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ABSTRACT

Robotic rovers are important scientific tools used to explore and gather data from
other planets. However, current rovers are limited in capability due to their conservative
control algorithms and kinematic design. This thesis reviews two approaches to help
planetary vehicles take full advantage of their abilities. The first is an algorithm to
maximize the stability of kinematically reconfigurable rovers moving in rough terrain.
This method has been introduced in lagnemma et al [1]. The author's contributions are
aid in theory application and simulation and experimental validation. This method is
intended for robots with redundant degrees of freedom, i.e. those with a greater number
of actuators than the minimum needed for motion. A stability metric that optimizes the
vehicle pose based on stability and ground clearance is proposed. The reconfiguration
algorithm is verified both in simulation and through experimental testing. Results from
field trials at the Arroyo Seco in Altadena, California are presented.

The second approach explores an algorithm for off-line, planar motion planning
of high-speed vehicles operating in rough terrain. A nine degree of freedom planar
vehicle model that accounts for body-wheel interaction is developed. Vehicle failure
criteria are discussed. A method for generating maximum and minimum velocity
trajectories for a vehicle to traverse a given terrain profile is presented. The algorithm
shows that aggressive behaviors such as jumping may safely be used to traverse
particularity rough terrain. However, the algorithm also proves not to be practically
applicable due to high computational requirements and the need for a priori knowledge
of the full terrain profile.

Thesis Supervisor: Steven Dubowsky
Title: Professor of Mechanical Engineering

2



ACKNOWLEDGEMENTS

First, I would like to thank my parents, Zdzislaw and Helena Rzepniewski, and
my sister, Eva, who have supported me throughout my whole academic career. Thank
you for all of your personal, spiritual and, yes, financial help without which none of this
would have been possible. Thank you for sharing in all the good, and bad, times along the
way.

Thanks to Dr. Steven Dubowsky, director of MIT's Field and Space Robotics
Laboratory (FSRL), and the whole FSRL team who have taught me research skills. This
is knowledge that I will keep for a lifetime. Special thanks to Karl lagnemma and Vivek
Sujan with whom I have spent countless hours discussing various approaches to robotic
vehicle control.

I would also like to thank Dr. Paul Schenker, Dr. Terry Huntsberger, Dr. Paolo
Pirjanian, Mike Garrett, and Hrand Aghazarian of JPL's Planetary Robotics Laboratory.
Thank you for allowing me to become a part of your research team. Special thanks to
Anthony Ganino and Brett Kennedy who have helped me understand high-speed rough
terrain motion.

This work is supported by NASA/JPL under contract number 1216342.

3



Contents

A BSTRACT ..................................................................................................... 2

A CKNOW LEDGEM ENTS ................................................................................. 3

FIGURES......................................................................................................... 6

TABLES...........................................................................................................8

INTRODUCTION ............................................................................................. 9
1.1 Introduction ....................................................................................................... 9
1.2 M otivation .............................................................................................................. 10
1.3 Literature Review ............................................................................................... 13

1.3.1 Kinem atic Reconfigurability ........................................................................ 13
1.3.2 High-Speed Rough Terrain M otion............................................................. 15

1.4 Research Overview ............................................................................................ 20
1.5 Thesis Outline ..................................................................................................... 21

KINEMATIC RECONFIGURABILITY FOR ROUGH TERRAIN TRAVERSAL ......... 22
2.1 M otivation .............................................................................................................. 22
2.2 Kinem atic Reconfigurability ............................................................................... 24
2.3 Vehicle Kinem atics ............................................................................................ 27
2.4 Force-Angle Stability M easure .......................................................................... 27
2.5 Perform ance Index and Optimization M ethod.................................................... 30
2.6 Experim ental System .......................................................................................... 32
2.7 Simulation Results............................................................................................... 34
2.8 Experim ental Results.......................................................................................... 37
2.9 Conclusions ....................................................................................................... 40

HIGH-SPEED ROUGH TERRAIN TRAVERSAL ................................................. 41
3.1 M otivation .............................................................................................................. 41
3.2 M odeling ................................................................................................................ 45
3.3 M axim um and M inim um Velocity Trajectories..................................................... 47

3.3.1 Failure Criteria ............................................................................................ 55
3.3.2 Algorithm Assumptions .................................................................................. 56
3.3.3 Velocity Trajectory Generation.................................................................... 58

3.4 Results .................................................................................................................... 61

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK ............................... 68
4.1 Conclusions ............................................................................................................ 68
4.2 Suggestions for Future W ork ............................................................................ 69

REFERENCES ............................................................................................... 71

SR R KINEM ATICS...........................................................................................75

4



KINEMATIC RECONFIGURABILITY SAMPLE CODE ........................................... 80

VEHICLE M ODELING ....................................................................................... 90
B o d y .......................................................................................................................... 9 2
W h eels ....................................................................................................................... 9 5

5



FIGURES

Figure 1: Mars landscape as seen by Pathfinder cameras [3]. ..................................... 10
Figure 2: Sojourner rover traveling over Martian terrain [3]........................................ 11
Figure 3: Reconfigurable rovers (a) Sample Return Rover (SRR) [5], (b) Nanorover [6].

......................................................................................................................... 1 2
Figure 4: Tactical mobile robot URBIE [7]. ................................................................ 13
Figure 5: (a) NASA's Gofor rover [8], (b) Near tipover failure................................... 14
Figure 6: Tipover failure caused by leveling out the vehicle body............................... 15
Figure 7: Vehicle model used in Hughes AIC control algorithm [17].......................... 16
Figure 8: The CMU Unmanned Ground Vehicle Navlab II [20]................................. 17
Figure 9: Example of reconfigurable robot improving rough-terrain stability by adjusting

shoulder joints [1]......................................................................................... 23
Figure 10: Jet Propulsion Laboratory's Sample Return Rover (SRR) [5]....................24
Figure 11: The effect of local terrain profile on an externally reconfigurable vehicle.... 26
Figure 12: A general n-link robotic mechanism [1].................................................... 27
Figure 13: Stability definition diagram [41]. ................................................................ 29
Figure 14: A typical kinematic reconfigurability optimization search space for the SRR.

......................................................................................................................... 3 1
Figure 15: JPL's Sample Return Rover [5]. ................................................................ 33
Figure 16: Force-angle stability measure applied to the SRR....................................... 33
Figure 17: SRR stability margin for a reconfigurable system (solid) and a non-

reconfigurable system (dotted) [1]...............................................................35
Figure 18: SRR stability margin with only manipulator reconfiguration (solid) and a non-

reconfigurable system (dotted).................................................................... 36
Figure 19: SRR rover pitch simulation with both shoulder and arm reconfiguration......37
Figure 20: SRR experimental trials in the Arroyo Seco. Non-reconfigurable system (left),

reconfigurable system (right). ..................................................................... 38
Figure 21: SRR left (a) and right (b) shoulder angles during rough terrain traverse for

reconfigurable system (solid) and non-reconfigurable system (dashed) [1]... 39
Figure 22: SRR stability margin for reconfigurable and non-reconfigurable system [1].40
Figure 23: The Chenowth Fast Attack/Light Strike Vehicle used by U.S. SEAL's during

Operation D esert Storm [43]...................................................................... 42
Figure 24: Quarter-car vehicle models........................................................................ 44
Figure 25: Nine DOF planar vehicle model................................................................. 45
Figure 26: A representation of a maximum velocity trajectory. .................................. 47
Figure 27: A representation of a minimum velocity trajectory....................................49
Figure 28: Maximum velocity trajectories with identical initial conditions on the vehicle

body but differing suspension initial conditions........................................ 50
Figure 29: Maximum velocity trajectories constructed with different initial velocities.. 51
Figure 30: Maximum and minimum velocity trajectories........................................... 52
Figure 31: An island of inadmissibility in between the maximum and minimum velocity

trajectories ................................................................................................. . . 53
Figure 32: Center of mass paths for maximum, minimum, and "through island of

inadmissibility" velocity trajectories...........................................................53

6



Figure 33: Island of inadmissibility example, two ramp jump. Minimum velocity
trajectory, left. Velocity trajectory through island of inadmissibility, right... 54

Figure 34: Safe velocity profiles passing between the maximum and minimum velocity
trajectories. .................................................................................................. . 55

Figure 35: V ehicle Failure M odes................................................................................ 56
Figure 36: General negative feedback control system. ................................................ 57
Figure 37: Velocity profile generation schematic........................................................ 59
Figure 38: Single hill terrain profile............................................................................. 62
Figure 39: Single hill maximum and minimum velocity trajectories...........................63
Figure 40: Actuation history for the minimum velocity trajectory...............................63
Figure 41: Actuation history for the maximum velocity trajectory. ............................ 64
Figure 42: Single hill slope profile................................................................................ 64
Figure 43: Terrain profile (a) and slope history (b). .................................................... 66
Figure 44: Time optimum velocity profile and physical interaction constraint limits as

reproduced from Shiller and Gwo [27]. Courtesy K. lagnemma................67
Figure 45: Maximum velocity profiles generated using a multi-DOF vehicle model with

and without physical interaction constraints (no slip and ground contact).....67
Figure 46: SRR Rover with assigned left side reference frames. ................................ 76
Figure 47: SRR with actively actuated rocker joint....................................................79
Figure 48: General mobile robot free body diagram....................................................90
Figure 49: Planar rover m odel...................................................................................... 91
Figure 50: Planar vehicle body free-body-diagram......................................................92
Figure 51: Free body diagram of a planar rover wheel...............................................95

7



TABLES

Table 1: Vehicle parameters used in simulation [31].................................................46
Table 2: Left side Denavit-Hartenberg parameters [40]. ........................................... 77

8



CHAPTER

1
INTRODUCTION

1.1 Introduction

This thesis presents the author's contribution to a research program designed to

increase the capabilities of planetary explorer vehicles. This program includes

investigation of new or improved methods of mobility, manipulation, sensing, and control

of planetary rovers. The project is a collaborative effort between MIT's Field and Space

Robotics Laboratory and NASA's Jet Propulsion Laboratory (JPL). The program is

centered on the development and use of rover mechanics models that are simple enough

for on-board implementation, yet capture all relevant aspects of vehicle motion. This

thesis reviews a method for kinematic reconfigurability, [1], and shows its application in

simulation and through experimental testing on the JPL Sample Return Rover [2]. This

thesis also presents the results of a study towards generating a motion planner for high-

speed rough terrain traversal. Only planar motion is considered. The resulting algorithm

shows that aggressive behaviors such as jumping may safely be used to traverse rough

terrain. However, the algorithm also proves not to be practically applicable due to high

computational requirements and the need for a priori knowledge of the full terrain

profile.
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1.2 Motivation

On July 4, 1997 the Pathfinder lander and the Mircrorover Flight Experiment

(MFEX), Sojourner, landed on Mars. The mission lasted approximately 78 Martian days

during which Sojourner traveled approximately 100 m (total integrated distance) and

performed numerous scientific experiments [3]. This mission sparked the public's interest

and confirmed the viability of using small robotic vehicles for planetary exploration.

Figure 1: Mars landscape as seen by Pathfinder cameras [3].

NASA/JPL intend to continue to use small robotic rovers for planetary surface

exploration [2, 4]. However, future vehicles must have capabilities far beyond those of

Sojourner. Future missions include geologic sample acquisition, long-range travel, and

mapping [4]. To accomplish these missions rovers will have to travel into potentially

dangerous areas such as rock outcroppings or descend down the face of a cliff. Long-

range travel and terrain mapping will certainly require travel through regions of

challenging traversability.

Figure 1 shows the landscape of Mars as seen by the Pathfinder cameras. Even

though this is the spacecraft landing area and should therefore possess benign terrain, it is
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characterized by a large number of rocks that can threaten rover safety and mission

success. Clearly, Mars presents many mobility challenges for small mobile robots.

Current planetary rovers and laboratory prototypes are limited in their mobility

capabilities. They are slow moving with conventional, fixed suspension designs. Figure 2

shows the Sojourner rover traveling over terrain in the proximity of the lander. The figure

illustrates two near-failure situations and, thus, demonstrates the need for more advanced

vehicle designs and motion planning paradigms. Physical limitations coupled with

conservative control algorithms often result in rover endangerment or overly cautious

vehicle motions that restrict the scientific return of planetary missions.

Figure 2: Sojourner rover traveling over Martian terrain [3].

One important characteristic of a planetary rover is its ability to handle rough,

unknown terrain. The vehicle must be able to negotiate large rocks, loose soil, and steep

slopes. Figure 3 and Figure 4 show advanced rovers that are designed to meet increasing

demands on system mobility. Both the Sample Return Rover (SRR) and the nanorover,

shown in Figure 3, are designed with reconfigurable shoulder joints that allow each

vehicle to change its body roll and height [5, 6]. The SRR is also equipped with a

manipulator that can be used to alter the location of the center of mass to prevent tipover.

The nanorover, on the other hand, is capable of traveling both right side up and upside
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down. URBIE, shown in Figure 4, is a tactical mobile robot capable of changing its front

flipper angles [7]. This capability, along with a treaded-track design gives the system

high mobility. These rover designs require new control algorithms that take advantage of

their increased capabilities.

Autonomous vehicle systems must be able to operate at high-speed in rough

terrain. Although high-speed off-road motion is common in many racing and military

applications, it has rarely been seen in autonomous vehicles. A high-speed vehicle can

accomplish more tasks than a slow moving one in equal time. New and aggressive

motion planning algorithms that take full advantage of rover capabilities are needed to

fulfill the requirements of future planetary missions.

Figure 3: Reconfigurable rovers (a) Sample Return Rover (SRR) [5], (b) Nanorover [6].
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Figure 4: Tactical mobile robot URBIE [7].

1.3 Literature Review

Many researchers have studied rough terrain motion of planetary surface robots.

A full body of work extending from motion planners to path planners is available for the

interested reader [8-29]. A motion planner is defined here as an algorithm that, given a

path, constructs a safe system motion profile subject to vehicle and interaction

constraints. A path planner is defined here as an algorithm that is able to construct a

feasible path through a given terrain and then use a motion planner to determine a motion

profile.

1.3.1 Kinematic Reconfigurability

The use of kinematic reconfigurability to enhance rough terrain performance has

been proposed by previous researchers [8, 9, 10, 11, 12]. However, its benefits have not

been previously verified experimentally. Kinematic reconfigurability algorithms are

designed for robots with redundant actuators and available self motions. Examples of

such robots are shown in Figure 3, Figure 4, and Figure 5.
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Figure 5: (a) NASA's Gofor rover [8], (b) Near tipover failure.

A method to improve vehicle traction through pose reconfiguration is presented in

[8, 10]. The control algorithm is designed for the NASA/ JPL Gofor rover, see Figure 5.

Vehicle traction is improved by altering the vehicle pose until system weight is placed

over the wheels with the most favorable wheel-ground contact angles. However, the goals

of obtaining optimal traction and maintaining vehicle stability are often conflicting.

Figure 5 shows a case where traction-based force allocation places the vehicle close to

tipover failure. A minimum safety margin is suggested to cope with such instances.

However, stability is not explicitly considered in determining the optimal vehicle pose.

Kinematic reconfigurability methods to improve vehicle stability are presented in

[11, 12, 13]. Reconfiguration based on maintaining zero roll and pitch of the body is

suggested in [11]. This however, does not explicitly account for vehicle stability. In fact,

this may lead to instability. Figure 6 shows a case where leveling out the body would

cause tipover failure. In [12, 13], a planning algorithm to determine the optimal vehicle

pose is presented. The method requires detailed knowledge of the terrain profile. Such

information is often not available. Also, due to its complexity, this method is not feasible

for on-line implementation. Thus a need exists for an algorithm that can maintain system
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safety and is simple enough for on-line implementation. Such an algorithm is presented in

[1] and reviewed in Chapter 2. In this thesis, this algorithm is verified both in simulation

and through experimental testing on the JPL SRR [2].

Stable

Unable

Figure 6: Tipover failure caused by leveling out the vehicle body.

1.3.2 High-Speed Rough Terrain Motion

High-speed rough terrain motion has also been studied in detail [14-33]. A

method for real-time motion planning while accounting for body dynamics is presented in

[14]. The vehicle plans its motion based on a canonical solution that gives the time-

optimal path within the robot's sensing range. Time optimal motion considering vehicle

dynamics is also presented in [15]. The authors find the motion solution by dividing the

path into translational and rotational (turning) sections. Although both this algorithm and

[14] account for body dynamics, they consider only smooth terrain with clearly defined

obstacles.

Motion planning with physical interaction constraints, no skidding and constant

ground contact, is presented in [16]. The algorithm combines a graph-search of the

configuration space, to determine a feasible path, and the use of landmarks, to correct
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position errors accumulated by relying on odometry and inertial data. This work

integrates rough terrain with vehicle dynamics to determine a solution. However,

interaction constraints prevent aggressive vehicle behavior.

OK Bad Bad Bad
Suspension Slope Clearance

Figure 7: Vehicle model used in Hughes AIC control algorithm [17].

An approach to cross-country navigation is presented in [17]. The control

algorithm consists of a map-based planner, which provides a description of the intended

vehicle route, and a reflexive planner, which steers the vehicle in response to perceptual

data received during the actual traverse. A model-based evaluation of terrain

traversability is performed only when requested by the control algorithm. A static, 3D

vehicle model was developed for this purpose. Figure 7 shows, in a planar view, the three

types of obstacles detected with the vehicle model. Although this control algorithm is

made for rough-terrain operation, it only considers conservative traverses that need not

account for vehicle dynamics.
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Figure 8: The CMU Unmanned Ground Vehicle Navlab II [20].

A different approach to controlling fast moving vehicles in rough terrain is taken

in [18, 19, 20, 21, 22]. Figure 8 shows the Carnegie Mellon University Unmanned

Ground Vehicle used for the Navlab and RANGER projects. The control architecture for

this vehicle is an arbitration scheme. Desired vehicle action is determined by votes from

such behaviors as "avoid obstacles" and "maintain heading." The control algorithm

considers only feasible solutions in the vehicle actuation space (steering, throttle, and

brake). A simple system model, which considers the vehicle body as the only mass

bearing element, is used for this evaluation. Frequent on-line evaluation of the equations

of motion with the current system state as the input vector is used to determine vehicle

motion solutions. A feasible solution is one that satisfies the differential equations of
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motion and a ground contact constraint. Once again, the combination of an overly

simplified system model and a ground contact constraint prevents consideration of non-

benign off-road terrain and truly aggressive vehicle behavior.

High-speed, up to 35 km/h, off-road autonomous driving is discussed in [23, 24].

The key features of the control algorithm are: increasing the clearance between the side

of the vehicle and obstacles when traveling at higher speeds and only planning the next

20 m with dynamically feasible trajectories. The first feature means that only binary

obstacle classification is allowed; no model-based traversability evaluation is undertaken.

For the second, paths extending 20 m from the vehicle consist of clothoidal segments. A

clothoid is a curve whose curvature varies linearly with arc-length, i.e., a constant

curvature plus a constant rate of change of curvature:

1
- C=c +cs
r

where r is the radius of curvature and s is the distance traveled. A large number of

clothoid segments (paths) is computed off-line. Only those segments that meet the

vehicle state and are not blocked by obstacles are considered during on-line operation.

The vehicle model considers vehicle speed and actuator dynamics (steering) in order to

determine feasible paths. Due to this simplification, the experimental system is limited to

travel over smooth (rolling) off-road terrain.

Dynamic motion and time-optimal trajectory planning for autonomous vehicles is

presented in [25, 26, 27]. This work, borne out of motion planning for robotic

manipulators, has been demonstrated in simulation. Knowledge of the full terrain profile

from the starting point to the goal is required. The terrain is represented by B spline
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patches. Path evaluation is then carried out to satisfy engine torque, sliding, contact, and

tipover constraints. The evaluation yields a set of maximum velocity curves that are used

to generate a time-optimal trajectory in s - space, where s is the distance along the

path and s is the velocity. A simple vehicle model and rolling constraints allow this

manipulator-based kinematic analysis of the system motion space. The vehicle is

modeled as a point mass suspended above the terrain. All reaction and friction forces are

transferred to the vehicle center of mass. Although this formulation allows a closed form

solution to vehicle motion, it does not permit sliding and ballistic motion and thus

prevents aggressive travel over natural terrain.

Alternative methods of motion generation are presented in [28, 29]. Both of these

papers use fuzzy logic techniques to determine optimal paths. Genetic algorithms are

used to optimize inference tables in [28]. These tables are subsequently used by a fuzzy

logic planner. The resulting paths are superior to those obtained from random decision

tables generated using ad-hoc rules [28]. Fuzzy logic and vehicle behaviors are used in

[29] to determine terrain traversability and perform motion planning. The method

requires no a priori information about the environment and is suitable for real-time

implementation. Although these are both innovative solutions to high-speed rough terrain

motion planning, they require constant ground contact and thus permit only conservative

motion.

Methods for controlling vehicles by modifying the relative movement of the

sprung (body) and unsprung (wheels) weight are presented in [30, 31, 32, 33]. Clearly

control of this motion is important since it affects vehicle handling and safety. However,
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overly simplified vehicle models used in the bulk of path planning algorithms often

ignore such motion.

The bulk of previous work does not consider and exploit the full motion

capabilities of today's high-speed mobile robots. While this problem remains unsolved,

Chapter 3 presents the results of a study towards generating such a motion planner, based

on a nine degree of freedom planar vehicle model. This planar motion planning algorithm

shows that aggressive behaviors such as jumping may be safely used to traverse

particularly rough terrain. However, it also proves not to be practically applicable due to

high computational requirements and the need for a priori knowledge of the full terrain

profile.

1.4 Research Overview

Rough terrain motion is a formidable problem that has been studied for many

years. Constant advances in materials and computing technology allow vehicles to

become more sophisticated and present new challenges to the controls engineer. One

major challenge, studied here, is to make rovers more robust, safe, and, at the same time,

daring.

Planetary explorer vehicles need to do just that, explore. Often this means they

must travel through regions that may threaten their safety. Some of the most interesting

scientific samples are thought to be found in rock outcroppings and lie near cliff sides [2].

This research is a small part of a joint MIT-NASA/JPL program to develop new control

strategies that increase the mobility capabilities of rovers. Physics-based, mechanical

models of robotic systems are used to take advantage of vehicle capabilities. Whenever
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possible, experimental validation of control algorithms is used as proof of their practical

effectiveness.

1.5 Thesis Outline

This thesis is divided into four chapters. Chapter 1 presents the motivation, a

review of past work, and a brief research overview. Chapter 2 reviews a method for

kinematic reconfigurability used to increase system stability, [1], and presents simulation

and experimental results from field trials with the JPL Sample Return Rover (SRR).

Chapter 3 presents the results of a study towards developing a motion planner suitable for

high-speed off-road motion. Only planar motion is considered. The algorithm uses a nine

degree of freedom planar model that accounts for both body and wheel dynamics. The

planner is then used to determine maximum and minimum velocity trajectories, defined

in Section 3.3.3, between a starting and goal point. The algorithm shows promising

results. However, it proves not to be practically applicable due to high computational

requirements and the need for a priori knowledge of the full terrain profile. Chapter 4

presents conclusions of the research to date and suggestions for future work.
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CHAPTER

2
KINEMATIC RECONFIGURABILITY FOR ROUGH

TERRAIN TRAVERSAL

This chapter reviews work previously published in lagnemma et al. [1],

lagnemma [34], and Schenker et al. [13]. This work is a result of a collaborative effort

between the author and K. lagnemma. The author's contributions to this work are aid in

theory application and simulation and experimental validation.

2.1 Motivation

While significant recent progress has been made in the development of planetary

explorers many challenges remain, including traversal of rough terrain. This can result in

loss of stability, leading to tipover, or loss of wheel traction, leading to vehicle

entrapment. Either one can jeopardize rover safety and mission success.

NASA's Jet Propulsion Laboratory has developed the Sample Return Rover

(SRR) with the ability to actively modify its kinematic configuration to adapt to terrain

and enhance its rough terrain mobility [35]. The SRR is a 7 kg, four-wheeled robot with

independent steering and active, articulated shoulder joints. It can also be equipped with a

2.25 kg three degree of freedom manipulator. Reconfigurable robots can adjust their

kinematic configuration and reposition their center of mass to improve stability in rough
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terrain. Figure 9 shows a diagram of how an SRR-like robot can lower one side to adjust

to a hillside and improve its stability margin. This is accomplished by using its two active

shoulder joints to modify the angles 01 and 2 , see Figure 9 and Figure 10. The SRR can

also use its manipulator to reposition its center of mass. Both of these capabilities can be

used to improve system stability.

Figure 9: Example of reconfigurable robot improving rough-terrain stability by adjusting shoulder
joints [1].

Previous researchers have suggested the use of kinematic pose optimization to

enhance rough terrain mobility [8, 36, 37]. However, its practical effectiveness has not

yet been demonstrated on a real rover system operating in rough terrain. This chapter

reviews a stability-based kinematic reconfigurability method that was applied to the JPL

SRR [1] and presents simulation and experimental results. Kinematic equations relating

the actively actuated shoulder and manipulator joints to a vehicle stability measure are

written in closed form. A performance index is defined based on this stability measure

and a function that maintains adequate ground clearance, an important consideration

when traveling in rough terrain. The performance index is optimized by a conjugate-

gradient method, subject to kinematic constraints. The method does not consider a

detailed map of the terrain, preventing global optimization (the reasons for this are
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explained in Section 2.2). However, local wheel-terrain contact angles are estimated

using simple on-board sensors [38], permitting local optimization. The method considers

forces acting on the system, including those due to gravity and ones arising from

manipulation of the environment.

Computational requirements are light, permitting on-line implementation even

with the limited resources of planetary rovers [2]. Simulation and experimental results

gathered in an unstructured environment show that kinematic reconfigurability can

substantially improve vehicle stability, and consequently the vehicle mobility, in rough

terrain.

Figure 10: Jet Propulsion Laboratory's Sample Return Rover (SRR) [5].

2.2 Kinematic Reconfigurability

This section reviews two types of kinematically reconfigurable mechanisms

described in lagnemma et al [1].
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Kinematically reconfigurable mechanisms may be divided into two classes:

internally reconfigurable and externally reconfigurable. Internally reconfigurable

mechanisms can change the position of their center of mass without changing their link-

terrain contact points. Externally reconfigurable mechanisms, on the other hand, need to

change their link-terrain contact points in order to change the position of their center of

mass. In such mechanisms, link-terrain contact points must be treated as higher-order

pairs [39]. The externally reconfigurable SRR might consequently be represented as a

crank-slider mechanism.

The goal of kinematic reconfigurability is to optimize a user-defined performance

metric by modifying the joint variables 0,. Examples of performance metrics include

static stability, wheel (or foot) traction, and optimal force distribution. A stability-based

metric, discussed in Section 2.5, is used in this work.

On-line kinematic reconfigurability requires three steps:

1) Evaluation of the mechanism kinematic configuration based on on-board sensor

readings. The configuration is defined as Q = (01,..., 6., a,..., a., ,,,) where #

and X denote the pitch and roll, respectively, of the vehicle body. The link-terrain

contact angles, a , can be estimated by various methods [38, 12].

2) Calculation of the configuration Q*, which optimizes the performance metric

based on the joint angles Oi.

3) Transition from the current configuration Q to the optimal configuration Q*.
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Detailed knowledge of the terrain is required to obtain a globally optimal solution

for externally reconfigurable mechanisms since link-terrain contact points change during

reconfiguration. This information is often not available. The computational burden of

continually obtaining and processing detailed range maps usually makes the task

impractical. However, local link terrain contact angles may be used to obtain a locally

optimal vehicle pose without much computational burden. A method for obtaining these

angles is described in [38]. The local terrain angles describe the terrain in the immediate

vicinity of the contact point. Thus, a local optimization problem may be posed with the

additional constraint that only small changes in the location of the contact points are

permitted.

Figure 11: The effect of local terrain profile on an externally reconfigurable vehicle.

The importance of knowing the local terrain profile is demonstrated in Figure 11.

Here the terrain requires two drastically different courses of action from the same starting

pose; when traveling in a ditch, closing the shoulders will increase stability, whereas the

opposite action is required when traveling on a hill.
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2.3 Vehicle Kinematics

Knowledge of the system kinematics is necessary to determine the optimal pose.

Since forward and inverse kinematics of hybrid serial-parallel chains are, in general,

difficult to solve in closed form, numerical optimization techniques are often used [8].

Although numerical solutions are often required to obtain full loop-closure equations for

these tree-structured systems, analytical formulation for each independent branch may

often be obtained with only moderate effort. Thus, each vector P,, describing the

location of the link terrain contact point P,, may be written independently, see Figure 12.

Appendix A reviews the development of the SRR kinematics through the use of Denavit-

Hartenberg parameters [40].

01 1 pm On

al

P1 PM m

Figure 12: A general n-link robotic mechanism [1].

2.4 Force-Angle Stability Measure

This section reviews a stability metric proposed by Papadopoulos and Rey [41].
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For the general n-link mechanism shown in Figure 1, m link-terrain contact points

P, j= {1,..., m} are numbered in ascending order in a clockwise manner when viewed

from above, see Figure 13. The lines that join the contact points are the candidate tipover

axes, a,. The i' tipover axis is given by:

a1 =(1

am = P - P (2)

where bj3 is defined from the vehicle center of mass to the contact point P1 . Note that a

vehicle with m contact points will have m axes about which an untripped tipover may

happen. A tripped tipover occurs when one of the ground contact points encounters an

obstacle or a sudden change in ground conditions.

Tipover axis normals that intersect the center of mass are given by:

=(1-a T[ )(p+, - p) (3)

where 1 is a 3x3 identity matrix, a^= di /1dji , and pb describes the location of the center

of mass in the inertial reference frame.

Stability angles may then be computed for each tipover axis as the angle between

the general force vector f and the axis normal li, and is given by:

i = {1,...,m} (4)

where
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+ I-x ) =a (5)
-1, otherwise

and

f -a )f (6)

The sign of o- is positive if the force vector passes through the interior of the contact

polygon. The overall stability angle is defined as the minimum of all i stability angles:

a = min(y,), i = {1,...,m} (7)

Y

X
Z

Pi 11

Y1

ama2

Mk

Figure 13: Stability definition diagram [41].

Note that the reconfigurability method presented here only considers gravitational

forces. This, however, need not be a constraint. Any additional forces, such as ones

arising from manipulation of the environment, can be included:

f=((f,, +n +...) (8)
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Similarly, any moment h about a tipover axis di may be included:

ii

with

h, = (ai,[)di

The stability angle y, is then computed using the net force f*.

2.5 Performance Index and Optimization Method

A stability-based performance metric, (D, is defined based on the force-angle

stability measure. The metric takes the following form:

= K + K, (o, (11)

where y, is the stability angle as described in Section 2.4, 06 is the nominal value of the

i'h joint (i.e. the value of 6, when the robot is in a user-specified configuration), and K,

is a constant weighting factor.

The performance metric, 1D, was chosen to have three key properties.

1. The first term in the equation above tends to infinity when any stability angle y,

tends to zero. This elicits a strong response from the system as it becomes

marginally stable.
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2. The second term allows the vehicle to maintain ground clearance. This is

accomplished by penalizing deviation from the user specified configuration 0,'

3. The weighting factors K allow a user to specify the relative importance of

stability and ground clearance. Stability could be weighted more heavily when

traveling in difficult terrain. Minimizing joint movement, and thus power usage,

could be weighted more when traveling in benign terrain.

The goal of stability based kinematic reconfigurability is to minimize the value of

the performance metric CD subject to joint limits, interference, and kinematic and loop-

closure constraints. When applied to the SRR, (D possesses a unique minimum within an

optimization cycle and a conjugate-gradient method is sufficient for rapid convergence

on the solution. Figure 14 shows a typical optimization search space.

12.

10.

22

Fp r ga o2so

Figure 14: A typical kinematic reconfigurability optimization search space for the SRR.
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2.6 Experimental System

Figure 15 shows the Sample Return Rover (SRR), which was used for

experimental validation of the kinematic reconfigurability algorithm. The SRR is a 7 kg,

4-wheeled (20 cm diameter) robot that can be equipped with a 2.25 kg three degree of

freedom manipulator. The SRR has a passive, instrumented, rocker-type suspension with

a spur-gear differential and actively articulated shoulder joints [13]. The parallel linkage

suspension, 50 cm total length, permits simultaneous operation of the articulated

shoulders, the passive rocker, and the steering actuators. The manipulator and active

shoulder joints can be used to reposition the center of mass.

The SRR is equipped with a Pentium 266Mhz/32MB computer along with a boot-

able Solid State Disk and a full sensor suite, including an inertial navigation unit that

allows the robot to determine the body roll and pitch. The differential rocker angle as

well as the shoulder joint angles are determined through potentiometer readings. The

SRR has a VxWorks 5.4 real-time operating system and is controlled via a finite state

machine architecture [13]. It is also equipped with a 1.5Mb/s Ethernet wireless modem

for off-board communication.

Although the SRR has a maximum speed of 21 cm/sec (-0.47 mph), the speed is

usually operator limited to 6 cm/sec (-0.13 mph) or less when traveling in rough terrain.

Because these are such low speeds, dynamic effects are negligible and static-stability

based kinematic reconfiguration is appropriate.
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Figure 15: JPL's Sample Return Rover [5].

ATn

Figure 16: Force-angle stability measure applied to the SRR.
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Figure 16 shows how the force-angle stability measure is applied to the SRR.

Appendix A reviews the development of the rover kinematics. The optimization

performance metric takes the form:

4 Ki 1)(D = Z +LKj4 (0O )2 (12)
j=1 Yj i=

Note that the stability angles y1 are a function of the shoulder and manipulator degrees of

freedom.

2.7 Simulation Results

A 3D simulation of the SRR operating in rough terrain was written in MATLAB.

The rover model was then simulated on representative terrains and allowed to

reconfigure. Configuration optimization was performed using a 300 MHz AMID K6

processor. The average processing time for a single constrained optimization computation

was 40 1 sec. Thus, kinematic reconfiguration is a simple and efficient way of improving

system safety in rough terrain.

Typical simulation results are shown in Figure 17. The stability margin, as

defined by Equation (12), is plotted for both a reconfigurable system and a conventional,

fixed-configuration system. The stability of the reconfigurable system was 37.1% greater

than the fixed-configuration system. The fixed-configuration system came within 1.1* of

tipover failure. With such a small stability margin, disturbances such as wheel slip could

lead to tipover. The reconfigurable system maintained a comfortable 12.5 0 minimum

safety margin.
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Figure 17: SRR stability margin for a reconfigurable system (solid) and a non-reconfigurable system
(dotted) [1].

Figure 18 shows the effects of using the reconfiguration metric to position the

manipulator without reconfiguring the suspension. The stability margin is plotted for

systems with and without active reconfiguration of the manipulator degrees of freedom.

Note that this is a different terrain profile from that used to generate Figure 17. The

actively reconfiguring system is 21.1% more stable than the fixed-configuration system.

More importantly, the reconfigurable system maintains a minimum 11.5' safety margin,

while the conventional system comes within 2.50 of tipover failure.
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Figure 18: SRR stability margin with only manipulator reconfiguration (solid) and a non-
reconfigurable system (dotted).

Figure 19 shows reconfiguration behavior when the SRR is artificially pitched

forward. Note that this is a test case simulating descent down a steep slope following

manipulator activity at the front of the rover. Also note that a conventional, fixed-

configuration rover would undergo tipover failure if passed through the same pitching

motion. As can be expected, the reconfigurable rover ends with its shoulders open and its

manipulator as far back and as low as joint limits and interference constraints will allow.

The transition states are interesting as they show that the rover does not simply move its

manipulator arm up and over the body, which would raise the location of the center of

mass and potentially cause tipover. Rather it swings the arm around and adjusts its

shoulder pose during the movement to keep the center of mass on the centerline of the

rover body.
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Figure 19: SRR rover pitch simulation with both shoulder and arm reconfiguration.

2.8 Experimental Results

Experimental trials were carried out at the Jet Propulsion Laboratory's Planetary

Robotics Laboratory and at the Arroyo Seco in Altadena, California with the assistance of

JPL researchers. Kinematic reconfigurability code was written in C to interface with the

SRR (described in Section 2.6). This code is presented in Appendix B.

The Planetary Robotics Laboratory is equipped with a large, indoor "sandbox"

filled with ruby garnet designed to simulate loose soils. Laboratory trials included

traverses over terrain composed of this garnet and small stones (-4-18 inches). They were
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designed to test the mobility limits of the SRR. The SRR was commanded to travel over

difficult terrain that often threatened rover safety. Each trial included a path traverse with

a reconfiguring and a non-reconfiguring system. Note that, although the reconfiguration

routine is designed for real-time operation permitting simultaneous driving and

reconfiguration, at the time of experimental validation, the SRR was equipped with a

finite state machine framework that allowed the execution of only one task at a time.

Subsequently, the SRR was commanded to travel 10cm between reconfigurations.

Representative results from experimental trials are discussed below.

Figure 20: SRR experimental trials in the Arroyo Seco. Non-reconfigurable system (left),
reconfigurable system (right).

Figure 20 shows the SRR during an experimental field trial in the Arroyo Seco.

The left picture shows a fixed configuration rover. The right picture shows rover behavior

with both shoulder and manipulator reconfiguration. The benefits of reconfiguration can

be readily seen. Both system safety and path tracking are improved through kinematic

reconfigurability. Note that due to the large relative weight of the SRR manipulator,

nearly 25% of full rover weight, much less shoulder reconfiguration is required to

maintain system stability.
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Experimental data from SRR field trials is shown in Figure 21 and Figure 22. Left

and right shoulder angle histories are shown in Figure 21. Both reconfigurable and non-

reconfigurable system data is shown; small variations in fixed-configuration shoulder

angles are due to actuator compliance. Note that shoulder reconfiguration by as much as

300 is required to maintain system stability. Also note that both shoulders remain within

the joint limits of ±450 of their initial values.

Vehicle stability margin for a reconfigurable and a non-reconfigurable system is

plotted in Figure 22. Note that the two plots do not match up along the horizontal axis

due to different wheel-slip conditions during each traverse. The average stability of the

reconfigurable system was 48.1% greater than that of the fixed-configuration system. The

non-reconfigurable system came within a precarious 2.10 and 2.50 of tipover during the

traverse. The reconfigurable system maintained a minimum 15.00 safety margin. Clearly,

kinematic reconfigurability greatly improves vehicle stability in rough terrain.

6C 80

5 75 Actively Reconfiguring System

-6 s Actively Reconfiguring System
705)

52 65

5C 60

~0o 46

't= 44

42 Non-reconfiguring System 45 Non-reconfiguring System
0 20 40 60 80 100 120 140 160 180 200 40 20 40 60 80 100 120 140 160 180 200

Wheel Odometry Distance (cm) Wheel Odometry Distance (cm)

Figure 21: SRR left (a) and right (b) shoulder angles during rough terrain traverse for
reconfigurable system (solid) and non-reconfigurable system (dashed) [1].
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Figure 22: SRR stability margin for reconfigurable and non-reconfigurable system [1].

2.9 Conclusions

This chapter reviewed the use of a kinematic reconfigurability algorithm to

increase system stability, and, thus, safety. A method for calculating the optimum vehicle

pose was reviewed [1], subject to kinematic constraints and the local terrain profile. The

method was then verified in simulation and in field trials with the SRR rover. The

average processing time for a single constrained optimization computation was 40 usec

on a 300 MHz AMD K6 processor. Overall, kinematic reconfigurability proved to be an

effective way of increasing vehicle safety.
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CHAPTER

3
HIGH-SPEED ROUGH TERRAIN TRAVERSAL

3.1 Motivation

In addition to requiring increased rough terrain mobility, future autonomous and

semi-autonomous planetary rovers will be required to accomplish much more within their

lifetime than today's would permit. They will need to explore areas many times larger

than the one explored by Sojourner during the highly successful Mars Pathfinder mission

[2]. To accomplish this, rovers will need to operate at high speeds in planetary, rough-

terrain environments.

High-speed off-road motion is also important in military applications. Current

manned battlefield vehicles, as shown in Figure 23, and laboratory Unmanned Ground

Vehicles (UGV's) will have to function faster and more reliably to contend with ever

increasing functional demands [42]. Possible tasks include reconnaissance, surveillance,

and target acquisition [43]. Each one of these will put the vehicle in jeopardy and might

cause mission failure if the system is poorly or conservatively controlled. Aggressive

motions such as jumping, see Figure 23, are performed by human military personnel.

However, these motions are often not allowed by current automated vehicle control

algorithms [20, 23, 27]. A need exists for a behavior planner that allows advanced system

motions.

41



Figure 23: The Chenowth Fast Attack/Light Strike Vehicle used by U.S. SEAL's during Operation
Desert Storm [43].

Control of high-speed motion over rough terrain is a difficult problem. A vehicle

must perform all perception and path planning activities that slow-moving, quasi-static

rovers perform, in addition to maintaining dynamic system safety. An appropriately

detailed vehicle model is key to achieving this task. The model is important to controlling

speed, handling, and stability of the vehicle. While the research work discussed in

Section 1.3.2 offers innovative solutions to this difficult problem, it relies on overly

simplified system models and kinematic rolling constraints. The use of an overly

simplified system model can lead to incorrect prediction of system performance, which

could lead to system failure at high speeds.

Kinematic models have been used in some motion planning algorithms [34, 44,

45]. These algorithms evaluate terrain based on static safety, kinematic, and joint limit

analysis, without the need for dynamic analysis. This results in a light computational
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load. However, these planning algorithms are not applicable to high-speed rough terrain

motion, where dynamic effects are important.

Although fully detailed vehicle models exist, they are not used in motion planning

algorithms due to their high computational complexity. Motion planning algorithms

reduce the system model to a point mass moving along a terrain profile to minimize

computational complexity [17, 18, 21, 24, 27]. This, however, ignores any effects that the

suspension has on vehicle behavior and could lead to incorrect motion prediction and

system failure at high-speeds.

Motion control algorithms recognize the importance of a vehicle's suspension and

commonly use three simplified vehicle models to alter vehicle behavior [30, 31, 33].

Figure 24 shows the one degree of freedom (DOF), skyhook, and two DOF models.

These are often referred to as quarter-car models. Each of these assumes (1) all mass

bearing elements are point masses, (2) the suspensions move only along the vertical axis,

and (3) kinematic rolling (constant ground contact and no slip).

Each of these models has unique properties. The one DOF model ignores the

unsprung mass of the wheels and considers only road input and body mass motion to

determine suspension forces. The skyhook model also ignores any unsprung mass.

However it assumes inertial damping. The two DOF model considers both sprung and

unsprung mass and uses the relative motions of ground-to-wheel and wheel-to-body to

determine the suspension forces.

Although these models are useful for simple motion, they do not capture the

salient features of high-speed off-road motion. Both the one DOF and skyhook models

ignore the effects of the unsprung mass (wheels). These are important to vehicle handling
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and stability. The two DOF model, although it considers unsprung mass, still does not

account for higher order effects such as rotational inertia and weight shifting due to

throttle/brake input, which are important in high-speed dynamics.

1 dof Skyhook 2 dof
Figure 24: Quarter-car vehicle models.

In the remainder of this chapter, a planar vehicle model is developed which

considers suspension characteristics and accounts for rotational inertia and weight

shifting due to throttle/brake input. An algorithm is developed which uses this model to

determine maximum- and minimum- velocity profiles, defined in Section 3.3, for a given

path. The algorithm allows wheel slip and ballistic motion since these effects are often

seen in fast off-road vehicles whether they are a mountain bike traveling on singletrack or

a racecar in the Paris-Dakar rally which travels over natural, ungroomed terrain [46].

Note that low-speed planetary rovers, which are designed to operate in low gravity

environments, can also become airborne.

The algorithm assumes knowledge of the full terrain profile. Due to a high

computational load, the algorithm is not suitable for on-line implementation and off-line

motion evaluation is required.
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3.2 Modeling

A model considering both the mass and inertia of the body and wheels is

proposed. This model was chosen because it captures all the effects that the simpler point

mass and quarter-car models do, as well as some important higher order effects. Only

planar motion is examined in this study. Thus, important 3D effects, such as rollover, are

not considered. Figure 25 shows the vehicle model.

Figure 25: Nine DOF planar vehicle model.

The planar vehicle model is a nine degree of freedom system (two translational

and one rotational degree of freedom for the front and rear wheels and the body). Wheel

compliance is modeled as a spring-damper element. The body and wheels are coupled by

spring-damper elements. Thus, important effects such as rear-end squat and front-end

nosedive are captured. These effects are important because they influence traction and

ballistic vehicle motion.
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The equations of motion for the planar system are derived in Appendix C. A few

assumptions are made in their derivation. First, coulomb friction is assumed at the wheel-

terrain interface. Second, point contact with the terrain is assumed. This is consistent with

the first assumption, since the Coulomb friction law does not consider contact area, just

the contact force. Third, although the deflection of each tire is considered in determining

wheel-terrain interaction forces, it is not considered for the calculation of wheel inertia,

i.e., the wheels are assumed to remain round.

Vehicle parameters used in simulation are listed in Table 1. These parameters

were chosen because they are characteristic of a passenger vehicle.

Vehicle Mass 534 kg

Wheel Mass 36.6 kg

Suspension Stiffness (x direction) 1.87 x 106 N/m

Suspension Stiffness (y direction) 1.87 x 104 N/m

Wheel Stiffness 1.84 x 10 5 N/m

Suspension Damping Coefficient 1398 Ns/m

Wheel Damping Coefficient 1398 Ns/m

Table 1: Vehicle parameters used in simulation [31].
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3.3 Maximum and Minimum Velocity Trajectories

Maximum and minimum velocity trajectories are a way of determining safe

vehicle motions and evaluating a path's traversability. A maximum velocity trajectory

gives an estimate of the maximum velocity, at discrete points along the path, that allows

the vehicle to reach the goal point and is consistent with the vehicle state at that point, the

dynamic equations of motion, and all traction and torque limits. This is an estimate

because it displays only the body velocity and does not explicitly display information

related to the suspension state.

0

Distance

Figure 26: A representation of a maximum velocity trajectory.

An illustrative example of such a trajectory is shown in Figure 26. Note that this

is a not an actual data set. The terrain profile includes a steep, slippery hill and a ditch

that cannot be traversed and must be jumped. This terrain would be deemed untraversable

47

Ground Profile

Slippery
Hill

Dee Ditch

;Maximum Velocity Trajectory

A B C D

Ballistic Flight

I



by most rough terrain motion planning algorithms due to static stability violations.

However, if wheel slip and ballistic motion are allowed, the terrain can be crossed.

The observed maximum velocity trajectory includes four key regions. The first

region includes an acceleration that is at the traction and torque limits. This action is

denoted as A. The next region, B, includes travel over the steep, slippery hill. This region

is classified by a velocity drop since the available tractive force is lower than the

opposing gravity force. A ballistic flight region, denoted as C, begins once the vehicle

has reached the top of the hill. The ability to jump allows the vehicle to clear the

statically impassible ditch. Note that the velocity shown on the graph, defined as vehicle

velocity along the horizontal axis, remains constant in this region. This is true since the

only acceleration (due to gravity), is normal to this horizontal axis. The final section,

denoted D, sees a sharp increase in speed as the vehicle travels down hill.

A minimum velocity trajectory gives an estimate of the minimum velocity, at

discrete points along the path, that allows a vehicle to reach the goal from that point and

is consistent with the vehicle state at that point, the dynamic equations of motion, and all

traction and torque limits. This is an estimate because it displays only the body velocity

and does not explicitly display information related to the suspension state. This

information is trivial in flat terrain where a vehicle can stop anywhere and restart again to

reach the goal. However, in rough terrain a vehicle might have to "get a running start" to

successfully traverse a hill or jump a ditch.
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Figure 27: A representation of a minimum velocity trajectory.

Figure 27 shows a ground profile and a minimum velocity trajectory. Again, this

is not an actual data set. The trajectory may be divided into five parts. Travel over benign

terrain is shown in part A. The velocity is a small (5. Part B, although still benign terrain,

shows an increase in speed required to safely traverse the upcoming hill and ditch. Parts

C and D show a decrease in speed during uphill travel and constant velocity during

ballistic flight, respectively. Note that ballistic flight is required even for this minimum

velocity trajectory since the ditch cannot be traversed due to static stability violations.

Finally, part E shows a deceleration back down to the velocity 8.

Maximum and minimum velocity trajectories do not explicitly display

information related to the vehicle suspension state. In order to allow an intuitive,

graphical visualization, the effects of suspension initial conditions on a maximum

velocity trajectory are shown in Figure 28. The trajectory generation procedure is
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discussed in Section 3.3.3. Note that the data sets were created with different initial

conditions for the suspension, but identical initial conditions for the vehicle body. These

simulations used a vehicle with a three meter wheelbase; other vehicle properties are

listed in Table 1. Due to different initial conditions of the suspension states, the

maximum velocity trajectories do not converge to the same curve. Note, however, that

the profiles are similar in shape. This is expected since the vehicle body dynamics

dominate the system response.
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Figure 28: Maximum velocity trajectories with identical initial conditions on the vehicle body but
differing suspension initial conditions.

The effect of vehicle body initial conditions on the maximum velocity trajectory

is shown in Figure 29. All profiles used the same initial suspension state, but different

initial body velocities. The trajectory generation procedure is discussed in Section 3.3.3.

The figure shows that trajectory profiles converge to a band similar to that seen in Figure
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28. Such convergence may be attributed to differences in suspension state that are

experienced during terrain traversal. Due to this lack of convergence, the maximum and

minimum trajectories should be used as guidelines and not as true boundaries.
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Figure 29: Maximum velocity trajectories constructed with different initial velocities.

The maximum and minimum velocity trajectories may also be used as a measure

of path traversability. Benign terrain will have widely separated maximum and minimum

velocity trajectories. Rough terrain will have the trajectories close to each other due to

traction, torque, and safety constraints. Note that safety between the curves is not

guaranteed. Cases of failure that occur between the maximum and minimum velocity

trajectories are discussed later in this section.

Figure 30 shows the maximum and minimum velocity trajectories for the ground

profile used in Figure 26 and Figure 27. Note that these are not actual data sets. Also note

that critical regions, such as the ones before the onset of ballistic motion, often have
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narrow zones of safe operation. Maximum and minimum velocity trajectories may be

constructed with matching initial conditions, as in Figure 30, or with differing initial

conditions, as in Figure 31. Differing initial conditions, zero velocity for the minimum

velocity trajectory and traction and torque limited velocity for the maximum velocity

trajectory, may be used to assess the traversability of a given terrain path.

Maximum Velocity Trajectory

0

Minimum Velocity Trajectory

Distance
Figure 30: Maximum and minimum velocity trajectories.

An issue not discussed thus far is that of islands of inadmissibility [47]. An island

of inadmissibility is a region of unsafe operation that occurs between the maximum and

minimum velocity trajectories. An example of such an island appearing in a velocity

trajectory plot is shown in Figure 31. Note that this is not an actual data set. Islands of

inadmissibility are the result of special combinations of terrain profile and vehicle state.

To fully identify the shape of such an island an exhaustive search of all possible motion

states would be required.

An example of an island of inadmissibility is shown in Figure 32 and Figure 33.

The ground profile, as shown in Figure 32, is a set of two ramps. Figure 32 shows the

body center of mass paths for three velocity cases. Snapshots from a dynamic simulation

of vehicle behavior for the minimum velocity trajectory and a velocity trajectory passing

through the island of inadmissibility are shown in Figure 33. The trajectory generation
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procedure is described in Section 3.3.3. The minimum velocity trajectory allows the

vehicle to jump over the first ramp, land at the foot of the second, and safely jump off of

the second ramp. The maximum velocity trajectory allows the vehicle to leap over the

second ramp and land safely. A velocity profile passing through the island of

inadmissibility has the vehicle partially land on the second ramp (only the rear wheels

land), thus causing the car to flip over and fail.

Maximum and Minimum Velocity Trajectories

0
0

Distance
Island of
Inadmissibility

Figure 31: An island of inadmissibility in between the maximum and minimum velocity trajectories.

Center of Mass Paths for Different Velocity Profiles

Path Through Island
of Inadmissibility 

Failure...-.. A.F.. I-,re

Figure 32: Center of mass paths for maximum, minimum, and "through island of inadmissibility"
velocity trajectories.
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Safe Trajectory Bad Trajectory

Figure 33: Island of inadmissibility example, two ramp jump. Minimum velocity trajectory, left.
Velocity trajectory through island of inadmissibility, right.
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Figure 34: Safe velocity profiles passing between the maximum and minimum velocity trajectories.

Not all velocity profiles between the maximum and minimum trajectories, which

avoid an island of inadmissibility, may be proven safe due to the interaction of the body

and wheel masses. Thus, an arbitrary velocity profile, denoted D in Figure 31, may

penetrate one of the bounding trajectories and result in vehicle failure. Figure 34 shows a

sample of safe velocity profiles in support of the author's conjecture that the maximum

and minimum velocity trajectories may be used as a measure of path traversability.

3.3.1 Failure Criteria

A clear definition of failure is required to determine the maximum and minimum

velocity trajectories. Three failure modes are considered: stability, rearward slip, and

stall, see Figure 35.
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The stability criterion in 2D is reduced to a limit on the vehicle pitch, #, where

failure occurs if

0 > mx

where Omx is a user defined maximum pitch angle. Note that comprehensive stability

criterion, such as the one presented in Section 2.4 may be used.

Stability Rearward Stall
Slip

V v=0

Figure 35: Vehicle Failure Modes.

The rearward slip criterion is defined as vehicle motion away from the goal. Note

that slip towards the goal is not a failure. If velocity, V, towards the goal is defined as

positive, then failure occurs if:

V<o

The final failure mode is vehicle stall. This occurs when the available tractive

force is balanced by gravity. This is characterized by a lack of progress along the path,

V = 0, along with significant wheel slip.

3.3.2 Algorithm Assumptions

A few assumptions are made in generating velocity trajectories. The first is point

contact at the wheel-ground interface. This assumption is used in conjunction with a
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Coulomb friction model of the terrain. Since contact area is not needed in determining the

available tractive force, point contact is a simple and consistent assumption.

Second, no air resistance is considered. Although air resistance plays an important

role in extreme or very high-speed motion, it is not significant in the motions considered

in this work. However, this effect can be easily incorporated in the general model and

algorithm.

Third, direct torque specification instead of a velocity controller is used in

generating the velocity profiles. A velocity controller is not used because it would

contribute to the dynamics of the system. Figure 36 shows a general control system with

a controller transfer function, Gc, and the vehicle (plant) transfer function, G,. If a

controller is used, the open loop transfer function, H, becomes

H = GcG,

with the controller dynamics affecting the output. However, if no controller is used, only

the plant transfer function G,, the one of interest, remains. A side benefit of this

approach is the generation of an ideal input trajectory, which an infinitely stiff controller

would be able to follow.

Figure 36: General negative feedback control system.

Two additional assumptions are made regarding wheel torque. First, both wheels

are assigned the same input torque value. This is done to reduce the computational

complexity of the velocity trajectory generation process. The second is that only enough
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torque to compensate for wheel bearing friction is assigned during ballistic flight. This is

done to prevent artificially pitching the vehicle.

The final assumption is knowledge of the full terrain profile. This may be

obtained from satellite imagery that gives sub 1 meter resolution (often -15 cm) [48].

3.3.3 Velocity Trajectory Generation

The maximum and minimum velocity trajectories are obtained using a depth-first

search [49]. The terrain profile, S, is decomposed into n segments such that

S = {ss2,- .- ,s,}. Each segment si, is bounded by points p, and pi1 , i ={1,...,n}. The

terrain segments are represented as cubic splines. The actuation space (i.e., torque

available for acceleration and braking) is decomposed into m segments such that

Q = {ql,q2,---,qn}, see Figure 37. The division numbers n and m are user specified to suit

the detail required.

Knowledge of the initial vehicle state, R1 , is assumed. The vehicle state is defined

as:

R = [XBXwlXw2]

where the body state vector is:

XB [XB,YB, BXBYB, BT

and the first and second wheel state vectors are:

XW1 = [ x,1, y,,, Owl, j ,Wl1 0, ] T

Xw2 =U Xw2,9 w2,I w2,I -w2l) w2l w21
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where the vectors are the planar position and velocity components of each mass and

inertia bearing element.

Terrain Profile
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I,

Actuation Space

q 2q3

p
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I I
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Figure 37: Velocity profile generation schematic.

The vehicle model is then "driven" over the first terrain segment with an assigned

torque value qj, j = 1... m. Note that both wheels see the same qj. The first qj that

allows the vehicle to successfully travel from point p, to P 2 is then stored in memory.

Note that the qj are ordered from lowest to highest for a minimum velocity trajectory

and highest to lowest for a maximum velocity trajectory. The vehicle state at the end of

the terrain segment is also stored in memory R 2 . This state becomes the starting state for

the next terrain segment. Once again, the actuation space is searched for a qj that allows

the vehicle to travel from p2 to P 3 with the starting state vector R2 . This process is

repeated for each segment si , i =1...n. A full actuation profile,

Q ={ q,q,,..., q, 1, a,b, ce {1,m}
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and a continuous state trajectory,

R ={JRSR2,---, R, },

are thus generated. Note that part of the trajectory is a continuous velocity profile, see

Figure 37.

The first successful qj for the i terrain segment might not provide appropriate

starting conditions for a successful traverse of the i+1 segment. In such an instance, the

ith terrain segment is then re-evaluated with q, until a successful traverse of the i+1

segment or a saturation of the actuators. Sequential back-ups and exploration of the

actuation space are performed until the full path is successfully traversed. Note that the

appropriate starting state vector is used for each point pi, i = 1...n .
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3.4 Results

Figure 38 shows a single hill terrain profile that was examined for traversability.

A vehicle model with 0.5 m radius wheels and a 3.0 m wheelbase was used for

evaluation. The terrain was divided into n=600 segments and the actuation space was

divided into m=80 segments. The Coulomb friction coefficient was set to U = 0.7 and

the wheel bearing viscous damping coefficient was set to 5.0 Ns/m. The total time for

calculating both velocity profiles was 18 minutes and 10 seconds on a 550 MHz Pentium

III computer. If extrapolated into 3D, doubling the number of degrees of freedom and

adding an extra control variable (steering), one might expect an order of magnitude

increase in the time required to calculate these trajectories.

The planar maximum and minimum velocity trajectories are shown in Figure 39.

The actuation profile for the minimum velocity trajectory, Q ={1Iq ,2q.., q, }, is shown

in Figure 40. Both profiles are created with matching initial conditions. Note that

although the terrain appears simple, it is untraversable if slip is not allowed. Two

interesting regions appear in the minimum velocity profile. The first, shows that a

"running start" is needed to successfully climb the large hill. This is due to a combination

of wheel slip and actuator saturation. The second region shows slip that occurs on the far

side of the same hill. Note that the vehicle is applying the maximum braking torque in

this region to reduce the velocity. The maximum velocity trajectory shows an expected

slow-down while the vehicle is going up the hill. This is expected since the vehicle is

traveling at maximum effort before it begins to climb the hill. The actuation profile for

this trajectory is shown in Figure 41. The actuation profile reveals two regions of ballistic
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motion. The first region is characterized by two short losses of ground contact due to

traversal of the large hill. The second is due to the high-speed traverse of the second hill.

The shapes of the actuation profiles are also interesting. Note the similarity

between the minimum velocity actuation profile, shown in Figure 40, and the terrain

slope profile, shown in Figure 42. This is expected as the motion algorithm is designed to

find the lowest torque required to reach the goal; torque will decrease on the down-slope

and increase on the up-slope. The actuation profile for the maximum velocity trajectory is

shown in Figure 41. Torque is applied during ballistic motion to overcome wheel bearing

resistance which is included in the model.
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A second example is provided to illustrate the difference in results obtained by

employing two different vehicle models. A comparison is made between work presented

in this thesis, which uses a nine DOF vehicle model, and a planar version of the approach

presented by Shiller and Gwo [27], which uses a point mass model. Path evaluation is

performed using a 3 meter long rover. Desired boundary states are specified for all

velocity profiles. The terrain profile, along with the slope history is shown in Figure 43.

Note that this is a simple terrain profile that is easily evaluated with most vehicle models.

As was presented in Section 3.1, terrain evaluation is carried out to satisfy engine torque,

sliding, contact, and pitch-over constraints. The time optimum velocity profile, generated

according to [27], along with constraint limit curves is shown in Figure 44. Maximum

velocity profiles generated using the more complex model are shown in Figure 45. Note

that velocity profiles with and without interaction constraints (slip and pitch-over) are

presented.

Several differences may be seen among the three velocity profiles. First, Figure

45 shows that a higher overall velocity and shorter path traversal time is obtained when

ballistic motion is permitted. Second, the constrained velocity profile generated using the

complex model, Figure 45 (b), is much lower than the one generated using the simpler

model, Figure 44. This may be attributed to the appearance of higher order effects

captured in the complex model, such as load transfer due to vehicle pitching and the

interaction of the three various vehicle masses. In order to keep the no-slip and constant

contact constraints, a real vehicle would have to travel much slower than calculated in

[27]. Finally, the maximum velocity profile, Figure 45 (a), which appears to be nearly

identical to the time optimum profile from [27], Figure 44, contains a brief region of
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ballistic flight. Ballistic flight, as defined here, is minimally characterized by one wheel

leaving the ground. Thus, in order to accurately capture vehicle motion, an appropriately

complex vehicle model must be used.
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Figure 43: Terrain profile (a) and slope history (b).
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CHAPTER

4
CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK

4.1 Conclusions

This thesis has reviewed a stability-based kinematic reconfigurability algorithm,

previously introduced in [1], and has presented simulation and experimental results from

its implementation on the JPL SRR. The results of a study towards generating a method

for high-speed rough terrain motion planning free of terrain interaction constraints have

also been shown.

Chapter 2 reviewed a method for kinematic reconfigurability [1]. The method is

intended for robots with redundant degrees of freedom, i.e. those with a greater number

of actuators than the minimum needed for motion and available self motions. The

algorithm uses both a previously existing Force-Angle stability measure and a method to

estimate wheel-terrain contact angles without using force-torque sensors. This is coupled

with a 3D kinematic model to determine the vehicle stability angles. A stability metric

that optimizes the vehicle pose based on stability and maintaining ground clearance was

proposed. The reconfiguration algorithm was verified both in simulation and through

experimental testing. Its effectiveness was also shown for vehicles using just their
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manipulator to change the location of their center of mass. Results from field trials with

the JPL Sample Return Rover at the Arroyo Seco in Altadena, California were presented.

Chapter 3 introduced an off-line planar motion planning method for high-speed

vehicles operating in rough terrain. A nine degree of freedom planar vehicle model that

accounts for body-wheel interaction was developed. Vehicle failure criteria were

discussed. The definition of and a method for generating the maximum and minimum

velocity trajectories were also presented. The algorithm shows that aggressive behaviors

such as jumping may safely be used to traverse particularly rough terrain. However, the

algorithm also proves not to be practically applicable due to high computational

requirements and the need for a priori knowledge of the full terrain profile.

4.2 Suggestions for Future Work

In order to fully enhance rough terrain mobility, the stability-based kinematic

reconfigurability algorithm should be combined with a traction-based algorithm. The two

optimization criteria often have conflicting goals. A performance metric that considers

both at the same time would allow true vehicle pose optimization. The metric could

optimize traction while continuously monitoring vehicle stability angles. Such a method

is superior to one that optimizes either stability or traction with an ad-hoc consideration

for the other.

Another proposed research direction is the integration of kinematic configuration

planning with high-speed vehicle motion. Such a planner could use knowledge of the

terrain profile and a vehicle model to null out unfavorable system rotational rates (pitch

or roll). These rates are often the result of asymmetric force application to the vehicle

69



wheels. The development of this planner would allow a vehicle to operate even faster in

more varied rough terrain.

High-speed rough terrain motion planning also warrants further research. Thus

far, only a planar model of both the vehicle and terrain has been used. To be relevant to

experimental system applications, a full 3D model is needed. 3D motion presents many

important problems that are not observed in planar motion, such as vehicle pitch and its

effect on turning behavior. Analysis of these problems is needed before such an algorithm

may be experimentally verified.

A method for integrating limited terrain knowledge should be studied. One of the

assumptions of the current algorithm is a priori knowledge of the full terrain profile. This

is not always feasible since natural environments are often dynamic systems that may not

hold the same profile over long periods of time. Depending on system scale, such

information may not even be available. Planning methods that include only the terrain

profile within sensor range should be explored.

The final, and perhaps most pertinent suggestion, is to determine a way to

simplify high-speed motion planning algorithms for on-line implementation. The

algorithm presented in this thesis required over 18 minutes to determine the maximum

and minimum velocity trajectories for planar motion. One may expect an order of

magnitude increase in time required to generate the same trajectories in 3D. Such long

calculation times are unacceptable and severely limit this algorithm's practical

effectiveness. Clearly, this is an important problem that requires further investigation.
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APPENDIX

A
SRR KINEMATICS

In order to use the Force-Angle stability measure, the kinematics of the Sample

Return Rover (SRR) have to be well understood. This section reviews the derivation of

the kinematics by using Denavit-Hartenberg parameters [40].

The following is the frame attachment procedure as described in [40]

1. Identify the joint axes and imagine infinite lines along them. For steps 2 through

5, consider two of these neighboring lines (at axes i and i +1).

2. Identify a common perpendicular or a point of intersection of the two axes. At the

point of intersection or at the point where the common perpendicular meets the

i th axis, assign the link frame origin.

3. Assign the Z axis pointing along the i th joint axis.

4. Assign the X axis pointing along the common perpendicular, or if the two axes

intersect, assign Xi to be normal to the plane containing the two axes

5. Assign the Y axis to complete a right-hand coordinate system.
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Figure 46 shows the SRR rover with the left side reference frames assigned. The Y axes

have been omitted for clarity. The right side reference frames are assigned in a similar

fashion.

Z4

(X7
A

Figure 46: SRR Rover with assigned left side reference frames.

Once the frames have been assigned, it is easy to determine the following link parameters

(as described in [40]):

a, = the distance from Zi to Z,+1 measured along X,

a, = the angle between Z, and Z, measured about X,

d= the distance from X,_ to X, measured along Z,

6, = the angle between X,_, and X, measured about Z,
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Inspection of the frame assignments yields two kinematic loops per side of the SRR: 1-2-

3-4 and 1-5-6-7, on the left side. The two resulting sets of parameters are shown in Table

2, where #6 is the angle between X1 and XA measured along Z,.

i ac ai 6, di i a a, 61 di

1 0 al 61 -d, 1 0 a, 1  -dj

2 0 a2  62 d 2  5 0 a5  65 d5

3 0 a3  63 0 6 0 a6 6 0

4 0 a 4  64 0 7 0 a7  67 0

Table 2: Left side Denavit-Hartenberg parameters [40].

In order to use the Force-Angle stability measure, it is necessary to know the

location of the wheel-ground contact point. This may be determined without writing full

loop closure equations. A method for estimating the contact angles, and points, is

presented in [38]. These points were chosen to be the origin of frames {4}, point B, and

{71, point A, on the left hand side, with parallel construction on the right hand side. To

simplify the discussion, the rest of this development will only consider the left side of the

SRR. The locations of the contact points are:

Ja'
a 0

PA 0

and
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(a3

3 0

PB 0

where the preceding superscript denotes the describing frame. Homogenous

transformation matrices are used to describe these points in the body fixed frame {1}.

The general form of these matrices is:

cos(Oi) -sin( 1 ) 0 a , 1
1lT sin(0,)cos(ai 1 ) cos( 1 )cos(ai 1 ) -sin(ai 1 ) -sin(ai-)di
' sin(91)sin(ai1 ) cos(O,)sin(ai 1 ) cos(ai1 ) cos(a,)di

L 0 0 1

Thus,

1P -=T-5 T6P5

and

'i- =1T2 T3PB
PB _2 3B

Table 2 lists all link parameters needed to determine 'PA and 1PB; of the

parameters, only a 2 and a5 are constants (they describe the length of the SRR rocker

suspension). Additional knowledge is required to determine the remaining parameters.

The SRR is equipped with a passive differential joint, 0, between its left and right side

rocker, as well as active joints that determine the spread of the rockers, shown as V in

Figure 47. The variable parameter angles may be expressed in terms of #, V, and

constants. Thus:
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02 = Y + 0 + flft

03 4  Vleft + AB

05 =Yr + 0 left

06 =Ieft + 2A

where y and are geometry-determined constants and 2A and AB are wheel-ground

contact angles. A method for estimating the contact angles is presented in [38].

Passive
Differential

Figure 47: SRR with actively actuated rocker joint.

The location of frame { 11, which coincides with the vehicle center of mass, is determined

by knowing the state of the vehicle (#, Vff, , ,,igh, and the manipulator configuration).

Thus, all link parameters are known and one can determine the vector locations of the

contact points relative to the center of mass.
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APPENDIX

B
KINEMATIC RECONFIGURABILITY SAMPLE

CODE

This Program is designed to control the active reconfiguration of SRR shoulders.

Variable parameter names correspond to those introduced in Appendix A.

INPUTS:

Roll
Pitch
Differential Angle reading
Current Shoulder angles

OUTPUTS:

Shoulder angles

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
//#include "reconfig.h"
/************ Global Constants *
#define PI 3.1416

/ the following nominal values were gotten from a MATLAB program
// and correspond to 135 degrees between arm links

#define theta_1_nom 0.7260 / [radians] = 41.5943 degrees
#define theta_2_nom 0.7141 // [radians] = 40.9162 degrees
#define theta_3_nom 0.7260 / [radians] = 41.5943 degrees
#define theta_4_nom 0.7984 / [radians] = 45.7463 degrees
#define psi-nom 1.1781 // [radians] = 67.5 degrees; nominal shoulder angle (1/2 of 135)
#define step 0.01 // step size for derivative

/************ Global Variables *************/
float unity[3] [3] = {{ 1.0 , 0.0 , 0.0

{0.0, 1.0, 0.01,
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10.0 , 0.0, 1.0}};
// These are the weights for the stability measure
float Al = 1.0;
float A2 = 1.0;
float A3 = 1.0;
float A4 = 1.0;
float A5 = 10.0;

/*----------------------------------------------------------*

This is the start of the Functions
/*----------------------------------------------------------*
void mul3_1(float a[3], float b[3], float c[3][3])
{

c[0][0] = a[0] * b[0];
c[1][0] = a[1] * b[0];
c[2][0] = a[2] * b[O];
c[0][1] = a[0] * b[1];
c[1][1] = a[1] *b[1];

c[2][1] = a[2] *b[1];

c[O][2] = a[0] * b[2];
c[1][2] =a[1] *b[2];
c[2][2] = a[2] * b[2];

}

void sub3_3(float a[3][3], float b[3][3], float c[3][3])
{

c[0][0]=a[0][0] -b[][0];

c[1][0]=a[l][0] -b[][0];

c[2][0]=a[2][0] - b[2][0];
c[0][1]=a[0][1] - b[0][1];
c[1][1]=a[1][1] - b[l][1];
c[2][1]=a[2][1] - b[2][1];
c[0][2]=a[0][2] - b[0][2];
c[1][2]=a[l][2] -b[][2];

c[2][2]=a[2][2] -b[2][2];

}

void mul3_3_1(float a[3][3], float b[3], float c[3])
I

c[0]=a[0][0] * b[0] + a[0][1] * b[1] + a[0][2] * b[2];
c[1]=a[1][0] * b[0] + a[1][1] * b[1] + a[1][2] * b[2];
c[2]=a[2][0] * b[0] + a[2][1] * b[1] + a[2][2] * b[2];
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I

float magnitude(float a[3])
{

return( sqrt( a[G] * a[G] + a[l] * a[1] + a[2] * a[2]
}

void kinemacalc( float psij1, float psi r, float phi-r, float eta[3], float al [3], float a2[3],
float a3[3], float a4[3], float 11[3], float 12[3], float 13[3], float 14[3])
{

int i;

float theta_10 = 0.1350; // additional rotation angle
float a_2 = 0.2544; // meters, Suspension arm length
float a_3 = 0.1555; / meters,
float d_2 = 0.2119; // meters, half-width of the rover
float r = 0. 1008; / meters, wheel radius

float res3_3[3][3]; // intermediate dummy variable
float a_3_3[3][3]; / intermediate dummy variable
float mag-a;
float mag_l;

// These are the wheel-ground contact angles
float gamma_wl = (-PI/2); float gamma-w2 = (-PI/2);

PI/2); float gamma_w4 = (-PI/2);
float gamma-w3 = (-

float gPa[3]; float gPb[3]; float gPc[3]; float gPd[3];

// Pointer vectors from C of M to each one of the wheels
gPa[0] = r*cos(-phi r+gamma-w l)-sin(phi-r+theta 10)*a_3-

1.074*sin(phijr+psi-j)*a_2+0.0033 13+0.01398*cos(eta[1]-0.212-
eta[0])+0.0 1398*cos(eta[ 1]-0. 212+eta[0])+0.007320*sin(eta[0]+eta[2]+eta[ 1]-
0.212)+0.007320*sin(-eta[0]+eta[2]+eta[ 1]-0.212)-0.07445*sin(phir-
psi 1)*a 2+0.07445*sin(phi r+psi r)*a 2+0.07445*sin(phi r-psi r)*a_2;

gPa[1] = r*sin(-phi r+gammaw l)-cos(phi-r+theta_10)*a_3-
0.9256*cos(phi-r+psi-l)*a_2-0.02642-0.02795*sin(eta[1]-
0.212)+0.01464*cos(eta [2]+eta[ 1]-0.212)+0.07445 *cos(phir-
psi-])*a_2+0.07445 *cos(phi-r+psi-r)*a2+0.07445*cos(phi-r
psir)*a_2+0.04589*cos(phi_r);
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gPa[2] = d_2+0.01398*sin(eta[1]-0.212+eta[O])-0.01398*sin(eta[1]-0.212-
eta[O])+O.007320*cos(-eta[O] +eta[2]+eta[ 1]-0. 212)-0.007320*cos(eta[0]+eta[2]+eta[ 1]-
0.212);

gPb[0] = r*cos(-phi r+gamma w2)+sin(-phir+theta_10)*a_3-1.074*sin(phir-
psi l)*a_2+0.003313+0.01398*cos(eta[1]-0.212-eta[0])+0.01398*cos(eta[1]-
0.212+eta[0])+0.007320*sin(eta[0]+eta[2]+eta[ 1]-0.212)+0.007320*sin(-
eta[]+eta[2]+eta[1]-0.212)-
0.07445*sin(phi-r+psi-l)*a_2+0.07445*sin(phi-r+psi-r)*a_2+0.07445*sin(phi-r
psir)*a_2;

gPb[1] = r*sin(-phi r+gamma-w2)-cos(-phir+theta_10)*a_3-0.9256*cos(phi-r-
psij1)*a2-0.02642-0.02795*sin(eta[ 1 ]-0.212)+0.01464*cos(eta[2]+eta[ 1]-
0.212)+0.07445*cos(phi r+psi-l)*a2+0.07445*cos(phi-r+psi-r)*a2+0.07445*cos(phi
_r-psi-r)*a_2+0.04589*cos(phi-r);

gPb[2] = d_2+0.01398*sin(eta[1]-0.212+eta[0])-0.01398*sin(eta[1]-0.212-
eta[0])+0.007320*cos(-eta[0]+eta[2]+eta[ 1]-0.212)-0.007320*cos(eta[0]+eta[2]+eta[ 1]-
0.212);

gPc[0]=
r*cos(phi-r+gamma w3)+sin(phi r+theta_10)*a_3+1.074*sin(phi-r+psir)*a_2+0.0033
13+0.01398*cos(eta[1]-0.212-eta[0])+0.01398*cos(eta[1]-
0.212+eta[0])+0.007320*sin(eta[0]+eta[2]+eta[ 1]-0.212)+0.007320*sin(-
eta[0]+eta[2]+eta[1]-0.212)-0.07445 *sin(phi r-psi-l)*a_2-
0.07445*sin(phirr+psil)*a_2+0.07445*sin(phi-r-psi-r)*a_2;

gPc[1] = r*sin(phi-r+gammaw3)-cos(phi r+theta_10)*a_3-
0.9256*cos(phi r+psi-r)*a_2-0.02642-0.02795*sin(eta[1]-
0.212)+0.01464*cos(eta[2] +eta[1]-0.212)+0.07445*cos(phi-r-
psi1l)*a_2+0.07445*cos(phir+psi1l)*a_2+0.07445*cos(phi-r-
psi r)*a_2+0.04589*cos(phi-r);

gPc[2] = -d_2+0.01398*sin(eta[1]-0.212+eta[0])-0.01398*sin(eta[1]-0.212-
eta[0])+0.007320*cos(-eta[0]+eta[2]+eta[ 1]-0.212)-0.007320*cos(eta[0]+eta[2]+eta[ 1]-
0.212);

gPd[0] = r*cos(phi-r+gamma.w4)-sin(-phi-r+theta_10)*a_3+1.074*sin(phir-
psi r)*a_2+0.003313+0.01398*cos(eta[1]-0.212-eta[0])+0.01398*cos(eta[1]-
0.212+eta[0])+0.007320*sin(eta[0]+eta[2]+eta[ 1]-0.212)+0.007320*sin(-
eta[0]+eta[2]+eta[ 1 ]-0.212)-0.07445*sin(phi r-psi-1)*a_2-
0.07445*sin(phi-r+psi-l)*a_2+0.07445*sin(phi-r+psi-r)*a_2;

gPd[1] = r*sin(phi-r+gamma-w4)-cos(-phi-r+theta_10)*a_3-0.9256*cos(phi-r-
psi r)*a 2-0.02642-0.02795*sin(eta[ 1]-0.212)+0.01464*cos(eta[2]+eta[ 1]-
0.212)+0.07445*cos(phi_r-
psi-l)*a_2+0.07445*cos(phi-r+psi-l)*a_2+0.07445*cos(phi-r+psi-r)*a_2+0.04589*cos
(phi-r);
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gPd[2] = -d_2+0.01398*sin(eta[1]-0.212+eta[O])-0.01398*sin(eta[1]-0.212-
eta[O])+0.007320*cos(-eta[O]+eta[2]+eta[ 1]-0. 212)-0.007320*cos(eta[0]+eta[2]+eta[ 1]-
0.212);

// Now I continue to determine the tipover axes

for(i=0;i<3;i++) al[i] = gPb[i]-gPa[i];
for(i=0;i<3;i++) a2[i] = gPc[i]-gPb[i];
for(i=O;i<3;i++) a3[i] = gPd[i]-gPc[i];
for(i=0;i<3;i++) a4[i] = gPa[i]-gPd[i];

// Here I make them into unit vectors
mag-a=magnitude(al);
for(i=0;i<3;i++) al[i]=al[i]/maga;
mag-a=magnitude(a2);
for(i=0;i<3;i++) a2[i]=a2[i]/maga;
mag-a=magnitude(a3);
for(i=0;i<3;i++) a3[i]=a3[i]/mag-a;
mag-a=magnitude(a4);
for(i=0;i<3;i++) a4[i]=a4[i]/maga;

// Now I get the perpendicular to each axis vector
mul3_1(al, al, a_3_3);
sub3_3(unity, a,__3, res3_3);
mul3_3_1(res3_3 , gPb, 11);
magj=magnitude(l1);
for(i=0;i<3;i++) 11[i]=1[i]/mag_l; / This makes it into a unit vector

mul3_1(a2, a2, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , gPc, 12);
mag-l=magnitude(12);
for(i=0;i<3;i++) 12[i]=12[i]/mag_l; // This makes it into a unit vector

mul3_1(a3, a3, a.3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , gPd, 13);
mag-l=magnitude(13);
for(i=0;i<3;i++) 13[i]=13[i]/mag_l; // This makes it into a unit vector

mul3_1(a4, a4, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_9(res3_3 , gPa, 14);
mag-l=magnitude(14);
for(i=0;i<3;i++) 14[i]=14[i]/mag_l; // This makes it into a unit vector

}
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void forcecalc( float alpha, float gamma, float al[3], float a2[3], float a3[3], float a4[3],
float fl[3], float f2[3], float f3[3], float f4[3], float *zeta, float *beta)
{

int i;

float Fg[3];
float F[3];
float weight = 115.27; // Newtons
float a_3_3[3][3];
float res3_3 [3] [3];
float mag_f;

// here I compute the force vectors in the g frame

/first, gravity
*zeta=atan(-tan(gamma)/tan(alpha));
*beta=atan(-sin(* zeta)*tan(alpha));

// This if stucture is here to calculate beta near zeta shift points
// at 0, 180 and +-90 degrees
/ I have so many if statements here since I had trouble with the
// absolute value statement
if ( ( (PI/2.0-0.1) <= *zeta) && ( *zeta <= (PI/2.0+0.1)) ){

*beta=atan(-sin(*zeta)*tan(alpha));
I
if ( ( (-PI/2.0-0.1) <= *zeta) && ( *zeta <= (-PI/2.0+0.1)) ){

*beta=atan(-sin( *zeta)*tan(alpha));
I
if( (-0.1<= *zeta) && ( *zeta <=01 ) ){

*beta=atan(cos( *zeta)*tan(gamma));
I
if (((PI-0.1) <= *zeta ) && ( *zeta <=(PI+0.1) ) ){

*beta=atan(cos( *zeta)*tan(gamma));
I
if (((-PI-0.1) <= *zeta ) && ( *zeta <=(-PI+0.1) ) ){

*beta=atan(cos( *zeta)*tan(gamma));
I

if ( *beta < 0.0 ) *beta= *beta+PI; // correct for atan
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Fg[]=weight* cos( *beta)*sin( *zeta);
Fg [1]=weight*(-sin( *beta));
Fg[2]=weight*cos( *beta)*cos( *zeta);

// The redundant structure exists for easy inclusion of additional forces
F[O]=Fg[O];
F[1]=Fg[1];
F[2]=Fg[2];

// Now I get the forces about each axis vector
mul3_1(al, al, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , F , fi);
mag-f=magnitude(fl);
for(i=O;i<3;i++) fl[i]=fl[i]/magj; / This makes it into a unit vector

mul3_1(a2, a2, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , F , f2);
magj=magnitude(f2);
for(i=O;i<3;i++) f2[i]=f2[i]/magf; // This makes it into a unit vector

mul3_1(a3, a3, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , F, f3);
magjf=magnitude(f3);
for(i=O;i<3;i++) f3[i]=f3[i]/mag_f; // This makes it into a unit vector

mul3_1(a4, a4, a_3_3);
sub3_3(unity, a_3_3, res3_3);
mul3_3_1(res3_3 , F, f4);
magj=magnitude(f4);
for(i=O;i<3;i++) f4[i]=f4[i]/mag_f; // This makes it into a unit vector

}

void stabcalc( float psij1, float psi-r, float 11[3], float 12[3], float 13[3], float 14[3], float
fl[3], float f2[3], float f3[3], float f4[3], float *theta_1, float *theta_2, float *theta_3,
float *theta_4, float *S)
{

*thetal=( acos( fl[O]*11[0] + fl[1]*11[1] + fl[2]*11[2] ) )/theta_1_nom;
*theta_2=( acos( f2[0]*12[0] + f2[1]*12[1] + f2[2]*12[2] ) )/theta_2_nom;
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*theta_3=( acos( f3[0]*13[0] + f3[1]*13[1] + f3[2]*13[2] ) )/theta_3_nom;
*theta_4=( acos( f4[0]*14[0] + f4[1]*14[1] + f4[2]*14[2] ) )/theta_4_nom;

// Now I get the lumped stability measure

*S = (Al/ (*theta_1) + A2/ (*theta 2) + A3/ (*theta_3) + A4/ (*theta_4) +
A5*(psi-l-psi-nom)*(psil-psinom) + A5*(psi r-psi-nom)*(psiLr-psi-nom));
I

void derivcalc( float psi, float theta _lo, float theta_2_o, float theta_3_o, float
theta_4_o, float theta_1, float theta_2, float theta_3, float theta_4, float *dSdpsi)
{

float dthetal-dpsi; float dtheta2jdpsi; float dtheta3_dpsi; float dtheta4_dpsi;

dthetaLdpsi=(theta 1-theta_1_o)/step;
dtheta2_dpsi=(theta 2-theta_2_o)/step;
dtheta3-dpsi=(theta 3-theta_3_o)/step;
dtheta4_dpsi=(theta_4-theta_4_o)/step;

*dSdpsi = -Al*dthetaldpsi/theta__o/theta_1_o-
A2*dtheta2_dpsi/theta_2_o/theta_2_o-A3*dtheta3_dpsi/theta_3_o/theta_3_o-
A4*dtheta4_dpsi/theta_4_o/theta_4_o+2*A5*(psi-psi-nom);
I

/*----------------------------------------------------------*/

func is the main program
for stability calculation

/*----------------------------------------------------------*
float func( float psi[2])
{

float a11[3]; float a2[3]; float a3[3]; float a4[3];
float 11 [3]; float 12[3]; float 13[3]; float 14[3];
float fl[3]; float f2[13]; float f3[13]; float f4[3];
float theta_1; float theta_2; float theta_3; float theta_4;
float psil; float psi_r;

float S; /* Lumped stability measure */
float beta;
float zeta;
float alpha; float gamma; float phi-r; float eta[3];

gamma = (0.0 + 90.0)*(PI / 180.0); //( RoverVector.Roll * PI /180.0) + (PI / 2.0);
/* Roll */
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alpha = (0.0 - 90.0)*(PI / 180.0); /-1.0*(( RoverVector.Pitch * PI / 180.0) - (PI /
2.0)); /* Pitch */

phi-r = 0.0; //-PotsData[10] * PI / 180.0; /* Differential Angle (right) */

eta[0]= 0.0; /* base */
eta[1] = PI / 2.0; /* shoulder */
eta[2] = PI / 2.0; /* elbow */

psi_ = psi[0];
psir = psi[1];

/*---------------------------------------------*

kinema -calc( psi-l, psi-r, phi-r, eta, al, a2, a3, a4, 11, 12, 13, 14);
forcecalc( alpha, gamma, al , a2, a3, a4, fl, f2, f3, f4, &zeta, &beta);
stabcalc( psi-1, psiLr, 11, 12, 13, 14, f 1, f2, f3, f4, &theta 1, &theta_2, &theta3,

&theta_4, &S );

return S;

I

/*----------------------------------------------------------*

dfunc is the main program
for derivative calculation

/*----------------------------------------------------------*

void dfunc( float psi[2], float ders[2])
{

float a1[3]; float a2[3]; float a3[3]; float a4[3];
float 1.[3]; float 12[3]; float 13[3]; float 14[3];
float fl[3]; float f2[3]; float f3[3]; float f4[3];
float theta_1; float theta_2; float theta_; float theta_4;
float thetalo; float theta_2_o; float theta3o; float theta_4o;
float psi_l; float ps-r;
float dSdpsi~l; float dSdpsi~r;

float S; /* Lumped stability measure */
float beta;
float zeta;
float alpha; float gamma; float phi-r; float eta[3];

gamma = (0.0 + 90.0)*(PI / 180.0); //( RoverVector.Roll * PI /180.0) + (PI / 2.0);
/* Roll */
alpha = (0.0 - 90.0)*(PI / 180.0); //-1.0*(( RoverVector.Pitch * PI / 180.0) - (PI /

2.0)); /* Pitch */
phi-r = 0.0; //-PotsData[10] * PI / 180.0; /* Differential Angle (right) */

88



eta[O] = 0.0; /* base */
eta[I] = PI / 2.0; /* shoulder */
eta[2] = PI / 2.0; /* elbow *1

psij = psi[0];

psi-r = psi[ 1];
/*---------------------------------*/

kinemascalc( psi-l, psi-r, phi-r, eta, al, a2, a3, a4, 11, 12, 13, 14);
forcecalc( alpha, gamma, al , a2, a3, a4, fl, f2, f3, f4, &zeta, &beta);
stabcalc( psi-l, psi-r, 11, 12, 13, 14, fl, f2, f3, f4, &thetalo, &theta_2_o,

&theta_3-o, &theta_4_o, &S );

/* Now I recalculate for derivative wrt psiI */
kinemascalc( (psi_1 + step), psi-r, phi-r, eta, al, a2, a3, a4, 11, 12, 13, 14);
forcecalc( alpha, gamma, al , a2, a3, a4, f1, f2, f3, f4, &zeta, &beta);
stabcalc( psij1, psi-r, 11, 12, 13, 14, f1, f2, f3, f4, &theta_1, &theta_2, &theta_3,

&theta_4, &S );
deriv_calc( psij1, thetalo, theta_2_o, theta_3_o, theta_4_o, theta 1, theta_2,

theta_3, theta_4, &dSdpsij );

/* Now I recalculate for derivative wrt psir */
kinema-calc( psi-l, (psi-r + step), phi-r, eta, al, a2, a3, a4, 11, 12, 13, 14);
forcecalc( alpha, gamma, al , a2, a3, a4, fl, f2, f3, f4, &zeta, &beta);
stab_calc( psi-l, psi-r, 11, 12, 13, 14, fl, f2, f3, f4, &theta_1, &theta_2, &theta_3,

&theta-4, &S );
derivcalc( psi-r, theta __o, theta_2_o, theta_3_o, theta_4_o, theta_1, theta_2,

theta_3, theta_4, &dSdpsi-r );

ders[0] = 0.1 * dSdpsi_l;
ders[1] = 0.1 * dSdpsi-r;
return;

I
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APPENDIX

C
VEHICLE MODELING

The key to high-speed rough terrain traverse is modeling the system with a

minimum level of complexity as to capture all important effects. Figure 48 shows a free

body diagram for a general, 4-wheel robot. The body and each wheel possess both mass

and inertia. The mass and inertia of suspension components may be divided among the

body and the wheels. Non-inertial coordinate frames are attached at each body's center of

mass.

F
Y Ti , , 4,

XF 2 z X

F W B F2 W4
Y N4

2

x 3 3 Ffr3
2

N2

N1 Fi

Figure 48: General mobile robot free body diagram.
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The problem of generating the equations of motion simplifies greatly for a planar

robot. Figure 49 shows a proposed model of a planar vehicle. Suspension and wheel

compliance are taken into account. Note that in two dimensions, this becomes a nine

degree of freedom system.

Figure 49: Planar rover model.

Thus, for a planar system, the problem simplifies to 2 inputs:

r and r2 , the front and rear wheel torques, respectively,

and 15 outputs:

body: xB Y YB , # (pitch)

wheel 1: x 1 , iy, 0, (rotation angle)

wheel 2: x 2 , y 2 , 02 (rotation angle)
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ground 1: NJ, Ffr,, 71 (contact angle)

ground 2: N 2 , Ffr2 , 72 (contact angle)

These may be determined by deriving the associated equations of motion and constraint

equations:

Body
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Figure 50: Planar vehicle body free-body-diagram.

Figure 50 shows the free body diagram of the vehicle body. One can readily write

the general equations of motion:

Z F = F, +2 + B B B

Z M = t + tdl + t2 + td2 + F X fl + F2 X F 2 =

where Wb is the body weight, I is the body inertia, and F, and F2 describe the location of

the suspension mounting points relative to the vehicle center of mass.
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The damping torques, tdl and td2 are:

1di I=Cbearing Ii

where Cbearing is the wheel bearing friction coefficient.

The vector location of the center of mass is:

g SB = B
YB_

where the preceding superscript describes the frame in which the points are expressed;

the frames are defined in Figure 49.

The suspension forces F, and F2 are defined as:

F, = KAX + CA,

where the stiffness matrix is:

Ki =[k k2

Ik3 kgl

the damping matrix is:

C= C1  C2

C3 C4

and

AX. = I
YB - i
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AX = .B=
yB - i

Note that all quantities must be defined in the same reference frame. Since it is desirable

to know the acceleration of the vehicle body in the inertial frame, both the stiffness and

damping matrices, which are defined in the body frame { B 1, must be transformed

accordingly. First, a rotation matrix is defined as:

R = Fcos(#) - sin(#)1
Ssin(#) cos(#)_

where # is the body pitch. The superscript describes the destination frame, the subscript

describes the starting frame. The rotation matrix is then used to express the stiffness and

damping matrices in the global frame { G 1:

G K.=GR BK
SB

and

Gc C=GR BcSB

The same rotation matrix may be used to redefine the vectors F and F2:

GF =G F =G [ ix]G B= R B=R Ll

where Lix and Lj, are vehicle parameters and are defined in Figure 49.

In the global frame, the weight vector takes a familiar form:

V- j
GW =
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Wheels
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Figure 51: Free body diagram of a planar rover wheel.

The development of the equations of motion of the it" wheel, i={ 1,2}, is similar to

that of the body. The general equations of motion are:

(F =$+Fi+,FV+ W =mi X,

Z Mcm =t, + t+f, x F =XI81

where Fwj is the wheel radius, mi is the wheel mass, and I, is the wheel inertia. The

vector location of the ith wheel's center of mass is:

G _ XWi

_ E [wi_

Here, it is easiest to work in a reference frame with its x and y axis attached to the

line of action of the frictional and normal force, respectively. This holds true because it

allows for a partial decoupling between the friction and normal force. A rotation matrix
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that expresses all forces in the wheel-ground contact coordinate frame { wi }, defined in

Figure 49, takes the form:

" [cos(ry)
G I- sin(ri )

sin(yr)

cos(yi)_

where y1 is the wheel-ground contact angle, as shown in Figure 51. The ground contact

angles may be estimated as described in [38]. The forces may then be expressed in the

new coordinates:

Wi F='RGF

and

Wi =WGRG

The normal force is computed as:

wi _i= KAX Wi +C AX =*

0

if*>0

if*<0

and AX 1 ,<rwi
or AX,1 >r

where Kw, and C,~ are the wheel stiffness and damping, respectively, is the

maximum wheel radius, and AXi and AXZ1 describe the distance and rate of change of

distance between the wheel-ground contact point and wheel center. Note that the normal

force may only pull, and not push, on the wheel.

Then:

WLF { = 3
ti + tdi + wIP

i . 'J7

p IN I

if*

if * >p' WIN
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All forces are then re-expressed in the inertial coordinate frame { G } by multiplying them

by the inverse of R.

Thus, there are 15 equations for the 15 outputs; nine equations of motion, four equations

from wheel-ground interaction (ground heights and contact angles), and two friction force

constraints. The system of equations may be solved in closed form.
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