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Abstract

Four finite element procedures for the analysis of high Reynolds number incom-
pressible fluid flows are presented. The procedures are developed in detail for two-
dimensional analysis and are based on the use of the mixed 9-node element, opti-
mal for incompressible analysis (the 9/3 and 9/4-c elements). In the first procedure
the Navier-Stokes equations are discretized using the local analytic solution of the
advection-diffusion equation, while the incompressibility constraint (the continuity
equation) is enforced in a weighted residual fashion. The other three procedures are
based on Petrov-Galerkin formulations for the Navier-Stokes equations. These pro-
cedures differ from each other in the way the test functions are established. Here we
consider two approaches. In the first approach the test functions are endowed with
properties of the local analytic solution of the advection-diffusion equation. The test
functions respond to the flow conditions and give more weight to upstream nodes,
the amount of weighting and upstream direction being completely determined by the
local analytic properties. In the second approach the test functions are obtained by
taking the tensor product of exponential functions along the element edge- and mid-
lines. For low Reynolds number these test functions collapse to the usual biquadratic
functions, and as the Reynolds number increases they automatically skew in the up-
stream direction to provide the necessary stability. An important feature of all the
procedures considered here is that no artificial constants or tunable parameters need
to be used or set. The capability of the formulations is demonstrated in the solution
of several test problems.
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Chapter 1

Introduction

1.1 Background

Computational fluid dynamics (CFD) is beginning to play a major role in the analysis

and design of engineering systems. In some CFD circles the finite element method has

not yet achieved the same level of acceptance as other numerical solution schemes,

such as finite difference and control volume based methods. This is probably partly

due to the fact that the finite element method originated in the field of solid mechanics.

Indeed, it is well known that finite element procedures are optimal for elliptic problems

and can be applied for arbitrarily complex geometries.

Much effort has been directed towards the development of effective and efficient

finite element procedures for the solution of fluid flow problems. However, to date,

most fluid flow analyses are being performed using finite difference methods with

body-fitted coordinate transformations and control volume methods, the latter be-

ing a low-order weighted residual method for approximating the solution via local

conservation. While it is recognized that finite element procedures have a strong

mathematical basis, it has also been established that they are not computationally

as efficient. However, largely low-order finite elements have been used.

In the finite element solution of incompressible fluid flows, using the Bubnov-

Galerkin formulation in which the test and trial functions are the same, there are two

main sources of potential numerical instabilities. The first is due to inappropriate
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discretization of the convection term. The Bubnov-Galerkin formulation treats the

convection term symmetrically, which can result in spurious node-to-node oscillations

if the discretization scale is too large to resolve subgrid phenomena, in particular

boundary layers. Such oscillations become significant as the Reynolds number in-

creases. They can be suppressed by refining the mesh, but the necessary degree of

refinement is often prohibitive. Also, in many cases, it may not be necessary to resolve

all boundary layers present.

Various finite element procedures have been proposed to eliminate this numerical

instability, starting in the 1970s when Christie et al. [1] proposed a stable scheme

for the one-dimensional, steady-state advection-diffusion equation without source

terms. The stabilization was controlled to give the analytic nodal solution for the one-

dimensional case. The scheme was based on the Petrov-Galerkin formulation, in which

the trial and test functions are different and the test functions would give more weight

to upstream nodes. Shortly after, Heinrich et al. [2] proposed a two-dimensional

scheme, which was a straightforward extension of Christie's earlier work. The scheme

applied one-dimensional stabilization along the edges of the two-dimensional element.

However, several difficulties were encountered with this generalization of the scheme

to multi-dimensions. These were attributed to cross-wind diffusion, which manifests

itself when the flow is skewed to the mesh lines. Moreover, when the scheme was ap-

plied to more complicated situations (transient problems and/or when source terms

were present) it was found to be far from optimal, and in many instances the Bubnov-

Galerkin formulation would give more accurate results [3].

In the 1980s Brooks and Hughes [3] introduced the SUPG (Streamline Upwind

Petrov Galerkin) scheme for piecewise linear elements, which reduced the oscillations

by adding an artificial diffusion term in the streamline direction. Later, Hughes et

al. [4] generalized the formulation by adding the least-squares form of residuals to the

Galerkin formulation. The Galerkin/Least-Squares (GLS) formulation coincides with

the SUPG scheme for the hyperbolic case. Test results using the SUPG, GLS, and a

higher order artificial diffusion method embedded in parabolic elements are given by

Hendriana and Bathe [5], where shortcomings of these methods are demonstrated.

11



The amount of the artificial diffusion introduced in the streamline direction in the

SUPG scheme is tuned by a parameter r, but a suitable argument to guide the proper

choice of r was still lacking. Brezzi et al. [6, 7] translated the problem of choosing the

optimal T to that of finding the volume of a suitable bubble function in the approach

called the residual-free bubbles method. The bubble function is obtained by solving

a boundary value problem with homogeneous essential boundary conditions on each

element.

The second source of numerical instability is due to inappropriate enforcement of

the incompressibility condition, or in other words an inappropriate combination of

interpolation functions for the velocity and pressure. This instability does not arise

if the combination satisfies the inf-sup condition [8], and indeed optimal elements are

available. Considering two-dimensional flow, the mixed-interpolated 9-node velocity-

based elements with either a linear discontinuous pressure interpolation (the 9/3

element) or a bilinear pressure interpolation (the 9/4-c element) are optimal [91, and

hence very attractive candidates for a solution procedure.

1.2 Present work

While much research has been conducted to develop stable finite element schemes for

high Reynolds number flow, an evaluation of available schemes has shown that major

advances are still needed in the field [5]. The objective of this work is to present new

procedures to treat high Reynolds number incompressible flow. These procedures are

described in detail and evaluated for the case of two-dimensional flow.

We use elements that are optimal in performance regarding the incompressibility

constraint - (the 9/3 and 9/4-c elements) - and concentrate on the first source of

numerical instability. The first proposed formulation uses the local analytic solu-

tion of the two-dimensional advection-diffusion equation to suppress this instability.

The procedure uses the local analytic solution directly to discretize the momentum

equations, while the incompressibility constraint (the continuity equation) is enforced

using the standard Galerkin approach.

12



The other three formulations can be classified as Petrov-Galerkin formulations, in

which the test functions are different from the trial functions and the test functions

give more weight to upstream nodes. In the first two of the three Petrov-Galerkin

formulations, the test functions are endowed with properties from the local analytic

solution of the advection-diffusion equation. The enhanced test functions inherit the

ability to respond to the flow conditions. In the case of pure diffusion the test function

will be symmetric, giving equal weight to the surrounding nodes. If convection is

present the test function will skew as to give more weight to upstream nodes, the

upstream direction and amount of weight given to upstream nodes being determined

completely by the local analytic properties. Cross-wind diffusion does not seem to be

a problem because the test functions inherit the ability to automatically respond to

any skewed velocity vector.

In the last of the three Petrov-Galerkin formulations the test functions are estab-

lished by taking the tensor product of exponential functions that respond to the flow

conditions along the edge- and mid-lines of the element. For low Reynolds number

these test functions conveniently collapse to the usual biquadratic functions, and as

the Reynolds number increases they automatically skew in the upstream direction to

provide the necessary stability. Hence, this solutions scheme is a simple and natural

extension of a procedure known to be optimal for low Reynolds number flow solutions.

An important and salient feature of all the procedures considered here is that no

artificial constants or tunable parameters need to be used or set. The schemes result in

consistent formulations and we demonstrate their performance by numerically solving

several test problems.

The thesis is organized as follows. In Chapter 2, we derive the governing equations

for incompressible fluid flow using a continuum hypothesis and discuss their behavior

in the limiting cases in terms of the Reynolds number. We quote results regarding

the self-consistency of the deterministic equations in terms of the Reynolds num-

ber to establish a validity domain where we expect the stabilized numerical schemes

to work. We then derive the variational form of the governing equations and re-

view some classic mathematical work on existence and uniqueness of weak solutions.

13



In Chapter 3, we present local analytic procedures as means to develop numerical

schemes for high Reynolds number fluid flows and give details of four discretization

schemes based on such procedures. In Chapter 4, solutions of several test problems

are shown to demonstrate the capabilities of the proposed schemes. We compare our

results with available/benchmark solutions. Finally in Chapter 5, conclusions and

recommendations for future research are given.
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Chapter 2

Governing equations

2.1 Introduction

In this chapter we derive the incompressible Navier-Stokes equations based on the

conservation of mass and Newton's second law. In doing so, we assume that the

volume of each fluid particle is infinitely small compared to the whole volume occupied

by the fluid. This assumption forms the basis of the continuum hypothesis. Under

this hypothesis we consider the fluid particle to be a material point and the density

(and other properties) of the fluid to be continuous functions of space and time. We

present the dimensionless form of the equations and comment on their high Reynolds

number behavior. We then formally state the initial, boundary-value problem of

the incompressible Navier-Stokes equations and quote results regarding the validity

domain of the continuum hypothesis in terms of the Reynolds number. We develop

the variational form of the equations, which we will use as a starting point for the

finite element discretization using the proposed numerical schemes, and discuss the

existence and uniqueness of weak solutions.

To formulate the conservation laws we identify a cluster of molecules contained

in a control volume. The control volume always consists of the same fluid particles

(material points) and its volume is therefore a material volume. The material volume

is deformed in time and translated according to the local velocity u (x, t) of the flow.

We denote by Q(t) the volume that is occupied by the cluster of molecules at time t.

15



Assuming a continuum, we consider an arbitrary function f (x, t) to be a continuous

function of position. The rate of change of the material integrals are conveniently

evaluated by means of the Reynolds transport theorem:

D [f
- f (x, t) dQ = + u Vf + f (V -u) dQDt at

p2(t)

= J + V- (fu) dQ (2.1)

If f (x, t) is a tensor field of any degree, which together with its partial derivatives is

continuous in , then the Gauss divergence theorem holds and

V - (fu) dQ = fu - ndF

Q r

where F is the directional surface bounding Q and n is the outwardly positive unit

normal to this surface.

Equation 2.1 relates the rate of change of the material volume integral to the rate of

change of the quantity f (x, t) integrated over a fixed volume Q, which coincides with

the varying volume Q(t) at time t, and to the flux of the quantity f (x, t) through the

bounding surfaces. Physically, it relates the total rate of change of the field quantity

f (x, t) integrated over a control volume Q to its time rate of change within the control

volume and to its net rate of flux through the control surface.

2.2 Navier-Stokes equations for incompressible flow

The Navier-Stokes equations are based on the conservation of mass and on Newton's

second law. In addition, the more specific assumption of a Newtonian fluid is adopted,

which is justified in many cases of hydrodynamic flows.
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2.2.1 Conservation of Mass

Let p (x, t) denote the mass density. Then we can write the mass as the integral of

the density over the material volume, which must remain constant in time

D Ip (x, t) dQ = 0 (2.2)
Dt

Q(t)

Making use of (2.1) we change the conservation law to the form

J + V - (pu) dQ = 0 (2.3)

This equation holds for every volume that could be occupied by the fluid, that is,

for arbitrary choice of Q. We can therefore shrink the integration region to a point

and conclude that the continuous integrand must itself vanish at every x. Thus we

are led to the differential form of the conservation of mass

op+ V - (pu) =0 (2.4)at

If we use the material derivative we obtain

D +p (V -u) =0 (2.5)

Furthermore, if
Dp _Op-- = + u -Vp = 0 (2.6)
Dt at

holds, then the density of a single material particle does not vary during its motion.

This leads to the incompressibility condition

V - u = 0 (2.7)

If (2.6) is satisfied, the continuity equation takes on the simpler form (2.7) where no

derivatives with respect to time appears, but which nevertheless holds for unsteady

17



flows.

Note that equation (2.3) can also be written as

] pdQ = - pu -ndI7 (2.8)

a r

which we physically interpret as follows: the rate of change of the mass in the control

volume is equal to the difference between the mass entering and leaving through the

surface of the control volume per unit time. This very obvious interpretation often

serves as a starting point for the explanation of mass conservation. If &p/Ot = 0, the

integral form of the continuity equation reads:

Spu -n dF = 0 (2.9)
r

i.e., just as much mass enters as leaves the control volume per unit time.

2.2.2 Balance of momentum

In an inertial frame the rate of change of the momentum of the body is balanced by

the force applied on this body:

DJ pud p= pfdQ + f -ndF (2.10)

Q(t) Q(t) r(t)

where f is an external volume force density and a is a stress tensor that reflects the

influence of the adjacent fluid on a given fluid particle. The matrix representation of

the stress tensor o is

T11 T12 713

T21 T22 723

T31 T32 T33J
where the main diagonal elements are normal stresses and the off-diagonal elements

are shearing stresses. Furthermore, the balance of angular momentum in an inertial

reference frame shows that the stress tensor is symmetric, Tij = Tji.

18



Since u and Du/Dt are continuous, the differentiation can be brought "inside"

the integral, so that the momentum balance now becomes

f pDu dQ = pf +V -o dQ (2.12)
Dt f

where we have made explicit use of the conservation of mass and the Gauss divergence

theorem.

Because of the assumed continuity of the integrand and the arbitrary domain of

integration, the above is equivalent to the differential form of the balance of momen-

tum
Du

pD p f +V (2.13)Dt

which is know as Cauchy's first law of motion. Cauchy's law of motion holds for every

continuum, so it holds for every fluid, whatever its particular material properties are.

Using the constitutive equation, that is, the relationship between the stress tensor and

the motion, Cauchy's equation of motion changes to a specific equation of motion for

the material under observation. The most simple constitutive relation for the stress

tensor of a viscous fluid is a linear relationship between the stress tensor o and the

rate of deformation tensor D

a = (-p + A V - u) I+ 2pD (2.14)

where p is the pressure, A and /a are macroscopic viscosity parameters, and

D = I [(Vu) + (Vu)T] (2.15)

By substituting (2.14) and (2.15) into (2.13), we obtain the Navier-Stokes equa-

tions

p Du= p f + V -(-p + A V - u) I+ V -p (Vu) + (Vu)T] (2.16)
Dt

For isothermal fields or by ignoring the temperature dependence of A and /-, we can
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write (2.16) in a different form

Du
pD = pf - V+ (A+ P) V (V. u) + y V 2u (2.17)Dt

In incompressible flow, (2.7) applies and (2.17) reduces to

Du
p_ =pf -Vp+ A V 2u (2.18)Dt

An alternate form to (2.18), which is considered fundamental by many, is

pDu = pf - VP + V - (VU) + (Vu)T] (2.19)
Dt

The reason that (2.19) is often preferred to the simpler form, (2.18), is related to

the the variational (weak) form and natural boundary conditions, which we derive

later. Only (2.19) leads to natural boundary conditions that represent true physical

forces. Even though (2.18) and (2.19) are equivalent in the continuum, the alternate

representations lead to semi-discrete equations that are generally not equivalent.

2.2.3 Dimensionless form

It is useful, both physically and mathematically to recast the governing equations into

dimensionless form. We do so by normalizing the coordinates x by a characteristic

length L, the velocity field u by the characteristic velocity U, and the pressure by

pU 2 . In this work we are concerned with advection dominated flows, so we assume

that the time scale is set by advection - the appropriate measure of time is L/U. From

equations (2.18) and (2.7), the dimensionless incompressible Navier-Stokes equations

are

O +(u .V)+ V p- I V2u=f (2.20)
at Re

V -u = 0 (2.21)
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where f has been suitably normalized and Re is the Reynolds number

Re=ULP _ UL (2.22)
p V

The Reynolds number may be interpreted as a ratio of the strength of inertial

forces to viscous forces. Low Reynolds numbers mean strong momentum diffusion or

highly viscous flow. High Reynolds numbers correspond to relatively strong driven,

underdamped systems. Indeed, the singular limit Re -+ oc transforms the Navier-

Stokes equations into the Euler's equations. Solutions of the Navier-Stokes equations

at high Reynolds numbers may appear, locally, similar to inviscid flows. However, the

boundary conditions for the Navier-Stokes equations are fundamentally different from

those for Euler's equations, and viscous boundary layers are found near stationary

walls. Further increases of the Reynolds number will ultimately lead to fully developed

turbulence, in which the fluid behavior may no longer be deterministic but stochastic

in nature. In the following we formally state the initial-boundary value problem of the

incompressible Navier-Stokes equations and in Section 2.2.5 we quote some estimates

addressing the issue of the dividing line between deterministic and stochastic behavior

of the equations.

2.2.4 Formal problem statement

Let Q be the closure of an open bounded region Q in R", where n = 2 or 3 represents

the number of space dimensions, and x = (x1 ,... , xn) = (x, y, z) be a point in

0 = Q U 0Q, where i9Q = F is the boundary of Q. We consider the solution of the

Navier-Stokes equations governing incompressible flow, which in dimensionless form

can be written as:
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Find the velocity u (x, t) and pressure p (x, t) such that

a+ (u- V) u + Vp - V. (VU) + (Vu)T = f in Q x (0, T] (2.23)at Re

V -u = 0 in Q x (0, T] (2.24)

u (x, 0) = 'u (x) in Q (2.25)

u = us on P, (2.26)

n - a = V on Fj (2.27)

where F = P, U Ff and IF, n F = 0, T is a real number (time) > 0, Re is the

Reynolds number, V - u = 0, o = -p I + 1/Re [(Vu) + (Vu)T], f is an externally

applied force, n is the unit normal to the boundary of Q, u' is the prescribed velocity

on the boundary IF, fP are the prescribed tractions on the boundary Ff, and in

equation (2.25) the initial conditions are given. We assume the problem is well-posed.

In situations where outflow boundary conditions need to be modeled, the Navier-

Stokes equations in the form of equation (2.20) are used. In such cases we drop the

(Vu)T term in equation (2.23). The boundary conditions in equation (2.27) now

become

n -& on Ff (2.28)

where & is a pseudo-stress, & = -p I+ (1/Re) Vu, and f' are the prescribed pseudo-

tractions on the boundary Ff.

2.2.5 Self-consistency

In deriving the Navier-Stokes equations we have adopted a macroscopic viewpoint.

In doing so, we ignored all the fine details of the molecular or atomic structure

and, for the purpose of study, replaced the discontinuous microscopic medium with

a hypothetical continuum. For example the macroscopic, or continuum, velocity is

defined as

ni=1 i
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where ci are the velocities of the molecules and n is the number of molecules in the

cluster. This cluster is the smallest part of the material that we consider and we call

it a fluid particle. To justify this name, the volume which the cluster of molecules

occupies must be small compared to the volume occupied by the whole part of the

fluid under consideration. Furthermore, the number of molecules in the cluster must

be large enough so that averaging makes sense, i.e., so that it becomes independent

of the number of molecules. Considering that the number of molecules in on cubic

centimeter of gas at standard temperature and pressure is 2.7 x 1019 [10], it is obvious

that this condition is satisfied in many cases.

The density p (x, t) at the space point x is defined as the ratio of the sum of

molecular masses in a cluster of molecules centered at x to the occupied volume dQ,

with the understanding that the volume must be large enough for the density of

the fluid particle to be independent of its volume. In other words, the mass of the

fluid particle is a smooth function of its volume. If solutions of the deterministic

Navier-Stokes equations turn out to vary on a length scale much smaller than the

linear measure d of the volume dQ, then we are outside the validity domain of these

equations. Here is the point where the self-consistency problem arises.

If dQ is chosen too small, a single measurement of p may largely deviate from its

mean value due to molecular fluctuations. If we require the relative fluctuation Ap/p

to be smaller than 10 3 , an estimate for a reasonable lower bound for d, the linear

measure of dQ, should be d > 3 x 10-7 m for air, or d > 1 x 10-8 m for water [11].

Quoting Rauh [11], in the turbulent regime length scales decrease with increasing

Reynolds number. The Kolomogorov length 6 K below which eddies are destroyed by

dissipation, is given by 6 K = L/Re3 /4 where L is the external length scale. Another

example would be the thickness 6 B of a turbulent boundary layer, which scales as

L/ (Re log Re). If we take L = 1 cm, then 6 K and 6 B reach the continuum limit

at Re 0 (106) for air and at Re 0 (107) for water. Based on this estimate, we can

safely state that the deterministic Navier-Stokes equations are self-consistent up to

Re 0 (106). Which in itself is a strong statement, since most engineering applications

are defined at or below that order of magnitude.
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2.3 Variational form

In the following we define some spaces that are needed for the formulation of the

variational problem [9, 12]. L 2 (Q) is the space of square integrable functions defined

over Q,

L 2 (Q) = {a :/ a2 dQ < +oo}

The Sobolev space is defined for any non-negative integer k as the space of square

integrable functions over Q, whose derivatives up to order k are also square integrable

over Q

Hk (Q) = {a E L 2 (Q) : 0'a E L2 (Q) ,Vjn| < k}

Clearly H0 (Q) = L 2 (Q). For the vector valued function a, we have the spaces

L2 (Q) = {a: a2 E L 2 (Q)}

Hk (Q) = {a: ai E Hk (Q)

The variational form of the initial, boundary-value problem can be stated as fol-

lows:

Find u E U, u (x, 0) = 'u (x), p E Q such that for all v E V and q E Q; t E (0, 7]

I Eu+(u.V)u1 -vdQ- p (V -v) dQ

+ (Vu)T - VvdQ = f vdQ + f
n rf

f- vdF (2.29)

J (V - u) qdQ = 0 (2.30)

where we use the linear spaces'

U = {u E H1 (Q), ulr. = u'}

'Actually, to be precise, U is not a linear space but an affine manifold (the same holds for the
finite element space Uh defined later).
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V = {v E H1 (Q), vlr, = 0}

Q = {q E HO (Q)}

We note that if the same functions are used in V as in U, the variational formu-

lation corresponds to the standard Galerkin method (the Bubnov-Galerkin method).

However we use a more general approach and therefore will in general not have that

V and U coincide (when US = 0).

2.4 Uniqueness and existence of weak solutions

The existence and uniqueness of weak solutions is addressed in the classic mathemat-

ical work by Temam [13] and Ladyzhenskaya [14]. Before going into further details,

it may be well to pause and reflect upon the following quotation from Ladyzhen-

skaya [14] - for weak/generalized solutions: " Before becoming involved with precise

formulations, we call the readers' attention to the fact that the statement 'it has

been proved that the problem has a unique solution' can have very different mean-

ings depending on the function space in which one looks for the solution. The form

in which the requirements of the problem must be satisfied is different for different

spaces, and different extensions of the concept of a solution of a problem, i.e., different

'generalized (weak) solutions', present themselves. In fact, for every problem there

are infinitely many 'generalized (weak) solutions', but they coincide with the classical

solution, if the latter exists." In other words, the weak solutions coincide with the

strong (classical) solution if the latter exists.

For example, consider the solution of the linear advection-diffusion equation for a

generic transported scalar 0 (x), which in dimensionless form can be written as:
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Find 0 (x) such that

1
u-V- -- A = f in Q (2.31)

Pe

9 = 98 on (2.32)

1
-V -n = on Ff (2.33)
Pe

where F = ]7O U rf and O n f _ = 0, Pe = UL/a is the Peclet number, n is the unit

normal to the boundary of Q, Os is the prescribed value of 6 on the boundary F0 ,

f s is the prescribed flux on the boundary rf. We assume the problem is well-posed.

Both the velocity field u and the right-hand side f are prescribed. In the above the

coordinates are normalized by a characteristic length L and the prescribed velocity

field by the characteristic velocity U. The right-hand side f has been also suitably

normalized and a in the definition of the Peclet number denotes the diffisivity of 0.

Let us first suppose that we have a solution, 9 (x), that satisfies equations (2.31)

through (2.33). Then clearly

V u-V9- 1 AO-f dQ= 0 (2.34)
V Pe

is satisfied for all functions v (x). If we narrow down the class of test functions, so

that v E H' (Q) we can apply the Gauss divergence theorem to the second term in

equation (2.34) to obtain

v (u - V) dQ + 1 Vv - V d = vfdQ+ ' JvVo ndF (2.35)

i o f r

in which the normal boundary flux is now prominent. Recalling the Neumann bound-
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ary condition given by equation (2.33), leads to

v(u-V) dQh+ J Vv-V =dQ=Jvfd

+ vV-ndro+ vf'drf (2.36)
Pe e f

where we have separated the boundary integral into two parts, one over Fo and the

other over Ef, in order to incorporate the Neumann boundary condition. We now

further restrict the class of test functions to those that vanish on the Dirichlet portion

of F; i.e., we now require v = 0 on 1 O. And so the weak or variational form of the

advection-diffusion equation is - and this is important - obtained by dropping the as-

sumption that 0 (x) satisfies equations (2.31) through (2.33) and instead considering

it as an unknown function that need only be once piecewise-differentiable. The vari-

ational form of the advection-diffusion boundary value problem in equations (2.31)

through (2.33) can be stated as follows:

Find 0 E E such that for all v E V

v (u -V9) dQ + Vv -±Vd-1  vf dQ + v f' dT (2.37)
Pe I VV W-JL~VL~ 2

where we use the spaces

E = {0 E H' (Q) ,r, = 9s}

V = {v E H1 (Q), vjr, = 0}

We now discard equations (2.31) through (2.33) and regard the above statement

as the given form of the problem; and also note that 9 (x), the weak solution, can

(but need not) now reside in a larger function space than do solutions of (2.31), since

the weak solution need not even possess second spatial derivatives, at least in the

classical sense.
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Now we reverse the procedure that 'generated' the weak form - at least when this

is permissible; i.e., when 0 (x) is suffeciently smooth. To this end we assume sufficient

regularity and manipulate the diffusion term as follows:

I Vv -V~dQ = V -(vV) dQ - vV -V9dQ

= fvV9 ndF - JvV -VOdQ

r Q

= ve. -ndlf - JvV20dQ

FfQ

so that equation (2.37) becomes after rearrangement,

v u -Ve- 1V20 - f dQ = v f s- 1VO - n dlf (2.38)

Q rf

for all 0 E E and for all v E V. Since this equation hold for all v E V, it follows that

it holds for that subset (say V) that vanishes on Pf (as well as on Fe); i.e., for the

subset, we have

v u-V9-- -V20-f dQ= 0/ Pe

for all v E V.

But since even this subset contains an infinite number of functions (i.e., v is an

arbitrary function in V), it follows that

1
u-V --- V 2 9-f =0 in Q

Pe

and we see that 0 (x) satisfies the original partial differential equation. And this fact,

with equation (2.38), leads directly to

V fs - 1VO -n d]f = 0
fP
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for all v E V. But again the set of test functions is of infinite dimension, and thus

1
- VO - n = f on 'f
Pe

is necessarily true. Hence, we have just proven a special case of the following general

result: if the solution of a weak form of the problem is sufficiently smooth, then that

solution is also a classical solution of the same problem. The key word is IF, a word

that is missing when going the other direction - i.e., a classical solution is always also

a weak solution.

Weak solutions are also referred to as generalized solutions or solutions in a dis-

tributional sense. If the classical solution exists, - which requires (at least) smooth

data (e.g. no delta functions in f) and a domain with a sufficiently smooth boundary

(e.g. no L-shaped domains are allowed), then the weak solution will also be a classical

solution, as shown above. If, however, the problem is not smooth enough, a strictly

classical solution will not exist, whereas a weak solution usually will.

We conclude by reiterating: classical solutions are subsets of weak solutions; clas-

sical solution will always satisfy equation (2.37), but solutions of (2.37) will not always

satisfy (2.31). U

Going now back to the Navier-Stokes equations, the basic results on uniqueness

and existence of weak solutions can be summarized in the following theorem:

Theorem: A unique weak solution exists, at least in the time interval t E [0, Ti] with

T < T1 , provided the external force f obeys the condition

jJf f2 + Of 2  < 1/ (2.39)

However, even if the condition on the external force field f holds for arbitrary

large T, uniqueness can only be guaranteed by the above theorem for the smaller time

interval t C [0,T1]. While this is typical in space dimension three, one has T, = T in

the case of two-dimensional flows.
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So far we have quoted from Rauh [11] that the Navier-Stokes equations are self-

consistent up to about Reynolds number 106 and based on the mathematical work

of Temam and Ladyzhenskaya we know that weak solutions of well-posed transient

problems exist, and in the case of two-dimensional flow these are guaranteed to be

unique. Hence, it is reasonable to endeavor to obtain a finite element procedure which

will solve high Reynolds number flows.
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Chapter 3

Discretization schemes

3.1 Introduction

The main objective of this work is to develop schemes to suppress the numerical

instability associated with the convection term in the finite element solution of the

incompressible Navier-Stokes equations. As mentioned in Chapter 1, this numerical

instability is due to the symmetric treatment of the convection term, which results in

spurious oscillations if the discretization scale is too large to resolve subgrid scales.

Such oscillations become significant as the Reynolds number increases.

We start the chapter by studying local analytic procedures, which are the corner-

stone in our development of finite element discretization schemes for high Reynolds

number flow. The first of the four discretization schemes is not a Galerkin approach

in its entirety, in that the Navier-Stokes equations are not discretized using their

variational form but a local analytic procedure directly. The other three discretiza-

tion schemes are based on the Petrov-Galerkin formulation for the Navier-Stokes

equations, where the test functions respond to the flow conditions surrounding the

element so as to give more weight to upstream nodes. These formulations differ from

each other in the way the test functions are established. We conclude the chapter by

performing the inf-sup test for advection dominated flows.

31



3.2 Local analytic procedures

By local analytic procedures we understand the embedding of local analytic behavior

into the numerical solution of the governing equation(s). To study local behavior we

must first construct a finite element model of Q.

A finite element model of the closed domain 0 is a region Oh which is the union

of a finite number E of bounded subregions 0e, each 0e being the closure of an open

region Qe:

Qe = Qe U Qe e = 1,2,. .. , E

where 9Q, is the boundary of Qe. The bounded subregions 0e are called finite elements

of Oh, and we select fh to coincide with, or at least closely approximate, 0. The region

0h is called the connected model or discretization of Q, and the open elements Qe are

pairwise disjoint. We have

E
Oh Une

e=1

QenQ0 =o e # f

In the connected model, we identify a finite number G of points, called global nodes,

and we label them consecutively xi, x2 ,... I xG. Likewise we identify within each

element 0e a number of Ne points, called local nodes, and we label them consecutively

xx , ... , xe ; e = 1, 2,. E. A correspondence must exist between points in (e

and Oh, in particular, between nodal points x" in Oe and nodes x' in Oh, if the

elements are to fit together smoothly to form Qh.

We take the linear advection-diffusion equation, which is prototypical of the

Navier-Stokes equations, as our model equation and obtain a local analytic solution

for the case of two-dimensional flow.
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3.2.1 Advection-Diffusion as a model equation

Consider the case of two-dimensional flow. Let Ph = {Q} be a family of quadrilateral

finite elements Qe that make up the connected model fh. For simplicity, lets take

the special case where Ph consists of rectangles. Consider one such rectangle Qe = Q

and let x = (X1 , x 2 ) = (x, y) be a point in 0e Furthermore, let us give the rectangle

dimensions -h < x < h and -k < y k, as shown in Figure 3-1.

Consider the linear advection-diffusion equation in dimensionless form:

u. VG - V20= fPe
in Q, (3.1)

where 0 (x) is the transported scalar, Pe is the Peclet number, and both the velocity

field u = (ui, u2 ) and the right-hand side f are prescribed and piecewise constant

with respect to the discretization Ph. In the above the coordinates are normalized

by a characteristic length L and the prescribed velocity field by the characteristic

velocity U. The right-hand side f has been also suitably normalized.

k

k

h
-I-

x

h

Figure 3-1: Rectangular element with 8 boundary nodes.

We specify a combination of exponential and linear boundary functions on all four
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boundaries of the rectangle, for example, at y = k and x = h, the boundary functions

are of the form

0(x) = aN (e 2 Ax - 1) + bNx + CN (3.2)

0(y) = aE (e 2 By - 1) + bEy + CE (3.3)

with

2A = (Pe) u1  and 2B = (Pe) u2  (3.4)

The boundary functions suggest that a total of eight nodes, Ne = 8, should be placed

on the boundary of the rectangle Q, as shown in Figure 3-1.

With the specification of the boundary functions, equation (3.1) can be solved an-

alytically by the method of separation of variables to obtain coefficients {an (x)}"n=,

af (x) such that
8

0 (X) = an (X) On + af (x) f (3.5)
n=1

When evaluated at x = (0,0), the coefficients {an (0)}8= = {a0} c, af (0) = ao

are:

a = e-Ah-Bk Do a = e-BkD1

ao = e Ah-BkDo a6" = e AD
2 6 (3.6)

a = e Ah+Bk Do a = e Bk D 1

a0 = e-Ah+Bk Do a0 = e-AhDO4 e .. 0 8 - D2

0= 1
a 1 (Ahtanh Ah + Bk tanh Bk-

!-~ 2 (A 2 +B 2 )

4 cosh Ah cosh Bk [(Ah)2 E2 + (Bk)2 E] (3.7)
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with

Do = E + E') - Ah coth AhE 2 - Bk coth BkE (3.8)

D= 2Ah coth Ah cosh AhE 2  (3.9)

D2= 2Bk coth Bk cosh BkE' (3.10)

where El, E2 , E', and E' are infinite series:

- (-1)"m (A4 h)/1\
Ej (3.11)

m=1 [(Ah)2 + (Ahh)2 cosh 
(3.11)

with

Ah = (2m- 1)7r ,A2 + B2 +(A )2M 2h ' n IM=A±2()

and similarly
E Z (-1)m (A kk) 1 \Et 1 (3.12)

1 [(Bk)2 + (4k)2] cosh (pkh)

with

Ai = (22k 1)7r , k = A2+B2 +(A) 2

By explicitly enforcing zeroth and first order consistency on { , we are able

to express functions of the infinite series analytically:

1 1
-(El + E') (3.13)

2 E 4 cosh Ah cosh Bk

,' E(h )2 Ak tanh Bk - Bhtanh Ah
2 2 k 4AkBk cosh Ah cosh Bk (3.14)

Often, the order of consistency is also called the order of the polynomial which is

represented exactly. Consistency conditions are closely related to reproducing condi-

tions. Reproducing conditions refer to the ability of an approximation to reproduce

a function if the nodal values are set by the function; thus the ability to reproduce

nth order polynomials is equivalent to nth order consistency.
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Note that now we are left to evaluate only one series summation, E2 or E . Our

numerical experiments indicate that taking the first twelve terms in either series is

sufficient. Details of the solution procedures are given in Appendix A.

In practical implementations Ph will seldom consist of rectangles. In some areas

or throughout the entire connected model the quadrilaterals may be geometrically

distorted. We proceed by mapping e to a bi-unit square ne = [-1, 11 X [-1,1],

where = (, 2) = ((, r/) is a point in ne. In this new coordinate system equations

(3.6) and (3.7) still apply, with the following new definitions:

A = ci and B= c2  (3.15)

with

2ci = Pe __ , (Jg _) (3.16)
19xj J aG&

where gtj is the contravariant metric tensor and J is the Jacobian associated with

the mapping. Also, h and k are to be replaced by 1/- g/ and 1/ g2 when used

in equations (3.6) and (3.7). Recall that, from equation (3.4), A and B are to be

piecewise constant with respect to the discretization Ph and hence in equation (3.15)

representative values of the parameters over the element must be chosen. Details of

the transformation are given in Appendix B.

The local analytic coefficients {al}, a. are functions of the geometry of the

subregion Qe, the velocity field u, and the Peclet number. Furthermore, the coeffi-

cients are always positive. Hence, using the fact that the coefficients {a }8_ have

zeroth order consistency we can bound them: 0 < {a}_ < 1.

3.2.2 The finite analytic method

The local analytic solution to the advection-diffusion equation has been previously

studied and successfully used to develop discretization schemes to solve the two-

dimensional incompressible Navier-Stokes equations. Indeed, the advection-diffusion
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equation and the momentum equations are similar in form,

-- +u-VO- 1 V 2 = f (3.17)
at Pe

Bu 12
+ (u. V)u-- V2u = f - Vp (3.18)

at Re

and equation (3.5) can be used to develop discretization schemes.

In the finite analytic (FA) method of Chen and Chen [15, 16] a node is placed

at x = (0, 0) in element Q of Figure 3-1. Equation (3.5) is evaluated at the interior

node and the resulting coefficients, given by equations (3.6) and (3.7), are used to

construct a stencil relating nine nodal variables. Note that equations (3.6) and (3.7)

are now used with

2A = (Re) uO and 2B = (Re) uO (3.19)

where u? and uO are now the unknown dimensionless velocity components at x = (0, 0)

in element Q.

Using the backward Euler method to approximate the transient term and lumping

it as part of the right-side, results in the FA discretization formula for the two-

dimensional momentum equations (3.18):

8

t~atu = 1an tau, + Re i 0
1 + Re au/At " at

- [ t+At (Vp) 0- t+Atfo] }(3.20)
Notice that equation (3.20) is nonlinear, in that the coefficients depend on the

velocity field at time t + At. Hence, a fixed point iteration scheme is needed in order

to solve (3.20) at each time step. Chen et al. [16] extended the FA method to solve

the incompressible Reynolds-Averaged Navier-Stokes equations in three dimensions,

which has been used to solve flows with Reynolds numbers of 0 (104) in the area of

turbomachinery [17] and 0 (107) in the area of submarine technology [18]. However,
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the FA method only proves effective when Ph satisfies some regularity constrains: the

mesh must have a high degree of orthogonality.

Even though severe element geometric distortions are not allowed, one might still

encounter orthogonal curvilinear elements in the connected model. In such situations

the mapping procedures described in Section 3.2.1 apply and equations (3.6) and (3.7)

are used with

A C and B C2  (3.21)

where
8- 1 9

2ci = Re-u, - 1 19(Jgik) (3.22)
aXj J 19G

Also, h and k are to be replaced by 1/ g'j o and 1/ fg 221 o when used in equations

(3.6) and (3.7).

3.3 Finite element formulations

In the following we describe in detail four finite element discretization schemes for the

solutions of two-dimensional high Reynolds number incompressible fluid flows. These

schemes are based directly or partially on the local analytic procedures described in

the previous section.

3.3.1 Finite Analytic/Finite Element (FAFE) scheme

In this approach we use the finite analytic discretization, developed in the previous

section, for the Navier-Stokes equations and enforce the incompressibility constraint

in a weighted residual fashion.

3.3.1.1 Discretization procedures

We define the connected model Q E R2 as the union of non-overlapping quadrilaterals

Q c Ph. Let x = (x 1 , x 2 ) = (x, y) be a point in fh.

We first identify G, global nodes for the velocity degrees of freedom. Here we

simply take G, = G. Next, we identify a finite number Gint of nodes that do not
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lie on 0Q, called interior nodes, which form a subset of the G global nodes in the

connected model. We associate with each interior node its eight closest neighbors,

and for each interior node we write equation (3.20) for the two velocity components:

ui and u2 .

The incompressibility constraint is enforced in a weighted residual fashion. For

this purpose we make use of the 9/4-c element and identify Gp global nodes for the

pressure degree of freedom. In the continuity equation we use CO biquadratic functions

{h,, (x)} G_ 1 as trial functions for the velocity degrees of freedom and C0 bilinear

functions {P, (x)} as test functions, all of them with compact support. The

pressure gradient in the momentum equations is approximated by finite differences

using the GP nodes.

Note that the construction of the discretized momentum equations takes place at

the global node level, while the construction of the discretized continuity equation can

be done using standard finite element procedures at the element level. The assembled

system of equations are

N 0 C"A U ( f ul + bul

0 N Cu2 U2 f U2 + bu2 (3.23)

Du1 D U2 0 P bD

where ul is a vector of length Gu of nodal velocities in the x1 direction, u2 is a vector

of length Gu of nodal velocities in the x2 direction, p is a vector of length GP of nodal

pressures. The diagonal N sub-matrices contain the combined effect of advection and

diffusion, and, in the case of transient problems, the effect of the temporal terms - all

these effects represented by the local analytic coefficients {o}_, of at each global

node. The C sub-matrices contain the pressure gradient contributions, represented

here by a finite difference approximation. The D sub-matrices appearing in the

continuity equation are the velocity divergence operators:

D 7 = f [Oh-
DZI a Z D __
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The vectors b"u, bu2, and bD account for the non-zero essential boundary conditions

on the velocity degrees of freedom. Finally the vectors f ui, f U2 contain surface-

flux type contributions from the natural boundary conditions, effects from externally

applied body forces, and in the case of transient flows, history effects from previous

time levels.

The system of equations is nonlinear, in that at every node the coefficients {a }8,

ao are functions of the unknown velocity components. Hence, a fixed point iteration

solution scheme is adopted.

3.3.2 Local Analytic/Petrov-Galerkin (LAPG) scheme

3.3.2.1 Test functions

In this approach, we endow the test functions with properties from the local analytic

solution of the advection-diffusion equation:

8

Om (x) = E Lmnan (x) (3.24)
n=1

where {Lmn (x)} is a boundary interpolant which needs proper motivation and defini-

tion, {an (x) } are the local analytic coefficients, and { O (x) } are the enhanced test

functions. Of course, the definitions for the local analytic coefficients, {an (x)}, in

Section 3.2.1 are still applicable but with the Peclet number replaced by the Reynolds

number and the prescribed velocity field u replaced by the unknown velocity field, as

was done in developing the finite analytic discretization scheme in Section 3.2.2.

Evaluation of the enhanced test functions {0m (x)} requires the evaluation of the

local analytic coefficients {an (x)} at other points besides x = (0, 0). The coefficients

at any other point require the evaluation of additional series and these evaluations

could become computationally inefficient and/or numerically ill conditioned.

To reduce computational costs and/or avoid the evaluation of numerical ill condi-

tioned series we introduce the following approximation scheme: we translate the local

coordinate axes to the evaluation point and use the coefficients {4}_ together with
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an interpolation scheme using the boundary functions. For example, for 0 < x < h,

0 < y < k, with hE = h - x, hw = 2h - x and hN =k y, hs = 2k - y the coefficients

are

G al = a, + (s - 1) a" + (t - 1) ao + (s - 1) (t - 1) ao

G a 2 = 9 a2 + ' (t - 1) a3

G a 3 = a3

G a 4 = la4+f(s - 1) a3

Ga5 = a +(t - 1) ao + (2 - s -) a + (t - 1) (2- s - .)a

Ga 6 =9a + g(2 - t - a

Ga 7 = ta7 + i(2 - s -s)a

Ga 8 = a8 + (s - 1) ao + (2 - t -) a + (s - 1) (2 - t - ta

Gaf =a

G=1- (2 - s - 9) ao - (2 - t - t) a - (2 - s - 9) (2 - t -) a

where {an}_1, af are given in (3.6) and (3.7), and used with h = hE, k - hN. In

the above

hw (e 2AhE + - 2AhE -2) hE
hw (e2AhE - 1) + hE (e-2Ahw -- 1)' hw

= -- hs (e2AhN+ e - 2AhN - 2) = hN (3.26)
hs (e2AhN - 1) + hN (e-2Ahs - 1) hs

Details of the interpolation procedures are given in Appendix A. By construction, the

coefficients {an (x)}%._1 retain zeroth and first order consistency. For geometrically

distorted elements the procedures and definitions described in Section 3.2.1 apply.

Plots of a6 (x) in a bi-unit square for different values of Ah and Bk are shown in

Figure 3-2. Figure 3-2a shows the case of pure diffusion. In Figure 3-2b convection

is present, flow is in the positive x direction. Note how the function responds to

the flow conditions, the solution at any point inside the bi-unit square will have a
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strong dependence from the upstream value 6. Figure 3-2c shows the case of flow in

the positive y direction, in this scenario 6 will have little or no contribution to the

solution. Figure 3-2d shows the function's response to flow at an angle. We can see

that the function responds appropriately to the skewed velocity vector.

0.6

0 0

(a)

0.5

0

0 0

(C)

0.5

0

(b)

0.5

(d)

Figure 3-2: a6 (x) for different values of Ah and Bk. The case of Ah = Bk = 0 is
that of pure diffusion (a). In (b) convection is present, flow is strictly in the positive
x direction, Ah = 5, Bk = 0. In (c) flow is strictly in the positive y direction, Ah = 0,
Bk = 5. In (d) convection is present in the positive x and y directions, flow at a 30'
angle from the x axis, Ah = 2V3, Bk = 2.

The coefficients, {a, (x)}'_1, possess the ability to respond to the local flow con-

ditions including any skewed advective vector. Furthermore, they provide a smooth

transition from diffusion dominated to advection dominated conditions. Indeed, the

coefficients {a (x) 8 could be used directly as test functions. However, we note

from Figure 3-2, that the functions fail to recover the imposed boundary functions,
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i.e., they are unable to reproduce the Kronecker delta property. This is due to the ap-

proximation made to evaluate the functions at any other points besides x = (0, 0). It

is true that the test functions need not satisfy the Kronecker delta property, however,

this property will ensure that the test functions vanish on F.

To correct for this we make use of equation (3.24) with the following definition

for the boundary interpolant {Lmn (x) }:

Lmn (x) = hm(X)
, x if n = 1, 2, 3, or 4,

e 1 e6

x-+ ffle, xn" if n =4, 5, 6, or 8.
(3.27)

where hm(x) is a Lagrange boundary function, i.e. it is only defined along the bound-

ary of the element, and [x -+ One, xe] denotes the projection of x onto the portion

of the boundary OQe that contains local node xn. The locations of the evaluation

points x"' in equation (3.27) are shown schematically in Figure 3-3 for an arbitrary

point x = (x, y).

6'C

2'

O--- --- - -- - -

5,
AkA n 9 Ak

- -
1'

8'

X

I 4'

7'

Figure 3-3: Rectangular element showing the evaluation points x'.

In this manner, given a boundary function along the edges of the element, we

bring local analytic behavior inside the element. This approach has some similarities
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with Brezzi's Residual-Free Bubbles (RFB) procedures [6, 19], specifically the divide

and conquer principle [20]. Here we use the information at the edges of the elements

and enrich (not augment) the finite element space of test functions with local analytic

properties.

The enhanced test functions {q#m (x)} now satisfy the Kronecker delta condition.

This can be easily proven in the following manner:

#bm(Xe) = Lmn(X") an (xn) = j6,n an (x") = 6mn
n n

since

an (x) = 1
n

and

Lmn(X") = hm(Xe) = 6mn

At this point, the element Lagrange boundary or edge functions hm(x) can be

any functions such that Ne = 8, i.e. such that three nodes are used to define the

functions on each edge. Regardless of the edge functions we choose, the effect of the

local analytic solution is already carried by the coefficients {an (x)}. In this work we

use linear-exponential edge functions of the form (3.2), (3.3) and add an x 2 , y2 bubble

function to obtain the 9-node element test functions. More on the linear-exponential

edge functions will be said in Section 3.3.4. Note, however, that the x 2 , y2 bubble

function will contain no effects from the local analytic coefficients {an (x)}, i.e., it

will not respond to the flow conditions over the element.

Consider the two 9 node element patch (see Figure 3-4a). In the case of pure

diffusion the test function for node A is symmetric (Figure 3-4b). Figure 3-4c shows

the test function when convection is present, for the case of flow in the positive x

direction. Figure 3-4d shows the function for the case of flow at an angle, both x and

y components of velocity are present. The enhanced test functions, {/m (x)}, place

emphasis on the upstream directions - consistent with the physics of the problem.

We remark that the enhanced test functions inherit the ability to respond to any
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Figure 3-4: Two 9 node element patch

x

(b)

z

4- x

1.5

0.5

0

(d)

(a). In the case of pure diffusion the test
function is symmetric (b). In (c) convection is present, flow is strictly in the positive
x direction. In (d) convection is present in the positive x and y directions, flow at a
300 angle from the x axis.

skewed velocity vector. Furthermore, the amount of weighting given to upstream

nodes is controlled analytically, so that a smooth transition from diffusion dominated

to convection dominated conditions is achieved.
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3.3.2.2 Differentiation of the test functions

The finite element formulation requires that we differentiate the test functions {m (x) }

Accurate differentiation in any finite element procedure is very important. This is

sometimes taken for granted in classical implementations of the finite element method

where the test functions are polynomials and can be easily differentiated. In this for-

mulation a closed form expression for the test functions is not available because of the

approximations associated in deriving them. We must therefore seek alternate ways

of computing the derivatives. To do so, we ask ourselves a basic question. Given a

set of grid points xj and corresponding function values #m (xj), how can we use this

data to approximate the derivative of #m ? The method that immediately comes to

mind is a finite difference approximation.

Although possible, a finite difference approximation would be prohibitively expen-

sive. We are a looking for an approximation that would require a minimum amount of

sampling points x2 and yield a high degree of accuracy. Approximating the derivatives

by spectral methods is the best we can do.

We are interested in computing the derivatives in the bounded domain Qe, which

we take as a bi-unit square: [-1, 1] x [-1, 1] . This particular choice is obvious, since

ultimately we will be mapping each element to such a square to perform the numerical

integration. We take the sampling points j to be the Chebyshev points,

j = cos (j7r/N), j = 0, 1,.... ., N

where N + 1 is the total number of sampling points in one direction, i.e. (N + 1)2 will

be the total number of sampling points in the bi-unit square. We can evaluate the

derivatives by constructing an appropriate Chebyshev differentiation matrix D and

performing the (N + 1)2 x (N + 1)2 matrix multiplication:

190M (C3) = D Om (Cj)
TXk

The test functions and their derivatives are very complicated and change as a
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function of the element Reynolds number. Our numerical experiences indicate that

a 9 x 9 Chebyshev grid is sufficient for accurate evaluation of the test functions,

regardless of the element Reynolds number. An alternate method that will provide

crucial speedup for some calculations is to implement the Fast Fourier Transform

(FFT) to compute the derivatives. Since all the data we are sampling will be real, we

can do even better and evaluate the derivatives using a Discrete Cosine Transform

(DFT) which is faster than the FFT by a factor of two. Details on how to construct

a Chebyshev differentiation matrix or implement the FFT to compute the derivatives

of a function can be found in [21].

3.3.2.3 Finite element discretization

We define the finite element model Oh E R2 as the union of non-overlapping quadri-

laterals Q E Ph. Let x = (x 1 , x 2 ) = (x, y) be a point in f^. With the understanding

that all operations are to be carried out on the discretized domain, as a notational

shortcut we omit the superscript h on Q and F.

Using the variational form of the incompressible Navier-Stokes given in Section 2.3

we develop the finite element discretization. For the finite element solution we chose

subspaces Uh, Vh, and Qh of the infinite dimensional spaces U, V, and Q respectively.

The finite element solution procedure is then:

Find uh E Uh, uh (x,0) = Ou(x), ph E Qh such that for all vh E Vh, qh E Qh;

t G (0,T]

I[U &h +±(Uh.V) Uh] .Vh dQ7 ph (V.vh ) dQ

Ref [(VU h) +(VU)J .VVh f-Vh d f . vh dwf (3.28)Re f

J (V. Uh) qh dQ 0 (3.29)Q r
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where

Uh = {uh E H' (Q) , uh = u h, uE e Q2 V Q E Ph}

Vh = {Vh E H' (Q) Ivh r, = , vh E Q2 VQ E Ph}

Q = {qh E HO(Q),qh E P, or Q, VQ E Ph}

Here Q2 are CO biquadratic functions {hm (x)} 1 , Q* are C0 enhanced functions

{d m (x)}t 1 , Q, are CO bilinear functions {pO (x)}I 1 , and P1 are C linear func-

tions { X (x)}G 1 , all of them with compact support. Gu and G, are the number of

global nodes for velocity and pressure respectively.

Spatial discretization leads to the following semi-discrete system of equations:

M 0 0 ni N + Kul Gu" C"1 u1  f ±l + bul

0 M 0 62 + GU2 N+KU2 CU2 U2 fU2+ bu2 (3.30)

0 0 0 p Dul Du2 0 p bD

where u1 is a vector of length Gu of nodal velocities in the x1 direction, u2 is a vector

of length Gu of nodal velocities in the x2 direction, p is a vector of length Gp of nodal

pressures, and the following definitions for the sub-matrices and vectors:

Mi= f qi hj dQ

n

Nij= i U +hj 0h 3) dQ

KJ2+ Kh+ 2Ix 2U2$ Oh O$ Ohj 00i Ox Ox Ox

Re 1x 1 1x 1  Ox 2 Ox2  ' RX2 aX2
Q Q

1 f 190i OhI dQI #hf -OAjdQ
= Re Ox2 axi ' 2 Re Ox 1 Ox2

Ci|= -J dQ, C 2 = -J c dQ
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D!' F Oh, 1 h O?
= d, Df = -

fi"* = f i f1 dQ + fO f1 d]dFf fiU2 = f if 2 dQ+ 4if2dFf

with bul, bU2, and b accounting for the non-zero essential boundary conditions on

velocity.

Use of a time integration scheme leads to a nonlinear system of algebraic equations

at each time step. The system is solved either by the fixed point iteration or Newton

Raphson iteration.

3.3.2.4 Numerical integration

An important part of the evaluation of the sub-matrices and vectors defined above

is the integration technique used. The integrals are evaluated using numerical inte-

gration in the transformed domain ne. Since we are already sampling the functions

{ m (x) } at Chebyshev points to compute their derivatives , it makes sense to use

a numerical quadrature that uses the information at those points. In the field of

numerical integration, the Clenshaw-Curtis quadrature is classed as the formula of

optimal order based on the fixed set of Chebyshev points xj [22, 23] - as opposed to

the Gauss-Legendre formula of optimal order based on optimally chosen points. Like

Chebyshev spectral differentiation, the Clenshaw-Curtis approximation exhibits spec-

tral accuracy as the number of Chebyshev evaluation points (or quadrature points)

increases [21].

Gauss-Legendre quadrature has genuine advantages over the Clenshaw-Curtis

quadrature for the evaluation of definite integrals. If we use the Gaussian formula,

then the integral will be exact for polynomials of degree 2N - 1, not just N as is

the case with Clenshaw-Curtis. However, there is not that much difference when

evaluating indefinite integrals and functions that are not smooth [21]. This is better

illustrated by some examples. Figure 3-5 illustrates the Clenshaw-Curtis quadrature

by integrating 1X3 , exp (-x 2 ), 1/ (1 + x2), and x'O in the interval [-1, 1]. Figure 3-6

49



shows the results obtained with the Gauss-Legendre quadrature. Note that for the

definite integrals, the convergence surpasses that shown in Figure 3-5, but there is

not much difference for the indefinite integral and less smooth function.
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Figure 3-5: Clenshaw-Curtis integration.
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Figure 3-6: Gauss-Legendre integration.

The test functions and their derivatives are very complicated, especially for high

Reynolds number flow, and a higher order integration scheme is needed. Furthermore

the integrals to be evaluated will be in general indefinite (complicated exponential
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functions) and for high Reynolds number flows the integrand may be non-smooth.

Hence, either the Clenshaw-Curtis or the Gauss-Legendre quadrature will perform

satisfactorily. As mentioned before, we prefer the Clenshaw-Curtis quadrature be-

cause we are already sampling values of the test functions and their derivatives at the

Chebyshev points.

The order of integration is clearly dependent on the element Reynolds number,

however, the number of Chebyshev evaluation points is governed by the need of

accurate differentiation of the test functions. Our numerical experiences indicate

that a 9 x 9 Chebyshev grid is needed at all times for an accurate evaluation of

the derivatives of the test functions and hence a 9 x 9 Clenshaw-Curtis quadrature

is imposed for the evaluation of the matrices. Expressions for the Clensahw-Curtis

quadrature weights can be found in [21].

Clearly the 9 x 9 integration order requires a considerable computational effort.

However, it should be recognized that in computer implementations over ninety per-

cent of the solution effort pertains to the solution of the algebraic equations. Hence,

although the computational effort for the element matrix evaluations is significantly

higher when compared to the standard 3 x 3 integration order in traditional finite ele-

ment formulations, this increase is not significant when measured on the total solution

time required.

3.3.3 Simplified LAPG scheme

3.3.3.1 Test functions

To reduce the computational cost associated with evaluating the expressions involving

derivatives of the enhanced functions {0m (x) }, we define the test functions to be

equal to the sum of the functions {hm (x)} (which are biquadratic functions) and the

enhanced functions {#m (x)}. This will allow us to take differentiation on {hm (x)}

and avoid differentiation on {#m (x)}.
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3.3.3.2 Finite element discretization

Here we take v + w to be the test function, and apply integration by parts only to

one part of the test function. Further information and remarks on the variational

form are presented in Appendix C. The finite element solution procedure is then:

Find uh E Uh, uh (x, 0) = Ou (x), ph E Qh such that for all vh + wh with vh E Vh,

wh E Wh and for all q E Qh; t E (0, ]

I [u h + (u h v h h ].v -d h (Vfp v )h)dQ

S+ [(VUh) + (VUh)T. Vvh dQ

+ J[ h+ (uh . V)uh + Vph V2uh w dQ

f -vh dQ + f -Wh dQ + f fS .v dff (3.31)

J (V. uh) qhdQ= 0 (3.32)

where

Uh = {uh E H 1 (Q) , uh - us, uh E Q2 V Q E Ph}

Vh = {vh E H' (Q) vIr = 0, vh E Q2 VQ E Ph}

Wh = {wh E H0 (Q) ,wh E Q2 VQ E Ph}

Qh = {qh E HO (), qh E P1 or Qi VQ E Ph}

We remark that the test functions v and w are not applied independently, but

together as v + w. The variational form can also be interpreted as adding to the

standard Bubnov-Galerkin formulation the strong form of the incompressible Navier-

Stokes equations weighted by the enhanced test functions.

Spatial discretization leads to a similar semi-discrete system of equations as that
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in equation (3.30), with the following new definitions for the sub-matrices and vectors:

Mij (hi + Oj) hj dQ

Nij = (hi + h) U +Uhi dU1 -X X

1 Fohi Oh3 +Ohi Oh,
=j Re f2 19X1 aXi + 9X2 Ox 2

K U. = 1 3h + 2 h2 Oh,
Re 09 1 Ox1  Ox 2 Ox21 oi h Ah j h A

G Re f 0x2 OX 2

=- [Oh2 hj dQhCij = 'tdQ+ $Oi-C a
f Ox1  f Ox 1

Q

fiU J (hi+ Oj) f dQ±J fhi f~sdrf

Srf

1
dQ - I

Re

1
dQ - R

Re

1 2

qj + O lii dQ
2 h - X2I 1 q(0 3  + O dh

0x x

1 hi A d-

GiU2 a d
SRe] Ox1 Ox 2

Cj| '$dQ+ Oi-190jdQ
f 1X2 09X2

'3 'Ox2

ad

f iU 2 J (hi + j) f2 dQ + fhi f2 df

rf

3.3.3.3 Numerical integration

The use of a 9 x 9 Chebyshev grid and consequently a 9 x 9 Clenshaw-Curtis quadra-

ture in the LAPG scheme was mainly driven by the need to obtain high accuracy

in the evaluation of the derivatives of the enhanced test functions. In this simplified

version of the LAPG scheme (S-LAPG scheme) the derivatives of the test functions

{m (x)} do not appear in the finite element solution procedure, and hence a sig-

nificant computational saving is achieved in the numerical evaluation of the finite

element matrices.

In general, the required order of integration is dependent on the element Reynolds

number. However, a 9 x 9 Clenshaw-Curtis quadrature is still recommended to eval-
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uate the finite element matrices containing the enhanced test functions. Of course,

now that there is no need to evaluate derivatives of the enhanced test functions we

are free to choose any other quadrature and a 9 x 9 Gauss-Legendre quadrature could

be used as well. There is not much to be gained by using one or the other for expres-

sions involving the enhanced test function, however the usual 3 x 3 Gauss-Legendre

quadrature should be used for the other finite element matrices.

In the interest of computational efficiency the following formula for the Clenshaw-

Curtis or Gauss-Legendre integration order can be used:

(3 x 3 if 10-6 < max(Ahl, IBkI) < 1.0,

Integration Order = 5 x 5 if 1.0 < max(IAhl, jBk ) < 5.0, (3.33)

7 x 7 if max(JAhl, Bkj) > 5.0.

Hence, the maximum integration order is 7 x 7 and the element matrices may exhibit

spurious eigenvalues for high Reynolds number flows.

3.3.4 Exponential/Flow-condition-based interpolation (FCBI)

scheme

3.3.4.1 Test functions

In this approach we establish the test functions {qm (x)} by taking the tensor product

of one-dimensional functions based on a linear-exponential basis, equations (3.2) and

(3.3), along the element edge- and mid-lines [24].

Consider a typical 9-node rectangular element Q E Ph, shown in Figure 3-7, with

dimensions 2h and 2k as shown.

We assume the following functions along the edge- and mid-lines of the element:

for the three functions along lines 2-5-1, 6-9-8, and 3-7-4 in the variable x

#Mx) = ai (e2Aj - 1) + bi x + ci, z = 1, 2, 3 (3.34)
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Figure 3-7: Rectangular element with 9 nodes.

for the three functions along lines 4-8-1, 7-9-5, and 3-6-2 in the variable y

0i(y) = di (e 2 Biy _ 1)+ ei y + fi, i = 1, 2, 3 (3.35)

where

2Aj = Re u1  2Bj = Re U2  (3.36)

vi and v 2 are average velocities along the lines considered and the constants are

determined using the conditions at the nodes. Another option would be to let v, and

v2 be the velocities at the node at which the test functions are being constructed, in

this case we would have nine different functions in x and nine different functions in y

for a typical 9-node element. In either case, the procedures described here are equally

applicable.

Normalizing these functions to have the Kronecker delta property at the nodes we

obtain along an edge or mid-line the generic interpolation functions

(e 2Ax x x

fi(x)= h 2 A cothAh (3.37)
4 sinh2 Ah 2h 2h
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2 (e 2Ax -1) 
4 sinh2 Ah

(e 2Ax 1) x
f3 (X) = + -

4 sinh2 Ah 2h

(e 2By _I)
gi(y) = 

2 - ) _

4 sinh2 Bk 2k

2 (e 2By -1) _

4 sinh2 Bk

(e 2By _ 1) Y
g3(y)- 2 B + 24 sinh2 Bk 2k

X- coth Ah + 1
h

- coth Ah
2h

Y coth Bk
2k

k coth Bk + 1
k

- ±coth Bk
2k

where fi (x) and gi (y) are the one-dimensional interpolation functions along the x and

y directions respectively.

Figure 3-8 shows the functions for the element Reynolds numbers 10-1, 10, and

100. Note that for very small element Reynolds number these interpolations are the

usual parabolic functions and that as the element Reynolds number increases the

functions skew towards the upstream side.

A test function is now obtained by simply taking the tensor product of the edge-

line and mid-line functions established above; for example, for node 7 in Figure 3-7, we

use the normalized edge function for edge 3-7-4 multiplied by the normalized function

for mid-line 7-9-5. As an illustrative example, consider the special case when Ai = A

and Bi = B. The test functions {qm (x)} are now established by simply taking the

tensor product of the generic one-dimensional functions as follows

01

02

0 3
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(x)

(x)

(x)

(x)

f3(x) 93(Y)

fi(x) 93(y)

fi(x) gi(Y)

f3(x) gi(y)

45 (x) = f2 (x) 93 (Y)

46 (x) = fi(x) 92(y)

07 (x) = f2(x) gi(y)

08 (X) -f 3 (x) g 2(y)

09 (X) = f 2 (x) g 2 (y)

(3.43)

For distorted elements the procedures and definitions described in Section 3.2.1 apply.
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Representative values of the parameters in equation (3.15) are chosen at the geometric

center of the element mid- or edge-line under consideration.

In this approach there is no need to add a bubble function, because the tensor

product of the one-dimensional interpolation functions provides us with one. Further-

more, the bubble function obtained in this approach does respond to the flow condi-

tions over the element (see Figure 3-10), as opposed to the x 2, y2 in the LAPG scheme.

Consider the two 9 node element patch (see Figures 3-9a and 3-10a). In the case

of pure diffusion the test functions of nodes A and B are symmetric (Figures 3-9b

and 3-10b) and collapse to the usual biquadratic test function. Figures 3-9c and 3-

10c show the test functions when convection is present, for the case of flow in the

positive x direction. Figures 3-9d and 3-10d show the functions for flow at an angle,

both x and y components of velocity are present. Figure 3-9 is to be compared with

Figure 3-4, where the test functions were established by means of equation (3.24).
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Figure 3-9: Test function for node A in the two element patch in (a). In the case of
pure diffusion the test function is symmetric (b). In (c) convection is present, flow is
strictly in the positive x direction. In (d) convection is present in the positive x and
y directions, flow at a 300 angle from the x axis.
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Figure 3-10: Test function for node B in the two element patch in (a). In the case
of pure diffusion the test function is symmetric (b). In (c) convection is present, flow
is strictly in the positive x direction. In (d) convection is present in the positive x
and y directions, flow at a 300 angle from the x axis.
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3.3.4.2 Differentiation of the test functions

The differentiation of the test functions is straightforward and can be expressed in

terms of one-dimensional products as follows:

ao1  ahf 1  f 1993

8x(X) - 19x a3B y

__2 Ofi a#2f 93M(X) =9 a02 (X) = fj 99
ax Ox 19 (3.44)

Oq#3  Ofi __389

(x) = 91 (X) = fx x 9y Oy
... etc. ... etc.

Unlike the LAPG scheme where the differentiation of the test functions has to be

performed numerically using a Chebyshev grid, differentiation of the test functions is

carried out analytically and can be efficiently evaluated as products of functions as

shown above.

3.3.4.3 Finite element discretization

The finite element discretization is exactly the same as described in Section 3.3.2.3

but with the new definition for the test functions {M (x)}.

3.3.4.4 Numerical integration

For low Reynolds number flow the test functions conveniently collapse to the usual bi-

quadratics and a 3 x 3 Gauss-Legendre integration quadrature is acceptable. For high

Reynolds number flow, the test functions are more complicated and a higher order

integration scheme is needed. The required order is clearly dependent on the element

Reynolds number. However, the "full" 9 x 9 Clenshaw-Curtis or Gauss-Legendre

quadrature is recommended for the numerical evaluation of the finite element matri-

ces.

In the interest of computational efficiency and with the risk of spurious eigenvalues

in the numerical representation of the finite element matrices for high Reynolds num-
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ber flows and/or highly distorted elements, the following formula for the Clenshaw-

Curtis or Gauss-Legendre integration order can be used:

3 x 3 if 10-5 < max(Ahl, IBk) < 2.5,

Integration Order = 5 x 5 if 2.5 < max(IAhl, BkJ) < 5.0, (3.45)

7 x 7 if max(JAhl, JBkJ) > 5.0.

3.4 Inf-sup test

In this section we prove the stability of the proposed Petrov-Galerkin schemes (LAPG

and FCBI) using the inf-sup test for advection-diffusion problems proposed by Bathe

et al. [25]. The performance of a stabilized scheme can be evaluated by looking

at the results of an example problem and check if the solution contains oscillations.

However, the inf-sup test for advection-diffusion problems provides more insight than

just measuring the oscillations in the solution.

The inf-sup test is based on the one-dimensional advection-diffusion problem,

which corresponds to a constant prescribed velocity throughout the domain and pre-

scribed temperatures at both ends of the domain. The test compactly describes the

stability of the scheme as the Peclet number and element size are varied.

In the case of one-dimensional flow the LAPG and FCBI schemes can be tested

by using their element edge functions, which in both cases are linear-exponential

functions. Hence, in this section we will simply refer to the one-dimensional scheme

as the Exponential/Flow-condition-based interpolation (FCBI) scheme. For example,

for a typical 3-node element of length 2h the test functions are of the form:

(e 2Ax~1 X X
1 (x) = 2  - - - cothAh

4 sinh A 2h 2h

2(e 2 Ax-1) X
# 2(X) = - 2  - coth Ah + 1 (3.46)

4 sinh2Ah h

(e2Ax 1) x
# 3 (x) + - - - coth Ah

4 sinh2 Ah 2h 2h

62



Note that in the case of one-dimensional flow the two-dimensional FCBI test func-

tions collapse to the one-dimensional test functions in the interior of the element. This

results from the fact that the test functions in the interior of the element were ob-

tained by taking the tensor product of the edge- and mid-line functions. On the other

hand, in the case of one-dimensional flow the two-dimensional LAPG test functions

do not collapse to the one-dimensional functions in the interior of the element. This is

because they were constructed specifically to emulate local analytic two-dimensional

behavior in the interior of the element. This does not mean that the LAPG test

functions cannot respond to one-dimensional flow, it simply means that they do not

collapse to the specific form given by equations (3.46) in the interior of the element.

However, if the LAPG formulation were developed for one-dimensional flow, equa-

tions (3.46) would be obtained. An analysis of the one-dimensional advection-diffusion

problem with the FCBI scheme is presented in Appendix D.

The results of the inf-sup test are shown in Figures 3-11, 3-12, and 3-13. In these

plots h is the element length and Pe is the Peclet number. Figure 3-11 shows that as

the mesh is made coarser (we follow the curves from left to right), the inf-sup value

corresponding the Bubnov-Galerkin formulation decreases. This trend indicates that

the formulation does not pass the inf-sup test. The formulation is predicted to become

unstable as the mesh is made coarser. This instability is displayed by oscillations in

the solution. Figure 3-11 also shows that as the mesh is made finer the inf-sup

value corresponding to the Bubnov-Galerkin formulation approaches a fixed value

of logl(inf-sup) = 0.5. This indicates that, as already expected, the formulation

becomes stable as the mesh is refined. Figure 3-11 also shows that as the mesh is

refined, the inf-sup value corresponding to the FCBI formulation is bounded from

below. This indicates that the formulation passes the inf-sup test.

Figure 3-12 shows that as the Peclet number increases, the inf-sup value of the

Bubnov-Galerkin formulation decreases unboundedly. This means that the formula-

tion does not pass the inf-sup test, which agrees with our earlier observation. Figure

3-12 also shows that as the Peclet number increases, the inf-sup value of the FCBI for-

mulation is bounded from below. This means that the formulation passes the inf-sup
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Figure 3-11: Inf-sup value curves as the mesh is coarsened for Pe = 100.

test.

In Figure 3-13 we plot the inf-sup curves corresponding to several stabilized fi-

nite element formulations. Figure 3-13 shows that as the mesh is made coarser

the inf-sup value for the Exponential/Flow-condition-based interpolation (FCBI),

Galerkin/Least-Squares (GLS), and Full Upwind (FU) formulations is bounded from

below, meaning that they pass the inf-sup test. We can see from the plot that the

FU formulation introduces the largest amount of artificial diffusion, while the FCBI

scheme introduces little or no artificial diffusion. We also note that the FCBI scheme

is stable but small oscillations occur in the solution because the method has too little

artificial diffusion. This can be seen by comparing the curve corresponding to this

method with the one corresponding to the GLS formulation, which gives a nodally

exact solution.
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Figure 3-12: Inf-sup value curves as Pe is increased for 16 equal sized elements.
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Figure 3-13: Inf-sup value curves as the mesh is coarsened for Pe = 10.
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Chapter 4

Numerical examples

4.1 Introduction

In this chapter we solve several test problems with the discretization schemes de-

scribed in the previous chapter. In the absence of a deep theoretical analysis of the

discretization schemes, it is very important to solve well-chosen test problems. The

numerical problems are designed to test the numerical stability of the schemes at

low and high Reynolds number. We also evaluate their accuracy by comparing the

numerical results with benchmark solutions when these are available.

Before going into the presentation and discussion of the numerical results it is

instructive to briefly describe the numerical solution procedure of the non-linear sys-

tem of equations resulting from the application of any of the discretization schemes

described in the previous chapter. Upon linearization of the convective term in the

Navier-Stokes equations, either by a fixed point iteration scheme or a Newton Raph-

son scheme, we face the factorization of an indefinite, non-symmetric, sparse, and

banded matrix. The absence of pressure in the continuity equation results in zeros

along the main diagonal (which makes the matrix indefinite). This forces us to use

some kind of pivoting for numerical stability during the factorization process. We

also note that the resulting matrix is sparse (which will result in less storage) and

banded (meaning that all the nonzero elements are close to the diagonal). Finally

the matrix is non-symmetric. Here we use Banded Gauss Elimination with Partial
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Pivoting (BGEPP) to factorize the resulting matrix. To minimize the bandwith we

apply a Reverse Cuthill-McKee permutation before the BGEPP. Further details on

the numerical solution of sparse linear system of equations can be found in [26].

4.2 Distorted Elements

An important requirement for the discretization schemes is that they can be depended

upon when the elements are used in geometrically distorted form. To evaluate the

capability of the discretization schemes we consider in Figure 4-1 the solution of

laminar flow in a duct, 0 < x < 2, 0 < y 5 1, with highly distorted elements. A

parabolic velocity profile is specified at the inlet, zero pseudo-tractions are specified

at the outlet, and the velocities are set to zero at the horizontal walls.

U=0,v=0

U =
V 0

f S0

fS 0Y

U =0, V=0

Figure 4-1: Geometry, mesh, and boundary conditions for flow in a duct.

Excellent results are obtained with the LAPG, S-LAPG, and FCBI formulations

with either 9/3 or 9/4-c elements. The computed pressure drop is exactly equal

to the analytic pressure drop for all Reynolds number considered from 1 x 10- to

1 x 106. Figure 4-2 shows the smooth pressure contours obtained using the FCBI

formulation with 9/4-c elements for a range of Reynolds numbers up to 1 x 106. There

is definite improvement over the Bubnov-Galerkin formulation where, even for the

simple flow conditions considered here, a solution can only be obtained up to Reynolds

number 1 x 104 . The excellent results also validate the procedures to establish the
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test functions for geometrically distorted elements outlined in the previous chapter

and discussed in more detail in Appendix B.

Re=1 x 10 -3 Re=1 x 10 2

Re=1 x 10 4
Re=1 x 10'

Figure 4-2: Pressure contour plots for
FCBI scheme using 9/4-c elements.

Re = 1 x 10-3, 1 x 102, 1 x 10 4, and 1 x 106.

On the other hand, the FAFE scheme does not perform well when the elements are

used in such highly non-orthogonal distorted form. This was to be expected since in

the FAFE scheme the momentum equations are discretized using the finite analytic

approach, which requires that the mesh have the highest degree of orthogonality

possible. A solution is obtained for Reynolds number up to 1 x 106, however the

pressure is not well predicted for Re > 1 x 102.
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4.3 Lid-driven cavity flow

The lid-driven cavity flow problem has been used extensively as a test problem be-

cause of its complex flow physics and simple geometry. The incompressible fluid is

bounded in a square enclosure and the flow is driven by the uniform translation of

the top boundary. The flow configurations generated in the cavity show rich vortex

phenomena at many scales depending on the Reynolds number. These recirculating

regions make this an interesting and challenging problem. A unit square with a non-

uniform 30 x 30 element mesh, shown in Figure 4-3, is used for the computations.

Since velocity is prescribed on the entire boundary of the cavity, the pressure is unde-

termined unless it is prescribed at one point. We prescribe zero pressure at the lower

right corner of the cavity.

U = Us, V 0

u= 0
v= 0

u= 0
v= 0

U =0, v= 0

Figure 4-3: Mesh and boundary conditions for the lid-driven cavity problem.

Most published numerical solutions of two-dimensional cavity flows use a vorticity-

stream function formulation. Among the previous research, Ghia et al. [27] obtained

numerical solutions up to Reynolds number 1 x 10' with a 257 x 257 grid. Their work

represents the most comprehensive study of the 2-D cavity flow to date.
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Here, we perform a steady state analysis for Reynolds number up to 1 x 104

and continue with an unsteady analysis up to a Reynolds number of 1 x 106. The

four schemes perform extremely well for the steady state analyses up to Reynolds

number 1 x 10 4 . Figure 4-4 shows plots of the streamlines for Reynolds number up

to 1 x 104 computed with the LAPG scheme using 9/3 elements. It is apparent that

the flow structure is in good agreement with Ghia et al. These plots give a clear

picture of the overall flow pattern and the effect of Reynolds number on the structure

of the recirculating eddies in the cavity. In addition to the central vortex, a pair

of counter rotating eddies of much smaller strength develop in the lower corners at

Re = 400. At Re = 5000, a third secondary vortex is observed in the upper left

corner. For Re = 1 x 104 a tertiary vortex appears in the lower right hand corner. As

Re increases, from Re = 100, the primary vortex center moves towards the right and

becomes increasingly circular. This center moves down towards the geometric center

of the cavity as Re increases and becomes fixed in its x location for Re > 5000.

In Figures 4-5 and 4-7 we compare the horizontal and vertical velocity profiles

through the vertical and horizontal mid-sections of the cavity obtained by the sim-

plified LAPG (S-LAPG) scheme using 9/3 elements with the benchmark solution of

Ghia et al. [27]. It is clear that the numerical results are in good agreement with

Ghia et al. Figures 4-6 and 4-8 show the pressure profiles through the vertical and

horizontal mid-sections of the cavity respectively. In these figures and in the figures

throughout the chapter, we plot dimensionless velocities and pressure (see Chapter

2); i.e., the velocities are normalized by a characteristic velocity U which we set to

unity and the pressure by p U2 .

As the Reynolds number is increased above 1 x 10', the flow becomes unsteady.

The only scheme that did not become numerically unstable up to Reynolds number

1 x 106 was the FAFE scheme. Figure 4-9 shows plots of the instantaneous velocity

and pressure fields predicted by the FAFE scheme for Reynolds number 1 x 106. At

this Reynolds number the core of the primary vortex changes its shape and rotates

with time. Figure 4-10 shows instantaneous horizontal and vertical velocity profiles

through the vertical and horizontal mid-sections of the cavity. Figure 4-11 shows the
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instantaneous pressure profiles through the vertical and horizontal mid-sections of the

cavity.

Table 4.1 summarizes the relative performance of the four schemes in solving the

lid-driven cavity problem using the mesh shown in Figure 4-3. The column in the table

labeled BG denotes the Bubnov-Galerkin formulation. The table is representative of

analyses performed with both the 9/3 and 9/4-c elements. For steady state analyses

"/ " denotes convergence to within a tolerance of 1 x 10-6 and "-" denotes failure

to converge due to numerical instabilities. Convergence is based on the normalized

norm of the residuals in velocities: IjAuhfl/I1uhI

Figure 4-4: Contour plots showing streamlines for Re = 400, 1000, 5000,
LAPG scheme using 9/3 elements.

and 1 x 10 4 .
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the cavity: - computed,
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A Ghia et al. [27]. S-LAPG scheme using 9/3 elements.
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Figure 4-6: Normalized pressure profiles along the vertical mid-section of the cavity.
S-LAPG scheme using 9/3 elements.
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(a)

Figure 4-9: Vector velocity field (a) and
1 x 106. FAFE scheme using 9/4-c elemei

(b)

pressure contours (b) for Reynolds number
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Figure 4-10: Normalized horizontal (a) and vertical (b) velocity profiles along the
vertical and horizontal mid-sections of the cavity for Reynolds number 1 x 106 . FAFE
scheme using 9/4-c elements.
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mid-sections of the cavity for Reynolds number 1 x 106. FAFE scheme using 9/4-c
elements..

Table 4.1: Comparison of the formulations for the lid-driven cavity.
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Reynolds Number FAFE LAPG S-LAPG FCBI BG
1 x 102 V V
1 x 103 V V/ V
1 x 10 V V V V
1 x 10 5  V*- -*

1 x 10 6 V * -_-- --

*Unsteady behavior.



4.4 180' channel flow

The incompressible fluid flow in a bend of outer diameter of 21 and an inner diameter

of 19 is considered. A parabolic velocity profile is specified at the inlet, zero pseudo-

tractions at the outlet, and zero velocities at the walls. A 15 x 150 element mesh

is used for the computations, the mesh is non-uniform along the width and uniform

along the length of the bend. Figure 4-12 shows the geometry and a partial view of

the mesh.

u=0
V =VS

Figure 4-12: Geometry and partial view of the mesh for flow in a bend.

Of particular importance in the solution of this test problem is the pressure distri-

bution along the length of the bend. We perform a steady state analysis for Reynolds

number up to 1 x 106. The pressure distribution along the outer and inner walls

obtained by the LAPG scheme using 9/4-c elements is compared with the Bubnov-

Galerkin formulation in Figure 4-13. No solution was obtained with the Bubnov-

Galerkin formulation for Re > 1 x 103.

Table 4.2 summarizes the performance of the four schemes in solving the 1800

channel flow. The only scheme able to converge to a solution at Reynolds number

1 x 106 was the FAFE scheme. Both the LAPG and S-LAPG scheme could only go

as high as Re = 1 x 105. The FCBI scheme showed its superiority over the classic

Bubnov-Galerkin formulation by going above Re = 1 x 10'.
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Figure 4-13: Normalized pressure profiles for 1800 bend flow: computed, -

Bubnov-Galerkin. LAPG scheme using 9/4-c elements.

Table 4.2: Comparison of the formulations for the 1800 channel flow.
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Reynolds Number FAFE LAPG S-LAPG FCBI BG
1 X 102 V V V
1 x 103 V v V V
1 x 10V V V
1 x 10 5

1 x 10 6 V- -



4.5 S-duct channel flow

This test problem is taken from Hendriana and Bathe [5]. The geometry, mesh, and

boundary conditions are shown in Figure 4-14. The solution of this test problem

displays complex physics in a simple geometry. The incompressible fluid enters the S-

duct with a parabolic velocity profile, it is forced through a rough 90 degree turn, and

then squeezed into another rough 90 degree turn. The flow configurations generated

at the corners of the duct show vortex phenomena at many scales depending on the

Reynolds number. The recirculating regions, rough 90 degree turns, and squeezing of

the fluid make this an interesting and challenging problem.

u=0, v=O f=0

f =0y
u=0 u=0, v=O
v=0

u=O
u=O, v=O v=O

U =
v=O

U =0, v =0

Figure 4-14: Geometry, mesh, and boundary conditions for flow in the S-duct.

Hendriana and Bathe [5] tested several upwind finite element schemes, including

the SUPG [3] and GLS [4] schemes, for the high Reynolds number solution of this

test problem. Only a simplified version of the SUPG scheme was able to go above

Re = 1000. Here, all four schemes were able to go past Re = 1000. We emphasize,

that the mesh shown in Figure 4-14 is the same one used in the computations of

Hendriana and Bathe.

Figures 4-15 and 4-16 show plots of the velocity vector field and pressure contours

for Reynolds number up to 1 x 106 computed with the FAFE scheme. These plots

give a clear picture of the overall flow pattern and the effect of Reynolds number on
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the structure of the recirculating eddies at the two lower and two upper corners of

the duct. As the Reynolds number increases the strength of the recirculating eddies

increases and the primary flow pattern changes significantly, especially at the second

90 degree turn where recirculation occurs near the exit of the duct. Even though

the mesh in Figure 4-14 is not fine enough to resolve every detail of the flow, at

Re = 1 x 106, a tertiary vortex is observed in the lower corner of the duct.

In an effort to obtain a more detailed flow solution we consider in Figure 4-17 a

refined and graded version of the mesh shown in Figure 4-14. Again, we solve for

the flow in the S-duct using the FAFE scheme. Vertical velocity and pressure profiles

through section A-A of the S-duct are shown in Figures 4-18 and 4-19 for a range

of Reynolds number up to 1 x 106. Horizontal velocity and pressure profiles through

section B-B of the S-duct are shown in Figure 4-20 and 4-21 for a range of Reynolds

number up to 1 x 106. The figures clearly show several flow separations at the two

cross-sections as the Reynolds number is increased.

Figure 4-22 shows the vector velocity field at the exit of the S-duct for a range

of Reynolds number. We notice from this figure that there is inflow at the exit of

the S-duct when high Reynolds number flow is considered. The fact that the FAFE

scheme did not become numerically unstable when inflow occurred is encouraging, i.e.

the scheme is not overly sensitive to where we specify the outflow boundary condition

or equivalently to where we choose to truncate the computational domain, see for

example the remarks on outflow boundary conditions of Sani and Gresho [28].

The FAFE scheme was the only one able to go as high as Re = 1 x 106 without

any changes to the mesh shown in Figure 4-14. The LAPG scheme went as high as

Re = 1 x 105, however, the mesh had to be refined by a factor of two for computations

with Re > 1 x 103. The S-LAPG was stable up to Re = 1 x 104 but mesh grading was

necessary for Re > 1 x 103. The FCBI scheme could only go up to Re = 1 x 103, mesh

refinement, grading, and/or enlarging the exit of the S-duct did not help. Table 4.3

summarizes the experiences with the discretization schemes applied to the mesh in

Figure 4-14.
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Re=1000

Figure 4-15: Vector velocity field for Reynolds number 400,
1 x 106. FAFE scheme using 9/4-c elements.

Figure 4-16: Pressure contours for Reynolds
FAFE scheme using 9/4-c elements.

1000, 1 x 104, and

number 400, 1000, 1 x 104 , and 1 x 106.
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Figure 4-17: Refined and graded mesh for flow in the S-duct.

Table 4.3: Comparison of the formulations for the S-duct channel flow.

Reynolds Number FAFE [LAPG I S-LAPG [FCBI BG

1 x 102 V V N -V/

Ix 103 V
1 x 10 4  V V
1 x 10 5  V V/
1 x 10 6  V/ - -

*Refining the mesh by a factor of two.
tRefining the mesh by a factor of two and grading.
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Figure 4-18: Normalized vertical velocity profiles along section A-A of the S-duct.
FAFE scheme using 9/4-c elements.
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Figure 4-19: Normalized pressure profiles along section A-A of the S-duct. FAFE
scheme using 9/4-c elements.
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Figure 4-20: Normalized horizontal velocity profiles along section B-B of the S-duct.
FAFE scheme using 9/4-c elements.
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Figure 4-21: Normalized pressure profiles along section B-B of the S-duct. FAFE
scheme using 9/4-c elements.
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Velocity vector field at the exit of the S-duct for a range of Reynolds
scheme using 9/4-c elements.
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4.6 Transient flow past a circular cylinder

To test the non-stationary formulation we consider transient flow past a circular

cylinder. The computational domain is a rectangle, -5 < x < 20, -5 < y 5, with a

cylinder of unit diameter placed at (x, y) = (0, 0). The mesh consists of 1200 elements

and is shown in Figure 4-23. The boundary conditions for the problem include an

imposed value of unity for the x velocity component at the inflow and at the top and

bottom boundaries, at these boundaries the y velocity component was specified to be

zero. Zero pseudo-tractions are specified at the outflow boundary and zero velocities

around the cylinder. We consider flow at a freestream Reynolds number of 100 and

compare our results with the benchmark solution of Engelman and Jamnia [29]. The

transient time integration is performed using an implicit predictor-corrector scheme.

The corrector step uses the second order accurate and non-dissipative trapezoidal

rule while the predictor step is a second order Adams Bashford scheme. The scheme

allows for a variable time increment at each time step, the increment being determined

by controlling the local time truncation error (LTTE) at each time step. Complete

details of the time integration scheme can be found in [30].

For this computation the LTTE between time steps was allowed to be no greater

than 5 x 104 . At each time step the non-linear system of algebraic equations was

solved using a Newton-Raphson solver. Because a predictor-corrector scheme is being

used and the LTTE is small, the predictor is sufficiently accurate that at most three

iterations of the non-linear solver were required to obtain convergence at each time

step. A convergence tolerance on the normalized norm of the residuals in velocities

(flAuh1I/fluhH) of 1 x 10-5 was used to terminate the non-linear iteration scheme.

The shedding period computed using the S-LAPG scheme with 9/4-c elements

was T = 5.82, which compares well with the benchmark value of T = 5.80. All

other formulations gave results within 2% of this value. The Strouhal number follows

directly as St = 0.172, which is defined as St = D/U T where D is the diameter of

the cylinder and U is the characteristic velocity. Figure 4-24 shows the instantaneous

velocity and pressure contours after the periodic regime is reached.
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Figure 4-23: Geometry and mesh for flow past a circular cylinder.

(a)

(b)

Figure 4-24: Contour plot of the x velocity component (a) and pressure field (b).
S-LAPG scheme using 9/4-c elements.
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Chapter 5

Conclusions

In this work we have presented four finite element formulations for the solution of two-

dimensional high Reynolds number incompressible fluid flows. The formulations use

high-order elements - the 9/3 or 9/4-c elements - which are optimal in enforcing the

incompressibility constraint. The essential idea in developing the formulations was

to incorporate local analytic behavior in the numerical solution of the Navier-Stokes

equations. This was achieved in different manners for the four formulations.

In the Finite Analytic/Finite Element (FAFE) formulation we directly use the

local analytic solution of the advection-diffusion equation to discretize the momentum

equations and enforce the incompressibility constraint in a weighted residual manner.

Evaluation of the scheme in the solution of several test problems showed that the

scheme is superior to any of the other schemes developed here, provided that the

mesh has a high degree of orthogonality. This condition is a direct consequence of

the way in which the discretization procedure was derived, i.e. the separation of

variables procedure is only valid in an orthogonal coordinate system. The scheme is

fully effective when the mesh is orthogonal and deteriorates as orthogonality is lost.

Note that the mesh could be curvilinear but at the same time orthogonal. When

the orthogonality condition was met the scheme consistently solved problems with

Reynolds number as high as 1 x 106 using fairly coarse meshes.

In the Local Analytic/Petrov-Galerkin (LAPG) formulationwe endowed the test

function with properties from the local analytic solution. This allowed the test func-
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tion to respond to the velocity field so as to give more weight to upstream nodes,

the amount of weight and the upstream direction being completely determined by

the local analytic solution. However, some difficulties were encountered in differen-

tiating the test functions and subsequently integrating expressions involving the test

functions. To alleviate this problem a simplified version of the LAPG (S-LAPG) was

developed. In this formulation the test functions were taken to be the sum of two

functions: the enhanced test functions and biquadratic test functions. In developing

the variational form of the momentum equations, the differentiation was absorbed by

the biquadratic functions but the effect of the enhanced test functions was retained

without the need of differentiating. Both formulations performed fairly well in the

solution of the test problems at high Reynolds number, furthermore, the formulations

had no problems in dealing with distorted meshes.

The Exponential/Flow-condition-based interpolation (FCBI) scheme arose from

efforts to simplify the process by which the test functions are endowed with local

analytic properties. In this scheme the test functions are simply taken to be the

tensor product of one-dimensional linear-exponential functions along the edge- and

mid-lines of the element. The evaluation and differentiation of the test functions is

straightforward and can be done efficiently as products of the one-dimensional test

functions. The procedure is simple and a natural extension of a discretization scheme

known to be optimal for low Reynolds number fluid flows. The FCBI scheme did

not perform as well as the other schemes, however it showed a clear advantage over

the classic Bubnov-Galerkin formulation and is the strongest candidate for future

mathematical analysis.

We remark that the evaluation of the schemes was only based on the solution of

the test problems presented in Chapter 4. This work can be classed as the numeri-

cal experimentation phase and before an effective scheme can be claimed a rigorous

mathematical study of the schemes is required. The schemes presented in this work

have a sound mathematical basis and performed well in the numerical experimenta-

tion phase. No mathematical or numerical studies of convergence and accuracy were

performed and is clearly a necessary next step before any of the schemes can be used
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confidently.

Recommendations for future research are:

* The development of efficient techniques with a strong mathematical basis to

endow the test functions with local analytic properties.

" The development of specialized quadrature rules for the efficient and accurate

evaluation of expressions involving the derivatives of the enhanced test func-

tions.

" Further research on the implementation of the schemes for the case of geometri-

cally distorted elements. The procedures suggested in Chapter 3 and Appendix

B, for some flow conditions, lack physical meaning.
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Appendix A

The advection-diffusion equation

A.1 Solution by separation of variables

In this appendix we give details of the procedures by which an analytic solution to

the two-dimensional advection-diffusion equation can be obtained by the method of

separation of variables. Consider the two-dimensional advection-diffusion equation for

a generic transported scalar q(x, y), in the rectangular domain shown in Figure A-1,

+ o2= 2A + 2B o +S (A.1)aX2 ' y2 1X 19Y

where A, B, and S are known constants. In Figure A-1 we identify the nodes using

compass notation, i.e. north, south, east, west, northwest, etc., this will be an aid

in the presentation of the solution procedures. Note that in this appendix 4(x, y) is

used to denote a generic transported scalar, not to be confused with {0 (x)} which

are reserved to denote the enhanced test functions in the main body of the thesis.

We construct appropriate boundary data by studying the natural solution for

equation (A.1):

S
qfx, y) = Co e 2 (Ax+By) + C1 (Ay - B) +C 2 -- (Ax + By) (A.2)

2 (fA2+ B2)

The first three terms in the solution satisfy the homogeneous part of (A.1), the last
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Figure A-1: Rectangular element with 8 boundary nodes.

term is the particular solution of (A.1). Next we define q as

s =P (Ax + By) (A.3)
2 (A 2 +B 2 )

Substituting for # from equation (A.3) into equation (A.1), we see that q satisfies the

homogeneous equation

( + =2A +2B (A.4)
ax2 Ox ay

The natural solution (A.2) suggests that an exponential and linear function in

terms of three nodal values on each boundary may be employed to obtain the ap-

proximated boundary condition for the element considered. For example the north

boundary condition where y is fixed can be approximated by

ON(X) = aN (e 2Ax - 1) + bNX + CN (A.5)
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where
ONE + ONW -2NC

aN 4 sinh 2 Ah

ONE - NW - coth Ah ( NE + NW - 2 NC) (A.6)
bN 2h

CN NC

The boundary conditions for south, east, and west sides can be similarly approx-

imated by exponential and linear boundary functions as follows:

qs(x) = as (e2Ax - 1) + bsx + cs

OE(Y) = aE (e2 By - 1) + bEy + CE

qw(y) = aw (e 2 By - 1) + bwy + cw

where the coefficients as, bs, etc. can be expressed in terms of the nodal values along

each boundary in a way similar to that for aN, bN, and CN in equation (A.6). Next

we introduce a change of variable

0 = w eAx+By (A.7)

and equation (A.4) takes the following form:

wxx + wy, = (A 2 + B 2 ) w (A.8)

subject to the "transformed" boundary conditions

WN(X) = e-Bk [aNe Ax + bNxe Ax + (CN - aN) e-Ax (A.9)

ws(x) = eBk [aseAx + b -Ax + (Cs - as) e-Ax (A.1)

WE(Y) eAh [aEeBy + bEY By + (CE - aE) e-By] (A.11)

ww(y) = eAh [aweBy + bwye-By + (cw - aw) e-By] (A.12)
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Equation (A.8) can be solved by the method of separation of variables, by fur-

ther dividing it into four simpler problems with each of them containing one non-

homogeneous and three homogeneous boundary conditions. The solution would then

be a superposition of the solutions of the four simpler problems:

w(X, y) = wN(x, y) + wE(x, y) + wE(x, y) + ww(x, y) (A.13)

Consider the first of these four problems, which can be stated as:

WN N A2 + B2 N (A.14)

subject to the following boundary conditions

wN(x, k)= WN(X)

wN(X, -k) = wN(h, y) = wN(-h, y) = 0

We proceed by the method of separation of variables and let

wN(x, y) = g(x)(P(y) (A.15)

then equation (A.14) becomes

2 +d- -= (A2 + B 2 ) go (A.16)

1 d2 g __ d2

= (A2 + B 2 ) - - -A (A.17)
g dx2i = dy2

Since we want g(x) to be zero at +h and -h, g(x) is the solution of the homogeneous

boundary value problem. So we have

d2g
dx2 = -Ag, g(-h) = g(+h) = 0 (A.18)
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and

d y p (A2 + B2+A), (A.19)<p(-k) = 0

The x dependent problem is the homogeneous boundary value problem and will

be used to determine the eigenvalues A. Equation (A.18) has a general solution of

the form:

g(x) = c1 cos VAX(x + h) + c2sinVN(x + h) (A.20)

Applying the homogeneous boundary conditions to determine the constants, we have

that:

g(x= -h) = ci cos(0) = 0, = c = 0

g(x= +h)= c2sin V2h = 0, - f- = ,
2h'

n = 1, 2, 3, ...

= s n7r(x + h)
gn(x) =2h n = 1 2, 3, ... (A.23)

Next we solve equation (A.19),

d2 p A2 + B 2 +
(fllV\ 

2]
2h)

(A.24)

whose general solution is of the form

p(y) = a, cosh A2 + B 2 + 2(y + k)

(A.25)
I ir~qr-~ 2

+ a2 sinh V A2 + B 2 + (j ) (y + k)

Applying the homogeneous boundary condition to determine one of the constants, we

have that:

Ay = -k) = a, = 0
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SPn (y) = a2 sinh A2 + B 2 + (y + k), n = 1, 2, 3, ... (A.27)

Thus the solution to (A.14) has the following form:

wN(x,ny) =
n=1

Ansin n9 r (x + h) sinh A2 + B 2 + ()(y+k)

where the coefficients An are yet to be determined.

Evaluating (A.28) at y = +k will determine the coefficients An:

w N (Xk)

00

WN(X>Z

n=1

n2in h)sinh A 2 +B 2 + (k

then

An sinh A2 + B 2 + (")Y(2k) wN (x)sin y(x + h)dx

An= sIWN()sin + h)dx
h sinh 2pAnk _h 2h

(A-31)

(A.32)

where

y B=2 + 2 h

Evaluating An is not a difficult task, since the integrals can be evaluated analyti-

cally. Inserting for WN from equation (A.9) into equation (A.31) yields the following

expression for An:

-Bk

An sinh 2[pk [aNeOn + bNheln + (CN - aN) e2n] (A-33)

where

e0 = f eAx sin n(x + h)dx
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e-1n I xe- sin (x + h)dx
ein ^2 sh 2h

=~ If jeAx sin n(x+ h)dx

enh = -A - "e-~nAh]= (Ah) 2 + (Anh)2 [e

ein = 2(Ah) (Anh) 2 Ah- (-l)ne-Ah
[(Ah) 2 + (Anh)2

- Anh _^ Ah+ 1n-
(Ah) 2 + (Anh) 2 [e (

e2n = Anh [eAh - ( )e-Ah]
(Ah)2 + (IAnh)2

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

where
nrr

An = 2h

and the coefficients aN, 6 N, and CN are given in equation (A.6).

(A.40)

This concludes the first of the four problems. Similar analysis is needed for each

of the four problems. The pseudo-solution, w(x, y) from equation (A.13), has the

following form:

00

w (x, y) = C?' sinh [t~h(Y + k)] sin
n=1

+E

n=1

[A h(x + h)]

Cn sinh [1h (y - k)] sin [Ah (x + h)]

Cn sinh [[ik(x + h)] sin [Ak(y + k)]

Cn sinh [I(X - h)] sin [Ak(y + k)]
n=1
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with

--Bk

C si- ( [aNeOn+ bNh e 1n + (CN - aN) e2. (A.42)n sinh (2phk) a

eBk

sinh Q [aseon + bsh ein + (cs - as) e2n] (A.43)
sinh (-2pjhk)

-Ah

C sinh (2 h) [aEe3n+ bEk e 4n + (CE - aE) e 5.] (A.44)

hAh awe3 n + bwk e4 n + (cw - aw) e 5n] (A.45)
n sinh (- 2pkh) [

and the (x, y) can be immediately obtained from equation (A.7).

Next we develop expressions for 0(0,0) = 00, i.e. the local analytic solution to

equation (A.4) evaluated at point P, (x, y) = (0, 0), in Figure A-1. At point P, the

sine functions in equation (A.41) can be easily decomposed as follows:

snn7r 0 if n = 2m, A.6sin (~ = {'(A.46)
( 2 -(-1)"' if n = 2m - 1.

Since we are interested only in the non-zero contributions, equation (A.41) can can

be simplified considerably. Each of its four contributions can now be written as:

w N = e-Bk [ ( - E 2 Ahcoth Ah (e-Ah$p + eAh4Nw

+ (2Ahcoth Ah cosh AhE 2) ONC (A.47)

Ws eBk [ ( - E 2Ahcoth Ah) (e-AhSE + e AhqSw)

+ (2Ahcoth Ah cosh AhE 2) Osc] (A.48)

E = -Ah E 2Bkcoth Bk (e~k ONE + Bk SE

S(2Bkcoth Bk cosh BkE E (A.49)
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ww e Ah
(e~Bkq$NW + eBkqSW)

+ (2Bkcoth Bk cosh BkE2) OwC]

where the following definitions apply:

00-(-1)"' (Ah h)
Ei Z

m=1 [(Ah)2 + (Ah h)2] cosh (pIhk)

Ah (2-1n 2h ' Pm VA2±B2+(A)m

and similarly
00

E =Z
m=1

A km

cosh(pkh)
[(-B)" (A k)]

[(Bk)2 +( Akk)2

(2m -1)7r k
kk ' [VmA2±B2±+(Amk

Grouping like terms and realizing that 0(0, 0) = qO = w(0, 0), we can write:

=SW SW + aSE ISE + aNE NE + aNW NW (A.53)

+ asc c sc + ZEC $EC + aeNC dNC + awC WC

where the coefficients are

s e Ah+BkD 0

a 0 E =e-Ah+BkDo

NE = -Ah-BkDo

a0Nw = e Ah-Bk Do

asC = eBkD1

0E 0-AhDawC = e^hD2

a0= e-Bk D,

WCx~v Ah D

+ E') - Ah coth AhE 2 - Bk coth BkE2
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with

(A.51)

with

(A.52)

with

(A.54)

Do = 1 (A.55)

- E2Bkcoth Bk)



D, = 2Ah coth Ah cosh AhE 2  (A.56)

D2= 2Bk coth Bk cosh BkE' (A.57)

Since = 1 and q= -Bx + Ay are solutions of equation (A.4), and both of them

can be represented by the exponential and linear boundary functions (A.5), we use

the solutions to obtain functions of the infinite series analytically:

1
- (E, + EI) (A.58)
2 4 cosh Ah cosh Bk

,-E( h 2 Ak tanh Bk - Bhtanh Ah
2 2 k 4AkBk cosh Ah cosh Bk

Note that now we are left to evaluate only one series summation, E 2 or E'.

For the general case S # 0, i.e. q $ @, the local analytic solution can be obtained

by substituting 4 of equation (A.3) into equation (A.53), to obtain

0" = asw OSW + aSE OSE + aNE ONE + CNW ONW
S S N(A.60)

+asC sC +aEC #E + NCC ONC+ o WC OWC - af S

where

0a 1 (Ahtanh Ah + Bk tanh Bk-
2 ( A2 + B2)

4 cosh Ah cosh Bk [(Ah)2E 2 + (Bk)2E] (A.61)

A.2 Interpolation procedures

Evaluation of the local analytic solution at any other point requires the evaluation

of additional series and these evaluations could become computationally inefficient

and/or numerically ill conditioned. To compute the local analytic solution at any

other point we introduce the following approximation: we translate the origin to the

point of interest, construct a smaller rectangular element, interpolate necessary values

using the natural solution (A.2), and use equation (A.60) to evaluate the solution at
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that point. Consider the case 0 < x < h, 0 < y < k, with hE = h - x, hW = 2h - x

and hN = k - y, hS = 2k - y, shown in Figure A-2 as an example.

y1

hN
NW NW* NC NE

WC WC* EC

sW* _ SC* sE* (

SW Sc SE

hw hE

Ix

Figure A-2: Rectangular element showing translation of axis.

A smaller rectangular element of width 2hE x 2hN and with interior point Q
located at the center is drawn as shown. Equation (A.60) can then be written in

terms of nodal stared values on the smaller rectangular element as follows

Q W OSW + ±SE OSE + aNE ONE + CNW ONW

+ aSC ± OEC CEC + aC CNC ± 0WC CC - aS

(A.62)

where the coefficients are defined in equations (A.54) and (A.61), and used with

h = hE and k = hN. If suitable interpolation functions are employed to approximate

the unknown stared values in terms of known values at the boundary, equation (A.62)

can be used to obtain the solution at point Q.
Although there are several interpolation functions that could be used to approx-

imate the stared values, the same exponential and linear functions suggested by the

natural solution (A.2) are employed as interpolation functions to obtain the unknown

values on the smaller rectangular element. For example the north boundary condition
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is now approximated by

NN(X) = a* (e 2Ax - 1) +i b*x + cN (A.63)

where

a hwONE + hEONW - (hE + hw) kNC
N hw (e2AhE - 1) + hE (e2Ahw - 1)

b*- (e- 2 Ahw _1) (ONE - kNC) + (e 2 AhE - Nw- NC) (A.64)
N hw (e2AhE - 1) + hE (e2Ahw - 1)

CN =NC

The interpolated stared value 0*w can be obtained by simply evaluating the

boundary function (A.63) at x = -hE, to obtain

NW = (s - i) NE + 9ONW + (2 - s - 9) ONC (A.65)

where
hw (e2AhE+ e - 2 AhE -2) hE

8 = hw (e2AhE - 1) + hE (e2Ahw - 1)' 8 hw (A.66)

Similar exponential and linear boundary functions can also be employed to obtain

the other stared values. By substituting the interpolated values into equation (A.62)

we obtain the local analytic solution at point Q.

OQ = aSw OSw + aSE OSE + NE ONE + NW ONW (A.67)

+ SC / SC + aEC IEC + aNC ONC + OWC OWC - cef S
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where

G asw = 9-aswGO~St =

G aSE = taSE + (S - 1)cSW

G ONE = aNE + (S - 1) aW + (t - 1) aSE + (S 1) (t 1) aSW

G0aNW S 9NW +(t 1)aSW

G csc =t oSc +f (2 - s -. 9) asw

G ONC = a0C +S( C - ) Nw+ - SW

Gwc = wc E-t- w

G = 1 - (2 - s - E) cY ( - 2 - t - acc

- ( 2 - s - )) (2 - t - )) w

and
= h (e2AhN + -2AhN 2) hN (

G a = tEA.8

h ( e2 AhN - 1) + hN e 2Ahs - 1)' 

Expressions for the cases hE > hw and/or hN > hS can be easily constructed by

renaming nodal points. In this fashion we can compute the local analytic solution at

any point on the element.
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Appendix B

Curvilinear coordinates

In practical implementations of the finite element method, the test and trial functions

are constructed, differentiated, and integrated in a mapped space. In this appendix

we develop tools to construct the local analytic solution in this curvilinear space. Note

that in the following we will use u(i) to denote the cartesian velocity components,

superscripts and subscripts will be reserved for contravariant and covariant compo-

nents respectively unless otherwise stated. Superscripts will be used for coordinate

components unless otherwise stated.

Our focus is not to present a detailed analysis of vector and tensor operations in

the curvilinear space, but rather to review and to use available results. To this end

we repeatedly refer to the work of Chung [31] and Richmond et al. [32] throughout

this appendix.

In general, orthogonal coordinates are not the most convenient or efficient for

numerical solutions. One can introduce an analytic or numerical transformation which

simplifies the computational domain. We seek a transformation from the orthogonal

coordinate system (Xi), in which the geometrically distorted element is located, to a

simple square domain with equal grid spacing, which we take as the bi-unit square

[-1,1] x [-1, 1], in the computational space (f).

We show that the local analytic coefficients can still be used in this space, but
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with the following new definitions for the independent parameters:

11

alm

A = a'

2am = Pe u(n)
axn

1h = 1
V--I1

2

B =ap

108
- (Jg"flP)

J8P

k = 1
Vg22gp

B.1 Basic Definitions and Properties

We consider a proper transformation of the form

= (xlx 2 ,X 3)

By a proper transformation, we understand that the transformation is reversible, so

that we can solve for xi, giving

xi = xi (1 2 3)

Since the transformation is reversible the determinant of the transformation is

not zero. It is important to develop tools to work in this new curvilinear coordinate

system. We define the covariant base vector as

ar Ox'.
9i ai ao ' (B.4)

and its reciprocal, the contravariant base vector as

(B.5)
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with

and

(B.1)

(B.2)

(B.3)

g9 =t, im



The determinant of the transformation or Jacobian J is given by

J = 1 -(92 x g3)

We define the permutation tensor eijk as:

ejk = g (gj x gk) = {-J
10

if even permutation

if odd permutation

if any two indices are equal

For convenience we introduce the alternating tensor Cijk, defined as:

9i g (g X gk)

1 if even permutation

-1 if odd permutation

0 if any two indices are equal

The contravariant base vectors g' are orthogonal to the planes constructed by the

covariant base vectors gi, this requires:

gi * g

1 if i =j

0 ifi7 j
(B.9)

The set of contravariant base vectors can also be defined in the following manner:

= 1
gi=7gj x gi (B.10)

which are clearly orthogonal to the planes constructed by the covariant basis. For

convenience, let

b'= Jg = x gk (B.11)

So that the lth component of the ith contravariant vector bI can be written as [32]:

9 19X fxrxn 1xm OX x n 1xi
b= J =mn

1Q .mj agk = j aJk agj 09k
(B.12)
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(B.7)

Eijk = eijkJ
(B.8)



with i, j, k and 1, m, n in cyclic order.

We also define gij and g2' as the covariant and contravariant metric tensors re-

spectively:

&xm Oxm
gij= gi gi = .

g j =g 9*gi am x
gU g' g= xm axm

(B.13)

(B.14)

The determinants of the metric tensors are both positive and equal to

det (gij) = g =

1 J
det (giJ) -= p

(B.15)

(B.16)

We also note the additional properties obtained by using equations (B.4), (B.5),

(B.13), and (B.14); which we do not prove here but refer to the proofs of Chung [31]

and Richmond et al. [32].

gi = gijg

g, = ggj

gik gki = kj

(B.17)

(B.18)

(B.19)

The contravariant metric tensor g'3 is the inverse of gij or the adjoint of gij divided

by the determinant of gij (Cramer's rule) [31, 32]:

1Og 
9- a-

1
72 (gmpgnq - gmqgnp)

with i, m, n and j, p, q in cyclic order.
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B.2 Covariant Differentiation

Now consider the derivatives of the covariant base vectors:

- (Xim
&2"m O(n

= 2 X m 0 m n = ]p g

where IF is called the Christoffel symbol of the second kind [31, 32], defined as:

P - .xm
I' a~ji axm 19 n

= z m __ (B.22)

Making use of equation (B.19), we note that

(gj - gk) =k - g + g'i = 0

Tk t di - gk,i e gnv i of i

Thus, the derivative of contravariant base vectors is of the form

(B.23)

(B.24)

(B.25)

The Christoffel symbol of the second kind is related to the Jacobian as:

J Ogi
7-(92X X g3 + g 2 x

= rj=i i g, (92 X 93) + Fjij g1-

= i ej 23 + r3 eij 3 + Pi3i ei2j

= i J + Fii J + rfi J

= JqFi

(g x g 3) + i g1

111

&gi
gi,j .- . (B.21)

or

g3)+g 1 i

- (g2 x gj)

(B.26)

Og gi]P kg~ -F ikgg

a93



B.3 Operations in Curvilinear Form

With the foregoing tensor analysis tools, we are ready to recast the usual operations

for any dependent variable q in curvilinear tensor form. Using the chain rule we can

write:

(B.27)

making use of equation (B.12) yields:

__ _ 8 1 /x ox Oxk8xi __= b- x(B.28)
Ox J l j (O ' a\Om 6n am n/ a~l

with i, j, k and 1, m, n in cyclic order. Next we consider the second derivative:

a20~ * jqj 9 aq! 9(9x"'x" aX (9V O i

- a ia

g 3 -.g .i+g -giqg

=-(9 k gg0 i + gij,ij

=(gj-g.gk+ g gikgJ) +g'$,,3

= g'frb, + g9j gik7I-jg1 0, + gi $,,,

= gikfJp kO,i + g13.0,,j

= k7$ ,y + g13 ,,j

*1 &J

.. __2 10aa
= g + - (Jgzi) a (B.29)

Where we made repeated use of the identity 94 =g=O[31].
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B.4 Partial Transformation

Making use of equations (B.27) and (B.29), the advection-diffusion equation becomes

1
Pe 9 02"a20 1 0 (g")19 mo J0 ap 00~']

=U(n) 1 o+ Fa onjs~ (B.30)

a rearrangement of the above yields

9 mn 02
g 0 ma~n

Pe a u(n)0Xn

where F has been suitably modified. Now, let

2am = Pe u(n) -aXn
108

-(Jg"fl)

Then, we can write

or equivalently

mm 020
g 0m0am

- 2a" -- F -
a~m

2 (g 12
a0

a 0~
+ g23 a203

Now, we define

S = F - 2 (g 12 + 13 j 02 3
5-v- -a +g 2 3 023) (B.35)

And so the advection-diffusion equation can be written as

(B.36)2a"m +S

113

- 0p (JgmP)]
0= 

F (B.31)

-mn a0
"" 9 a

(B.32)

- 2am  F
10 m

(B.33)

+ g 13 02 q
a 1093 (B.34)

m" " 8m 02 mgM 10~m



Making use of equation (B.12) we rewrite 2a' as

Pe (1O(mP
2a' = - b'u(n) - (Jg'P)

j J i 09p
(B.37)

Note that we have only performed a partial transformation, i.e., the velocity compo-

nents are still referenced in the cartesian coordinate system.

The geometric coefficients b", J, and gm l given by equations (B.12), (B.15), and

(B.20) are functions of the coordinates only. When either analytic or numerical

transformations are employed their values can be readily evaluated.

B.5 Local Analytic Solution

In the following ' = and 2 = 1. We locally linearize equation (B.36) in each

rectangular numerical element by taking representative values of the velocity field,

source function, and geometric coefficients - say the value at the center of the element.

112 + g 22 = 2ap 1 + 2a2 + SP (B.38)

Introducing the coordinate stretching functions:

* _ _____

(~5

gp
77* = 17

22
g p

equation (B.38) is simplified to the standard form seen in equation (A.1), i.e.,

+ -2A +2B +SP (B.40)
aV 2 017*2 19 * 0177*

where

A =

for a numerical element with dimensions

1

A * = h = 11V11

2

B= ap
V/-22gP

1
Aq* = k = I
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Appendix C

Variational formulation for the

S-LAPG scheme

In this appendix we derive the variational form of the Navier-Stokes equations used

in the simplified version of the Local Analytic/Petrov-Galerkin (S-LAPG) discretiza-

tion scheme. As usual we multiply the Navier-Stokes equation with a test function,

however we express the test function as the sum of two test functions a = v + w.

I + (U - V) U + VP - V (Vu) + (Vu)T] - f} adQ = 0 (C.1)

or equivalently

+ (u -V) u + Vp - V. [(Vu) + (Vu)T f (v + w) dQ = 0 (C.2)

In equation (C.2) the test functions v and w are not applied independently, but

together as v + w. We now require that v E H1 (Q) and vjrF = 0 so that we may

apply integration by parts together with the Gauss divergence theorem to obtain:
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f[ +(u.V)ul vdQ-fp (V.v) dQ
at J

+ [Vu) + (Vu)T] -VvdQ

+ J[ +(u.V)u+VP- 1V2u1 w dQ
f t Re

= f vdQ+ f f wdQ+ f f vd-f (C.3)
Q Q rf

Note that in arriving at equation (C.3) we made use of the incompressibility

constraint, V - u = 0, in

V [(Vu) + (Vu)T] = V 2 u + V (V. u) = V 2u (C.4)

We do this for convenience, since no boundary terms involving the test function w

arose in the variational form. See Chapter 2 for an explanation of why the term

V [ (Vu) + (Vu)T] is retained in its entirety when boundary terms arise.

In equation (C.3) we require that w E H' and since w does not come into the

boundary terms we may have that wir = 0, although not required. Hence, we avoid

differentiation of the test function w but retain its effect in the variational form. Note

that if we set w = 0 we recover the variational formulation derived in Chapter 2. Also

note that this variational form contains second order derivatives, which in the finite

element discretization do not disappear since we are using biquadratic functions to

approximate u.

The Navier-Stokes equations in differential form, which can be obtained from equa-

tion (C.2), can be easily recovered by using equation (C.4) in (C.3) and then applying

integration by parts together with the Gauss divergence theorem to equation (C.3).
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Appendix D

One-dimensional discrete equations

using the FCBI scheme

In this appendix we give discrete equations for the one-dimensional advection-diffusion

equation using linear-exponential test functions, of the form given in equation (3.46),

and quadratic trial functions.

Consider the one-dimensional stationary advection-diffusion equation for the trans-

ported scalar 9(x) in dimensionless form:

1 d20 d9
d 2 + = 0 in Q, 01r = 0' (D.1)Pe dx2 dx

where Q E R', Pe = uL/a is the Peclet number, L is the length of the domain, u

is the prescribed fluid velocity, a is the diffusivity of the transported scalar 0, and

08 is the prescribed value of 0 on the boundary 10 . Here we consider the case where

no fluxes are prescribed on the boundary, i.e. Ef = 0. The variational form of the

equation using the Petrov-Galerkin formulation is:

Find 0 E e such that for all v E V

1 f dOdv dO
-+ -v dQ= 0 (D.2)Pe dx dx dx
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where

a = {0 E H'(Q) ,01r, = 6s}

V = {v E H 1 (Q),v~r, = 0}

and different functions are used in E and V.

For the finite element solution we choose subspaces eh and Vh of the infinite-

dimensional spaces E and V respectively. Specifically, for eh we choose quadratic

functions and for Vh the linear-exponential functions described in Chapter 3. Upon

spatial discretization, integration, and proper assembly we obtain the discrete equa-

tion for the ith node. In this case there will be two types of discrete equations, one

relating three nodal variables and the other relating five nodal variables. This is a

direct consequence of the use of 3-node elements.

First we consider the discrete equation relating three nodal variables. Here we

present the discrete equations for the case of distance h between nodes and flow in

the positive x direction, i.e. u > 0.

(p +ai+ bi i-1 + ( ea2+b2 ) + a3 + b3 9i+1 = 0 (D.3)

where Pee = uh/a is the element Peclet number and the coefficients a1 , bj (j = 1, 2, 3)

are functions of the element Peclet number. The coefficients aj represent the diffusion

effect and the coefficients bj the advection effect, compare equations (D.2) and (D.3).

The expressions for these coefficients are not very compact and a better feel for their

behavior can be obtained by plotting them. Figures D-1 and D-2 show the coefficients

as a function of the element Peclet number.

For the case of advection dominated flows, Pe' -+ oc, the discrete equation be-

comes
5 1

oj = 5-1 - -6+1 (D.4)
4 4

which reveals a positive weight of 1.25 for the upstream node and a negative weight

of 0.25 for the downstream node. For the case of pure diffusion, Pe' - 0, the
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test functions collapse to the quadratic functions and we recover the classic Bubnov-

Galerkin quadratic approximation

1
= = (9i-1 + 6i+1) (D.5)

For completeness, we give the expressions for the coefficients a3 and bj in terms

of Ah = Pee/2. Expressions for the coefficients a3 are:

a1 = e2Ah{-4Ah (- Ah - 1) + e-2Ah [4Ah cosh(Ah) sinh(Ah)]

- 3Ah + 1} / 4Ah [cosh2 (Ah) - 1] (D.6)

a2 = e 2 Ah e- 4 Ah (2Ah + 1) + 2Ah + 1} / 2Ah [cosh2 ( Ah) - 1] (D.7)

a3 = -e 2 Ahe -4Ah (3Ah + 1) + e-2Ah [4Ah cosh(Ah) sinh(Ah)]

+ Ah - 1} / 4Ah [cosh2 (Ah) - 1] (D.8)

and for the coefficients bj:

b, = -e 2 Ahe - 4 Ah (-3Ah - 3) + e- 2Ah [16(Ah) 2 cosh(Ah) sinh(Ah)

+ 24(Ah)2 cosh 2 (Ah) - 12(Ah) 2] - 9Ah + 3} / 24(Ah)2 [cosh 2 (Ah) - 1] (D.9)

b2= e 2Ah{e-4Ah (-6Ah - 3) + e-2Ah [16(Ah) 2 cosh(Ah) sinh(Ah)]

- 6Ah + 3} / 12(Ah) 2 [cosh2 (Ah) - 1] (D.10)

b3= e 2Ahe -4 Ah (9Ah + 3) + e~2Ah [ - 16(Ah) 2 cosh(Ah) sinh(Ah)

+ 24(Ah) 2 cosh 2 (Ah) - 12(Ah) 2] + 3Ah - 3} / 24(Ah)2 [cosh 2 (Ah) - 1] (D.11)
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Figure D-1: aj coefficients as a function of the element Peclet number.

120

0

a3



-0.7

-0.8

-0.9

-1.0

b]-1.1b1
-1.2

-1.3

-1.4

-1.5

-1.6

1.3

1.2

1.1

1.0

0.9

0.8

b 0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0 25 50

Pee
75

Figure D-2: bj coefficients as a function of the element Peclet number.
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Next, we present the discrete equation relating five nodal variables. Again, we

consider the case of unit distance between nodes and flow in the positive x direction.

( e + fJ Oi-2 + e2 + f2 9 i1 + e3 + f3 Oz

1 N- +ti1N 0
+ e4 + f4 i+1 + e5 + f5 Oi+2 = 0 (D.12)

where the coefficients ej, f3 (j = 1,..., 5) are functions of the element Peclet number

and represent effects from diffusion and advection respectively.

For the case of advection dominated flows, Pee -+ oc, the discrete equation be-

comes

Oi = -i-2+ 2 9 i-1 (D.13)

which reveals a positive weight of 2.0 for the adjacent upstream node, a negative

weight of 1.0 for the alternate upstream node, and no contributions from the down-

stream nodes. For the case of pure diffusion, Pee -+ 0, the test functions collapse

to the quadratic functions and we recover the classic Bubnov-Galerkin quadratic ap-

proximation
1

= - Oi-2 + 8 9i_1 + 8 i+1 - Oi+2) (D.14)14

Expressions for the coefficients ej are:

e1 = -e 2 Ahe - 4 Ah (-Ah - 1) + e-2Ah [4Ah cosh(Ah) sinh(Ah)

+ 4Ahcosh 2 (Ah) - 4Ah] - 3Ah + 1} /8Ah [cosh2 (Ah) - 1] (D.15)

e2= -e 2 Ah e-4Ah (2Ah + 1) + 2Ah - 1} / 4Ah [cosh 2 ( Ah) - 1] (D.16)

e3= e 2 Ah e (4Ah + 2) + 2 Ah 8Ahcosh2 (Ah) - 8Ah]

+ 4Ah - 2} / 8Ah [cosh2 ( Ah) - 1] (D.17)

e4 = -e 2 Ahe -4Ah (2Ah + 1) + 2Ah - 1} / 4Ah [cosh2 ( Ah) - 1] (D.18)
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e = e2Ah{ -4Ah (3Ah + 1) + e- 2 Ah [4Ahcosh(Ah) sinh(Ah)

- 4Ah cosh 2 (Ah) + 4Ah] + Ah - 1} /8Ah [cosh 2 (Ah) - 1] (D.19)

and for the coefficients f3 :

f1= e2 Ah e-4Ah (-3Ah - 3) + e-2Ah [16(Ah) 2 cosh(Ah) sinh(Ah)

+ 16(Ah) 2 cosh 2 (Ah) - 4(Ah) 2] - 9Ah + 3} / 48(Ah) 2 [cosh 2 (Ah) - 1] (D.20)

f2= -e 2 Ah {- 4 Ah (-6Ah - 3) + e- 2Ah [16(Ah) 2 cosh(Ah) sinh(Ah)

+ 16(Ah) 2 cosh 2 (Ah) - 16(Ah) 2] - 6Ah + 3} / 24(Ah)2 [cosh 2 (Ah) - 1] (D.21)

f3= e2 Ah e- 4 Ah (-12Ah - 6) + e- 2 Ah [32(Ah) 2 cosh(Ah) sinh(Ah)]

- 12Ah + 6} / 48(Ah) 2 [cosh2 (Ah) - 1] (D.22)

f4= -e 2 Ah e 4 Ah (-6Ah - 3) + e-2Ah [16(Ah) 2 cosh(Ah) sinh(Ah)

- 16(Ah) 2 cosh 2 (Ah) + 16(Ah) 2] - 6Ah + 3} / 24(Ah)2 [cosh 2 (Ah) - 1] (D.23)

f5= e2 Ahe - 4 Ah (-9Ah - 3) + e- 2 Ah [16(Ah) 2 cosh(Ah) sinh(Ah)

- 16(Ah) 2 cosh 2 (Ah) + 4(Ah)2] - 3Ah + 3} / 48(Ah) 2 [cosh 2 (Ah) - 1] (D.24)

123



Bibliography

[1] I. Christie, O.F. Griffith, A.R. Mitchell, and O.C. Zienkiewicz. Finite element

methods for second-order differential equations with significant first-order deriva-

tives. Int. J. Numer. Methods Engrg., 10:1389-1396, 1976.

[2] J.C. Heinrich, P.S. Huyakorn, and O.C. Zienkiewicz. An upwind finite element

scheme for two-dimensional convective transport equation. Int. J. Numer. Meth-

ods Engrg., 11:131-143, 1977.

[3] A.N. Brooks and T.J.R. Hughes. Streamline Upwind/Petrov-Galekin formula-

tion for convection dominated flows with particular emphasis on the incompress-

ible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 32:199-259,

1982.

[4] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new finite element formulation

for computational fluid dynamics: VIII the Galerkin/Least-squares method for

advective-diffusive equations. Comput. Methods Appl. Mech. Engrg., 73:173-189,

1989.

[5] D. Hendriana and K.J. Bathe. On upwind methods for parabolic finite elements

in incompressible flows. Int. J. Numer. Methods Engrg., 47:317-340, 2000.

[6] F. Brezzi, L.P. Franca, and A. Russo. Further considerations on residual-free

bubbles for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg.,

166:25-33, 1998.

124



[7] F. Brezzi, D. Marini, and A. Russo. Applications of the pseudo residual-free

bubbles to the stabilization of convection-diffusion problems. Comput. Methods

Appl. Mech. Engrg., 166:51-63, 1998.

[8] K.J. Bathe. The inf-sup condition and its evaluation for mixed finite element

methods. Computers and Structures, 79:243-252, 971, 2000.

[9] K.J. Bathe. Finite Element Procedures. Prentice Hall, New Jersey, 1996.

[10] J.H. Spurk. Fluid Mechanics. Springer-Verlag, Berlin, 1997.

[11] Alexander Rauh. Remarks on unsolved basic problems of the Navier-Stokes

equations. In Proceedings of Conference: Let's Face Chaos through Nonlinear

Dynamics, Maribor, Slovenia, 1996.

[12] J.T. Oden and J.N. Reddy. An Introduction to the Mathematical Theory of Finite

Elements. John Wiley and Sons, New York, 1976.

[13] R. Temam. The Navier-Stokes equations. North-Holland, Amsterdam, 1978.

[14] O.A. Ladyzhenskaya. The Mathenatical Theory of Viscous Incompressible Flow.

Gordon and Breach, New York, 1963.

[15] C.J. Chen and H.C. Chen. Finite analytic numerical method for unsteady two-

dimensional Navier-Stokes equations. Journal of Computational Physics, 53:209-

226, 1984.

[16] H.C. Chen, V.C. Patel, and S. Ju. Solution of Reynolds-Averaged Navier-Stokes

equations for three-dimensional incompressible flows. Journal of Computational

Physics, 88(2):305-336, 1990.

[17] Y.J. Jang, H.C. Chen, and J.C. Han. Flow and heat transfer in a rotating square

channel with 45 deg angled ribs by Reynolds Stress turbulence model. Journal

of Turbomachinery, 123:124-132, 2001.

[18] H.C. Chen. Submarine flows studied by second-moment closure. Journal of

Engineering Mechanics, 121(10):1136-1146, 1995.

125



[19] F. Brezzi and D. Marini. Subgrid phenomena and numerical schemes. In Proceed-

ings of the International Symposium on Mathematical Modeling and Numerical

Simulation in Continuum Mechanics, Yamaguchi, 2000.

[20] F. Brezzi. Recent results in the treatment of subgrid scales. In Actes du 32eme

Congres d'Analyse Numerique, Port d'Albret, 2000.

[21] Lloyd A. Trefethen. Spectral Methods in Matlab. Siam, Philadelphia, PA, 2000.

[22] P.J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic

Press, New York, 1984.

[23] A.R. Krommer and C.W. Ueberhuber. Computational Integration. Siam,

Philadelphia, PA, 1998.

[24] K.J. Bathe and J.P. Pontaza. A flow-conditioned-based interpolation mixed

finite element procedure for high Reynolds number fluid flows. Computers and

Structures, to appear.

[25] K.J. Bathe, D. Hendriana, F. Brezzi, and G. Sangalli. Inf-sup testing of upwind

methods. Int. J. Numer. Methods Engrg., 48:745-760, 2000.

[26] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, Maryland, 1996.

[27] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re solution for incompressible flow

using the Navier-Stokes equations and the multigrid method. Journal of Com-

putational Physics, 48:387-411, 1982.

[28 R.L. Sani and P.M. Gresho. Resume and remarks on the open boundary contidion

minisymposium. Int. J. Numer. Methods in Fluids, 18:983-1008, 1994.

[29] M.S. Engelman and M.A. Jamnia. Transient flow past a circular cylinder: A

benchmark solution. Int. J. Numer. Methods in Fluids, 11:985-1000, 1990.

[30] P.M. Gresho and R.L. Sani. Incompressible Flow and the Finite Element Method.

John Wiley and Sons, New York, 1998.

126



[31] T.J. Chung. Applied Continuum Mechanics. Cambridge University Press, New

York, 1996.

[32] M.C. Richmond, H.C. Chen, and V.C. Patel. Equations of laminar and turbulent

flows in general curvilinear coordinates. IIHR Report 300, Iowa Institute of

Hydraulic Research, The University of Iowa, February 1986.

127


