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Abstract

This thesis presents a two-stage offline/online blackbox reduced basis method for
the prediction of outputs of interest of elliptic partial differential equations. The
methods are more specifically applied to a the microtruss plate problem modeled with
linear elasticity. The microtruss plate studied is a simplified version of a cutting-edge
structure for engineering applications; the performance is highly dependent on the
microarchitecture and optimal designs have to perform output evaluations for many
configurations in the parameter space.

The quasi-instantaneous numerical method presented herein is the basis for in-
tensive trade off analysis at a minimal computational cost. The numerical method is
not only efficient but also certain: thanks to rigorous a posteriori error bounds, we
may retain only the minimum number of modes necessary to achieve the prescribed
accuracy in the output of interest. Two reduced-basis output bounds methods are
presented.

The O(Q 2) method has very rigorous mathematical foundations that lay the basis
for future output bounds methods. We prove that the O(Q 2) method always bounds
the error between the reduced-basis ouput and the "truth" space output. Unfortu-
nately, the effectivity of the O(Q 2) output bounds can be very high when applied to
linear elasticity problems.

The O(Q) method is then applied to the microtruss plate problem. We prove for
the compliant case that the effectivities are bounded from above; they are indeed
found to be very consistent. The computational cost of the O(Q) method is also a
distinct advantage for the microtruss plate problem where its geometry requires a
separation of the approximation domain into many subdomains.

TIbsis Supervisor: Anthony T. Patera
Title: Profdssor
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Chapter 1

Introduction

Engineering design problems are in essence multi-parametric problems with a finite

number of outputs of interest. Think of a wing in which the structural design com-

prises an important number of parameters defining its shape and structural behavior,

and with a finite number of outputs of interest, such as the maximum deflection under

a shear force, or the buckling limit of its internal trusses. The very large parame-

ter space of the problem makes it difficult to try every possible configuration. The

problems that can be entirely formulated analytically can have recourse to rigorous

optimization methods, but those problems are few. The majority - those problems

which must be solved numerically - must rely on a more extensive intuition of the

designer in order to compensate for the high cost of computing the outputs for each

configuration. Although engineering intuition is the source of many wonders, it rarely

leads close to the optimal solution of the problem.

However, the latest mathematical and computational tools available put within

reach the optimal solution of many multi-criteria design problems. A very promising

numerical method to solve partial differential equations is the reduced-basis method

- a projection onto low-order approximation spaces comprising solutions of the prob-

lem of interest at selected points in the parameter/design space. The reduced-basis

methods have a number of impressive features (i) they can be applied on top of a num-

ber of different numerical procedures, namely the residual methods (ii) they enjoy an

optimality property that ensures rapid convergence even in high-dimensional param-
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eter spaces (iii) most importantly, their variable computational cost per additional

output evaluation is extremely low, making them very suitable for large quantities of

evaluations.

The reduced-basis method is not yet a widespread numerical design tool for real-

world applications. One of the issues at stake is the precision of the results. Although

a priori error theory proves the optimality of the result in the low-order space, the

accuracy of the solutions is highly dependent on the number and choice of modes

forming the reduced-basis. This thesis extends the study of a posteriori output error

bounds for the reduced-basis method. We describe a low cost a posteriori error

estimation procedure. Furthermore, we decompose both the reduced-basis and the

error estimation into an off-line / on-line formulation. The decomposition can be

performed for any problem in which the parameters enter affinely in the differential

operator.

We choose to apply the reduced-basis output bounds method to a cutting-edge

structural mechanics problem. New processes can manufacture cellular materials with

a specified microarchitecture; those materials have been proved to perform very well in

weight critical applications and have a huge potential for multi-functional applications

that combine structural resistance with heat transfer in turbine blades, gas or liquid

storage in fuel cells, etc .... The key to the performance of those cellular materials is

their topology and geometry. Optimal studies have been performed analytically with

beam and plates analysis and reached conclusive results for some outputs. Other

outputs require a better model, linear elasticity, that must be solved numerically.

The key to an extensive trade-off analysis is then to use the reduced-basis method in

conjunction with our a posteriori error estimations.

This thesis contains a variety of new material. Our a posteriori error procedure

is applied to linear elasticity for the first time. The complexity of the geometry

studied also requires a full geometry affine variation that is applied to (i) the finite

element method (ii) the reduced-basis method (iii) the output bounds method. The

combination of applying the output bounds method to linear elasticity and a complex

geometry leads to the development of a more efficient output bounds method. A

11



"relaxed" error estimation procedure is therefore detailed herein.

Chapter 2 describes the microtruss plate that will be our test case during this

study. The microarchitecture properties are explained and the need for an advanced

mathematical model is presented. Chapter 3 gives the details of the mathematical

model - linear elasticity - and reaches a non-dimensional weak form. A reference-

domain formulation is presented in Chapter 4 in order to use a single approximation

space. The finite element method is applied in Chapter 5 to the non-dimensional

reference-domain weak form reached earlier; some convergence results and a compari-

son to a commercial FEM code are given. Chapter 6 then introduces the reduced-basis

theory, proves the optimality of the solution in the low order space and goes through

the details of the off-line / online implementation; some results stating the accuracy

and the convergence of the output solutions are given. The a posteriori error esti-

mation procedures are detailed in Chapter 7, including the "relaxed" procedure; we

also show results confirming the bounding properties and discussing the effectivity

of the bounds. The reader interested in the trade-off analysis can refer to Chapter

8, the only material required is the problem statement of Chapter 2. An interactive

equation environment is available with the PDF version of this thesis in order to test

any microtruss configuration with the reduced-basis method and the output bounds.

Issues that will be considered in future research are given in Chapter 9.

12



Chapter 2

Microtruss Plate

2.1 Introduction

Cellular materials exhibit property profiles that favor their implementation as multi

functional materials [1]. Their use as a core between panels and shells achieves lower

structural weights than competing materials. At the same time, these structures

provide more flexibility than conventional honeycomb or stringer stiffened structures

for their use in heat dissipation devices or devices that store liquid or pressurized gas.

Cellular materials can be categorized as either random micro structures or periodic

micro structures. Common forms of the later can be micro-truss assemblies, referred

to as lattice materials, or two-dimensional periodic channels, referred to as prismatic

materials.

The performance of all cellular materials is highly dependent on their topology

and geometry. In particular, once a certain type of microarchitecture has been chosen

for the cells, an extensive trade-off analysis is necessary to choose the best geometry.

13



2.2 Parameters and Properties

2.2.1 Geometry

The microtruss plate geometry shown in Figure 2-1 falls into the prismatic materials

category. The structure is designed to provide lightweight support for a large trans-

verse load with minimum deflection. The core consists of thirteen two-dimensional

core trusses. Two solid sheet faces on top of and below the core provide impact

resistance and isolation. On the side of the microtruss plate are two solid sheet sides.

The microtruss plate is submitted to a constant shear load: the left solid sheet

side, FE, is fixed vertically and horizontally and the right solid sheet side, PN, is

submitted to a vertical load distributed along the whole side.

fE - N

Figure 2-1: Plate structure with core trusses and solid sheet faces. The left end FE

is fixed and the right end fN is submitted to a constant shear force fs.

2.2.2 Design Parameters

The geometry and the material properties of the plate,shown in Figure 2-2, form a six-

component parameter vector, or "input," p = (pui, /12, ... p6 ), where pi = a, P2 =

ttruss, [3 = Sy, [4 = top, [15 = ibot, [6 = Eframe/Etruss. Here a is the angle in radians

of the core trusses from a transverse position, itruss is the thickness of the core trusses

in the direction parallel to the top and bottom faces, Sy is the spacing between the

top and the bottom sheet faces, itp and ftbt are the thickness of the top and bottom

sheet faces, and Eframe/Etruss is the ratio of the trusses Young moduli over the sheets

Young moduli. The structure contains 13 trusses; the thickness tside of the side sheets

does not vary; the distance Sx between the midpoints of successive trusses is fixed at

14



21 times tsiae; the total length L of the plate is 295 times tside. The Poisson coefficient

of the sheets and trusses is fixed at v = 0.2.

top

Sy
cx"

--- '

~t
bot

truss

E

Figure 2-2: Design parameters of the truss plate.

For our parameter space D we define

Do = [0.2, 1.1] x [0.4, 4.0] x [4, 60] x [0.4, 4.0]2 x [0.05, 50] (2.1)

and we make sure that the vertical spacing 5y is restricted in function of the core

trusses angle a and thickness ftruss so that the core trusses do not intersect,

D = {p/t E Do I gy < (tan a) 1 (Sx - ttruss - S0)} ; (2.2)

where S0 - the minimum spacing that we require between the extremities of two

contiguous core trusses - is fixed to 0.5.

The acceptable values for a parameter set M are summed up by the following set

15
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of equations:

0.2 <

0.4 <

4.0 <

0.4 <

0.4 <

0.05 <

A2 = ttruss

A3 y

A4 itop

[15 io

/6= Etrs
A frame

< 1.1

< 4.0

Smin (60, (tan a)-1 (x - itruss - 50))

<4.0

< 4.0

< 50.

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

2.2.3 Examples of Geometric Parameters

The geometric parameters A 1 ,... , [A5 define the micro architecture of the truss plate.

It is obvious that increasing the thickness or the Young moduli of any of the members

will increase the overall stiffness, however design constraints other than minimum

weight might have to be considered.

Solid Sheet Face Thickness

Figure 2-3 shows how increasing the top solid sheet face thickness, fttp, affects the

external geometry by augmenting the total thickness of the microtruss plate. This

design parameter does not modify the topology of the structure core.

Figure 2-3: Effect of the parameter P4 = itop on the geometry of the truss plate.

16
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Core Trusses Angles

Figure 2-4 shows how the core trusses angle, a, affects only the geometry of the

structure core, leaving the external geometry of the microtruss plate unchanged. In

fact, variations of the core trusses angles will only affect the structural properties of

the plate, leaving unchanged the amount of intervening space that can be used to

enable other functionalities such as heat transfer and gas or liquid storage. 1

Figure 2-4: Effect of the parameter p a on the geometry of the truss plate.

Vertical Spacing

Figure 2-5 exposes the effect of the vertical spacing, Sy, on both the core architecture

and the external geometry. An increase in the vertical spacing creates a thicker plate

relative to the fixed length .L and a more open micro architecture of the core. It is also

obvious from Figure 2-5 that the vertical spacing must have an upper bound function

of the core trusses angles and thicknesses in order to keep consecutive trusses from

intersecting.

1Note that a variation in the angle of the core trusses a does not modify the plate volume. The
core trusses thickness ttruss is the thickness in the direction parallel to the bottom and top side
faces; figure 2-2 shows that when a increases and itruss stays constant, the core trusses real thickness
decreases, leaving the volume unchanged.

17
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Figure 2-5: Effect of the parameter A3 5,y on the geometry of the truss plate.

2.3 Quantities of Interest

Some of the usual performance metrics for structures such as the microtruss plate are

the maximum moment per unit length, the maximum shear force per unit length and

the buckling resistance of the core trusses. Based on those failure modes, [12] shows

how truss plates compare well to honeycomb structures.

2.3.1 Outputs Considered

Minimum weight designs can be found by identifying the failure modes of the mi-

crotruss plate and then varying the geometry parameters and material properties to

determine the lowest weight for some given constraints. For our purposes, the weight

is considered directly related to the volume of the microtruss plate and the constraint

is a specified tip deflection which cannot be exceeded. In effect, this is equivalent to

looking for the geometry that will yield the lowest weight for a given stiffness.

Chapter 9 describes other constraints and failure modes that will be modeled in

future work.

18



Truss Plate Volume

In order to perform a trade off analysis in chapter 8, the total volume of the microtruss

plate is required. In effect, given a certain material we wish to work with, the weight

of the structure is directly related to the total volume V(pu) of the microtruss plate

geometry described in section 2.2.1

V(p) = (2 X iside X 5y) + X (top + ibot) + 13 x 5, X itruss , (2.9)

where S, top, tbot, ttruss are the design parameters exposed in Section 2.2.2; tside is the

fixed side thickness and L is the total length equal to 295 times tside.

Tip Deflection

Optimal design takes into account various failure modes or constraints relevant to the

use of the microtruss plate, however this thesis focuses on a single design constraint -

in addition to the volume - in order to lay the foundation for use of the reduced-basis

methods in a complete design process.

In many applications, structures must be designed to withstand a specified shear

force while minimizing the deflection of the structure. For the microtruss plate case

described in Figure 2-1, the shear force is distributed along the right boundary FN

and can be written as

- fs dS; (2.10)
W ftN

here W is the total length of fN, i.e. the width of the plate.

We now define fo(v) as the functional that gives the average displacement along

the structure tip PN, given a displacement field v,

tJ(V) = f v dS. (2.11)
W tN

The displacement field in the structure resulting from the shear force f, is called fi.

The output of interest - the tip deflection - is then s = to (ft).

19



In Chapter 7, we will use the similarity between the weak form of equation (2.10)

and the output functional f (v) to present a simplified version of the output bounds,

referred to as the compliant case.

2.4 Physical Model

Various mathematical models are available to predict the structural behavior of the

microtruss plate. Truss and beam analysis provides computationally inexpensive

results that are used in many truss designs for qualitative purposes. Linear elasticity is

a more complex and computationally more expensive modeling tool that will give good

quantitative results and use non-restrictive assumptions. Finally, Non-linear elasticity

is a model with very realistic assumptions but much more expensive computational

requirements.

More specifically, linear elasticity offers a greater accuracy than truss analysis in

which the truss joints are idealized as pin joints offering no rotational resistance from

core trusses to sheet faces. For that reason, linear elasticity will give better prediction

of failure modes such as the buckling resistance of the core trusses which truss analysis

underestimates.

When opposed to non-linear elasticity, the linear elasticity model is usually con-

sidered valid for shear forces up to 0.5% of the Young modulus and geometric defor-

mations with rotations of up to 10 degrees. For design purposes, plastic deformations

are considered to be a failure mode, and the above limitations on shear forces and

geometric deformation are incorporated in the constraints of the problem.

Choosing linear elasticity as the physical model allows to obtain good theoretical

results for most failure modes while staying within reasonable complexity and cost

for the discrete approximation.

2.4.1 Periodicity Properties

For numerical simulations as well as for manufacturing processes, periodicity often

constitutes an opportunity to achieve better performance with fewer means. The
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microtruss plate has a periodic microarchitecture; each cell consists of two trusses

and the parts of the top and bottom sheet faces between the two trusses and before

the next truss. The periodic cell is shown in Figure 2-6.

Figure 2-6: The periodic cell of the truss plate geometry.
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Chapter 3

Mathematical Model

3.1 Introduction

Linear elasticity has been identified in section 2.4 as the physical model that gives a

very good compromise between realistic assumptions for design purposes and mod-

erate complexity for implementation purposes. This chapter describes in details the

equations of linear elasticity that are used to model the structural behavior of the

microtruss plate submitted to a constant shear force.

The notations and the dimensions used for the different quantities are introduced

in Section 3.2.1. The governing equations of linear elasticity are derived from the

equilibrium conditions in Section 3.2.2. We manipulate the governing equations to

reach the variational formulation in Section 3.2.3. Non-dimensional quantities are

introduced in Section 3.2.4 and a non-dimensionalized variational formulation is ex-

posed.

3.2 Equations of Linear Elasticity

3.2.1 Notations for Dimensional Variables

This chapter will first derive the linear elasticity equations in dimensional form and

later convert them in non-dimensional form.
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Here we introduce the notations used for the dimensional quantities of Section

3.2.2 and 3.2.3. The coordinate in each dimension is zj, i = 1, 2; the displacement in

each dimension is f4, i = 1, 2; the stress tensor is orij, i, j = 1, 2; the elasticity tensor

is EijkI, i, j, k, I = 1, 2; the Lame constants are I1 and Z2 ; the shear force along the

side sheet fN is f; the traction resulting from the shear force is N = 5, where W

is the length of FN. The dimension units are as follows

[fi]= [z'] = [in] (3.1)

[ n] = [I] = [M] (3.2)

5 []= [a] = (3.3)
-N

N = - (3.4)

[ = ] (3.5)

3.2.2 Strong Form

The case studied is a two-dimensional microtruss plate Q with a homogeneous Dirich-

let boundary condition along the left side fE and a homogeneous Neumann boundary

condition along the right side fN. The body forces are not accounted for in this deriva-

tion. An average deflection s is induced on the structure tip PN where the shear force

is applied.

Equilibrium Conditions

The corresponding equation is the equilibrium condition of a body Q that requires

the internal stresses to balance the external force:

i () = f, in ; (3.6)

where the indices i, j refer to the spatial coordinates, &ij is the stress tensor, U is the

displacement field and f8 is the external force. Note that in equation (3.6), the dis-

placement ft is independent of the depth and equal to 0 along x3 . This represents the

23



plane strain approximation which is the adequate physical model since the microtruss

plate has infinite depth.

The stress tensor &ij for a linear elastic isotropic solid is given by

(a-
ij (i) = A2 a + a-)

2

+ A16ij E
Ofk

S .k
(3.7)

In two dimensions, indices take values from 1 to 2. J6j is the Kronecker-delta symbol.

A1 > 0 and A2 > 0 are the Lame coeficients; they are related to the Young modulus

£ and the Poisson coefficient v by

Ev

(I + v)(1 - 2v)

and

A2 =
2(1 + v)

Note that for an imcompressible solid, we have v -+ ., i.e. A, -+ oo.

For convenience during the implementation, we introduce the elasticity tensor

Eijkl = A2(6ik6jl + 'iIojk) + A1 6i Jgk , i,j,k, l = 1,2, (3.10)

in terms of which we can then express the stress tensor of equation (3.7) as

O =k
=i - Ejj,1 a. i,j,k, l = 1,2 , (3.11)

with the summation over repeated indices (i.e. the right hand side of (3.11) is a sum

of 4 terms: for k = 1, 2 and for 1 = 1, 2).

We can now plug the expression (3.10) for the elasticity tensor into the equilibrium

equation (3.6) to obtain the strong form of linear elasticity

a - aiik
~ (jk31 f2 , in .
jx x
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Boundary Conditions

We study the steady case, therefore there is no initial state condition. We only need

to specify the boundary conditions in order to completely determine the problem.

At each point on the boundary, me must specify either the normal displacement

or the normal traction:

finA = (3.13)

fti dig(ii)ftj = (3.14)

and either the tangential displacement or the tangential traction:

i =t (3.15)

ii ay ( =N (3.16)

where hi and ij are the vectors normal and tangential to the boundary. As exposed

in Section 2.2.1, the boundary conditions for the microtruss plate are:

* On the Dirichlet boundary fE: §E = = 0, i.e. null displacement in the

tangential and in the normal directions.

* On the Neumann boundary fN: §' = 1 and g =0, i.e. a tangential traction

- the shear force f, divided by the length of the boundary - and a null normal

traction.

* On the upper and lower sides: y = = 0, i.e. null traction in the tangential

and in the normal directions.

3.2.3 Variational Formulation

We have now completely defined the linear elasticity model through mathematic equa-

tions. The equations of the previous section are called the strong form of the problem.

The point of departure of the finite element method is a transformation of those equa-

tions into a new form, called the variationnal formulation (or weak form).

25



We multiply the strong form equation (3.12) by a test function 0 that satisfies the

essential boundary conditions (3.13) and (3.15). We obtain

j - i Eijikl N dV = J N d, V EX, (3.17)

where X is the product of two Hilbert spaces H1 (() - since b has two dimensions -

with some restrictions to enforce the essential boundary conditions

X = {i E (H1 = ViiJrt = 0} . (3.18)

The next few steps are described in details in [8]. We integrate the left hand side

of equation (3.17) by parts, we apply the divergence theorem and we simplify the

integrals with the boundary conditions imposed on the test function 0 by the space

X; the result is the weak statement of equation (3.6)

&(, ii) = (), Vi, a E X2 , (3.19)

with the linear elasticity operator

a(, ii) = E~ 5ijk dV , (3.20)

and the Neumann boundary contribution to the right hand side

f(i) = Oj'h dS . (3.21)
ft N N

We note that the stress boundary conditions are natural - they have been included

in the inhomogeneity (3.21). This will be a great simplification in the next chapter

when the finite element approximation is applied to the weak form of the linear

elasticity model.
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3.2.4 Non-dimensionalization of the Linear Elasticity Equa-

tions for the Truss Plate Problem

The results that we will obtain by solving equation (3.19) for the displacement ii

can be generalized to a wider class of parameters p if they are expressed in non-

dimensional form.

Non-Dimensionalized Quantities

The parameter , = a is already a non-dimensional quantity. We non-dimensionalize

the geometric parameters p = {12, ... , [ 5 } with respect to iside. The parameter P6

defined by equation (2.8) is already non-dimensionalized with respect to the young

modulus of the solid sheets faces and sides, Eframe.

We now non-dimensionalize every quantity of section 3.2.3 with respect to iside

and Eframe. We use the notation 9 for the non-dimensional version of a quantity f.

We get

1
fg = -- (3.22)

tside

gE t I - ngE (3.23)
tside

Ei$ Ei (3.24)
Eframe

1
& = (3.25)

Eframe
- ~ 1

f= ~s (3.26)
tsideErame

-t ~ 1t = - ig . (3.27)
Eframe

Non-Dimensional Equations

The non-dimensional governing equation is then expressed over a non-dimensional

body Q
a

- 0 (fi) = Is ,in Q , (3.28)
jxj
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where

aiik&ij = Ejjjct j , i, j, k, 1 = 1, 2 .

The boundary conditions have the same form as equations (3.13)- (3.16)

fn= n on rE,

=aji =' on rE

and

= on IN-

The approximation space X is now defined over the body Q

I = {V E (H'(n))2j0 ,,ir = Viri = 0}.

And we get to a weak form similar to equation (3.19), but using non-dimensionalized

variables

(3.34)

with the operator

d(9, -) = J -Eij dV,fi OXj OX,
VV, 'i E X2, (3.35)

and the natural boundary contribution to the right hand side

(V) = _ N
fgt dS. (3.36)

Calcul of Dimensional Quantities

We first compute the non-dimensional displacement ii from the weak form (3.34) for a

fixed non-dimensional load F0, i.e. a non-dimensional traction gt = F/W. Then we

can compute the dimensional displacement for any dimensional load Factuai under the

condition that the geometric proportions are the same for the dimensional domain Q

28
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(3.30)

(3.31)

(3-32)

(3.33)

a (V, Ii) = 1(V)



and for the non-dimensional domain Q. When a total force per unit depth Factual is

given (in N/m), we have the corresponding non-dimensional force

- Factuai
Factual - Eframei . (3.37)

Eraetside

Using the linearity of operator (3.34), the corresponding non-dimensional displace-

ment is
iactual _ Factual _ Factual

F0  Erame tside F

Remember that the displacement has been non-dimensionalized with respect to tside,

so the dimensional displacement is

F actual Factual 39
flactual fSactual iside ~ -atui-= i tside - Fc U . (3.39)

Eframe tside F Erame F

We simplify the re-dimensionalization by taking PO = 1 during the implementation,

therefore the dimensional displacement is given by

actual Factual 
(3.40)

Eframe
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Chapter 4

A Reference-Domain Formulation

4.1 Motivation

Until now, we have assumed that the domain Q - over which the linear elasticity form

(3.19) is applied - has exactly the same geometric proportions as the microtruss plate

we want to model. This is actually a very restrictive assumption since it means that

for each new geometry, we need to define a new space X in which the linear elasticity

model is applied.

It does not have to be that way. The microtruss geometry allows to use a single

approximation space in conjunction with piecewise continuous affine mappings to

model all possibles configurations. We call this the reference-domain formulation.

One can already devise that this formulation would provide a much more flexible

implementation of the model. Indeed, in the context of the discrete approximation of

chapter 5, a new set of geometric parameters is then just another input; it does not

require the costly discretization process of a new space.

Furthermore, the reduced-basis approximation exposed in chapter 6 cannot be

applied over multiple approximation spaces. Therefore, we will use the reference-

domain formulation to obtain the displacement field for any configurations of the

microtruss.

We start this chapter by giving an example of affine mapping in Section 4.2. The

mechanics of piecewise continuous affine mappings are presented in section 4.3. The
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particular reference domain used for the microtruss plate architecture is explained in

section 4.4. The piecewise continuous affine mapping method is applied to the linear

elasticity weak form in section 4.5.

4.1.1 Notations for the Reference Domain and the Mapped

Domain

This time we use two different notations to differentiate the (non-dimensional) vari-

ables t, 'Iii, EjjkI di , fi in the mapped domain Q and the (non-dimensional) variables

Xi, ui, Eijkl, i fi in the reference domain Q that we will introduce shortly.

4.2 Example of Affine Mapping

As an introductory example, we show the affine mapping used for a truss in the

microtruss plate. Consider the domain CZ representing a truss with an angle that we

want to map to the "reference-domain" w representing a vertical truss, as shown in

Figure 4-1.

X24

I I
I I

I I

truss
SY

- ---L - --

62

X1
1

S Y

0)

------- t-s

I I

~----------------------

6. Xi

Figure 4-1: Affine mapping of a core truss to the reference domain.

The affine mapping from the deformed domain Co to the reference domain w is
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given by

ttruss - ttrussX - X =- (tan a) t 2 +(6 - S1
ttruss ttruss

_12
all a12

X2 =Y t 2 + (62 - S2)-
Sy

22

Note that the coefficients aij, i, j = 1, 2 define the linear part of the mapping whereas

#1 and #2 are constants, part of the affine mapping.

Using affine mapping, we can transform easily parallelograms, including some

angle effects as in the truss case. This will b every appropriate for the truss plate

problem. More generally, affine mappings can transform triangles and therefore be

used for a very wide range of geometries.

4.3 Piecewise Continuous Affine Mapping

We consider a piecewise continuous affine mapping G from a deformed domain 0 to

a reference domain Q. The mapping G and its inverse G- 1 are shown in Figure 4-3.

Each region of the deformed domain Q has to be submitted to a different affine

mapping

x1 = allzi + a12x2 + 01 (4.1)

X2 = a2 1 1 + a 2 2 X2 + /2, (4.2)

that transforms it into the corresponding region in the reference domain Q. Although

the constants /1 and #2 are different for each region, the linear transformation co-

efficients acj, i, j = 1, 2 are in fact the same for sets of regions. For example, all

core trusses inclined to the right have the same linear mapping. We call a parameter

region a set of regions that have the same linear mapping, i.e. the same linear coeffi-

cients aij, i, j = 1, 2 in their affine mapping. The total number of parameter regions

is denoted R. The parameter regions are presented in more details in Section 4.4.
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For each parameter region, the associated linear mapping is L', r = 1,..., R

defined by

xi = o~iij + ai 2 x2  (4.3)

x 2 = acizi + %:2 2 2 , (4.4)

which has the equivalent matrix form

Xi = Liz , i, X3 j = 1, 2 , r = ,. ,R ,(4.5)

with summation over the repeated index j = 1, 2. From the previous equation, we

see that for each parameter region, the matrix Lr is given by

L r 49X1 ;0± (4.6)
0X2 0X2

L a9;i 1 a 2 j

Note that the matrices L contain informations about the geometry of r and are

therefore a function of the parameter vector p.

4.4 Reference Domain and Parameter Regions

Figure 4-2 shows the reference domain we chose to use to model the microtruss plate

described in section 2.2; it corresponds to M = {0, 1, 15, 1,1, }. It has of course

composed of the same topology as the microtruss plate: thirteen core trusses, two

faces and two sides. As mentioned earlier, the ratio of the side thickness to the total

Figure 4-2: Reference domain Q of the microtruss plate.

length is kept fixed to 1/295 through the transformation G. All other geometric
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quantities defined in the parameter vector p are allowed to vary through G.'

The transformation G from the mapped domain to the reference domain is shown

in Figure 4-3 for a microtruss structure with five core trusses. Observing the figure

) G

G~1

Figure 4-3: Transormation G from a deformed domain Q to a reference domain Q.

reveals how we must use different linear mappings L' for different regions of the

structure. It is also obvious that a number of regions can benefit from the same

linear mapping, e.g. all trusses inclined in the same way.

We have defined a parameter region as the union of all the regions of the reference

domain Q that use the same linear mapping L' to obtain the required deformed

domain 0. There are a total of R = 15 different parameter regions in the microtruss

plate problem of section 2.2; those are shown in figure 4-4.

4.5 Mapping Applied to the Bi-Linear Elasticity

Form

The bi-linear form (3.35) can be decomposed in a sum over all the parameter regions

R a Ofi - &Vk - Y
a iT) = Eirkl-dVVfL,;v- EX (4.7)

'Note that although the structure members shown in Figure 4-2 have a high aspect ratio, we will
still model them as members with a finite thickness.
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Figure 4-4: Parameter regions of a truss plate with two periods. The figure shows
each of the 15 parameter regions with a different pattern

We then use the piecewise continuous affine mapping G to rewrite the bi-linear form

over the reference domain Q

R O - OVk OXljrX2
a(u,v; p) = fr _ ,I , _9J.T1 dV Vv,uEX 2 , (4.8)

r=1

where Jr(p) is the Jacobian of the transformation (Lr)- and the approximation

space is now defined as

X = {v E (H' (Q)) 2 vifiijr- = vil'rt = 01. (4.9)

Now we introduce for each parameter region a "modified" elasticity tensor that

includes the previous elasticity tensor (3.24) and the inverse linear mapping (4.6)

Ei kI(p) = ijkl,'1 E Wjik1 , r= 1, ... , R. (4.10)

It is essential to note that the "modified" elasticity tensor Eirjkl(p) now contains all

the information of the input vector IL. Indeed the elasticity tensor Ejrjki, contains the

material properties of the microtruss plate, and ' contains the geometric properties.

Finally, we can rewrite the weak form of linear elasticity over the reference do-

main ,

a(u, v;,)=Z J Erl(p) dV, Vv,u E X. (4.11)
r=1 ~0
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The operator a(u, v; p) has the property that the parameter set p only appears in

the modified elasticity tensor. This will allow us to perform in section 6.1.2 an affine

decomposition of great importance for the reduced-basis method.
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Chapter 5

Review of Finite Element Method

for Linear Elasticity

5.1 Introduction

In Chapter 3, we have described linear elasticity, i.e. the mathematical model to

study the structural behavior of the microtruss. We have expanded the linear elas-

ticity model to a reference-domain formulation in Chapter 4, in order to use a single

approximation space for all the configurations studied. We now need to choose a

numerical method in order to compute the discrete solutions of the reference-domain

formulation of linear elasticity.

Finite element analysis is by far the most established numerical method in struc-

tural mechanics, making it our prime choice. The reader will find in this chapter a

detailed description of the implementation of the Finite Element Method for linear

elasticity. Very little of the FEM theory is treated here; the reader should then refer

to appropriates books and publication such as [8, 4].

Section 5.2 goes through the finite element method implementation used through-

out this work. The results are presented and discussed in Section 5.3.
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5.2 FEM applied to Linear Elasticity theory

Reaching the weak form (3.19) of the linear elasticity equations was in fact the first

step of the finite element method. We now describe the proper two-dimensional

implementation of the Galerkin method starting from the reference-domain weak

form (4.11).

5.2.1 Abstract FEM Framework

The domain is divided in triangular elements forming a non-structured mesh called

the discretized reference domain Qh. The number of nodes is .A/2. In a 2D elasticity

problem, the discrete solution (displacement) at each node has 2 degrees of freedom.

To refer to those components, we will use the indices i, j = 1, 2. The total number of

nodes-components in our discretization is then Ar.

Reference Element

The reference element t is the usual triangular first order element:

&2

(0,1)

A

T

(0,0) (1,0) 6

Figure 5-1: Reference element i
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The basis functions associated to this element are H 1, H 2, H 3

H1 (O) = Z91 ,

H 2 (9) = 92 ,

H 3(0) = 1 - t01 - t92 .

(5.1)

(5.2)

(5.3)

In equation (5.13), we will have to compute the integral of a product of basis

functions derivatives. It is straightforward to compute the derivatives in our reference

element space:

OHm
D H m - a =

O'0q

1 0

0 1 (5.4)

as well as the integral of their product, giving the result

Bqmq'n It
OHm0Hn
atOq a19,q

= (DqHm)(DqHn) m, n = 1, 2, 3 q, q' = 1, 2 ;

where DqHm is simply the entry (q, m) of the matrix (5.4).

Affine Mapping

The affine mapping Fk is the transformation from the reference element T to the

mesh element Tk. We call x k the coordinate of the node n of element k

i = i e(7n), n= 1, 2, 3 .

During the implementation, we will use the inverse affine mapping F ':

(5.6)

that

transformation from the mesh element to the reference element can be expressed in

matrix form TF-'

1
T-1 = A

k Area(Tjk

(y -y)
k k

(Xk X k1
3 2x~) (5.7)
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Basis Functions

We can now introduce the basis functions of the discretized reference domain. A

global basis function restricted to element k is:

Wk,m|Tk = Hm 0 (5.8)

The expression above describes a basis function restricted to an element: i.e. it has

a local support. The basis function p,, we will use also has a local support, but it

is defined by a node number n and a component number i. The basis function on,i

is in fact the hat function, i.e. the sum of all basis functions Wk,maTk non-null at the

global node n; there are two basis function per node, one for each component.

The span of the basis functions defines our finite element approximation space

Xh = spanf O,i, i = 1, 2, n = 1, . .. , 7A/2}1 (5.9)

The dimension of Xh is thus A. 1

Galerkin Method

To obtain the discrete form of the operator a(., .; P) given by equation (4.11), we write

the discretized solution Uh as a weighted sum of basis functions

X/2 2 (
Uh = un,i Wni (5.10)

n=1 i=1

where Un,i is the coefficient of the basis function Wn,i corresponding to node n and

component i. In the Galerkin method, the test functions of the operator a(., .; /p) are

chosen equal to the basis functions

V,j = Pm,j , j = 1, 2, m =1,...,/2 . (5.11)

'The essential boundary conditions must be enforced in the approximation space, so Xh does not
contains the nodes-components submitted to Dirichlet boundary conditions.
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We substitute (5.10) and (5.11) in the weak form (4.11):

A/2 2

X Z a(pm,j, sn,i; 11) Un,i = (Pm,j), V i E {1, 2}, m E {1, ... , I/2} . (5.12)
n=1 i=1

The solution vector is then u(P) Un,iwhich has dimension X. The expanded form

of the right hand side operator is

A/2 2 4A(2 2 R

a(sm,j, Pn,i; A) = ' ljk E (p)/' dV) (5.13)
n=1 i=1 n=1 i=1 (r=1 nak 0X

and the expanded form of the left hand side inhomogeneity is

C(im) = j mnigdS + (pmitgdS. (5.14)

The indices i, j refer to the components and the indices m, n refer to the nodes in the

mesh.

5.2.2 Implementation Considerations

The Galerkin result (5.12) needs to be discretized in order to form the finite element

matrix. The quantities needed for the implementation have been defined. The details

of the discretization process are given in [8] and also numerous other publications.

Index Mappings

One last concept must be introduced: in the matrix form each node-component of

an element will correspond to a line in the global matrix. To get to this form, we

define two index mappings. The first one, 0(n,i), merges the nodes indices and the

component indices into a single index and wil be used in the elemental matrices. The

second mapping uses 0(n,i) and the element index k to associate a line number in

the global matrix to a particular combination of element, local node and component.

This local to global component-node mapping is called 0(k, n, i).
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Mesh Generation

We use a mesh over the reference domain Q to perform the computations. Each

parameter region must be the union of whole elements; Figure 5-2 shows this at the

base of the truss where the placement of the elements clearly defines a rectangle.2

Figure 5-2: Detail of the mesh. The regions are constituted of whole elements; observe
the rectangle defined by the elements under the truss base.

The use of the reference-domain procedure to compute results for a mapped do-

main ( from the mesh over Q allows to compute results for a many geometries from

a single discretization. The drawback is that we expect an over-distortion of the

elements when some regions have a very different aspect ratio in 0 and Q.

Elemental Quantities

Now that all required quantities have been introduced, the implemented form of

equation (4.11) is given under the form of the so called elemental stiffness matrix. Its

size is the number of nodes-components of an element. Our 2D first order triangular

2 Note that the figure shows the result on the deformed domain 0.
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elements have three nodes with 2 components each, resulting in a 6 x 6 elemental

matrix.

Following the procedure described in [8], the final result for the stiffness matrix

of an element in the parameter region r (r = 1,... , R) is given by

2 2

(Ak)o = 2Area(Tk) Ei, ([)1 (T-1) ( -1)q1jBqmqn, mn=1,...,3,ij=1, 2
q=1 q1=1

(5.15)

In equation (5.15), the modified elasticity tensor Ejlj, is given by equation (4.10).

Remember that EjI, depends on which parameter region r the element k belongs to.

3

Assembly

For each element, the elemental matrix Ak is computed and it is used to fill up

the finite element global matrix Ah through the usual "direct stiffness" assembly

algorithm.

// loop over all the elements

for ( k = 1; k <= K; k++) {

// loop over the nodes of the element

for (m = 1; m <= 3; m++) {

// loop over the components of the node

for (j = 1; j <= 2; i++) {

// retrieve the position in the global matrix

int 1 = teta(k,m,j);

// idem as previous loops

for (int n = 1; n <= 3; n++) {

for (i = 1; i <= 2; i++) {

int c = teta(k,n,i);

3 Also we observe, like in Section 4.5, that E', is the only quantity in equation (5.15) that
includes the information from the input vector p.
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// put the entry in the main matrix

A(1,c) = A(1,c) + A-k( teta(m,j), teta(n,i) );

Boundary Conditions

For the right hand side, we give the implemented result of a Neumann boundary

condition, i.e. the inhomogeneity value for a global node-component 0(k, n, j) on the

boundary,

, = g hoe(k,n,) ; (5.16)

where we define ho(k,n,*) as the length of the boundary covered by the node n of

element k (mean distance between that node and the two contiguous nodes) divided

by the total length of the boundary. We will denote Fh E JR the vector of nodal

values of the inhomogeneity, which entries are the Fh 0(,nj) coefficients.

Other equations would be necessary to take into account the other types of inho-

mogeneities such as the body forces included in (5.14), or Robin boundary conditions.

5.3 Results and Discussion

The finite element code written during this thesis is named EBELAS (Error Bounds

for ELASticity). An example of the displacement of a truss plate is given in Figure

5-3. Note, the figure does not show that the computations are actually performed on

the reference-domain mesh, which has a different geometry.

In order to validate the numerical results obtained by EBELAS, we give some quick

convergence rate results - as opposed to an in depth convergence rate study involving

the error in the energy norm of the finite element matrix - and we then compare the

results from EBELAS to results from ADINA, a commercial finite element code.
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Figure 5-3: FEM approximation of Linear Elasticity in a 2D Truss plate.

5.3.1 Convergence Rate

The convergence results are computed with the finite element method presented hith-

erto, including of course the reference-domain formulation. The truss plate geometry

used for this test is similar to Figure 4-2 but comprises only three core trusses. The

discretization is refined at the singularities.

We consider several discretizations, each an exact refinement of the previous one,

as shown in figure 5-4. If we define h as the longest element side in a mesh, then the

longest element side in the exactly refined mesh is h/2.

Figure 5-4: Exact refinement of a linear triangular element.

The convergence rate for our output s (the deflection at the tip E'N) is defined as

p satisfying

ish - sexact| = ChP ; (5.17)

where sexact is the "true" value of the output and sh is the value of the output for a

certain discretization Qh with longest element side h. We can infer the convergence
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log ( 8 h _ 8 exactl)

log(h)
(5.18)

Approximating sexact by the output obtained with our finest mesh, we can now

plot the logarithm of the error Ish -- exact in function of the logarithm of the mesh size

h. The slope of the curve (fig. 5-5) is then a good approximation for our convergence

rate. We obtain p = 1.85.

to quadratic, i.e. p > 2.

Since u h E H 2 (Qh), we would expect the convergence

One must consider that the many singularities present

in the microtruss plate geometry, in conjunction with the over-distortion of some

elements (particularly the core trusses elements) can lead to a slight deterioration of

the convergence properties.

10 2

10 1

100 -

10-2 10-I 100

Figure 5-5: Convergence of the finite element code for a truss plate geometry with
one periodic set
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5.3.2 Comparison with ADINA

The convergence rate study of Section 5.3.1 gives an indication of the accuracy of

our solution in function of the discretization refinement. We use a commercial finite

element code, ADINA, to validate the results obtained by EBELAS.

The results are computed for the truss plate that we will study in the trade-off

analysis of Chapter 8, i.e. a truss plate with 13 core trusses. The input vector is

Atest = {0.49, 1, 15,4.5, 3.5, 1.5}. These parameters imply some moderate distortion

of the elements through the reference-domain formulation. 4

Quadratic quadrangular elements are used and we configure ADINA to use the

same linear elasticity plane strain approximation as we use in Chapter 3. The results

are shown in Table 5.1. 5

h s8 h test)

0.5 11.156
0.25 11.164
0.125 11.168

Table 5.1: ADINA - Tip deflection in function of the mesh size for quadratic quad-
rangular elements in a mesh not refined locally.

The results for the same test case computed with EBELAS are shown in Table

5.2. 6 Linear triangular elements are used and the mesh is not refined around the

singularities in order not to include refinement issues in the comparison. Note that

EBELAS uses a discretization of the reference-domain Q in conjunction with a piece-

wise continuous affine mapping (see Chap. 4), whereas ADINA computes the result

on a discretization of the actual domain Q.

We see that ADINA converges to a value of about 11.17 for sh( test). The results

given by EBELAS are within 2% of ADINA for sufficiently fine discretizations. The

4A more complete study of the effects of over-distortion will be performed in [11).
5 1n fact, we need to give dimensional quantities to ADINA: the side thickness is set to 1 mm, the

truss Young modulus is 10"N/m2 and the load per unit depth is 10 4 N/m. Others quantities can be
derived from ptest. The results are given in mm.

6The non-dimensional parameters ptSt are given as an input. The result is dimensionalized as
exposed in Section 3.2.4 and given in mm in the table.
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h s h test)

0.5 10.373
0.25 10.846
0.125 11.103

Table 5.2: EBELAS - Tip deflection in function of the mesh size for linear triangular
elements in a mesh not refined locally.

difference is due to the use of a superior type of elements in ADINA, namely the

quadratic quadrangular elements. This issue might be addressed in future work, but

at the first order triangular elements give an accuracy good enough for our computa-

tions to be realistic.

Furthermore, an adequate refinement of the mesh around the singularities will

drastically improve the accuracy obtained with a first-order elements discretization,

as shown in Table 5.3.

h s (test)
0.5 10.679
0.25 11.141
0.125 11.312

Table 5.3: EBELAS - Tip deflection in function of the mesh size for linear triangular
elements in a mesh refined around the singularities. h is the length of the longest
edge in the mesh.

Note that, in table 5.3, the mesh with h = 0.25 refined around the singularities

will be used later in this thesis when we refer to the microtruss plate computations.

We now wish to put more emphasis on the use of the reduced-basis method to

achieve very efficient computations of the output of interest.
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Chapter 6

Reduced-Basis Approximations

The computations performed in chapter 5 to obtain the field of displacement in the

truss plate are fairly expensive. By today's standard in computing power, simulation

of structural behavior with finite element analysis is much more efficient than experi-

mental approaches, but still not efficient enough to optimize the design of a structure

with a large number of parameters.

The reduced-basis approximations presented in this chapter are very efficient

methods for the prediction of linear functional outputs dependent on a large number

of design parameters. In general, the reduced-basis method can be applied to any

weighted-residual approximation; in this work, it is applied to the Galerkin approxi-

mation described in chapter 5.

The implementation of the reduced-basis method can be separated into two stages.

The off-line stage computes parameter-independent quantities in the high-dimensional

"truth" space and project those quantities onto a low-order space. The on-line stage

uses the low-order parameter-independent operators from the on-line stage to recon-

struct a low order operator for each evaluation. This approach is referred to as the

black-box approach.

We will apply the reduced-basis method to an operator which properties are enu-

merated in Section 6.1. The quality and low computational cost of the reduced-basis

approximation stems from a projection onto a "problem-specific" low order space de-

scribed in section 6.2. These techniques enjoy an optimality property which ensures
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rapid convergence even in high-dimensional parameter spaces; this is addressed in

section 6.3.

6.1 Operator Properties

The elasticity operator enjoys certain properties that are exploited in our implemen-

tation of the reduced-basis and output bounds methods; those properties are summa-

rized in the present section. References for extensions to more general problem are

supplied.

6.1.1 General Properties

The most obvious properties of the linear elasticity operator (5.13) are symmetry

a(w, v; p) = a(v, w; p), Vw, V E X 2 , Vu E D, (6.1)

and bi-linearity

a(u + Av, w; p) = a(u, w; p) + Aa(v, w; M) A E R, Vu, V, W E X 3, Vp ED. (6.2)

In addition , we require uniform continuity

Ja(w,v; p)J < -yJwJlyV flvy, -y > 0, Vw,v E X 2 , Vji E D , (6.3)

and coercivity

alv2 < a(v, v; t), a > 0, Vv E X, Vp E D . (6.4)

Extension to non-symmetric and/or non-coercive problems are discussed in [10,

13]. Note that the requirements above imply uniqueness and existence of the solution.
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6.1.2 Separability of the Linear Elasticity Operator

In order to apply the black-box method to compute the outputs, the operator also

has to be affinely dependent on the parameters of the problem. We use the affine

dependence to obtain a decomposition with the general form

Q
a(w, v; p) = or (i)aq(w,v), Vw, V E X 2, Vi E 19 , (6.5)

q=1

in which the operators aq(.,.) are independent of the problem parameters and the

scalars a (p) contain the parameter dependence. The finite number Q is dependent

on the original operator a(., .; A) as well as on the specific problem treated.

More specifically, the affine decomposition assumption can be verified for the linear

elasticity operator a(., .; p) given by equation (5.13). The only quantity in a(., .; /)

that depends on the parameter set ,t is the modified elasticity tensor EjIg, ([t), which

has R x 24 entries 1. Each entry corresponds to a scalar uq(A) in equation (6.5). 2

For simplicity, we introduce a mapping Q : {1, 2}4 x {1 ... R} -+ {1 ... Q} and we

then have

a Q(i'i'kl) (w v ) ] r O i k. Vw,v E X, r = 1, ... , R , i, j, k,l = 1, 2 .

(6.6)

The corresponding parameter-dependent coefficient is then the entry of the modified

elasticity tensor

Ci'''')( = Er, r=1,...,R, i,j,k,l=1,2. (6.7)

Remember that the modified elasticity tensor contains all material and geometric

properties, see Section 4.5.

Note that no other assumption is needed for the aq(.,.), q = 1,... , Q, than con-

'Remember that R is the total number of parameter regions of the microtruss problem, see section
4.4.

2 Note also that the modified elasticity tensor has symmetries and (problem specific) zero entries
that allow to considerably lower the number of independent entries for any parameter set pI E D.
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tinuity and bi-linearity.

6.2 Reduced-Basis Approximation

The finite element space Xh defined by (5.9) is a finite but very high dimensional

subspace of the continuous space X. We choose a discretization refined enough to en-

sure that the solution in the high-dimensional "truth" space Xh is in good agreement

with the exact solution in X.

The underlying idea of the reduced-basis method is a projection onto a low-order

approximation space comprising solutions of the problem of interest at selected points

in the parameter space.

6.2.1 Low-Order Space and Discrete Equations

We introduce a sample set SN = 1 .N} in the parameter space D defined

in section 2.2.2. For each input vector in SN, we calculate using the finite element

method a solution Uh(I") in the truth space Xh.

We then introduce the reduced-basis space as

WN = spantUh([1), Uh(A 2 ),.- , h(ItN) (6.8)

To simplify the notation, we define ( E Xh as

("n = U (,n), n = ,..,N;

we can then write WN = span{(, n = 1,..., N}. The later means that WN consists

of all functions in Xh that can be expressed as a linear combination of the Q"; that

is, any member vN of WN can be represented as

N

VN = n(6.9)
n=1
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for some unique choice of fl E R, n = 1,..., N. We implicitly assume that the

(n, n = 1,... , N, are linearly independent; it follows that WN is an N-dimensional

subspace of X.

In the reduced-basis approach we look for an approximation uN(,) to uh(M) in

WN _ for our purposes here we presume that uh(/L) is sufficiently close to u(p). In

particular, we express uN (y) as

N

uN() N (n; (6.10)
n=1

we denote by uN E fRN the coefficient vector (uN . , Tu . The premise is that

we should be able to accurately represent the solution at some new point in parameter

space, L d, as an appropriate linear combination of solutions previously computed at a

small number of points in parameter space (the p', n = 1, ... , N). 3

The appropriate linear combination coefficients, N (y) E IRN, are obtained by

solving the linear elasticity problem in the space WN. Again we apply the Galerkin

projection to obtain the statement

a(uN(fP), v; P) = f(v), Vv E WN. (6.11)

6.2.2 Matrix Form

We can now choose the test functions to be the same as the basis functions

v = ( , n = 1,..., N, (6.12)

and insert the expressions (6.10) and (6.12) into the reference-domain weak form

(4.11) to obtain the algebraic representation of (6.11) that is used to calculate uN (A) E

3Indeed, exponential convergence in N is obtained for sufficiently smoothed p-dependence (e.g.
[5, 9]).
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N

a ((j, (; p)u =N f(I Vi=I ,...,I N. (6.13)
j=1

Reduced-Basis Matrix

At this point, we can see that the entries of the reduced-basis matrix AN(P) E jRNxN

can be obtained from

AN (p = (',(; p) , Va, E {f .I N}. (6.14)

Since a is the finite element solution for a particular configuration pa, we can write

(a in term of the nodal basis functions oj, i = 1, ... , X (K is the dimension of the

finite element space),
K

a"= ( i .j (6.15)
i=1

Then each element of the reduced-basis matrix AN (A) is calculated by substituting

(6.15) in expression (6.14)

K K

A N (p) = a p) , ' p , (j .p). , N} , (6.16)
i=1 j=1

and using the bi-linearity of a(., .; p), we obtain

AN N
A (p) =ZZ a(i, pj; p) , Va, E {1,. ..,N} . (6.17)

i=1 j=1

To rewrite the above as a product of vectors and matrices, we define (a as the vector

of nodal values of the finite element solution for a parameter set Pa. Also remember

that Ah(p) is the finite element matrix generated in Section 5.2.2. Each element of

the reduced-basis matrix is then computed as

A =(a T Ah(p) (() , V a, E {1,..., N} . (6.18)
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The above can be written succinctly in terms of Z, an K x N matrix which columns

are the vector of nodal values of the finite element solution ', a = 1, .. , N,

AN _T A h(p,)Z. (6.19)

For an efficient implementation of the reduced-basis solution, this operator will

need to be formed using the black-box approach.

Black-Box Approach

Of course, the computation of the reduced-basis operator according to expression

(6.19) would be very inefficient, since it requires the formation of a new parameter-

dependent finite element matrix for each new evaluation in the parameter space. The

big computational gain then comes from using the decomposition (6.5) to create a set

of parameter-independent operators in the space WN that are computed only once

and can be reassembled to obtain the reduced basis operator.

We now want to use the separability of the linear elasticity operator, a(., .; L) =

EQ_1 o.q([)aq(., .). First, we verify that a similar decomposition is valid for the cor-

responding finite element operator. Observe that

A = (p) a(pj, jI; p) (6.20)
Q

= a- (p) a' (pj, 7pi) (6.21)
q=1

Q
= q (p)A' ; (6.22)

q=1

where Afl is an entry of the matrix Ah'q that is obtained by a direct stiffness assembly

similar to the one used for Ah in Section 5.2.2. In the particular case of the microtruss

plate, each matrix Ahq (q = 1, . . . , Q) is formed by direct stiffness assembly restricted

to the elements inside the parameter region q and according to Af = ( , ), with

aq( O, 7o) defined by (6.6).

We use the separability of the linear elasticity operator, a(., .; P) = _1 o-(p)a4(., .),
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to decompose the algebraic expression (6.13) into the sum

Q N

a q (p) aq((j, (i) UN = f(W) , Vi = 1, ... , N. (6.23)
q=1 j=1

Now we use the exact same steps as equations (6.14)-(6.18) applied to the decom-

posed algebraic form (6.23) to obtain the expressions for the black-box computation

of the reduced-basis matrix entries

Q

=e) (t)a (L (6.24)
q=1

Q / A

= o(p) a (5 qfoi, E Opj) (6.25)
q=1 i=1 j=1

Q A(

= q ( ) ( (5( aq(pi j) (6.26)
q=1 i=1 j=1

Q
= ((a) , V a,c E {1, . .. ,N} . (6.27)

q=1

Now, using the same matrix notations, we see that we must compute Q parameter-

independent matrices A E IRNxN

AN,q _ T h,qZ q= 1,...,Q , (6.28)

and we can then reconstruct the reduced-basis operator for any new parameter set

by computing
Q

AN(/_) L (1-)AN~q (6.29)
q=1
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Reduced-Basis Inhomogeneity

A similar procedure can be used for the load vector FN. The steps are outlined below,

i=1
(Pi)N

=(( )TE , a={1, ... ,IN}J

F N = ZT Fh

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

Reduced-Basis System and Output

We can then write the matrix form of equation (6.13) as

AN(I)n () = _FN (6.35)

where AN (M) E ENxN and FN E ]fN. The matrix AN(p) is dense and direct solution

methods are employed. Finally, since for the compliance case, e0(v) = f(v), we have

the output functional

LN =F N

and we get the reduced-basis output sN as

SN(,) = LNTU N() (6.36)

6.2.3 Off-line / On-line Decomposition

It is computationally extremely efficient to obtain a reduced-basis solution from the

system (6.35). The computational cost lies in forming the matrices Ahq; fortunately,

they are parameter-independent and can therefore be computed only once and used
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thereon to explore the whole parameter space 'D. This leads to a two-stage compu-

tational approach:

" Off-line stage: compute N finite element solutions, one for each parameter

set p/ E SN. Construct and store the parameter independent reduced-basis

matrices AN,q _ ZTh,qZ q = 1, ... , Q. Construct and store the reduced-

basis inhomogeneity FN _T Fh.

* On-line stage: compute the parameter dependent coefficients u(1t) with equa-

tion (6.7). Form the reduced-basis matrix AN(p) = 1  ()AN and solve

the system AN Cu) uN4() = FN Obtain the reduced-basis output sN(/t)

(LN) T UN(p).

Note that the two processes are completely decoupled. The expensive off-line

computation can be processed at an early stage and needs to be done only once. The

efficient on-line computation can then be used for very fast evaluations of outputs at

different point in the parameter space.

6.3 Optimality of the Reduced-Basis Approxima-

tion

6.3.1 Optimality of the Reduced-Basis Solution

The solution uN (p) obtained in the reduced-basis space WN is optimal in the energy

norm. The proof is similar to the classical proof of the optimality of the finite element

solution in the energy norm [2]. In other words, given an input vector pu, the reduced-

basis solution is the best possible linear combination of basis functions (", n =

1,... , N to approximate the exact solution u(p) in the energy norm.

In the X-norm, we can prove that

Hu(/_t) - UN(,)fl :5 inf 1U(P) _ WNIX (6.37)
'WNEWN
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which states that the error of the reduced-basis solution is bounded from above by a

factor of the optimal solution in the space WN in the X-norm.

Proof. For convenience during this proof, we omit the p-dependence in the notation

of some quantities: uN uN(u) and u u(jt). The operator a(.,.; /a) with the

properties described in section 6.1.1 can be written for u - uN _ VN E X and using

bi-linearity and symmetry

a(u -uN _ VN U N _ VN.tN). a(uUNU _ UN

-2a(vNIu u N.+a(v N )vN;.

At this point, the Galerkin orthogonality will be useful: the two equations

a(u, v; p) = £(v) Vv E X (6.38)

a(uN, v;[ ) = £(v) Vv E WN (6.39)

can be substracted in the space WN, since WN C X. The right hand side is then

null and we use bi-linearity on the left hand side to obtain

a(u - uN, v;p)=0, V E WN. (6.40)

We use equation (6.40) and the operator coercivity a(vN, v N; N 0

to write

a(u - uN _ VN )_ yN _ V N.>au N ) UN (.1

For convenience, we use w N uN vN. Obviously, wN can be any vector in the

reduced-basis space WN. We then apply continuity as defined by (6.3) to the left side

of inequality (6.41) and coercivity to the right side

T||u-NN;2 N N. u N. N 2

59



which shows

p(,) -IuN) - NIX. (6.42)11UG-0 ~ ~ C - ' I5 WNEWN

6.3.2 Optimality of the Reduced-basis Output

Similarly, the reduced-basis output is optimal in the energy norm. An a priori error

estimate of the reduced-basis output also states that it is bounded from above, in the

X-norm, by a factor of the optimal output in the reduced-basis space WN.

Proof. For convenience during this proof, we omit the pt-dependence in the notation

of some quantities: s = s(t), sN N N -N N -N(p) and u u (p).

Consider the difference between the "truth" output and the reduced basis output; by

linearity, we have

s - SN _ f 0 (U) - fo(uN) = f 0 (u - UN). (6.43)

We also use the fact that our output is compliant 4 , i.e. it is the same linear functional

as the inhomogeneity of our problem, to obtain

ssN= (U uN) =a(uu-UN;/) (6.44)

We use the bi-linearity of a(., .; pI) to rewrite the previous equation

s - sN =a(uU N uu N ; p) a(uuUN; , (6.45)
eN eN

which last term is zero by virtue of the Galerkin orthogonality property (6.40) and

the fact that the operator is symmetric and that we have homogeneous Dirichlet

boundary conditions. Therefore, we have

s(p) = sN(1 1 ) + N () N(I); [t) (6.46)

4 Non compliant linear output functionals are treated in [7].
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The corollary of the above result, continuity (6.3) and reduced-basis solutions

optimality relation (6.42) is that the reduced-basis output is also bounded from above,

N (/2)I < in w'x (6.47)
' NEW N

6.4 Performance of the Reduced-basis Method

To consider the reduced-basis method performance, we focus on the computational

cost on one hand and on the accuracy of the results compared to the results obtained

in the "truth" space on the other hand.

6.4.1 Computational Cost

The computational cost consists of a fixed cost, the off-line part, and a variable cost

for any subsequent evaluation, the on-line part. To evaluate the computational costs,

we will use three numbers:

" M: the dimension of the truth space, typically O(104) for the two-dimensional

microtruss plate problem.

" N: the reduced-basis order, i.e. the number of "truth" space solutions used for

the creation of the reduced-basis; typically 0(10).

" Q: the number of parameter independent operators. For the microtruss prob-

lem, Q is 0(102).

Fixed cost

In the off-line part, we have to compute N fine solutions; for each solution, O(A/)

operations are required; where , <; 3/2 for the conjugate gradient method without

pre-conditioner. We then have to form Q parameter-independent operators aq(.,.)
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and multiply them by the matrix Z E JNxN which contains the solutions vectors;

this has a cost of O(QN 2 ).

The total "fixed" cost in the off-line part is O(/KN + QAN 2 ).

Variable cost

During the on-line computation, we just need O(N 2Q) operations to add together the

Q parameter-independent reduced-basis matrices of size N x N. We then perform

O(N) operations to invert the resulting matrix in order to obtain the reduced-basis

solution.

The total variable cost for each new result is very efficient: O(N 2Q + N3 ). This

represents an extremely low cost for each new evaluation in the parameter space.

6.4.2 Convergence Rate

By convergence of the reduced-basis, we mean how close the reduced-basis output

value is to the "truth" space output value, as a function of the reduced-basis dimension

N.

The exponential convergence rate for the output, mentioned in earlier works [10],

is observed in Figure 6-1. Note that, although the heat transfer fin problem treated

in [2, 7] has the same number of input parameters as the microtruss plate problem,

the later requires a higher reduced-basis dimension to reach a satisfying accuracy.

A crucial aspect of reduced-basis methods is that although the error in the output

has an exponential convergence with the reduced basis dimension N, it is also highly

dependent on the choice of SN during the creation of the space WN. 5 In effect, some

of the parameter sets chosen for Figure 6-1 show a much more important relative

error than others. The error and the rate of convergence in our results is of course

dependent on how close the evaluation parameter set is to some of the parameter

sets used for the basis functions. It is interesting to notice that the biggest errors are

obtained near the lower boundaries of the parameter space: the set p9 is very close

5 Presently, the points are selected randomly in the parameter space. Studies of the distribution
of the sample parameter sets are discussed in Chapter 9.
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Figure 6-1: Relative error induced by the reduced-basis on the output, for 10 param-
eter sets, as a function of the reduced-basis order, N=10,... ,160.

1 2 3 4 5 6 7 8 9 10

0.3 0.7 0.1 1.1 0.35 0.5 0.4 0.9 1.1 0.35
ttruss 2.3 1.2 2.8 2.3 0.82 1.3 1.2 2.8 2.3 3.2

S25.6 12.5 7.0 4.8 5.1 5.6 12.5 7.0 7.8 5.1

trp0.5 2.1 3.0 0.5 4.0 1.5 2.1 3.0 2.5 4.0
tbot 2.5 1.9 4.0 2.5 4.0 2.5 5.9 0.8 0.5 4.0
Eframe/Etruss 2.3 2.0 12 0.3 34 4.5 45 23 0.09 1

Parameter sets used in Figure 6-1.
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to the lowest admissible values for tbot (0.4) and Eframe/Etruss (0.05) and has a much

slower convergence rate than other sets. The log-random distribution implemented

in [11] will address this issue in more details.

Obtaining a good estimate of the error for each evaluation would allow to insert

relevant additional modes in the reduced-basis in order to get sharp results for every

estimation.

The computation of the error itself is of course a costly process since it requires

a Xh-space approximation. For this reason, we develop in the next chapter an a

posteriori error estimation procedure that will give rigorous bounds for the output of

interest.
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Chapter 7

Output Bounds Methods

7.1 Motivation

We have applied in Chapter 6 the blackbox reduced-basis method to the microtruss

plate problem. In a design context, where many output estimations in the parameter

space are needed, the reduced-basis method is an extremely efficient approximation

with optimality properties in the reduced-basis space.

However, the solutions accuracy relative to the high dimensional finite element

space is highly dependent on the choice of the reduced-basis, i.e. its dimension and

the choice of the sample set SN in the parameter space.

In order to use the reduced-basis method for design purposes, we present in this

chapter an a posteriori error estimation procedure - output bounds - that is both

reliable and efficient. With this new tool, multi-parameter designs can be performed

using the reduced-basis method in the most efficient manner and with a certified

accuracy of the results.

In Section 7.2, we introduce the operator properties that will be needed for the

error estimation procedure. Section 7.3 presents the O(Q 2) output bounds method,

our most rigorous method. In Section 7.4, we relax some of our requirements on the

operator properties and we obtain a very efficient error estimation procedure, the

0(Q) method.
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7.2 Operator and Output Properties

We require that our operator satisfies the same properties described in Section 6.1.

Namely, the operator a(., .; /p) is symmetric (6.1), bi-linear (6.2), continuous (6.3) and

coercive (6.4).

7.2.1 Lower Bound Operator

In addition to the properties above, we will require for the O(Q 2) output bounds

method that a lower bound operator can be identified. In particular, we want to

identify a parameter-independent operator a(.,.) and a parameter-dependent scalar

g(pt) such that

cIIv12 < g(t),(v, v) 5 a(v, v; /), Vv E X, Vpt E D. (7.1)

We require that the operator &(.,.) is coercive, symmetric and bi-linear.

In this work, we will present results for &(.,.) = a(., .; A), where E D is a fixed

set of parameters.

Note that an alternative statement to define the scalar g(p) is obtained by iden-

tifying the ratio a(V"V;/t) as a generalized Rayleigh quotient. The factor g(p) <

infvEXa(V1V;A) is then in fact a lower bound to the minimum eigenvalue Al(p) of the&(v,v)a

generalized eigenvalue problem

a(u'(/), v; p) = A (p)&(uA(p), v), Vv E X. (7.2)

7.2.2 Compliant Output

We also use some property related to the inhomogeneity and the output. In this

chapter, we derive the a posteriori error estimator for the compliant case, i.e. an

output functional t 0 (v) equal to the inhomogeneity f(v) defined in (3.19).

The results extend to the general case with the introduction of an adjoint (dual)

problem, as exposed in [7].
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7.3 O(Q 2 ) Method

The output error bounds most rigorous method is called the O(Q 2 ) method. We

first present in Section 7.3.1 the method used to compute the output error bounds,

without giving the proofs at that stage. The analysis of the error bounds is then

detailed in Section 7.3.2.

7.3.1 Low Order Space and Discrete Equations

Of course, we still need a sample set of parameters SN = 1 1 N} in the pa-

rameter space D defined in Section 2.2.2. The low order space we will use in the

O(Q 2) method is defined by a reduced-basis that comprises the truth space solution

U(p) , n = 1, ... , N and the truth space eigenfunctions uA(pn), n = 1, ... , N corre-

sponding to the minimum eigenvalue of the problem (7.2). This low order space is

denoted W2NI

W2N s n), n = 1,..., N} = span{(4, r = 1,..., 2N} . (7.3)

We start by obtaining the reduced-basis approximation presented in Section 6.2.1.

This means we apply the Galerkin projection in the space W2N to obtain the state-

ment

a(u 2N( P),V;1p) =e(V) , VV E W2N, 74

and we solve for u2N(u) the above reduced-basis linear elasticity problem.

We then want to compute g(p) defined in equation (7.34). In our case, g(p) has

to be approximated' for every new parameter set p E D. For each new p E D, the

reduced-basis approximation of g(p) can be obtained by computing the minimum

eigenvalue A',2N(P) of the generalized eigenvalue problem

a(uA, 2N(/_)I V) 2AN) &7UA,2N(t), v), Vv E W 2 N. (7.5)

'For some simple problems, g(p) is available analytically, e.g. [2]
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Note that the minimum eigenvalue is fact the infimum of the Rayleigh quotient (v.)

This means that as we compute the minimum eigenvalue in a reduced space W2N c X,

we will approach from above the minimum eigenvalue A! (M) computed in the truth

space,

='2 inf a (V, V;p) > inf a(V, IV; A! (76
vEW 2 N a (, v) - veX &(v, v)

Fortunately, the convergence of the problem (7.5) is exponential and therefore ensures

that A4 ,2N ([t) has very good accuracy, even for a small dimension of the reduced-basis

space, see [3, 5, 9, 10, 6]. Since we need our approximation g2 N([) to be a lower

bound to A!(M), we will take

g2 N() = (,2N)

with 3 a safety factor. Empirically, taking # = 0.5 ensures that g2 N(p) A(p) will

always hold.

Finally, in order to estimate the error of the reduced-basis approximation relative

to the truth space, we compute 8(p) E X, solution of

92N() &(6(A), = e(v) a(u 2N (U), V; p) Vv E X (7.8)

where g2 N(M) &(6(p ), v) is the lower bound operator described in Section 7.2.1. We

then evaluate the lower bound

S2N 2N(P) (7.9)

and the upper bound

S2N 2N28s+N(P) = 
2N (A) + A2N(P) ,(7.10)

where A2N (M) is called the bound gap and has the following value:

g2N 2 N(p) qp)) . (7.11)
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We can then show that the truth space output, s(p), lies between our output bounds,

sN(A) < 801) sN(/u). (7.12)

We will prove this result in Section 7.3.2 and we will show in Section 7.3.3 that A 2 N

can be computed using quantities in the reduced-basis space W2N only.

7.3.2 Analysis of Reduced-Basis Output Bounds

Reconstructed Error

In order to estimate the error of the reduced-basis approximation relative to the truth

space, we observe in that space the residual of the reduced-basis solution.

We define the reduced-basis residual

R(v; IL) = (v) - a(u2 N ), Vv E X; (7.13)

in which u2 N( ) is the reduced-basis approximation defined by equation (6.10), i.e.

the sum of the reduced-basis coefficient times the truth space solutions that constitute

the reduced-basis.

The test function v in the residual (7.13) can be any function in the space X.

In particular, we can take v as the error between the truth space solution and the

reduced-basis approximation, e2 N 2 _ -

R(e2 N ) ) 2 N, e2 N 2 N (7.14)

We then appeal to e(e 2N(p)) = a(u([L), e21(p); I) and bi-linearity to get

R(e2 N a(e2 N 2N(); ) , (7.15)

with e2 N(/t) E X.

This is an important intermediate result: in the compliant case, the quantity (7.15)

is precisely the error induced by the reduced-basis into the output approximation,
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according to (6.46), i.e. we have

R(e2 N(p);,u) = s(1u) - s2N(p) (7.16)

Output bounds

The bound gap A 2 N(M) g 2 N(P)a(6(1 ), 6(p)) is in fact an efficient way to compute

a tight upper bound to R(e2 N( ); [t), and therefore provides the output bounds we

look for.

Proof of Bounding properties. For convenience during this proof, we omit the

p-dependence in the notation of some quantities: e2N e 2 N([) and 8 = 8(p). In

equation (7.12), the relation s2N [ s(p) is obvious from equation (6.46) and the

coercivity of the operator a(.,.; p).

To prove the right inequality s(p) < s2N (t), we start by using bi-linearity

A 2 N I) g 2N(ii)&( ) g 2N(ii)&(6 - e2N) 2N 2 N)

_ 2N 2N 2N 2N 2N 2N () 2N, 2N

= g2N(1)(- e 2 N, - e 2 N) 2N(,i)&(6, 2 N) 2N(I u(e 2 N, 6) _ g 2N(A)&(e 2 N e 2 N)

and symmetry to get

A2N() g 2 N(I)&(6 - e 2 N e 2 N) + 2g 2N(,)&( , e 2 N) -
2N(i)&(e

2 N e 2 N) (7.17)

Now note that if we choose v = e2 N in (7.8), we obtain from equation (7.15) that

g2N(1_)&(6, e 2N) = a(e2 N, e2 N; /t) (7.18)

so that equation (7.17) can be rewritten as

A 2 N(I) g 2 N()&( _ 2N e 2 N) 2 2 N _2 N; 
2 N e 2 N)
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We also use the coercivity of the &(.,.) operator on the first term and we use on

the last term the lower bound property (7.1) of the g2 N(o)&(.,.) operator (for g2 N )

close enough to g(p)). We get

A2N(M) a(e2 N, e 2N;pI) R(e2N; P) (7.20)

And since a(e 2 NI e 2 N; [) = s(p) s 2N(g) according to equation (6.46), we obtain

s2N -2N 2+ N(A) s82%L) + A 2 N(IL) > s (Au).(.1

Effectivity of the Output Bounds

In order for the output bound A2N(p) to be useful, we also need to ensure that it is

not only greater than but also sufficiently close to the actual error s(p) - s 2N(tL) =

R(e2 Ni); /_). We define the effectivity 77(p) as the ratio of the bound gap to the

actual error
A2N

)-) = . (7.22)
s (p) - s2N

We can prove that the effectivity is bounded

(p) < Y (7.23)
c

where -y is the continuity constant defined in equation (6.3) and c is the coercivity

constant of the operator g(p)&(.,.) defined in equation (7.1).

Proof. For convenience during this proof, we omit the p-dependence in the notation

of some quantities: s - s(p), s N sN(), eN -e N (), U2N - u2N(), e2 N - e2 NW

and 8 = (p). Consider equation (7.8) in conjunction with the residual definition

(7.13)

92N(Ii)&(6, V) = f(v) - a(u 2 N, V; VV E X , (7.24)

71



where the inhomogeneity value is i(v) = a(u(p), v; M) for all v E X. We use bi-

linearity of the a(., .; p) operator and we take v = to get

g2N__ e2 , 8; p_) . (7.25)

Now we introduce two norms: .1a is the norm induced by the SPD operator &(.,.)

and II.IIa is the norm induced by the SPD operator a(., .; /t). We apply those norms

to equation (7.25) and use the Cauchy-Schwartz inequality on the right hand side to

obtain

g2 N 2- l2N aIa , (7.26)

which we rewrite

I I e, 2N .ll~ (7.27)
9 2N~p

We can modify (7.27) using the continuity property (6.3) in the form 1|611a <5 71 1111x

and the coercivity of operator &(.,.) i.e. the right hand inequality in (7.1) for

11
9 2N (A) close enough to g(I-) -- in the form 11681h 9 N() 1x to obtain

11611a (9g2NWC) 2ie
2N a (7.28)

The result (7.28) constitutes our proof. We just have to rewrite it as

92 N(j2)lJ~f < 2 Ie 2 N12

remember that the bound gap is defined by (7.11) as A2N(p) = g2 N(p)Il6Il? and use

the norm definition lie 2 N 12 _ a(e 2 N, e2 N to obtain

A2N a(e 2 N, e2 N (7.29)
C

To get the upper bound on the effectivity as stated by equation (7.23), simply remem-

ber that the error induced by the reduced-basis on the output is Is(p) - s 2 N __i)=

a(e 2N e2N; p) according to (6.46). 0
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7.3.3 Numerical Algorithm: Black Box Approach

For the type of operator described in Section 7.2, both the reduced-basis and the

output bounds methods can be decomposed into two stages. The off-line stage com-

putes all the computationally expensive quantities - i.e. the quantities related to the

truth space X. We make sure that all the quantities computed off-line are parameter-

independent by using the operator affine dependence on the parameters described in

Section 6.1.2. The on-line stage then computes the output and error bounds for each

new desired design point pd. The quantities used in the on-line stage are related

exclusively to the low order space W 2N and therefore induce only very inexpensive

computations. This dual stage approach is called the black-box approach.

We will now give a clearer idea of the discrete quantities and then describe step

by step the on-line and the off-line procedures. The discrete form of the bound gap,

A 2 N(p) given by (7.11), is obtained by putting together all the information we already

have. The first step is to expand the terms of equation (7.8) by using the operator

decomposition (6.5) and the reduced-basis approximation equation (6.10),

1Q 
2N

( 1) = g2N $ (p) UN (p) a 2, v) Vv E X. (7.30)
q=1 j=1

From linear superposition, we obtain

1 ( Q 2N (7.31)

8t) 2= Zo + L E
g GL) q=1 j=1

where io satisfies

&(o, v) = f(v), Vv E X, (7.32)

and 4 satisfies

Fal edisc e-a( ,) Vv E X, j= 1, ... 2N, q = 1 ... ,I Q . (7.33)

Finally, the discrete expression for the bound gap just comes from substituting the
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expression (7.31) for (p) in the bound gap expression A2NQ(/)

1 Q 2N

A22NN (p1,[)o- p o ( ~-

q=1 j=1
co A2N,q

Q Q 2N 2N

Z ES E E )- (734)
q=1 q'=1 j=1 j'=1

r 2N,qql

Note that in equation (7.34), the terms co, A N,q and 1F2{'' are all parameter in-

dependent and can be computed during the same off-line stage that computes the

reduced-basis quantities. The online assembly of the bound gap according to (7.34)

is then inexpensive. More details about the computational cost are given in Section

7.3.4.

From Section 6.2.2, we are now used to recognize the implemented matrix form

of the operators defined above. To clarify, the notations z and z will be used; z will

denote a function in the space X and z will be the vector of the function coefficients

in the basis of the space Xh. For our finite element approximation, z is the vector

of nodal values for the discretization Qh used. In particular, the vector j0 contains

the nodal values of the functions io of (7.32); we define the K x N matrices _, q =

1,... , Q, which jth column is the vector q that contains the nodal values of iq solution

of (7.33). Also remember that Ah() A h and A h, q = 1,..., Q, are the K x K

finite element matrices corresponding to a(., .; p), &(.,.) and aq(.,.), respectively.

We will now sum up the implementation of the off-line and on-line stages.

Off-line Stage

1. Calculate the finite element solutions u([p), i = 1,... , N from equation (3.19)

and uA(Pi),i = 1, ... , N from equation (7.2) to form the reduced-basis space

W2N = span fu(pn), uA (pn), n = 1, . . ., N} = span{(", n = 1,...,2N}.

2. Form the matrix Z which columns are the vector of nodal values of the reduced-

basis functions, (n, n = 1, . . ., 2N. Compute and store the parameter-independent
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matrices A2 N,q _ -T h,q

3. Compute and store F 2 N _T Fh

4. Compute and store the matrix A 2N _ T AhZ.

5. Compute %0 E RA from equation (7.32), and '^ E JR, q = 1,...,Q, from

equation (7.33). Form the matrices , q = 1,..., Q which columns are the

vectors -q, j = 1,..., 2N.

6. Compute and store the scalar co, the Q vectors A2Nq, and the Q2 matrices

_2N,pq introduced in equation (7.34),

Co =

A2N,q h q

_-2N,pq _ (P)Th 
Q

On-line Stage

For each new desired design point p E 'D we then compute the reduced-basis predic-

tion and the output bounds based on the quantities computed in the off-line stage:

1. Form the parameter-dependent reduced-basis matrix A 2N(P) = 2

2. Compute the reduced-basis solution U2N(p) E ff?2N from A 2 N(II) u2N(p) _ F 2 N.

3. Calculate the output s(p) = (L 2 N)TU2N(p); where L2 N _ F 2 N since this is a

compliance case implementation.

4. Compute g2 N) _ A 2N(j) from A 2 N 2N, _ ,2N( 2 Nu2N,A(/)

5. Evaluate the bound gap A 2N([t) from (7.34) and the bounds 82N (/Z) = 2N(p)

and s2N(tt) = s 2 N([) + A2N(p).
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7.3.4 Results and Issues

Computational Cost

Off-line. The complete off-line stage described step by step in Section 7.3.3 requires

(2NQ + 2N + 1) Xh-linear system solves; (4N 2 (Q2 + 1) + 2NQ + 1) &-inner products;

and 2N evaluations of linear functionals. It is important to note that the stand-

alone reduced-basis method - without the output bounds - accounts for only a

small part of the off-line computational cost, namely (N) Xh-linear system solves

and (NQ) -inner products.

On-line. The complete on-line stage described step by step in Section 7.3.3 requires

O(Q(2N) 2) operations to reconstruct the parameter-dependent reduced-basis matrix

A 2N(A), O((2N) 3) operations to invert it and the bound gap A2N(p) is obtained in

O(Q 2(2N) 2) operations.

In past references, the O(Q 2) method has been applied to heat transfer problems

in which Q 0 0(10), see [2, 10, 7]. However, for reasonably complex structures,

the linear elasticity operator decomposition (6.5) requires at least 0(102) parameter-

independent operators - i.e. Q 0 0(102). In short, providing output bounds makes

us solve 2Q times more systems in the high-dimensional space Xh than the stand-alone

reduced-basis method. The on-line part also requires O(Q) times more operations

than the stand alone reduced-basis method. This computational cost constitutes the

first impediment to the use of the O(Q 2 ) output bounds method for linear elasticity

problems.

Test Case

For the O(Q 2) method, the results are computed for a simple structure composed of

two trusses fixed at one end and submitted to a shear force at the other end; the

beam is shown in Figure 7-1. The parameters are the structure vertical thickness and

the trusses angle with the horizontal; tbeam _- tbeam, abeam}. The projected length
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of each truss is kept fixed to 1. This case is much simpler than the microtruss plate

described in Chapter 2, however it is sufficient to address the limitations of the O(Q 2)

output bounds method for linear elasticity problems.

1

L

t beam

Ubeam

Figure 7-1: Simple structure fixed at one end and submitted to a shear force at the
other end.

Effectivity of the Output Bounds

Table 7.1 shows some typical results for the simple beam case. The reduced-basis

dimensions chosen 15 and 20, which is enough to get a good accuracy of the output

for such a simple case. The effectivities observed are similar for other dimensions of

the reduced-basis.

In addition to the effectivities, Table 7.1 gives the aspect ratio of the trusses to

the fourth power ( 4 (7.35)

h ea(cos oa )2 .(.)

The table also shows the value given by the reduced-basis for the minimum

eigenvalue A! of the generalized eigenvalue problem (7.2). The accuracy of the

reduced-basis for A! has been checked by solving the eigenvalue problem in the high-

dimensional space. The results are excellent: within 1% and within 0.1% for the

reduced-basis of order 15 and 20 respectively.
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The effectivity of the output bounds is not acceptable for case with high aspect

ratios. We find a very high correlation between the small value of A! and the over-

shooting of the effectivities.

pbeam = {tbeam, abeam} (L/h)4  A! r for N =15 rfor N =20
beam = {1.42, 0.09} 0.25 0.176 3 3

pbeam = {1.81, 0.15} 0.09 0.049 8 8
b4eam = {0.77, 0.25} 3.62 0.083 11 11

P4eam = {0.83, 0.5} 5.92 0.027 60 64
b4eam = {0.55, 0.9} 490 0.005 1144 1207

Table 7.1: Effectivity of the O(Q 2) Method for 5 parameter sets. Test case with
Dirichlet on one boundary and Neumann on all others.

Note that in cases with all-Dirichlet boundary conditions, the minimum eigenvalue

is close to unity and the effectivities are therefore unaffected. In fact, Fourier analysis

and variational arguments suggest that the coercivity constant c is order unity for

Dirichlet boundary conditions, whereas for Neumann boundary conditions, the dis-

tinct rotations induced away from the Dirichlet boundary by a(.,.; p) and &(.,.) can

make the coercivity constant very small [11].

One issue remaining is the choice of the lower bound operator. The results pre-

sented above use the operator &(.,.) = a(.,.; 4) with A = {1.0,0.3}. Various test

have been perform to find a more adequate operator, such as other values for A, or

use of the Laplacian operator - a special case of the linear elasticity operator. The

conclusion was that the choice of operator very unlikely to lower the effectivities by

the orders of magnitudes needed for the worst cases.

It appears that for problems with a potentially very small coercivity constant c,

the O(Q 2 ) method rigorous approach - in the sense that the bounds never under-

estimates the error - can lead to an unacceptable overshooting of the error, indeed

equation (7.23) states that the effectivity is only bounded by 2.
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7.4 O(Q) Method

The application of the O(Q 2 ) output bounds method to real-world elasticity problems

is obviously compromised by the high computational cost relative to the stand alone

reduced-basis method and the high effectivity of the resulting bounds for certain types

of boundary conditions.

We now present a relaxation of the O(Q 2 ) method that lacks its mathematical rigor

but performs extremely well in practice. In the O(Q) method, the computational

cost of the output bounds is of the same order of magnitude as the reduced-basis

computational cost. In addition the effectivity of the output bounds is now bounded

from above.

7.4.1 Low Order Space and Discrete Equations

A Reduced Basis for the Error

As in Section 6.2.1, we choose a sample set SN of parameters p" E D, n = 1,... , N

and construct a low-order space WN comprising the finite element solutions at the

chosen design parameters WN = span{(n u(p'),n = 1,..., N}. Again, we com-

pute all the projections in the low-order space WN of the parameter-independent

operators, i.e. aq((i, (), i, j = 1, .. ., N and f(('), i = 1, .. ., N.

We also choose a second set with different sample parameters, SM,err = 1 m,err. m

1, ... , M} in the parameter space D. We then apply during the off-line stage the

reduced-basis procedure to compute a reduced-basis solution for each parameter vec-

tor Perr E SM,err, i.e we assemble the operator

Q
a((I, (; M,err) _ q G m,err) aq((i, (j) i, j = 1, ... , N , (7.36)

q=1

and we solve for uN(/1 m,err) the systems

a((', 03; PM,err ) uN ),Vi =1 ,..., N, m = 1, ...,I M .(7.37)
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We then construct off-line a reduced-basis space YM for the error

YM = span{m; m 1, ... , M} (7.38)

where m E X satisfies the error equation

a(m, v; pm,err) = R (uN(im,err),v;A m,err) , Vv X, m = 1, ... , M , (7.39)

with R(.; p) the residual defined by equation (7.13).

As in the case of the solution reduced-basis, we need to compute all the projections

in the low-order space YM of the parameter-independent quantities, i.e. we compute

for each parameter region the quantity

(7.40)

and we compute the reduced-basis right hand side

f( i), i = 1,..., M . (7.41)

Output Bounds

During the on-line stage, for each input vector pd we first obtain the reduced-basis

solution uN(d). In order to compute bounds, we then compute e(pd) E YM, solution

of

ate'( plv; p') = R(v; Pd) Vv E YM . (7.42)

We evaluate the lower bound as

S N ,M (td SN (Ad (7.43)

and the upper bound as

<N,M d _ N(d ± NM d (7.44)
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with the bound gap
'AN,Mpd a ____6_d)_d)NM d 11 d 1 (7.45)

where # a security coefficient lesser than 1; typically / = 0.5.

7.4.2 Analysis of the O(Q) Output Bounds Method

Note that the idea of the O(Q) method come from the rigorous O(Q 2 ) method of

Section 7.3. In fact, the idea is that the reconstructed error 6(p) is replaced by an

approximately computed error 6(p). This e() is obtained by solving the error equa-

tion (7.8) in the space YM. Following the optimality considerations of the previous

chapter, we expect exponential convergence of 6(y) to 6(y), i.e. for sufficiently large

dimensions M of YM we expect that 6(y) (and relatedly &(e(p), e(p))) will be very

close to a(p) (and relatedly to &(6(p), ( Therefore, the bounds g(p)&(6(p), 6(p))

to the output error s(p) - SN(It) should be obtained asymptotically.

This presents an opportunity: choosing &(., .) = a(., .; y), the method can simplify

considerably. The operator decomposition property can now be used for the solution

of the error equation. Moreover, the small values of g(p) that were deteriorating the

effectivity no longer exist, since g(p) is identically equal to 1 for that particular choice

of &(., .).

Effectivity of the Output Bounds

Because of this "relaxation", we cannot prove that the bound gap AN,M will be greater

than the error. In fact, we can prove the opposite, i.e. the bound gap approaches the

error asymptotically from below - which is why we need the security coefficient / in

equation (7.45).

The upside is that we can now prove2 that the effectivity qN,M is bounded from

above by a (small) constant;

IqNM - sp) - < 3 (7.46)
st) - sN of a

'Presently, this proof has only been done for the case of a compliant output.
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Proof. As usual we will omit during the proof the p-dependence of eN(p) and (/u).

Remember from equation (6.46) that s(p) - SN(u) = a(eN, eN; M) for the compliant

case. We use this in the denominator of (7.46) and we substitute AN,M(t) from

equation (7.45) in the numerator,

N,M _ 1 ( ; A)
= f a(eN, eN; I)

From equation (7.42) and Cauchy-Schwartz, we get a(e, e; p) < a(eN, eN; [t) and there-

fore inequality (7.46) holds.

7.4.3 Black Box Approach

Using the operator decomposition (6.5) and the reduced-basis approximation equation

(6.10), we can rewrite the reduced-basis space error equation (7.42) as

Q Q N

o-'() a'(e(p), v) = f(v) - - q , V E yM (7.48)
q=1 q=1 n=1

which is the system we need to solve for e(p).

Again, we use the matrix form introduced in Section 6.2.2. In particular, we use

again the K x N matrix Z which columns contain the vectors ., j = 1, ... , N; we

define the X x M matrix X which columns contains the vectors ., j = 1,... , M.

Also remember that Ah(L() and Aq, q = 1,... , Q, are the K x K finite element

matrices corresponding to a(., .; P) and aq(., .), respectively.

We now sum up the two stages of the black-box approach.

Off-line Stage

1. Calculate the finite element solutions ui = (p), i = 1,... , N from equation

(3.19) to form the output reduced-basis space WN. Form the matrix Z E JRKxN

which nth column is (.

82



2. Compute and store the matrices AN,q E JNxN as N __ T h,q _

1, .,Q.

3. Using the output reduced-basis, calculate 6, i = 1, ... , M from equation (7.39)

to form the error reduced-basis space. Form the matrix X E JKExM which nth

column is ".

4. Compute and store A 'q E EMxM as A" -- A 'q q = 1 ... , Q.

5. Compute and store the matrices _TMN,q E JpMxN as TMN,q = VTh,q _

1,.,Q.

6. Compute and store the vectors FN ZTFh and FM XTFh

On-line Stage

For each new desired design point p E D we then compute the reduced-basis pre-

diction and error bound based on the parameter-independent quantities computed in

the off-line stage:

1. Form AN 7 or q N,q and A -- = z qM,q

2. compute the reduced-basis solution uN(p) E HJN from AN(A) UN(A) = F N.

3. Calculate the output sN(p) = (LN)TUN(p), with LN = FN since this is a

compliant case implementation.

4. Compute e(/i) . IM from AM() 6) FM (p) ( N (p))T MN,q.

5. Evaluate the bound gap fNM T (p) e_() and the bounds s )

sN(I) and sN(t) = sN(y) + \N,M(pj).

7.4.4 Results and Issues

The relative error induced by the reduced-basis on the output estimates has been

studied in Section 6.4.2 (Fig. 6-1). Clearly, the reduced-basis output estimates can

benefit from a method that certifies their accuracy in a sharp and efficient manner.
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The rigorous O(Q 2) method failed on both accounts for the microtruss plate problem.

We will now review the results for the O(Q) method.

Computational Cost

Off-line. The complete off-line stage described step by step in Section 7.4.3 requires

(N + M) Xh -linear system solves; Q(N 2 + M 2 + NM) a-inner products; N + M

evaluations of linear functionals; and M reduced-basis computations. Given that M

is roughly of order N, the O(Q) methods allows to gain a factor Q on the off-line

computational cost compared to the O(Q 2) method. This is a very consequent gain

in the case of the microtruss plate problem where Q ~ 0(102).

On-line. The on-line stage cost consists then of QN 2 and QM 2 operations to re-

construct the parameter-dependent operators AN and A, respectively; and N 3 and

M 3 to inverse the dense matrices obtained. Therefore, we also gain a factor Q on the

on-line computational cost, compared to the O(Q) method.

To conclude, the O(Q) output bound method computational cost - off-line and

online - is very close to the reduced-basis cost. This is critical for practical imple-

mentations, where the choice is between getting acertified accuracy of the results vs

gaining overall accuracy by introducing more modes in the basis.

Test Case

We test the O(Q) method on an advanced structural mechanics problem, namely the

two-dimensional microtruss plate presented in Chapter 2. We now give a few numbers

relevant to the problem.

M K = 3.104 - dimension of the Xh-space in order to get a good approximation

of the exact solution (within 3%).

* Q = 240 - number of parameter-independent operators.
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o N, M E [50; 200] - dimensions of the low-order spaces WN and ZN in order to

get reasonable accuracies for the reduced-basis output and the output bounds.

o * = 1 - the "security" coefficient. Also the upper bound to the effectivity:

r7 <_ 1/0.

Effectivity of the Output Bounds

We will now study the bounds effectivity - the ratio of the bound gap to the actual

error - in order to establish how sharp is the O(Q) method.

Figure 7-2 shows the effectivities of the bounds in function of the reduced-basis

dimension N for four design point in the parameter space D. The dimension of the

"error" low-order space is M = N1 -1 . We observe the asymptotic behavior mentioned

in Section 7.4.2: as the dimension N of the output reduced-basis space increases, so

does the ratio M/N (since M = N 1 ) and the effectivity converges asymptotically to

1/. The downside of the O(Q) method is the pre-asymptotic behavior observed for

N < 50: an effectivity inferior to 1 indicates a bound gap inferior to the error, i.e.

false.

The experimental relation between the output bounds effectivity and the dimen-

sion M of the "error" reduced-basis is studied in Table 7.2. The dimension of the

low-order space YM is taken as a power p of the dimension of the output reduced-basis

space WN, M = NP, p ; 1; also, the security coefficient 1/3 is fixed to 2 and the

dimension of WN is 80. We observe that to be on the safe side - and if we do not

wish to augment the security coefficient j - it is preferable to take p = 1.1 for the

microtruss plate problem. By experience, the optimal power p is problem specific.
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100 120 140

Figure 7-2:
M = N-.

Effectivity of the O(Q) Method for 4 parameter sets, as a function of N,

P Exp(r/) Std(rq) r7 > 1
1.0 1.21 0.32 72.8 %
1.05 1.53 0.40 88.4 %
1.1 1.75 0.32 98.6 %
1.2 1.92 0.23 98.4 %

Table 7.2: Mean and standard deviation of the effectivity over 500 sets of parameter,
for the pre-asymptotic case N = 80, M = NP,p E {1; 1.2}. The fourth column shows
the percentage of output bounds with effectivities > 1.
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Chapter 8

Application: Trade Off Analysis

The reduced-basis method is a very powerful tool for engineering design. The quasi-

instantaneous computation time of the outputs allows to explore many configurations

in the parameter space.

An example of parameter space exploration for the microtruss plate problem is

given in Figure 8-1. Computations have been performed for design configurations

over all the parameter space D. Each point shows the computed deflection (and

volume) for a particular configuration. The lower left boundary is the Pareto curve

on which a minimum structural volume is achieved for a given deflection (or inversely,

a minimum deflection is achieved for a given volume).

8.1 Example: the Optimal Storage Structure

We now present a short example of optimal structure design. The case we study is a

multi-functional application of the microtruss described in Chapter 2. The idea is to

use the reduced-basis method very short computation time to evaluate many design

configurations. In addition, the accuracy of the computations is certified with the

output bounds O(Q) method.
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8.1.1 Storage Structure

Design Requirements

As an example, we choose to design a multi-functional structure that must meet

certain stiffness criteria and will be used to store a liquid. In particular, the storage

volume inside the prismatic structure, given by Vstorage = Sy x (L - 2 -tside)- 13 X ttruss,

is required to be 1800 units per unit depth. In addition, the structure must be able

to carry a load applied along 'N without exceeding a maximum deflection. We want

to optimize the design in order to meet the storage and deflection requirements while

minimizing the structural weight (i.e. volume).

Design Parameters

The top and bottom sheet faces thicknesses are fixed to tt0o = thot = 3 in order to

provide a required impact resistance. Also, we take tside = 1 and grm = 1.5.Etruss

We vary two design parameters: the vertical spacing SY and the core trusses

angle a. Note that the core trusses thickness ttruss varies in function of Sy in order to

keep a constant storage volume,

ttruss = ((L - 2 x side) -storag(81)

The parameter space of the storage structure problem is then defined by the

intersection of the (more general) microtruss plate parameter space and the parameter

variations described above, giving

4.0 < Sy < 60 (8.2)

0.2 < a < 1.2 (8.3)

0.4 ttruss = j1 (295 - 1800) < 4.0 . (8.4)
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8.1.2 Optimal Design

Reduced-Basis Computations for Design

The reduced-basis very short computation time allows to explore the entire parameter

space of the problem, as shown in Figure 8-2. The truss angle a and the vertical

spacing SY vary along the two lower axis. One output, the deflection, is the z-

coordinate of the surface, and the other output, the structural volume, is the color of

the surface. Once the structural behavior is known for all possible geometries of the
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Figure 8-2: Deflection in function of the vertical spacing Sy and the truss angle a.
The surface color gives the corresponding structure volume.

structure, an optimal design is easily reached.

Output Bounds Computations

In order to use the reduced-basis methods for design, it is also necessary to predict

how accurate they are in comparison with the underlying "truth" space computations.
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The output bounds developed in Chapter 7 provide the necessary tools.

In particular, observe Figure 8-3 in which the surface color is this time the error

induced by the reduced-basis method into the deflection computation, as predicted

by the (OQ) output bounds method. Our structure seems to have an interesting

behavior for values of the truss angle a superior to 1.1 radian: the tip deflection

starts decreasing again. In fact, the surface color indicates that the error in that

region represents up to 15% of the deflection values. This is a non-negligible error

that indicates the need for additional basis functions in the reduced space ZM.

8.2 Actionable Equation

The PDF version of this thesis contains an interactive equation that allows to run

the reduced-basis code over the web. To retrieve the PDF version, visit

http://augustine.mit. edu/
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Chapter 9

Future Work

9.1 Reduced Basis and Output Bounds Methods

Theoretical Extensions

Non-compliant outputs. The output bounds theory presented herein for compli-

ant outputs has already been extended to more general non-compliant outputs [7]

for the O(Q 2 ) method. The O(Q) method is also being extended to non-compliant

outputs in [11].

Sample parameter sets distribution. In this thesis, a uniform random distri-

bution has been used for the sample parameter sets SN; other distributions will be

studied, such as log-random. Some theoretical work is in progress to predict an

optimal distribution pattern.

Output bounds O(Q) method variants. The O(Q) method can still be improved

to reduce the number of system solve off-line as well as the number of operations on-

line.
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9.2 Microtruss Plate Problem Extensions

Three-dimensional model. More general geometries than prismatic materials can

be studied by implementing a three-dimensional model of the microtruss plate. The

reduced-basis will be an extremely appropriate method since the number of degrees

of freedom of the "truth" space will increase very rapidly for a three-dimensional

problem.

Non-compliant outputs. The implementation of the output bounds methods for

non-compliant outputs will allow to study more general failure modes in [11], such

as:

" Stresses at the junction between the trusses and the sheet faces. This output is

related to the fracture failure mode.

" Axial stress in the trusses. This output is related to buckling and yielding.

" Stress at the interface between the sheet faces and the clamped side sheet. For

a downward load at the tip, the top sheet face is in tension and therefore the

stress at the interface between the top sheet face and the clamped side sheet is

related to yielding; the bottom sheet face is in compression and therefore the

stress at the interface between the bottom sheet face and the clamped side sheet

is related to buckling.

Multi-functionality. The microarchitecture of cellular materials allows for their

use in multi-functional applications. Particular applications that will be modeled are:

" heat transfer applications in which a flow is conducted through the core of the

structure.

" Actuator problems that rely on thermo-mechanical physics. Shape memory al-

loys deflect with changes in temperature and can therefore be used as actuators.

The model will then involve some coupling between thermal and mechanical re-

sponse.
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Inverse problems. For each new output approximation, the reduced-basis has

a very low computational cost. This makes it a very powerful method for multi-

parametric problems which require many output evaluations such as design, control

and inverse problems.

In particular, [11] will study inverse problems such as finding the position of a

crack by analyzing the changes in the vibrations frequencies and eigenmodes of the

structure. This problem is governed by the Helmholtz equations.
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