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ABSTRACT

A viscous Newtonian fluid and two model polystyrene Boger fluids are used to investigate the evolution of

free-surface instabilities during the debonding of two cylindrical parallel rigid surfaces. A filament

stretching rheometer is used to separate the surfaces at an exponential rate and simultaneously measure the

evolution in the axial force. The experimental configuration also allows for simultaneous imaging of the

fluid sample from beneath the endplate during the test. The test method is similar to both the probe-tack test

used in adhesive testing and filament stretching rheometry experiments. Several geometric aspect ratios

(defined as the ratio of initial sample height to radius) are used to vary the degree of sample confinement.

These geometries bridge the gap between conventional adhesive testing and extensional rheometry. Three

types of instabilities are seen in the experiments. The first is similar to the classical Saffinan-Taylor

instability, in which fingers of a less viscous fluid penetrate into a more viscous one during pressure driven

flow. In the present three-dimensional analog, the instability occurs at a critical rate of plate separation for a

given geometry and fluid. Larger pressure gradients result from higher fluid viscosity, a more confined

geometry and greater rate of plate separation. A second instability is caused by the extensional stress

growth in the elastic fluids and occurs at a critical Hencky strain for a given Deborah number. This

instability is characterized by the growth of fingers radially outward from the base of a stable, cylindrical

fluid column. As this instability progresses, the fingers can repeatedly bifurcate resulting in complex

surface morphologies. Finally, cavitation in the test fluids occurs below a critical negative gage pressure

within the fluid. Modal interactions of the three instabilities are also observed and lead to complex

evolution of the elastic instability.
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Chapter 1 Introduction and Background

1.1 Non-Newtonian Fluids

Despite the exotic name, non-Newtonian fluids are fairly common. They occur naturally

in the plant and animal kingdoms and are in many of foods; many bodily fluids are also non-

Newtonian. Some specific examples include tree sap, ketchup, and saliva. Most plastics, or

polymers, are processed in the liquid state and often exhibit strong non-Newtonian behavior. As a

result, many commercial processes involve non-Newtonian fluid flows and one can easily see

why knowledge of the flow characteristics of such fluids is important. Unfortunately, non-

Newtonian fluid flows can be complex and unlike Newtonian flows, they are not yet completely

understood. The experiments undertaken for this thesis investigate the free surface instabilities

that can occur in uniaxial elongation of certain non-Newtonian fluids. Because of the similarities

in flow conditions, these experiments can help to explain the fundamental physics involved in

commercial applications such as the development of adhesives and the spinning of synthetic

fibers.

A Newtonian fluid is a fluid that abides by Newton's law of viscosity, i.e., the stress

tensor is proportional to the rate of strain tensor, which the constant of proportionality being the

shear viscosity. In a two-dimensional shear flow, such as the flow found in a journal bearing

inside an automotive engine, these equations reduce to the following expression:

avx
-r , (1.1)

ay

The term on the left in Equation 1.1 is the shear stress. The term on the right side is formed by the

product of the shear viscosity, p , and the shear rate. Thus, a fluid could be called non-Newtonian

if its viscosity changed as a function of shear rate. A shear-thinning, or psuedoplastic, fluid has a

viscosity that decreases with increasing shear rate. A shear thickening, or dilatant fluid is a non-

Newtonian fluid that has a viscosity that increases with increasing shear rate. Returning to the

journal bearing example; if such a non-Newtonian fluid were used to lubricate the bearing, the

torque required to spin the bearing would not be proportional to the rotational speed, as it would

be for a Newtonian lubricant. There are other definitions of non-Newtonian fluids; a Bingham

plastic fluid (mayonnaise is an example of one) is a fluid that requires a threshold stress value, or
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yield stress before it flows. The shear flow behaviors of some types of non-Newtonian fluids are

shown graphically in Figure 1.1.
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Another type of non-Newtonian fluid, which happens to be the type of fluid used for the

current experiments, is the Boger fluid [1]. Such a fluid has a constant shear viscosity but a non-

constant extensional, or elongational, viscosity, 7,E. While the shear viscosity can be thought of

as a fluid's resistance to shearing, the extensional viscosity can be thought of as its resistance to

stretching or elongation. For a Newtonian fluid, such as water, this parameter is constant and

directly proportional to the shear viscosity. A derivation of the extensional viscosity for a

Newtonian liquid is given in Section 1.2.

Boger fluids are named after D.V. Boger who developed them [1]. Such fluids have been

used extensively in the development of extensional rheometry because they give the investigator

the benefit of isolating extensional effects from shear-induced effects in flow. The Boger fluids
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used for the experiments in this thesis have an extensional viscosity that can increase by up to

four orders of magnitude with strain for a given strain rate [2]. These fluids are described in detail

in Chapter 3.

The word viscoelastic is often used to describe non-Newtonian fluids, and it means that the fluid

has both viscous and elastic properties. Newtonian liquids, such as water, are purely viscous and

after a sample of water is deformed it has no discernable tendency to regain its original shape. On

the contrary, elastic solids, such as the material in a rubber band, will completely return to their

original form after a moderate deformation. A viscoelastic liquid has the property that for given

flow conditions, it can behave like an elastic solid, a viscous liquid, or as a combination of both,

depending on the deformation rate.

1.1.1 Flow Behavior

Many synthetic polymers are viscoelastic, and how they behave in flow is of commercial

interest because it can affect factors such as product quality and maximum production rates. The

molecular structure of viscoelastic fluids gives rise to the possibility of significant elastic stresses

under deformation and leading to peculiar results as the fluid begins to flow. A popular example

is the Fano flow, or tubeless siphon, shown in Figure 1.2. It is common knowledge that a liquid

can be siphoned from a tank using a hose, but if the liquid is viscoelastic it can continue to flow

from the tank even after the hose has been removed from the free surface. This is because the

stretched polymer chains result in a tensile elastic stress, i.e., they act as a series of interconnected

springs and allow the fluid to transmit normal stresses along the streamlines.

8
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Figure 1.2 The tubeless siphon. In the images above, a dyed polybutene Boger fluid is wound

upwards onto a rotating spool.

Another interesting viscoelastic flow phenomenon is the Weissenberg effect, also called

rod climbing, pictured in Figure 1.3. When a rotating rod is dipped into the center of a jar

containing a Newtonian liquid, the fluid begins to rotate in the direction of the rod, and centripetal

acceleration causes the liquid to rise at the sides and to take on a hyberbolic free surface shape. If

the experiment is done with a viscoelastic fluid, elastic stresses can develop along the concentric

streamlines. These concentric rings of streamlines tend to contract and squeeze fluid up near and

along the axis of the rod, causing it to "climb" the rod, while the fluid level at the wall actually

drops.
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Figure 1.3 The rod-climbing effect. In the images above, a dyed polybutene fluid is stirred with a

rotating rod. The streamlines contract around-the rod and the fluid 'climbs' the rod.

1.1.2 The Role of Molecular Structure

The key to the seemingly strange macroscopic behavior of polymeric fluids lies in the

molecular structure of the fluid. As the word polymer suggests, the molecules in such a substance

are made of many small building blocks, or repeat units. Some common repeat units for various

polymers can be seen in Figure 1.3. The chemical bonds at the union of two repeat units do allow

some freedom of movement and therefore in very large molecules (the molecules in the fluids

used in this thesis can be made up of 20 million repeat units) the molecule assumes what can be

thought of as a more or less spherical equilibrium shape. A polymer molecule with n repeat units

each of length 1 can be described as having a characteristic radius of gyration [3]

R, oc (n) . (1.2)
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It is deformations from this equilibrium state on the molecular scale that act to decrease entropy

and result elastic restoring forces on the macroscale. When polymer is in solution, it of course

interacts with the solvent and depending on the polymer concentration, it can also physically

interact with neighboring molecules. The overlap concentration c*, is defined as the polymer

concentration at which the volume of molecules based on the radius of gyration exceeds the total

volume. This critical concentration then varies with the molecular weight, and

C *~ ,-1/ .(1.3)

The concentrations of the polystyrene Boger fluids used for the current experiments are below the

overlap concentration.

As a solution becomes molecularly more crowded, the chances for physical interaction

between molecules increases. If the fluid is then deformed macroscopically as in a flow, the

chains can be deformed from their equilibrium entropic state. The situation can be thought of as

being similar to pulling spaghetti from a bowl with a fork. The elastic forces that arise when the

molecules are deformed act of over a characteristic time scale that depends on the composition of

the fluid. This time scale is referred to as the relaxation time and can be written nominally as the

ratio of the fluid viscosity to its shear modulus

~7 (1.4)
G

A material with a very short relaxation time accommodates deformation rapidly may not

even be considered as elastic. Because water has a relaxation time of 0 10-9 s, a time that

cannot be discerned by humans, it is considered a purely viscous Newtonian fluid. On the

contrary, some substances have a rather long relaxation time would be considered as solids. It has

been reported that the lead glass in the windows of medieval cathedrals is thicker at the bottom

because under gravity the glass flowed. In this case the characteristic time scale of the material

would be on the order of hundreds of years.

One might hypothesize that the viscoelasticity of a material depends on the eye of the

beholder. This is the idea behind the Deborah number, an extremely useful non-dimensional

parameter used to evaluate fluid flow [4]. The Deborah number is a ratio of the fluid time scale,

or relaxation time, to the experimental (deformation) time scale, i.e.,

De =--,(1.5)
exp
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where 1/texp = f is also a characteristic deformation rate. For large Deborah numbers (short

deformation time or large relaxation time) the material will behave primarily elastically. For

small Deborah number (De<<1) the material will behave like a viscous fluid. A good example is

Silly Putty; with a rapid deformation time (high De) it will bounce off the floor, but if left

untouched for a few hours (low De), it will turn to a puddle on the floor. With a long enough

observation time even the lead glass windows are in a low Deborah number flow and the glass

looks like a liquid.

1.2 Characterization of Non-Newtonian Fluids

To completely characterize a Newtonian liquid, one must meaure the surface tension,

density, and shear viscosities as a function of temperature. Following the notation of Bird et al.

[5], the equation of motion for an incompressible fluid can be written

D
p-v =-[V -n]+ pk. (1.6)

Dt

From Newton's law of viscosity, the stress tensor, 7r, is

R = p8 -yp, (1.7)

where p is the hydrostatic pressure, 5 is the unit tensor, U is the shear viscosity and t is the

rate of strain tensor. The velocity components for pure elongational flow of an incompressible

fluid are found from conservation of mass and written

1. 1V=z V,=--ey V=--6x. (1.8)Z V 2 X 2

By definition, the rate of strain tensor is then written

-0 0

0 -1 0 (1.9)

-0 0 -2-_

and for a Newtonian fluid,

pp 0 0

7C= 0 p, 0 + p8 (1.10)

-0 0 -2p.
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When the fluid is being stretched, pressure gradients within the fluid arise. If a pressure

gradient exists, a force balance on an infinitesimal volume element shows that it is equivalent in

magnitude to its respective normal stress gradient, or

--- a" (1.11)
ax x

Integrating Equation 1.11, and using taking the ambient pressure as the constant of integration, it

is found that

p = p - (1.12)

It then follows from Equation 1.10 that

frZ - A = rZZ -r T. (1.13)

The term on the left side of Equation 1.13 is exactly the pressure required to stretch the fluid in

the z-direction. The definition of the extensional viscosity is

- T=-T~a(1.14)

and from Equation 1.10 it is seen that the extensional viscosity is independent of strain rate and

proportional to the shear viscosity, i.e.,

i7, = 3p . (1.15)

This result was found by Trouton in 1906 in experiments using mixtures of pitch and tar [6]. It

should be noted that there is an analogous result is solid mechanics, i.e., for an incompressible

material (v = 0.5 ) the elastic modulus is three times the shear modulus, or

E=3G (1.16)

For non-Newtonian fluids, material characterization is not so simple. There is no concise,

all encompassing constitutive equation relating the rate of strain to stress, and the extensional

viscosity can be very large in proportion to the shear viscosity. Many constitutive models exist,

but unfortunately they tend to be much more complicated than the model put forth by Newton and

they are often fluid and flow specific. Nevertheless, such models can be very useful in designing

commercial processes. Non-Newtonian constitutive equations often incorporate data from shear

and extensional rheometry to predict fluid flow behavior. For polymer solutions such as those

used for the current experiments, these fluid properties can be measured using the devices

13



described in paragraphs 1.2.1 and 1.2.2. More detailed information concerning non-Newtonian

fluids and fluid constitutive models can be found in the reference by Bird et aL. [5], [7].
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1.2.1 Shear Rheometry: Cone and Plate Rheometer

There are many ways to measure the shear viscosity of a fluid. The Couette viscometer

uses concentric cylinders to create a small-gap shear flow while measuring torque to deduce

viscosity. A falling ball viscometer relates the speed at which a sphere falls under gravity in a

fluid to the shear viscosity of the fluid. Parallel plate and the cone-and plate type rheometers (see

Figure 1.5) are ideal for use with non-Newtonian fluids because they only require a small sample

volume, loading of the sample is achieved with relative ease, and the design can be made robust

enough to handle the high viscosities typical of such fluids. In addition, by applying an oscillatory

torque or strain, they can measure the storage and loss moduli functions, G' and G", which can be

taken as a measurement of the viscoelasticity of a fluid [5]. Of these two similar geometries, the

cone-and-plate is preferable because it provides a constant shear rate throughout the sample (the

shear rate is defined as the ratio of the plate or cone speed at a given radial position to the gap

thickness at that position). The cone-and-plate device consists of a small angle cone that rotates

just above a flat plate, thus the shear rate is governed purely by the cone angle and the rate of

rotation. Cone-and-plate rheometers can measure viscosity either by measuring torque for a given

rotation rate (strain-controlled), or by measuring strain for a given applied torque (stress-

controlled). Modem commercial cone-and-plate rheometers are able to measure shear viscosity as

a function of strain rate and temperature as well as implement the oscillatory profile for

viscoelasticity measurements. The shear rheometry of the test fluids used in this thesis was

carried out using a cone-and-plate rheometer and is described in detail in Chapter 3.

h R R

Fluid

h 0

Figure 1.5 The parallel plate (left) and cone-and-plate (right) geometries.
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1.2.2 Extensional Rheometry: Filament Stretching Rheometry

It was noted previously in this chapter that large extensional viscosities are possible in

viscoelastic fluid flows. Since many commercial polymer processes involve extensional flow, the

measurement of transient extensional viscosities of polymeric liquids has received considerable

research attention in recent years. But although flows with extensional components are common,

it is difficult to achieve ideal shear-free flows in the laboratory, especially for more mobile liquids

such as polymer solutions. Several extensional viscometers have been developed, but the

difficulty in measuring this fluid property is perhaps best shown by Figure 1.6, which shows the

widely disparate results of a round-robin study among several researchers using a common test

fluid and various measurement devices that was published in 1990[8].
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Figure 1.6 Apparent extensional viscosity measured in various devices for a single common test

fluid, Ml. Reproduced with permission from [9]. Copyright 1994 Elsevier.

Because of the important role of extensional viscosity in polymeric fluid flows, and in

light of the discord in measurements reflected by the 1990 study, filament stretching extensional

rheometry has developed over the past decade to become a viable measurement technique. The

filament stretching rheometer (see Figure 1.7) in its moderm form was first implemented by

Sridhar [ 10] and consists of two cylindrical plates that can be separated at a programmable rate to

stretch a small fluid sample and create a slender filament [11]. The plates move apart at an

exponential rate, providing a nearly constant rate of deformation and a nearly shearfree flow at

the filament midpoint. If the midpoint filament diameter and the tension in the filament are also

measured, a measurement of the transient extensional viscosity can be derived. Neglecting inertial

and axial curvature terms, the force balance proposed by Szabo [ 12] is written

1F(t) 1 pgV ft
10 2 ) = + , (117)

" " rR~nd(,7) rc,,,,t)2)R,0 ,
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where F. is the measured axial force, R,sd is the measured mid-filament radius, and V is the fluid

sample volume. The rightmost two terms account for the effects of gravitational sagging and

surface tension respectively. It should be noted that for low strain rates fluid sagging due to

gravity can be appreciable and elimination of this sagging is the premise of NASA's zero gravity

Extensional Rheometry Experiment (ERE) [13]. The term on the left side of Equation 1.17 is the

normal stress difference in extensional flow and the transient extensional viscosity can be found

by

E = , (1.18)

where O is the imposed constant strain rate. The success of the filament stretching extensional

rheometer is made clear by the recent results of a study involving four different laboratories using

common test fluids and four independently designed filament stretching rheometers. The results

of the extensional viscosity measurements from the participants in this study are in remarkable

agreement [14]. The transient extensional viscosities of the test fluids used for the current

experiments have been measured by Anna [2] using the filament stretching rheometer at MIT and

are discussed in Chapter 3. For further information on filament stretching rheometry, the reader

may refer to a recent review of the subject by McKinley and Sridhar [15].

MV A

Figure 1.7 A solid model of a Filament Stretching Extensional Rheometer (FIsER)
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1.3 Pressure-Senstive Adhesives (PSAs)

The word adhesive is a general term given to any material used to bond two surfaces

together. Since ancient times, people have used naturally occurring adhesives such as pinesap and

tar for various construction purposes. In the past century, as the number of manufacturing

applications has blossomed, so has the need for adhesives to fit these applications. Accordingly,

adhesives have been designed for nearly every imaginable application, ranging from fixing labels

on beer bottles to the fastening of the insulation tiles on the space shuttle. We rely on adhesives to

mail our letters, catch flies, and to keep our shoes from falling apart. In modern automobiles,

adhesives have become ubiquitous, taking the place of traditional fastening techniques such as

riveting and welding in numerous places.

Today there are many types of adhesives. Some adhesives require a chemical reaction to

set. Others require activation by UV light or the evaporation of a solvent to cure. Pressure-

sensitive adhesives are an important class of adhesive used for tapes, postage stamps, labels, and

many other applications. The Pressure Sensitive Tape Council has defined these adhesives as

follows:

Pressure sensitive is a term commonly used to designate a distinct category of adhesive

tapes and adhesives which in dry (solvent free) form are aggressively and permanently

tacky at room temperature and firmly adhere to a variety of dissimilar surfaces upon mere

contact without the need of more than finger or hand pressure. They require no activation

by water, solvent, or heat in order to exert a strong adhesive holding force toward such

materials as paper, cellophane, and glass, wood, and metals. They have a sufficient

cohesive holding and elastic nature so that, despite their aggressive tackiness, they can be

handled with the fingers and removed from smooth surfaces without leaving a residue.

General trade usage by leading tape manufacturers does not sanction extension of the

term "pressure sensitive" to embrace tapes and adhesives merely because they are sticky

(e.g., fly papers) or merely because they cohere or adhere to a particular type of surface

(e.g., self-sealing envelopes); and terms other than "pressure sensitive" should be used to

avoid confusion [16]

Although much empirical data is available, as with the majority of non-Newtonian fluids,

a comprehensive theory of PSAs is lacking. Rules of thumb such as the Dalquist criterion, which

states that a good pressure-sensitive shall have an elastic modulus below around 0.2 MPa (it must

be low enough to achieve good surface contact) are still in use [17] although recently great strides
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have been made in understanding the relation of molecular architecture and bulk material

properties to adhesive performance [18], [19], [20]. The commercial importance of pressure-

sensitive adhesives underlies the quest for a better theoretical understanding of these materials

because such an understanding will enable better adhesive performance predictions as well as the

design of better PSAs.

1.3.1 Literature Review

The behavior of a pressure-sensitive adhesive depends on many factors. Changing the

chemical composition, molecular weight, or molecular structure of the adhesive can alter

adhesion properties [21], [18]. For example, under large strain, a branched molecule can have

more interactions with neighboring molecules than a linear molecule of the same molecular

weight, thus influencing the viscoelasticity and extensional viscosity of the material. Surface

properties also play a very important role in the strength of an adhesive bond [22], [23], [24],

[25]. A PSA will not have the same debonding energy for a highly polished stainless-steel surface

as for a roughened surface of the same material. This is perhaps best exemplified by considering

the non-stick backing, or 'release paper', used for tapes and decals. An indirect consequence of

surface roughness is surface cavitation. On the microscale, even a surface that feels smooth looks

very rough microscopically and contains many pores. These pores can trap air and provide

nucleation sites for cavitation bubbles [26]. Stemming from such nucleation sites or from material

defects, cavitation can occur in a purely viscous liquid due to a negative hydrostatic gage pressure

[27], or in an elastic or viscoelastic material because the growth of cavities reduces elastic

stresses [28]. In agreement with the results first observed by Gent for elastic materials [29], [30]

and later by Kaelble for viscoelastic liquids [31], the experiments in this thesis indicate that

cavitation occurs at specific negative internal pressure for a given fluid and geometry.
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Figure 1.8 Cavitation in a 200pm layer of a pressure-sensitive adhesive during a probe-tack

experiment (viewed from beneath). Note the imcomplete wetting of the probe due to

misalignment. Photo courtesy of A. Chiche & C. Creton.

When an adhesive joint is strained, fibrils, or thin strands of adhesive that bridge the two

surfaces, can form (see Figure 1.9). These fibrils can sometimes be seen with the naked eye when

an adhesive is removed from a solid surface and have long been recognized in adhesive peeling

tests (see Figure 1.9) [32], [33] and probe-tack tests (see Figure 1.10) [34], [35], as well as in

polymer films in roll nip experiments [36]. The stretching of these fibrils can account for a large

majority of the external work required to debond two surfaces [37], [38]. The extension of such

fibrils is primarily an elongational flow and the fibrils strain harden by the same molecular

mechanism that causes the large extensional viscosities in the polymer solutions mentioned

previously. A theory relating extensional rheology to adhesive strength was first suggested by

Gent & Petrich [30] and was later implemented with some success by Connelly [39]. More
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recently, this idea has been investigated further by Good & Gupta for ideal fibril elongation [40]

as well as by Piau et al. [24] and by Christensen & McKinley [41] in the peeling geometry.

Two recent studies on model pressure-sensitive adhesives by Zosel [38] and Lakrout et

al. [37] utilize the probe-tack experiment to investigate the onset and development fibrils and

their effect on tack. In the latter of these studies, it was shown that fibrils can form as the result of

longitudinal growth of cavitation bubbles. In the current experiments it is shown that fibrils can

result not only from cavitation, but also from an elastically induced flow instability, and that the

development of such fibrils can be heavily influenced by a viscous free-surface flow instability

which is described in the following paragraphs.

For highly confined geometries, viscous forces predicted by Reynold's lubrication theory

can also play a role in the force required to debond two surfaces [42], [21]. In small gaps, this

lubrication flow can induce a three dimensional axisymmetric fingering instability similar to the

Taylor-Saffman fingering instability [43] observed in Hele-Shaw cells [44] when a less viscous

fluid displaces a more viscous one. The fingering phenomenon was long observed in the oil

industry before it was physically explained in the classic paper by Saffnan & Taylor. When oil

was pumped from a field it was often discovered that water from surrounding areas would reach

the pump well before the known oil pocket had been exhausted. Alternatively, when natural gas

or air is pumped into the ground at some distance from the well in order to drive the oil out, the

same problem can occur. It is now known that because the air and water are less viscous than the

oil, an interfacial instability is prone to occur as the oil is removed and a finger of air or water is

able to penetrate the oil pocket and reach the well, stymieing the drilling operation. Paterson later

adapted the theory to the axisymmetric case in which the more viscous fluid is sucked from a hole

in the Hele-Shaw cell [45], which is perhaps closer to the physical problem. Viscous fingering in

the axisymmtric case as well as in the cases of converging and diverging channels was more

recently investigated by Thome et al. [46]. It should be briefly noted that the inverse case of the

axisymmetric fingering problem, in which a gas is injected in a Hele-Shaw cell to create a point

source, has been studied by numerous investigators a well, however the investigators seem

interested primarily in the tip splitting and fractal nature of the fingering [47], [48], [49], [50].

In addition to fingering in a Hele-Shaw cell, similar meniscus instabilities have been

observed when a thin layer of liquid is spread with a blade or roller [51] or when a fluid exits two

counter-rotating rollers [52]. By nearly the same mechanism, viscous fingering has also been

observed in the peeling geometry [27]. Viscous fingering can be considered to result when forces
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due to viscous effects overcome capillary forces, a balance that can be described by the capillary

number exceeding a critical value,

Ca= > Cacr,

where p is the shear viscosity, V,. is the bulk radial velocity, and a- is the surface tension.

Following lubrication theory for reverse squeeze flow, decreasing the initial aspect ratio and

increasing the separation rate both act to increase the fluid radial velocity (see Chapter 4 for a

derivation of this). Accordingly, in the current experiments, viscous fingering is observed for

sufficiently small plate separation distance and for sufficiently large stretching rates; i.e., above a

critical capillary number. This phenomenon has been theoretically investigated for the Newtonian

case by Shelley et al. [53] and has recently become of interest in the study of the tackiness of

adhesives [54]. A recent publication by Thamida et al. investigates the effect of viscous fingering

on the work of adhesion by using a constant force to separate two plates joined by Newtonian

liquid film while measuring the strain as a function of time [55]. In axisymmetric probe tests of

soft PSAs by Crosby et al. [56] and by Shull et al. [57] the occurrence of Saffman-Taylor-like

fingering has been reported. In separate publications, these authors have noted similar fingering

instabilities in purely elastic materials [58], [59], which appeared very similar to the fingers seen

by Spiegelberg & McKinley in extensional rheology tests of viscoelastic dilute polymer solutions

at large strains [60]. Since the Saffman-Taylor instability is due to a viscous flow phenomenon, it

cannot be the cause of both instabilities. The experiments in this thesis show that there are two

separate and distinct fingering instabilities and that one results from elasticity and the other from

viscous flow. Each of the instabilities studied in this thesis (cavitation, elastic and viscous

fingering) can heavily influence fibrillation, therefore influencing debonding energies. These

instabilities depend on the adhesive material, geometry, and debonding speed and are discussed in

Chapter 4.
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Flexible membrane

Figure 1.9 In the Peel Test, an adhesive layer is peeled from a rigid substrate, often resulting in the

formation of fibrils. Reproduced with permission from [21]. Copyright 1999 American

Institute of Physics.

1.3.2 The Probe-Tack Test

Quantifying the performance of a PSA can be done experimentally by measuring the

energy required to separate two adhesively bonded surfaces. In practice, there are several

methods of doing this, but perhaps the most common is the peel test (see Figure 1-8). In this test,

a flexible membrane bonded to a rigid substrate with a PSA is peeled at a constant speed and peel

angle, while the peel force is measured [61], [32]]. Another type adhesive test is the tack test. By

definition, tack is the ability of an adhesive to form a bond of measurable strength immediately

upon contact [62]. The tack tests are, in simple terms, a quantification of what we can do by

separating our thumb and forefinger after putting a drop of liquid between them. Most people

would agree that pancake syrup is a tacky fluid, while water is not. The tack test uses a rigid

probe that can be retracted uniaxially from an adhesive layer at a known rate while measuring the

maximum axial force. The JKR tack test uses a spherical indenter to probe the adhesive layer,

testing for tack. The name comes from the well-known JKR adhesion theory (Johnson-Kendall-

Roberts) [63], which is based on a modification of the Hertz contact theory [64] for soft

substrates and is heavily relied upon in the testing of PSAs [57]. If instead, a flat cylindrical
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indenter is used, the test is termed the probe-tack test [65], and although alignment becomes more

difficult (see Figure 1-7), the analysis benefits from a simpler geometry. Although the probe-tack

test was developed some time ago [66], [34], it seems to have not become a popular method of

testing PSAs until after the important study on adhesion and tack by Zosel [67], who apparently

was the first to use the test to measure force as a function of distance and deduce a work of

adhesion. For the study of adhesive breakup and the development of fibrils, the axisymmetric

probe tests are far superior to the peeling tests because they provide a more homogeneous

elongation of the whole area of contact. With the peel test, the whole spectrum of strain is

included in the force measurement, providing only an average sense of the debonding

mechanisms. Probe-tack tests provide a way to quantify fibril stress through the entire evolution

of the strained joint, from rest to fracture. In addition, if a clever modification to the experiment

to allow for viewing the sample from the axial direction is made, the development of fibrils as

well as cavitation in the adhesive layer can be visualized and matched to the strain curve and

corresponding force.

1.4 A Modified Probe-Tack Experiment

The ASTM standard (D2979-95) for the probe tack-test specifies that a flat, 5mm

diameter stainless steel probe with a surface roughness between 250 and 500 nm (rms) be brought

into contact with a substrate of pressure-sensitive adhesive and then moved away in the nonnal

direction at a constant velocity of 10mm/s. The dwell time, dwell load, and maximum force upon

probe retraction are recorded for each experiment. Although the standard probe-tack test only

calls for the measurement of a maximum force, the experiment can easily accommodate the

measurement of force as a function of strain, allowing the experimenter to gather more useful

information. Specifically, the effects of fibril formation and elongation on the debonding energy

can be investigated. This method also allows for another adhesive measurement, the work of

adhesion, defined as

Wa = F(z) dz, (1.19)
Af

which is the integral of the axial force over the distance traveled by the probe, divided by the area

of contact [67]. If the experiment is coupled with video imaging even more useful information

can be gleaned from the test. For example the strain or load at the onset of fibrillation or

cavitation can be recorded.
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The experiments detailed in this thesis use two model viscoelastic polystyrene fluids,

both well characterized in shear and extensional flow, to investigate various flow instabilities and

their effect on the work of adhesion. Because the test fluids used fail cohesively, leaving a residue

on the probe, they cannot be considered as true pressure-sensitive adhesives. However, the fluids

do exhibit the nearly the same fingering instability phenomena as those seen by other researchers

in the testing of pressure-sensitive adhesives, making them ideal to further probe the instabilities

from a fluid mechanics viewpoint. In addition to the polymeric liquids used as test fluids, various

model Newtonian fluids of similar shear viscosity were used to further probe the viscous

fingering instability.

The experiments were performed by employing are a modification of the standard probe-

tack test and are described briefly below and in more detail in Chapters 2 and 4. For the majority

of the experiments, an exponential velocity profile was used rather than the constant speed called

for in the ASTM standard. The explanation for this deviation is that an exponential velocity

profile provides a nearly constant strain rate and more uniform kinematics since the flow in the

fibrils is primarily elongational. If L is the instantaneous sample length, then the strain rate is

defined as

1 = 
(1.20)

L dt

For a constant strain rate, as is desired for rheological measurements, separation of variables and

integration results in a length that increases exponentially in time, or

L(t)= L e6', (1.21)

where LO is the initial sample thickness. It follows from Equation 1.21 that the velocity is also an

exponential finction of time, and

dL
V(t) =---- Lo e6 '. (1.22)

dt

By inserting Equations 1.21 and 1.22 into Equation 1.20, it can be seen that an exponential

stretching profile results in a strain rate that is constant in time.

When a linear velocity profile is implemented in a stretching experiment, the same

definition of strain rate from Equation 1.20 applies, but the strain rate is obviously not constant.

For constant stretching velocity Vo, the length as a function of time must be

L(t)= LO +Vot, (1.23)
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so the strain rate decreases as a hyperbolic function of time, or

-(t) = - . (1.24)
LO + V0 t

If the flow in the fibrils is primarily elongational, it is clear that the use of an exponential velocity

profile for stretching experiments provides more uniform kinematics.

As mentioned already, the apparatus incorporates the ability to visualize the flow near the

rigid endplates. This modification required the use of glass as the endplate material, rather than

the standard stainless steel. A final deviation from the standard test is another result of the liquid

nature of the test materials. In the standard, a probe is to approach an idealized infinite layer of

adhesive and remain there under some dwell load and time. In these experiments rather than using

a substrate, a thin fluid layer was loaded between the two equal-sized endplates creating a

cylindrical fluid sample, and the test was started after the fluid was allowed to relax so that there

were no residual stresses in the material.
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Figure 1.10 Sketch comparing; A) The conventional probe-tack geometry, and; B) The geometry of

the current experiments

1.5 Summary

The design of better adhesives depends not only an understanding of materials at a

molecular level, but on physical properties and deformations of the adhesive at the bulk level as

well. Most adhesives are non-Newtonian fluids at some point in their lifecycle, and therefore a

fluid mechanics approach to understanding many adhesive problems is logical. In this thesis, flow

instabilities such as cavitation, fibrillation, and viscous fingering (all phenomena that are common

in the debonding of many adhesives) are investigated experimentally using such an approach. The
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effect of these instabilities on the adhesive performance can be dramatic and it is hoped the

contribution of this work will further advance the understanding of adhesive debonding

mechanisms and therefore lead to better engineered adhesives.
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Chapter 2 Experimental Setup and Testing Method

2.1 Experiment

The experiment utilizes an adaptation of the filament stretching rheometer to implement a

modification of the probe-tack adhesion test for the purpose of investigating endplate instabilities

in mobile viscoelastic polymer solutions. The standard probe-tack test, which was discussed

briefly in the last chapter, incorporates a flat probe that can be retracted from an adhesive

substrate at a known rate while recording the maximum normal load. The current experiment

deviates from the probe-tack test in the following ways: 1) Due to the mobile nature of the test

fluids, a cylindrical sample having the same 5mm diameter as the probe is used rather than an

infinite substrate of adhesive material (see Figure 1-10); 2) The velocity profile is exponential in

time, rather than the constant 10 mm/s back-off velocity specified by ASTM D2979-95. The aim

of using an exponential velocity profile is to provide a constant strain rate within the elongating

sample. This is a fundamental requirement in extensional rheometry and in the current case, it is

required in order to induce a strongly strain hardening elastic response in the viscoelastic test

fluids; 3) The test probe material is glass rather than the polished stainless steel called for by the

standard. This is because the implementation of the optical device for viewing the sample from

beneath the endplate required that a transparent material be used for the lower endplate. A

matching glass optical window was used for the upper endplate to ensure flow symmetry at low

plate separation distances and to provide symmetrical conditions for the occurrence of adhesive

failure at the end of stretching.

' In contrast to the standard probe-tack test, in which only the maximum axial force on the

probe on the probe is recorded, the axial force is measured over the course of the whole

experiment in the current test setup. This allows for a quantifiable investigation of the stretch and

the development of any elastic stresses. Recording the tensile force as a function of strain also

permits the calculation of the work of adhesion [67], written

wa =JF(z).dz. (2.1)

In addition, the test has been further modified so that the fluid sample can be viewed

simultaneously from the side and from beneath via the optical apparatus described in the next

section.
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2.1.1 Flow Geometry and Experimental Setup

The fluid sample is initially in the shape of a cylindrical plug and is held between two

rigid circular endplates by surface tension (see Figure 2.1). The upper endplate is attached to the

linear motor described in Section 2.2, and can move away from the stationary and mechanically

isolated lower endplate at a programmable rate. At the start of an experiment the plates begin to

separate, thus deforming the fluid sample. Depending upon the initial experiment parameters, a

slender fluid filament may form. If a stable filament does develop, then the flow near the filament

midpoint will be a nearly pure uniaxial extensional flow if an exponential profile is chosen [14].

This shearfree flow is the key the success of filament stretching rheometry. With certain initial

conditions, however, flow instabilities can either prevent the ideal filament from developing, or if

it does develop, cause it to become unstable [60]. Such instabilities are the topic of this thesis and

are discussed thoroughly in Chapter 4.

For stretching experiments, an initial aspect ratio can be defined as the ratio of initial

sample height to sample radius, or AO = L, / R. In typical extensional rheometry experiments

AO ~ 0(1), and initial sample radii are no more than a few millimeters [14]. Larger samples

would provide bigger extensional forces and perhaps more accurate measurements, however if

the sample height is too large gravity may cause the sample to 'slump'. This effect is quantified

by the Bond number, which compares surface tension to gravitational forces and is written

Bo = pgLo (2.2)

For large Bond numbers, i.e., Bo> 1, gravitational forces are dominant and cause the

sample to sag or even fail cohesively before the stretching even starts [12]. Such sagging can be

problematic during experimental rheometry experiments, and it serves as the basis for NASA's

zero-gravity Extensional Rheology Experiment (ERE) [13].
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Figure 2.1 Sketch of upper and lower endplate assemblies showing alignment mechanisms and load

cell. The upper endplate assembly is attached to the linear motor. The lower endplate

assembly is isolated from the motor and remains stationary.

There is also a limit on how small the aspect ratio can be. A highly confined sample

(Ao<< 1) can lead to a viscous fingering instability similar to that described by Taylor & Saffman

[43]. If the aspect ratio is further reduced, cavitation may occur due to a reduced pressure within

the fluid [31] when stretching begins. Cavitation and fingering instabilities have been observed in

probe-tack testing of adhesives as well [56]. In the current experiments, the test fluids were

stretched at aspect ratios as large as 0.40, and as small as 0.04. These experiments span a range of
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sample thicknesses that bridge the gap between those used in probe-tack testing and those used in

extensional rheology experiments (see Table 2.1).

Aspect Ratio Sample Thickness
(mm)

Extensional Rheometry AO - O(1) 1.5 < LO< 3.5

Probe-Tack Test 0.01 < AO < 0.20 0.025 < LO < 0.500

Current Experiments 0.04 < AO < 0.40 0.10 < Lo< 1.00

Table 2.1 Comparison of aspect ratios, or degree of confinement, used in extensional rheometry and

probe-tack tests

2.1.2 Sample Preparation and Loading

The polystyrene fluids used in the current experiments have been characterized in both

shear and extensional flow by Anna [2], and were tested in shear flow by the author just prior to

the current experiments in order to check whether the viscometric properties of these fluids had

significantly changed since the experiments by Anna (see Chapter 3). Although the fluids are

very viscous, they are mobile enough to be loaded using a syringe system driven by compressed

air (EFD Model 800). The procedure for loading a test sample first involves cleaning, then

aligning and zeroing the endplates (see Figure 2.1). After the plates have been zeroed, the motor

moves to the programmed plate separation on command, and the no-load voltage of the load cell

is recorded. Next, the upper endplate is backed-off by hand using a micrometer thread and an

appropriate-sized drop of the fluid sample is loaded onto the lower endplate using the pressurized

syringe. The micrometer is then slowly adjusted back to its original position, as indicated by the

vernier scale, which has a resolution of 1 gim. Care must be taken to avoid visible air cavities or

stray dust particles from entering the fluid when loading because they can disturb the flow or act

as seeds for unwanted cavitation bubbles during the experiment. In addition, since the fluid

sample volumes used in these experiments are rather small, it is crucial to ensure that the proper

amount of fluid has been loaded. This is done visually using live video imaging from the CCD

cameras. After the fluid has been loaded, the sample is permitted to relax for at least three fluid

relaxation times before the experiment begins.
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2.1.3 Temperature

The viscoelasticity of the fluids used in these experiments is very sensitive to changes in

temperature (see Chapter 3). Accordingly, the temperature of the fluid must be carefully

monitored in order to account for such changes during data analysis. Due the laboratory

environment and the design of the filament stretching rheometer, the fluid temperature could not

be controlled by any other means than the thermostat in the laboratory and variations in

temperature of 2-3 *C were encountered over the course of a day. In each experiment, just prior to

stretching, the temperature of the endplate at the edge of the fluid was measured using a digital

thermometer (Omega Model HH200 with Al/Cr thermocouple) and recorded for later data

processing.

2.2 FISER II Filament Stretching Rheometer

The FISER II filament stretching rheometer (see Figure 1.7) was built by Anna and has

proven to be a reliable and robust device in past research in the Non-Newtonian Fluid Mechanics

Lab at MIT [2], [68]. This machine utilizes two programmable linear brushless DC motors to

stretch fluid samples. The top endplate is attached to the upper motor platen, and the lower

endplate is stationary and isolated from the rest of the machine. The lower motor platen is

designed to carry an optical micrometer (Omron Model Z4LA-L10), and move at one-half the

velocity of the lower motor to provide the measurements of midpoint filament diameter that are

necessary for filament stretching rheometry.

2.2.1 Motor Platens

The FISER II motion control system was manufactured by Northern Magnetics, Inc (now

a division of Baldor). The two linear DC brushless motors are open-loop controlled by a Delta

Tau PMAC-Lite Controller that is interfaced with a Labview operating system (see Figure 2.2).

The position of the motors can be controlled to within 1 prm and can be measured to within ± 1 pIm

via an optical encoder. In the majority of the current experiments, only the upper motor was

utilized, and filament radius measurements were not taken. Table 2.2 contains information

concerning the velocity and position limits on the upper motor.
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Block diagram showing operation of the FISER II filament stretching rheometer.

Maximum Value Resolution

L, 180cm I gm

I =LP 300cm/s .035cm/s

Motor position and velocity limits for the FISER II rheometer.

Prior to each experiment, a motion control program file with the desired velocity profile

is generated using the Labview program and uploaded to the PMAC via RS232. For an

exponential velocity profile, the motion control program file would also contain information such

as the desired strain rate, the initial gap, and the desired final strain. After each experiment, the

motion control system creates a data file containing command and encoder-determined positions

for the motors for that experiment. A plot containing motor position error data as a function of
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strain, =In (L(t)/Lo), for a typical experiment is given in Figure 2.3. Note that overall

position error increases cumulatively with position, but that position error remains small as a

fraction of commanded position during a stretch.

2. 0T

1.5 A&AA

A

0 . A

0.0 -A

0 1 2 3 4

Hencky Strain

Figure 2.3 Motor position error as a fraction of distance traveled for a typical exponential velocity

profile.

The motor platen motion is controlled in the PMAC motion control program by dividing

the experiment into a number of time-steps, then specifying a desired position for each time. In

addition to specifying position/time data, an acceleration time must also be specified in the file.

This acceleration time is roughly the time required for the motor to move from one position to the

next. For experiments performed at a low strain rate, and for extensional rheology experiments

(for which the initial stages of the stretch are not as important), a rather large acceleration time is

acceptable. However for the current experiments at high strain rates, which correspond to short

stretch durations, a short acceleration time is more appropriate. Figure 2.3 shows the effect of

altering the acceleration time on motor position as a function of time; note that for the same,

programmed exponential position profile, the case with the smaller acceleration time reaches the

ideal commanded position sooner. An exponential velocity program requires that at the start of

the stretch the motor must move to a finite velocity instantaneously. This is physically

impossible, and the actual velocity follows a profile that can be empirically modeled as

V(t) = V, e'(l-e~') (2.3)
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where r is a timescale of the linear motor that depends on the programmed motor acceleration

time. As the acceleration time decreases, r decreases as well, and from Equation 2.2, the actual

velocity reaches the ideal velocity sooner. This is not to say that a small acceleration time is

always ideal. For example, at low strain rates, tests can be rather long and a short acceleration

time causes the motor to make unnecessary movements that would serve only to add more noise

to the motion profile.
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Effect of altering the motor acceleration time. The upper plot in the figure above

corresponds to a motor acceleration time of 20ms. A smaller acceleration time (10ms for

the lower plot) can have the effect of making the velocity profile closer to the ideal

exponential profile.
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2.2.2 Endplates and Endplate Assemblies

The endplates used for the current experiments consist of 5mm diameter by Imm thick

optical windows obtained from Edmund Industrial Optics (Tech Spec 1 Wave) and have a surface

roughness on the nanometer scale. The lower endplate assembly consists of one of these windows

bonded with optical adhesive to the top of a 6.35mm cube beamsplitter (also purchased from

Edmund Industrial Optics) that is rigidly clamped in a specially designed lightweight aluminum

fixture (see Figure 2.1). This assembly is then fixed to the top of the load cell, which remains

stationary. The load cell is fixed on a two-axis alignment mechanism that permits concentric

alignment of the endplates. The beamsplitter permits an axial view of the filament, and the design

is compact enough that both the axial view from beneath the endplate and a side view of the

filament extending approximately two endplate diameters from the endplate can be imaged

simultaneously.

It should be noted that a 12mm beamsplitter and a 10mm optical window of similar

specifications to the smaller versions were also purchased. This larger cube allowed for better

optical resolution of the instability (although the field if view in the axial direction was more

limited), and it also provided the opportunity to probe smaller aspect ratios using the same initial

endplate gap. However, it was found that because the nature of the endplate alignment

mechanism, which is discussed in the next paragraph, the larger endplate was much more difficult

to align for the same initial endplate gap, therefore the smaller endplate assemble was used for the

majority of the experiments.

Endplate parallelism is achieved by adjusting a universal-joint mechanism and tuned

using visual aid from two CCD cameras aimed at the side of the endplates and opposed at a 900

angle. It should be noted that this mechanism provides some finite angular resolution, meaning

that as the endplate radius is increased, sine errors pose a problem. Nevertheless, the mechanism

was well suited for alignment of the 5mm endplates at the smallest gap used; 100 microns. The

endplate axial position is adjusted by hand using a micrometer head and zeroed using the DC

signal from the force transducer. To accommodate the larger forces encountered in the current

experiments (due to smaller aspect ratios), both the upper and lower endplate support assemblies

were redesigned and strengthened to accommodate the larger axial forces seen in adhesive

testing.
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2.2.3 Data Acquisition

As mentioned in the previous paragraph, PMAC the motion control system creates a file

containing encoder data for the motor positions in addition to the command position data for each

experiment. Signals from the load cell and radius measurement device are fed into the PMAC and

are also written into this data file. The PMAC can store data from only one experiment, and the

data file must be downloaded to an external computer before the next run. In addition to the

PMAC-gathered data, a data acquisition card (National Instruments PCI-MIO-16XE-50) is used

in conjunction with a personal computer to acquire load cell and radius measurement data. The

PMAC can only store two thousand data points, so for long experiments, i.e., experiments at low

strain rates, the large number of data necessitates the use of the file generated by the data

acquisition card.
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2.2.4 Force Measurements

Axial force measurements were taken using two externally amplified strain-gage based

load cells (Futek L2338). These load cells used 10 gram and 1kg capacities in both tension and

compression, and have resolutions of 5 milligram and 500 milligrams respectively. The Futek

L2338 load cells were alternatively used as required for a given experiment. The load cells were

calibrated in compression regularly to ensure that any change in sensitivity was noted and

accounted for in the data analysis. It should be noted, however, that no drift in the sensitivity was

seen for either of the load cells over the entire three-month period during which the majority of

the experiments in this thesis were performed. The sensitivity of the 10 gram and 1 kg load cells

were found to be 0.997 [V/g] and 99.7 x 10-3 [V/g] respectively. The data in Figure 2.5 is typical

of that recorded using the Futek L233 8 load cell for these experiments.
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Typical experimental force data plotted vs. time. The data is for the PS025 Boger fluid

for De=67 and AO=0.22. Note that the first peak in the curve can be explained by

lubrication theory (see Section 2.3.1) and that the second peak is due to flow induced

elasticity, or strain hardening of the fluid

In addition to the static compression calibration, each of the load cells were calibrated

dynamically using two methods similar to those used by Anna [2] for dynamic characterization.
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The first method involves using a permanent magnet and a small coil excited by an oscillating

current. As indicated by Figure 2.6 (a), the magnet was firmly attached to the top of the load cell.

A coil was then placed just above the magnet, and a small AC current applied using a lock-in

amplifier (EG&G Model 7260), thus applying a sinusoidal load to the force transducer in the

form of

f(t)= A sin (at). (2.4)

The output signal from the load cell was sent to the lock-in amplifier, and the relative magnitude

of the input and output signals were recorded for several oscillation frequencies, a (see Figure

2.8).

Figure 2.6 Schematics of the drop and oscillatory tests used to analyze the dynamic response of the

load cells.

41

S"

A) Oscillatory test

B) Drop test



The data from these tests was then plotted and a second order differential equation was

used to fit to the data using a computer program. The modeling differential equation is

i+2y7+cix = f(t), (2.5)

where f(t) is the external force applied to the coil and x(t) is the transducer output signal. The

fit parameters, representing the natural frequency, oo, and the damping coefficient y, for both the

10g and 1kg L2338 load cells are listed in Table 2.3. Both load cells were found to have very

similar dynamic behavior, as indicated by the plots in Figure 2.7, which show the results of the

oscillatory tests. As a result of sufficient damping, the amplitude of the output signal rapidly

decreases at frequencies beyond the natural frequency. To verify the results of the oscillatory

tests, a second 'step signal' method was employed. In this test a mass resting on the load cell was

quickly removed and the load cell probe was allowed to return to equilibrium. The output signal

was recorded and a curve was fit to the data by inserting the parameters listed in Table 2.3 into

the homogenous solution of Equation 2.4, a formula for the normalized response of the load cell

to a step signal can be written

x(t) _ e 2 sin( 7 2I t+cos O -72-t ), (2.6)
xo Ii-y)

where x(t) is the transducer output signal, x0 is the magnitude of the initial output signal, and

the parameters co and y are the natural frequency and damping coefficient found from the

oscillation test. The results of the step signal test and the fit curve for the lOg L2338 load cell are

shown in Figure 2.8.
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Figure 2.7 Results of oscillatory test (signal amplitude vs. oscillation frequency) for Futek L2338-

lOg (top) and 1kg load cells. The model fits (Equation 2.3) are also given.
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Figure 2.8 Results of step signal test for 10 gram L2338 load cell and fit curve generated using fit

parameters determined from the oscillation test. The step function is also shown as a

reference.

2.2.5 Dynamic Testing of Futek load cells, Model L2338-Q10419

In addition to the testing done on the Futek model L233 8 load cells and described in the

last paragraph, two other Futek load cells were dynamically tested in order to determine their

suitability for use in these experiments. The two load cells, 10gram and 100gram capacity

versions of Futek model L2338-Q10419 and having built-in amplifiers, were acquired and

subjected to the same dynamic tests described above. It was determined that the newer models

had significantly less damping than the older L2338 models. This is indicated by the spike, or

resonance frequency, in the amplitude plot for the magnet/coil test (see Figure 2.9, top) and the

rather long decay time of the output signal following the step input of the drop test (see Figure

2.9, bottom). In addition to the damping problem, the load cells had a significant deflection

(-Imm) and the load cells were determined to be unsuitable for filament stretching tests. The data

in Table 2.4 lists the results of the testing of all four Futek load cells for comparison.
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Note that in the oscillatory test, a large spike occurs at a driving frequency of around 100

Hz, signifying resonance. This underdamping is also evident in lower plot, which

contains the data from the free oscillation test. It takes almost a full second for the

oscillations to settle.
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Load cell oo [rad/s] 'y [s] Step decay time [ms]

L2338 (10g) 78.7 56.2 50

L2338(lkg) 84.3 59.5 50

L2338-Q10419 (10g) 239 1.5 ~1000

L2338-Q10419 (100g) 634.6 3.5 -1000

Table 2.3 Measured parameters for all of the Futek load cells tested.

2.2.6 Video Imaging

Every experiment performed for this thesis was recorded on digital video tape (MiniDV)

at 30 frames per second. This format allows for still frames of good quality to be easily extracted

from the tape for analysis. The tape contains a digitally encoded frame index allowing the images

to be matched to strain and force data for an experiment. The diagram in Figure 2.10 shows a side

view of the beamsplitter and the optical path leading to the camera. Note that in this application,

the beamsplitter acts as a mirror, allowing visualization of the bottom of the fluid sample from the

view of the camera. The camera view has an aspect ratio of 4:3 and experiments were recorded so

that the long axis of the camera was aligned with the flow direction, allowing for maximum

visualization of the filament and possible fibrillation during stretching. The setup allowed for a

field of view that extended from the base of the cube beamsplitter to approximately two endplate

diameters beyond the endplate surface for a total viewing area of approximately 16 x 12mm in

size. Lighting was provided by a electroluminescent diffuse light source (Lucas Proto-Cut) placed

behind the beamsplitter and in conjunction with a fiber optic light source focused on the front of

the cube from an angle of approximately 450 above the camera viewing axis. Both of this light

sources produce a negligible amount of heat, a detail that is crucial because of the thermal

sensitivity of the test fluids. The CCD camera used to record the video images was a Cohu Model

MS 12 with 798 x 494 pixels and a Computar C-mount, 25mm 1:1.8 lens. The camera was set to

record continuous video at 30 frames per second, thus providing strain resolution of

1
±A= -- [s] - O [s]. (2.7)

30

46



fluid sample

05mm x 1mm
optical window
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Figure 2.10 Sketch of the beamsplitter and optical window and the optical path from the fluid sample

to the CCD camera.

2.3 Data Analysis

The data from the experiment is written to a text file and exported to a personal computer

from the PMAC. This text file can then be opened in a program such as Excel or Matlab for

analysis. As mentioned already, the bulk properties of the test fluids are strongly dependent upon

temperature. Time-temperature correction using thermorheological simplicity, which is detailed

in Chapter 3, is implemented so that experiments can be compared at a common reference

temperature. The radius data measurements are fairly straight forward require no post-processing.

The Omron laser micrometer has a dynamic response of 5ps and was calibrated by the author

using optical fibers of similar opacity to the test fluid and found to be linear at diameters as low

as 20pm. The signal from the Futek L2338 load cells, however, is convoluted with a significant

dynamic response (-100ms) of the load cell itself. This response was measured using methods

detailed in Section 2.2.4. The following section contains an explanation of how the response of
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the load cell was deconvoluted from the raw signal and how this deconvoluted signal compares to

the prediction of the force from lubrication theory for a typical stretching experiment.

2.3.1 Force Data

A typical force versus strain curve for a probe-tack test on a pressure-sensitive adhesive

has the characteristic feature of a large spike in the measured force, followed by a second, more

gradual increase in force [21]. It is generally accepted that the second increase in force in this

characteristic curve is due to strain hardening.

Though they are not true pressure-sensitive adhesives, the strain-hardening Boger fluids

used for the current experimental investigations demonstrate very similar behavior (see Figure

2.5). A recent article by Francis & Horn [69] applies lubrication theory to find an analytical

solution of the force curve for a Newtonian liquid in a specific probe-tack tester. In this study, the

authors model a probe-tack tester as a probe attached to a linear actuator, but coupled by a spring.

When the stretch starts lubrication forces cause the spring to stretch, and the motion of the probe

is not the same as the motion of the actuator. This results in a force with a peak that grows from

zero when the stretch begins and goes through a maximum when the spring is at maximum

extension. Even though the system used for experiments in this thesis, like most probe-tack

testers, contains no spring (there is no significant deflection of the load cell probe or endplate

mechanisms), the initial spike in the force data during a stretch can also be explained by the

lubrication theory.

If an ideal, instantaneous strain profile is implemented to stretch a viscous Newtonian

liquid, there is no physical reason for the actual axial force to start at zero, increase quickly to a

peak, then decrease sharply. For a Newtonian fluid, Reynolds lubrication theory [42], [70]

provides a solution for the axial force for reverse squeeze flow, provided that the fluid is confined

enough that it can be assumed to be an infinite layer (see Figure 2.12). The Reynolds equation for

the pressure distribution as a function of radius and time for squeeze flow is written

3pV(t) 2
P(r,t)=P+ -Z (r -2) (2.8)

L(t)

where p is the shear viscosity of the fluid, RO is the endplate radius and V, and L are the axial

velocity and endplate separation distance as functions of time. This solution is valid in the

lubrication limit when the product of the Reynolds number and the square of the initial aspect
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ratio are small, or when Re AO2 <<1. In the case of the current experiments, this condition

becomes L(t)<< R, since the Reynolds number is always small. For such a flow, the inertial

terms in the Navier-Stokes equations are negligible. The flow is then considered reversible Stokes

flow, meaning the squeeze flow solution also applies the case of reverse squeeze flow. By

integrating Equation 2.8 over the area of the endplate, an equation for the axial force as a function

of time can be written

/ 2
3 2 V(t) 2R

F (t) =- pTR 0  Q R (2.9)
2 L(t) L(t)

Because of volume conservation and the no-slip condition, the radius is not constant

either axially or temporally, this relation can only be considered to be valid at the initial moments

of the stretch. Equation 2.9 predicts that the force should be at a maximum at the instant the

stretch starts, so long as the velocity profile V in Equation 2.4 starts at a positive value. Thus, the

force should decrease from a maximum at the beginning of the stretch for both a linear profile,

such as that used in the probe-tack test, and for an exponential profile, like the one used for the

current experiments. This is regardless of the fact that two velocity profiles result in totally

different strain rates during the experiment (see Figure 2.11). Finally, although it is true that a

pressure-sensitive adhesive is not a Newtonian fluid, it is often true that the initial response of the

fluid, before any strain hardening can occur, can be considered viscous.
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Figure 2.11 In elongational flow, the strain rate is defined as the instantaneous stretch velocity over

the instantaneous length. An exponential stretch rate results in a strain rate that is

constant in time, while a linear stretch rate leads to a strain rate that decreases

hyperbolically in time.
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Figure 2.12 Sketch of a squeeze flow with a geometry similar to that of the current experiments. For

small Reynolds number (Stokes flow), the squeeze flow is reversible and lubrication

theory applies. Figure taken from 0. Reynolds [42]
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What has been ignored in the preceding discussion is the fact that a real stretching

apparatus can never reach a finite velocity instantaneously. There is always some ramp-up time,

no matter how minute, and the velocity starts at zero at time zero. The response of the linear

motor used in the stretching apparatus in these experiments was explained in a previous section

and can be modeled with Equation 2.3. When this 'true' velocity profile is substituted into

Equation 2.9, it is obvious that the force will have a peak value after the stretch begins. The data

plotted in Figure 2.13 consists of the prediction of Equation 2.9 for an ideal exponential velocity

function, F ,,(t), as well as the force curve predicted from the actual velocity profile of Equation

2.3, i.e.,

3 3 V eil'(1 - e''')
F, (t ) =-r qc R0  V0 2.1(0e7/T

2 (LO e t(1-e'tr))3  (2.10)

The experimentally measured data of Figure 2.5, F,(t), is also shown on this plot. Finally, a

plot of the force predicted from lubrication theory with the actual velocity profile (machine

response time), but convoluted with the force transducer response from Equation 2.3. This can be

written

Fc.v(t)= L -1 1{Fact,(s) * R(s)} , (2.11)

where L - is the inverse Laplace operator, Fe, (s) is the Laplace transform of Equation 2.10 and

R(s) is the response of the load cell which can be found by expressing Equation 2.5 in Laplace

space:

X(s) 1
R(s)= f(s) 1 (2.12)

f (S) S2 + 2,s +22

The excellent agreement between the prediction of Equation 2.8 and the experimental

force data serve to validate the use of the lubrication approximation as well as to explain the

characteristic spike seen in force data of probe-tack tests of PSAs.
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Figure 2.13 The lubrication approximation for the initial force response for a given experiment is

convolved with the response of the load cell and the linear motor. The resulting curve

matches the actual measured force. The inset plot contains complete experimental force

data for the same experiment; the second peak is a result of strain hardening. The

experimental data is the same as that shown in Figure 2.5.

2.4 Conclusion

The filament stretching apparatus built by Anna has been modified in order to test mobile

fluids in a manner quite similar to the probe-tack test used to test pressure-sensitive adhesives.

The resulting experiment permits a very thin layer of a test fluid to be stretched at a pre-

programmed rate while measuring the axial force as a function of time, or strain. In addition, a

special endplate setup allows the fluid sample to be viewed from beneath and images are recorded

with CCD camera. The dynamic response times of the linear motor and the force transducer were

characterized experimentally. It was found that when these transient effects were accounted for in

the measured experimental force data, the data matched the theoretical prediction of the Reynolds
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lubrication theory very well. It is concluded that the apparatus is well suited for the measurements

undertaken in this thesis. The current experiments are intended to investigate flow instabilities

that occur during stretching, and for these experiments, three model fluids were chosen. The

composition and shear rheology of these test fluids are discussed thoroughly in Chapter 3, and the

results of the experimental investigations can be found in Chapter 4.
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Chapter 3 Test Fluids

For the large majority of the experiments performed for this thesis, styrene-based fluids

(a Newtonian fluid and two ideal elastic, or "Boger", fluids) were used. The polystyrene Boger

fluids were previously characterized experimentally in both shear and elongational flow by Anna

[14], [2]. As mentioned already, Boger fluids possess the unique characteristic of being both

viscoelastic and having a constant shear visosity, making them useful for isolating and studying

the phenomenon of flow induced elasticity. In keeping with this idea, a Newtonian styrene oil of

similar shear viscosity (the solvent for the Boger fluids) was used for many experiments as a

benchmark fluid. Polystyrene solutions can be sensitive to light and heat and in order to check

whether the fluid properties had changed significantly since the experiments done by Anna in

2000, the shear rheology measurements of the styrene-based test fluids were repeated by the

author using a cone-and-plate rheometer.

In addition to the styrene-based fluids, a concentrated, entangled polybutadiene fluid was

mixed by the author for use as a test fluid in investigations into elastic instabilities during

stretching. To create this fluid, a small amount of high molecular weight, monodisperse

polybutadiene was dissolved in a low molecular weight polybutadiene. Unfortunately, the fluid

did not prove to be elastic enough to be useful for studying the elastic instability. Nevertheless,

the details of the composition, mixing process, and results of shear rheometry of this fluid are

reported in Section 3.3.

A plot of the phase space of concentration and molecular weight is given in Figure 3.1.

All of the discussed in this chapter can be located on this plot, referred to as the Graessley

diagram [71]. Boger fluids normally lie in the dilute region of the Graessley diagram where the

concentration is less than the overlap concentration, c*. The overlap concentration is the polymer

concentration at which the volume occupied by the polymer molecules based on an equilibrium

radius of gyration exceeds the total fluid volume, i.e.

C=* .W (3.1)
7rR3 NA

One of the two polystyrene Boger fluids falls in the dilute region of Figure 3.1, while the

other Boger fluid, which mixed with a higher concentration of a higher molecular weight

polymer, is in the semi-dilute unentangled region of the plot. Note that although the SM3 fluid's

concentration is greater than c*, its viscometric behavior (see Section 3.1.2) is like that of a Boger
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fluid. On the Graessley diagram, the Newtonian styrene oil is located in the concentrated

unentangled region. The polybutadiene fluid was mixed using a rather high molecular weight

polymer at a concentration high enough to be considered a concentrated entangled fluid in Figure

3.1, i.e., a fluid which a with a concentration beyond c +(see Graessley) [71], where

(3.2)
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Figure 3.1 Graessley plot showing characteristic regimes of polymer dynamical behavior [71].

3.1 Styrene-based fluids

The two polystryene solutions were mixed for earlier experiments carried out by Anna

and were chosen for the current work because of their viscoelastic properties and the fact that

these fluids had already been investigated in shear and elongational flow. The dilute unentangled

solution and the semi-dilute unentangled solution were termed is "PS025" and "SM3"

respectively in a previous publication by Anna et al. [14]. For simplicity, and to avoid confusion,

these fluids will henceforth be referred to by those names. Information concerning the
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composition and other physical properties of these solutions as well as those for the styrene oil

(used as both a solvent for the solutions and as a test fluid in these experiments) can be found in

Section 3.1.1. The results of shear rheology measurements performed by the author are discussed

in Section 3.1.2. For more detailed information concerning these fluids, the reader may consult

the PhD thesis by Anna [2].

3.1.1 Fluid Composition

The PS025 fluid was made by dissolving a high molecular weight, monodisperse

polystryrene (obtained from Scientific Polymer Products by S.Anna) in oligomeric styrene oil at a

concentration of 0.25 wt%. The SM3 fluid was mixed in a similar manner but a polymer of higher

molecular weight (10 times higher) was used and it was mixed at a concentration that was double

that of the PS025. The polymer for the SM3 fluid was obtained from Pressure Chemical and the

solution was mixed by Prof. Susan Muller at the University of California at Berkeley for use as

one of the test fluids in the interlaboratory extensional rheometer comparison [14]. Both polymers

had a polydispersity index (PDI) of less than 1.20 as defined by the ratio of the weight averaged

molecular weight, M., to the number-averaged molecular weight, Mn [3]. Changing the molecular

weight and concentration of the polystyrene in the solution significantly changes the elasticity of

the fluid without dramatically changing the shear viscosity and is therefore a good way to isolate

and investigate the effects of these variables on viscoelasticity, which was in fact a goal of the

work done by Anna. Figure 3.2 contains data from a filament stretching extensional rheometry

experiment on the PS025 fluid. The dramatic increase in the Trouton ratio (7 077 ) as a function

of strain is a clear indication of the flow-induced elasticity of these fluids. The solid curve on this

plot is the prediction of the FENE-P constitutive model (FENE = Finitely Extensible Non-linear

Elastic) [5], [7]. This model statistically simplifies the polymer chain by considering the polymer

chains as beads connected by finitely extensible springs. Note, however, that the FENE-P model

tends to under predict the experimental data in Figure 3.2 by up to an order of magnitude at

intermediate strains (2 s 4 ), reflecting the models poor capabilities for predicting transient

viscoelastic flows.
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Figure 3.2 Transient extensional rheometry data and FENE-P fit for PS025 fluid with De=10.0 and

AO=1.0

The data in Tables 3.1 and 3.2 were excerpted from the thesis by Anna and list the

quiescent fluid properties and physical properties of these styrene-based test fluids. The

Newtonian, oligomeric styrene oil that was used as the solvent for both of the polystyrene Boger

fluids was obtained by Anna from Hercules under the name 'Piccolastic A5 Resin'. The

polystyrene solutions are non-toxic and non-volatile. The results of a Thermal Gravimetric

Analysis (TGA) (with a temperature ramp between 23-150 'C ) on the PS025 showed that the

solution experienced no detectable weight loss until 42 *C, and at 60 'C it had only lost 0.15% of

its initial mass [2]. The current experiments were performed at room temperature (20-30 *C) so

thermal degradation is not considered as an issue of major concern. The solutions are slightly

susceptible to degradation by UV light. To avoid deterioration of the polymer solutions, they have

been stored in a dark, refrigerated environment. Nevertheless, the author has repeated shear

rheology measurements in order to verify the viscoelastic properties of the test fluids for the

current experiments.
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M, [g/molJ Rg [nm] c [g/mL] c* [g/mLJ C/c* PDI

PS025 2.25 x 106 15 0.00025 0.00078 0.33 1.02
SM3 2.0 x 107  133 0.00051 0.00034 1.50 <1.20
Styrene Oil 3.85 x 102 ~ ~ ~ ~ 1.33

Table 3.1 Quiescent solution properties of styrene-based test fluids

Density, p [kg/M 3] 1026

Surface Tension, o- [N/m] 0.0378

Thermal Conductivity, k [W/m-K] 0.167

Heat Capacity, c, [J/kg-K] 2040

Table 3.2 Physical properties of styrene oil at 25* C

3.1.2 Shear Rheometry

Viscometric measurements for all of the test fluids used in this thesis were performed

with a TA Instruments AR1000 stress-controlled rheometer using a cone-and-plate geometry

(4cm diameter, 2* stainless steel cone). Measurements of shear viscosity as functions of both

strain and temperature were performed for all fluids and viscoelastic measurements of the non-

Newtonian fluids were done using small amplitude oscillatory shear flow. The results of the shear

viscosity measurements for all three of the styrene based test fluids as a function of shear rate can

be seen in Figure 3.2. Note that the shear viscosities of the PS025 and the oligomeric styrene oil

are very close (- 30 Pa -s ). The viscosity of the SM3 fluid is higher by a roughly a factor of two,

as a result of the higher polymer concentration and molecular weight. For the two non-Newtonian

fluids, the data is indeed nearly constant as a function of shear rate as expected for Boger fluids.

The apparent spike in the shear viscosity of the SM3 fluid is actually an artifact of elastic flow

instability in torsional flows, e.g. the cone-and-plate rheometer. For more details about this

instability, the reader may refer to the recent article by Rothstein and McKinley [72]. The results

of the shear viscosity tests indicated that the viscosities each of the three fluids had increased

since the measurements by Anna. This increase can be attributed to a slow polymerization of the

oligomeric styrene. The viscosity of the PS025 fluid had increased by 26% and the SM3 by 8%.

The results of the shear viscosity measurements are tabulated in Table 3.3 along with other

measured and calculated values resulting from the shear rheometry of these fluids.
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Figure 3.3 Shear viscosities of styrene-based test fluids as a function of shear rate measured at 25*

C. The non-Newtonian fluids have a nearly constant shear viscosity, which is expected

for Boger fluids. Note that the apparent spike in the viscosity of the SM3 fluid is an

artifact of an elastic flow instability in the cone-and-plate rheometer [72].

The viscoelastic properties of polymeric fluids can be very sensitive to temperature

changes. Because the temperature in the laboratory could not be maintained at a constant value, it

was necessary to account for these temperature changes in the data analysis. Using the cone-and-

plate rheometer, a temperature ramp experiment was performed. For a constant applied torque,

the temperature was increased at a rate of 0.5 *C/min over a range of 15-35 'C to measure the

shear viscosity as a function of temperature for each of the test fluids. For the styrene oil, the

Arrhenius model was used to fit a curve to the data, and therefore generate a model for the zero

shear viscosity as a function of temperature. The Arrhenius model can be written

q(T) = ige(To) e _R T Toj 33

where AH/R is the flow activation energy (AH/R =1.8 x 104 [K] for styrene oil). For the non-

Newtonian fluids, the WLF (Williams, Landel, Ferry) model is better suited [5].

The WLF model is written
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yio (T) = 77o (To) e
TO

-a(T-T)
b+(T-T*)

where a and b are the fit parameters (see Table 3.3).
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The elastic properties of the test fluids were measured in the cone-and-plate rheometer

using small amplitude oscillatory shear flow. In such flow, the shear rate is sinusoidal and

f = y'o cos O t, (3.5)

where ro is the strain amplitude, and o is the oscillation frequency. For small amplitude

deformations (linear viscoelasticity regime) the resulting shear stress can be separated into two

components, one due to the fluid viscosity, and the other due to elasticity

"21 = G'(co)y sinct+G"(a)yo cos wt (3.6)

The component of stress that is in phase with strain (elastic component) in Equation 3.6 is

denoted G' which is termed the storage modulus. The out-of-phase, viscous damping component

of this stress (in phase with strain rate) is denoted G", which is called the loss modulus. The
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storage and loss moduli are functions of the oscillation frequency and can be used to evaluate the

viscoelastic nature of a fluid.

For fluids lying in the dilute region of the Graessley diagram of Figure 3.1, the Zimm

bead-spring model is well suited to model experimental data for the storage and moduli. Although

the SM3 fluid is in the semi-dilute unentangled region, the Zimm model has been found to

accurately describe this fluid in addition to the PS025 fluid [2]. The Zimm theory uses statistical

simplifications to model the polymer chain as a series of beads connected by springs, which can

interact hydrodynamically with the solvent. The Zimmr model leads to a spectrum of relaxation

times, the longest of which, Az, is the characteristic time constant of the fluid being modeled.

More detailed information concerning the Zimm model can be found in the text by Bird et al. [7].

The Zimm model was used to fit the experimental data for the storage and loss moduli as well as

the zero shear viscosity of the Boger fluids. The model can be expressed as:

G cNAkBT  { (Z ) 2

M, [.1i2(2+a) + (/Iz _

,_cN_ kB ( w) 2 i(2+cr)

G" = o 7 cAOli ; i2(2+7 +(zw)2]
(3.7)

cN kBT. Nm I
77o =77 s + A B 2+EMW i=1 22a

where a ~ -1.40(h*)0.7 , kB is Boltzman's constant, NA is Avagadro's number, and Nm is the

number of modes. The parameter h* is the hydrodynamic interaction parameter which has a

maximum value of 0.25 for a good solvent and a minimum value of 0.0 for an ideal solvent. By

fitting the equations above to the experimental data, the longest relaxation time, Az, can be

calculated. The longest Zimm relaxation times for the polystyrene Boger fluids were found to be

4.1 seconds for PS025 and 160 seconds for SM3, corresponding to increases of 5% and 3%

respectively over the values measured by Anna (see Table 3.3).

61



1410

3

10

10

10"-
10 0

10-2

10-

10-2 10-1

o Storage Modulus, G'
X Loss Modulus, G"

Zimm model

100 10

o [rad/s]

Storage and loss moduli of PS025 with Zimm model fit.

105

10 --

10

10 2

10 -1

10

10
- 2

10 -

10
10 -3 10-2 10- 100 101 102

o [rad/s]

Storage and loss moduli of SM3 with Zimm model fit.

62

Figure 3.5

102 103

0 Storage Modulus, G'-
x Loss Modulus, G"

Zimm model

Figure 3.6

10 3

I . . . . . - I . . , - I I . . II1 1 1



Current results Results of Anna (1999-2000)

i7o [Pa -s] A, [s] aWLF bWLF 17 [Pa s] A. [s] awLF bWLF

PS025 30.3 4.1 16.2 77.0 24.0 3.9 16.4 80.5

SM3 60.0 160 37.3 160 55.5 155 36.9 160

Styrene Oil 33.0 ~ ~ ~ 21.9 ~ ~ ~

Table 3.3 Tabulated results of shear rheometry for styrene-based fluids compared with earlier

results of Anna [2] for the same fluids.

3.2 Polybutadiene Fluid

A concentrated, entangled polybutadiene (PBd) fluid was mixed by the author in hopes of

creating a highly elastic fluid to be used to investigate the elastic fingering instability. A high

molecular weight, branched, monodisperse polybutadiene polymer was dissolved in a low

molecular weight polybutadiene at a concentration equal to c" to create the fluid. Unfortunately,

after the solution was prepared, it was discovered experimentally that the fluid was not

significantly elastic to be used in the tests. The fluid was, however, subjected to the same shear

rheology tests as the polystyrene fluid. The results of these tests are presented in the following

paragraphs.

3.2.1 Fluid Composition

To create the polybutadiene fluid, a quantity of low molecular weight polybutadiene

liquid was obtained from Polysciences, Inc. According to the manufacturer, this fluid is

composed of 80% 1,2 Polybutadience and 20% Vinyl, and has molecular weight of 1600. A

monodisperse ( PDI=1.10 ), high molecular weight polybutadiene sample was purchased from

Polymer Source (Product# P1209-6Abd). This polymer has a molecular architecture that consists

of a backbone and six arms (three branches at each end of the backbone). This structure is quite

different from the linear molecules of polystyrene solutions, which have only a backbone and no

arms, or branches (see Figure 3.7). The molecular weight of the backbone segment molecule is

90.7 x 103 [g/mol] and the arms each have a molecular weight of 30.0 x 103 [g/mol] for a total

molecular weight of 270.7 x 10' [g/nol] . This polymer was carefully mixed with the low
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molecular weight solution at a concentration of 10 wt%, precisely at c', in order to create a

concentrated, entangled polymer solution (see Graessley diagram, Figure 3.1).

i)

ii)

Figure 3.7 Molecular structure of; (i) a linear polymer, and; (ii) a branched polymer.

The high molecular weight PBd was in the form of a solid at room temperature, and had

to be dissolved in a solvent for mixing with the oligomeric PBd liquid. In order to mix the two

materials, the correct proportions were first carefully weighed using a balance and placed in a

glass container of known weight. Next, hexane was then added to act as a solvent to dissolve the

polymer. The glass container was then slowly rotated in a water bath at 500 C for one week. After

one week, there were no discernable amounts of the solid polymer in the solution. The solution

was then placed in a vacuum oven at 50* C and the pressure was slowly reduced by 29 inches-Hg

and the hexane was allowed to evaporate. Periodically the chamber was vented and the sample

was weighed to check the progress of the evaporation. After one week, the hexane had evaporated

so that the weight of the sample was within 1% of the initial combined mass of the oligomer and

solid.

3.2.2 Shear Rheometry

Both the low molecular weight polybutadiene solvent fluid and the concentrated,

entangled polybutadiene solution were subjected to the same viscometric tests as the polystyrene

test fluids. The data in Figure 3.8 shows the shear viscosity of the fluid at 25* C as a function of

shear rate for the low molecular weight PBd fluid. The fluid exhibits Newtonian behavior by this

measure as the shear viscosity varies by less than 1% over two orders of magnitude in shear rate.
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Figure 3.9 contains the results of a temperature ramp during steady shear flow for the same fluid.

The viscosity decreases logarithmically in temperature and is well modeled by the Arrhenius

equation ( AH/R =1.1x 10 4 [K]).
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The low molecular weight polybutadiene (polymer solvent) was also subjected to

oscillatory shear flow in order to probe the linear viscoelastic properties of the fluid. As Figure

3.10 indicates, both the storage and loss modulus are fairly linear in oscillation frequency on the

log-log plot, and can thus be approximated by the Maxwell model [5]. From the Maxwell model,

the storage modulus, G', can be written

G' I 2 , PS(3.8)

and the loss modulus, G", can be written

G =~ 2 ,s (3.9)

where and the subscript 'ps' stands for polymeric solvent and G,, = rbs / ,,, the ratio of the

viscosity to the relaxation time. Combining Equations 3.8 and 3.9, an estimate of the relaxation

time low molecular weight PBd fluid can be found as

A = -G' (3.10)

From the Maxwell model and the data in Figure 3.10, it was found that the relaxation

time of the fluid was A, = 5 ms. This time is much less than the relaxation time either the

PS025 fluid or the SM3 fluid. Given that the FISER II filament stretching rheometer can achieve a

maximum strain rate of 4 = 20 s', the maximum Deborah number (De = As) achievable with

this fluid in a stretching experiment would be De ~ 0.1, and Newtonian extensional flow

behavior would be expected.
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Figure 3.10 Storage and loss moduli of the low molecular weight polybutadiene oligomer and the

fitted curves from the Maxwell model.

The shear flow behavior of the concentrated, entangled PBd fluid was quite different than

that of the low molecular weight solvent. The zero shear rate viscosity at 250 C was greater by

nearly a factor of ten and the fluid was clearly shear thinning (the shear viscosity decreased by

nearly 20% over the same range of shear rates). The results of a temperature ramp experiment for

the concentrated, entangled fluid, along with a fit curve form the WLF model, are shown in

Figure 3.12.

The results of the oscillatory shear experiments on the concentrated, entangled fluid are

significantly different than those for the PBd solvent, and the simple Maxwell model can no

longer explain the linear viscoelasticity of the fluid. Figure 3.13 contains the experimental data

for the storage and loss moduli as well as fit curves generated using Equations 3.7 for the Zimm

model. The Zimm model is suited for dilute solutions such as the Boger fluids discussed earlier in

this chapter, and is not expected to accurately model a concentrated solution. Nevertheless, the

model was used to arrive at a rough estimate for the relaxation time of the fluid. For the fit curves

of Figure 3.13, the model yields a relaxation time of A. = 500 ms. This value is significantly

larger than the 5 ms relaxation time of the solvent, however, it is still much smaller than the

relaxation times of the polystyrene Boger fluids, and the Deborah number corresponding to the

maximum possible stretch rate of the FISER II filament stretching rheometer, = 20 s-I, is only

De ~10 . A few stretching experiments were made near this maximum Deborah number,
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however it was not possible to induce the desired elastic instability. Although possible,

extensional rheology testing was not done on this fluid.
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Figure 3.11 Shear viscosity (on a linear scale) of the concentrated polybutadiene fluid as a function of

shear rate. The zero shear rate viscosity is 1l =I100 [Pa-s].
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Chapter 4 Experimental Results

This chapter is divided into three sections, one corresponding to each of the two free

surface fingering instabilities seen in the experiments, and one section discussing the cavitation

observed for very high stretching rates. The experiments were done using the FISER II filament

stretching rheometer described in Chapter 2. The test fluids were described in Chapter 3; a

Newtonian liquid and two viscoelastic fluids were used to perform stretching experiments over

four orders of magnitude in Deborah number and one order of magnitude in aspect ratio.

For the stretching experiments described in this chapter, an exponential velocity profile is used to

stretch a thin cylindrical layer of fluid while measuring axial force. Possible endplate instabilities

are recorded using the imaging apparatus described in Chapter 2. For a given experiment, a

desired constant strain rate, Z-., is chosen and the motors are programmed to move according to

an exponential position profile,

L(t)= LO e 6t (4.1)

where LO is the initial endplate separation distance, or fluid sample thickness. It follows that the

velocity is also an exponential ftnction of time:

dt

As explained in Chapters 1 and 2, exponential stretching profiles as defined by Equations 4.1 and

4.2 lead to more uniform kinematics and a nearly constant strain rate in an elongating filament.

The axial strain referred to in this thesis is always the Hencky strain [73], defined as the natural

logarithm of the ratio of instantaneous length to initial length, or

SInL) (4.3)
LO

Unless otherwise indicated, the Hencky strain referred to in this chapter is always based on the

commanded position of the endplates. When an ideal exponential stretch with a constant strain

rate is implemented (which is indeed the case in the current experiments), the Hencky strain can

be written as the product of the initial strain rate and the elapsed time, so that

6 = 4t. (4.4)
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When a viscoelastic liquid is stretched, the response may be considered viscous, elastic,

or somewhere in between, depending on the stretch rate and the fluid relaxation time. The

Deborah number, described in Chapter 1, is a way of quantifying the nature of the fluid response

a priori. The Deborah number is defined as the ratio of the fluid time scale, 2, to the experiment

time scale, ., and is written

De = A40 . (4.5)

For De <1, purely viscous fluid behavior can be expected, while a large Deborah number

signifies that the fluid will behave more like an elastic solid than a liquid when it is deformed.

For the elastic instabilities investigated in this work, the Deborah number is an

appropriate description of the experimental flow conditions. For the Saffmian-Taylor fingering

instability, which can occur in purely viscous liquids, the capillary number is more appropriate.

The capillary number, as mentioned in Chapter 1, is a ratio of viscous forces to capillary forces,

or surface tension. The capillary number as it applies to reverse squeeze flow can be written

Ca = ' , (4.6)

where p is the shear viscosity, V is the bulk radial velocity, and a is the surface tension.

Besides the strain rate O, which can be chosen as desired, the other variable experimental

parameter is the initial aspect ratio, A0 , which is defined as the ratio of the initial sample height

to the initial sample radius, or

A o (4.7)
RO

In Chapter 2 it was mentioned that aspect ratios used in filament stretching rheometer are

typically AO - 0(1), with the initial sample thickness being about 3mm. Material thicknesses as

low as 25 microns are used in probe-tack tests of pressure-sensitive adhesives. The current

experiments were performed using aspect ratios of 0.04 AO 0.40, which, for the 5mm

endplates, correspond to sample thicknesses between 0.10mm and 1.00mm. Altering the initial

aspect ratio can have a large effect on the development of instabilities during stretching, as

explained later in the chapter.
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4.1 Elastic Fingering Instability

The series of images in Figure 4.1 correspond to a stretch using the SM3 fluid at a

Deborah number of De=66, and initial aspect ratio, AO = 0.40. Thus, with 5mm diameter

endplates, the initial fluid sample thickness is 1mm. In the lower portion of each picture, the

reflection of the fluid column on the beamsplitter can be seen. As the stretch in Figure 4.1 begins,

a filament, or stabile fluid column, begins to develop. The column continues to grow until at

some strain (e 3.47 in this case), the onset of the elastic fingering instability occurs.

This instability is marked by the outward radial growth of fingers from the base of a previously

stable and axially symmetric fluid column. As the instability progresses, the initial fingers can

bifurcate and branch as in Figure 4.1, forming complex geometries and developing fibrils, or

small strands of material. At the end of the stretch, the sample fails elastically, either far from the

endplate or near to it, as in Figure 4.1, and the fluid recoils back to the endplate. This behavior

does not occur when Newtonian liquids are stretched because such fluids do not develop the

requisite elastic stresses.
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Figure 4.1 The elastic fingering instability seen in the series of images above occurs during an

exponential stretching experiment with the SM3 fluid at a De=66 and AO=0.40.
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4.1.1 Background

The elastic fingering instability was first studied in the filament stretching geometry by

Spiegelberg and McKinley [60] (see Figure 4.2), but the phenomena is not unlike the patterns

formed when an adhesive layer is strained and fibrils form [32], [35], [33]. The apparent link

between the two phenomena is strengthened when one considers that the flow within the stretched

fibrils of an adhesive layer is primarily a uniaxial elongational flow. Spiegelberg and McKinley

studied the elastic instability using a set of three polystyrene Boger fluids (different than those

used herein). All of the fluids were composed of a monodisperse polystyrene with

M, = 2.25 x 106 [g/mol] in a solution of styrene oil. Table 4.1 contains relevant data regarding

the fluids used in that study.

Fluid M" [g/mol] TIo [Pa-s] k [s] a [N/m]

PS-05 2.25 x 106 47.7 0.78 0.029

PS-1 2.25 x 106 52.0 0.73 0.029

PS-2 2.25 x 106 70.4 0.52 0.029

PS Oil 2.25 x 106 37.0 ~ 0.029

Table 4.1 Fluid properties for the test fluids used in the 1996 study by Spiegelberg and McKinley

[60]. All fluids were polymer solutions comprised of a monodisperse polystyrene in a

solution of styrene oil. (Note: the relaxation time, X, is a mean relaxation time computed

from viscometric properties).
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The study by Spiegelberg and McKinley resulted in an approximate theory for the critical

Hencky strain for the onset of the instability based on critical conditions for stability of a receding

meniscus for a given Deborah number. This theory proposes that the instability occurs when

elastic tensile forces result in a negative pressure in the fluid near the endplates that is large

enough to overcome stabilizing surface tension forces. This theory and its relevance to the current

experiments are discussed later in this chapter.

Figure 4.2 A series of images showing development of the elastic fingering instability in 0.05 wt/o

polystyrene Boger fluid (PS05) as viewed from beneath the endplate in the axial

direction. Note that as the instability progresses the fingers bifurcate repeatedly.

Reproduced with permission from [60]. Copyright 1996 Elsevier.

Numerical simulations carried out by Rasmussen and Hassager [74] presented numerical results

predicting the growth of the elastic fingering instability in the filament stretching flow geometry

as well as the pressure field in the fluid near the endplate (see Figure 4.3). However, these
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simulations disregarded surface tension, with the effect of there being no preference of lower

mode numbers, i.e., perturbations of high mode numbers grew as rapidly as low mode numbers.

A more recent publication by the same authors considered the same problem, but included the

role of surface tension in the simulations. The results indicate that surface tension can indeed act

to reduce the number of fingers (or modes) observed to 3-5 modes [75].

-1 Lime,

Figure 4.3

zii/o

V/i?0

Simulations of development of instability cross-section (left), and stress contours near the

endplate (right). Reprinted with permission from [74]. Copyright 2000 The Society of

Rheology.

In recent filament stretching experiments by Bach et al. [76] using a concentrated, entangled

polystyrene solution, the investigators were able to control the number of modes in the elastic

instability by introducing perturbations through the geometry of the endplates. An instability

having an induced mode number of 4 is shown in Figure 4.4.

While previous research has made steps towards understanding the critical strain at the onset of

the instability as well as the growth of the initial fingers, there are still many unanswered

questions. For example, the causes of the finger bifurcation and branching are still unknown. In

addition, the exact mechanism of the instability onset has yet to be explained.

76

//7 ~

4 1~~>

\ \ \~.,'

/1

N

$

A

I



Figure 4.4 Photographs of induced 4-mode elastic fingering instability in a solution of 12%

polystyrene in a tricresyl phosphate (TCP) solvent. The white overlaid contours are the

results of numerical simulations of the experiment. Note that endplate is not circular, but

has four axisymmetric notches. Reproduced with permission from [76].

4.1.2 Results and Discussion

The experiments undertaken for this thesis are an extension of the previous investigations of the

elastic instability and concentrate on the effects of varying the initial aspect ratio and the Deborah

number. When the Boger fluids are stretched rapidly, i.e., at large Deborah numbers, large elastic

tensile stresses can develop. This strain hardening effect can be seen Figure 3.2, in which the

Trouton ratio vs. Hencky strain was plotted for an extensional rheometry experiment. Such flow-

induced elastic stresses are the driving force behind the elastic fingering instability. The sequence

of images in Figure 4.1 shows the onset and development of the elastic instability during

exponential stretching. In the early stages of the stretch, a stable, cylindrical fluid column forms.

As the plates continue to separate, this fluid column increases in length and decreases in diameter

as required for volume conservation. It should be noted that the onset of the elastic instability
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occurs when almost all of the fluid at the endplates has been sucked into the column. This is

typical of the development of the instability in stretching experiments in which the purely elastic

instability occurs prior to any of the other observed flow instabilities, i.e., for larger aspect ratios

and moderate Deborah numbers.

The data plots of Figure 4.5 contain measured force and radius data for the stretching experiment

shown Figure 4.1. It is obvious from the tensile force data in Figure 4.5 and the corresponding

images that the fluid in the column has already begun to strain harden at the onset of the elastic

instability. At larger strains, as the fingers continue to grow, the tensile force in the column

increases very rapidly.

The lower part of Figure 4.5 contains measured radius data for the experiment. As is typical for

extensional rheometry data, the radius is not a straight line of slope -1/2, as it would be for the

ideal elongation of an incompressible cylinder. This is because a thin layer of fluid coating the

endplates remains during the stretch due to a condition of no slip. These 'reservoirs' of fluid at

the endplates cause the radius to decrease in a nonhomogeneous manner with respect to the axial

direction. Although the midpoint radius does decrease exponentially, the true strain of the

material elements near the midpoint of the filament cannot be predicted exactly from the axial, or

command strain, as it could be done for ideal elongation of an incompressible cylinder.
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It is clear from Figures 4.1 and 4.5 that the elastic instability occurs when nearly all of the

fluid remaining at the endplates is pulled into the axially uniform fluid column, and when

curvature at the base of the column is very large. At the end of the column, near an endplate, there

is a small region in which strained fluid with high axial tension is matched to a thin layer of

relatively unstrained fluid. One possible interpretation is that the elastic instability occurs when

more energy is required to drive a radial shear flow over an increasingly thin fluid layer than to

stretch and strain harden the fluid surrounding the base of the column. At moderate Deborah

numbers, the elastic instability is energetically more preferable than the onset of cavitation at the

endplate (cavitation can occur at larger Deborah numbers) and to necking or fracture of the fluid

column. A possible mechanism for the instability is shown schematically in Figure 4.6. When the

macromolecules in these polymer solutions are stretched, the molecules, or polymer chains

behave as a series of loosely interconnected springs, resulting in elastic tension along the

streamlines. This is an assumption of the Zimm model for dilute solutions [5] and it is the

mechanism responsible for flow phenomena like the Fano flow and the Weissenberg effect

described in Chapter 1.

For polymers, there is a lower entropy and higher free energy associated with being in

equilibrium configuration. Just prior to the occurrence of the elastic fingering instability, the

streamlines at the base of the fluid column experience a very high curvature because the thin layer

of relatively unstrained fluid coating the endplate is coupled to the elastic column over a very

short distance. This results in fluid flow around a curvature of very small radius (see Figure 4.6).

All of these streamlines around the circumference of the column base would prefer, energetically,

to straiten and thus eliminate the high curvature. Since the fluid is incompressible, this cannot

happen unless cavitation occurs. Before cavitation occurs, however, portions of the fluid at the

column base and at periodic angular coordinates do eliminate the large curvature, pulling

surrounding fluid from the thin layer as they grow. This is the onset of the elastic fingering

instability. As the instability continues to progress, this mechanism repeats on a smaller and

smaller scale until the filament ruptures, usually at a point far for the endplate.
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Figure 4.6

(I)

Tension

Stable column
b

a

Low pressure

Hypothetical sketch of fluid streamlines and elastic tension: ( i ) before onset of

instability, and ( ii ) immediately after instability.

It is desirable to predict when, or if, the elastic fingering instability will occur in an

experiment for a given Deborah number because the onset of the elastic instability determines the

point at which the useful part of an extensional rheometry experiment is over. This was the aim of

the theory of Spiegelberg and McKinley [60] that was mentioned in a previous paragraph. This

theory predicts that the instability should occur when the radial pressure gradient at the endplate

becomes greater than the stabilizing forces of surface tension, or when

dP 2

dr
(4.8)

where a = m/R 0 and m is the mode number of the initial instability and Ro is the endplate radius.

However, in the current study it was observed experimentally that fingers grow from the base of

the column, where the radius is very close that of the column midpoint. Thus a substitution was

made in the original theory and the radius used in Equaton 4.8 is not the initial, or endplate

radius, but the radius found by conservation of volume, or

(4.9)R = Roe- " t /2

and a is then written
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a = R . (4.10)

Dimensional analysis leads to a pressure gradient that is proportional to the axial stress in the

filament, or

dP idP"_, (4.11)
dr z=O R z=L(t)/2

From the Oldroyd-B constitutive model [5], an approximation of the tensile stress in the filament

for De >1/2 can be written

Drzz , (4.12)
De-1

where De = 2 . By combining Equations 4.10, 4.11 and 4.12, an estimate of the critical strain

required for the onset of the instability can be written as

ln(Ku-/(GR0 )) + ln(1 - (2De)-1 )
Ec =(5 0t)c,.i, = _/2D , (4.13)

3 / 2 - De-

where G = 7, /A is the elastic modulus in the Oldroyd-B model, and K is a constant of order one

that is related to the most unstable wave number and should be a constant of proportionality in

Equation 4.11 [60]. Figure 4.7 is a plot of the critical strain vs. aspect ratio the data. This plot

contains data from the current experiments (for PS025 and SM3) as well as the data for the earlier

experiments of Spiegelberg and McKinley for the fluids listed in Table 4.1. The solid curve in

this plot was generated using Equation 4.13. Since all of the fluids have different moduli of

elasticity, G, a slightly different value of K is required for each fluid so that the curves collapse to

a single line.
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Figure 4.7 Critical Hencky strain vs. Deborah number. Comparison of results of current experiments

with those of Spiegelberg & McKinley (1996). The solid line represents the prediction of

Equation 4.13.

Another approach at predicting the critical strain for the onset of the elastic instability takes

advantage of the experimental observation that the instability occurs when most of the fluid

disappears from the endplate and only a thin layer of fluid remains. From Figure 4.5, it can be

noted that this strain occurs roughly when the radius data again approaches the ideal radius curve,

which is based the deformation of an ideal cylinder. The experimental radius data in Figure 4.5 is

shown along with the radius calculated from lubrication theory. At the beginning of the

experiment, the data follows the lubrication solution, which has a slope of -3/4 on a log-log plot.

This has been observed for some time in filament stretching experiments and appears to be valid

in general up until strains of es~ 2 [77], [78]. It has also been observed that the slope of the

radius data beyond the strain at which the lubrication theory no longer applies can be

approximated as being -0.8 sO [78]. These heuristic approximations of the mid-filament radius

can be used to arrive at a prediction for when the elastic instability will occur, which has been

done for the experimental data in Figure 4.5. It should be noted that one of the primary unsolved
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problems in extensional rheology is to predict the deviation of the actual radius curve from ideal

radius curve.

4.2 Saffman-Taylor Fingering Instability

When the aspect ratio is reduced, it is observed that fingers of air penetrate the fluid and move

radially inwards at the start of the experiment (see Figure 4.8). This is in contrast to the elastic

instability in which the fingers occur at rather large strains and grow radially outward. In

addition, this phenomenon occurs in both the Newtonian and the viscoelastic liquids. This flow

instability is very similar to the classic Saffnan-Taylor fingering instability observed in Hele-

Shaw cells.

Figure 4.8 Saffman-Taylor instability in a Newtonian liquid: Styrene oil with 9 0 = 0.24s-1,

AO = 0.036, and Ca/AO2 = 1000. The instability occurs just as the plates begin to separate,

when the radial pressure gradient is greatest.

The Saffinan-Taylor fingering instability is an interfacial instability that occurs when a less

viscous fluid pushes a more viscous fluid in pressure driven flow [43]. At the onset of the

instability, fingers of the less viscous fluid begin to penetrate the more viscous fluid in the

streamwise direction (see Figure 4.9).
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Figure 4.9 Sequence of three images showing the Saffman-Taylor instability in which fingers of a

less viscous fluid (air) penetrate a more viscous fluid (glycerine) in pressure driven flow

[43]. The images go from left to right in time and the direction of bulk flow is from top

to bottom.

A three-dimensional variation of this instability that is quite similar to the instabilities seen in the

current experiments has been observed when fluid between two plates is subjected to reverse

squeeze flow in a gaseous atmosphere, and the fluid front must move inward to conserve volume.

[53]. This same situation can occur when a glass is lifted from a wet countertop. In the following

discussion, a theoretical explanation of this viscous flow instability is provided and a prediction

of the critical conditions for the onset of the instability is presented.

4.2.1 Planar Saffinan-Taylor Instability

When a less viscous liquid moves behind a more viscous liquid in planar flow, such as the flow in

a Hele-Shaw cell, the interface between the two fluids is unstable to perturbations. This instability

is perhaps best explained using the diagram in Figure 4.10. If an exaggerated perturbation is

imagined, such as the one at the top of the figure, it is obvious that the fluid to each side of the

point P+ (in the directions perpendicular to the flow) are at a lower pressure. This is illustrated by

the lower portion of Figure 4.10, which shows the linear pressure drop expected for a Newtonian

fluid flowing in a channel. Moving in the flow direction, the difference in viscosities causes a
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larger pressure drop at point P- than at point P+, two positions which are parallel along the flow

axis.

-V P

dx-

flow
h << w 1)---------------.----- yH
Pi << P2

PIB

d P V

x

Figure 4.10 Sketch of instability mechanism in Hele-Shaw cell channel flow for a Newtonian fluid of

viscosity 12 being displaced by a less viscous fluid (such as air) with a viscosity p.L. In

the figure, V is the bulk velocity, P is the hydrostatic pressure, and h is the channel depth

The Saffinan-Taylor instability can also occur in a radial geometry, such as when air is blown

into a Hele-Shaw cell causing diverging fingers (see Figure 4.11) or when fluid is removed from

a Hele-Shaw cell allowing converging air fingers to penetrate the more viscous fluid [45].
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Figure 4.11 Diverging radial Saffman-Taylor instability in a Hele-Shaw cell [45]. Air is injected into

a Hele-Shaw cell filled with glycerin, forming fingers that move radially outward.

Both Paterson [45] and Bataille [79] studied the case of converging air fingers penetrating a

Newtonian liquid in a Hele-Shaw. These studies resulted in a theory predicting the onset of the

instability and the number of fingers, or modes that can be expected. Because of the geometrical

similarity to the three dimensional Saffinan-Taylor instability observed in the current

experiments, the theory for the two-dimensional case serves as a basis from which the theory for

the more complicated, three dimensional instability can be adapted. The following paragraphs

describe the theory of the planar, radial Saffman-Taylor instability in a Newtonian fluid according

to Paterson and Bataille.
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r >h

Figure 4.12 Radial Hele-Shaw geometry. If a less viscous fluid is injected at the source, diverging

fingers will develop. If instead, liquid is pumped out at the source, converging fingers of

the surrounding, less viscous fluid will develop.

From Darcy's law for radial flow, the pressure profile in the liquid is written

P(r)= P - 7 hln(r/R), (4.14)

where PO is the atmospheric pressure, p is the liquid viscosity, h is the cell gap (small compared

with the liquid radius), R is the actual fluid radius, r is the radial coordinate, and Q is the

volumetric flow rate. The mean radial velocity V can be deduced from the flow conservation to

be:

V2 = (4.15)' 2nRh

It follows from Equations 4.14 and 4.15 that the pressure gradient, VPr , at the edge of the liquid

disc is

12u Vr. (4.16)VP,..h
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Taking the linear perturbation derivation from Paterson in which an initial circular shape

destabilizes into a n mode oscillatory form:

r(0,t) -+ r(t) + a f(t)e n (4.17)

where a is the initial amplitude (small compared with R) andfAt) is the relative expansion of the

perturbation. A linear perturbation analysis leads to the exponential growth with the characteristic

rate a, so that

f(t)= eant. (4.18)

This growth rate has been derived independently by both Paterson and Bataille and is given by

the following relation:

nr-1f(n+1)-h2
a = R V - (4.19)" R2 ' 12,uR

Two dimensionless parameters that can be defined in this expression are the initial aspect

ratio A0 , (an expression of the degree of confinement of the liquid) and the capillary number Ca

(which compares viscous dissipation to surface tension):

h pVAO =- and Ca - (4.20)
R

Using this notation, the characteristic time can be written

a. =(n-1)rl - n(n+1) C 2  R (4.21)
" 12 Ca), R

The perturbation grows only if a > 0, and from Equation 4.21, the critical mode number, n, , can

be written

Ca 1 1
n = 12-+ 2 (4.22)

The fastest growing mode (maximum value of an in Equation 4.21) corresponds to the mode

number nm:

89



SCa1nm = a (4.23)
JA 2 +

Experimentally, Paterson observed n, modes, or fingers, growing just at the onset of the

instability. Since the front contracts, the total number of fingers decreases, and only the more

developed fingers keep growing so that eventually one finger dominates and reaches the source.

This final development of the instability is of course beyond the scope of a linear stability

analysis.

4.2.2 Scaling Arguments for 3-D Radial Case

At the start of a stretching experiment, the endplates begin to separate and fluid must move

radially inward to conserve volume. If a cylinder of an incompressible material is deformed in a

way that maintains a cylindrical shape, conservation of volume dictates the following relation

between the cylinder length and radius:

I dL 2 dR (4.24)
L dt R dt

In the case of the current experiments, the fluid element does not maintain a purely cylindrical

shape as the endplates separate. Due to a condition of no slip, the fluid takes on an hourglass-like

shape. Nevertheless, an approximation of the bulk radial velocity at the start of the stretch can be

made by recognizing that the term on the left side of Equation 4.24 is the strain rate, by

definition, so that:

dR _ o'R0
V ~- - . (4.25 )

dt 2

The pressure profile resulting in reverse squeeze flow for a Newtonian fluid can be gotten by the

classical lubrication approximation [42]:

P(r,t)=P0 -P 3uA(Ro2 -r (4.26)

This parabolic profile is quite different from the logarithmic one derived from Darcy's law in a

Hele-Shaw cell given by Equation 4.14. However, as Figure 4.13 indicates, the pressure gradient

at the edge of the liquid disc is the same in both cases, and
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(4.27)Rf dL A1 R

Since the initial pressure gradient at the front is the same in the two situations, it is expected that

the relation of Equation 4.23 is a good indicator of the number of fingers observed in reverse

squeeze flows. Thus, a larger number of fingers are expected for higher strain rates or smaller

aspect ratios (more confined environment), since these conditions lead to larger pressure

gradients.

VP rR

Darcy profile
- -- Reynolds lubrication

0.0 0.2 0.4 0.6 0.8 1.0

r/R

Figure 4.13 Comparison of the radial pressure profiles in the liquid from Darcy's Law and Reynolds

lubrication theory. The two equations result in the same pressure gradient at the front.

Combining Equations 4.20 and 4.25, the initial radial capillary number can be expressed as

Cao = 2o
2a-

(4.28)

The number of fingers observed experimentally is plotted in Figure 4.14 against the initial value

of Cao/AO2 . It appears that Equation 4.23 overpredicts the actual number of fingers by a factor of

about 2. In addition, fingers are observed beyond a critical value of this ratio, or at

Ca /A 350. In contrast to the Hele-Shaw geometry in which the gap between the two plates

is constant, the gap in the current experiment changes as a function of time. Following the results
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from the linear perturbation derivation, the viscous instability of mode number n grows with the

characteristic growth rate an. However, as this instability grows, the distance between the

endplates gets larger, and the pressure gradient decreases according to lubrication theory. Thus

the initial fastest growing finger may not remain the fastest as the stretch progresses. The growth

rate, a, depends of the actual value of the ratio Ca/A2, i.e., the growth rate depends on time. In

the following section, this aspect is considered in order to derive the growth rate of the

perturbations in reverse squeeze flow.

In Paterson's derivations, the evolution of the amplitude of an n mode instability is given by:

df= al(t)f(t) (4.29)
dt

Since the pressure gradient at the edge is the same for reverse squeeze flow as for the Hele-Shaw

cell geometry, it is assumed as a first approximation that the growth rate given by Equation 4.19

holds true at small times, if plate separation, average front radius and the bulk radial velocity are

expressed as functions of time. Using the derivation of the bulk radius from volume conservation

from Equation 4.9, these quantities can be written:

V 2 Ro, e ( o t/2 4.30)
2

Ca - Cao e ~ t 2  (4.31)

3 - t
A- AO e 2  (4.32)

The transient growth rate can then be written:

( nn+1) A2  2 O t

2 4 =+) A 2 (4 .3 3 )The a i of2 24 Cal ao e

The amplitude of the nW' mode can finally be evaluated by integrating the Equation 4.33:

dt )(jt n(n+l)_ A20 2tf (t> =exp f.1 n ()=exp (n-1) 2 84 Cao (e !t _ 1)) (4.34)
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Figure 4.14 Theoretical prediction of the amplitude of the perturbation, f, (Equation 4.34) as a

function of strain and mode number, n, for CaO/AO2 = 500. As the strain increases, the

radial pressure gradient decreases, so the perturbations first grow to a maximum and then

decay. The mode number which corresponds to the maximum amplitude is nma= 2 0 .
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Figure 4.15 Maximum amplitude of the perturbation as a function of the initial value of the ratio

Ca/A2.
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Figure 4.16 Number of fingers, n, observed with styrene oil (Newtonian liquid) versus the initial

value of Ca/A2. Dashed line: Paterson relation (Equation 4.23) for n, directly adapted to a

squeeze flow. Solid line: number of fingers corresponding to the perturbation mode with

the larger amplitude in the relation (Equation 4.34). The dotted curve corresponds to the

instability amplitude, f(t), for n giving the maximum amplitude (see Figure 4.14). Note

that the instability is observed experimentally at Cao/Ao2 >350, when the growth rate

begins to increase rapidly (Cao/Ao2 =350 is denoted by the dotted vertical line).

4.2.3 Results and Discussion

It is observed that when the Saffman-Taylor instability occurs, the fingers grow and then

decay as the stretch continues. This effect can be explained by the time-decreasing pressure

gradient predicted by the lubrication theory, and can also be inferred from Figure 4.14, in which

the growth rate, f(t), steadily decreases after reaching a maximum. The contours in Figure 4.17

were generated using the linear stability analysis described in the last section. These contours

represent fluid free surface at various times during a stretching experiment. This simulation is a

good representation of the experimentally observed instability, i.e., the perturbations first grow,

and then damp out at larger strains so that a fluid filament of circular cross section may form.
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Figure 4.17 Simulation of 3-D Saffman-Taylor instability shape as a function of strain. Note that

although the linear perturbation analysis is not expected to be relevant at large strains, the

experiment does qualitatively mimic experimental observations, i.e., the finger amplitude

often reaches a maximum before the a the interface begins to re-stabilize as the pressure

gradient diminishes.

The Saffman-Taylor fingering instability can also occur in the viscoelastic test fluids.

Although the appearance of the fingering instability in these fluids is virtually indistinguishable

from the instability in the Newtonian liquid, the conditions for onset are quite different. In Figure

4.18, in which the initial capillary number is plotted against the initial aspect ratio, the stability

curve as predicted by the theory adapted Paterson is shown as a solid line of slope 2. As

mentioned earlier, the experimental determinations of onset of the viscous fingering instability

coincide remarkably well with this prediction. However, at low aspect ratios, the Saffman-Taylor

fingering instability in the Boger fluids occurs at appreciably lower strain rates than for the

Newtonian liquid. Interestingly, at aspect ratios greater than AO & 0.2, the onset of the instability

in the non-Newtonian liquids occurs at greater capillary numbers than for the Newtonian liquid.

This phenomenon can only be explained by flow-induced elasticity, but due to the complex

nature of the flow, a full explanation of this behavior is not possible.
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Figure 4.18 Experimental determination of the onset of the viscous fingering with viscoelastic Boger

fluids. For each experiment, the capillary number is plotted versus the aspect ratio. Full

symbols are used when fingers are observed. The solid line corresponds to the onset of

the instability for a Newtonian liquid (styrene oil).

If the Saffinan-Taylor instability does occur in the viscoelastic liquids and the Deborah

number is large enough, it may be followed by the elastic fingering instability. However, in this

case, the elastic fingers no longer grow from a circular column, but from the some shape left by

the viscous fingering instability. As seen in Figure 4.19, this can lead to a more intricate pattern,

in which small elastic fingers grow at regularly spaced intervals on either side of the primary

fingers created by the Saffmnan-Taylor instability. These patterns have been tenned 'fishbones' by

the author for obvious reasons. Figure 4.20 contains a series of nine images from a stretch in

which the fishbones appear. For this experiment the larger, 10mm diameter, endplates were used,

but the stretch used the same fluid (SM3) and nearly the same stretch rate as the experiment

shown in Figure 4.19 with the 5mm endplates. If there is any noticeable difference in the

appearance of the instability, it is that the larger cube provides better optical resolution. As

mentioned in the discussion of the elastic instability in Section 4.1, a theoretical explanation of

these secondary elastic fingers and the bifurcation that occurs during the during the fishbone

instability is not yet available.

It should be noted that when the elastic instability occurs after the Saffmnan-Taylor

instability, there are two distinguishable inorphologies. The first occurs when the elastic fingers

grow directly from the fluid fingers left by the viscous fingering instability. In this case the fibrils
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are very dense and span nearly the entire radius of the endplate. The second possibility occurs

when the Saffman-Taylor instability decays allowing a fluid filament with a roughly circular

cross-section to form. The elastic fingers then grow from this rough fluid filament in nearly the

same manner as the purely elastic fingering instability.

5 mm

8=1.25 g=2.30 g=3.67 8=4.70

Figure 4.19 A series of 4 images showing the Saffman-Taylor instability followed by the elastic

fingering instability that occurs at a larger strain (P, > 3.7). This experiment was done

using the SM3 fluid at De=43 and AO=0.04.
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Figure 4.20 Formation of 'fishbones' in the elastic instability. This experiment uses the larger 10mm

diameter endplates with all other parameters being nearly the same as the experiment

shown in Figure 4.19 (SM3 fluid, AO = 0.04, 9 = 0.27s-1, De=39, Ca = 2.8).
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4.3 Cavitation

When the initial aspect ratio is lowered, and when the rate of plate separation is

increased, the pressure within the liquid decreases as predicted by lubrication theory, and

cavitation may occur. Figure 4.21 contains a still image from a stretching experiment in which

two cavitation bubbles form.

cavitation
bubbles

Figure 4.21 Image showing cavitation in the SM3 fluid. Note that the bubbles have appeared before

the endplates have separated appreciably. The experimental parameters are: = 7.7s',

AO= 0.04, De= 1050, Ca 37.

4.3.1 Results and Discussion

It has long been realized that cavitation should occur in a liquid below some critical

pressure [29], [31]. It was explained earlier in this chapter that the pressure distribution within the

fluid sample at the start of an experiment can be found by the lubrication approximation. If

Equation 4.26 is written as a function of the initial capillary number and initial aspect ratio, the

initial pressure at the center of the endplate is

6- Ca'
P ,.O=Po - .2

0+ RO AO
(4.35)
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Thus, for a given geometry, the critical pressure is a function of the same dimensionless

parameter, Cao/Ao2, that determines the onset of the Saffman-Taylor instability. Figure 4.22

contains experimental data from stretching experiments using all of the test fluids. In this plot,

experiments in which cavitation occurred are shown with filled symbols, and experiments with no

cavitation are shown with unfilled symbols. From the data in Figure 4.22, it was found using

Equation 4.35 that cavitation occurred forCa 0 /A 0 2 >4300. This corresponds to a critical

pressure of P,, -5 x 104 N/M2 . There appeared to be no difference in the critical pressure

required for the onset of cavitation for the three test fluids, which was expected, given the

similarity is viscosities of the three fluids. However, it should be noted that the cavitation bubbles

seemed to grow faster in the Newtonian liquid than in the viscoelastic liquids. A possible

explanation is that the cavitation itself induces an elastic response in the vicinity of the bubble,

acting to damp further bubble growth. Unfortunately, it was not possible to further explore this

phenomenon with standard video because the cavitation always occurred very quickly (within 1-3

frames), resulting in poor temporal resolution.
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Figure 4.22 Plot of Cao vs. A0 showing validity of critical Cao /Ao2 for cavitation. The filled markers

represent experiments in which cavitation was observed. The dashed line corresponds to

a pressure of -0.5 bar (-5x 104 N/m2) the center of the endplate as calculated from

lubrication theory.

100



Chapter 5 Conclusions and Future Work

5.1 Conclusions

A filament stretching rheometer was modified in order to perform stretching experiments

on highly confined liquids in order to investigate various free surface instabilities that can occur.

The resulting experiment, which was described in Chapter 2, is very similar to the probe-tack test

that is used to test pressure-sensitive adhesives (PSAs). Three test fluids were used; a Newtonian

fluid and two model viscoelastic liquids, all of which were described in Chapter 3. The results of

the experiments were presented in Chapter 4, which was divided into three sections,

corresponding to the three instability mechanisms observed in the experiments.

The first section of Chapter 4 described the elastic fingering instability, which occurs

only in the viscoelastic test fluids. The purely elastic fingering instability results when the fluid

strain hardens and most of the fluid remaining at the endplates has been drawn into an almost

axially uniform elastic fluid column. As this instability progresses, 'fingers' of fluid grow radially

outward from the column. At larger strains, the tips of the fingers can bifurcate and these new

fingers can bifurcate again, resulting in fractal-like geometric patterns. Previous publications have

shown that that instability is influenced by surface tension, which has been shown to play a role

in setting the number of fingers initially observed [75].

An earlier theory relating surface tension to the critical strain at the onset of the elastic

fingering instability [60] was slightly modified in order to better represent the physical problem.

This was done by using the approximate midfilament radius rather than the initial endplate radius

(from volume conservation) in the estimation of the contribution of surface tension. With this

modification the critical strain observed for the current experiments was very close to the

prediction of the theory. Nevertheless, it seems that the critical strain also occurs at the point in

the stretch when almost all of the fluid has been drawn into the column, and empirical predictions

of this strain can be achieved by relating the measured midfilament radius to the radius based on

the ideal deformation of a cylinder.

The second section of Chapter 4 describes an instability closely related to the well-known

Saffman-Taylor instability that occurs in planar Hele-Shaw cells for Newtonian as well as non-

Newtonian fluids. If a less viscous fluid drives a more viscous fluid in a pressure driven flow, the

interface between the fluids becomes unstable to perturbations, and fingers of the less viscous
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fluid penetrate into the more viscous one. A radial variation of this instability is also possible in a

Hele-Shaw cell and independent studies of the Saffman-Taylor instability in this geometry were

undertaken by both Paterson [45] and Bataille [79]. The Saffman-Taylor instability is seen in the

current experiments when the initial aspect ratio is sufficiently small, and occurs at the start of an

experiment when radially converging fingers of air penetrate into the viscous liquid between the

endplates. When an experiment begins and the endplates begin to separate, a radial pressure

gradient is induced mechanically according to lubrication theory for a reverse squeeze flow. From

the theory of Paterson, a stability criterion for the onset of the Saffmian-Taylor instability was

successfully adapted to the current experiment, and the occurrence or non-occurrence of the

instability can now be predicted for Newtonian liquids, given the initial experiment conditions. In

viscoelastic liquids, combinations of the elastic instability and the Saffman-Taylor instability can

also result. When this occurs, the final shape of the elastic instability can be very complex and

elastic fingers grow from remnants of the viscous fingering instability, creating dense fibrillar

patterns.

Finally, cavitation can occur when the pressure in the fluid is reduced beyond a critical

value, i.e., when the separation rate is large enough and the aspect ratio, or degree of

confinement, is small enough. This experimental result is in agreement with classical results of

Kaelble [31]. The experimental data indicates that cavitation occurs when the ratio Cao/Ao2

reaches a critical value. The corresponding pressure can be found by expressing the lubrication

approximation for the initial pressure at the center of the endplates as a function of this number,

or

6c- Cao
P ,.O=p A2 (5.1)

,=0. RO (A 0

From Equation 5.1 and the data in Figure 5.1, the critical pressure required for cavitation in the

styrene-based fluids is approximately Pr, = -5 x 04 N/i 2 (-0.5 bar).

5.1.1 Stability Diagram

A stability diagram summarizing the results of the current experiments for the non-

Newtonian test fluids was developed (see Figure 5.1). This diagram may be used as a guide to

predict which instability, if any, may occur in a stretching experiment given the initial

experimental parameters. The abscissa represents the importance of elastic effects as
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characterized by the Deborah number (De), whilst the ordinate axis characterizes the importance

of viscous and capillary forces that drive the Saffman-Taylor instability. The different regimes of

this stability diagram are summarized in the following paragraphs.
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Stability diagram for the different modes of instabilities during the filament stretching of

highly elastic liquids.
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As the diagram indicates, there is a region for small Cao/AO2 and small De for which no

instability occurs. In this region, a stable fluid filament develops, leaving an evenly distributed

layer of fluid at the endplate (see Figure 5.2).

stable fluid filament

lower endplate

beamsplitter

Figure 5.2 Sketch of lower endplate and fluid filament and in an experiment in which no instability

develops.

The elastic fingering instability is observed to occur at Deborah numbers above a critical value of

De = 4, although viscoelastic liquids typically begin to strain harden at De > 1/2 [80]. The fact

that the elastic instability does not occur at lower Deborah numbers may be related to the

dimensionless parameter written

Ac- De
=--, (5.2)

776 Ro Ca

where A is the fluid relaxation time, o is the surface tension, r/o is the zero shear rate viscosity,

and Ro is the endplate radius [60], [75]. This dimensionless number depends only on fluid

properties and on the stretching geometry, and is a ratio of surface tension-induced stress, o-/RO ,

to the elastic modulus of the fluid, G = rqo / (for the elastic polymer solutions used in this study,

1 0 20 ). However, it should be noted that the non-occurrence of the elastic instability of at

1/2< De < 4 may simply be because the velocity and position limits of the filament stretching

rheometer are reached before the fluid can sufficiently strain harden (see Chapter 2). Figure 5.3

contains a sketch of the elastic fingering instability as it occurs in this region.
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Figure 5.3 Sketch of the purely elastic fingering instability. Early in the experiment, a stable

filament forms. At a larger strain, fingers begin to grow outward form the base of the

column. These fingers may bifurcate and secondary fingers may grow from the initial

fingers.

At values of Ca /AO 2 >350, a sufficiently large radial pressure gradient is created to

induce the Saffinan-Taylor fingering instability in Newtonian liquids. This result is predicted by

the theory adapted from Paterson and validated by the experiments using styrene oil. For the

viscoelastic test fluids the initial conditions are not as clear. As Figure 5.1 indicates, the critical

value of Ca, /A 2 appears to be a function of the Deborah number, suggesting an influence of

fluid elasticity on the instability. Consequently, a region is mapped from the experimental results,

as shown by the dashed line of positive slope. Above this dashed line, the Saffman-Taylor

instability can take on multiple forms. If the Deborah number is below the critical value of

De = 4, the instability consists only of the Saffinan-Taylor instability, followed by no elastic

instability. In this case, a fluid column still forms and the decreasing radial pressure gradient can

even allow the fluid at the base of the column to regain a circular shape before the experiment

ends. If however, the Deborah number is large enough, then the elastic instability will occur after

the initial Saffman-Taylor instability. In this case, a single fluid filament can still form, as for

experiments marked an 'x' on Figure 5.1 (and shown in Figure 5.4), or, the Saffnan-Taylor

instability can lead directly to fibrillation and the elastic 'fishbone' patterns with forming a

filament. When the former occurs, it is more like the familiar elastic fingering instability, in

which fingers grow radially outward. When the Saffman-Taylor instability leads directly to
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fibrillation, elastic fingers grow on a much smaller length scale from the fluid patterns formed by

the viscous instability as shown by the sketch in Figure 5.5.

Figure 5.4 It is possible for the Saffman-Taylor instability to occur, then re-stabilize (because of the

decreasing pressure gradient) and form a roughly circular fluid column. This

phenomenon can occur before the elastic instability. In this case, the elastic fingers grow

radially outward from the roughly circular filament.

Figure 5.5 When the viscous instability precedes the elastic instability and the Saffman-Taylor

fingers do not decay significantly before the onset of the elastic fingering instability,

elastic fingers can grow directly from the remaining traces of the viscous fingers,

resulting in complex geometric patterns and dense fibrils. These patterns have been

termed 'fishbones' by the author because of their appearance.
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It is well known that cavitation should occur in a viscoelastic liquid at a critical low

pressure [31], and this phenomenon is observed in the current experiments as well. It was

observed that cavitation in the viscoelastic test fluids occurred at the critical value of

Ca, /A,2 4300 on the ordinate axis of Figure 5.1. From lubrication theory, this value

corresponds to a pressure of P,, -5 x 10 N/m2 . When cavitation occurs, it can be followed by

the elastic fingering instability and fibrillation. Just as the Saffinan-Taylor instability affects fibril

development when that instability leads directly to fibrillation, the shape of the fishbone patterns

and the density of the fibrils are influenced by the residual shapes left by the cavitation bubbles

(see Figure 5.6).

initial
cavitation

Figure 5.6 When the pressure within the fluid is low enough cavitation can occur. In the viscoelastic

fluids, cavitation can be followed by the elastic instability. When this occurs, the final

shape of the elastic instability and the morphology of the fibrils is significantly altered

because the elastic fingers (and therefore fibrils) grow around the sites where the

cavitation bubbles occurred.

5.1.2 Adhesive properties

Because of the close similarity to the probe-tack test, which is used to test pressure

sensitive adhesives, it is natural to consider the tensile force and work of adhesion required to

debond the endplates. As mentioned in Chapter 1, the viscoelastic test fluids used for this study

are not true pressure sensitive adhesives because a residue remains on the endplates after cohesive

failure [16]. Pressure-sensitive adhesives should debond adhesively and leave no residue.

Nevertheless, the test fluids used for the experiments in this thesis do have many similarities to
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pressure sensitive adhesives. Fingering instabilities (both elastic and viscous) have been observed

in testing of PSAs [56], [58], [57], [59], [54]. In addition fibrillation, which is observed in the

current experiments, is of interest because of its effect on the work of adhesion, or the energy per

unit area required to normally debond two surfaces [38], [37]. Finally, the force versus strain

curves for the strain hardening Boger fluids used for this study are very similar to those for PSAs

[21].

Figures 5.7 and 5.8 contain measured force data as a function of Hencky strain for several

experiments in which only the purely elastic instability occurred. The first peak in these curves

results from the viscous, reverse squeeze flow, which was explained in Chapter 2 using Reynolds

lubrication theory. The second peak in the curves, which occurs at greater strains, is due to strain

hardening. The data in Figure 5.7 is for three stretching experiments using the SM3 fluid at

various initial aspect ratios, but with a nearly constant Deborah number. As expected, the initial

viscous force response of the fluid increases with decreasing endplate separation. Interestingly,

despite the differing aspect ratios and sample volumes, the data for all three experiments nearly

coincides for the later part of the stretch. The maximum force recorded for all three experiments

is nearly the same. This is because the Deborah number is so large that in each of the three

experiments the fluid is deformed sufficiently that all memory of initial conditions is eradicated.

120 --&- A0 =0.40, De=382

-e- A0 =0.22, De=405
100 -- e- A=0.13, De=365

80 -

60

40

0 1 2 3 4 5

Hencky Strain

Figure 5.7 Force data for three experiments in which the aspect ratio was varied but the Deborah

number remained nearly constant at De ~ 385.
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The data in Figure 5.8 contains the force versus strain data for three stretching

experiments of different aspect ratio, but of a nearly constant Deborah number that is

significantly lower than that of the experiments in Figure 5.7. Again, the magnitude of the initial

force peak increases with decreasing aspect ratio. By comparing Figures 5.7 and 5.8 it can be

seen that the magnitudes of the viscous force responses are lower for the experiments at a lower

separation rate for the same aspect ratio, which is again in agreement with lubrication theory. The

magnitudes of the second peak (elastic response) are also lower for the experiments of lower

Deborah number. It can be concluded from these results that measurement of transient

extensional viscosity in the filament stretching rheometer are not so sensitive to changes in aspect

ratio.

40
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20

10

0

SI I I

-(k- A0 =0.40, De=167

-B- Ao =022, De=14 9

-e- AO =0.13, De=152

I

I I

0 1 2 3 4 5 6

Hencky Strain

Force data for three experiments in which the

number remained nearly constant at De ~ 155.

aspect ratio was varied but the Deborah

By integrating the force curves shown in Figures 5.7 and 5.8 with respect to distance, and

then dividing by the endplate area, the work of adhesion (expressed in J/m 2) can be found as

Wa = F(z) dz, (5.3)

where A is the endplate area, and F(z) is the axial force as a function of position, which can be

found from the Hencky strain. As seen in Figure 5.9, for the nearly constant Deborah number the
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total work of adhesion increases significantly as the aspect ratio, or sample volume size, is

increased. This trend is also observed for the three experiments at the lower Deborah number in

Figure 5.10. By comparing Figures 5.9 and 5.10, it is seen that the total work of adhesion also

increases with increasing strain rate, or Deborah number. An exception to this observation is that

the total work of adhesion is nearly equivalent at both Deborah numbers for the lowest aspect

ratio. It should be noted that the initial viscous response is insignificant role compared to the

elastic response in the work of adhesion.

100 -
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60-

40-
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0

Figure 5.9
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4 5

Work of adhesion as a function of strain for the experiments shown in Figure 5.7, in

which the aspect ratio was varied but the Deborah number remained nearly constant at

De;~ 385
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Figure 5.10 Work of adhesion as a function of strain for the experiments shown in Figure 5.8, in

which the aspect ratio was varied but the Deborah number remained nearly constant at

De,-~ 155.

5.2 Future Work

There are many avenues that could be taken in the continuation of this research. For

example, because of the difficulties in aligning the endplates by the current mechanism, the

smaller 5mm endplate assembly was used for the majority of the experiments in this thesis. A

larger endplate, however, provides better visualization of the instabilities (see Figure 4.20). In the

case of the elastic instability, better optical resolution could lead to a better understanding of the

elastic fingering instability. This would be especially helpful in the case of the 'fishbone'

instability observed when the Saffman-Taylor precedes the elastic instability, for which little is

known. With the current alignment mechanism, the angular alignment resolution is fixed, albeit

unknown, and as the endplate radius increases, sine errors increase proportionally. A self-aligning

mechanism that takes advantage of the flat surfaces of the endplates can be envisioned, i.e., the

endplates could be brought together, and then fastened in some appropriate manner.

In addition to better optical resolution, larger endplates allow for even lower aspect

ratios to be examined for the same initial endplate separation. Lower aspect ratios could enhance

the study of cavitation and the effect of cavitation on fibrillation and adhesive bond strength, a

topic for which there is currently much research interest [38], [59], [21], [54], [22], [56]. Lower
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aspect ratios are beneficial for the study of cavitation, because a lower strain rate is required to

generate the requisite low pressure in the fluid, and it is expected that the cavitation itself would

occur on a proportionally longer timescale. This is because the pressure gradient as predicted by

lubrication theory should not decay so fast in time. In the current experiments, cavitation

happened so fast (within a couple of video frames) that it was impossible to investigate the

phenomena in detail using standard video at 30 frames per second. It should be noted that a high-

speed camera was obtained on loan from the Edgerton Laboratory at MIT in order to better

capture the occurrence of cavitation, and some experiments were recorded at 1000 frames per

second. However, it was necessary to increase the intensity of the lighting, which in turn caused

reflections on the beamsplitter that obscured the view of the instability, and the high-speed

camera proved to be of no great benefit. Admittedly, not a lot of time was spent on this endeavor

and it may be worthwhile in the future to optimize the lighting conditions for use with high-speed

video.

A simple modification to the experiment that may also provide valuable insight is the use

of non-circular endplates. In the course of the current experiments, a rectangular endplate was

fashioned from plexiglas and used as the lower endplate. The results were not uninteresting, as

can be seen from Figure 5.11.
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= 0.85 =1.70

P = 3.40

Figure 5.11 Stretching the SM3 liquid with a rectangular endplate (a 3mm x 10mm piece of plexiglas

fixed to the prism by capillarity with a thin layer of liquid). For this experiment, an initial

gap of Lo=0. 15mm was used. An aspect ratio can be defined using the ratio of the initial

gap to the width of the rectangle (3mm), so that Ao= 0.05.

5.3 Summary

This study has resulted in the development of a stability diagram and the mapping of a

stability region, which can be used to determine the useful limits of initial parameters in filament

stretching rheometry. Two types of fingering instabilities were clearly distinguished. The three

dimensional radial Saffman-Taylor instability was described by adapting a previous theory
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developed for the two dimensional case. It was found that the new theory accurately represented

the current experimental findings. A previous theory predicting the onset of the elastic fingering

instability was slightly modified to better describe the flow, thus resulting in an accurate

prediction of the critical strain for the onset of the elastic fingering instability in the current

experiments.

It was found that the viscoelastic liquids used as test fluids are not true pressure-sensitive

adhesives because these fluids fail cohesively in a probe-tack test, leaving a residue on the

endplates. Nevertheless, the fluids exhibit behavior that is similar in many ways to true PSAs,

Such behavior includes fingering instabilities, cavitation, and fibrillation. In addition, it was

found that the force profiles for the current experiments were very similar to those observed in

similar tests of PSAs. Finally, from the force data, it was ascertained that results of extensional

viscosity measurements in the filament stretching rheometer should not be very sensitive to

changes in the initial aspect ratio, but that the total work of adhesion is sensitive to such changes.
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