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ABSTRACT

Periodic disturbance in Brunt-Viisili frequency (BVF) can have significant influence on
stratified flow over topography. Its influences include wave trapping and wave
instability, depending on its wavelength, its phase, and its amplitude. This thesis shows
the existence of a critical phase for some stratified flows. At critical phase or phase close
to it, flow instability occurs. In addition, this thesis shows the periodic disturbance has
larger influence in the two-dimensional flow, very little influence on three-dimensional
flow with round topography, and some influence on three-dimensional flow with large
spanwise topography.

Tropopause height also affects stratified flow. A set of atmospheric data was examined
closely for the wave perturbation caused by the tropopause height. Numerical
simulations indicate that under the conditions given by the data, the generated mountain-
wave disturbance is most active when the tropopause height is in the range of 10.5-14km.
The actual flow data reveals that regions, where the tropopause height is around 10-
1lkm, experience high wave activity.
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Title: Professor of Mechanical Engineering
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Chapter One

Introduction

The motion of stratified fluid such as airflow makes big and small impacts in our

daily life. People living in the upper eastern United States know that a beautiful morning

can quickly become a dark gloomy afternoon with snow blanketing everything in sight.

A sudden shift of weather catches people off guard, creates havoc for farmers, and on a

few occasions causes mass destruction of properties and death. Such unpredictability

leaves us asking the question, is weather forecasting a science or an art? Predicting

weather is a behemoth task that includes the knowledge of many fields of studies.

Understanding stratified fluid flow is an integral part of it.

Stratified fluid is a fluid that has a density gradient. Earth's atmosphere and

ocean are the two notable examples of the stratified fluid. Their density gradient is a

result of the effect of gravity. In this thesis, the density gradient is introduced through the

quantity called the Brunt-Vdisali frequency (BVF). This quantity is the frequency at

which a small fluid element oscillates vertically about its equilibrium position and it is

defined as

N(z)= -g-

The density gradient appears in the numerator and the density itself appears in the

denominator, g being the gravitational acceleration. The case where BVF is constant has

practical importance due to the fact that a typical atmospheric BVF profile approximately

consists of layers of constant BVF. For BVF to be constant, the fluid density must vary

exponentially with height. Its effects on the stratified fluid are the basis for this thesis.
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Yet we know only so much about this opaque but ubiquitous medium. There is a

good reason. The set of equations that describes the stratified fluid is called the Navier

Stokes equation and the first and second law of thermodynamics. This set of governing

equations is so complex that even with the current ultra-fast supercomputer, no one has

been able to deduce its solution in its entirety. This thesis will examine the stratified flow

based on a much simplified but practical set of governing equations.

The simplified governing equations describe the stratified fluid at the scale of the

atmospheric level with the internal gravity-waves generated by flowing over a

topography. This flow can be considered inviscid, incompressible and steady. Large-

scale flow is inviscid as long as the boundary layer does not separate. Moreover, the

internal gravity wave does not reach anywhere close to the speed of sound. So, the flow

is further simplified by making it incompressible. Moreover, the incoming flow is

assumed to have a uniformed profile.

Long (1953) made a systematic study of stratified flow with constant BVF. The

model he used for his research has been the foundation for stratified flow since. In

Long's model, the governing equations for both the small and finite-amplitude flows are

linear as a result of BVF being constant and independent of height. Furthermore, the

model applies in regions where wave breaking does not occur.

Since then, researchers have built on Long's model by using various BVF profiles

to make the model an even more realistic one. Atmospheric BVF profile usually has two

or three layers of constant BVF. Section 4 of the appendix shows several examples of the

atmospheric BVF profile. Durran (1992) developed a simple two-layer model. Davis

(1999) extends the two-layer model to a model with variable BVF profile. By further

7



modifying the BVF profile with a periodic disturbance, a fascinating phenomenon of

wave getting trapped closed to the topography occurs. In the atmosphere, BVF is only

approximately constant in each layer. It has a great amount of small-amplitude

disturbances. When that disturbance is periodic with a certain wavelength, numerical

simulations suggest wave trapping to occur.

Two notable papers have been published on stratified flow with periodic

disturbance in the BVF profile. Phillips (1968) pointed out that when the vertical wave

number of the periodic disturbance is twice the ratio of the incoming flow velocity to the

BVF, waves in stratified fluid get trapped near its source. Kantzios and Akylas (1993)

also pointed out that when there is a periodic disturbance in the fluid stratification, the

wave decreases as it moves farther away from the source.

This thesis continues the investigation on the effect of the periodic disturbance on

the stratified fluid. The investigation will use nonlinear two-dimensional and linear

three-dimensional models to represent the stratified flow. In the conclusion of the study,

the results will show that the periodic perturbation, defined by its amplitude, phase, and

wavelength, has important and unique influences on the stratified flow.

Another part of this thesis is to analyze the atmospheric data provided by the Air

Force. Durran (1992) and Klemp and Lilly (1975) pointed out that the tropopause height

can have a significant influence on flow over topography. Klemp and Lilly (1975) also

made field observations in the region around Boulder, Colorado. In that region, the wind

blowing over the mountain toward the city has caused structural damage to a large

number of buildings. They observed that given certain atmospheric conditions like the

location of the tropopause and the BVF, the wind speed close to the ground increases.
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Durran (1992) developed a simple two-layer model to explore the effects that the

tropopause can have on stratified flow over topography. He compared the differences

between the linear and non-linear equations of motion in the vicinity of the tuned

tropopause. The linear governing equations show that the tropopause becomes tuned at

regular intervals in the vertical direction. Unlike the linear case, the non-linear governing

equation places the tuned tropopause at irregular intervals in the vertical direction. Davis

(1999) extends the simple two-layer model of constant BVF to a model with variable

BVF. He also found that tuning of the tropopause is possible.

Since then, additional atmospheric data have become available. Based on these

data, the present work explores the effects of the tropopause on the induced gravity-wave

disturbances.

Chapter two gives the two-dimensional stratified flow theory and discusses the

numerical results in regards to the effects of the periodic disturbance. Chapter three

discusses the three dimensional flow. Chapter four examines the atmospheric data for the

effects of the tropopause height and presents its conclusion.
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Chapter Two

Two dimensional stratified flow

Section 2.1 provides the theory and the foundation of two-dimensional stratified

fluid flow in large depth over topography. The general theory is presented first and the

discussion of small-amplitude and finite-amplitude flows follows. Section 2.2 gives

numerical results related to the investigation of the periodic disturbance in BVF on

stratified flow.

2.1 Theory

Using conservation of mass and momentum with the assumptions mentioned in

the introduction, the governing equations for the stratified fluid flow in large depth are,

V ii = 0 (2.1)

u -Vp = 0 (2.2)

pa .VP= -Vp + pg (2.3)

It is convenient to introduce dimensionless variables, eliminate pressure and combine the

resulting quantities to form a single governing equation. The dimensionless variables

used are

x= L, z= U , u=Ut, = U gUp" p (2.4)
No LN0  No

L represents the characteristic length of the topography width. U0 represents the

nominal horizontal incoming velocity. No represents the nominal BVF. The resulting

equation is,

T__ +N 2(PXz-T)+p 2' T,+=N2(T XT2 +y
2 T -1)=0. (2.5)

2
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The detail is worked out in the section 1 of the appendix. T is the streamfunction and it

is related to the velocity vector. The relationship is

u = , =-T

8 , is called the Boussinesq parameter and it is related to the stratification of the fluid, p

is called the longwave number and it is related to the wave dispersion. These two

quantities are defined below.

NOUO UO
NU, p=U (2.6)

g NOL

Using Bossinessq approximation, which implies that 8 -->O, and hydrostatic

approximation, which implies that p -->O, the governing equation, equation 2.5,

simplifies to

V22 + N 2 (y + z)y = 0, (2.7)

where V/ = T - z is the perturbation streamfunction. N is the dimensionless BVF and it

is given in the appendix, section 1, equation A. 1.17. For the stratified flow with two

layers of constant BVF, N can be described by the following equation.

N = a + b tanh(c(z - d)) (2.8)

The constants a and b together define the value of BVF in the lower and upper layer.

The constant, c, determines the size of the tropopause. The constant d is the tropopause

height. Additional terms will be added to equation 2.8 to include the periodic

background dsiturbance.
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2.1.1 Small-amplitude stratified flow

In the small-amplitude stratified flow, equation 2.7 simplifies to

',z + N2 (z)y = 0 (2.9)

The solution to equation 2.9 is,

, (x, z) = A(x)q1 (z)+ B(x)q2 (z) (2.10)

7i and 72 are obtained by solving the following linear differential equation with its

boundary conditions.

d + N 2 (z)q(z) = 0 (2.11)
dz

77 (0)=I, dq (0)= 2 (O)0 d 2 (0)=1 (2.12)
dz dz

The subscript on V/, in equation 2.10 emphasizes that it applies to the regions where N is

a function of the height as well as when N is constant. In contrast, V/ 2 , defined below,

applies to the region where the stratified fluid must have constant BVF.

V2 (x, z)= C(x)sin(N~z.) + D(x)cos(N,z.) (2.13)

So, V/ 1 is a more general solution than V2 and when its coefficients are determined,

V/1 will be the solution to the governing equation, equation 2.9.

The lower and upper boundary conditions are used to solve for the coefficients of

V1. The procedure is explained below.

The lower and upper boundary conditions are applied first. The upper boundary

condition, also called the radiation condition, states that energy must propagate away

from the source. In wave propagation, energy travels at group velocity. Thus group
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velocity must be positive for the wave energy to move away from the topography. Group

velocity for the stratified flow in large depth is,

Cg - sgn(m)Nk (2.14)c,z = 2 (.4

For equation 2.14 to be positive, wave numbers k and m must have the same sign. This

can be expressed in the following way,

km > 0 (2.15)

To use boundary condition in equation 2.15, the sine and cosine terms in equation 2.13

are first expressed in their exponential form and then they are transformed into the

frequency domain using the Fourier transform. The resulting equation is,

V2 (x, z) = 2 j[-(k)- jc(k)Ai"h"'z + J(k)+ ij(k)'"-"mz) (2.16)

m is the vertical wave number which is

N
M = - (2.17)

U

Equation 2.15 states that k and m must have the same sign and to satisfy this criteria, the

following conditions must be true.

1(k)= ib(k) for k < 0, (2.18)

b(k)= -i((k) for k > 0 . (2.19)

This is equivalent to

f)(k)= -i sgn(k)C(k) (2.20)

In real domain, this condition is,

C(x) = H[D(x)] (2.21)
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Equation 2.21 eliminates one variable by relating C and D . 'H' is the symbol for the

Hilbert transform. It is defined as

1 f(X')
H[f(x)] = 7 j dx' (2.22)

rx -x

The second of the two boundary conditions is the lower boundary condition. This

condition states that fluid flowing adjacent to the topography cannot have normal velocity

component. This is expressed in the following three equations.

ii -h = 0 (2.23)

n = VF (2.24)

F=z-f (2.25).

The two-dimensional topography is described by the following function.

h =/ (2.26)
(l+ x2)

Combining equation 2.23, 2.24, 2.25, and 2.26 and expressing the result in streamline

perturbation give equation 2.27, the working form of the lower boundary condition.

Y(x z)Zf + z f =0 (2.27).

To obtain the solution to the governing equation, Vf, and V2 are combined using

the following two conditions.

V/1(x, H) =V 2(x, H) (2.28)

Vi(x, H) =V/2,, (x, H ) (2.29)

They state that the wave velocity and wave displacement for V/, and V2 must be matched

in the height where the BVF is constant or does not change with height. The resulting
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quantity is combined further by the lower and upper boundary conditions stated above.

The following is the set of simultaneous equations.

- fq,(H) + B7 2 (H) = C sin(N.H) + D cos(N,,H)

- fq, (H) + B7 2 z (H) = CN cos(N. H) - DN sin(N H)

C = H[D]

(2.30)

(2.31)

(2.32)

Once the coefficient B is found, It is also found since A was found by applying the

lower boundary condition.
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2.1.2 Finite-amplitude stratified flow

For the finite-amplitude case, the solution cannot be obtained as easily. As stated

previously, the governing equation is

W_,- + N 2 (y + z)y = 0 . (2.33)

Iteration is required to obtain the solution. Unlike the small-amplitude case, the BVF

(N) in this case depends on the perturbation V also. The first guess of V/ to start the

iteration is the solution from the small-amplitude analysis. The upper boundary condition

is applied next. Then, equation 2.7 is integrated down to the topography where the lower

boundary condition is applied. A new guess of V is made using the Newton-Raphson

iteration method. This process is continued until V/ satisfied the lower and upper

boundary conditions.

All the numerical simulations on the two-dimensional stratified flow presented in

this thesis are based on the solution to equation 2.33.
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2.1.3 Addition of periodic disturbance to BVF profile

Flows with a periodic disturbance on its BVF profiles are a significant part of this

thesis. This section explains the motivation behind adding a periodic disturbance to the

BVF profile. Also a multiple scale analysis on the linear governing equation is done to

show the existence of a resonance when the wavelength of the periodic disturbance is

twice the ratio of the incoming wind velocity to the BVF.

In the actual atmospheric BVF, there exist substantial background disturbances.

In the case when the disturbance is periodic and its wavelength is twice the ratio of the

wind velocity to the BVF, Phillip (1968) and Kantzios and Akylas (1993) pointed out that

the wave trapping occurs. To study this kind of flow, a sine function is added to the BVF

profile. The resulting modified function describing this BVF is

N = [a + b tanh(c(z - d))]+ A (i - tanh(3(z - BH))Xsin(Tz+) (2.34)
12

The second bracket in equation 2.34 represents the newly added disturbance. T is the

wavelength of the perturbation. # is the phase of the perturbation. A is the amplitude of

the perturbation. BH is the height when the perturbation stops with the BVF returning

back to its undisturbed level.

A multiple scale analysis will be carried out on the following equation to

demonstrate that resonance occurs when T is twice the ratio of the BVF to the incoming

velocity.

d 7+ (No + A- sin(Tz- + #)) r7(z) = 0 (2.35)
dze

The magnitude of 4, is of the order ofe . The solution to equation 2.35 is

17



y/ = A(x)q, + B(x)q2 (2.36).

q, and 272 are obtained by integrating equation 2.37 with its boundary conditions

gzz + N2 (z)7 = 0 (2.37)

7(0) =0 72(0)=1

(2.38)771'(0) =1 q22 (0)=-0

The solution to the 71i case is broken down using the multiple scale analysis and the first

two orders solutions are

iNaz -iNoz

0(1): 0 = = cosNoz (2.39)
2

iE + F N -F -iE N 2NOA+
0( 81): 91=- ,e 1

Nz + eo p+ sin(Tz +# + Noz)2i 2i (T + N) 2 - N2

+ 2 NO 2 sin(Tz + - Noz) (2.40)
(T - N ) - Ni

The detail is given in section 2 of the appendix. E and F can also be found there.

Equations 2.39 and 2.40 represent the solution of equation 2.34, with the accuracy at

order one. The important result to note from the multiple scale analysis is that the last

term in equation 2.40 shows that when T the wavelength of the sinusoid is twice the

value of the dimensionless BVF, NO, the linear solution does not exist. This signifies

resonance condition in stratified fluid. The result agrees with Phillips (1968) and

Kantzios and Akylas (1992).
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2.2 Discussion

Previous section shows that the periodic disturbance on the BVF causes some sort

of resonance in the stratified flow. But its actual effects are not clear. The task of the

following three sections is to clarify the role of this periodic disturbance through the use

of nonlinear numerical simulation.

2.2.1 Effects of the perturbation amplitude

In this section, a series of numerical simulations is performed to show the effects

of the disturbance amplitude on the stratified flow. The simulation uses a BVF profile

described by a =1.6 ; b = 0.6; c = 20; d = 3 with the disturbance phase equal to /T/2

and varies its amplitude from 0 to 0.4. This method of carrying out the numerical

simulation will isolate the effects of the disturbance amplitude. The topography is set to

0.5.

Figure 2.1 shows two sets of streamlines, one with the disturbance and one

without the disturbance. The solid streamlines, representing the flow without the

disturbance, have larger wave activity than the dotted streamlines, which represent the

flow with the disturbance amplitude at 0.4.
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Figure 2.1: Flow with no background perturbation and flow with
background perturbation.

The reduction of wave amplitude in the presence of disturbance is referred to as

wave trapping. To further emphasize the wave trapping as a result of the disturbance,

Figure 2.2 shows the wave activity as a function of the disturbance amplitude. The plot

unequivocally shows that as the disturbance amplitude increases, the wave amplitude

decreases.
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Figure 2.2: Effects of perturbation amplitude on generated waves.

To make Figure 2.2, the wave amplitudes from the second streamline are

subtracted when the flow is undisturbed. The squared of the resulting quantities are

summed and then the square root is taken. This method takes into account the negative

as well as the positive wave amplitude with respect to the undisturbed level. If there

were no disturbance, the normalized wave amplitude would be zero. This presentation

allows an effective illustration of the wave activity as a function of the perturbation

amplitude

2.2.2 Effects of the perturbation phase on waves in stratified flow

Previous section shows that the presence of the periodic disturbance in stratified

fluid causes wave trapping. In this section, the other component of the periodic

disturbance, the phase # in equation 2.34, is investigated. Numerical simulations will

21



show that the phase can cause significant changes in the flows. In carrying out the

following numerical simulation, the disturbance phase is varied from 0 to )T/2 and its

amplitude is kept constant at 0.1. This method isolates the influence of the disturbance

phase on the stratified flow. In addition, the BVF profile for the simulation is described

by a =1; b =1/3; c = 20 ; d = 5 and the topography height is set to 0.01. This

topography is indeed very small but its resulting simulated flows will demonstrate that

the disturbance phase does have a dramatic impact on the flow.

Numerical simulation shows that the flow with the BVF described above becomes

unstable when its phase is near 0.13255 radian. 0.13255 is referred to as the critical

disturbance phase. Figure 2.2 superposes two sets of flows, one with the disturbance

phase at 0 radian and one with the phase at 0.1081 radian. The comparison brings out the

dramatic effects of the phase when it is close to the critical value. The solid streamline,

representing the flow with the phase at 0.1081 radian, shows large steepness in its waves.

In contrast, the dotted streamline, representing the flow with the phase at zero, shows

little steepness in its wave. Large steepness in the streamlines suggests that wave

breaking is about to occur. For an even more dramatic comparison, stratified flow

without the periodic disturbance to its BVF does not break until the topography height is

beyond 0.85. This is eighty-five times larger than the topography that causes wave

breaking in the flow with the disturbance phase near the critical value. This shows the

tremendous impact the perturbation phase has on the stratified fluid.
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Figure 2.3: Streamlines with perturbation phase at 0.1081radian (solid)
and 0 radian (dotted).

Figure 2.4 and 2.5 are made to summarize the relationship between the generated

wave and the disturbance phase. They show clearly that as the disturbance phase moves

closer to 0.13255 radian, wave activity increases. Looking at both figures together also

shows that the generated wave is large or unstable when the phase is between 0.1081

radian and 0.1 625radian. The author averages these two phases to obtain the critical

value of 0.13255 radian. Therefore, this value is really an approximation.
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Figure 2.5: Wave amplitude versus disturbance phase: r/2 ->13255
radian.
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Figure 2.6 and Figure 2.7 are made by taking the maximum wave amplitude

reached by the flow for each phase and plot it as a function of the phase (in an

undisturbed flow, the maximum wave amplitude reached relative to the undisturbed level

would be zero).

The existence of wave instability or resonance can also be further validated by

closely examining the flow pattern when the perturbation phase is above the critical value

and when it is below the critical value. Figure 2.5 shows the flow when the disturbance

phase is at 0.1081 radian, which is below the critical value. For this flow, the large

steepness in the wave occurs before the topography. In contrast, Figure 2.6 shows that

when the phase is larger than 0.13255 radian, large steepness in the streamline occurs

after the topography. The conclusion draws from the comparison of these two cases

suggests a resonance occurring when the disturbance phase is around 0.13255 radian.
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Figure 2.6: Flow with perturbation phase at 0.1625 radian.
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Another remark on the critical phase is that it is unique for different BVF profiles.

For example, when the stratified fluid has a unit BVF, the critical phase is 0, not at

0.13255 radian. On top of that, the critical phase does not exist for every BVF profiles.

The existence of the critical phase is on the case-by-case basis.

2.2.3 Effects of background perturbation on wave breaking

Periodic disturbance on the BVF can cause wave to 'prematurely' break, as the

previous section has shown. It can also cause wave not to break until the topography

height is larger than 0.85. Figure 2.9 gives the visual confirmation that the wave

breaking occurs when the topography is at 0.85. Figure 2.10, shows the same flow but

with a periodic disturbance. For the latter case, the wave starts breaking only when the

topography is at 1. In the simulation, the disturbance amplitude is set to 0.1 and its phase

is set to ir/2.
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Figure 2.7: Flow with uniform BVF, no perturbation and with topography
height at 0.85.
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Figure 2.8: Flow with the periodically disturbed uniform BVF at
topography of 1.
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Chapter Three

Three dimensional stratified flow

Striving to achieve a better model of the stratified fluid flow over topography, the

logical next step is to do a three-dimensional flow model. In this section, numerical

simulations will be carried out to examine the effect of the periodic disturbance for three-

dimensional flows. A non-linear three-dimensional analysis is beyond the scope of this

thesis. Section 3.1 presents the general theory of the three-dimensional small-amplitude

stratified flow. Section 3.2 discusses the results of the numerical simulations

3.1 Theory

Similar to the two dimensional case, the governing equations of the three-

dimensional case begins with the conservation of mass and momentum equations.

V - i = 0 (3.1)

u -Vp = 0 (3.2)

pii -Vp = -Vp + P (3.3)

The following streamfunction and vorticity will be used.

ii = V'T x V(D, 5 >-= V X U . (3.4)

These two relationships will help simplify calculation and make visualizing stratified

fluid flow possible. The detail of the derivation is presented in section 3 of the appendix.

The governing equation is reduced and made dimensionless below.

z + N' (z )(. +l/I ) =0 (3.5)

There are two boundary conditions, the lower boundary conditions and the radiation

condition. The lower boundary condition is expressed as
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'I(x, y, z),_q = arbitrary constant (3.6)

f is the topography and is defined as

f(x,y) - (3.7)
[1 + (x/Lx )2 + (y/L)

Equation 3.6 can also be expressed as equation 3.8 in the streamline perturbation form

with the arbitrary constant sets to zero.

V/(X, Y, z),e + f = 0 (3.8)

The radiation condition states that wave energy must propagate away from the

source. It cannot move toward the source. This condition requires the group velocity to

be positive. Group velocity is the speed at which the energy travels. The dispersion

relation of the stratified fluid in large depth is,

u(k,l, m) = k - sgn(k)sgn(m)N k2 ± l2 (3.9)
m

Using this dispersion relation, the group velocity is

sgn(k)sgn(m)Nk2 + (12
cg'Z = M2 (3.10)

m

In order for the group velocity to be positive, the following condition must be true.

km > 0 (3.11)

The solution to equation 3.5 can be obtained by using the Fourier transform. First,

equation 4.5 is transformed into the frequency domain using equation 3.12 and a solution

is obtained. Then, the solution is transformed back to the real domain.

/(x, y, z)t rnfo(k,, ze gove dkdl (3.12)

The transformned governing equation is,
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S+ m2  =0 (3.13)

m=N (3.14)
k

k and 1 are the horizontal wave numbers. The solution to the governing equation 3.13 is

ig(k,l, z)= A(k,l)17,(z)+ B(k,l)r/ 2(z) (3.15)

r7, and 172 are obtained by integrating of the following differential.

+ m 2 (z)ri(z)= 0 (3.16)
dz

r/ (0) = 1, d'71 (0) = 0 772 (0) = 0 d'2 (0)= (3.17)
dz dz

The coefficients, A and B, of equation 3.15 are found using the lower boundary

condition and the radiation condition. First step is to realize the solution far away the

topography where the BVF is constant can be represented by

#/2 = Ce'"(z) + De --'(Z.) (3.18)

Equation 3.15 must match equation 3.18 at a height when the BVF becomes constant.

This condition is expressed in the following two equations.

(k,1, Z-)= V2(k,, ) (3.19)

0/ (k.1, z. )= 82(k ,, z) (3.20)az az

Equations 3.19 and 3.20 say that the wave displacement and wave speed must be matched

between the two solutions. Combining equations 3.8, 3.11, 3.15, and 3.18 together with

equation 3.19 and 3.20 will setup a relationship between the four coefficients (A , B, C,

and D). First of all, coefficient D is set to zero because of the radiation condition

requiring that all wave number m and k to have the same sign. Since the vertical wave
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number associated with the coefficient D is negative in equation 4.18 while wave

number k is positive, D must be zero to satisfy the radiation condition. The lower

boundary condition gives,

A(k,l)= -f (3.21)

After finding A and D, coefficient B is determined to be,

B(k,l)- q1z - im.71 f (3.22)
72z - im.0 2 z=z.

Substituting equation 3.21 and 3.22 into equation 3.15 completes the solution of the

governing equation, equation 3.5, in the frequency domain. Then, it is transformed back

to the real domain.

Equation 3.14 presents a problem for the numerical simulation because it is not

defined when k equals to zero. The problem can be solved in a couple of ways. The

most efficient method is to set the solution of the governing equation equal to zero when

k equals to zero. This method allows the implementation of the traditional FFT method

in transforming the solution back to the real domain.
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3.2 Discussion

In this section, numerical simulations are performed to investigate the effect of

the periodic disturbance on the three-dimensional stratified flow and its results are

discussed.

3.2.1 Flow with uniform BVF.

Figure 3.1 shows a three-dimensional stratified flow with a unit BVF over

topography. The flow consists of fluid going over the top and around the topography.

Flow pattern has been studied by Durran (1992). The flow compares well with the flow

Smith (1980) simulated. A nice three-dimensional plot of his simulated flow can be

found in Baines (1995).

N .
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Figure 3.1: 3D uniform stratified flow.
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Figure 3.2 shows two sets of streamlines projected onto the plane perpendicular to

the y-axis slicing through the center of the flow in figure 3.1. It compares the wave

activity for the flow going over a round topography and the flow going over a large

spanwise topography. The comparison points out that wave activity is much smaller for

flow going over the round topography.
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8 =- - -- - -~ ~ - -

7 - - -- - - - - - - - - - - - - - - - - - - - - - -

6 - - - -- -- - - - - - - - - -

N 5-

3 - --- ----

0-
-3 -2 -1 0 1 2 3

x

Figure 3.2: Comparison of flows over round topography and 1/16
topography.

The solid line represents fluid flowing over topography with the aspect ratio of 1 to 16.

The length of the topography in the spanwise direction is 16 times longer than its length

in the flow direction. The dotted line represents flow over round topography. The

topography height in both cases is set to 0.5. The large difference observed between the
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two flows can be attributed to the shape of the topography. The round topography

naturally has less area of protrusion than the rectangular topography. Therefore, less

fluid gets excited in the former case.
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3.2.2 Effects of periodic disturbance in BVF on three-dimensional stratified flow

Figure 3.3 shows stratified flow with periodically perturbed uniform BVF. In the

simulation, the disturbance amplitude is set to 0.2 and its phase equals to z/2.

1.4,

1.3,

0.2-1. ..- --.

N - -

0.8-. -

0.7 >. .. ..
3

-22

-2 -3 -y x

Figure 3.3: Flow with periodically perturbed uniform BVF.

Figure 3.3 shows that there are distinct differences for the flow with the perturbation and

for the flow without the perturbation. In the case with the disturbance, there are

depressions to the right and left in the downstream region of the flow. However, the main

flow component remains the similar in both flows.
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Figure 3.4: Comparison between flow with perturbation and with
perturbation for flow over round topography.

Figure 3.4 shows stratified flows with the disturbance and without the disturbance

over a round topography. The figure shows the streamlines on the plane cutting through

the centerline. The solid line represents the flow without the disturbance to its BVF. The

dotted line represents flows with the disturbance. From looking at the plot, both sets of

flows look almost alike. This suggests that the periodic disturbance has little impact on

the flow when the topography is round.
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Figure 3.5: Comparison between flow with perturbation (dotted lines) and
without perturbation (solid lines) for flow over 1/16 topography.

Figure 3.5 shows two sets of stratified fluid flow over large spanwise mountain.

The solid streamlines represent the flow without any disturbance to its BVF. The dotted

streamlines represent the flow with the disturbance to its BVF. The flow with the

disturbance shows that its wave activity decreases as it propagates further away from the

topography. In contrast, the wave activity for the flow without the disturbance does not

change.

The observable difference between the two sets of flow shows that periodic

disturbance has more influence on flow going over a large spanwise topography than on

flow going over a round topography.
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3.2.3 Flow with unstable phase

Numerical results in section 2.2.3 show the existence of a critical phase in two-

dimensional stratified flow. At critical phase or phase close to it, the flow becomes

unstable. This section does an investigation on the effect of the critical phase on the

three-dimensional stratified flow. Previously in two-dimensional analysis, the flow with

the following BVF profile was unstable when the perturbation phase is close to 0.13255

radian.

a=1; b=1/3; c=20; d=5

In the investigation of the critical phase in the three-dimensional flow, the same BVF

profile described above is used and the critical phase remains the same. Numerical

simulation is performed on two cases. In the first case, the flow is simulated going over a

round topography and the resulting streamlines are plotted in Figure 3.6. The solid

streamlines represent the flow with the disturbance phase equal to ir/2 radian. The

dotted streamlines represent the flow with the disturbance phase at 0.13255 radian. In the

second case, the flow is simulated going over a large spanwise topography and it is

plotted in Figure 3.7. Like in the first case, the solid streamlines represent the flow with

the disturbance phase at r/2 radian and the dotted streamlines represent the flow with the

disturbance phase at 0.13255 radian.
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Figure 3.6: Comparison between the flow with disturbance phase at ;r/2
radian and phase at 0.13255radian over round topography.
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Figure 3.7: Comparison between the flow with disturbance phase at Zf/
radian and phase at 0.13255radian over 1/16 topography.
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As expected, the periodic disturbance does not have much influence on the flow going

over a round topography. However, when the flow is going over a large spanwise

topography, Figure 3.7 shows that the disturbance is a big factor and, hence, the critical

phase has large effect.

The last comment in this section is that the two dimensional analysis predicted

that the stratified flow would have become unstable before the disturbance phase reaches

the critical value. However, the three-dimensional analysis shows that the flow remains

stable and when it flows over a large spanwise topography, it showes that wave activity

increases significantly.
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Chapter Four

Analysis of data from the Air Force

A set of data on airflow over topography was received from the Air Force. This

raw data will be analyzed for the purpose of exploring the effect of the tropopause on the

induced gravity waves. The data describes airflow over mountains in the region from

latitude 31.5N to 36N and longitude 104.5W to 110W. The terrain contour plot is given

in Figure A.2. The mountain range in this region has a large transverse dimension in the

north-south direction. If the air flows across the mountain in a perpendicular fashion, the

flow can be modeled as two-dimensional.

The numerical simulation will use the data as a guide. The important variables

from the data are the terrain contour, the tropopause height, the wind velocity profiles,

and the BVF profile. These quantities are plotted in the appendix.

The x-direction and y-direction wind speed varied vertically from 0 m/s to upward

of 30 m/s and from -5 m/s to 10 m/s, respectively; x-direction refers to the longitudinal

direction and y-direction refers to the latitudinal direction. This condition approximates a

two-dimensional flow because one component of the wind velocity is relatively small and

the mountain range is long in the spanwise direction. In addition, the wind fluctuates at

low altitude while at higher altitude outside the boundary layer, the velocity has a more

uniform profile. At an even higher altitude, the wind speed is reduced back to the

undisturbed value. Figure A. 1 shows a typical looking velocity profile just described.

Figure A.2 shows the observed tropopause height, ranging from around 10km to

upward of 15km. This quantity will be important later. The BVF (Brunt-Vaisala

frequency) profiles at different locations of the terrain are plotted in Figures A.3, A.4 A.5
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and A.6. These locations are selected to emphasize the wave activity in relation to the

tropopause height. The square of the BVF profile is shown in the plots. It has a typical

value of 0.0001 to 0.0005 [1/secA2].

It should be noted that the BVF and velocity profiles include both the 'ambient'

value and perturbations due to the induced gravity waves. Therefore, any increase in

wave activity will be apparent in both of these profiles. The velocity profiles are plotted

together with the BVF profiles in Figures A.3, A.4, A.5, and A.6.
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4.1 Numerical simulation

The simulated flow will be modeled, within the limitations of the theory, based on

the actual flow described in the last section. In the simulation, the incoming flow will

have a uniform profile with a value characteristic of the actual wind velocity profile.

Figure A. 1 shows a typical wind velocity profile.

Also, the simulation will use a model of a typical looking BVF profile. A typical

BVF profile approximately consists of two layers of constant BVF. The lower layer

usually has a smaller BVF than the upper layer. A hyperbolic tangent is used to represent

this BVF profile.

In addition to the assumptions mentioned above, the simulation assumes the flow

is inviscid, incompressible, and steady. Also, the hydrostatic approximation and the

Boussinesq approximation are made.

The simulation will use the following non-linear governing equation for the

streamfunction perturbation y :

Vzz +N 2 (y+z)v =0,

where N is the BVF profile. The two boundary conditions are the lower boundary and

the radiation condition. The lower boundary states that the flow has to conform to the

topography. The radiation condition states that the wave energy must propagate away

from the source.

The values used in the simulation are the following. The incoming velocity has a

magnitude of about 30m/s. The BVF has one value in the lower layer and another in the

upper layer: 0.01 [1/sec] and 0.025 [1/sec], respectively. As mentioned earlier, the BVF
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profile is described by the hyperbolic tangent function. Also the peak mountain height

used for the simulation is 1800m, consistent with the terrain shown in Figure A.2.

In previous works, the tropopause height was found to be an influencing factor:

the induced wave disturbance becomes more active at certain tropopause heights. This is

the motivation for the present numerical simulation and comparison of the simulated

results with the data. To study the effects of the tropopause height, numerical simulation

is performed by varying the location of the tropopause and observing how the wave

activity changes.
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Figure 4.1: Simulated streamlines for two different tropopause heights.

Figure 4.1 shows streamlines corresponding to two different tropopause heights.

Note that the wave activity is a function of the tropopause height as previously

discovered. The solid streamline represents the flow with the tropopause height at

10.3km. The dotted streamline represents the flow at a lower tropopause height. From
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looking at the plots, it is clear that the wave is more active when the tropopause height is

at 10.3km. Figure 4.2 shows a more complete picture of the wave activity as a function

of the tropopause height. Figure 4.2 is based on the second streamline in Figure 4.1.

Specifically, a measure of wave perturbation is obtained by summing the squares of

vertical displacement of this streamline at the computational grid points, and taking the

square root; if there were no disturbance, this 'average' vertical streamline displacement

would be zero. Flows with the tropopause height below 10km and above 15km have

reduced wave activity. However, when the tropopause is between 10.5km to 14km, the

simulation shows wave breaking and large wave activity (the missing section of the curve

in Figure 4.2 is when the simulation predicts wave breaking).
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Figure 4.2: 'Average' vertical displacement of streamline at height 6km
versus tropopause height.

Breaking occurs when the tropopause height is in the range of 10.5-13.5kmn.
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Figure 4.3 shows a similar plot based on the streamline at 21 km. The results are

very similar to those in Figure 4.2.

2 .5 1 1 1 1 1 1 1 ---
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Figure 4.3: 'Average' vertical displacement
versus tropopause height.

of streamline at height 21km

2 Breaking occurs when the tropopause height is in the range of 10.5-13.5km.
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4.2 Discussion

The numerical simulation suggests that tropopause heights between 10km to

14km can have a big influence on the generated wave. Furthermore, these tropopause

heights are realizable. Figures A.5 and A.6 refer to the airflow with the tropopause

around 10km to 11km. Figures A.3 and A.4 refer to the airflow with the tropopause

around 15km to 16km. A closer look at the actual flow data shows that there is a

significant wave activity when the tropopause height is between 10km to 11km. When

the tropopause height reaches 15km to 16km, the data shows that the wave amplitude

tapers down significantly. Specifically in Figure 4.4, we plot the disturbance amplitude

of the BVF as a function of the tropopause height (this plot was constructed in a similar

fashion to those in Figures 4.2 and 4.3 earlier, by considering deviations of the BVF from

a 'mean' profile). Note that the wave activity is significantly more pronounced when the

tropopause height is at 10-11km than when it is at 15-16km.
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Figure 4.4: Disturbance amplitude of BVF from the data versus
tropopause height.
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The effects of the tropopause height on wave activity can also be seen from

looking at the wind-velocity profiles. These profiles are plotted alongside the BVF

profiles in Figures A.3, A.4, A.5, and A.6. When the tropopause height is such that it

causes significant disturbances in BVF, the velocity profile also shows significant

fluctuation. This is apparent in Figures A.5 and A.6.

The results from the numerical simulation in the previous section can help us to

understand why at tropopause heights 15-16 km one should expect the generated

mountain wave activity to be reduced. The incoming velocity in the simulation was

assumed to be 30m/s and a nominal BVF of 0.01[1/sec] was used. For these values, the

simulation shows that the tropopause height is tuned in the range 10.5-14km, as seen

earlier. If the incoming velocity is taken as 10 m/s, on the other hand, the simulation

suggests that the tuned tropopause height is 3km-5 km. In the actual flow, there is no

tropopause at such low height and no large disturbances are found in the region where the

incoming velocity is around 1 Om/s. Likewise, if the incoming velocity is increased to 45

m/s, the simulation predicts that the tuned tropopause height is 16km-22km. In the actual

flow data, the wind speed never reached 45m/s so no large wave activity is to be expected

when the tropopause height is above 16km or so. For the tropopause at around 10.5km to

be tuned, the simulation suggests that the incoming velocity has to be 25m/s - 30m/s. In

the actual flow, the incoming velocity indeed reaches 30 m/s between the heights of 10 to

30km (see figure A. 1). This could explain why under those conditions, wave activity

increases noticeably.

48



REFERENCES

BAINES, P. G. 1995. Topographic effects in stratifiedflows. Cambridge University Press,
New York

DAVIS, K. 1999. Flow of Nonuniformly Stratified fluid of Large Depth over
Topography. S.M. Thesis, MIT..

DURRAN, D.R. 1992. Two-Layer solutions to Long's equation for vertically propagating
mountain waves: how good is linear theory? Q.J.R. Meteorol. Soc. 118, 415.

KANTZIOS, Y. D. & AKYLAS, T. R. An asymptotic theory of nonlinear stratified flow of
large depth over topography. The Royal Society. 440, 639-653.

KLEMP, J. B. & LILLY, D. K. 1975. The dynamics of wave-induced downslope winds. J.
Atmos. Sci. 32, 320.

PHILLIPS, 0. M. 1968. The interaction trapping of internal gravity waves. J. Fluid Mech.
34, 407-416.

SMITH R. B. 1980. Linear theory of stratified hydrostatic flow past an isolated mountain.
Tellus. 32, 348-364.

49



APPENDIX

A. 1 Two-dimensional stratified flow governing equation

The governing equations for the two-dimensional stratified fluid flow are

uX + wZ = 0 (A.l.1)

up, + wp' = 0 (A.l.2)

p(uu, + wu. ) = -P, (A.l.3)

p(uw, + ww.')= -pz - pg (A.1.4)

Using the following dimensionless variables,

x=L~, z= ,u=U ,W=
No LN I No

the dimensionless governing equations are

ux + wZ = 0 (A.1.5)

up, + wp' = 0 (A.1.6)

p3p(uux + wuz)= -px (A.l.7)

/3p(uw + wwz )= -p (P + p. (A.1.8 )

The 6 and p terms are defined below.

p = 9 , P =O " Al9)
g N0 L

Using the following streamfunction,

u = TZ , W = -Tx (A.1. 10)

the governing equations are transformed to

Tzp - TrPZ =0 (A.l.11)

&(T, T z - Tx T )= -Px (A.l.12)

#6p(- T, T_, + T, Tx, )= --P -2(p + p). (A.l.13)

Eliminating the pressure term in equation A. 1.12 and A. 1.13 and combine them, the
resulting equation becomes
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+pP X (T zxx - Tx Txz) + p2pT x xT,) Px = 0

This equation is simplified by using the Jacobian defined below.

J{A, B}= AxBz - AZB

The resulting equation is

PjjVzz + p2TXX, T+ 2 T-J z + 1(T 2

jpf 2 z

The dimensionless BVF is defined below.

N 2()e p
18P

Equation A. 1. 16 is further simplified to

J Tzz +P 2 wxx -N2(4 z +pU2W ,T 2 =0
.. )2

Integrating it gives

Tzz +p2T -N2(V Iz +pU2 T2=G(W)
-+ 2(T2 z

The constant of integration 'G' is

G('Y)= -N 2( +
2)

The boundary conditions used to obtain A. 1.20 are no upstream influence and the fluid
density is a function of the streamline. After some simple manipulations, the resulting
governing equation is

2(TX'{ 2 +P 2'T -1)=0.+N 2 ()z - T)+ p 2 T+PN
2
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(A.l.14)

(A.l.15)

(A.l.16)

(A.1.17)

(A.1.18)

(A.1.19)

(A.1.20)

+2 p2, T = 0



By using hydrostatic and Bossinesq approximations, the 8 and p drop out and the
governing equation reduces to

Tzz + N2(T)(T - z) = 0 (A. 1.2 1)

T = V/ + z is the streamfunction defined in equation A. 1.10. V/ is the perturbation

streamfunction. In term of the Vf , the governing equation is

Vz +N 2(y + z)/ = 0 (A.1.22)
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A.2 Multiple scale analysis for linear flow with periodic disturbance to its
BVF

In section 2.1.3, the method of multiple scales was applied on small-amplitude

stratified flow to investigate the resonance condition. This section provides the detail.

The analysis begins by looking at the small-amplitude governing equation with the

following BVF.

N = N, + A, sin(T +#) (A.2.1)

The second term of the above expression is the periodic disturbance. For the case

when T equals 0, N remains constant, N,. The following analysis examines the case

when T is not zero.

The small-amplitude governing equation with the condition described above is

7z + [No + A, sin(Tz + 4 q7 = 0 . (A.2.2)

The magnitude of A, is of the order of s. Expanding the BVF term gives

+N +2ANo sin(Tz +)+A sin z+#) = 0. (A.2.3)

The solution to the equation A.2.3 is the following equation, neglecting the higher order

terms.

7 = 7o + 77 +....... (A.2.4)

The zero order case is described by the following governing equation.

0(1):

77 + N 2 = 0 (A.2.5)
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qO (0)=1 (A.2.6)

77Z (0)= 0 (A.2.7)

o = AeiNaz +Be-iNz (A.2.8)

A + B =1 (A.2.9)

iNOA - iNB = 0 (A.2.10)

(A.2.l 1)
2

iN z -iNmz

77 2 = cos Nz (A.2.12)

Equation A.2.12 is the solution to equation A.2.5. The analysis for the first order is given

below.

0(e):

+ Ni , = -2A, sin(Tz + #)77 = -2A No sin(Tz +#1)cos Noz (A.2.13)

/i9zz + N 2 1 = -2AN [sin(Tz + # + N, z)+ sin(Tz + - Noz)] (A.2.14)

q1 = AeiNz + Be-iNz +Csin(Tz+#+Noz)+Dsin(Tz +# -Noz) (A.2.15)

Equation A.2.15 is the solution to the differential equation A.2.14. The coefficients are

found by applying the boundary conditions. The particular solution is found by

substituting equation A.2.15 back into equation A.2.14. This will determine the

coefficient of C and D. The following is the steps used in obtaining the coefficients.

- (T + NO )2 C sin(Tz + # + NOz)- (T - NO) 2 Dsin(Tz + - Noz)

+CN sin(Tz + # + Nz)+ DN2 sin(Tz + # - Noz) (A.2.16)
= -2ANO sin(Tz + # + Noz)- 2ANO sin(Tz + # - Noz)

The two resulting simultaneous equations are

54



-(T + N,) 2 C + CN =-2N A,

-(T - N)2 D+DN2 =-2N A

(A.2.17)

(A.2.18)

Solving equation A.2.17 and A.2.18 for C and D gives

C = 2N A
(T + No )2 -N2

D = 2NOA
(T -- No )2 -N2

(A.2.19)

(A.2.20)

Then equation A.2.15 becomes

771 = AeiNz + Be-N +-2NOAP sin(Tz +# + No z)
(T + N )2 -N2

+ 2NOA" sin(Tz+#-Noz)
(T- No)2 -N 2

(A.2.21)

A and B will be determined next by using the following two boundary conditions.

71, (0)= 0( (A.2.22)

(A.2.23)

The resulting equations from applying the boundary conditions are

O=A+B+ 2[( 2 + ( 2N ]5f sin#
(T + No )2 -- N' (T - No )2 -N2 0

2AP No(T+NO) cos±
O=iN0A-iN0 B+ (TNo 2 Ncos+

(T + No)2 - N 2

Solving equation A.2.24 and A.2.25 determines the coefficients A and B.

BF - iE

21

- iE - F
A = iFF

21

(A.2.24)

2A N(T -NO)

(T -N ) -N os
(A.2.25)

(A.2.26)

(A.2.27)
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The variable E and F are defined below.

E = _ _ + sin # (A.2.28)
(T + No )2 -N 2 (T - No)2 - Ni _

F = O(T ) + Cos # (A.2.29)
(T + NO )2 - NO (T -No )2 - N] _

Finally, substituting equations A.2.26 and A.2.27 into equation A.2.21 gives the solution

to the order e differential equation.

iE+F= - ei Wz +F-E iNoz + 2NAP sin(Tz + # + Noz)
21 2i (T + N )2 - N

+ 2NOAP 2 sin(Tz + 0 - Noz) (A.2.30)
(T -N) 2 -N2

The solution to the equation A.2.2 is the sum of equation A.2.12 and equation A.2.30.
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A.3 Three-dimensional stratified fluid flow governing equation

Like in the two dimensional flow, the governing equations of the three-

dimensional case begins with the conservation of mass and momentum equation.

V - i = 0 (A.3.1)

u -Vp = 0 (A.3.2)

pii -Vp = -VpP + p (A.3.3)

The first step in obtaining the solution is to introduce the streamfunction and vorticity,

defined below.

a = VT x VD , & = V x ii. (A.3.4)

Beside the incompressible and inviscid assumptions used, this model also

assumes there is no upstream influence. This means that the density is only a function of

the height. The incoming velocity also is taken to have a uniform profile. They are

expressed as

u = U 0i, p = pO(z) (A.3.5)

Equation A.3.5, in terms of streamfunction, is

=Uz , D= y (A.3.6)

p = P (T(A.3.7).
UO

Using streamfunction and vorticity with some manipulations, the conservation of

momentum equation is expressed as

p(&xt)= -a V 2 + p-z V p |2 + z (A.3.8)

Vorticity theorem states that
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u-VT =0 (

Using this fact, the left hand side of equation A.3.8 is transformed to,

& x i = (Cu -VD)VT (A.3.10)

Applying the boundary conditions stated in equations A.3.6 and A.3.7, the conservation

of momentum equation further simplify to

V(D -_ 1 dp I u2
p dT _2 0

12

2 Ug (T-
UO

U z)]

The following dimensionless numbers are used to make the governing equation simpler.

U-
x=L~, y=L,z=-~,

N0

u=UJI, v =U 0
u2

W= ~W, p=pp,>
LNO

P= gU~pI ,2 S' , = L
N_ N_

After using the streamfunction and the dimensionless number, the governing equations

are transformed into

&H -VD +N2(TXT -0z)=0

&H VT=0

&H =

(A.3.l 1)

(A.3.12)

(A.3.13)
Dv au Ov
az' az Iax

In terms of the streamline perturbation (T = V/ + z, (D = $ + y ), equations A.3.1I and

A.3.12 become

z, + N 2 (z) + #yz = 0

#xx +#,, + V/Y = 0

(A.3.14)

(A.3.15)

Combining the previous two equations, the result is a three-dimensional stratified flow

governing equation, in a dimensionless form.

58

(A.3.9)

o o



V', + N2(zxy, + Y) = 0 (A.3.16)

A.4 Data from the Air Force

Each unit of height of the plots in this appendix represents 500m. All the profiles
are plotted between Okm and 30km. The profile plots are figure A. 1, A.3, A.4, A.5, and
A.6. The units of these plots are as followed: the velocity is in [m/s] and the BVF2 is in
[1/secA2].

a BR B !W OR S4~

!qv
IR

.04

la

44

±

W B St !a U a O l

Figure A. 1: Velocity profiles in the longitudinal (top) and latitudinal
direction.
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Figure A.3: BVF profile and x-velocity profile with tropopause at
15275km.
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Figure A.4: BVF profile and x-velocity profiles with tropopause at
15579km.
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Figure A.5: BVF profile and x-velocity profiles with tropopause at
10635km.
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Figure A.6: BVF profile and x-velocity profiles with tropopause at
10442km.
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