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ABSTRACT

In this study, different approaches to the control of the space shuttle angle-of-attack unwanted
oscillations during reentry are presented. The space shuttle glides over a prescribed trajectory
that is optimal in that it minimizes the weight of the thermal protection system. The angle-of-
attack oscillations are governed by a unified equation that results from the transformation of the
equations of motion by means of a change of variable from time to a non-dimensional distance
parameter along the trajectory. The original unified equation is modified to be applicable for
control purposes and using a generic hypersonic simulation model. The dynamic response
obtained by using the generic model shows good agreement with that of the actual space shuttle
model. In traversing the earth's atmosphere during reentry, the coefficients of the unified
equation vary due to changes in the air density, velocity of the vehicle, flight path angle, nominal
angle-of-attack, and aerodynamic characteristics of the space shuttle. The transient response is
stable but highly-oscillatory and long-lasting with increasing frequency where it is shown that
the die-out time is much longer in the upper atmosphere than that of the lower altitudes. As such,
the need for providing the space shuttle orbiter with an angle-of-attack controller is readily
justified.

Three different controllers using nonlinear, optimal, and adaptive control methods are developed
and simulated. The performance of each controller is analyzed along the upper and lower
portions of the trajectory. In both altitude ranges, the controllers eliminate the oscillations and
considerably reduce the die-out time. In reducing the time required to achieve the control tasks,
the maximum available deflection of the elevator is a major constraint.

The feedback-linearization nonlinear approach proves to be a useful and simple control strategy.
Because of its simplicity, the nonlinear controller is employed to characterize the controlled
response and calibrate the optimal and adaptive controllers.

In the optimal control approach, a numerical exact solution as well as an analytical approximate
solution is developed. The analytical approximate solution is developed through linearizing the
Riccati matrix equation and applying the asymptotic multiple time-scales method. The resulting
solution for the linearized Riccati matrix is a combination of the elementary harmonic and
hyperbolic functions. It is shown that the application of the analytical approximate solution
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considerably reduces the optimal controller computation time. The coefficients and the forcing
term in the unified equation vary slowly compared to the highly-oscillatory response of the
shuttle to the atmospheric disturbances, regardless of the altitude. It is shown that for the
controlled response however, the assumption of slow variations is valid as long as the distance
traversed during the control period is small compared to the total distance along the trajectory.
Accordingly, it is shown that while the optimal controller using the asymptotic solution performs
excellently for lower altitudes, the asymptotic approximation is not applicable in the high-
altitude portion of the trajectory.

The parameters appearing in the unified equation are complicated functions of the prescribed
trajectory variables and the aerodynamic characteristics of the space shuttle during reentry. As
opposed to the nonlinear and optimal controllers, the adaptive controller achieves the control task
through a parameter estimation process without using any a priori knowledge of the system
parameters. The adaptive controller, as formulated in this study, performs excellently in both
upper and lower portions of the trajectory regardless of the level of variations of the aerodynamic
and trajectory parameters during the course of control action. It is seen that at lower altitudes, the
parameter estimates and the true parameters have the same orders of magnitude which is quite
noticeable.

Thesis Supervisor: Rudrapatna V. Ramnath

Title: Senior Lecturer, Department of Aeronautics and Astronautics
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= coefficient matrix
= coefficient vector
= mean aerodynamic chord of the generic model
= coefficients of characteristic Eqs. (4.79)

= complex characteristic coefficients

= drag coefficient

= lift coefficient

= pitching moment coefficient

= nominal aerodynamic coefficients

= aerodynamic stability derivatives

= aerodynamic stability derivatives

= elevator effectiveness

= drag force
= substitute characteristic coefficients

= base of the natural logarithm
= Lyapunov function
= non-dimensional induced disturbance
= linear dependence factor
= acceleration due to gravity
= acceleration due to gravity at sea level
= universal gravitational constant
= altitude
= constant scaling altitude, Eq. (1.5). Hamiltonian, Eq. (4.12)

= identity matrix
= principal moments of inertia

= performance measure
= components of the Riccati matrix
= Riccati matrix
= lift force, Eq. (1.9). Reference length of the space shuttle, Eq. (1.26)
= mass of the space shuttle
= true parameters

= estimated parameters

= parameter estimation errors

= transformation matrix
= elevator control torque

= elevator disturbance control torque
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N = transformation matrix

PiP2  = components of the co-state vector
P = co-state vector, Eq. (4.10). Vector of true parameter, Eq. (5.8)
P' = optimal co-state vector

P = vector of parameter estimates

P = vector of parameter estimation errors
q = angular velocity in pitch about the space shuttle center of mass

= dynamic pressure

Q = state penalty gain matrix
r = radial distance from the Earth center to the space shuttle center of mass
R = control penalty gain
Re = Earth radius

Rair = gas constant of air
s = root of characteristic Eqs. (4.80). Sliding variable, Eq. (5.15)
Sk = complex characteristic roots
S = reference area
t = time

Tiso = absolute temperature of the isothermal atmosphere
u = control variable
U' = optimal control variable
V = Nominal Velocity
X = state vector
X' = optimal state vector

YM = linear parameterization row vector

z = root of characteristic Eqs. (4.81)
a = perturbation angle-of-attack
a- = total angle-of-attack

ao = nominal angle-of-attack

= ratio of the generic model mean chord to the shuttle reference length
= flight path angle

IF = transformation vector, Eq. (4.102). Adaptation gain matrix, Eq. (5.20).
5 = non-dimensional atmospheric mass density

6e = elevator angle

(5e = elevator disturbance control deflection
E = measure of slowness of variations
r/ = slow non-dimensional distance variable
A = characteristic value
A = characteristic functions

A = linearized Riccati matrix
p = elevator control coefficient
6 = pitch angle
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60 = nominal pitch angle

V = ratio of moments of inertia
= non-dimensional distance variable

40 = initial non-dimensional distance

4f = final non-dimensional distance

p = atmospheric mass density

PS = atmospheric mass density at sea level

o = inverse non-dimensional pitching moment of inertia
o = time scales

= angular range

0 i= components of the transition matrix

= transition matrix
o , w1  = stiffness and damping coefficients in the unified Eq. (1.38)

920, Qi = coefficient matrices, Eq. (4.46)

Subscripts

0 = nominal value
r = radial component

= tangential component
Re = real part
Im = imaginary part
x, y, z = stability axes
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INTRODUCTION

This thesis is concerned with the development of different solutions to the control of the space
shuttle angle-of-attack oscillations caused mainly by the atmospheric disturbances during
reentry. The motivation for doing this investigation stems from the fact that as opposed to the
dynamics and stability analysis of the space shuttle during reentry that has been investigated a
great deal in the literature such as those done by Vinh and Laitone in [12] and by Ramnath and
Sinha in [9], the control aspect of the problem has not been particularly worked on. More
specifically, developing an approximate but closed-form solution to the optimal control of the
space shuttle angle-of-attack during reentry (Chap. 4) is a novel approach being presented in this
thesis. Also, the adaptive controller developed and designed in this thesis (Chap. 5) has its own
peculiarities as an application of the adaptive control theory to the reentry problem.

In this investigation., it is assumed that the Earth is spherical, the atmosphere is isothermal, and
the shuttle vehicle does not roll. The space shuttle orbiter glides over a prescribed reentry
trajectory that is optimal in that it minimizes the weight of the thermal protection system. A
realistic generic hypersonic aerodynamic model taken from [3] is used for the computer
simulations. The model is a geometrically-simplified hypersonic delta-wing aircraft that has
similar aerodynamic characteristics to that of the space shuttle.

Subject to certain conditions, the nonlinear equations of motion and the corresponding kinematic
relations are transformed by a change-of-variable, corresponding to the number of scale lengths
traversed by the vehicle along the trajectory of the center of mass, to get a unified equation of
motion describing the variations of the space shuttle angle-of-attack during reentry [12]. The so
called unified equation is a linear second-order inhomogeneous ordinary differential equation
with time-varying coefficients.

The coefficients and the forcing term in the unified equation are functions of the prescribed
trajectory variables and the aerodynamic characteristics of the space shuttle during reentry. As
has been discussed by Ramnath and Sinha in [9], these functions vary slowly along the trajectory
as compared to the highly-oscillatory transient response of the space shuttle to angle-of-attack
perturbations regardless of the duration of the response. However, it will be shown that for the
case of the controlled response, the assumption of slow variation of these parameters is valid as
long as the distance traversed during the control period is small compared to the total distance
along the reentry trajectory. This is due to the fact that the controlled response is an over-damped
non-oscillatory response where its fastness is inversely proportional to the duration of the control
action. In fact, the time constant of the controlled response is nearly equal to the duration of
control action. It is shown that for the high-altitude portion of the reentry trajectory, the
assumption of slow variations is not valid since the space shuttle travels about a quarter of the
entire trajectory during the optimal control period.

In this study, three different control approaches are investigated and applied to the unified angle-
of-attack equation. In the case of the optimal controller, the control law and the corresponding
controlled response of the space shuttle are obtained using both numerical and analytical
solutions.
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Practically, the space shuttle orbiter is classified as a long-range hypervelocity vehicle designed
for atmospheric as well as extra-atmospheric flights [11]. A typical long-range trajectory with
atmospheric and extra-atmospheric portions is illustrated in Fig. 1. The flight is assumed to take
place in the plane containing the great circle arc, between the launch point and the landing point.
The entire flight is thought of in two phases as described below.

(a) The powered phase in which sufficient kinetic energy provided by the propulsion system is
imparted to the vehicle to bring it, under proper guidance, to a prescribed position and velocity in
space. The trajectory followed is the arc AB in Fig. 1. The point B is referred to as the burnout
position. The powered phase is generally short in terms of both duration and length compared to
those of the entire trajectory.

(b) The unpowered phase in which the vehicle travels to its destination under the influence of the
gravity and aerodynamic forces. The trajectory followed is the arc BC. For long-range flights
like that of the space shuttle orbiter, the total energy imparted to the vehicle at the burnout
position B is sufficiently high, with a proper orientation of the burnout velocity, the trajectory
followed will have a long portion entirely outside the dense layer of the atmosphere. This portion
of the trajectory which is a Keplerian conic is represented by the arc BE in Fig. 1. This is one of
the most interesting features in hypersonic flight. For long-range operation, hypervelocity
vehicles reduce the cost in fuel consumption since the range XB -XE can be made infinite with
finite energy input. This basic idea led to the concept of present-day shuttle vehicles where, after
the powered phase, the subsequent trajectory is entirely flown outside the atmosphere for several
days and the required mission is accomplished without additional energy input. When it comes
time to return to the Earth, a rocket may be fired to deflect the trajectory such that it intersects
the atmosphere of the Earth at a certain point E called the entry position (Fig. 1). This point E is
assumed to be at the top of the sensible atmosphere. The subsequent trajectory is called the
reentry trajectory. This portion of the trajectory is illustrated by the arc EC in Fig. 1. In this
study, we shall be concerned with the reentry portion of the space shuttle flight.

B

ATMOSPHERE

:-A XB XE C

Fig. 1 Typical complete trajectory of long-range hypervelocity vehicles, taken from [11]

In Chapter 1, the longitudinal dynamic equations of motion of the space shuttle orbiter during
atmospheric reentry glide are derived, following by the derivation of the unified perturbation
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angle-of-attack equation describing the angle-of-attack oscillations about its prescribed trajectory
values. It is assumed that the planet is spherical, the atmosphere is isothermal, and the shuttle
vehicle experiences lift and does not roll.

The oscillations of the space shuttle angle-of-attack during reentry have been shown by Vinh and
Laitone in [12] to be governed by a second-order inhomogeneous linear differential equation
with variable coefficients. This so called unified equation results from the transformation of the
nonlinear equations of motion by using a change of independent variable from time to a non-
dimensional distance parameter along the trajectory. In this study, the original unified equation is
modified to be applicable for control purposes and using the abovementioned generic hypersonic
model. In traversing the earth's atmosphere during reentry, variations in the coefficients of the
unified equation are due to changes in air density, velocity of the vehicle, flight path angle,
nominal angle-of-attack, and the aerodynamic characteristics of the space shuttle vehicle.
However, the aerodynamic stability and control derivatives of the shuttle as a hypersonic vehicle
vary only due to variations of the nominal angle-of-attack and velocity along the prescribed
trajectory. Of these two variable parameters, the nominal angle-of-attack is the dominant one.

In Chapter 2, the dynamic response of the space shuttle to the angle-of-attack perturbations,
while traveling along the prescribed optimal reentry trajectory, is discussed. In order to simulate
the space shuttle aerodynamic characteristics, a realistic generic hypersonic-aircraft computer-
simulation aerodynamic model was used for all the simulations in this thesis. The model is a
geometrically-simplified hypersonic delta-wing aircraft that has similar aerodynamic
characteristics to those of the space shuttle. The trajectory model that was used in the simulations
is an optimal reentry trajectory, designed to minimize the weight of the thermal-protection
system (TPS) of the space shuttle SSV 049 [4]. The simulation results in this chapter, for the
dynamic response of the shuttle vehicle using the generic aerodynamic model, show good
agreement with those of the actual space shuttle model reported in [9].

In Chapter 3, in order to suppress the undesired angle-of-attack oscillations, the nonlinear control
method of feedback linearization is implemented [10]. Because of its simplicity, the feedback
linearization is used to characterize the controlled response of the shuttle to the angle-of-attack
perturbations. The feedback-linearization nonlinear controller, subject to the maximum available
elevator-angle constraint, offers realistic estimations for the duration and the corresponding rate
of decay of the controlled response that will be helpful to design the controllers discussed in the
subsequent chapters. The feedback linearization is easy to implement since as will be seen, we
only needed to specify the desired time for control action and check if the maximum demanded
elevator angle is available.

In Chapter 4, in order to control the perturbations of the space shuttle angle-of-attack during
reentry, an optimal control approach is applied to the state space representation of the unified
equation. The underlying scheme is the linear quadratic regulator (LQR) formulation that forms a
boundary value problem with the specified initial and final conditions for the state vector [6].
Due to the zero final conditions for the state vector as a special case, the formulation and the
corresponding Riccati equation are different from those of the conventional linear regulator
methodology. The Riccati equation for this special case is called the Riccati equation of the
Lyapunov type [5]. Subsequently, a fully numerical solution is discussed followed by

13



development of a completely-analytical solution for the control of the space shuttle angle-of-
attack perturbations during reentry.

The numerical solution, that is considered to be exact, is obtained by numerically integrating the
Riccati equation backwards, and subsequently, solving the co-state differential equation using
forward numerical integration. The analytical solution is developed basically to eliminate the
backward and forward numerical integrations from the optimal control solution. The motivation
for developing an approximate analytical solution is primarily to reduce the computation time
that an optimal controller needs to suppress the unwanted oscillations of the space shuttle during
reentry. The fact is that while numerical integration schemes require small stepsize to give
acceptable results, the accuracy of analytical solutions is not affected by the evaluation stepsize.
In the case of approximate analytical solutions however, there must be a balance between the
accuracy of the method versus the computation time. The other reason for developing an
asymptotic solution is to gain better mathematical insight into the optimal control approach.

In order to develop an asymptotic analytical solution, first the Riccati matrix equation is
linearized by using a rigorous mathematical transformation, and subsequently, an asymptotic
analytical solution describing the variations of the linearized Riccati matrix is derived. The
asymptotic solution is developed by using the multiple time-scales technique. The analytical
solutions to the components of the linearized Riccati matrix appear to be a combination of simple
harmonic and hyperbolic functions. In the third step, the co-state first-order matrix differential
equation is solved analytically, by using a novel matrix transformation. Eventually, the optimal
control law and the corresponding state-vector history are determined by using the solutions for
the linearized Riccati matrix and the co-state vector. The performance of the presented
asymptotic method is evaluated by comparing the corresponding simulation results and
computation time to those of the numerical exact solution.

In Chapter 5, in order to suppress the undesired angle-of-attack oscillations, an adaptive control
technique is applied to the unified equation, i.e. the original 2nd-order nonlinear differential
equation with variable coefficients for the angle-of-attack perturbations.

The adaptive controller is developed and designed by using the modified adaptive control
methodology [10]. The main advantage of the adaptive controllers is that they achieve the
control task without using any a priori information about the system parameters and their
variations. This fact is of special interest in our problem where the trajectory variables and the
aerodynamic characteristics of the space shuttle vary along the reentry trajectory.

The adaptive controller design problem here is to derive a control law for the elevator deflection,
and an estimation law for the parameters without using any a priori information about them, such
that the space shuttle regains its nominal trajectory angle-of-attack after being perturbed by
external or internal disturbances. This means that the deviation of angle-of-attack from its
nominal value and all its derivatives with respect to the independent variable or time must vanish
at the end of controller action. Thence, the control problem can be categorized as a tracking
problem where the desired trajectory is the origin of the state vector space at each instant, or a
positioning problem in which the initial position is the disturbed state and the target position is
the origin.
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CHAPTER 1

LONGITUDINAL DYNAMICS

In this chapter, the longitudinal dynamic equations of motion of the space shuttle orbiter during
atmospheric reentry glide are derived, following by the derivation of the unified perturbation
angle-of-attack equation describing the angle-of-attack oscillations about its prescribed trajectory
values. It is assumed that the planet is spherical, the atmosphere is isothermal, and the shuttle
vehicle experiences lift and does not roll. The formulation and treatment are based on the
approach as developed by Vinh and Laitone [12], and Ramnath [9].

1.1 Axis SYSTEM

The stability axes coordinate frame shown in Fig.1.1 will be used to derive the equations of
motion of the space shuttle during reentry. As shown in the sketch, the axes emanate from the
space shuttle center of mass such that the x-axis is always tangential to the instantaneous flight
path and the y-axis passes out the right wing. The z-axis is perpendicular to the other two axes
following the orthogonal right-hand rule.

D

W

L

FLIG H T
PATH

z.

Fig. 1.1 Stability axes, taken from [12]

1.2 ORBITAL AND ATMOSPHERIC PARAMETERS

The gravitational acceleration, g , varies with the altitude and we have

GM
9 = r2 (1.1)

where G is the universal gravitational constant, Me is the mass of the earth, and r is the radial
distance between the centers the Earth and the space shuttle center of mass (Fig. 1.2). Of this
distance, the radial distance from the sea level to the shuttle center of mass is the altitude denoted
by h. Thus, we have

(1.2)r = Re + h
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where Re is the average radius of Earth.

L

R

0

Fig. 1.2 Orbital parameters, taken from [11]

Multiplying and dividing (1.1) by Re , we can write

s g 5 Re (1.3)r

where g, is the acceleration due to gravity at sea level.

The air density, p , of the isothermal atmosphere is also altitude-dependent. Assuming the air to
be a perfect gas and for low orbits like that of the space shuttle, the air density can be calculated
with good accuracy by the exponential formula of

P = pse-'" (1.4)

where p, is the air density at sea level, and

H = RairTso (1.5)

9s

is a constant scaling altitude. Rair is the gas constant for air, T,, is the absolute temperature of
the isothermal atmosphere.

1.3 KINEMATIC RELATIONS

The rate of climb or descent of the flight vehicle traveling along its trajectory is related to the
total velocity, V , of the vehicle center of mass and the flight path angle, y , as the following

r = V sin ' (1.6)
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where the dot indicates differentiation with respect to time, and this will be the case henceforth.
The flight path angle is the slope of the trajectory with respect to the local horizon. It should be
noted that in general a constant flight path angle in orbital flights does not mean a straight-line
trajectory. In fact, the trajectory curves down towards the planet because ' is measured relative
to the local horizon that keeps changing for the aerospace vehicle.

The pitch attitude rate-of-change, is governed by the following relation

- V (1.7)q +-cos yr

where q is the angular velocity in pitch about the y-axis of the space shuttle, and the second
term on the right-hand-side is the absolute value of the angular velocity of the shuttle center of
mass around the earth. Note that in (1.7), q can be positive or negative depending on the pitch
direction whereas the second term is always positive. It should also be noted that 6 represents
the variations in pitch attitude relative to the earth local horizon. For instance, in order to keep a
constant attitude relative to Earth on a circular orbit (j = 0 ), the shuttle needs to have a steady
rotational adjustment of

V

Rorbit

Note that if the space shuttle is inverted when orbiting the earth, i.e. the z-axis is pointing
towards the outer space, then the sign changes such that

V
qinvert + orbit

orbit

1.4 FORCES AND MOMENTS

Besides the gravity force, the longitudinal aerodynamic forces and moments acting on, and about
the center of mass of a gliding vehicle, consist of the drag force. D, the lift force L, and the
pitching moment M. As sketched in Fig. 1.2, the drag force is in the opposite direction of the
vehicle velocity vector or parallel to the wind vector and is defined as positive aft. The lift force
is defined as positive up and perpendicular to the wind velocity vector as well as the y-axis (Fig.
1.2). The pitching moment is a combination of the aerodynamic restoring and damping moments
as well as the aerodynamic control torques and is positive when the corresponding moment
vector points in the positive y-direction. Mathematically, we have

D=CD'qS (1.8)

L = CL;S (1.9)

M =C,,q Sc (1.10)
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where q is the dynamic pressure described by

q = pV2(1.11)
2

and CD , CL, and Cm are the drag, lift, and pitching moment coefficients, respectively. The
aerodynamic coefficients are dimensionless functions of the flight variables and they carry the
signs of their associated forces or moments. It should be reminded that CD is always positive
whereas CL and Cm can be positive or negative, depending on the direction of the lift and
pitching moment vectors. The parameter S denotes the reference area and C is the wing mean
aerodynamic chord of the lifting vehicle.

1.5 EQUATIONS OF MOTION

1.5.1 DRAG EQUATION

The equation of motion along the flight path is as follows

-D-mgsiny=mV (1.12)

where m is the fuel-burnout reentry mass of the space shuttle. Substituting (1.8) into (1.12), we
get

S PSC v 2 - g sin y (1.13)
2m

that is called the drag equation and governs the variations of the shuttle velocity under the effect
of the drag force and the gravity.

1.5.2 LIFT EQUATION

The equation of motion normal to the flight path is the following

Lcosy -Dsiny-mg =my -m(Vcosy) 2 /r (1.14)

Differentiating (1.6) with respect to time gives

= V sin y +V' cos y (1.15)

Substituting (1.15) into (1.14) yields

Lcos y - D sin y -mg =mY sin y + mV'cos y -mV 2 cos 2 y/r (1.16)

However, if we multiply the drag equation (1.12) by siny , we get
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-Dsiny-mgsin 2 y = mY sin y

Replacing sin2 y by its cosine equivalent, gives

-Dsiny -mg(1-cos 2 y)= m# sin y (1.17)

Putting (1.17) into (1.16), we obtain

Lcos y = mg cos 2 y+mVkcosy -mV 2 cos 2 y/r
that leads to

. L V 2
Vy -- (g--)cos y

m r
and eventually, using (1.9) results in

r pSC LV 2  v 2

r= 2m - (g- )cosy (1.18)

that is called the lift equation and describes the variations in the flight path due to the unbalance
of lift and the centrifugal force against the gravity. For circular orbits or flight paths, j and y
are both zero, since the gravity minus lift provides the exact amount of centripetal force needed
to keep the space vehicle in orbit.

1.5.3 PITCHING MOMENT EQUATION

The equation of rotational motion about the y-axis of the stability coordinate frame attached to
the space shuttle center of mass is as follows

M + 3g(IZ - Ij)sin 20 = I.YqM 2r~-I)sn 6I4 (1.19)

where M is the total pitching moment that includes the aerodynamic restoring, damping, and the
body flap as well as the elevator-induced control torques. The second term on the left-hand-side
is the gravity gradient torque, in which IX and IZ denote the fuel-burnout rolling and yawing
principal moments of inertia, respectively. Similarly, on the right-hand side, I, denotes the fuel-
burnout pitching moment of inertia.

Note that the pitching moment of inertia is the same in both stability and body axes, whereas the
rolling and yawing moments of inertia in the stability axes deviate from their principal values in
the body axes depending on the angle-of-attack. However, this effect is negligible in our analysis
since the rolling and yawing moments of inertia only affect the gravity gradient torque that is
inversely proportional to r, and very small compared to the aerodynamic pitching moment.
Substituting (1.10) into (1.19) and rearranging leads to
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PScCmV 2 +(3g sin - 2  (1.20)
21, 2r I,

that is called the pitching moment equation and represents the evolution of the pitch angle of the
space-flight vehicle, traveling through the atmosphere and gravitational field of a planet. The
pitching moment equation is the base equation of motion for pitch and angle-of-attack control
purposes.

1.6 AERODYNAMIC COEFFIECIENTS

As pointed out earlier, the aerodynamic coefficients vary as the flight variables change. To this
effect, due to the fact that the nominal aerodynamic coefficients and their derivatives along the
trajectory are slowly-varying functions of angle-of-attack and Mach number, for small
perturbations of angle-of-attack, we can linearize the perturbed aerodynamic coefficients about
their nominal trajectory values. When the space shuttle angle-of-attack is perturbed from its
nominal value by atmospheric disturbances, we can write

& =ao +0 (1.21)

where Z , ao, and a denote the total, nominal, and perturbation angles-of-attack respectively.
Accordingly, the total pitch angle of the space shuttle as the complementary kinematic relation
will be

6 =y + (1.22)

In addition, considering the fact that do << d , using (1.21) we can approximate the pitch
attitude rate-of-change in (1.22) and (1.7) as the following

+ (1.23)

As discussed in [12], the perturbed and linearized aerodynamic coefficients can thus be
approximated as below

CD = CD + CD, a (1.24)

CL = CL + CLa (1.25)

Cm=CMO + Cmfa + C, ) + Cmq )O+C M Se (1.26)

where L is the overall length of the space shuttle used as the non-dimensionalizing reference
length corresponding to the trajectory model. CDO, C., and Cm represent the nominal

aerodynamic coefficients along the trajectory and they will be discussed in Sec. 2.3.1. The rest
of the coefficients in Eqs. (1.24) through (1.26) are the aerodynamic stability and control
derivatives that are described as follows
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CD= acD [per radian]
Ce

C. = aCm [per radian]

(1.27a-f)

a L

V

Cni = i~

a(V

aCm

Cm8e = [per radian]

The stability and control derivatives are slowly-varying functions of the angle-of-attack and
Mach number and are inputted to the simulations using a generic hypersonic aircraft model data
that will be discussed in the next chapter.

In (1.26) and (1.27f), ' e denotes the required elevator angle to control the angle-of-attack
perturbations. It should be reminded that for delta-wing aircrafts including the space shuttle, the
term "elevator" refers to the elevator-mode of the- elevons. Elevons are the dual-action wing-
mounted aerosurfaces that can be actuated in the elevator or the aileron mode. In the space
shuttle reentry flights, depending on the speed ranges, the pitching moment required for pitch
trim and forcing the shuttle to fly along the prescribed trajectory is provided by the body flap
and/or the speedbrakes, rather than the elevons. The body flap is the predominant longitudinal
trim device, while the wing-mounted elevons (in the elevator mode) are used for longitudinal
stability augmentation and pitching-disturbance control. A sketch of the space shuttle orbiter,
showing the relative size and locations of the its aerosurfaces, is presented in Fig. 1.3.'

Henceforth, since we are only dealing with the longitudinal control where the elevons function as
elevators, we will refer to the elevator-mode of the elevons simply as the elevators.
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Fig. 1.3 Sketch illustrating the aerosurfaces of the space shuttle orbiter, taken from [11]

Finally, it should be noted that the effect of the trajectory-control body-flap or speedbrake
deflections, is accounted for in CM , and therefore their deflections and the corresponding
aerodynamic effectiveness derivatives do not appear explicitly in the perturbation equations.

1.7 UNIFIED ANGLE-OF-ATTACK EQUATION

As derived in the previous section, the following set of coupled nonlinear differential equations,
describe the perturbed longitudinal motion of the space shuttle from its prescribed trajectory
during reentry.

S PSCD 2 - g sin y (1.28)
2m

.SC LV 2 V 2V = -(g - 2)cosy (1.29)
2m r

P - C (g ' )sin 2 0 (1.30)
2I, 2r I,

where the associated perturbation kinematic relations are

6= q+ -cos y (1.31)
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r = V sin; (1.32)
and

6=; +aO+0t (1.33)
with a , as the perturbation variable.

In order to derive a unified equation that describes the variations of the space shuttle angle-of-
attack for all possible reentries, as suggested by Laitone in [12], we can use the following
universal time transformation

S a(t)= L fJV(t)dt (1.34)
or equivalently 0

L (t) = V(t) (1.35)

that replaces the real time t by the non-dimensional variable 4 which represents the number of
reference lengths L, traveled by the space shuttle center of mass along the trajectory. The
following relationships hold -accordingly

d Vd
dt LdU (1.36)

d 2 V 2 d 2 VV' d
dt2 L d) 2  

2 _-[] (1.37)

Henceforth, to show differentiation with respect to (, we will use the following notation that is
more convenient

d
di

The elimination of 6 and q from the equations of motion as well as the kinematic relations, and
change of the independent variable from t to 4, leads to the following non-dimensional second-
order nonlinear inhomogeneous differential equation with variable coefficients that describes the
variations in the space shuttle angle-of-attack once perturbed from its nominal trajectory values.

a"+ cO(D)a'+ W0(4)a = f (4) (1.38)

The corresponding coefficients are

V'
m(l() =mS[ C L/ m+ CM V (1.39)

gL L
co0(g) S(3O-C,,-L sin y)CL 2 La + D()+ CD

3L gL
+-r-(2)v COS 2(y + a) 1.40)
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I3Lm v 2  
Lmo 45C LI'80CM

f 9(v= 2 ACD) 0 - (1- )]cosy+5( H L siny+ c )+62c fll+ CD 0)

-(p)[(+ _ 2)sin 2y+-Lv sin 2(y+ ) (1.41)

and

,U( )= -pO (4)C (') (1.42)

Equation (1.38) is called "the unified angle-of-attack equation". Henceforth, we will call w(s),
co0 (i), andp(4), as the damping coefficient, the stiffness coefficient, and the control
coefficient, respectively. The term f(4) will be referred to as the disturbance term. In order to
simplify the derivations and the resulting expressions of the unified equation, the following non-
dimensional parameters have also been introduced.

C

(1.43)

pSL
2m (1.44)

I, - IV ~ IY (1.45)

mL2
- - (1.46)

where 6 serves as the matching parameter between the generic hypersonic-aircraft aerodynamic
model and the trajectory model for the actual space shuttle, is the varying non-dimensional air
density, v is the ratio of the moments of inertia of the space shuttle in the stability axes, and
considered to be invariant, and o is a constant that can be regarded as the inverse non-
dimensional pitching moment of inertia of the space shuttle.

It should be reminded that the unified equation (1.38) is nonlinear due to its inhomogeneity that
stems from the presence of the inherently-induced forcing term, f(4), on the right-hand side.
Physically speaking, considering the equation (1.38) as the representation of a dynamical system,
we can see that the relationship between the input, i.e. the elevator angle, and the output, i.e. the
angle-of-attack, is not linear.

It is also notable that the parameters oil, w , f , and p , are solely functions of the aerodynamic
coefficients and the nominal trajectory variables where they can be evaluated explicitly, if the
trajectory flown by the center of mass of the shuttle vehicle is known. This assumes the so-called
"limited problem" hypothesis that is the angle-of-attack perturbations have negligible effect on
the trajectory.
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The gravitational acceleration gradient, g'(4), and the non-dimensional air density gradient,
J'(4), have also been used in the derivation of (1.38), where they are determined as follows.
For the gravity gradient, we begin with (1.3)

R2

g = g, --2
r

and differentiate with respect to , to get

' dg - gR( 2r') = -2( )g, = -2( )g (1.47)d r r r r

However, by applying (1.36) to (1.32) we get

r =-= Lsin y (1.48)V

Substituting (1.48) into (1.47), we obtain the gravity gradient as

L
g= -2g( -)sin y (1.49)

For the non-dimensional air density gradient, by differentiating (1.44) we get

_' p'SL
2m

and from (1.4), we can write
,h'

P ~ P (1.50)

However, since the Earth radius is constant, we have

h' r' (1.51)

Using (1.51) and substituting (1.48) into (1.50), we can write

, L .
p= psmyr

H
and consequently

L
5 -(5 L-sin y (1.52)H

The angular range, #, can be computed as is described below. Breaking the velocity vector of the
shuttle into the radial and tangential (or orbital) components, we can write

Y =Ve, +V.e.
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where

V, = r=V siny (1.53)

V,= = V cos y (1.54)

Considering the orbital component, by rearranging (1.54), we get

= -cos y
r

and using (1.36), we can write
,L

01= -cos Y (1.55)r

Finally, integrating (1.55) along the trajectory with respect to 4 , yields

#( ) = L d (1.56)fr0
where y and r are both functions of .

The elapsed time for the shuttle traveling along the trajectory, can be computed at each position
by inverting the transformation (1.35) to get

t(f)= L V(d) (1.57)
0 V( )

1.8 ELEVATOR CONTROL TORQUE

The aerodynamic pitching torque exerted on the space shuttle due to the elevator actuation, i.e.
the elevator control torque, can be determined as described below. Using Eqs. (1.10) and (1.26),
we can write

M'5'(4) = C1e (e),(4)q )SW (1.58)

Implementing the non-dimensional parameters introduced in Sec. 1.7, we arrive at the following
relation for the elevator control torque

Mg, (5)= la()Cm ()e ()I,( )2 (1.59)
or simply

M8, (=( )2 (1.60)
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CHAPTER 2

DYNAMIC RESPONSE

The dynamic response of the space shuttle to the angle-of-attack perturbations, while traveling
along the prescribed optimal reentry trajectory, is discussed in this chapter. In order to simulate
the space shuttle aerodynamic characteristics, a realistic generic hypersonic-aircraft computer-
simulation aerodynamic model was used for all the simulations in this thesis. The model is a
geometrically-simplified hypersonic delta-wing aircraft that has similar aerodynamic
characteristics to those of the space shuttle. The trajectory model that was used in the simulations
is an optimal reentry trajectory, designed to minimize the weight of the thermal-protection
system (TPS) of the space shuttle SSV 049 [4]. The simulation results in this chapter, for the
dynamic response of the shuttle vehicle using the generic aerodynamic model, show good
agreement with those of the actual space shuttle model reported in [9].

2.1 MODEL GEOMETRY

The space shuttle actual geometry, taken from [1], is shown below. Note that the scale length is
in inches. It should be mentioned that the overall length of the shuttle (L = 107.75 ft. or 1293 in.)
was still used as the reference length for deriving the unified equation of the angle-of-attack
oscillations, Eq. (1.38), because the available trajectory data to be used for simulations are based
on the actual model.

450

XC

Plan area= 560,000 in2
xc =x0 = 840.7 in
L =1293 in (measured from nose to
body flap hinge line)

Fig. 2.1 The space shuttle geometry, taken from [1]
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A sketch of the generic hypersonic aircraft model used for the simulations in this study is
illustrated in Fig. 2.2.

Fig. 2.2 Geometry of the generic hypersonic computer simulation aerodynamic model, taken from [3]

The model geometry is built up of simple geometric shapes in order to simplify the analysis
required to estimate the mass properties [3]. The primary structure is modeled as a cylinder 20 ft.
in diameter and 120 ft. long. This comprises the volume required for tankage of the liquid
hydrogen. Onto this cylinder is attached a pair of 10-degree cones to form the vehicle nose and
boattail. This assembly completes the fuselage.

The wings and vertical tail are modeled as thin triangular plates. The mid-wing configuration has
been chosen and no dihedral has been added to the wings. The engine module is wrapped around
the lower surface of the fuselage and strakes have been extended behind the wings to form the
end plates of the half nozzle formed by the lower half of the boattail.

The geometric aerodynamic reference parameters are as follows

Plan Area, S = 6000ft2

Mean Aerodynamic Chord, C = 75ft
Span, b = 80ft
Overall Length, Loal = 233.4ft
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2.2 MASS PROPERTIES

The mass properties of this class of hypersonic vehicles are assumed to be of the same order of
magnitude as current supersonic cruise aircraft. The estimate contained in this model has been
derived from the XB-70. The take off gross weight is estimated to be in the neighborhood of
300,000 pounds. Of this the fuel (liquid hydrogen) is assumed to comprise 60% (180,000
pounds), and hence the fuel-burnout gliding reentry mass can be approximated by the remaining
40% (120,000 pounds) divided by the acceleration due to gravity at sea level. Therefore

Reentry Mass, m = 3,725 slugs

Rolling Moment of Inertia, IX = 0.87 x 106 slug - ft 2

Pitching Moment of Inertia, I, = 14.2 x10 6 slug-ft2

Yawing Moment of Inertia, IZ = 14.9 x 106 slug - ft 2

Yaw-Roll Product of Inertia, IX = 0.28 x106 slug - ft 2

The mass moments of inertia have been estimated from simple geometric solids and shells which
approximated the configuration of the model.

2.3 REENTRY TRAJECTORY MODEL

The trajectory model and data used for simulations is an optimal reentry trajectory designed to
minimize the thermal-protection system (TPS) weight for the space shuttle SSV 049 [4]. The
trajectory characteristics are shown in Fig. 2.3. As can be realized from the flight-path angle
history, this reentry model can be classified as a shallow glide entry. The altitude ranges from
400,000 ft at the fringe of atmosphere down to the 100,000 ft where accordingly, the atmospheric
density increases about 5 orders of magnitude over the altitude range. The shuttle velocity ranges
from Mach 24 in the hypersonic regime down to about Mach 2 in the supersonic range. The total
entry time is about 35 minutes and the total distance traveled by the space shuttle along the
trajectory is around 6000 miles. The reentry starts with very high angles-of-attack of about 530 in
order to maximize the drag and ends at much lower values of around 20*.
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Fig. 2.3 The space shuttle prescribed reentry trajectory characteristics
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2.3.1 NOMINAL AERODYNAMIC COEFFICIENTS ALONG THE TRAJECTORY

As mentioned before, the unified equation is the governing equation for the angle-of-attack
perturbations from the nominal conditions along the prescribed trajectory. Therefore, to analyze
and control the angle-of-attack oscillations, we need to know the characteristics of the trajectory
flown by the space shuttle. These characteristics include the history of variations of the nominal
drag, lift, and pitching moment coefficients along the trajectory, as well as altitude, velocity,
flight path angle, and angle-of-attack. For this thesis, since only the latter four variables were
available from [9] for the trajectory of interest (Fig. 2.3), the first three variables had to be found
by other means.

The nominal drag and lift coefficients can be readily found from the following well-known
hypersonic aerodynamic relations as functions of the nominal angle-of-attack [1]

CD = 2sin 3 ao (2.1)

and lift-to-drag ratio is C4 = 2 sin cos a (2.2)

-ift _ C4 = cot a 
(2.3)Drag CDO

The nominal pitching moment coefficient, however, should be extracted from the equations of
motion and the kinematical relations. The procedure is as the following.

Consider the original unperturbed pitching moment equation with the embedded pitching
moment coefficient at its nominal value, along with the kinematic relations below

PSCmV 2 3(
,- -* ( ) )sin 200 (2.4)

2I, 2r I,

V
O =q+-cos y (2.5)

r = V sin 2 (2.6)

60 = + ao (2.7)

Applying the time transformation of (1.35) and using the previously-introduced non-dimensional
parameters, we get

q' = &c( -)C, -- 3g (-)v sin 200 (2.8)

V , V
-60 = q +--cosr (2.9)L r
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6' = a'+a' (2.10)

r' L sin (2.11)

Solving (2.8) for CM0 , we obtain

Cm = )[q'+ -()v sin 200] (2.12)6 V 2r V

As can be seen, the expression for Cm has the term q' that should be expressed in terms of the
other available trajectory variables. To this effect, let us solve the first kinematical relation for q
and substitute for 6' from (2.10) to get

q =--(r +ao) -- cos yL r

Differentiating with respect to 4 and substituting for r' from (2.11), yields

V V', V' L Vq = -(y' + ao")+-(y + a') -- cos y + (rcos y + y')-sin y (2.13)

Finally, substitution for q' from (2.13) into (2.12), results in

I LV' L 2 V' L L 2  3gL 2Cm - + ao") 2 ('+a')-( ) -cos y +(-cos y+ y')-sin y +-(-) v sin 200]
5v V r r rV 2rV

(2.14)

where all the variables on the right-hand side are available or computable from the trajectory
information in hand. However, note that V', y' and a' as well as y" and a" must be
computed by applying a numerical differentiation scheme once and/or twice to the velocity,
flight path angle, and angle-of-attack data of the trajectory. Fig. 2.4 shows the computed results.

It should be noted that in general, airspeeds above Mach 5 are considered hypersonic, and as can
be seen from the nominal Mach number history, most part of the reentry trajectory under
consideration falls into the hypersonic regime where the formulas for the drag and lift
coefficients, Eqs. (2.1) and (2.2), are valid.
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Figure 2.4 Nominal aerodynamic coefficients and lift-to-drag ratio during the space shuttle reentry

33

55

50

45

40

a)35

30

25

20

20-

15

10-

5

V

2.5

2

1.5

1

0.5
0

Lift Coefficient, CLO

..- .- --- --.-.-- --. .-- -. .-- ---- ..

.. .- .- - - .- - -- - ..- - -- - -- - - .- .......- - ....

...- -- ...-. .-.- -.-- - -.-- -- - - .-- - - - - -- .- .

--......- - --.- -.-- - - -- - .-- -- .-- - - -- - -- .

---- .........--- --- -- ..-- -- ..- - ..

--. .....-. .. ..- - --...-- - - - - -.-- - - - -- -- .

-.. ....----- -----. .---. .-- ---- --- ---- ---

-.. ....-.-.-- - - .-- --- .-- ---- ------- ------

.-. . -. ..- ---. - -- ---.. - -- -- - -- --.. -- -- -.

-..... -.-.----------------------------.-

-- ......-----------.-.-- ---- .-.-- -- .- --
-. ........----------- ----------. .-.-- - .-.-

-. .- -- --. --. .-. -. - -- - -..- -- ............

-- - -- -- - -...- - ... .. .-.-- -- - - - -- - - - -- - - - .-

-. -- - -.- - - - - - -- -- -- - -- --. . . . . . . . . . . . . . .

-- - - - - - - - - -- - - -- - - - - - - -.

-

3

...- - .- .-.- .

-.. ...---. .....--- -.-- - --- --- -- --- --- --

-- --. ....-- .-- - .-- -- .-- ---- .- - ----------

----------- .- .. ------. . --------------.

--------- ---..---.-----.-.--.------.----



2.4 MODEL AERODYNAMICS

The model aerodynamic characteristics needed for this study consist of only the longitudinal
stability and control derivatives. The stability and control derivatives along the trajectory are
functions of the nominal angle-of-attack and Mach number. The following plots that show their
variations have been generated by providing the angle-of-attack and Mach number information
from the trajectory model presented in [3], in turn taken from [4], as inputs to the corresponding
aerodynamic data tables of the generic model taken from [3] and using two-dimensional linear
interpolation.
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Fig. 2.5 Aerodynamic stability and control derivatives along the reentry trajectory of the space shuttle
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2.5 DYNAMIC RESPONSE TO ANGLE-OF-ATTACK PERTURBATIONS

As derived in the previous chapter, the coefficients of the unified angle-of-attack equation (1.38)
vary as functions of the trajectory variables. These variations are slow compared to the
uncontrolled natural dynamic response of the shuttle once the angle-of-attack is perturbed from
its nominal prescribed values. However, as will be discussed in the next chapter, for long-term
control periods that are unavoidable due to the very low air density at the upper portion of the
reentry trajectory, the variations of the trajectory variables are comparable to that of the
controlled response. These variations are shown in the figure below.
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Fig. 2.6 Variations of the coefficients of the unified angle-of-attack equation

It can be seen that the damping and stiffness coefficients are almost monotonically increasing
and favorably positive throughout the trajectory which is a necessary condition for longitudinal
dynamic stability of the shuttle. Not surprisingly, as the space shuttle travels deeper into the
atmosphere, the damping and stiffness coefficients grow almost exponentially, which is due to
the exponentially-increasing air density. This phenomenon results in higher dynamic stability
and faster dynamic response. Note that the magnitudes of the non-dimensional perturbation-
induced disturbance torque and the elevator control coefficient, also follow nearly-exponential
trends, again due to the dominant air density factor that they carry. As plotted in Fig. 2.6, the
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disturbance torque appears to be negative over the entire trajectory, and as will be seen in Sec.
2.6.1, tends to nose down the space shuttle. The negative sign of the non-dimensional elevator
gain is simply because CM8 is always negative due to sign convention for the control surface

deflections.

2.5.1 SIMULATION RESULTS AND DISCUSSION

The uncontrolled dynamic responses to the angle-of-attack perturbation at two different altitudes
of 400,000 ft and 150,000 ft, corresponding to the upper and lower portions of the trajectory, are
shown in Figs. 2.7 and 2.8 respectively. The initial conditions are a(4O)= 50 and a'(40)= 0.

As demonstrated in Figs. 2.7 and 2.8, the dynamic responses are stable, but highly oscillatory

with increasing frequency (f =1/2ff (1- g)to with the damping ratio of = o 1 2co) as

the shuttle travels deeper into the atmosphere of increasing density. Also, the settling time in
both cases is relatively large (about 15 min. and 2 min., respectively) which is not desirable. As
can be seen, the die-out time is much larger for the upper portion of the trajectory compared to
that of the lower part. This is due to the smaller equivalent damping ratio, , associated with the
unified angle-of-attack equation (1.38), as a result of the much lower air density in the upper
atmosphere (Fig. 2.3). The increasing frequency is especially visible for the case of upper
trajectory as it takes much longer for the oscillations to die out. The highly-oscillatory response,
with increasing frequency and long die-out periods, readily justifies the need for providing the
space shuttle orbiter with an artificial angle-of-attack controller.
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Fig. 2.7 Perturbation response for 400,000 ft initial altitude
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2.6 FEED-FORWARD DISTURBANCE CONTROL

The non-dimensional perturbation-induced disturbance torque, f (), as will be shown in this
section, has unnoticeable effect on the dynamic response of the shuttle to the angle-of-attack
perturbations. Using the unified equation of (1.38), we can determine the amount of the elevator
deflection needed to eliminate the disturbance effect. This will leave the perturbations to vanish
naturally, as a result of the stable longitudinal dynamics of the space shuttle aerodynamic design,
without following the additional forcing disturbance. From Eq. (1.38) we have

a" + 1(4)a'+ x0 (4)C = f (4) - (4)j,(4) (2.15)

Putting the right-hand side equal to zero and solving for the elevator deflection yields

f ()
(5 U)= ( ) (2.16)

where e(J) denotes the required feed-forward disturbance-control deflection of the elevator.
Using (1.60), the corresponding elevator control torque will be

(2.17)
S( =2
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2.6.1 SIMULATION RESULTS AND DISCUSSION

The disturbance-controlled dynamic response to the angle-of-attack perturbations at the same
altitudes and with the same initial conditions as those of Sec. 2.5.1 are shown in Figs. 2.9 and
2.10. As can be seen, the effect of the perturbation-induced disturbance torque, appearing as the
inhomogeneous forcing term in the unified equation, is hardly noticeable. Accordingly, the
maximum required elevator deflection is seen to be less than one degree for the 400,000-ft
altitude, and less than 0.1 degree for 150,000-ft altitude.

The results of the feedforward disturbance control presented in this section will be used as a
reference for evaluating as well as validating the performance of the other control techniques
discussed in the subsequent chapters of this document. The reason for choosing the disturbance
control output as reference is that firstly, the disturbance controller does not change or
compensate the aerodynamic damping and stiffness properties of the shuttle so that the
controlled response is in fact the transient dynamic response of the vehicle, and secondly, the
outcome of the application of other control strategies must asymptotically tend to that of the
disturbance control scheme. This is due to the fact that other controllers must also cancel out the
induced disturbance while suppressing the angle-of-attack oscillations, and clearly the
disturbance remains in effect once the transient angle-of-attack oscillations are canceled out.

As mentioned earlier in Sec. 2.5, the induced disturbance torque always tends to nose down the
shuttle which can be verified by noticing the required negative elevator control angles and
correspondingly, positive control torques shown in Figs. 2.9 and 2.10.
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Fig. 2.9 Feedforward disturbance control results for 400,000 ft initial altitude



4

2

0

-2

4A

2

1

0

-2

-3
0

26

24

22

20

18

16'
0

Perturbation Angle-of-Attack
6

0 0.5 1 1.5

Angle-of-Attack Rate of Change

0.5 1 1.5

Total & Nominal Angles-of-Attack

0.5 1
time [min]

1.5

a)

2

-0.05

-0.055

-0.06

-0.065

-0.07

-'.10

6500

6000

5500

5000

4500

2

a,

x

2

0 0.5 1 1.5

Elevator Control Torque

0.5 1 1.5

Non-Dimensional Induced Disturbance

0.5 1
time [min]

0

-4

-6

-8

-10

-12

-14
0

2

1.5 2

Fig. 2.10 Feedforward disturbance control results for 150,000 ft initial altitude

40

........................... -I . ...

-- ...-- --- ...- - ..-- ----. ..- -------------------

-~ ~ ~ ~ .....--.- -.-- - -- - --.-- - - -- -- -

--- --- --- --- --- -- --- --- --- --- --

Elevator Control Angle

-. ----.- --. -.-. -. . ----- ----. --. -. ----. -. --. --

--------. ----------.. -------.-... --. -----.

-. ...... ...-.-.-.-- ------. .... --.

---- ---- ---- ---- ---- --- --- --- ---: ..........

-... .-. . .. .-.-- - -- -- --- - ..-- -

00

-

-. -- - - - - -- - - - - -- -- - --.-

..- -- - ..- - - ....- - -- - -- - .- - - -- ..- ..-

..- -- ..- - -.-- - - -. - - - - - - --.

-- -- . ........- -.-- - -.-- - - -.-- - - -- - ..- ...

2

------- .. .... ..-.-- --- ------- ---- .- - ---- .-

-. ... .---- ---: ---- --- ---------- .- -------

..-- .- - -....- - - - - - - - - .- - . - - - -. . - - - - - -

----... ------------------.--...--

-

-. . -----. -. ----- ..- .- . ----- . .- - .- - .. .

--- . ..- .. ..--- --.-- -- --- -- ---. - --

-----....... .------...... ---.--------- .-



CHAPTER 3

NONLINEAR CONTROL

In this chapter, in order to suppress the undesired angle-of-attack oscillations, the nonlinear
control method of feedback linearization is implemented. Because of its simplicity, the feedback
linearization is used to characterize the controlled response of the shuttle to the angle-of-attack
perturbations. The feedback-linearization nonlinear controller, subject to the maximum available
elevator-angle constraint, offers realistic estimations for the duration and the corresponding rate
of decay of the controlled response that will be helpful to design the controllers discussed in the
subsequent chapters. The feedback linearization is easy to implement since as will be seen, we
only needed to specify the desired time for control action and check if the maximum demanded
elevator angle is available.

Feedback linearization is in general, a nonlinear control design methodology that algebraically
transforms a nonlinear system dynamics into a fully or partly linear one with constant
parameters. In its simplest form, feedback linearization amounts to canceling the nonlinearities in
a nonlinear system so that the closed-loop dynamics is in a simple linear form. The technique
assumes that the dynamic model of the system is known exactly, and uses it for the controller
design. The resulting closed-loop dynamics is exponentially stable.

However, since in this problem, by simply introducing the right-hand side of the unified equation
(1.38) as the control variable, the system dynamics becomes linear, the notion of linearization
will not be essentially true. Nevertheless, the technique is applied in a similar fashion to
transform the linear time-varying (LTV) model to a time-invariant one (LTI). The transformed
model dynamic response is enforced to have the desired characteristics, by choosing a proper
characteristic value.

3.1 FEEDBACK LINEARIZATION

Recall the unified equation (1.39) as

a"+ oi (4)a+'+w(D)a = f(4)- p(4) (4) (3.1)

with the initial conditions of a(0) = ao and a'(40) = a'. Let us assume

a"+ w(64)a'+coo (D)a = U (4) (3.2)

where u(4) is the non-dimensional control variable and we have

u(4) = f (4) - p(4)e(4) (3.3)
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Once the control law is determined, from (3.3) the corresponding elevator control deflection will
be

pe () U) (3.4)

Now, let the control law be as the following

u( ) = W, ( )a'+ wo ( )a - (22a' + A a) (3.5)

where A is an arbitrary characteristic value and must be positive (A > 0). Rearranging gives

u(f)=[w1Gg) - 2A]a'+ [wo(f) -2 ]a (3.6)

Substituting (3.6) into (3.4) and collecting terms, we obtain the corresponding elevator control
command as

[2 - oi( ) , [ 2 _ (3.7)
pU({ ) p({ ) p

Note that the feedback gains and the feedforward term vary along the trajectory. The control law
of (3.5), forces the perturbation angle-of-attack dynamics to be

a i() +22a'( ) + 22a(Q)= 0 (3.8)

where the coefficients are now constant. The solution to this differential equation with repeated
characteristic roots, is simply known to be of the form

a( )= (A + BJ)e- (3.9)

Applying the initial conditions, we obtain the response as

a( ) = [ao + (a' + Aao)(J - )]e'A M-fo) (3.10)

that is an exponentially-decaying behavior.

In case, the final position, 4f, is specified, we can use the following formula to achieve the
desired accuracy in canceling out the oscillations

(3.11)

where the suppressed angle-of-attack perturbation at the end of the control action will be

a(=f )= O(e-"ao) (3.12)

42



3.1.1 SIMULATION RESULTS AND DISCUSSION

The feedback linearization control results for the same set of initial altitudes and initial
conditions as those in Sec. 2.5.1, are demonstrated in Figs. 3.1 and 3.2. The characteristic values
listed below were used in the simulations where they proved to give the fastest response while
keeping the required elevator deflection within the available range of ± 25'.

400,000 ft Initial Altitude: A =1.11x 10-

150,000 ft Initial Altitude: 1 =1.92x 10-2

As can be seen, the time needed for the oscillations to die out has been reduced considerably as
compared to that of the disturbance control or the transient response which uses the natural or
inherent damping and stiffness characteristics of the shuttle aerodynamic design.

Inspecting the results, we can see that the feedback linearization is an effective and yet very
simple control strategy. In addition to its simple methodology, the feedback linearization is also
easy to implement in the sense that we only need to specify the desired time period for control
action in Eq. (3.11), which is intuitive and easy to choose, and the desired level of suppression
by applying the rule of Eq. (3.12).

However, it should be reminded that the feedback linearization technique requires the exact
knowledge of the dynamical-system parameters. For our problem, as can be seen in (3.5), the
parameters include the trajectory characteristics and the aerodynamic data of the shuttle orbiter.
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CHAPTER 4

OPTIMAL CONTROL

In this chapter, in order to control the perturbations of the space shuttle angle-of-attack during
reentry, an optimal control approach is applied to the state space representation of the unified
equation. The underlying scheme is the linear quadratic regulator (LQR) formulation [6] that
forms a boundary value problem with the specified initial and final conditions for the state
vector. Due to the zero final conditions for the state vector as a special case, the formulation and
the corresponding Riccati equation derived in Sec. 4.1 are different from those of the
conventional linear regulator methodology. The Riccati equation for this special case is called
the Riccati equation of the Lyapunov type [5]. Henceforth, for convenience we will call it simply
as the Riccati matrix.

In the first part, the completely numerical solution to the optimal control problem, that is
considered to be exact, is presented. In the first step, the Riccati equation which is a nonlinear
first-order ordinary differential equation in matrix form with the boundary condition known at
the final time is solved using backward numerical integration. The numerical solution gives the
initial condition for the Riccati matrix as well as its variation history during the course of control
action. In the second step, having the Riccati matrix in hand, the co-state differential equation
which is a linear first-order differential equation in matrix form is solved by using forward
numerical integration. Finally, using the Riccati matrix and the co-state vector time-histories, the
optimal control law and the associated state vector history are readily obtained. The numerical
solution is considered to be exact.

In the second part, a completely analytical, but approximate, solution to the optimal control
problem is developed. In other words, the abovementioned backward and forward numerical
integrations are eliminated from the optimal control solution. Approximate analytical solutions
offer better physical and mathematical understanding of the problems compared to the numerical
solutions, and they can also reduce the computation time. This is due to the fact that while
numerical integration schemes require small stepsize to give acceptable results, the accuracy of
analytical solutions is not affected by the evaluation stepsize.. Of course, in the case of
approximate analytical solutions, there must be a balance between the accuracy of the method
and the computation time.

To develop an analytical solution, as suggested by Ramnath, the Riccati matrix equation is
linearized by using a mathematical matrix transformation lemma, and subsequently, an
asymptotic approximate solution describing the variations of the linearized Riccati matrix is
derived by breaking down the matrix equation to the composing scalar differential equations.
The asymptotic solution is developed by using the multiple time-scales technique. The analytical
solutions to the components of the linearized Riccati matrix appear to be a combination of simple
harmonic and hyperbolic functions. In the third step, the co-state first-order matrix differential
equation is solved analytically, by using a novel mathematical transformation. Eventually, the
optimal control law and the corresponding state-vector history are determined by using the
solutions for the linearized Riccati matrix and the co-state vector.
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The performance of the presented asymptotic method is evaluated by comparing the
corresponding simulation results and computation time to those of the numerical exact solution.
The developed asymptotic solution is shown to perform well for the lower portion of the
trajectory.

4.1 LINEAR REGULATOR FORMULATION

The state space representation of the unified equation (1.38) is as the following

X'(4)= A(4)X (4)+ Bu(4) (4.1)

where the state vector is

X =a (4.2)
and the coefficient matrices are

A( )= (4.3)
1- 0j~)0 - ) (

B = (44)

The non-dimensional scalar control variable is the same as that in (3.3), i.e.

u(4) = f (4) - P e(4) (4) (4.5)

The optimal control problem here is in fact a linear regulator problem with time-varying
coefficients. The initial states, i.e. the initially-induced perturbation angle-of-attack, a(40), and
its rate of change, a'(40) are known once the controller is triggered on. The final states must
clearly be zero, because our goal is having the angle-of-attack and its rate-of-change back to their
nominal value. Mathematically

X((f) = (4.6)

The final position, i.e. the final non-dimensional distance, must also be specified. This is due to
the fact that the space shuttle is longitudinally stable over the most part of the reentry trajectory,
and hence the angle-of-attack oscillations are already asymptotically stable. As such, our goal
here can be defined as canceling out the oscillations in the shortest period of time with the
available elevator deflection.

Since the final states are zero, the quadratic final-state penalty term vanishes and the quadratic
performance measure to be minimized is therefore
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J = f' [X TQX +Ru 2 ]d
2 ", (4.7)

where Q and R are the penalty gain factors for the state and control variables respectively. In
general, Q is a real symmetric positive semi-definite time-varying matrix, and R is a real
positive time-varying scalar. Mathematically

q=[q2({) >0

(4.8)

Once the control law is determined, the corresponding elevator control deflection can be readily
obtained by using (4.5), as the following

(5e ( ;) = f(4) - u(4)
p(h) H(4.9)

The Hamiltonian is [6]
1 1

H =XTQX +-Ru 2 +P T X'
2 2 (4.10)

where the co-state vector is

[pi(f)~1

P2 (e)_
(4.11)

Substituting (4.1) into (4.10) yields

1 1H =! XTQX +-Ru 2 +P T

2 2
AX + P T Bu

(4.12)

The necessary conditions for optimal control, assuming the admissible control is not bounded,
are as the following

X -a
aP

aH
ax (4.13a-c)

DH
au

Of course, the assumption of bounded control is not true in reality for the elevator deflection,
however the maximum optimal deflection can be checked a posteriori and in the case of
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violation, the penalty factors can be readjusted accordingly. The case with bounded control will
be attempted in later work.
The optimality conditions of (4.13a-c), translate to

X'* = AX * + Bu* (4.14)

P'* = -QX* - ATP* (4.15)

0 = Ru* + BT P* (4.16)

Eq. (4.16) can be solved for u*(f) to give

u*( )= -R()-BT P*() (4.17)

The existence of R-1 is assured since R is a non-zero positive scalar. Substituting (4.17) into
(4.1) yields

X = A(J)X*(J) - BR (J)~-B P*(J) (4.18)

Thus, we have the set of four linear homogeneous state and co-state differential equations as
below

X'/*(J) A(J) - BR -'(J)B TX*( )

P'/*(J) _Q(J) - A (J) p* (D 4)9

It is noteworthy that the above set of four coupled first-order differential equations, constitute a
boundary-value problem where the initial and final states are specified but the co-state boundary
conditions are not known. The solution to these equations has the form

[D (,)[ ] (4.20)
P* (if ) -P *

where 4f denotes the final non-dimensional distance and (D is the 4 x 4 transition matrix of the
system. Partitioning the transition matrix in (4.20), we can write

X*(f) ( ,) ( ,) X*()
P*(Jf) [21 (f I ) o22 ( f,5) [x(f)_ (4.21)

where the components of (D are themselves 2 x 2 matrices. Obviously at 4f , we have

Due t f 1 0t (4.22)

Due to the final condition for the state vector, from (4.21) we have
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P* (f, )j = Y21 ( ) V22 g) _ P*(g) (4.23)

Expanding the first row of the matrix equation (4.23), gives

V11( f , )X*( ) + V12 ( ,)P*()= 0 (4.24)

Solving (4.24) for the state vector, yields

X*(()= -' 1 '(P,,)q1_ (f,, )p*( ) (4.25)

which means that the states and co-states of the system are linearly related as motion evolves. It
is noticeable that writing the state vector in terms of the co-state vector is particular to the
regulator problems with final states fixed at the origin. This lemma is applied because

q'1 j (f ,) at the final time exists and is equal to the identity matrix, whereas (p12 (4f

vanishes at 4f and is not invertible. The above equation can be written as

X*( )= K( )P*( ) (4.26)

where it can be shown that K(4) is a symmetric positive definite matrix and it satisfies the
nonlinear first-order matrix differential equation below, called the Riccati equation of the
Lyapunov type

K' = KQK + KAT + AK - BR- 1B T  (4.27)

with the boundary condition K(4f) =0. The Riccati equation (4.27) is derived by first
differentiating (4.26) with respect to 4 following by the substitution of Eqs.(4.14) and (4.15) into
the resulting equation, then using (4.26) to write the entire equation only in terms of P' ( ), and
finally crossing out P ( ) from both sides of the equation. Henceforth, we will call K as "the
Riccati matrix". The boundary condition can be justified by considering that from (4.26) at the
final time we have

X *(cf) 0 = K( )P*(jf) (4.28)

and since in general

P* (,) 0

it is deduced that
K(4f)= 0 (4.29)

In the numerical solution scheme, the Riccati matrix equation (4.27) is integrated numerically,
starting at 4 = 4f and proceeding backwards in 4 to eventually obtain the value of K(4) at 40.
At the end of each integration step, the value of the matrix K(4) is stored so that it can be used
later in the forward integration procedure to evaluate the state vector, X (i). In the asymptotic
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approach, the Riccati equation (4.27) is first linearized by using a mathematical matrix
transformation and then integrated analytically by the asymptotic method of multiple time-scales.
Having the solution to the Riccati matrix over the course of control action, writing (4.26) at the
initial position we get

X*(O) = K( O)P*( O) (4.30)

that yields the initial condition for the co-states as follows

P* ( O) = K -'( O )X * (50) (4.31)

Finally, substitution of (4.26) into the co-state differential equation (4.15), leads to

P'* = -(QK + AT )P* (4.32)

which is the differential equation for the evolution of the co-states with the initial conditions of
(4.31). Solving (4.32) by forward integration, either numerically or analytically, the co-state
vector history, P* (e), is obtained and accordingly applied to the equations (4.26) and (4.17) to
get the optimal states, X*( ), and the optimal control law, u*( ), respectively. Having the
optimal control law in hand, the time history of the optimal elevator deflection is computed by
using (4.9).

4.2 NUMERICAL EXACT SOLUTION

The simulation results for the numerical exact solution by implementing backward numerical
integration of the Riccati equation (4.27), and forward numerical integration of the co-state
equation (4.32) for the same two altitudes of 400,000 ft and 150,000 ft as in Sec. 2.5.1,
corresponding to the upper and lower portions of the reentry trajectory, are presented. The
numerical integration scheme used is the Euler's method where the corresponding derivatives in
(4.27) and (4.32) are considered constant within each integration step. Although the Euler's
method is simple as compared to other techniques such as Runge-Kutta method, it proves to be
efficient and robust for our application since we are only dealing with first order differential
equations. The initial conditions for the perturbation angle-of-attack and its rate of change are
also the same as those in Sec. 2.5.1, i.e. a(j%) = 5'and a'(0) = 0. The initial altitudes and
initial perturbation angle-of-attack and its rate of change are kept the same for the purpose of
comparison with the results of the simple disturbance control (or the transient response) in Sec.
2.6.1, as the reference output.

Figs. 4.1 and 4.2 show the output of practical interest such as the controlled variations angle-of-
attack and its rate-of-change, about their nominal values as well as the corresponding required
elevator control deflection and torque for 400,000-ft and 150,000-ft altitudes, respectively.
Figures 4.3 and 4.4 show the variations of the elements of the Riccati matrix during the course of
control action. The importance of checking the solution to the Riccati matrix can be justified by
the following facts. Firstly, the solution to the optimal control problem builds up on the solution
to the Riccati matrix equation, therefore the accuracy of the final results depends on how well
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and accurate the Riccati equation is being solved. Secondly, the Riccati matrix must come out
symmetric, therefore checking the symmetry is an appropriate accuracy test for the solution.

Note that in the simulation results of the subsequent section where the asymptotic analytical
solution is developed, the exact numerical solution will serve as a reference solution. The
following control and state penalty gains were used in the simulations where they proved to give
the fastest response while keeping the required elevator deflection within the available range of
± 250.

400,000-ft Initial Altitude: R = 6.55 x iO" , Q = I

150,000-ft Iinitial Altitude: R = 6.55 x 106 , Q = I

It should be remarked that in terms of the time required for the control task to be achieved, the
maximum available deflection of the elevator is the major constraint on the performance of the
optimal controller as well as the controllers discussed in the subsequent chapters.

Comparing the results in Figs. 4.1 and 4.2, we can see that the elevator control torque for the
case of 150,000 ft initial altitude is higher than that of the 400,000 ft by more than 3 orders of
magnitude. Referring to the expression (1.59) for the elevator control torque and the variation
history of the atmospheric density in Fig. (2.3), it becomes clear that the atmospheric density has
the dominant effect on the required control effort.

As can be seen, the time needed for the oscillations to die out has been reduced considerably for
both altitudes compared to that of the disturbance control (or the transient response) which
employs the inherent damping and stiffness characteristics of the space shuttle aerodynamic
design. The die-out time reduction is about 3 times for 400,000 ft initial altitude and 6 times for
150,000 ft initial altitude.

However, it should be reminded that the optimal controller needs the variation history of the
system parameters as online input data. For this application, the parameters include the trajectory
variables and the aerodynamic characteristics of the shuttle orbiter.
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4.3 ASYMPTOTIC APPROXIMATE SOLUTION

4.3.1 LINEARIZATION OF THE RICCATI EQUATION

We have the Lyapunov-type Riccati equation (4.27) as

K' = KQK + KAT + AK - BR~lBT

where K is a symmetric positive definite matrix with the boundary condition of (4.29) as

K( f)=0

The Riccati matrix
transformations.

Step 1

Let

Hence

equation above can be linearized through the following

QK =M

K = Q1 'M

where Q must be chosen to be invertible, i.e. JQJ # 0. Differentiating (4.33) with respect to (

gives
Q'K + QK' =M'

Multiply by Q~1 from left to get

Q-'Q'K + K' = Q-M'
where rearranging gives

K' = Q'M'- Q-Q'K

Substituting for K on the right-hand side yields

K'= Q 1 M'- Q -1 Q'Q -IM (4.35)

and substitution of K' from (4.35) and K (4.34) into the Riccati equation (4.27) results in

Q-M'- Q-Q'Q-1 M = (Q-'M)Q(Q-'M) + (Q-M)AT + A(Q-'M) - BR-1BT

which leads to

Q-M'I- Q 1Q'Q 1 M =QM 2 + Q-1MAT + AQ 1 M - BR-1B T

Multiply by Q from left to get

M'-Q'Q-1 M = M 2 + MAT + QAQ-'M -QBR-'B T
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and rearrange to obtain

M'_-M2 -MAT -(Q'Ql'+ QAQ-)M + QBR-BT =0
or

M'-(M 2 +MA T )-(Q'Q' +QAQ -,)M +QBR -1 BT = 0 (4.36)

However, we can write
M 2 +MAT =(M +A T ) 2 - A TM - (A T) 2  (4.37)

Substituting into the above equation to get

M'-(M +A T )2 + ATM +(AT )2 -(Q'Q1 +QAQ-)M +QBR -1BT =0 (4.38)

Step 2

Now let

M+A T = N (4.39)
Therefore

M = N-A T  (3.40)
Differentiate (3.40) to get

M' N'- -(A T)'

and substitute for M' and M in (4.38) to obtain

[N' -(A T )'] - N 2 + AT (N - A )+( A ) 2 -(Q'Q' + QAQ- 1 )(N - A )+QBR-B T =0

where rearranging and collecting terms yield

N'-N 2 + (A -Q'Q 1 -QAQ-')N +(Q'Q- 1 +QAQ')A T - (AT )'+QBR1 B =0 (4.41)

Step 3

Eventually let
N = -A'A- 1  (4.42)

that gives
NA = -A'

Differentiate
N'A + NA'= -A"

and multiply by A7' from the right to get

N'+ NA'A-1 = -A"A'
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or
N'- N(-A'A71 ) = -A"A-' (4.43)

Substituting from the transformation relation (4.42) into (4.43) yields

N'- N 2 = -AA- 1 (4.44)

Using (4.44) and substituting for N from (4.42) into (4.41) , results in

- A'"AK - (AT -Q'Q- - QAQ~')A'K + [(Q'Q~' + QAQ- 1 )AT -(A T )'+QBR-B T ] =0

Multiplying by - A from the right, finally leads to the following 2 d-order linear differential
equation with time-varying coefficients, which we will call it the linearized Riccati equation.

A"+ (AT -Q'Q-- QAQ' )A'+ [(AT)'- (Q'Q 1+ QAQ-')A T - QBR -1B]A = 0

Eq. (4.45) can also be written as
A" + 92 ( )A'+ Q0 (4)A = 0

where the 2 x 2 coefficient matrices are

a1 = AT _ Q'Q-1 - QAQ -1
and

QO = (AT)'- (Q'Q-1 + QAQ' )AT - QBR -1 B T

Writing Eq. (4.33) at the final position, we get

M(c,) = Q(4f)K(f)f

However, since K(4) =0, we get

M (4f) =0

Now, from (4.39) at the final position, we have

that according to (4.50), leads to

N( f) = AT ( f )

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

And finally, substitution of (4.42) into (4.52) yields

A'( f )A '( f) = -A T ( f) (4.53)
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Note that since we have added one order to the original Riccati equation, which is a 1st-order
differential equation, by the variable transformation (4.42), in fact we have the freedom to apply
an arbitrary and convenient boundary condition such as

A( f ) = I (4.54)

where I is the 2 x 2 identity matrix, and accordingly we get

A'(f) = -A T(f) (4.55)

The obtained 2"d-order linearized Riccati equation must be integrated backwards with the
boundary conditions at the final position, or its equivalent non-dimensional distance 4 that is a
specified parameter. The combined transformation relation is

K = -Q1 '[A T + A'A-1 ] (4.56)

4.3.2 APPROXIMATE ANALYTICAL SOLUTION OF THE LINEARIZED RIcCATI EQUATION
USING THE ASYMPTOTIC MULTIPLE TIME-SCALES METHOD

Experience with the entry trajectory of the space shuttle suggests that the coefficients of the
unified angle-of-attack equation (1.38) can be realistically considered to be slowly varying
compared to the uncontrolled dynamic response of the space shuttle to the angle-of-attack
perturbations, as discussed by Ramnath and Sinha in [9]. In traversing the earth's atmosphere
during reentry, variations in the coefficients of the unified equation are due to changes in air
density, velocity of the vehicle, flight path angle, nominal angle-of-attack, and the aerodynamic
force and moment parameters along the trajectory. The dominant effect however, is due to the
atmospheric density variation, which can be easily verified by inspecting the Figs. 2.3 and 2.6.

For the case of controlled response however, the assumption of slow variation is valid as long as
the duration of the control action is small compared to the total reentry time. This is due to the
fact that the controlled response is an over-damped non-oscillatory response. As will be seen in
the simulation results in Sec. 4.3.4, only for the low-altitude portion of the reentry trajectory, the
assumption of slow variations of trajectory parameters and the space shuttle aerodynamic
characteristics is valid since the control period is adequately short.

Nevertheless, throughout this section, we proceed with the assumption of slow variations of
parameters and at the end we will verify the assumption by inspecting the results. The linearized
Riccati equation (4.46) can be rewritten as

d 2d

2 1  A 0  (4.57)

where the primary boundary condition was chosen arbitrarily to be

A( f)= I (4.58)
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and accordingly, the secondary boundary condition became

dA
d ,(4.59)

For the case of constant R, and a constant matrix Q with zero off-diagonal weight factors as

0 q 2 2  
(4.60)

the coefficient matrices in (4.46) or (4.57) using (4.47) and (4.48), turn out to be

0 " Oo
q22{ (4.61)

1+ q22 WO(f 0
ql0

and

R( I2 2 (4.62)

where the expressions for co and w0 can be determined from (1.39) and (1.40) respectively.
Notice that since we have chosen the control penalty gain R and the states penalty matrix Q to be
constant which is convenient and practical, the coefficient matrices Q, and 920 are also slowly-
varying as they are functions of co , wo , and their derivatives only.

It should be reminded that, as opposed to the coefficients, the components of A(4) are fast-
varying. This is due to the fact that they determine the variation history of the control variable
and the associated controlled response within the specified time frame corresponding to 4f - 40.

Mathematically, it is equivalent to saying that oil and we vary on a new slow variable 17 = E4,
as first introduced by Ramnath [8,9], where 6 is a small positive parameter being a measure of
the ratio of the time constants of the oscillatory transient response of the space shuttle and the
coefficient variations. Therefore, we can write

d d di7 d
d di7 d di (4.63)

and similarly

d 2(.6
2 '2 ] (4.64)

d 2 drl
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Substituting into the linearized Riccati equation (4.46) gives

2 dr/2 A +A21(77) dr A + Q()A = 0 (4.65)

In order to develop an asymptotic solution to the equation (4.65), we will invoke the concept of
multiple time scales as developed by Ramnath [8]. To do so, first we "extend" the independent
variable q7 as 17 -+{Z ,71}

T=o = (4.66a)

T, 77 =(4.66b)

where z0 and i 1 are the slow and fast time scales, respectively. Referring to [8], it should be
reminded that Eqs. (4.66) represent an "extension" from one-dimensional space to the two-
dimensional space which is essentially a mapping operation and not a variable transformation. In
other words, the variations of the dependent variable A are measured by two different clocks,
namely a fast-scale and a slow-scale clock. In accordance with (4.66), we can write

d a 0 dz+ a [ dr,
d17 a17 d 77 ar, d77

and hence
d a i a

[]= []+- [] (4.67)
Similarly d77 a r0  e ar,

d2 a2  2 a2  1 a2

d77 2 a []2 a a 2( a2 , 2[] (4.68)

Applying (4.67) and (4.68) to Eq. (4.65), and rearranging in terms of powers of e , yield

a 2  a a 2  a 2
[ A+ Q,(z) -A + 0 (r)A]+e[2 A + 1 (ro) -A]+e2[ A]=0

a~ 12 rla17 0a -r, ar0  -
Using the multiple scales theory, the zeroth-, first-, and second-order extended perturbation
equations are the following, respectively

a2  a
A + Q,(10) A + O(r)A = 0 (4.69)

a 2  a
2 A =+ (r0 ) A=O (

a 2

a2 AO =(04.71)
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where A = A(z 0 ,z1 ). It should be mentioned that Eqs. (4.69-71) are valid in the general case of
the scalar differential equations with slowly-varying coefficients as developed by Ramnath and
Sinha in [9]. For our problem however, due to the matrix form of (4.65) as a special case, the
first- and second-order perturbation equations in (4.70) and (4.71) can not be used to obtain
better approximations. Nevertheless, the asymptotic approximation to the dominant order, i.e. the
zeroth order, using (4.69) works well for our application as will be seen in the results in Sec.
4.3.4. In the following steps, the solution to the dominant-order perturbation Eq. (4.69) will be
developed. Since the second boundary condition of the linearized Riccati equation is for the
derivative of A with respect to 4, using the extension relations we can write

dA dA aA aA
d d77 az-0  a Ti

For the dominant-order solution, we can consider

dA A-
-({f)~ ({%)=-A T ({f)

Now let assume

L 1 (ro,rI1 ) 22 2 (O 0, 1 )] (4.72)

where the components, A2, will be called the characteristic functions. Also let

a,= I ( O :1 ( ] (4 .7 3 )
a21 (z0) a22 (O )I

and

b ] () (4.74)
1b21 (T) b22 (TO)

Upon substitution of (4.72) through (4.74) into (4.69), we get

2 Al 1 A12 ~+[a , I(O) a2(O )] a [2~ +~ [bi (zO) b12 (O][ I 212] 0 0
a2 A21 A22 al(TO) a22 (rO) az1 A21 A22 b2l(TO) b2 n 0 0~

For simplicity, let

aT

and
a 2

azr[[
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Rewriting, we have

~ " iF~n ~aio n r 1 F'I,~(r0) b12(r0) 1Fn AiF 010
A ll I A I1 2 1 + 1 [ a , I( z 0 ) a 1 2  ( - 0 ) ] [v I A1 1 2 , + b IIzI)b 2 Z 0 ) ] A 1 =A1A"21 A _ 2 2 j a2 l(' 0 ) a22 (r0 ) LA' A'22j _b2 (zo) b22(z0)_LA2, A2 __0 0_

with the boundary conditions of

Al(,)
A21(f)

A2({) 10

An (fy )Lo
and

1'1 (1( ) A'12( )2'21 ( f) A 222 (

Upon expanding
equations

01
ij

(4.75)

(4.76)

(4.77)

(4.75), we obtain the following four 2nd-order homogeneous differential

(4.78a-d)

[All11+all(,zo)A'll+bll(zo )An ] +[a12(Z 0 )A'2 +b2("O )A21] =0

[A" 2 +a22(z 0 )A'n2 +b 1 (z0 )A 1 ]+[a2 (z0 )A'2 +b2 (z0 )AI] =0

[A it 2a1(10)12+bl (Z0)M12I+ [a,2 (z 0)A' 2 +bl2 (Z0)A22 = 0

[A i 2+a22(10 )A'2+b22(Z 0 )A22 ]+[a2, (10 )-Z'n+bl (10 M12 =0

where the first
coefficients are

two (4.78a-b) are coupled and so are the second two (4.78c-d). Note that the
functions of to whereas the differentiations are with respect to z1 . This means

that for integration purposes, we can regard the coefficients as constants, that is an advantage of
the multiple scales method. The general case of the linear systems with slowly-varying
coefficients has been solved by Ramnath [8] and as a special case of this general approach which
is somewhat easier to implement, for the first and the second pair of equations in (4.78)
respectively, we seek the solutions in the form

Aj (ro ,l ) = Cj (ro)e

Aj (zo ,l ) = Cj (z0)e z

(4.79a-b)

(4.79c-d)

where s(zo) and z(zo) are the corresponding slowly-varying characteristic roots and i, j = 1,2

accordingly. Henceforth, the C1, will be called the characteristic coefficients. Substituting Eqs.
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(4.79) into Eqs. (4.78) accordingly, results in the following set of 2nd-order homogeneous
algebraic equations

[s 2 + all ro)s +b(zO)]C11 + [a12 ZO )s +b12 (O )]C 2 1 =0
(4.80a-b)

[a21(r )s+ bl (r )]CI +[s2 + a22 (r )s+ b22 (r )]CA21 =0

[z 2 + all (r)z+ bl('r)]C 12 +[a12 (zr)z+b (r0 )]C =0

[a2 (rO)z +b21 (rO )]C12 +[z 2 + a22 (rO )z+b 2 2 ( )]C 22 =0

(4.80c-d)

As expected, Eqs.

C,2 and C22. In

(4.80a-b) share CH and C2, as their unknowns whereas Eqs. (4.80c-d) share
order for the above algebraic equations to have nontrivial solutions, the

following 4th-order determinant expansion equations must hold

[s2 + al (r)s + bl, ()][s 2 + a22 (r)s+b22 ('r )]-[a (r)s +b12 ('r )][a 21(r0)s+b2 (r)]= 0

(4.8 1a-b)

[z 2 + all (r)z+ b (r0 )][z 2 + a22 (r0 )z+ b22 (r0 )]-[a12 (r)z+ b12 (z-O)][a2 (r)z+ b2 (r)]= 0

We can see that both equations have identical coefficients, which means they have the same set
of roots. Therefore, we will treat them as a single characteristic equation in terms of the
parameter s. Upon expanding and factoring the first equation, we arrive at the following full-
order quartic characteristic equation

s +P3S+ P2s 
2 Ps+P = 0 (4.82)

where
P - a,, + a22

P2 = ala -ala, +b1 +b22

P, = ab22 + a22 b -al2b2l - a2b

P0 =bjb22 -b 2 b2 I

(4.83a-d)

For the case of constant R and constant matrix Q with zero off-diagonal weight factors, the
quartic equation of (4.82) turns into

2 ~ )S +2 - )s±'(1+ q22  + q1"01o R 10 qIR (4.84)
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that contains no cubic term. In fact, the linear term is also negligible. This is due to the fact that
for short control periods, coo and w, vary slowly so that their derivatives are rather small as well
and can be neglected. Elimination of the derivative terms from the coefficient expressions results
in the following biquadratic equation the roots of which can be readily found.

S4+(2o - - 2 2 )s 2 +( 0 2 + )=0 (4.85)R R

It should be mentioned that although in the simulations, for the sake of accuracy, the
characteristic roots are found using (4.82), the roots appear to be two pairs of complex
conjugates which are negative of each other. This is clearly the peculiarity of the roots of
biquadratic equations such as (4.85).

After finding the slowly-varying roots as functions of 4, we only need to evaluate them at the
particular points of interest. For instance, in order to find the unknown coefficients of A , the

final position, 4f , is the point under consideration that will be discussed subsequently. The other

point of interest is 40 or the initial position which is of particular importance in that it determines

the initial condition for the co-state vector, i.e. P*(so). Since there are four roots, we can
consider the complete solution for the components of the matrix A as the following

Aj (r0 ,11 ) = C1 (To )e s'"0) +Cij 2 (ro)e 2(rO + Ci3 (ro)e3 ('ro)r +C ij 4(z )eS4(To)-

Or in the short form
4

j ( ,11) = Z Cij (0o)e k (.O) (4.86)
k=

where i, j = 1,2. Having found the four characteristic roots of (4.82), from (4.80a) and (4.80c)
we obtain the following linear-dependence relations for the characteristic coefficients

C 2 1k= F(sk)C1,k (4.87a)

C22 k = F(sk)C12k (4.87b)

where the dependence factor is

F(sk ) =--Sk +alsk b (4.88)
al2 sk +b12

Having the root functions known, we can determine the characteristic coefficients at the final
position by applying the available boundary conditions. At the final position, we can write

4
Lj ( f ) =ICk(f )e Sk)f (4.89)

k =1
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where the left-hand side is known and the four coefficients are the only unknowns on the right-
hand side. Differentiating the solution expressions for Aj (zo,zi) in (4.79a-b) with respect toil,
and evaluating them at the final position, lead to the following relations, respectively

4

k =l

To simplify the algebra, let us use the following substitutions

Dilk = C llk()e(f) f

D12k = Cl2k (f )esk(ff )Sk

Therefore, using Eqs. (4.91) we can expand (4.89) as the following

(4.90)

(4.91 a)

(4.91b)

4

Ai(f) =Dik
k=1

4

221 (f) =I F(s( (f ))Dllk
k=1

Accordingly, Eq. (4.90) can be expanded as follows

4

212 (f)= D1 2k
k=1

(4.92)
4

A
2 22 (f) = F(skf ))D12k

k=1

4

1 () k ( f)Dilk
k=1

121 ( f ) = s S ( )F(sk (f ))Dllk
k =1

4

212 ( f) = sk(f)Dl 2k
k=1

4

2'22 ( f~ I Sk (4 f )F(Sk ( f ))D12k
k=l

Applying the final-position boundary conditions of (4.76) and (4.77) to (4.92) and (4.93), we get
the following two sets of four linear algebraic equations

1

F(sl)

Si[s1
F(s,)

1

F(s,)

LsIF(sI)

1 1 1 1
F(s2 ) F(s) F(s4 ) D112 21

S2 S3  S4 D113 I 1

s 2F(s2 ) s 3F(s3) s4F(s4 ) D '21

1 1 1 D 2

F(s2 ) F(s3 ) F(s4 ) D 122  J22
s2 S3  s4 D23 A 12

s 2 F(s 2 ) s 3F(s3 ) s 4F(s4 )j ID 124J 122

I1_0

0

-tI

1=
(4.94)

(4.95)

0

(01
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Upon solving the matrix-form sets of algebraic equations, i.e. (4.94) and (4.95), forD,'s by
using the Cramer's rule, Eqs. (4.91) give the characteristic coefficients, Cj (4f) as

Cllk( 4 f) = D11ke -sk(f )f (4.96a)

C12 ) D12ke _Sk( f) f (4.96b)

Note that the obtained values for the characteristic coefficients at the final position, will be used
to evaluate the corresponding characteristic functions in (4.86) during the course of control
action. This means that the slow variations of the characteristic coefficients will be ignored as
opposed to the variations of the characteristic roots that are kept in effect. Of course this
introduces some error to the solution, however this is a trade off for keeping the computation
time short. As can be seen, the algebra needed for finding the characteristic coefficients is quite
involved and time-consuming for the computation purposes.

Upon finding the characteristic roots and the corresponding characteristic coefficients, the
resulting analytical solution for the characteristic functions turn out to be a combination of
harmonic and hyperbolic functions as the following

Aj (4) = 2cos(s 4){ [CiRe + C0 3 ]cosh(sR,4 + [CjiRe - C 3 R ]sinh(sR)
- 2 sin(sl ){[Ciiim + Ci0 3 . ]cosh(s 1R4 + [Ci1  - C ]ii~im sinh(s, Re (4.97)

4.3.3 CLOSED-FORM SOLUTION OF THE OPTIMAL CONTROL PROBLEM USING THE
LINEARIZED RICCATI EQUATION

Having the asymptotic solution for A(4) and using the combined transformation relation (4.56),
we arrive at the solution for the Riccati matrix K(4) as the following

K(4) = -Q~1[A T (4)+ A'(4)A~1 (4)] (4.98)

Accordingly, at the initial position we will have

K(4O) = -Q-'[A T (O) + A'(40 )A-1 (40)] (4.99)

The next task is finding the time history of the states and the control law by using the relations of
section 4.1. Substituting for K from (4.98) into (4.32), gives

P'* = -{Q[-Q~1 (AT + A'A-')] + AT }P*

that leads to the following differential equation for the co-states

P'* = A'A-YP* (4.100)
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Now, let assume

P* =AF (4.101

where F is an unknown 2 xI column vector. Differentiation of (4.101) with respect to , yields

P'* = A'T + AF' (4.102

Substituting (4.102) into the new co-state equation (4.100), results in

A'F + AF'= A'A 1 (AF) = A'T
and hence

AF'= 0 (4.103

However, since in general A(4) # [0] and also A(J)| # 0, therefore

IF= =0 (4.104

which means that F is a constant vector, or

F = const. (4.105

Therefore, by writing (4.101) at the initial position and solving for F, we get

F = A-1( O)P*( O)

)

)

)

)

)

(4.106)

where A 1 ( 0 ) is known and P*( O) is obtained from (4.31). Note that since A(4f)= I, also
we have

F = A-l( f )P*( f ) = P*({f) (4.107)

However, we do not have information about the co-state vector at the final position yet. Writing
the relation for F in terms of the initial state vector, gives

F = A-'( O)K 4( O)X *( O)

Therefore

=A()[A-'( O)K -( O)X *( O)]

(4.108)

(4.109)

Substituting (4.98) and (4.109) into (4.26), we arrive at the following expression for the optimal
state vector, that gives the time history of the angle-of-attack perturbations being suppressed by
the optimal controller.

X* ( ) = -Q '[A T (4)A( ) + A'( )][A7'( )K-1 ( O)X *(4O)]
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And finally, substitution of (4.109) into (4.17), yields the optimal control law as

u*( ) = -R~1 BT A( )[A-'( )K 1 ( 0)X*( 0)] (4.111)

The corresponding elevator control angle is obtained from Eq. (4.9).

4.3.4 SIMULATION RESULTS AND DISCUSSION

The optimal control results using the asymptotic solution for the linearized Riccati equation, for
150,000 ft initial altitude with the same initial conditions as those in Sec. 2.5.1, are presented in
Figs. 4.5 through 4.8. For comparison purposes, the results of the corresponding numerical
solution in Sec. 4.2 are also plotted on the same graphs. Also, the root variations for the 400,000
ft initial altitude are shown in Fig. 4.9. The optimal state and control penalty gains used are the
same as those for the numerical solution in Sec. 4.2.

Using the same computer, the computation time for the simulation of the asymptotic solution
was about 1/10 of that of the numerical solution for the same level of smoothness of the output,
and the corresponding evaluation stepsize for the asymptotic solution was 4 times bigger than the
integration stepsize of the numerical solution.

As can be seen in Fig. 4.5, the asymptotic approximation favorably overestimates the required
elevator angle and the corresponding control torque. The approximated variations for the angle-
of-attack and its rate of change are sufficiently close to the exact variations. From Fig. 4.5, the
maximum approximation error for the perturbation angle-of-attack and its rate-of-change appear
to be less than 0.2 degree and 0.2 degree per second, respectively.

As expected, the asymptotic prediction for the components of the Riccati equation deteriorates
while it proceeds backwards (Fig. 4.6). This is due to the fact that the approximation starts at the
final position of the controlled travel where the boundary conditions are known exactly and
further on the approximation error begins to accumulate.

For the 150,000 ft initial altitude, the sets of four characteristic coefficients corresponding to
each of the four characteristic functions are listed below. Note that since the characteristic
functions must be real, and the four characteristic roots, sk, are pairs of complex conjugates as
Eq. (4.85) also suggests, the characteristic coefficients have to be pairs of complex conjugates as
well. From Figs. 4.8 and 4.9, we can see that

s, = I2(d)= -3(4)= -s4(3)

From Fig. 4.8, we can clearly justify the assumption of slow variations of the system parameters
for control purposes at lower altitudes.

The characteristic coefficients for the 150,000 ft initial altitude are listed below.
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C111 = 89.752 -135.89i C121 = -0.9088 - 3.4323i
Cm = 89.752 +135.89i = C111  C1 = -0.9088 + 3.4323i = C121

C113 = (2.1339 -3.1897i)x10~ 4  C12 3 = (-8.2874+1.1559i)x10-6

C1 4 = (2.1339+3.1897i)x10- 4 = U1 3  C124 = (-8.2874 -1.1559i)x10- 6 = C123

C211 = (6.9305 -1.4173i) x10 3  C22 1 = 77.507 -133.33i

C212 = (6.9305+1.4173i) x10 3 = C2 C222 = 77.507 +133.33i = C221

C 213 = (5.8 +17.6i) x10~3  C2 23 = (2.0294 - 3.5041i) x 10- 4

C214 = (5.8 -17.6i)x10- 3 = U213 C2 2 4 = (2.0294+3.5041i)x10-4 = C2 2 3

Inspecting the results for the linearized Riccati matrix in Fig. 4.7 as well as the corresponding
characteristic coefficients above, we can speculate that A, (4) and A22 () must be equal in the
absence of the approximation errors. Also, note that the off-diagonal components are different by
orders of magnitude.

The variations of the characteristic roots for the 400,000 ft initial altitude are shown in Fig. 4.9.
Considering the noticeable variations of the roots (about half an order of magnitude) during the
required control period for the 400,000 ft initial altitude (Sec. 4.2), we can see that the
assumption of slow variations for the trajectory variables and the aerodynamic characteristics of
the shuttle, is not valid for the asymptotic approximation of the solution to the linearized Riccati
equation (4.53). Consequently, the asymptotic method as described in Sec. 4.4.2, is not
applicable to the control of the space shuttle angle-of-attack oscillations in the upper portion of
the reentry trajectory.

It should be reminded that the characteristic roots, i.e. the roots of Eq. (4.82), vary as direct
functions of the traveled distance along the trajectory and not the elapsed time. As can be seen in
Fig. 2.3, the relationship between time and traveled distance along the trajectory is nonlinear. As
a result, we see that while the control period of 5 minutes is about 1/7 of the total reentry time,
the corresponding traveled distance is nearly 1/4 of the entire trajectory and it encompasses
considerable variations of the trajectory variables as well as the aerodynamic coefficients of the
space shuttle.
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Non-Dimensional Control Variable
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CHAPTER 5

ADAPTIVE CONTROL

In this chapter, in order to suppress the undesired angle-of-attack oscillations, an adaptive control
technique is applied to the unified equation, i.e. the original 2"d-order nonlinear differential
equation with variable coefficients for the angle-of-attack perturbations.

Adaptive control is an approach to the control of dynamic systems with constant or varying
uncertain (or unknown) parameters. The basic idea in adaptive control is to maintain consistent
performance of a system in the presence of uncertainty or unknown variation in plant parameters
by online estimation of the uncertain parameters (or, equivalently, the corresponding controller
parameters) based on the measured system signals, and using the estimated parameters in the
control input computation. An adaptive control system can thus be regarded as a control system
with online parameter estimation. Adaptive control systems, whether developed for linear plants
or for nonlinear plants, are inherently nonlinear. The major advantage of the adaptive control
systems is that they do not require a priori information about the unknown parameters. This is
due to the fact that adaptive controllers feature learning behavior, which means that they start
with any initial condition and then improve their performance as parameter adaptation goes on.

Research in adaptive control started in the early 1950's in connection with the design of
autopilots for high-performance aircraft, which operate at a wide range of speeds and altitudes
and thus experience large parameter variations [10]. Adaptive control was proposed as a way of
automatically adjusting the controller parameters in the face of changing aircraft dynamics and
aerodynamics. But interest in the subject soon diminished due to the lack of insights and the
crash of a test flight. It is only in the last two decades that a coherent theory of adaptive control
has been developed, using various tools from nonlinear control theory, such as Lyapunov
functions and sliding control methodology.

Intuitively, the sliding mode control is base on the remark that it is much easier to control 1st
order systems (i.e. systems described by 1st-order differential equations), be they nonlinear or
uncertain, than it is to control nth order systems [10]. Accordingly, -a notational simplification is
introduced, which in effect, allows n'h -order problems to be replaced by equivalent 1S-order
problems. It has been shown that, for the transformed problems, "perfect" performance can in
principle be achieved in the presence of arbitrary parameter inaccuracies. Once a system is
forced into the sliding mode, it remains there and exponentially converges (or slides) to the
desired state. The rate of convergence is arbitrarily chosen by the control system designer.

The motivation for applying an adaptive controller to this problem is the fact that the parameters
in the unified equation of motion for angle-of-attack oscillations are complicated functions of the
shuttle aerodynamic coefficients and the prescribed trajectory variables that all need to be
provided and updated for a non-adaptive controller as input data during reentry. More
specifically, all the stability and control derivatives of the shuttle vary with angle-of-attack and
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Mach number, and of course the air density, speed of the vehicle, flight-path angle, and nominal
angle-of-attack, change along the trajectory as well.

The adaptive controller design problem here is to derive a control law for the elevator deflection,
and an estimation law for the parameters without using any a priori information about them, such
that the space shuttle regains its nominal trajectory angle-of-attack after being perturbed by
external or internal disturbances. This means that the deviation of angle-of-attack from its
nominal value and all its derivatives with respect to the independent variable or time must vanish
at the end of controller action. Thence, the control problem can be categorized as a tracking
problem where the desired trajectory is the origin of the state vector space at each instant, or a
positioning problem in which the initial position is the disturbed state and the target position is
the origin.

5.1 MODIFIED ADAPTIVE CONTROL

As derived in Chapter 1, the unified equation is

a"(4) + ( '()+ wO(Da(4) = f ()-- p( ,(4) (5.1)

where the coefficients w, (4), co0 (i), and p (4), as well as the forcing term f (), vary along the

trajectory and during the course of control action. Taking the forcing term in (5.1) to the left-
hand side and introducing the control variable, u(4), we can write

0"(4) + w(0 )a'(4) + O (4)c(4)- f (4)= (D)U(4) (5.2)
where

U~d =J -(4) (5.3)

Note that since o and 5 (4) are positive quantities, and C,,8 (4) is negative by convention,

therefore
p(4) > 0

We will need p(4) to be positive later in the formulation. Dividing both sides of (5.2) by P(4),

yields
1 ,, (1Q) wo(4) f_(_)

a"()+ a'( )+ a( ) - =u() (5.4)

Now let rewrite the above equation using a more convenient set of parameters as

m(4 )a"(4) + c(4)a'() )+ k(&)a(4) - d(4) = u(4) (5.5)
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where

m() =1

(5.6a-d)

k( ) =

where m, c, k, and d are the mass, damping, stiffness, and disturbance parameters, respectively.
The notation used is more descriptive because of the analogy with the conventional 2nd-order
mass-spring-damper system with d(4) as a disturbance signal. The complete set of parameters to
be estimated includes an additional one denoted as n(4), which is the derivative of the mass
parameter with respect to 4, namely

n( ) = m'( )= ± (1)=~ 74
d Ai pU ( ) (5-7)

Note that the controller will estimate this parameter as an independent one and not necessarily
the derivative of the mass parameter. This is due to the fact that the adaptive control approach to
be used here is control-task-oriented and does not guarantee the convergence of the estimated
parameters to the true values. Being task-oriented is due to the fact that in this method, the
adaptation law extracts information about the parameters from the tracking errors and not from
the estimation error.

Now, let us define the vector of true parameters, P, as the following

P = [m, c,k, d,n]T  (5.8)

where the components are considered to be unknown. Also, let form the vector of parameter
estimates as

I'[2,, Tl~~ (5.9)P M= [z, 8", k, d, n~T(59

the components of which are to be estimated and updated by the controller. Using the above
vectors, let us define the vector of parameter estimation errors as

P = - P =[in, F, k, d ,i] (5.10)
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with the components of
in= m-m

c -c

k=k-k (5.11 a-e)

d =d -d

=n-n

The perturbation initial conditions are defined as before, i.e. a(40) = ao and a'(0) = a', and
the desired state for the perturbation angle-of-attack and its rate-of-change is described by

a =0 a' =0
Let us define the state errors as

a - a =a- ad

that lead to
S=a f'= a'

The sliding variable is defined as the following

s = &'+& = a'+Aa

(5.12)

(5.13)

(5.14)

(5.15)

where A is a positive number that determines the rate of exponential decay of the angle-of-attack
when the sliding variable tends to zero as a result of the closed-loop dynamics of the controller
that will be discussed later. We can physically interpret the sliding variable as the "velocity
error" measure by introducing a "reference velocity" variable, a', as

s=a a,.

s =a _ar

where

and accordingly
a' =a' -Ad =-Ad =-Aar d

r

The preceding representation of the sliding variable will also simplify the formulations as can be
seen further. Now, let us consider the following Lyapunov function candidate

1 + 1T
E=-ms 2+-P pi-

2 2 (5.20)

77

(5.16)

(5.17)

(5.18)

(5.19)



where F is called the adaptation gain matrix and is a constant symmetric positive definite 5 x 5
matrix that ensures the corresponding quadratic term remains always positive regardless of the
magnitudes of the P components. The adaptation gain matrix plays the role of a conditioning or
normalizing factor that balances the contribution of the estimation errors associated with each
parameter estimate to the total error, and is commonly chosen to be diagonal so that the number
of weighting elements to be assigned reduces to the minimum. The first term in (5.20) is also
always positive because of the choice of the parameter m to be positive earlier in the
formulation. As can be seen, the Lyapunov function is a positive definite scalar function and a
combined measure of the tracking and estimation errors. The decrease of the Lyapunov function
indicates improvement and convergence in the tracking and parameter estimation procedures.

The next step in designing the adaptive controller is to find an adaptation law and accordingly a
control law that guarantee the negative definiteness of the Lyapunov function. Mathematically,
we have secured that,

E>O while s#0 and/or P#0

but we further need to provide that

dE
-= E'<0 while s#O
d g

Differentiating (5.20) with respect to 4, we get

dE = E' =1m's2 +ms's+E T  Nf (5.21)
d 2

Substituting for the sliding variable gradient s' from (5.17) and using the previously-introduced
additional parameter n from (5.7), lead to

E' =ns 2 +m(a"-a,")s+ T I'P
2

Rearranging, we have

E' ns + ma" - ma,)s+ T ' (5.22)

and from the unified equation, we can write

ma" =u -ca'- ka + d

Substituting for a' from (5.16) yields

ma u - c(s + a') - ka + d (5.23)
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Let take the control law as the following

U =( M a"+C-a' +k5a - )+(C - Arh -n)s .4
r r 2(5.24)

Substituting (5.24) into (5.23) and then putting (5.23) into (5.22), we get

1 A A1

E'={-ns+[&a"+ a'+ka-+(+2 -- )s-c(s+a')-ka+d]-ma,}s+ P T -'
2 2

Using Eqs. (5.11) and collecting terms as well as breaking the rightmost term, we arrive at

E'= s[Fi(a,"-As)+F(a' + s)+ kca - d--is] -tms2 + P T PP'- PEP I5.2'
2 (5.25)

Now let us define a known vector Y,. such that the expression in the brackets in (5.25) can be
written as

i(ca" - As)+ F(a' + s)+ a- --is] = Ym(aO,a',a)P (5.26)

where

Y = [(a, As), (a' + s), a,-1,- s] (5.27)

or using (5.18) and (5.19)
(5.28)

Ym =[-A(s+a'),(s2-Aa),o,-1,- s]

Relation (5.26) is called linear parametrization of the control law, since by rearranging (5.24), we
can write

1 (5.29)
U =M(a,"- As)+(a' + s)+ka -d -- ns =YP

2

Note that all the components of the vector Ym are known or computed from the output
measurements of a and 6 . It must be noted that the rate measurements give the time derivative
of the angle-of-attack whereas in our formulation, we need the non-dimensional derivative a'
that can be found by using (1.36) as

, da L.

d V
Substituting (5.26) into (5.25) we get

E' = + F Tr-' Ams 2 _ p~r-1p' (5.30)

Since the first term in (5.30) is a scalar, we can write

sYmP = (Sy,,) T = T Yms
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and hence

E'= pTY Ts+PT]F 1-'-Ams2 _pTF-1p*

or

E'= T (Ys + r-)- Ams2 _ P T r-1p' (5.31)

Finally, choosing the adaptation law as
I' T ~YS (5.32)

leads to P'= TYs

E= -Ams 2 
- PTp-1p (5.33)

However, since Ams 2 > 0, as long as PTF-1p' > -Ams 2 , we have

E' 0 (5.34)

and since E is positive, Barbalat's lemma [10] indicates that E' does tend to zero as time
elapses. This in turn results in asymptotic approaching of the sliding variable s towards zero and
consequently the exponential decay of the perturbation angle-of-attack a .

Eventually, for the elevator control command, from (5.) we have

S=-u =-YP (5.35)em

that leads to the following control command

15 =[22,- +I ]a'+[2m--k- lAn]a+d (5.36)

Note that the elevator control command comprises of both feedback and feedforward signals.

5.1.1 SIMULATION RESULTS AND DISCUSSION

The simulation results for the adaptive controller with the same set of initial altitudes, i.e.
400,000 ft and 150,000 ft, and the same initial conditions as those in Sec. 2.5.2, are presented in
this section. Figs. 5.1 and 5.5 demonstrate the results of practical interest for the two altitude
ranges, and Figs. 5.2 and 5.6 show the corresponding evolutions of the parameter estimates.
Accordingly, Figs. 5.3 and 5.7 depict the variations of the true parameters, and finally, the
variations of the true parameters and the evolution of the parameter estimates are plotted on the
same graphs for evaluating the estimation performance.

As introduced in the formulation, there are two arbitrary control parameters, i.e. A and F, that
must be selected for the controller based on the desired-response requirements and control
availability. The characteristic value, A, controls the speed of response such that the higher
values give faster response. On the other hand, the adaptation gain matrix, F, controls the speed
of adaptation and parameter convergence. The adaptation gain matrix also plays a conditioning
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or normalizing role in the estimation process in the sense that it balances the contribution of each
of the parameter estimate to the total estimation error. The characteristic value and the adaptation
gain both affect the stability and functionality of the method as well as the required control
effort. Larger characteristic values give more stability to the method while demanding more
control effort, i.e. higher elevator deflection the associated aerodynamic torque. Similarly, higher
adaptation gain offers more stability but requires more control effort. However, the adaptation
gain must remain within a certain range, otherwise it causes instability. For the characteristic
value, however, there is no upper bound concerning the stability. The maximum available
elevator angle is a major constraint for both of the controlling parameters and consequently the
performance of the adaptive controller.

The following characteristic values and adaptation gain matrices corresponding to the two initial
altitudes proved to give the fastest response in each case while keeping the required elevator
deflection within the available range of ± 250. Notice that the components of the adaptation gain
matrix F are apart by many orders of magnitude in both altitude ranges. This is due to the
normalizing role of the gain matrix that is discussed in Sec. 5.1.

400,000-ft initial altitude:

A =1.11x10- 3

F =diag [ 1.0345x10 4 , 6.3146, 3.1487x10~4 , 6.3261x10-9 , 4.5023x10 5

150,000-ft initial altitude:

A =1.92 x10-2

F=diag [ 3.6616x10 10 , 1.1163x105 , 1.1029x10 2 , 1.2975x10 4 , 6.1606x101

As can be seen in Figs. 5.1 and 5.5, for both altitudes, the required time to cancel out the angle-
of-attack unwanted oscillations has been reduced considerably compared to that of the
disturbance control (or the transient response). The suppression time for the 400,000 ft initial
altitude is about 4 minutes that is nearly one-fourth of the time that takes the transient dynamic
response to die out. For the 150,000 ft initial altitude, it takes only 6 seconds for the adaptive
controller to suppress the angle-of-attack oscillations compared to that of the disturbance control
which is about 120 seconds.

While the elevator control angles for the two altitude ranges are at the same level, the
corresponding control torques are different by nearly 3 orders of magnitude which is due to the
corresponding levels of atmospheric density as discussed in Sec. 3.2.
Comparing the results in Figs. 5.4 and 5.5, we see that the estimation performance is better for
the lower altitudes. Note that for the case of 150,000 ft initial altitude, the parameter estimates
and the corresponding true parameters have the same orders of magnitude.

As can be justified by the presented results, we can see that the adaptive control approach, as
formulated in this study, is a robust and practical technique for the control of the space shuttle
angle-of-attack during reentry. It is robust in that it performs excellently in both upper and lower
atmosphere regardless of the level of variations of the aerodynamic and trajectory parameters
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during the course of control action. The adaptive controller is self-contained because it does not
need input data corresponding to the prescribed trajectory variables and the variant aerodynamic
characteristics of the space shuttle during the control process. Also, the adaptive controller is
practical since the required control deflection of the elevator always starts at zero (Figs. 5.1 and
5.5), regardless of the nature of the input disturbance. This is not the case for the optimal and
nonlinear controllers where they demand the maximum elevator deflection at the beginning of
actuation (Figs. 3.1, 3.3, 4.1, and 4.2).
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CONCLUSIONS

In this study, we have presented different approaches to the control of the angle-of-attack
oscillations of the space shuttle due to the atmospheric disturbances during reentry. The space
shuttle glides over a prescribed reentry trajectory that is optimal in that it minimizes the weight
of the thermal protection system [4]. A realistic generic hypersonic aerodynamic model taken
from [3] has been used for the computer simulations in this study. The model is a geometrically-
simplified hypersonic delta-wing aircraft that has similar aerodynamic characteristics to that of
the space shuttle.

The oscillations of the space shuttle angle-of-attack during reentry, have been shown by Vinh
and Laitone in [12] to be governed by a second-order inhomogeneous linear differential equation
with variable coefficients. This so called unified equation results from the transformation of the
nonlinear equations of motion by using a change of independent variable from time to a non-
dimensional distance parameter along the trajectory. In this study, the original unified equation
has been modified to be applicable for control purposes and using the abovementioned generic
hypersonic model. In traversing the earth's atmosphere during reentry, variations in the
coefficients of the unified equation are due to changes in air density, velocity of the vehicle,
flight path angle, nominal angle-of-attack, and the aerodynamic characteristics of the space
shuttle vehicle. The dominant parameter is shown to be the atmospheric density. However, the
aerodynamic stability and control derivatives of the shuttle as a hypersonic vehicle, vary only
due to variations of the nominal angle-of-attack and velocity along the prescribed trajectory. Of
these two variable parameters, the nominal angle-of-attack proves to be the dominant one.

The simulation results for the dynamic response of the shuttle vehicle using the generic model
show good agreement with that of the actual space shuttle model employed in [9] by Ramnath
and Sinha. Also as expected, the transient response to the angle-of-attack perturbations is shown
to be stable. The uncontrolled dynamic response to the angle-of-attack perturbation at two
different initial altitudes of 400,000 ft and 150,000 ft, corresponding to the upper and lower
portions of the trajectory, has been presented and analyzed. It is shown that the transient
response in both cases is highly-oscillatory and long-lasting with increasing frequency. As such,
the need for providing the space shuttle orbiter with an angle-of-attack controller is readily
justified. It is shown that the die-out time is much larger for the 'upper atmosphere (about 15
min.) compared to that for the lower altitudes (about 2 min.). The increasing frequency is
especially visible for the case of upper trajectory as it takes longer for the oscillations to vanish.

Through implementing the nonlinear, optimal, and adaptive control techniques, three different
controllers have been developed and presented. Using computer simulations, the performance of
the controllers has been analyzed along the upper and lower portions of the trajectory. It was
observed that in reducing the time required to achieve the control tasks, the maximum available
deflection of the elevator is the major constraint. Accordingly, in designing the controllers, the
corresponding gains and characteristic values have been selected to give the fastest response
while keeping the required elevator deflections within the available range of ± 25*. The required
control time for the upper trajectory, turns out to be about 4 to 5 minutes and for the lower
trajectory, less than 6 seconds. These control periods seem to be satisfactory when compared
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with those of the uncontrolled response (15 min. and 2 min., respectively), and reasonable as
compared to the entire reentry time which is about 35 minutes.

It is seen in the simulation results of all three controllers that, while the elevator control angles
for the abovementioned altitudes remain in the same available range, the corresponding control
torques are apart by nearly 3 orders of magnitude. It is shown that the level of difference is
mainly due to the corresponding levels of atmospheric density.

The feedback linearization nonlinear approach proved to be a useful and very simple control
strategy. Because of its simplicity, the feedback linearization method was basically employed to
characterize the controlled response of the shuttle to the angle-of-attack perturbations. The
feedback-linearization nonlinear controller, subject to the maximum available elevator-angle
constraint, offered realistic estimations for the duration and the corresponding rate of decay of
the controlled response that were helpful to calibrate the optimal and adaptive controllers. The
feedback linearization is easy to implement since we only need to specify the desired time for the
control action and check if the maximum demanded elevator angle is available.

In order to formulate the optimal controller model, the linear quadratic regulator (LQR)
methodology was applied to the state space representation of the unified equation. Due to the
zero final conditions for the state vector, as a peculiar case, the formulation and the
corresponding Riccati equation are different from those of the conventional linear regulator
methodology. The Riccati equation for this special case is called the Riccati equation of the
Lyapunov type [5].

Subsequently, a fully numerical solution has been discussed followed by the development of a
completely analytical solution for the control of the space shuttle angle-of-attack perturbations
during reentry. The numerical solution, that is considered to be exact, was obtained by
numerically integrating the Riccati equation backwards, and subsequently, solving the co-state
differential equation using forward numerical integration. The analytical solution was developed
basically to eliminate the backward and forward numerical integrations from the optimal control
solution and thereby reduce the computation time. The motivation for developing an
approximate analytical solution was primarily to reduce the computation time that an optimal
controller needs to suppress the unwanted oscillations of the space shuttle during reentry. The
fact is that while numerical integration schemes require small stepsize to give acceptable results,
the accuracy of analytical solutions is not affected by the evaluation stepsize. In the case of
approximate analytical solutions however, there must be a balance between the accuracy of the
method versus the computation time. The other reason for developing an asymptotic solution was
to gain better mathematical insight into the optimal control approach.

As suggested by Ramnath, in order to develop an asymptotic analytical solution, first the Riccati
matrix equation is linearized by using a rigorous mathematical transformation, and subsequently,
an asymptotic analytical solution describing the variations of the linearized Riccati matrix is
derived. The asymptotic solution is developed by using the multiple time-scales technique as
introduced by Ramnath [11]. The analytical solutions to the components of the linearized Riccati
matrix were derived as a combination of simple harmonic and hyperbolic functions. In the third
step, the co-state first-order matrix differential equation is solved analytically, by using a novel
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matrix transformation. Eventually, the optimal control law and the corresponding state-vector
history are determined by using the solutions for the linearized Riccati matrix and the co-state
vector.

The coefficients and the forcing term in the unified equation are functions of the prescribed
trajectory variables and the aerodynamic characteristics of the space shuttle during reentry. As
has been discussed by Ramnath and Sinha in [9], these functions vary slowly along the trajectory
as compared to the highly-oscillatory transient response of the space shuttle to angle-of-attack
perturbations regardless of the duration of the response. However, it is shown that for the case of
controlled response, the assumption of slow variation of these parameters is valid as long as the
distance traversed during the control period is small compared to the total distance along the
reentry trajectory. This is due to the fact that the controlled response is an over-damped non-
oscillatory response where its fastness is inversely proportional to the duration of the control
action. In fact, the time constant of the controlled response is nearly equal to the duration of
control action. It is shown that for the high-altitude portion of the reentry trajectory, the
assumption of slow variations is not valid since the space shuttle travels about a quarter of the
entire trajectory during the optimal control period.

For the lower portion of the trajectory where the required control time and the corresponding
travel are adequately short, the coefficients of the unified equation and consequently the
coefficient matrices of the linearized Riccati equation appear to vary slowly compared to the
variations of the angle-of-attack controlled response. Accordingly, it is shown that the optimal
controller using the asymptotic solution for the Riccati equation is satisfactorily functional for
lower altitudes.

The computation time for the asymptotic approximate solution is compared with that of the
numerical exact solution. It is shown that using the same computer, the computation time for
asymptotic solution is about 1/10 of that of the numerical solution for the same level of
smoothness of the output. The appropriate evaluation stepsize for the asymptotic solution was 4
times bigger than the integration stepsize needed for the numerical solution.

It is also shown that the asymptotic approximation favorably overestimates the required elevator
angle and the corresponding control torque. The approximated variations for the angle-of-attack
and its rate of change are sufficiently close to the exact variations. The maximum approximation
errors for the perturbation angle-of-attack and its rate-of-change are less than 0.2 degree and 0.2
degree per second, respectively.

It is seen that the asymptotic prediction for the components of the Riccati equation deteriorates
as it proceeds backwards along the traveled segment of the trajectory. This is due to the fact that
the approximation starts at the end point of the controlled travel where the boundary conditions
are known exactly.

The disadvantage of the optimal and nonlinear controllers is that they need exact knowledge of
the system time-varying parameters, however this not the case for an adaptive controller. For this
application, the parameters include the trajectory variables and the aerodynamic characteristics
of the shuttle orbiter.
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The adaptive controller was developed and designed by using the modified adaptive control
methodology. The main advantage of the adaptive controllers is that they achieve the control task
without using any a priori information about the system parameters and their variations. This
fact is of special interest in our problem where the trajectory variables and the aerodynamic
characteristics of the space shuttle vary along the reentry trajectory.

Adaptive control approach as formulated in this study, proves to be a robust and practical
technique for the control of the space shuttle angle-of-attack perturbations during reentry. It is
robust in that it performs excellently in both upper and the lower atmosphere regardless of the
level of variations of the aerodynamic and trajectory parameters during the course of control
action, and it is practical since the required control deflection of the elevator always starts at
zero, regardless of the nature of the input disturbance. This is not the case for the optimal and
nonlinear controllers where they demand the maximum elevator deflection at the beginning of
actuation.

The modified adaptive control method used in this study is essentially a task-oriented approach.
This means that while the control task is achieved, the convergence of the parameter estimates to
the true values is not guaranteed. This is due to the fact that the parameter adaptation is updated
based on the tracking errors rather than the estimation errors or both.

Finally, according to the simulation results for the adaptive controller, the performance of
parameter estimation is much better at lower altitudes. For the case of 150,000 ft initial altitude,
the estimated parameters and the corresponding true parameters have the same orders of
magnitude, which is quite noticeable in the context of task-oriented adaptive control.
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