
window edges.
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Figure 4.4. Mapping effect on the original trace. Done using window size of 20 peaks and a new

average spacing of 12.

36

-..... ..---. .. .. -.--- --.-.-.- - .- ..--.



The mapping in this case has caused an expansion in the number of points in the

original trace which can be observed by the wider peak spacing seen.

4.3 Results and discussion

The testing strategy was straightforward. I wanted to compare the performance

of Phred when given the filtered Trout output and when given the Plan

preprocessor output. I processed 11 Bluescript sample files produced by an ABI

sequencer with the Plan-Phred combination, then with Trout-filter-Phred

combination. Comparing the output of the Phred base-caller via these two paths

involves two essential aspects:

1. Comparison of the accuracy of the final sequence. i.e. is the sequence

called by Phred accurate or not when aligned with the consensus

sequence.

2. Comparison of the quality scores produced by Phred. i.e. how confident

am I that the called bases are correct.

If the sequence produced has great confidence levels but is not accurate then it is

not of much use. Similarly if the sequence is accurate but the confidence values

generated are very low, then it is again not very useful. We are thus looking for a

balance between good accuracy and good confidence levels

4.4 Quality scores

As previously mentioned the quality scores generated by Phred represent how

confident the base-caller is with the called bases. A plot of confidence scores

generated by the Phred-Plan combination and the Trout-filter-Phred combination

with position is plotted in Figure 4.5.
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Figure 4.5. Average Trout-filter-Phred confidence scores and Plan-Phred confidence scores.

Note that the filtered trace follows the profile of the Plan-Phred combination

closely. The differences can be explained by the following:

1. Decrease in the quality values late in the trace, caused by deterioration of

peak resolution and called/uncalled ratio which is one of the parameters

used by Phred to designate quality scores. The called/uncalled ratio is

itself a function of predicted peaks and located peaks. Because peaks get

wider and poorly resolved near the end of the trace, peak prediction

becomes less reliable. This error more pronounced in the filtered trace

because of poor spacing possibly caused (especially at the end of a trace)

by inaccurate peak finding used in the algorithm.
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2. In higher quality regions of the trace, the lower than expected quality

values may be due to compressions in these regions and the uneven

spacing they produce [6]. This may be more pronounced in the filtered

trace again because the window of peaks used to determine the new

spacing may be too small in a region where compressions may lead us to

underestimate the spacing.

4.5 Accuracy

The accuracy of the called sequence is determined by an alignment process. The

called sequence is aligned with a consensus sequence that represents the

completed know sequence. The alignment algorithm tries to match the called

sequence with the consensus as optimally as possible hence minimizing the

following types errors:

1) Mismatch: Occurs when a base is aligned with another base that is not

the same e.g. A with C.

2) Overcall: Occurs when a base is called at a position but in reality there is

no base there e.g. if the consensus sequence is AACG and the called

sequence is AACTG, then an alignment where a T is forced into the

sequence would be an overcall.

3) Undercall: Occurs when a base is not called, but should actually be there

e.g. if the consensus sequence is AACG and the called sequence is AAG,

then there is one undercall.

The average total percentage error of the samples and the average of the

component errors is shown in Figure 4.6. The figure shows that the filtered data

outperforms the Plan-Phred combination up to 600 bases where it has 9 8 %

accuracy. If we look at the contribution of the individual error types mentioned
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above we see that the filter does not perform as well as Phred through out the

trace but staying less than 0.9 errors more than Phred through out the entire

trace. On further examination of the processed traces, the errors in overcall can

be explained by the following

1. A high number of peaks appearing like poorly resolved peaks.

2. Poor peak separation especially towards the end of traces where

errors were caused because overlapping peaks would both be

called.

Average total cumulative % error along called sequence
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1
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Average cumulative % error due to undercall

Average cumulative % error due to overcall

Filer
- Phred
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-
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600 800
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Figure 4.6. Called sequence accuracy.
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The filtered trace performed more accurately with respect the number of

undercalls up until 550 bases. The rise above the Plan-Phred processed samples

error was observed to be predominantly due to:

1. Very poor peak resolution at the end of traces.

2. Poor peak normalization which may have happened even with the

window break up of the trace when performing normalization using our

algorithm. This is because the window width was chosen based on a

count of peaks. However, after 500 bases traces can have very varied peak

spacing especially if the peaks are found using a simple algorithm that

looks for the zero intercept of the second derivative because many peaks

are poorly resolved and tend to appear wide and almost flat creating the

illusion of many narrow peaks.

With regards the number of mismatches found, the filtered trace performed more

accurately up until ~700 bases.

Having validated the algorithm, I tested it on three sample files that were

produced by our machine. The average quality scores for the samples is shown in

Figure 4.7. The plot shows a good quality score profile and the high scores

between 200 and 550 bases correspond to zero errors in the called bases over this

region. On examination of the traces, the dips in quality at bases 110, 290, 480,

and 520 can be explained by an inherent weakness in Phred's quality scores

module when processing traces that are not produced by ABI machines. This

conclusion can be made because the traces at these points were not very noisy.
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Figure 4.7. Average Trout-filter-Phred confidence scores.

The accuracy traces for these three samples were very good and gave more than

98% accuracy up to 800 bases.
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Chapter 5

CONCLUSION

In this thesis I have been able to successfully develop a functional robot control

application prototype that is currendy in use with the sequencing hardware my

group is developing. I found the prototyping approach to be very effective for

our purposes because of its short development life. The evolutionary approach

to prototyping also meant that I did not have to redesign and rewrite the

application each time there were changes to the specifications by the user,

changes that occurred very frequently.

In addition to prototyping the application, I have developed a maintainable

design for the robot control system that is intended for future implementation.

The second part of this thesis described the implementation of a filter module

that allows us to use Trout for preprocessing and Phred for base-calling. With

this new filter, I was able to outperform, with respect to accuracy, Phred up until

600bp where I observed 98% accuracy. I found that the degradation in filter

performance (compared with Phred) after the 600 bases mark was mostly due to

disparities between the number of overcalls and undercalls in the Phred results

and the filter results. On analysis, this disparity was attributed to:

1. Poor peak resolution at the end of the data; the source of most overcalls.

2. Poor peak normalization at the end of the data. This was because the

algorithm developed relies on the fact that peak spacing within any extended

region of a trace is going to be somewhat similar. However, the end of the

trace can display very irregular peak spacing. Modifying the algorithm so
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that the length of the window of peaks is variable along the trace can reduce

the problem.

I was able to realize quality scores with an average profile that tightly shadowed

that of the Phred scores all the way through most of the trace, giving credibility to

the accuracy I obtained. The differences were most likely due to:

1. Fall in peak resolution at the end of that trace which caused a fall in the

called/uncalled peak ratio, one of the parameters Phred uses to generate

quality scores.

2. Natural compressions and uneven spacing in peaks again producing

problems because the algorithm relies on the spacing in any extended

region of the trace to be on average even.

This validation testing was performed using ABI 377 files. Having validated the

algorithm I then tested it on three files produced by our machine. The results

showed good quality scores with irregularities that I attribute to the fact that

Phred was tuned to work with traces produced by ABI machines. In order to

obtain better confidence scores, future work will need to train Phred by testing

with more data sets from our machine.

Future work will also involve tweaking the algorithm to improved performance in

accuracy and confidence for data produced by our machine, in addition to the

implementation of a separate quality scores module.
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Appendix A

Robot Controller Function Specification

*********ACTION***********************

Class Interface Action Extends CObjeact }

Overview: An action is an abstract function
that is used to represent a Cycle makeup. An
action has a name in: this.label.

Action)

abstract CString toString()

CString getName)

//effects: returns this.label

CString setName (nname)
{
//modifies: this.label
//effects: set this.label = nname.

//end Interface Action

PositionAction

Class PositionAction

Overview: A position action is an action
associated with the X,Y and/or Z axis. The
action is made up of a motion along the axes
to (this.x, this.y, this.z.)

//constructor
PositionAction(nname)

//modifies: this.x , this.y, this.z are all
set to zero and this.label=name.

PositionAction(nx,ny,nz, nname)

//modifies: this.x = nx, this.y = ny, this.z =

nz, this.label = nname

//access functions

CString getXPosition()

//effects: returns this.x

CString getYPosition()

//effects: returns this.y

CString getZPosition)

//effects: returns this.z

void setXPosition(nx)

//modifies: sets this.x = nx

void setYPosition(ny)

//modifies: sets this.y = ny

void setZPosition(nx)

//modifies: sets this.z = nz

CString toString()

//effects: returns a string representation of
this object in the following format:

"this.label this.x,this.ythis.z"

note the string does not contain a carriage
return.

//end Class PositionAction

**********************PIPETTEACTION**********

Class PipetteAction

Overview: A pipette action is an action
associated with the theta axis of the robot
(the pipettor.) A pipette can either dispense
or inject depending on this.position In
addition it can cycle through dispensing and
injecting. The number of times it does this
is determined by this.numCycles. A
PipetteAction has a name in: this.label.

//constructor

PositionAction(nname)
{
//modifies: this.x , this.y, this.z are all
set to zero and this.label=nname.
I

PositionAction(numberOfCycle,pos,nname)
{
//modifies: this.numCycles, this.position
//effects: this.numCycles = numberOfCycles,
this.position = pos,this.label = nname

//access functions
void setNumberOfCycles(nc)

//modifies: this.numCycles
//effects: this.numCycles = nc

void setPosition(np)
{
//modifies: this.position
//effects: this.position = np
}

CString getPosition()
{
//effects: returns this.position

CString getNumCycles()

//effects: returns the number of cycles
assoicated with this pippette action

CString toString)

//effects: returns a string representation of
this object in the following format:

"this.label this.numCycles, this.pos"

note the string does not contain a carriage
return.
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//end Class PipetteAction

*******************DATABASE*****************

Class Interface Database

Overview: A Database object is an abstraction
that implements a storage medium for data.
Specifically, data relating to PipetteActions,
PositionActions and RunCycles. A database is
stored in a this.filename. A database has a
name this.name. The elements of a database
are stored in this.actionArray.

//constructor

Database()

Abstract loadDatabase(;
Abstract createDatabase(filename);

void insert(action, i)

//requires: i >= 0 , i < actionArray.length()
//effects: inserts "action" into
this.actionArray at position i.
//modifies: this.actionArray

void append(action)

//effects: appends "action" onto the end of
this.actionArray
//modifies: this.actionArray

void remove(i)

//requires: i >= 0, i < actionArray.length)
//effects: removes an action from actionArray
located at i

CObject getAt(i)

//requires: i >=0, i < actionArray.length)
//effects: returns the action
this.actionArray[i]

}// end Interface Database

****************CYCLEDATABASE**************

Class CycleDatabase

//overview: A CycleDatabase is a database that
stores the actions of a cycle.
// Each cycle database has an
associated PipetteActionDatabase and
PositionActionDatabase this.pipetteDB and
this.positionDB respectively.

//constructor
CycleDatabase)

void loadDatabase(fn)

//effects: returns an array of actions
associated with the actions stored in the file
fn into this.actionArray. sets this.filename
= fn

//modifies: this.actionArray, this.filename

void storeDatabase(fn)

//effects: sets this.filename = fn, stores the
elements of this.actionArray in fn in the
following way:

if(this.actionArray(i] isInstanceOf
PipetteAction) for i st. 0 <= i <=
length(actionArray)
then

"p actionArray[i].toString) <return>"
else
"l actionArrayli].toString) <return>"

If "fn" exists it is overwritten. If "fn"

does not exist it is created.

}//end Class CycleDatabase

*****************POSITIONACTIONDATABASE*****

Class PositionActionDatabase

//overview: A PositionActionDatabase is a
database that stores positions.

//constructor
PositionActionDatabase)

void loadDatabase(fn)
{
//effects: returns an array of actions
associated with the actions stored in the file
fn into this.actionArray. sets this.filename
= fn

//modifies: this.actionArray, this.filename

void storeDatabase(fn)

//effects: sets this.filename = fn, stores the
elements of this.actionArray in fn in the
following way:

"actionArrayIi].toString) <return>"

If "fn" exists it is overwritten. If "fn"
does not exist it is created.

}//end Class PositionActionDatabase

****************PIPETTEACTIONDATABASE********

Class PipetteActionDatabase
{
//overview: A PipetteActionDatabase is a
database that stores the actions of a cycle.

//constructor
PipetteActionDatabase)

void loadDatabase(fn)

//effects: returns an array of actions
associated with the actions stored in the file
fn into this.actionArray. sets this.filename
= fn

//modifies: this.actionArray, this.filename

void storeDatabase(fn)

//effects: sets this.filename = fn, stores the
elements of this.actionArray in fn in the
following way:

"actionArray i].toString) <return>"

If "fn" exists it is overwritten. If "fn"
does not exist it is created.
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}//end Class PipetteActionDatabase

***********COMPILER************

Class Compiler
{
//overview: a compiler is an object that given
a cycle of actions generates Compumotor
commands in the form of a file and writes the
output to a file.

//constructor
Compiler()

Compile(e)

CString createHeader)

CString createCore()

//overview: A ResumeEvent object is an Event
with name = "Resume". This event is generated
by the GUI when one "Resumes Cycle" on the
GUI.

************ILLEVENT***********

Class KillEvent

//overview: A KillEvent object is an Event
with name = "Kill". A "Kill" event is sent
from the GUI on the pressing of a kill button
on the GUI.

**************SINGLEGOEVENT******

Class SingleGoEvent

//overview: A SingleGoEvent object is an Event
with name = "Single". A SingleGoEvent is sent
by the GUI when a movement to a single
position is required which is indicated by the
depression of the "Go" Button on the GUI.

CString generate)) *RU * * * *

Class Runner

} //end Class Compiler

************EVENT*************

Class Interface Event

//overiew: An event object is an interface
representing the events that a Runner object
receives from the GUI. An event has name
this.name.

Event(n)

{
//effects: creates a new event object with
name = n.

CString GetName)

//effects: returns this.name

CString SetName(nn)

//effects: this.name = nn

} end Interface Event

***************STOPEVENT**********************

Class StopEvent
{
//overview: A StopEvent object is an Event
with name = "Stop". This event is generated
when "Stop" is pressed on the GUI.

***************PAUSEEVENT*********************

Class PauseEvent

//overview: A PauseEvent object is an Event
with name = "Pause". This event is generated
when one "Pauses" the cycle on the GUI.

***************RESUMEEVENT*******************

Class ResumeEvent

//overview: A Runner object handles events
from the GUI and calls the compiler with the
specific reqs then takes the output of the
compiler and exceutes it. A Runner is
essentially the main thread of the softear
package. It has associated with it a robot
object, this.robot a compiler, this.compiler
and a GUI, this.gui. A runner also has cycle,
pipetteaction and positionaction databases
associated with it.

//constructor
Runner()

void HandleEvent(e)

//effects:
if(event.name == "Kill")
call this.Kill()
else if (event.name == "Pause")
call this.Pause)
else if (event.name == "Resume")
call this.Resume)
else if (event.name == "Start")
call this.Start(e)
else if (event.name = "Single")
call this.Single(e)

void Kill()

//effects: kills robot motion
I

void Pause()
{
//effects: pauses robot motion

void Resume)

//effects: Resumes robot motion

void Start)

//effects: If this is the first time being
called, create the cycle program with special
first-time headers and footers
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void Single(e)

//effects: Causes the action associated with
the single event "e" to be exceuted
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