
VIRTUAL ASSEMBLY MODELS IN DISTRIBUTED

HETEROGENEOUS CAD ENVIRONMENTS

by

WILLIAM P. LiTEPLO

B.S. Mechanical Engineering
Columbia University School of Engineering and Applied Science, New York, NY, 1998

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000
@ 2000 Massachusetts Institute of Technology,

All Rights Reserved

Signature of Author..
Department of Mechanical Engineering

-Mav 5v2900)

C ertified by...
David Wallace

Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering
Thesis Supervisor

A ccepted by..
Ain A. Sonin

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OF TECHNOLOGY

FEB 1 9 2001L

LIBRARIES LIBRARIES

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Due to the quality of the original material there is some bleed
through.

k. ;'Q*

VIRTUAL ASSEMBLY MODELS IN DISTRIBUTED

HETEROGENEOUS CAD ENVIRONMENTS

by

WILIAM P. LITEPLO

Submitted to the Department of Mechanical Engineering
on May 5, 2000 in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Mechanical Engineering

ABSTRACT

Enterprise-wide assembly modeling is a challenge for many engineering companies. This
thesis presents a virtual assembly modeling paradigm that allows assembly of geometry
defined in multiple CAD systems. In this environment, CAD modelers provide their
geometric services over the web. Assembly engineers are enabled to visualize these
three-dimensional services and incorporate desired objects into their CAD system without
the ability to modify this geometry locally. However, through active links to remote
CAD systems, they may also redefine the original geometry, and have their complete
assembly recreated in their own modeling scope based on these design changes,
mimicking parametric CAD models. The CAD systems used by the various participants
need not be the same.

A research prototype system called DOME is used as the framework for this software-
based assembly modeler. An example involving CAD modelers in different companies
achieving a system-wide assembly model is discussed. The example illustrates the use of
the assembly modeling system and the retention of proprietary information, such as 3D
design history, for both parties.

Thesis Supervisor: David Wallace

Title: Esther and Harold Edgerton Associate Professor of Mechanical Engineering

ACKNOWLEDGEMENTS

I would like to thank many people for contributing to my research, writing, and general

education: my family; Prof. David Wallace, my advisor, for his insight, guidance, good

humour and icons; the rest of the Ford Five ("pdJeff" Lyons, Priscilla "Masta P" Wang,

"What de" Juan Deniz and Chris "General Gao" Tan), for all their support and friendship;

Nick Borland, Elaine Yang, Shaun Meredith, and Johnny Chang for DOME and

administrative support; Stephen Smyth, for the foamschneider and Snaglt; all the rest of

the folks in the CADlab; Peter Sferro, Bob Humphrey, Darrell Kleinke and Al Clark at

Ford; Matt Wall and Ben Linder from DOME Solutions; cadlab26, for hanging in there;

Quake3; CIPD; Donnie, Tommy, Francois and the Peanut Lady; Maggie and Maureen;

Al Goncer at SDRC for tech support; Adora and Michelle, my wonderful dance partners;

Manish, Jenny, Ronak, Rob, Soo, Tom, Jen, Sham and Kevin from Ashdown for all the

Ashfun (Volpe); all the others in the BDT with whom I've competed (Nicki, Margaret,

Sam, Yanfeng, Yedil, Steph, Michael, Mark, Karen, He-Rim, Jen, Katya), and not

competed (Lauren, Tuan, Sofya and Boris, Tony, Kenia, Mohammed, Eric, Mark, Tilke,

Dan, Sohrab, Genya and Mila and many others); Armin, Christine, Mark, Earl, Mike and

Deirdre, the Nugents, and Warren and Elizabeth for coaching; Jenny, Nick, Ines and the

other FreeBladers (it's freedom, baby); Plast, for everything and everyone; Yurchick, for

Europe; Lisovi Chorty; Bill, Will and Tim (C&B); the Columbia Clefhangers; Randi,

Andrea, Bonnie, Barbara, Ankur, Wayzen, Becca, Naomi, Amy, Rekha (Carman 7 and

beyond); all the countless Ukes I am neglecting; and of course Boh.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. .. 5

TABLE OF CONTENTS .. 6

LIST OF FIGURES..8

1 INTRODUCTION ...6...9

2 BACKGROUND: CAD INTEROPERABILITY AND NEUTRAL FILES 11

2.1 THE NEED FOR TRANSFERRING GEOMETRY..11

2.2 IG E S 13...... 13

2 .3 S T E P .. 14

2.4 V R M L .. 16

2.5 O THER FILE FO RM ATS..18

2.6 ASSESSMENT OF NEUTRAL FILES ... 19

3 ASSEMBLY MODELING .. 20

3.1 V IRTU A L A SSEM BLY .. 20

3.2 ASSEMBLY MODELING RESEARCH... 21

3.3 TYPES OF STANDARDIZATION..22

3.3.1 N eutralfiles 2...2

3.3.2 Centralization of data 6................................ 23

3.3.3 Feature definition 6...624

3.4 V A V IA V R ... 25

3.4.1 Integration of VR and analysis.. 25

3.4.2 Virtual Assembly Design Environment... 26

3.5 ANALYSIS OF ASSEMBLY MODELING TECHNIQUES .. 27

4 DOME OVERVIEW ... 29

4.1 DOME ARCHITECTURE...29

4.2 "BUSINESS AS USUAL ... 30

4.3 PUBLISHING MODEL SERVICES... 30

4.4 IN T E G R A T IO N 3 1

4.5 PROPRIETARY INFORMATION...........6... 32

4.6 SERVICE MARKETPLACETI... 32

4.7 ADDITION OF SERVICE TYPES................................... 6.................................. 33

4.7.1 VRM Lplugin .. 33

4.7.2 N eutral fi le plugin .. 34

5 C A D PLU G IN S .. 37

5.1 ID EA S .. 37

5.1.1 Software and API ... 37

5.1.2 Publishing dim ensions ... 37

5.1.3 Publishing parts and assem blies ... 39

5.1.4 Loading a m odel .. 41

5.1.5 M aking and saving changes .. 43

5.2 SO LID W O R K S ... 45

5.2.1 Sofiware and API ... 46

5.2.2 Publishing services .. 46

5.2.3 Loading m odels .. 47

6 VIRTUAL ASSEMBLY MODELING IN DOME ... 50

6.1 SETTIN G U P A SSEM BLY IN TEGRATION .. 50

6.2 RECO RD IN G A SSEM BLY STEPS ... 52

6.3 A SSEM BLY SEQ U EN CE .. 54

6.4 ADVANTAGES OF THE DOME ASSEMBLY PARADIGM ... 54

7 CASE STUDY - CAMERA EXAMPLE ... 57

7.1 TH E SCEN AR IO ... 57

7.2 THE D OM E M O D ELS .. 58

7.3 IN TEG RATIO N AN D RESU LTIN G SY STEM .. 62

8 C O N C LU SIO N S .. 67

8.1 SU M M AR Y ... 67

8.2 LIM ITATIO N S TO THE PARADIGM .. 68

8.3 FU TU RE W O R K ... 69

8.3.1 Additional concepts to incorporate ... 69

8.3.2 Existing concepts to implem ent ... 70

R EFERE N CES ... 71

APPENDIX A: SAMPLE NEUTRAL FILES ... 74

A .I SAM PLE IG ES FILE .. 74

A .2 SAM PLE STEP FILE .. 75

A .3 SAM PLE VRM L FILE .. 76

LIST OF FIGURES

Figure 1-1 DOME assembly modeling paradigm...10
Figure 2-1 Exponential scaling of direct translators..12
Figure 2-2 Linear scaling of translators using neutral files .. 12
Figure 2-3 Simple VRML shown in Cosmo Player.. 17
Figure 4-1 DOME client running in Netscape and an empty DOME model 31
Figure 4-2 VRML module GUI.. 34
Figure 4-3 NF module GUI... 35
Figure 4-4 Neutral file transfer using a relation .. 36
Figure 5-1 Publishing dimensions of a simple I-deas model...38
Figure 5-2 Publishing an I-deas part... 39
Figure 5-3 Publishing I-deas part properties..40
Figure 5-4 I-deas container module GUI.. 41
Figure 5-5 I-deas objects loaded in DOME ... 43
Figure 5-6 Driving an I-deas model parametrically from DOME 44
Figure 5-7 Sample SolidWorks publisher file ... 47
Figure 5-8 SolidWorks Container module GUI...48
Figure 5-9 SolidWorks objects in DOME and the underlying solid model 48
Figure 6-1 Step 1: The two participants publish their CAD models and wrap them in

D O M E .. 50
Figure 6-2 Step 2: The engineer drives the supplier's CAD model parametrically from

D O M E .. 5 1
Figure 6-3 Step 3: The supplier drives the engineer's neutral file service by linking it to

h is ow n ... 52
Figure 6-4 Step 4: The engineer incorporates the new part into his assembly..............53
Figure 6-5 Step 5: The engineer rebuilds his assembly by driving the supplier's model..54
Figure 7-1 Assembler's camera model in I-deas .. 57
Figure 7-2 Supplier's lens model in SolidWorks, two configurations 58
Figure 7-3 Publishing dimensions of the main body of the camera 58
Figure 7-4 Publishing the volume of the camera body..59
Figure 7-5 Publishing services for the camera assembly..59
Figure 7-6 Assembly engineer's initial DOME model..60
Figure 7-7 SolidWorks publisher file used in case study ... 61
Figure 7-8 Supplier's initial DOME model ... 61
Figure 7-9 Integration of the two models .. 63
Figure 7-10 Initial state of the linked models ... 64
Figure 7-11 Making a catalog change... 64
Figure 7-12 Elongating the lens.. 65
Figure 7-13 Modifying additional parameters ... 65
Figure 7-14 Event propagation in distributed model.. 66

9

1 INTRODUCTION

Web-enabled technology has made it possible for the rapid and robust exchange of design

information between the various participants in the product design cycle. Additionally,

new technologies, such as DOME (Distributed Object-based Modeling Environment), for

example, facilitate the integration of information between different engineering models.

These technologies help to overcome many of the problems that arise from having

designers located in geographically dispersed areas, and different sub-system models in a

myriad of applications (Wallace, 2000). However, the issue of assembly modeling

between different solid modelers, which requires tight interoperability at a data model

level, is still problematic.

Most product development or engineering firms standardize on one single CAD

(Computer Aided Design) package. This makes it easier to share models between

different designers or departments. When collaboration is required across company lines,

however, additional problems may arise. Suppliers may be using completely different

modelers. Furthermore, actually transferring native CAD files can cause problems

regarding proprietary information or trade secrets, often embedded in the geometry

design history. Most CAD environments allow import and export of high-level neutral

files, such as IGES or STEP. This overcomes the problem of divulging proprietary

information, but, once imported into another CAD system, this geometry can no longer

be modified parametrically. Thus, such an approach would require many time consuming

iterations between organizations if a product is comprised of many subassemblies for

different suppliers.

This research attempts to address the issues of CAD interoperability and retention of

proprietary design history through a new concept enabled by a design service

marketplace as is embodied by the DOME system. CAD designers will be able to build

their parametric sub-system models as usual in the CAD system of choice. They will

publish appropriate interfaces that define a set of services that let other participants

Massachusetts Institute of Technology - Computer Aided Design Laboratory

10

parametrically drive their CAD models over the Internet in a web browser-based DOME

environment. Assembly designers will incorporate published high-level neutral file

services from outside sources into their own CAD models. Then, when the assembly

engineer makes a change to the published service interface of the remote subsystem, the

actual subsystem CAD model will rebuild, and the assembly designer will automatically

receive a new high-level description in their assembly model. Thus, the approach will

make the high-level description appear as if it is editable parametrically (see Figure 1-1).

new parameter values

CAD Assembly Distributed DOME CAD Geometry
Modeling Modeling Modeling

Figure 1-1 DOME assembly modeling paradigm

The assembly on the left incorporates the service of the peg (shown in wireframe) via neutral files.

The geometry of the peg itself is defined and maintained in another CAD environment on the right.

Through DOME, this CAD model can be parametrically driven over the web, and cause the peg to be

automatically reassembled into the CAD model on the left. The result is parametric-like behavior

without the transfer of proprietary design history.

This thesis first provides background information about issues in CAD interoperability

and assembly modeling in Chapters 2 and 3, respectively. The DOME modeling system

utilized by this research is presented in Chapter 4. Then, the interactions between DOME

and CAD systems is presented in Chapter 5. This provides the framework necessary to

perform virtual assembly modeling in DOME (see Chapter 6). An example of this

assembly modeling system is given in Chapter 7. The outcome of this research is

discussed in the final chapter.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

11

2 BACKGROUND: CAD INTEROPERABILITY AND NEUTRAL

FILES

2.1 The need for transferring geometry

There are many competing CAD/CAMICAE (Computer Aided Design, Manufacturing,

and Engineering) packages in use currently. Each tends to have different strengths and

weaknesses depending on its application. CAD systems can be "quick-and-dirty" solid

modelers or tie in a variety of analytical tools, such as interference checking, thermal,

strength and/or other Finite Element Analyses (FEA), animations, etc. CAE tools are

more commonly used for heavier computational engineering analyses of geometry, rather

than for defining geometry. CAM packages are used specifically for manufacturing

applications - determining tool paths, manufacturing time or cost, mold flow

characteristics, and so on. As actual design of parts and systems is typically done in

CAD, a need quickly arose to be able to transfer these data to CAM and CAE systems.

The existence of these varying software applications makes it difficult to collaborate

within a design project when parties from different organizations are involved. One

approach to address this problem is to mandate that everyone with whom one works uses

the same software. This centralized data management directive must come from

relatively strong upper layers of a dominant OEM. Automobile manufacturers are a good

example of companies that typically use this strategy. As most companies are highly

invested in their CAD/CAM software, this forced standardization is often costly,

unpopular, and creates barriers to the consideration of different suppliers for sub-

assemblies.

Another approach is to have direct translators from every CAD application to every other

CAD application. Some packages come with such translators, but their supply is not

directly in a designer's, nor even a company's, control. Furthermore, this solution scales

exponentially with the number of software packages (see Figure 2-1). Finally, new

Massachusetts Institute of Technology - Computer Aided Design Laboratory

12

translators would have to be developed each time any CAD system released a new

version, which quickly makes the problem unmanageable.

CAD A CAD B

CAD C CAD D

Figure 2-1 Exponential scaling of direct translators

Number required is on the order of n2

The solution adopted by the CAD industry was to use neutral file formats. Once

translators were written between every application and a neutral file type, CAD files from

any supporting software package could be exported to this neutral format using a

preprocessor, and imported into another system with a postprocessor (see Figure 2-2).

CAD A CAD B CAD C CAD D

Neutral File Standard

Figure 2-2 Linear scaling of translators using neutral files

Number required is n

However, these neutral file formats tend to only describe the topology of the solids and

do not include the design history that allow the models to be edited parametrically. Thus,

they are often referred to as dead geometry.

In certain applications, the use of neutral files is appropriate. For example, in a situation

involving geometry designed in CAD transferred via neutral files to manufacturers using

CAM tools, this approach suffices. Within the context of traditional assembly design,

though, this method does not provide the needed modeling flexibility. The DOME

assembly modeling paradigm presented in this thesis makes beneficial use of both the

Massachusetts Institute of Technology - Computer Aided Design Laboratory

13

ability of neutral files to capture geometry as well as their inability to transfer design

history. Various neutral file formats are discussed in the remainder of this chapter.

2.2 IGES

Initial Graphics Exchange Specification (IGES) is a neutral file format originated by the

National Institute of Standards and Technology (NIST) in 1979 and adopted by the

American National Standards Institute (ANSI) to facilitate transfer of geometric data.

The first published standard (IGES 1.0) was released in 1981 (Magoon, 1989).

Improvements have been steadily throughout the years, and the most recent version is

IGES 5.3, which was released in 1996. Version 6.0 is currently being developed. Iges

files usually have a .igs or .iges extension. In practice, IGES has become the standard in

CAD/CAM data exchange in the U.S. (Diehl, 1996).

Early versions of IGES and the CAD pre- and postprocessors that went along with them

were often criticized as unreliable (Magoon, 1989). Since then, both the IGES

specification itself and the translators have become more consistent and accurate. It is,

however, up to each individual CAD vendor to maintain a current working version of its

data processors. The use of outdated versions of the IGES standard by CAD systems

may lead to versioning problems.

IGES information is based around different types of entities. The main classes of entities

are geometric, annotation, and structural. Geometric entities range from points and lines

to complex 3D surfaces. Other entities include dimensions, annotations, views and

properties (IGES 5.x, 2000). Native CAD files do not necessarily store information as

these same types of entities, and thus must map these entities to their own types. There

are different levels of translation mappings. Some CAD objects might get mapped to

multiple IGES entities, or vice versa, some objects may not be supported, which results in

a null mapping, and others may in fact have a one-to-one correlation (Magoon, 1989).

IGES files are divided into five sections of data: Start; Global; Directory Entry;

Parameter Data; and Terminate. There is also an optional Flag section to denote whether

Massachusetts Institute of Technology - Computer Aided Design Laboratory

14

it is in binary or compressed ASCII form. (See sample IGES file in Appendix A. 1.) The

Start section provides descriptive comments about the file. This information is ignored

by the postprocessor and serves mainly as a human-readable description. The Global

section describes the preprocessor and provides all the high-level parameters needed for

the postprocessor to be able to properly deal with the file. The Directory Entry and

Parameter Data sections contain all the information about the specific entities present in

the file. The Terminate section is a single line at the end of the file that records how

many lines long each section is.

There are both advantages and disadvantages to using IGES files. Some sources

complain about their lack of robustness, but this has become much less of a problem over

time. Coles, et al. claim that surfaces are not handled well (Coles, 1991), and yet others

advocate that IGES is the most accepted format for transferring nurbs and other complex

surfaces (Diehl, 1996). Thus, one can infer that the relative usefulness of IGES is not

absolute. IGES versions change every few years, which makes it harder to keep the

interoperability multidirectional. Furthermore, IGES supports the creation of variations

and additions to IGES entities for use with a given system, known as "flavors". In a best-

case scenario, processors will allow you to choose the flavor you wish to use. However,

the use of flavors can often cause problems, as it may define entities not supported by the

postprocessor of the importing system. For this reason, flavored IGES files are not truly

neutral. Finally, as IGES is a US standard only, international businesses may find its use

inappropriate.

2.3 STEP

The International Organization for Standardization (ISO) has developed its own neutral

file format, standard number ISO-10303-21, more commonly known as STEP (Standard

for the Exchange of Product Model Data). The standard itself is more than just a file

format - it attempts to incorporate a more complete definition of the physical and

functional characteristics of a product across its entire life cycle, including design,

manufacture and support (UKCIC, 2000). STEP received full standard status in 1994.

Since then, STEP has become used very heavily in the aerospace and defense sectors. It

Massachusetts Institute of Technology - Computer Aided Design Laboratory

15

has been recognized by most major CAD and CAM systems, and is inherently compatible

with Product Data Management (PDM) (NRC, 1999).

STEP uses a specification language called EXPRESS to define all of its standards. It was

designed to be both human readable and computer interpretable. A sample STEP file

(which typically gets assigned a .stp or .step file extension) is provided in Appendix A.2.

The STEP standard defines what are called "Application Protocols" (APs). Each AP

determines what information a particular class of STEP-conformant tools can define.

There are many different APs written for different fields of use. The most popular

Application Protocol is AP 203, "configuration controlled three-dimensional designs of

mechanical parts and assemblies" (NRC, 1999). This covers most of the geometric

entities created in CAD. Although parametric relations are not defined within this AP,

the actual data translation tends to be more robust and require less rework than IGES

files. APs ensure true neutrality because a conforming STEP tool has to conform to the

AP specification as well as the file format specification.

A main advantage of STEP over other formats is that it is an international standard. This

has clear implications on the fast growing global economy. It also allows an older

version of a compatible CAD system to open models created in later versions. This

feature can be important when partnering departments or organizations use differing

CAD versions.

STEP aims to have applications in multiple fields, and is capable of storing product data

regarding design intent or electronics and piping, to name a few. IGES 5.3, in contrast,

has added some basic electrical modeling and piping capability which has not been fully

tested (NRC, 1999). STEP was made to be used as a neutral product database with long-

term archiving capabilities that acts as a single storage standard for all product

development data (NRC, 1999). This makes it well-suited for system integration (Duan,

1996). There are several examples of this use in industry and research.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

16

A large sector of companies in the aerospace industry (including Lockheed Martin

Tactical Aircraft Systems, Northrup Grumman Commercial Aircraft Division, and a

number of suppliers) are participating in a pilot project entitled STEP Web Integrated

Supplier Exchange (STEPwise) involving the sharing of STEP data over the web (NRC,

1999). The main objective of this project is to integrate PDM systems using an agreed

upon standard. An encrypted ftp method is used to transfer the data that are loaded into a

PDM system.

Peng, et al. at National Tsing Hua University in Taiwan have developed a STEP-based

object-oriented database management system (Peng, 1998). The system is based on the

belief that STEP accurately represents product data from many points of view, including

design, manufacturing, finance, and others. It allows multiple users to collaborate on a

design through web browsers. Although the data are processed by different components

for different uses, they ultimately get stored in an integrated centralized database.

2.4 VRML

Virtual Reality Modeling Language (VRML) is used to publish and view 3D objects over

the web. The first draft of the VRML 1.0 specification was written in late 1994 by SGI

(Silicon Graphics, Inc.) and the final VRML 2.0 specification was released in 1996

(Ando, 1998). "VRML 2.0 was recognized as an international standard (ISO/IEC-14772-

1:1997) by the International Organization for Standardization (ISO) and the International

Electrotechnical Commission (IEC) in December, 1997" (Crispen, 1998). VRML is a

"scene description language that describes the geometry and behavior of a 3D scene or

'world"' (Crispen, 1998). Within a VRML world, one can alter one's viewpoint of the

contained objects in a variety of fashions. VRML files can be viewed with a standard

Internet browser using a plugin, or with standalone programs developed for this purpose.

A common VRML plugin is Cosmo Player, owned by Computer Associates

International, Inc. (CAI, 2000) (see Figure 2-3). VRML files have a .wrl extension.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

17

Figure 2-3 Simple VRML shown in Cosmo Player

VRML 1.0 worlds are static. They can include normal geometric objects, textures, lights

and cameras, but no action. Users can manipulate the view of these worlds, but the

objects themselves cannot be altered from a browser. In contrast, VRML 2.0 (also called

VRML97) supports animation, switches, sensors, sounds, scripts and events (Crispen,

1998). This makes VRML worlds much more interactive. One of the points driving the

design of VRML 2.0 was to make innovation and standardization co-accessible (Ando,

1998).

The VRML standard is not a major player in the CAD/CAM interoperability arena, but it

has become a standard for web visualization of 3D geometry, whether originated from

CAD or written directly in VRML (see sample file in Appendix A.3). The majority of

CAD programs do have plugins or converters for VRML. Overwhelmingly, though,

VRML models are built by people in the computer graphics industry.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

.

18

2.5 Other file formats

AutoCAD's Data eXchange Format (DXF) (AutoDesk Inc.) is another common file type

based on a proprietary format rather than a public one. AutoCAD has its own native file

structure, but, since in 1982, its DXF format has been published for all to use. DXF files

are composed of pairs of group codes and associated values. The group codes specify the

type of item that follows. The associated values can be strings or numbers. Using these

group code and value pairs, DXF files are organized into sections, including the

HEADER, CLASSES, TABLES, BLOCKS, ENTITIES and OBJECTS sections. Each

section is composed of records, which are composed of a group code and a data item.

Each group code and value is on its own line in the file.

There are, however, a number of problems with the DXF format. First, it can define only

geometrical entities, often favoring simplicity over richness of data (NRC, 1999). There

are many problems in translation (Rudolph, 1995; Weber, 1996; Zapor, 1998).

Furthermore, the format changes with each new release of AutoCAD, so staying up-to-

date becomes difficult. Finally, AutoCAD itself is used much more for two-dimensional

drafting and less so for 3D modeling, and the DXF format appropriately lacks robustness

in its definition of three-dimensional entities.

Standard Triangulated Language (STL) files, often referred to as stereolithography files,

are "the de facto industry standard in rapid prototyping" (Bohn, 1995). These files are

made up of an unordered set of triangles in three-dimensional space. Each triangular

facet consists of a triad of vertices and a direction. The entire set defines a surface that

contains a volume, or regularized set. The STL standard is ideal for use with rapid

prototyping (RP) devices because it only defines the boundary between positive and

negative space, and RP is usually performed by simply adding homogeneous solid

material in appropriate locations.

STL files are known to frequently fail to properly enclose a volume, especially for more

complex surfaces. This problem is dependent upon the method in which the geometry

Massachusetts Institute of Technology - Computer Aided Design Laboratory

19

was originally built, typically in CAD. Usually this leads to tedious manual editing

(Bohn, 1995). Another disadvantage with STL files is the loss of smoothness. Curved

surfaces become noticeably faceted, depending on the level of triangularization. Even

small prototypes still may require additional surface operations. Although most CAD

packages will export STL files, many do not import them. All curvature is lost and the

amount of tiny surfaces puts unnecessary strain on the processor. Curved geometry is

much better represented in the CAD system's native form. This makes the

interoperability quite one-sided from CAD to CAM, and even then, the use is better

suited for prototyping than for production purposes.

2.6 Assessment of neutral files

For neutral files to be usable, CAD systems must conform to their standards. This can be

broken down into three types of conformance. First, output files must have an acceptable

structure. Second, a preprocessor must conform in that it creates conforming neutral

files. Third, a postprocessor must be able to read conforming files without aborting

(IGES 5.x, 2000). Rarely does a one-to-one mapping exist between native objects and

their corresponding neutral entity types, so there is almost always some degradation in

data when models undergo translation. However, if one accepts a particular CAD

system, its inherent limitations must also be accepted. Although neutral files are not

perfect, their relatively high level of functionality, ease of use and acceptance by industry

make them desirable as a means of attaining CAD interoperability.

Among the aforementioned file types, STEP and IGES are the most robust and accepted

for transferring geometry between CAD systems. DXF files have limited application and

are not recognized as an official standard. VRML is useful for visualization, but is not

commonly used for importing geometry back into CAD. Similarly, STL files are

appropriate for providing data to RP devices, but do convert well going into CAD

systems. Thus, use of the STEP and IGES standards has been incorporated into the

assembly modeling research presented in this thesis.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

20

3 ASSEMBLY MODELING

3.1 Virtual Assembly

Technology to bring Design and Manufacturing closer together is continually developing.

These efforts stem from the desire to reduce product development cycle times. Digital, or

virtual, prototypes of various types are being used in industry to reduce the need for

physical testing. The field of Virtual Assembly (VA) studies the technologies that enable

virtual modeling of three-dimensional geometry as related to mechanical assembly. VA

exists within the scope of a larger field, Virtual Manufacturing (VM), which refers to the

collection of programs that "have been developed to create an on-line environment to

analyze the producibility of the product design" (Lee, 1995).

VA can be defined as "'The use of computer tools to make or assist with assembly-

related engineering decisions through analysis, predictive models, visualization, and

presentation of data without physical realization of the product or supporting processes'

(Connacher, 1995). There are many possible applications for VA. Some are still

emerging technologies, but the concept as a whole is regarded as feasible and a logical

next step. The goals of such efforts are to: "enable manufacturing engineers to evaluate,

determine and select more optimal component sequencing, generate

assembly/disassembly process plans, make better decisions on assembly method (i.e.,

automated or hand assembly), and visualize the results," (Connacher, 1995). Another

goal is the ability to share and exchange information between new programs and

currently used CAD/CAM/CAE applications.

As these technologies continue to grow, they will become more accepted and used in

practical situations. How readily industry will embrace these applications depends on a

number of criteria. First, the technology must enable engineers to assess their respective

issues with clarity. Second, it must assist its users in making the needed decisions. It

also must be applicable to real situations. Next, the technology must be simple to use and

Massachusetts Institute of Technology - Computer Aided Design Laboratory

21

easy to access. Finally, the system must be capable of interfacing with existing

engineering systems (Connacher, 1995).

There are numerous roadblocks to successful VA. One of the greatest barriers to a

successful assembly planning software is the fact that "assembly is dependent on a great

deal of expert knowledge which has proven very difficult to formalize" (Dewar, 1997,

referenced in work by Jayaram, 1999b). Another significant general problem is

"generating information, both quantitative and qualitative, about the potential behavior of

the design during assembly" (Lee, 1995).

This chapter explores the various industrial and academic approaches to attempting

Virtual Assembly.

3.2 Assembly Modeling Research

A great deal of research on assembly modeling has been led by Dr. Daniel Whitney of

MIT and The Charles Stark Draper Laboratory (Nevins, 1989, Whitney, 1996, Whitney,

1994). Whitney has developed theories and terminology regarding the lowest level

details about the physical assembly and how they map to larger assembly issues. In

particular, he distinguishes between mates, which are assembly connections that pass

constraint, and contacts, between parts that touch but do not pass constraint. By

following the links between all the mates, one can create a Datum Flow Chain, a high-

level capture of knowledge depicting the causality flow of constraint. This graph enables

one to trace problems that arise upon assembly back to their origin.

Limits of these theories include the assumptions that all participating bodies are rigid and

incompliant, and the inability to model interactions that change over time (Lee, 1995).

A few attempts have been made to provide this functionality in software (Baldwin, 1991,

Mantripragada, 1998). The outcome, however, has always been a system that takes too

long to set up because geometry definition has to be manually inputted in the form of 2D

drawings, rather than being tied to a CAD system.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

22

More preferable would be for CAD systems to incorporate some of the concepts into their

modeling paradigm. There are a number of reasons why this proves more difficult than

one might imagine. Typical CAD packages model assemblies the same way they model

parts (Whitney, 1998). To them, assemblies are little more than visualizations of multiple

parts. There is little emphasis on how these assemblies actually come together on the

assembly line. Thus, assembly drawings are not true assembly models, as they do not

capture the information needed to assemble the parts together. Instead, they provide a

visualization as to how the parts should look in relation to each other once fully

assembled. Similarly, constraints, rather than being based on assembly sequence, are tied

to geometric entities. Many configurations that in reality are over-constrained are

analyzed by the CAD system as fully constrained (Mantripragada, 1998).

Although CAD packages are always evolving, certain paradigm changes need to be made

before they are equipped to handle higher-level assembly analyses. This is one of the

limitations of CAD, however their importance as a widespread, industry-accepted tool for

defining geometry cannot be undermined. Much additional work has therefore been done

to try to incorporate the positive functionality of CAD with additional services of other

systems. This integration undoubtedly utilizes some form of standardization. Example

of this work are discussed in the remaining sections of this chapter.

3.3 Types of standardization

3.3.1 Neutral files

Chapter 2 discussed the types, uses and benefits of conformation around standard neutral

file formats. This method of standardization is common in all aspects of industry.

Sugimura et al. propose an assembly modeling system used to generate assembly

sequences based on the STEP standard (Sugimura, 1996). Solid modeling is done on a

Parasolid modeling kernel (by Unigraphics Solutions, also used in Unigraphics,

SolidWorks, Pro/Engineer by Parametric Technology Corporation and others), in which

Massachusetts Institute of Technology - Computer Aided Design Laboratory

23

the user manually defines features and geometric relations. Assembly preference rules

are stored in a database which allow feasible assembly sequences to be derived from the

feature-based model.

3.3.2 Centralization of data

U.S. automobile manufacturers face these same problems and issues of enterprise-wide

assembly mentioned in the introduction to this thesis (Wyman, 2000). Their efforts are

usually large and distributed, "spread out over several continents and involving thousands

of engineers and technicians" (Kaplan, 1997). Typically, they would hold group

meetings in large rooms with many printed drawings and layouts spread out throughout

the room. As can be imagined, this system provides only a static representation of the

vehicle. Design alternatives were near impossible to picture, and there was no guarantee

that all parties involved were using the most up to date information.

Within the past few years, these companies have attempted new methods to achieve fully

digital, enterprise-wide, whole-vehicle assembly integration (Wyman, 2000). These

methods are maintained by the CAD and Engineering divisions of their various Vehicle

Programs (VPs). All participants, including suppliers, would typically have to use the

same CAD and PDM systems to work toward a specific design version. They "populate"

the PDM system by checking in CAD data corresponding to all different configurations,

or derivatives, of the vehicle (e.g. 4x4 or 4x2, differing power trains, etc.). These data

can be processed into another format by an external program for use by their assembly

modeler.

Real-time visualization and analysis of whole vehicle assemblies is then possible. One

can swap in and out parts, perform collision detection, and motion and clearance analysis.

Especially beneficial is the ability to visualize routing problems when changes are made.

With this type of setup, not only can this dynamic system be interacted with, but a lone

user can do it from his or her own workstation with ease. This avoids the need for

specially-built rooms set up solely for this kind of work. This system can be operated by

an individual, small teams, or large groups. At critical milestones (usually 3-4 per VP),

Massachusetts Institute of Technology - Computer Aided Design Laboratory

24

the design is frozen, allowing version control. While the majority of this functionality is

in fact available in most CAD packages, no CAD software can handle a full vehicle in

one model on a typical computer.

What this type of system cannot do is dynamic manipulation of continuous variables. All

the configurations of each of the components must be predefined, thus making the set of

possibilities discrete. Modification of values and re-generation of geometry can take

about one day to complete, making the engineers' job of keeping the PDM data up to date

tougher than they would prefer. Supplier design integrity is also unclear, as suppliers

must provide native CAD models to the OEM.

3.3.3 Feature definition

De Martino et al. describe a distributed, object-oriented, feature-based system in which

both top-down and bottom-up modeling can take place (De Martino, 1998). The purpose

of the research is to integrate engineering design (CAD) and application (CAE) tools by

enriching the exchanged data with parametric, functional and technological information.

The underlying architecture builds its object base upon CORBA (Common Object

Reference Broker Architecture) to allow distributed data flow.

The system relies upon feature libraries to offer design-by-feature (a top-down process)

and feature recognition (a bottom-up process). These features are linked directly to its

ACIS solid modeling kernel (by Spatial Technology Inc., also used by AutoCAD,

CADKEY from Baystate Technologies, Inc. and others). The features can have multiple

representations depending on the eventual application.

The system architecture incorporates a design client that controls the geometry and may

define features linked to that geometry. The core data flow is controlled by the

"Intermediate Modeler" (IM) server. A downstream application tool client receives

feature information from the IM. As design changes are made, the IM interprets their

meaning in terms of feature sets and automatically provides the results to the application

tool. Each client can view the feature set in a manner meaningful to their task.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

25

The outcome is a potentially useful resource for the emerging field of feature-based

modeling. However, there are numerous limitations to this system. Primarily, the feature

definition libraries are not a standardized set. Although this was the goal of the IM

system, the features used by this particular research work do not have any backing from

industry, and industry has not defined any similar standards. Second, the feature libraries

are tied to a specific solid modeling kernel. Integration with CAD/CAM/CAE systems

using other kernels was not attempted. Also, the data flow is primary unidirectional,

from design to application. Finally, although there may be multiple application contexts,

the system can only analyze a single design at a time, so that there is little room for

dynamic system growth.

3.4 VA via VR

3.4.1 Integration of VR and analysis

Typically, an assembly engineer has the job of integrating the various parts of a system

and defining a viable assembly sequence. To obtain a full conceptualization of the

critical assembly issues, it is usually necessary to attempt the assembly with physical

prototypes. Early in the design cycle, this can be very costly from a time and money

standpoint. Emerging concepts of simultaneous engineering attempt to enable this

process by offering a Virtual Reality (VR) environment as a substitute for physical

prototypes to reduce cycle times for design. Visualization of the model in VR enables

designers to see incompleteness in the model, and thus make the needed changes before

having to produce anything (Templeman, 1996).

Steffan, et al. describe some of the general requirements for VR-assisted assembly

planning (Steffan, 1998). First, both the CAD and VR systems should have pre- and

postprocessors capable of dealing with standardized file formats, such as IGES and

VRML. The geometry, dimensions and manufacturing information is defined in the

CAD system, while degrees of freedom of parts and tools are defined in the VR system.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

26

Many researchers have developed VR-based assembly systems (Raghavan, 1999;

Sharma, 1997; Lee, 1995). One typical example will be discussed in detail in the

following section.

3.4.2 Virtual Assembly Design Environment

At Washington State University, researchers are developing the concept of "Design by

Manufacture". This type of environment provides virtual access to manufacturing

methods and tools and, through manipulation of those, designers can better design

products up front. One such environment being developed is called VADE, Virtual

Assembly Design Environment. The project began in 1995 under NIST sponsorship

(Connacher, 1995). The main goal of the performed tests was to assess the accuracy of

the assembly time evaluation as compared to actual assembly times (Jayaram, 1999b).

VADE is an example of a Virtual Assembly system that uses Virtual Reality. The VR

environment is created by a headset and glove that the user must wear, and the software

that corresponds with it. On the more conventional side, VADE interfaces with a CAD

system called Pro/Engineer. The VR system takes the Pro/Engineer models and displays

them as polygonal models. From within the VR environment, the user can define an

assembly sequence by moving parts. From this, swept surfaces are generated and "sent

back to the CAD system as a set of bi-parametric surface patches" (Connacher, 1995).

The VADE process starts with building models in CAD. The geometry, attributes and

assembly information of the CAD model are extracted by the VADE preprocessor. Then

VADE converts this geometry into STL files. This is then imported into the VR

environment (Connacher, 1995), where parts are located where they would be in a real

assembly plant. The system maintains an active link to the CAD system and uses its

capabilities whenever it can (Jayaram, 1999b). Within the CAD system, users can tag

certain parameters. VADE supports making design changes to these model variables

from within the virtual environment. These changes are sent back to the CAD software,

which rebuilds the geometry and resends it back to VADE and the VR environment. This

is all done in "almost real-time". For simple parts, bi-directional translation between

Massachusetts Institute of Technology - Computer Aided Design Laboratory

27

VADE and CAD is essentially instantaneous; for very complex parts, a full interaction

cycle takes about one minute (Jayaram, 1999a). All of the capabilities of VADE can be

run synchronously or individually (Jayaram, 1999b).

One of the main advantages to this system is that assembly can be performed intuitively

in the virtual environment (Jayaram, 1999a). A disadvantage is that it is not scaleable in

relation to hardware capabilities, such that coarser model approximations and displays

could be used on systems with less processing power. The state-of-the-art VR hardware

still does not allow this process to be accessible to more than the elite echelon of users

(Connacher, 1995). For reference, testing was done on an SGI Onyx with six processors!

Another major limitation of VADE is that working in a VR environment has a number of

human factors issues that can result in high user fatigue, so large assemblies are best split

up before evaluation. Test results showed that VADE yielded the best results for

complex assembly motions that are performed by humans, and poorer results for

automated assemblies with simple operations (Jayaram, 1999a).

3.5 Analysis of assembly modeling techniques

The systems described in this chapter all have common goals of bringing assembly

modeling into a digital, collaborative environment in order to reduce design and analysis

time and produce more robust products, but each implements them differently. Everyone

seems to agree that some level of standardization is required to do this well. Based on the

common acceptance of neutral files by CAD companies and users, conformity over the

agreement to use neutral files presents itself as the most valid method of standardization.

For this reason, the method adopted by automobile companies of forced conformance to a

native CAD system is not acceptable in the framework of this research, in which users

should be able to continue modeling in their preferred format, and the architecture of the

assembly modeling system handles the interoperability. Furthermore, this method

discourages inter-organizational collaboration, because proprietary CAD models are

shared.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

28

The other systems discussed in this chapter fail to provide a system that is applicable to

real problems, easy to operate, available to many users, and interfaces with existing

geometry modelers. Some of them achieve interoperability within local scopes of

visualization, but do not take that any further. Although the Virtual Reality systems may

become more accessible in the future, its use by the common engineer is not supported by

society's current infrastructure.

The assembly modeling system presented in this thesis meets all of these requirements.

Furthermore, it addresses the need of retention of proprietary designs by their owners.

The architecture of the DOME system on which it runs is explained in the following

chapter.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

29

4 DOME OVERVIEW

DOME stands for Distributed Object-based Modeling Environment. The DOME concept

was originally developed in the MIT CADlab (Wallace, 2000). A commercial version of

the software is now being developed by Dome Solutions, Incorporated. This software is

used as an infrastructure to prototype the assembly paradigm explored in this thesis. The

basic concepts underlying DOME are presented in this chapter to build up a conceptual

framework for this assembly modeling research.

4.1 DOME Architecture

DOME is a distributed application. The core functionality runs on DOME servers, which

are much like web servers, except that they provide service-objects that can be linked to

underlying application models (Wallace, 2000). These servers control all of the data

flow, and interface with third-party applications using specially written plugins. Access

to the servers is obtained by starting a DOME client, and logging into a server. Servers

are capable of having multiple clients, each with the opportunity to view the same

information simultaneously. DOME servers can additionally communicate with other

DOME servers, and exchange information remotely across a network.

The kernel of the DOME server is written in C++. Between servers, CORBA is used to

pass information. Various programming standards such as COM, OLE, C++ and

CORBA are utilized when connecting from these servers to third-party applications. The

method used depends completely on the software's API. Additionally, there is also a

layer of Java on the server side, which communicates with C++ using JNI, Java Native

Interface. DOME clients run a Java applet that use Remote Method Invocation (RMI) to

talk with the Java server. Clients can be run from any standard web browser, such as

Netscape or Internet Explorer.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

30

4.2 "Business as Usual"

DOME is a minimally invasive tool because it allows users to continue to use the

software programs with which they are familiar (Wallace, 2000). For example, a CAD

designer who models in I-deas does not have to convert his files into another native

format. Users can continue the work as they have in the past. The actual models or

simulations used before can provide the same analytical capabilities once incorporated

into a DOME model. Examples of software plugins written for DOME include Microsoft

Excel, SDRC I-deas, ODBC databases, SolidWorks (SolidWorks Corporation), MSC

Marc, The Math Works Matlab and Ansys (Ansys, Inc.).

4.3 Publishing Model Services

To make one's models or simulations usable by DOME, one must "publish" the services

one wants to be available, or define the set of model objects desired to be accessible from

DOME (Wallace, 2000). There are a group of basic service types within DOME.

Included in this group are real number variables, strings, logical boolean values, matrices,

containers, catalogs and relations. All of these services are DOME objects, or modules,

available for use by wrapper objects to various third-party software applications.

The procedure for publishing the interface to a model depends on the third-party

application. Some programs store the information needed to publish services within the

simulation file itself; others store those data in an external text file. Methods of

publishing for CAD models will be discussed in Chapter 5.

Once the interface for a model has been defined and published, it is very easy to connect

to that model from DOME, on the web. One must first log into a DOME server from a

DOME Client and open up a model (see Figure 4-1). DOME models can be built on the

fly or saved in an existing configuration and reloaded at another time. The wrapper

module can be added to an open model through the proper menu selection.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

31

Figure 4-1 DOME client running in Netscape and an empty DOME model

Once this type of object has been loaded in DOME, a view of all the interface objects

published earlier is presented. The various services defined in the interface are created as

DOME modules. For example, a real number parameter defined in the publisher

interface would appear as an Real module object in the DOME model. Then, from the

web, one can change deterministic values by simply typing in numbers. This action

drives the underlying simulation with the new value and can provide new simulation

results as outputs from the model. Since this functionality exists on the Internet, anyone

with access permissions to log into that DOME server can do so from anywhere in the

world, see the same interface, and likewise modify its inputs.

4.4 Integration

Thus far, point-to-point web access to remote applications has been discussed. For

DOME to truly provide modeling capabilities, one needs also to create links between

different objects. This can be done using relations, which are another type of DOME

object (Senin, 2000). Relations behave like links in a directed graph. They have driving

and driven parameters. One can define just about any type of relationship between any of

the available modules. Typically, simple equality relations are established between

multiple representations of a unitary concept. For example, if more than one DOME

model or part of model contain an object representing a particular length parameter, these

can be equated to each other so that their values are consistent. These relations can be as

simple as the aforementioned equality, or as complex as any C++ program.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

..

32

In order for a service to be used in another model, one has to copy and paste an alias, or

reference, into the scope of the new model. Essentially, that alias module serves as a

representation of the original. Changing the value of the alias in reality changes the value

of the original. This provides local DOME access to remote services. From this local

copy, relations can be made to form consistencies between parameters across different

servers. For numerical values, unit conversions are handled as long as the fundamental

quanta match (e.g. length to length).

Through this process, the overall structure of the system will emerge, as users define

relationships that make sense in their respective modeling scopes. There does not have to

be any centralized manager sitting on top of all the models that manages relationships, so

that the resulting system can be dynamic and emergent, rather than static and pre-defined.

4.5 Proprietary information

By keeping all the relevant engineering models local, in control of the model owners, the

DOME architecture prevents unnecessary transfer of proprietary information (Senin,

2000). It is, in fact, these models which are often one of the core competencies of many

companies. In the case of CAD models, this includes the design history of how the

models were built, not just the final geometry. Sharing these models in their entirety with

members outside their company would be seen as a violation of intellectual property

rights. Since DOME only reveals individual parameters, and not the underlying models

that control them, there is no need to be concerned about divulging one's models. This is

one of the key concepts driving the assembly modeling paradigm presented in this thesis.

4.6 Service marketplace

Enabled by this structure, it is envisioned that DOME users can provide their services

onto the web in a marketplace setting (Wallace, 2000). Other users can search for the

services in which they are interested via an agent-based system that is being developed

for DOME, or connect to known servers based on established company relationships.

When someone finds a service they would like to incorporate into their model, they can

Massachusetts Institute of Technology - Computer Aided Design Laboratory

33

subscribe to it by copying a reference to it into their own model, as described in Section

4.4.

4.7 Addition of service types

With the evolution of the DOME architecture, a method for performing distributed

assembly modeling became possible. The author's work explores the methods and

rationales behind the realization of this goal. Chapter 5 describes the use of CAD tools

and their geometry-based services in the context of DOME modeling. To fully utilize the

services available from CAD models, however, fundamentally new DOME service types

first had to be defined. Two plugins - one providing the service of a VRML file and the

other a more generic neutral file - were developed to facilitate this assembly modeling

research.

4.7.1 VRML plugin

VRML 2.0 files are viewable in DOME through a VRML service object. This module

contains a path to the file, which can be any VRML file accessible by the server machine,

or any valid web URL. Once loaded, the VRML objects are appropriately displayed.

The plugin incorporates open source code from the Java 3D and VRML Working Group

that enables this visualization (Sun Microsystems, 1999). As with other typical VRML

worlds, the user can now rotate the object, zoom in and out, manipulate the viewpoint,

change the lighting and otherwise get a rather full visualization of the geometry. At any

time, the user can reset the view, reload the file, or load up a different VRML.

A DOME client running on computer other than the server, however, would not be able

to load up the VRML unless the specified path was to a publicly accessible URL. For

this reason, the plugin allows each client to specify a local path to which they want the

VRML file to be transferred. The module regenerates the VRML file, originally on the

server, on the client's local machine. This can be different for each client.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

34

An additional parameter in the VRML module is a boolean value denoting the user's

wish to keep the file up to date when changes occur to the defining geometry. The use of

this variable will be discussed further in later chapters.

Every DOME module has a Graphical User Interface (GUI) that can be opened from the

DOME modeling environment. In the GUI of this module, there is a text field for the

path to the file on the server machine, another for the file path on the client machine, a

check box for setting the Keep Current property, and two buttons (see Figure 4-2).

VRML service in a DOME model

VRML file on DOME server or public Internet

forces an update of the file

if unchecked, file will not be rebuilt
(e.g. by CAD system)

E:Aies~WrmAb ock.wr

CATem Icube.wrt

path on DOME client machine
to which to copy file

places the Server URL text into the Client URL

if unchecked, VRML viewer (right) will not appear VRML Viewer Window

Figure 4-2 VRML module GUI

To view the file, one must specify a path on the client's machine. The Copy Url to Client

button may be useful if the server path is an Internet address. Once this path is entered,

and the referenced file is a syntactically valid VRML file, the file contents are ported to

the specified client file, and the defined 3D geometry appears in a separate viewer

window. A Show check box enables or disables the VRML from being brought to the

foreground every time a change is made to the file.

4.7.2 Neutral file plugin

The Neutral File (NF) plugin provides access to neutral files. Like the VRML, the NF

module stores a path to the neutral file accessible to the DOME server and an on/off

Massachusetts Institute of Technology - Computer Aided Design Laboratory

35

switch for keeping the file up to date, and additionally contains a file type characteristic.

In particular, the NF module is compatible with all IGES versions, STEP AP203 and

STEP AP214 (Core Data for Automotive Mechanical Design Processes) files, but is

generic enough to handle any neutral file type (see Section 2.6). Upon specification of a

valid file, the contents of the file are parsed to determine the file format and specification

version, and the file type is stored accordingly (see Figure 4-3).

neutral file service in a DOME model default state

loaded state

neutral file path on es once a valid file
DOME server E:iesi esiblock.i s is entered, it is

if unchecked, file will not be parsed for data
rebuilt (e.g. by CAD system) type and version

Figure 4-3 NF module GUI

Unlike the VRML module, who's primary function is visualization of remote geometry,

the NF module's main functionality is providing access to that geometry. This

functionality is enabled by aliasing the NF module. One can copy a NF module from a

remote DOME model and paste it into one's own local scope. This module then carries

with it all the contents of the neutral file, without actually displaying them. The original

filename does not in fact get propagated to remote aliases, because the path would no

longer be valid. What can be done is the creation of a relation equating the alias to a

local NF module. Then, when the local NF module changes, or loads up a new file, the

contents will automatically be transferred to the file specified by the original NF object

on the remote computer (see Figure 4-4).

This ability to transfer neutral files is fundamental to the proposed DOME assembly

modeling system, which will be discussed further in Chapter 6.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

OWN. M- I- - .

36

Step 1: Copy neutral file service Myiges
from model shown in previous figure

other es Paste alias of

C:\domeks here.igs MyIges into
model2,

v adle running on
W it TC84dwanother

computer,
which already
has its own
neutral file
service-object,
AnotherIges

Result: alias acts as a

I es elocal reference to original
remote service, but does
not reveal the original
file path nor data type

Step 3: add a relation named Transfer-File. Define an equality
between the two services, so that Anotherjges drives MyIges

Final Result: the original neutral file service, Myiges, is

remotely overwritten with the contents of AnotherIges.
Note the updated version type.

Figure 4-4 Neutral file transfer using a relation

Massachusetts Institute of Technology - Computer Aided Design Laboratory

37

5 CAD PLUGINS

CAD is by far the primary method of defining 3D geometry used by engineers. This

makes the interface with it an extremely vital piece to include within the DOME system.

The CAD plugins for DOME discussed in this chapter were developed in part for the

foundation of the assembly modeling techniques explored in this thesis as well as for a

pilot research application conducted with Ford Motor Company.

5.1 IDEAS

5.1.1 Software and API

1-deas is the CAD system produced by Structural Dynamics Research Corporation,

SDRC. The latest version of the software used for the purposes of this research is Master

Series 7, although DOME is compatible with versions 6 and 6A as well. 1-deas runs both

on NT and Unix workstations.

The application program interface (API) is based on Orbix, a commercially-available

implementation of CORBA (SDRC, 1998). Through this interface, one can access the

various objects used and created by 1-deas, as well as all the methods that are supported

for those objects. Thus, one can perform virtually any function that is normally done

through the software's graphical interface by connecting to an I-deas server through C++.

This is what the DOME 1-deas plugin does. Since CORBA is a distributed object broker,

one can run DOME on one computer and connect to a session of 1-deas on another

computer, even on a different platform.

5.1.2 Publishing dimensions

The most important numerical quantities stored in CAD models are dimensions, for they

truly define the geometry. Naturally, one would want to be able to modify these

dimensions remotely from DOME. To make these dimensions available, it is necessary

for the interface desired to be seen from DOME to be published by the owner of the CAD

model. In other words, the CAD designer must specify which dimensions are to be

Massachusetts Institute of Technology - Computer Aided Design Laboratory

38

accessible. To make this process easy, it can be done directly from within the 1-deas

environment.

Publishing 1-deas dimensions is as simple as adding a specific extension to the names of

the given dimensions. These could be linear, angular, radial, diametrical or percentage

dimensions. If a CAD modeler wants to let DOME users change certain dimensions, he

would add the suffix _DOMEin to their names. These would normally be the dimensions

that drive the parametric model, and may or may not affect other parameters. If, in fact,

there were driven dimensions in the model that were desired to be seen in DOME, one

could just as simply add the suffix _DOMEout to those dimensions. Figure 5-1 shows

dimensions in a simple I-deas model being published.

Figure 5-1 Publishing dimensions of a simple 1-deas model

By specifying which model parameters are inputs to 1-deas, and which ones are outputs

from 1-deas, the CAD designer makes the overall "black-box" architecture of the model

Massachusetts Institute of Technology - Computer Aided Design Laboratory

39

available, without providing access to the underlying equations and parameterizations

that define the model's behavior.

5.1.3 Publishing parts and assemblies

In addition to simple dimensions, one might want to provide other information about a

model that is readily available from within CAD. This can consist of various geometric

and mass properties of parts, as well as of assemblies. I-deas calculates and provides the

following properties: volume, surface area, mass, center of gravity, moment of inertia,

principal axes and principal values. These are things that one would likely be interested

in tracking upon making changes to input dimensions. Naturally, these would be

considered outputs of the simulation, as changing them directly would have no geometric

significance. Additionally, a user may decide to define these properties calculated about

a user-defined coordinate system that may not be the default.

To make these properties available to DOME, one first publishes the owning part or

assembly by adding a _DOME suffix to the name, similar to the method for publishing

dimensions (see Figure 5-2).

Figure 5-2 Publishing an 1-deas part

In order to discriminate which properties to provide, however, there has to be an

additional interface definition. I-deas does not provide any means of "tagging" these

parameters as was done with dimensions. It does, however, provide a text area in which

one can write a general description of the given part or assembly. It is in this text region

that one publishes the various services available from a part or assembly (see Figure 5-3).

Massachusetts Institute of Technology - Computer Aided Design Laboratory

.................. -- -___

40

Figure 5-3 Publishing I-deas part properties

To add any of the properties mentioned above, one would simply type the name of the

property, for example: area, volume, mass, center of gravity, moment of inertia. One

could similarly declare a user-specified coordinate system about which to have 1-deas

calculate the mass properties.

Aside from properties, it could be very useful to provide a more complete description of

the geometry of a given part or assembly. Even all the dimensions alone can not fully

describe geometry for anything more complicated than primitive shapes. So goes the

adage, "A picture is worth a thousand words." Well, a three-dimensional representation

should be worth at least a million. Thus, another service one can publish for parts or

assemblies is a VRML file. One would do this by adding vrml to the published interface,

followed by the desired path to the VRML file. This file would be exported every time a

change is made to the part or assembly.

Similarly, one can publish an IGES 5.3, STEP AP203, or STEP AP214 file of a part or

assembly. The process for doing so is identical to that for publishing a VRML file,

Massachusetts Institute of Technology - Computer Aided Design Laboratory

41

except the keyword iges, step203, or step214 is used. All of these neutral files are

exported from I-deas, so they behave like outputs. Importing neutral files will be

discussed in a later section.

5.1.4 Loading a model

Once the I-deas model is published, connecting to it from DOME requires only a few

simple steps. If a DOME model is running on a server, a wrapper object to I-deas can be

added to the model through a browser enabled client.

This will create an empty container that knows how to communicate with I-deas. In the

GUI for this module, there are three text fields labeled Host, Project and Model,

respectively (see Figure 5-4). In the Host text field goes the name or IP address of the

server running I-deas. As mentioned earlier, this can be on a different machine than the

one running the DOME server. I-deas stores user information in profiles it calls

"projects". The project owning the desired model file should be entered in the middle

text field. The last text area contains the name of the model file wished to open.

I-deas wrapper object in a DOME model

I-deas server name
project containing the desired model

localhos dome acte

initiates connection to
the specified model

saves the 1-deas model

Figure 5-4 I-deas container module GUI

After these are specified, one can press the Load button in the GUI. This begins the

process of connecting to the I-deas model and loading up the published parameters. First,

DOME attempts to make contact with the Orbix daemon running on the specified host

Massachusetts Institute of Technology - Computer Aided Design Laboratory

42

machine. It polls the Orbix daemon for any active I-deas sessions. If an I-deas server is

running, DOME connects to that session. If I-deas is not currently running on the host

machine, DOME will start up a session. Next, DOME activates the specified project and

model file. I-deas stores all the information relating to these items in its own pool of

data, so that as long as the project exists, and it contains a model with the given name,

there is no need to specify the entire path to the file.

After the correct file is loaded, DOME begins polling the file for published entities. It

searches through the model for any assemblies, parts or dimensions that have the

appropriate extension appended to their name. For each of these that it finds, it creates a

DOME object, or module, and adds it to its object model. The top level I-deas container

module acts as a folder for all the subsequent modules that will be added to it. For

example, if the I-deas model's main assembly was published, an assembly module will be

created and added within the main container module. Furthermore, DOME will recreate

the hierarchy of objects established in the I-deas model. Thus, if a published assembly

owns a part that has also been published, DOME will add the corresponding part module

within the scope of the assembly module. Assembly and part modules are themselves

containers for other modules, so this can be accomplished fairly simply. Dimensions

belonging to a published part or assembly will likewise be added as dimension modules

to the part or assembly containers. Any published dimension whose parent part or

assembly was not published gets put in the main I-deas container module.

At this point, the properties and other items published in the assembly and part interfaces

also get created as DOME objects and added to their owning containers. Volume, area

and mass properties become deterministic real number objects, called Real modules.

Center of gravity, moment of inertia, principal axes and principal values properties

become vectors or tensors of the appropriate size called Matrix modules. All of the

loaded dimensions and properties start out with the correct numerical value(s). In

addition, the dimension modules and real modules are assigned the appropriate units.

Any file types (IGES, STEP, VRML) that were published become corresponding NF or

Massachusetts Institute of Technology - Computer Aided Design Laboratory

43

VRML modules. Figure 5-5 shows the simple 1-deas model published in Figure 5-1

through Figure 5-3 wrapped as DOME objects.

IDEAS

S 1290.0 mm
De 1 25.0 120.0 mm1255.

V~olmw 1.35E-3 m1. mm
1.35E-3 M^3

Figure 5-5 I-deas objects loaded in DOME

5.1.5 Making and saving changes

After the modules have been created and added to the DOME object model, one can

interact with them. The value of any of the input dimension modules can be changed.

This change will first modify the value of the corresponding dimension in I-deas. The

CAD model will rebuild based on the design changes. Then, nominally, all of the outputs

will update and one would be able to view these changes in DOME. The term "outputs"

includes output dimensions, any properties, and neutral file exports. Thus, new values

for output dimensions and properties will be propagated to DOME, and any files that

need to be rebuilt are automatically re-exported to the appropriate place. This process is

depicted in Figure 5-6. Note the new Volume value calculated by I-deas.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

-q

44

initial configuration

configuration after a change has
been made to an input dimension

Figure 5-6 Driving an I-deas model parametrically from DOME

Naturally, a change to a part dimension will update any parent assemblies as well, and all

of that assembly's outputs will be recalculated or rebuilt. Changes made directly to

output dimensions or properties from the DOME interface are not recognized and the

modified values are reset.

There are times when one might not need to obtain up-to-date results with every change

made in DOME. This is especially relevant when rebuilding the model or exporting files

can be time consuming. To facilitate control of this, two Boolean modules are added by

default to every top level 1-deas container module (see Figure 5-5). One is called

RunAnalysis, and its state determines whether or not DOME will drive I-deas when a

change occurs. This is a user-specified variable, and can be set to true or false at any

time. The other is called AnalysisRunning, and simply shows the status of whether or

not I-deas is currently rebuilding or exporting files. This module is not to be changed by

Massachusetts Institute of Technology - Computer Aided Design Laboratory

45

the user, as it provides visual feedback within the DOME environment as to when I-deas

is finished updating and the outputs should all be current.

These boolean objects could prove useful when, for example, changes are being made to

a number of input dimensions at once. Rather than have I-deas rebuild with each change,

which could be time-costly, one could first set the RunAnalysis variable to false, make

all the desired modifications, then set the variable back to true. This will read in all the

changes together and only rebuild the model once. When dealing with large and complex

models, this may be a necessary tool to keep modeling on a reasonable time scale.

Additionally, the NF and VRML modules have their own single boolean value that the

user can set (see Sections 4.7.1 and 4.7.2). This variable controls whether or not the files

are rebuilt when the model changes. The idea is identical to the previous one - time can

be saved if the neutral files are not needed at every step - only implemented on an

individual module basis.

DOME has the capability of saving modules to a file and loading them at a later time.

While it would be possible to save all the values for all the modules within an I-deas

container, instead only the parameters needed to reconnect to the model file, i.e. the host,

project and model name, are stored. This allows the definition of the DOME model

structure to lie within the I-deas model. This is preferred because that is exactly the

location where it was defined originally. Saving a second version of this would be

redundant, and may conflict with changes made to the interface definition from I-deas.

If, at any point, a DOME user wishes to save the changes made to the I-deas model, there

is a Save Model File button in the GUI for the main I-deas container module. Pressing

this button will prompt I-deas to save the active model file (see Figure 5-4).

5.2 SolidWorks

The same concepts behind the I-deas plugin are applicable to the SolidWorks plugin.

Most of the functionality is identical because of the object-based framework upon which

Massachusetts Institute of Technology - Computer Aided Design Laboratory

46

it was written. The implementation, however, is significantly different due to the large

discrepancies in API between the two CAD packages.

5.2.1 Software and API

SolidWorks is a PC CAD software developed by SolidWorks Corporation. The version

used by the plugin for DOME is SolidWorks 97 Plus.

The API is available through a few languages: Visual Basic, OLE and COM. Visual

Basic is not C++ compatible, and thus was not used. OLE, or Dispatch, is based on

OpenDoc, which is an interface to files themselves. COM is a more robust language also

used by many Microsoft-based products that provides an interface to the application

itself. For this plugin, OLE was used. Since the API for SolidWorks does not support

distributed methods, SolidWorks has to be running on the same machine as the DOME

server. As with any plugin to a third-party application, the API sets the limits on what

functionality will be available.

5.2.2 Publishing services

Interface definition for SolidWorks is significantly different than for I-deas. In this case,

publishing is done through an external text file. This method was implemented because

SolidWorks does not provide a convenient place to store this kind of information within

the model file and corresponding API methods to access that information.

Creating this interface text file is fairly straightforward. In an empty file, one must

simply write a keyword defining the type of module desired, and then follow that with a

few defining parameters. Dimensions are defined by their module name for DOME, their

full name from SolidWorks, the part or assembly file in which they exist, their units and

an input or output characteristic (see Figure 5-7). SolidWorks stores dimension names as

belonging within a certain sketch in a certain part, and it is critical to use this full path

name, which is easily accessible from SolidWorks.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

47

type name used SolidWorks file dimension name input/output
in DOME units

DINENSI!OH Thidkness e:\files\sv97\B1ock.sidprt thickibain inch 1
I CES Block~ges e:\files\sv97\B1ock.sldprt e:\files\iges\block.1gs W/A 1f~

neutral output file keep current

Figure 5-7 Sample SolidWorks publisher file

The output properties such as mass and volume are also available by specifying the part

or assembly file for which these parameters are to be calculated. Export VRML 1.0,

IGES 5.2 and STEP AP203 modules can be similarly defined, along with their Keep

Current parameter. DOME makes use of the executable vrmlltovrml2.exe provided by

Cosmo Player to convert the VRML files to a format viewable by the VRML plugin.

Additionally, one can define a list of different configurations for SolidWorks parts or

assemblies. This will allow the DOME user to toggle between the specified

configurations of a given part or assembly model.

It is simpler to define the interface in one single publisher file for all the desired CAD

models, rather than creating a separate text file for every SolidWorks file to be opened.

This is different than the publishing implementation of I-deas, which contains internal

text areas stored with the model, and cannot have more than one model file open at a time

per session of I-deas.

5.2.3 Loading models

Adding a SolidWorks container module to a DOME model will create an empty shell for

the published modules. Within the GUI for this container module, there is a text field

corresponding to the publisher file previously created (see Figure 5-8).

Massachusetts Institute of Technology - Computer Aided Design Laboratory

-- -!!-- mm - R -4""- "1 - -- - -. - - -

48

path to published saves all loaded
text file SolidWorks files

Sel Top ae
l So.Mws SolidWorks

\domelsyA

SolidWorks wrapper
obiect in a DOME model

Figure 5-8 SolidWorks Container module GUI

Once an appropriate file name is entered there, DOME attempts to connect to

SolidWorks. Like with I-deas, the DOME plugin will attach to an running session of the

CAD program or launch a new one if none is available. At this point, the objects

declared in the interface definition file are created and added to the main container. Any

part or assembly files that need to be accessed are loaded up in SolidWorks' memory.

All input and output values are synched with the correct values from the models. Any

neutral files that need to be regenerated are exported. Figure 5-9 shows the sample model

from Figure 5-7 loaded in DOME.

Figure 5-9 SolidWorks objects in DOME and the underlying solid model

Massachusetts Institute of Technology - Computer Aided Design Laboratory

-A

49

If configuration options were defined in the publisher file, a DOME Catalog module is

added to the container, as well as some additional modules that this catalog references.

This catalog will contain as options the named configurations of the part or assembly. To

switch configurations, one can open the GUI for the catalog object, select the desired

configuration name, and hit the Select button. This feature allows the DOME user to not

only explore the design space of continuous variables, but also make arbitrarily large

model changes, swap in and out parts via suppression of undesired features. The two

Boolean modules described in Section 5.1.5 for the I-deas container are also present in

the SolidWorks container. Functionally, they behave identically.

Upon saving, DOME will record only the path to the publisher file, and any catalog data.

When reloading from a saved DOME model, all the other internal modules are rebuilt.

This, as in the case of the I-deas plugin, is to avoid redundancy of model definition. The

SolidWorks container module GUI also has a Save File button that will save all the

opened files (see Figure 5-8).

Massachusetts Institute of Technology - Computer Aided Design Laboratory

50

6 VIRTUAL ASSEMBLY MODELING IN DOME

6.1 Setting up assembly integration

Thus far, the ability to quickly access object models relating to 3D geometry from the

web has been established. The following scenario describes the behavior of a possible

system that can emerge based on relating these service-objects. The process involves five

major steps, which will be illustrated as the scenario unfolds.

An engineer at a given OEM is responsible for building CAD models of an assembly

system and analyzing it. He can do the majority of his work on his own, except for a

certain part or subassembly that the company has decided to outsource. The engineer has

also been given the task of finding the most suitable supplier to provide this part. He has

built a DOME model that represents the assembly system for which he is responsible.

Included in his CAD assembly interface is an NF import module to act as a placeholder

for this part he needs.

Engineer's View KEY: Supplier's View

0 = Inputs, 0 = Outputs, = Aliases, = VRML, = Neutral File

= Part, = Assembly, - = New Link

Figure 6-1 Step 1: The two participants publish their CAD models and wrap them in DOME.

Note that the engineer's CAD assembly is incomplete and his neutral file object contains no data.

The engineer can now look for DOME services of various suppliers. Using the agent

architecture provided in DOME, he can search for suppliers based on keywords and his

own custom profile. He can connect to various services on remote servers based on the

Massachusetts Institute of Technology - Computer Aided Design Laboratory

Z= -- - - -- - """ - - iis, - . -- - - = -

51

search results. Alternatively, if he is aware of any suppliers from more traditional means

or through prior relationships, he can connect to their DOME servers. Assuming

privileges have been given to him or to a guest account, he can log on that supplier's

DOME server.

Once inside the DOME model, he has permissions to view the CAD services that have

been published. The engineer knows that this supplier makes the type of part for which

he is looking, but doesn't really obtain much understanding of the geometry from just the

dimensional interface. However, the supplier provides a VRML module of the part,

which the engineer views to be able to conceptualize the geometry. Additionally, he can

change the values of input dimensions and visualize the effects they have on the

geometry, because the underlying CAD model is running and providing results to

DOME. The engineer can paste aliases of the dimension modules from the supplier's

model into his own model, from whence he can drive them.

Engineer's View KEY:

= Inputs, = Outputs, = Aliases, = VRML,@ = Neutral File

Part, = Assembly, -*= New Link

Figure 6-2 Step 2: The engineer drives the supplier's CAD model parametrically from DOME.

The engineer decides that his company may do business with this supplier. He cannot,

however, fully analyze his system unless he obtains the supplier's CAD modeling

services. To enable this, he asks the supplier to provide him with the service. The

supplier does this by logging into the engineer's DOME server, copying the engineer's

NF import module, pasting it into his own DOME model and defining a relation that sets

the engineer's alias equal to the NF module from the supplier's model, as shown in

Massachusetts Institute of Technology - Computer Aided Design Laboratory

52

Section 4.7.2. This can be done regardless of the CAD systems used by the two

participants. At this point, each party can log out of the other's DOME server.

CA model

KEY: Supplier's View

= Inputs, = Outputs, = Aliases, @ VRML,@ = Neutral File

=r Part, = Assembly, -0 = New Link

Figure 6-3 Step 3: The supplier drives the engineer's neutral file service by linking it to his own.

The engineer's neutral fie object now points to a valid file.

6.2 Recording assembly steps

The engineer now has all the tools he needs to build and analyze his full assembly

system. The working environment shifts back to his CAD system briefly, where he first

has to import the neutral file into his CAD assembly using his CAD system's

postprocessor. This file exists locally due to the remote file transfer property of the NF

module.

Next he has to record a sequence of events that assemble the part (or subassembly) into

the desired position in the assembly. This process of recording is handled differently by

differing CAD packages, but most CAD systems provide a way to record a set of tasks

and run a single command that will execute the entire set. This function is often used to

quickly perform repetitive tasks.

This set of commands should add the imported part to the desired assembly and locate it

properly with constraints. Any subsequent assembly tasks should be recorded as well. If

color changes are desired, they should be performed at this time. Typically, these files

can be nested to call other procedure files.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

-.. , w- 1-1-- -- ,- Mq

53

Recording a robust procedure file is non-trivial. It should be able to correctly perform its

functions given a varying input part. CAD commands driven by icons or menus are not

affected by this variance, but commands driven by screen picks may not repeat the proper

selection reliably. This is highly dependent upon the recording capabilities of the CAD

system. Some (1-deas, for example), record view settings, so that picking features with

mouse clicks may be appropriate if a consistent view is acquired. One method to bypass

this problem is to refer to features by name. This method is quite robust given

dimensional changes of the originating geometry, but may not be appropriate when

features are added or removed from the original part. Another issue is the visibility of

objects such as centerlines and origins, which, when switched off, will not be available

for selection. Several iterations may be needed to record an adequate procedure file.

However, the engineer is performing the tasks that are his core competency - assembling

CAD models - in the environment in which he is acclimated to working.

Once this procedure file is created, it is published in a manner similar to the various

interface modules, and the I-deas container module can be reloaded.

e eer Supplier's DOME model Supplier's
CA model CAD model

Engineer's View Key:

= Inputs, i = Outputs, Aliases, = VRML, = Neutral File

= Part, = Assembly, -* = New Link

Figure 6-4 Step 4: The engineer incorporates the new part into his assembly.

Note that this part contains no design history and cannot be modified directly from his CAD system.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

54

6.3 Assembly sequence

Now, a number of things happen when the engineer decides to change an input to the

supplier's model (see the numbered arrows in Figure 6-5). First, the parameters are

changed (1) and the new information is relayed through DOME to the supplier's model

(2). The CAD model rebuilds (3), sends DOME new output values, and regenerates the

neutral file (4). This causes the NF module on the engineer's DOME server to update

(5), the part to be imported again into the CAD assembly (6), the assembly configuration

to be recreated (7), and new assembly property values to be calculated (8). This is

accomplished interactively over the web with only neutral files passing from the supplier

to the OEM engineer. The supplier's detailed proprietary CAD models remains protected

within his organization.

Supplier's DOME model Supplier's
CAD model

7

Engineer's View Key:

Inputs, 0= Outputs, = Aliases, = VRML,@ = Neutral File

= Part, = Assembly, -= New Link

Figure 6-5 Step 5: The engineer rebuilds his assembly by driving the supplier's model.

This reactive chain of data flow links the two underlying CAD simulations together such

that the supplier's part attains virtual existence within the engineer's assembly. Thus, the

system behaves as if the remote part was parametrically editable within the engineer's

model, without actual native CAD model transfer.

6.4 Advantages of the DOME assembly paradigm

Assembly modeling in DOME enables parts from different CAD systems on different

machines to be assembled and respond to parametric changes automatically without

revealing proprietary design history. This has not been implemented previously.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

55

Traditional engineer-supplier relationships are much more difficult to establish and many

orders of magnitudes slower to react. Without DOME, a supplier's deliverables may or

may not be well defined. Often, complete CAD models are required, which may be seen

as a breach into the supplier's intellectual property. In other cases, suppliers never offer

any CAD models, in which case a complete computer analysis of the system can not be

accomplished.

Even if a regular relationship with a supplier has been established, obtaining results from

design changes can be very costly in terms of time to production. Apart from the

nuisance of phone calls, emails and schedule conflicts, this sort of design iteration across

company lines traditionally takes at least two weeks, and up to a month or more (Kleinke,

2000)! Performing the heretofore described assembly modeling in DOME allows one to

receive near-instantaneous results and make quick "what-if' tradeoff analyses that were

not previously possible on a reasonable time scale.

Another benefit to the proposed method is the ability to cross the language, time zone and

unit system barriers. As long as DOME servers are running and are linked to the

underlying simulations, none of those issues remain as problems.

Fundamentally, all of these advantages stem from the facts that using DOME mandates

careful definition of the services that are provided or required, and that these services can

be made into standardized DOME service-objects. When forced to specify what

parameters are actually important to change, and which ones are inconsequential, a

clearer picture of what services a supplier is supplying emerges. The ability to see those

services from the web makes it easy to know what a supplier's capabilities are, and what

capabilities not to expect. The ability to connect and use those services, and to swap

them in and out swiftly with those of competing suppliers, makes fast tradeoff analysis a

reality. Emergent from this analysis is the supplier that has proven the capability of

having the most useful services. Due to global Internet enabling, this supplier need not

Massachusetts Institute of Technology - Computer Aided Design Laboratory

56

be co-located with the partner organization. Because of service object standardization in

DOME, CAD interoperability can be realized.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

57

7 CASE STUDY - CAMERA EXAMPLE

7.1 The Scenario

An example is presented to illustrate the concepts heretofore described in the preceding

chapters. One CAD model and DOME model each were run on two computers for this

simulation. I-deas ran on a 333 MHz computer with 192 M RAM, while SolidWorks ran

on a 500 MHz computer with 384 M RAM, both running Windows NT.

The situation involves a CAD engineer who works for a camera manufacturer. His job is

to run a CAD analysis on the camera model using I-deas to optimize certain design

parameters. In particular, the center of gravity of the entire assembly is used in part to

determine where to place the hole for the tripod mount. Included in his assembly are the

main body of the camera, some buttons, a view window and a flash (see Figure 7-1).

hole used for mounting
camera on tripod

Figure 7-1 Assembler's camera model in 1-deas

The company has recently decided to outsource the making of the camera lenses for its

new high-end model. This makes the analysis more challenging for the engineer, as he

does not have a full CAD model with which to work. Thus, he goes about finding an

appropriate supplier as described in Section 6.1.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

.....

58

The model of the supplier to which he connects allows a number of dimensions to be

changed, including the overall diameter of the lens as well as its length. In addition to its

mass, the supplier provides a VRML, IGES and STEP of the part as outputs.

Furthermore, there are configurations made for both with and without the lens cap. The

supplier utilizes SolidWorks for CAD modeling (see Figure 7-2).

Figure 7-2 Supplier's lens model in Solid Works, two configurations

7.2 The DOME models

The assembly modeler publishes his interface following the process described in Section

5.1. The following figures show the windows containing the relevant interface text.

Figure 7-3 Publishing dimensions of the main body of the camera

Massachusetts Institute of Technology - Computer Aided Design Laboratory

59

Figure 7-4 Publishing the volume of the camera body

Figure 7-5 Publishing services for the camera assembly

The assembler has published a NF module to be imported into his assembly. This acts as

a placeholder for the neutral file he knows he must find. At this point, it has not been

determined whether the import type will be an IGES or STEP file. This is irrelevant

within his DOME model because they both types are supported by the NF module. He

specifies the part name he wants to give the imported object and the bin in which it

should get placed. If an IGES will be used, an import flavor may be declared for the

Massachusetts Institute of Technology - Computer Aided Design Laboratory

60

postprocessor to use. The flavor file should be located in the correct directory of the I-

deas installation. If no flavor is defined, the default import flavor will be used.

For creating a DOME model to connect to his I-deas simulation, the engineer starts a

DOME server and logs into it from a client running in Netscape. An I-deas container

module is to the top scope, which loads the 1-deas CAD model he has already built.

I-deas Mfie
container true

module Wie

assembly
module

module 8.17

Figure 7-6 Assembly engineer's initial DOME model

CG is the assembly's center of gravity.

Loading this model takes about 30 seconds. Simpler interfaces allow quicker loading

times. Part properties, especially matrices, add a significant amount of overhead to the

loading time. DOME reconstructs the assembly architecture defined in I-deas by placing

parts within their parent assemblies, and dimensions inside their owning parts or

assemblies. The various services that were published appear as objects in the DOME

model. The engineer could work locally with his own model by changing any of the

input dimensions. This would drive the 1-deas model and provide new results for CG and

the volume of the part Body. At this time, the Keep Current property of the NF module

ImportPart has been turned off, as it does not reference a valid file.

The supplier creates a file containing the following text that defines the interface that will

be made available to DOME (see Figure 7-7).

Massachusetts Institute of Technology - Computer Aided Design Laboratory

I -- - , :- - - - --- - -- - -- --- - -- .- ""

61

DIMENSION Extension C:\dome\lens\lens.SLDPM1 Extensionwinintx lncn 1
DIMENSION OuterDiameter C:\dome\lens\lens.SLDPRT Diameter@Thicki inch 1
DIMENSION InnerDiameter C:\dome\lens\lens.SLDPRT Diameter@Thin inch 1
UOLUME Uolume C:\dome\lens\lens.SLDPRT H/A cubicmeter 0
MASS Mass C:\dome\lens\lens.SLDPRT H/A kilogram 0
ICES LensIges C:\dome\lens\lens.SLDPRT C:\dome\lens\lens.igs H/A 1
STEP LensStep C:\dome\lens\lens.SLDPRT C:\dome\lens\lens.step N/A I
URML LensUrmi C:\dome\lens\lens.SLDPRT C:\dome\lens\lens.wrl H/A I
CONFIGURATION WithoutCap C:\dome\lens\lens.SLDPRT H/A H/A I
CONFIGURATION WithCap C:\dome\lens\lens.SLDPRT H/A N/A I

-
Figure 7-7 SolidWorks publisher file used in case study

The supplier similarly starts a DOME server and creates a SolidWorks container module

for his model. Upon reading in the interface definition file and launching the SolidWorks

application, the following modules are created and added to the container.

Figure 7-8 Supplier's initial DOME model

The model is in the WithCap configuration. Note that the VRML file is being viewed by the
supplier, as his client is on the same machine as his server.

Locally, as with the 1-deas modules, the SolidWorks input dimensions could be modified

to rebuild the SolidWorks model, obtain new results and export new neutral files.

Additionally, one could select a part configuration from the catalog module, which causes

the same process of events to occur.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

62

7.3 Integration and Resulting System

These two DOME models can be simply integrated to form a larger system. Each

participant adds a container module to the top scope of their respective model. They have

chosen to name this container Integration. This area will be used for making relations

between objects. A representation of this integration process can be seen in Figure 7-9.

The service that the engineer is most interested in using is supplier's neutral file. To

make this meaningful to his own model, he asks the supplier to drive a module in his

DOME model. The supplier copies ImportPart from the assembly model and pastes it

into his own Integration scope, where he has already placed an alias to his neutral file

service, LensNeutralFile, and a relation that can be used to equate the services (as in

Figure 4-4). The NF module LensNeutralFile references the supplier's original LensStep

service-object (STEP AP203), but it could easily be disconnected and connected to the

LensIges object, which is an IGES 5.2 file service. This service is imported into the

engineer's model and an appropriate assembly sequence recorded by the engineer.

The engineer performs similar integration with the supplier's input dimension,

OuterDiameter. He drives this parameter with the dimension LensDiameter from his

own model. Finally, as was his original desire, he can drive the position of the mounting

hole with the center of gravity of the entire assembly by creating a relation between these

two parameters.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

The position of the mounting hole relative to the side
of the camera (Hole2Left) is set to be equal to the x-
coordinate of the center of gravity (CG). This creates
a simulation loop, for the center of gravity changes as
the hole is moved. DOME terminates this loop when
the values cease to change an appreciable amount.
As this is an iterative process that may take time, the

The diameter of
the lens in the
supplier's model
is driven by the
corresponding
parameter in the
assembly model.

The supplier provides
his neutral file service
by driving the
engineer's ImportPart.
Whenever the lens
model is rebuilt, the
part is re-assembled

move-hole boolean is added to control rebuilding. J I [into the camera model.

Figure 7-9 Integration of the two models

The arrows denote local and remote alias pasting.

In just a few steps, a system has emerged that is simple in its interface and definition yet

complex in the underlying enabling architecture. It allows the engineer to make design

changes in DOME and parametrically drive an assembly who's defining geometry exists

on different computers.

The initial configuration of the lens has its cap on (see Figure 7-10). The calculations are

most relevant with the cap off, so the engineer chooses the WithoutCap configuration

with the DOME catalog object, Configuration. The resulting system state is shown in

Figure 7-11. The engineer would also like to be able to analyze the assembly with the

telephoto lens fully extended. He can do so by modifying the Extension parameter made

available by the supplier's model. As before, both models rebuild and new outputs are

Massachusetts Institute of Technology - Computer Aided Design Laboratory

63

..........

SIII ~IEEIE El I I I 'I'EIIIIIIIJj H.I.,'.. - --

64

attained (see Figure 7-12). Similarly, he can change the two diameters of the lens and

alter where the lens is positioned on the camera body, based on the dimensional

parameters published from the part and assembly models (see Figure 7-13). Even after

the supplier's part is assembled into his CAD model, these types of parametric changes

would not be possible without the facilitation of simulation integration through DOME.

Figure 7-10 Initial state of the linked models

Figure 7-11 Making a catalog change

Massachusetts Institute of Technology - Computer Aided Design Laboratory

65

Figure 7-12 Elongating the lens

Figure 7-13 Modifying additional parameters

One iterative loop will be described in detail to clarify the underlying tasks being

performed (see Figure 7-14). A change in the Extension dimension in DOME causes the

SolidWorks model to register this new value and rebuild the lens model (1). Among

other outputs, the neutral file service LensStep is regenerated (2). Its alias,

LensNeutralFile (3), fires the relation ProvideFile (4), which, through the alias (5),

writes the contents of the file to ImportPart (6). This notifies I-deas to remove the old

lens from the assembly, import the newly created file, and reassemble the camera model

(7). After this operation, the assembly's center of gravity is recalculated and the module

CG is updated (8), as is its alias (9). This change fires the relation HolePlacement (10),

Massachusetts Institute of Technology - Computer Aided Design Laboratory

..........

66

which modifies the alias dimension Hole2Left (11). The original dimension (12) prompts

I-deas to move this mounting hole feature accordingly (13), and again regenerate values

for the camera's center of gravity (8). CG (9) runs HolePlacement another time (10). If

the new value for Hole2Left (11) is significantly different that its previous value

(determined by DOME), it will rebuild the I-deas model, and this smaller loop (steps 8-

13) will be repeated. Otherwise, the simulation stops there. As mentioned in Section 6.4,

this single iteration may take a number of weeks in a traditional development cycle. This

example model accomplished the same task in about 60 seconds.

Figure 7-14 Event propagation in distributed model

Massachusetts Institute of Technology - Computer Aided Design Laboratory

.......

67

8 CONCLUSIONS

8.1 Summary

This thesis presented a virtual assembly modeling system for a heterogeneous CAD-

engineering environment. The need for sharing geometric data across corporation lines

without sharing the actual underlying data models was addressed. Specifically, high-

level neutral files such as IGES and STEP were utilized as standards of geometry services

to circumvent CAD interoperability issues.

Having incorporated the use of neutral files into the assembly modeling paradigm, the

problem of modification of dead geometry was then addressed. First, the underlying

capabilities of the DOME system were presented. The additional ability to dynamically

interface with CAD applications from DOME, over the web, was developed. This would

allow CAD designers to publish their modeling services to DOME. These would be

available for parametric manipulation and visualization. Included in the set of services

one could provide were said neutral files.

An example involving a camera assembly was provided to illustrate the assembly

modeler. By connecting to distributed CAD simulations through DOME, the two models

were shown to be individually manipulable. Via integration tools inherent to the DOME

structure, these models were linked together to behave like a coherent system. The

assembly modeling system made use of this structure, and the existence of neutral file

services, to allow incorporation of remotely defined geometry into CAD tools. The

procedure for recording appropriate assembly sequences was discussed.

The resulting system was one where full assembly analysis could be performed, and

changes to continuous and discrete variables would parametrically update the assembly

based on active links to the remotely connected CAD model. No proprietary design

history was transferred throughout the process. This assembly modeling system has the

Massachusetts Institute of Technology - Computer Aided Design Laboratory

68

potential to improve geometric design iterations from a traditional time scale of weeks to

interactive modeling in minutes.

8.2 Limitations to the paradigm

The proposed assembly modeling paradigm inherits a number of limitations from the

tools with which it interfaces. CAD API limitations can block certain functionality from

being applied to DOME. Application pre- and postprocessors for neutral files also have

their own sets of limitations and robustness issues. The ability of the DOME assembly

modeling system to import a valid part is completely dependent upon these processors.

In this context, IGES flavors come to the foreground as potential sources of conflict.

However, the system does not claim to improve the quality of the individual services

being provided to DOME in its service marketplace, but to improve the quality of the

resulting system that can emerge.

Versioning issues can cause similar problems. CAD systems often only output one

version of any given specification. Often, it the most recent, but this is not always the

case. Naturally, they can import previous versions of that format, but never later

versions. For example, the latest version of SolidWorks is only compatible with IGES

5.2, so it cannot import an IGES 5.3 file created by I-deas. Again, the assembly

modeling system is only as usable as the tools with which it interfaces.

Finally, the task of recording a procedure file as described in Section 6.2 is a difficult one

to master. This also falls into the realm of only being as beneficial as the underlying

application, but this is not a core functionality of most CAD packages, and cannot be

expected to be as robust as the rest of the software. There is modest overhead in learning

to create good procedure files, and the greater the number of steps, the more difficult this

is to do well.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

69

8.3 Future work

8.3.1 Additional concepts to incorporate

There are a myriad of ways to improve upon the assembly system described in this thesis.

Foremost is the assembly sequencing issue. Rather than force the assembler to use his or

her best judgement as to how to assemble the remote part (which is often enough), a

refined system would provide feature data to orient the assembler's efforts. This might

occur in the form of low-level geometric entities such as surface/face names, centerlines,

centerpoints, or as high-level features such as pegs, holes and shafts. In the first case, this

can be very difficult to do depending on the CAD postprocessor used. Not all of them

record entity names. In the second case, further difficulties arise when attempting to

agree on the definition of features, as well as when attempting to map those features to

entities in the neutral files. This operation is best done by an actual file translator, which

is not the intended purpose of the assembly modeler. Thus, providing reasonable

assembly-related data along with a neutral file service is a complex task. The highest

yielding results per time may be for the service provider to give documentation on the

neutral file services containing the best guess for appropriate information. If this

documentation is put onto the Internet, it can be easily accessed from DOME.

A robustness feature that could be added to the assembly system is error-checking during

the running of the recorded procedure file. This would account for things like selecting

an item in empty space, which tends to halt operation. "Smart" program checking could,

for example, pick the nearest item. I-deas program files can already check for errors, but

it is up to the assembly designer to program what is to be done when problems do arise.

A more robust assembly system in DOME is envisioned in which sensible and

nonsensical operations can be distinguished and reasonable alternatives chosen when

needed. This would drastically reduce the overhead of recording a procedure file for the

assembly engineer.

Typical assembly modeling operations such as tolerance, interference and collision

analyses would well fit the paradigm in this thesis. These functions are highly dependent

Massachusetts Institute of Technology - Computer Aided Design Laboratory

70

on the application performing them. In the same vein, additional CAD/CAM/CAE tools

could be added to the set of DOME-compliant programs. This would expand the

usability of DOME in industry. This level of integration has not been sought after yet as

DOME-related research.

8.3.2 Existing concepts to implement

There are many additional features than can be added to the assembly modeler. Some of

them involve allowing the publication of additional model parameters as existing DOME

service types. For example, a catalog could be made containing the various material

types known by the CAD system and being able to make tradeoffs in that design space.

Other improvements could be made to the user interface, such as a listing of the available

IGES flavors. Still others involve adding more automatic processes to the post-import

assembly model, thereby decreasing the number of steps that need to be recorded in the

procedure file. These include adding the part as an instance of the assembly and

changing its color.

The import-and-assemble methodology, which was shown to work in I-deas, was not

implemented in SolidWorks, due to issues reloading files that have been loaded into

memory. The paradigm, however, remains identical to the one described in this thesis.

Assembly procedure files have been recorded using Visual Basic macros.

Also, the method of publishing SolidWorks files is simple, but does not provide the

nested object hierarchy that the I-deas plugin does. A better method may be to utilize the

Design Table object in SolidWorks.

A final limitation to the current implementation of the assembly modeling system is the

loss of the ability to connect to remote sessions of I-deas from DOME. As the neutral file

services are propagated through DOME, a local session of I-deas was utilized to be able

to import this file. More recent versions of the DOME kernel than the one used for this

research allow DOME servers on all platforms, thus reducing this problem.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

71

REFERENCES

Ando, H, Kubota, A, Kiriyama, T, (1998), Study on the collaborative design process over
the Internet: a case study on VRML 2.0 specification design, Design Studies, vol. 19, pp.
289-307.

Baldwin, D F, Abell, T E, Lui, M M, De Fazio, T L, Whitney, D E, (1991), An Integrated
Computer Aid for Generating and Evaluating Assembly Sequences for Mechanical
Products, IEEE Transactions on Robotics and Automation, vol. 7, no. 1, pp. 78-94.

Bohn, J H, (1995), Removing Zero-Volume Parts from CAD Models for Layered
Manufacturing, IEEE Computer Graphics and Applications, vol. 15, no. 6, pp. 27-34.

Coles, K, Hou, C A, (1991), Enhancement of IGES Preprocessor for Data Exchange,
American Society of Mechanical Engineers paper, pp. 1-5.

Computer Associates International, Inc. (CAI), (2000), http://www.cai.com/cosmo.

Connacher, H I, Jayaram, S, Lyons, K, (1995), Virtual Assembly Design Environment,
Proceedings of the Computers in Engineering Conference and the Engineering Database
Symposium, pp. 875-885.

Crispen, B, comp.lang.vrml faq, (1998), http://home.hiwaay.net/-crispen/vrmlworks/faq.

De Martino, T, Falcidieno, B, Hassinger, S, (1998), Design and engineering process
integration through a multiple view intermediate modeller in a distributed object-oriented
system environment, Computer-Aided Design, vol. 30, no. 6, pp. 437-452.

Dewar, R G, Carpenter, I D, Ritchie, J M, Simmons, J E, (1997), Assembly planning in a
Virtual Environment, Proceedings of PICMET.

Diehl, A, (1996), Transferring Files from CAD to CAM, Computer-Aided Engineering,
vol. 15, no. 1, pp. 50, 52.

Duan, G, Wang, J, Liu, D, Lei, N, Bian, W, (1996), Research on an Object-Oriented
CAD/CAPP/CAM Integrated System Based on STEP, Proceedings of the IEEE
International Conference on Industrial Technology, pp. 29-33.

The IGES 5.x Preservation Society, (2000), http://www.iges5x.org/archives/version5x/.

Jayaram, S, Jayaram, U, Wang, Y, Tirumali, H, Lyons, K, Hart, P, (1999a), VADE: A
Virtual Assembly Design Environment, IEEE Computer Graphics & Applications, vol.
19, no. 6, pp. 44-50.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

72

Jayaram, S, Wang, Y, Jayaram, U, Lyons, K, Hart, P, (1999b), A Virtual Assembly
Design Environment, Proceedings of the IEEE Virtual Reality Annual International
Symposium, pp. 172-179.

Kaplan, G, (1997), Auto manufacture digitizes in depth, IEEE Spectrum, vol. 34 no. 11,
pp. 62-69.

Kleinke, D, (2000), personal communication.

Lee, D E, Hahn, H T, (1995), Virtual Assembly Production Analysis of Composite
Aircraft Structures, Computers in Engineering ASME Database Symposium, pp. 867-874.

Magoon, G I, Pfrommer, C, (1989), Ironing Out IGES, Computer-Aided Engineering,
vol. 8, no. 1, pp. 52, 54.

Mantripragada, R, (1998), Assembly Oriented Design: Concepts, Algorithms and
Computational Tools, PhD Thesis, Department of Mechanical Engineering,
Massachusetts Institute of Technology.

National Research Council - IMTI, (Strategis Industry Canada Online), (1999),
http://strategis.ic.gc.ca/SSG/ad03597e.html-http://strategis.ic.gc.ca/SSG/ad03604e.html.

Nevins, J L, Whitney, D E, Eds., (1989), Concurrent Design of Products and Processes:
A Strategy for the Next Generation in Manufacturing, McGraw-Hill, New York.

Peng, T, Trappey, A J C, (1998), A step toward STEP-compatible engineering data
management: the data models of product structure and engineering changes, Robotics and
Computer-Integrated Manufacturing, vol. 14, pp. 89-109.

Raghavan, V, Molineros, J, Sharma, R, (1999), Interactive Evaluation of Assembly
Sequences Using Augmented Reality, IEEE Transactions on Robotics & Automation,
vol. 15, no. 3, pp. 435-449.

Rudolph, D, (1995) DXF: Can You Get There From Here?: New Concepts, New Entities,
New Attributes, CADENCE Magazine, March edition,
http://www.cadenceweb.com/1995/mar/r13dxf.html.

Senin, N, Wallace, D R, Borland, N, (2000), Distributed Object-Based Modeling in
Design Simulation Marketplace, MIT Computer-Aided Design Laboratory, in review.

Sharma, R, Molineros, J, Raghavan, V, (1997), Interactive Evaluation of Assembly
Sequences with Mixed (Real and Virtual) Prototyping, Proceedings of the IEEE
International Symposium on Assembly and Task Planning, pp. 287-292.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

73

Steffan, R, Schull, U, Kuhlen, T, (1998), Integration of Virtual Reality based Assembly
Simulation into CAD/CAM environments, IECON Proceedings (Industrial Electronics
Conference), vol. 4, pp. 2535-2537.

Structural Dynamics Research Corporation (SDRC), (1998), I-DEAS Master Series 7
Open I-DEAS API Reference.

Sugimura, N, Moriwaki, T, Kakino, T, (1996), A Study on Assembly Model based on
STEP and Its Application to Assembly Process Planning, Proceedings of the Japan/USA
Symposium on Flexible Automation, vol. 2 pp. 791-794.

Sun Microsystems, Web3D Consortium: The Java 3D and VRML Working group,
(1999), http://www.vrml.org/WorkingGroups/vrml-java3d.

Templeman, M, (1996), All in the mind, Manufacturing Engineer, vol. 75, no. 3, pp. 133-
135.

UK Council for Electronic Business, (2000), http://www.ukceb.org/step/step.htm.

Wallace, D R, Abrahamson, S, Senin, N, Sferro, P, (2000), Integrated Design in a Service
Marketplace, Computer-aided Design, vol. 32, no. 2, pp. 97-107.

Weber, D, (1996), http://www.larch.umd.edu/resources/faqs/faqdxf/dxfme.html.

Whitney, D E, (1996), The Potential for Assembly Modeling in Product Development
and Manufacturing, http://web.mit.edu/ctpid/www/Whitney/papers.html.

Whitney, D E, Nevins, J L, De Fazio, T L, Gustavson, R E, (1994), Problems and Issues
in Design and Manufacture of Complex Electro-mechanical Systems, C S Draper
Laboratory Report R- 2577.

Wyman, M, (2000), personal communication.

Zapor, W, (1998), http://www.voicenet.com/-waltz/dxfusrs.html.

Massachusetts Institute of Technology - Computer Aided Design Laboratory

74

Appendix A: SAMPLE NEUTRAL FILES

A.1 Sample IGES file

Excerpts taken from lens.igs used in camera example.

SolidWorks IGES FILE using analytic representation for surfaces S 1
1H, ,1H;,llHlens.SLDPRT,2lHe:\Bill\iges\lens.igs,39HSolidWorks 97 by SoliG 1
dWorks Corporation, 11HVersion 2.0,32,308,15,308,15,llHlens.SLDPRT,1. ,l, G 2
2HIN,50,0.125,14H1000526.043701,iE-008,500.,7Hliteplo,,10,0,; G 3

110 1 0 0 0 01010000D 1
110 0 0 1 0 OD 2
124 2 0 0 0 OOOGOGOD 3
124 0 0 4 0 OD 4
100 6 0 0 0 3 01010000D 5
100 0 0 1 0 OD 6
120 7 0 0 0 01010000D 7
120 0 0 1 0 OD 8
126 8 0 0 0 01010500D 9
126 0 0 2 0 OD 10
124 10 0 0 0 OOOCOOD 11
124 0 0 5 0 OD 12
100 15 0 0 0 11 01010000D 13
100 0 0 1 0 OD 14

144 2540 0 0 0 OOOOOD 2201
144 0 0 1 0 OD 2202

110,0.,0.,2.34,0.,0.,41.71007874; iP 1
124,-i.,6.98296672221876E-015,0.,1.7550056904631, 3P 2
-4.27569270827966E-031,-6.12303176911189E-017,-.,2.34, 3P 3
-6.98296672221876E-015,-1.,6.12303176911189E-017, 3P 4
2.34000000000001; 3P 5
100,2.34,0.877502845,0.,0.887502845,0.,0.887502845,0.; 5P 6
120,1,5,0.,6.28318530717959; 7P 7
126,1,1,1,0,1,0,0.,0.,1.,1.,1.,1.,3.316125569,6.07949799,0., 9P 8
3.316125569,6.283185307,0.,0.,1.,0.,.,.; 9P 9
124,1.,-1.4432899320127E-014,-1.41252699986858E-015, lip 10
3.30776600708679E-015,-1.4738210651899E-014,-1., lip 11
-6.83861036455924E-015,1.60142233753444E-014, lip 12
-1.41252699986848E-015,6.83861036455925E-015,-1., lip 13
4.68347296355334; lip 14
100,2.341736482,0.,0.,0.887350923,0.,0.869007037,0.179494932; 13P 15
126,1,1,1,0,1,0,0.,0.,1.,1.,1.,i.,3.316125569,6.283185307,0., 15P 16
4.01425727,6.283185307,0.,0.,i.,0.,.,l.; 15P 17

0.174532925,0.,0.,1.,0. ,0.,.; 2191P 2534
126,1,1,1,0,1,0,0.,0.,1.,1.,1.,i.,1.,0.174532925,0., 2193P 2535
0.006979342,0.174532925,0.,0.,1.,0.,0.,1.; 2193P 2536
102,4,2187,2189,2191,2193; 2195P 2537
102,4,689,1491,2169,1539; 2197P 2538
142,1,2185,2195,2197,1; 2199P 2539
144,2185,1,0,2199; 2201P 2540
S 1G 3D 2202P 2540 T 1

Massachusetts Institute of Technology - Computer Aided Design Laboratory

75

A.2 Sample STEP file

Excerpts taken from lens.step used in camera example.

ISO-10303-21;
HEADER;

FILEDESCRIPTION (('STEP AP203'),
'1');

FILENAME ('lens.step',

'2000-05-26T08:37:07',
'MIT'),
'MIT'),

'SwStep 1.0',
'SolidWorks 98025',
' ') ;

FILESCHEMA (('CONFIGCONTROLDESIGN'));

ENDSEC;

DATA;
#1= ORIENTEDEDGE ('NONE', *, *, #2179, .T.

#2= VERTEXPOINT ('NONE', #379) ;
#3= VERTEXPOINT ('NONE', #386) ;
#4= ORIENTEDEDGE ('NONE', *, *, #1421, .T.
#5= VERTEXPOINT ('NONE', #387) ;
#6= VERTEXPOINT ('NONE', #388) ;
#7= ORIENTED EDGE ('NONE', *, *, #2182, .T.
#8= ORIENTEDEDGE ('NONE', *, *, #2223, .T.
#9= VERTEXPOINT ('NONE', #406) ;
#10= ORIENTEDEDGE ('NONE', *, *, #1480, .F.
#11= VERTEX POINT ('NONE', #407) ;
#12= VERTEXPOINT ('NONE', #408) ;
#13= ORIENTEDEDGE ('NONE', *, *, #2186, .T.
#14= ORIENTEDEDGE ('NONE', *, *, #2226, .T.
#15= VERTEXPOINT ('NONE', #422) ;
#16= ORIENTED EDGE ('NONE', *, *, #1520, .T.
#17= EDGELOOP ('NONE', (#258, #270, #1380, #1400, #1439
#18= EDGELOOP ('NONE', (#345, #348, #349, #352
#19= VERTEXPOINT ('NONE', #427) ;
#20= ADVANCEDLFACE ('NONE', (#434), #435, .T.

#373= CIRCLE ('NONE', #374, 0.0002539999999999972800
#374= AXIS2_PLACEMENT_3D ('NONE', #375, #376, #377)
#375= CARTESIANPOINT ('NONE', (0.02204561170688685400,
0.004777294587481071200, 0.05791200000000000500)) ;
#376= DIRECTION ('NONE', (1.000000000000000000, 2.408492542386578100E-015,
1.365923996832145200E-014)
#377= DIRECTION ('NONE', (1.365923996832146200E-014, 0.0000000000000000000, -
1.000000000000000000)) ;
#378= CARTESIANPOINT ('NONE', (0.02204561170688685400,
0.005027435756746172900, 0.05795610663712740700
#379= CARTESIANPOINT ('NONE', (-0.01968457905069176700,
2.410586057779600100E-018, 0.06069903514268503600

#2303= EDGECURVE ('NONE', #1521, #1251, #1361, .T.
ENDSEC;
END-ISO-10303-21;

Massachusetts Institute of Technology - Computer Aided Design Laboratory

76

A.3 Sample VRML file

Excerpts taken from lens.wrl used in camera example.

#VRML V2.0 utf8

NavigationInfo {
avatarSize 0

}
Collision {

collide FALSE
children

Group {
children

DirectionalLight {
direction 0 0 -1

},
Group {

children
Shape{

appearance
Appearance {

material
Material {

emissiveColor 0.615686 0.592157 0.776471

}

geometry
IndexedFaceSet {

coord
Coordinate {

point -0.0196008 0.00502744

0.0218278 0.00470966 0.0468865,

0.0467915,

0.0467801 1
}

solid FALSE
creaseAngle
coordIndex

0.0195022 0.00475643

0.0218278 0.00475871

0.5
[0, 1, 2, -1,

6, 7, 8, -1, 9,
12, 13, 14, -1,
18, 19, 20, -1,
24, 25, 26, -1,
30, 31, 32, -1,

3, 4, 5, -1,
10, 11, -1,
15, 16, 17, -1,
21, 22, 23, -1,
27, 28, 29, -1,
33, 34, 35, -1

}
}

]

}

Massachusetts Institute of Technology - Computer Aided Design Laboratory

0.0452561,
[I

