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ABSTRACT

This is a thesis dissertation on objective speech quality measures. Two objective
measures, Enhanced Modified Bark Spectral Distortion (EMBSD) and Perceptual
Evaluation of Speech Quality (PESQ) were included in this study. The scope of the study
covers the evaluation of EMBSD and PESQ in predicting subjective results from Mean
Opinion Score (MOS) tests; an extension of PESQ to handle wideband speech; and the
performance of EMBSD and PESQ on Degradation Mean Opinion Score (DMOS) tests
in noise conditions. The following results are reported: (1) EMBSD can predict the
quality of various conditions for a given coder, but not across coders. (2) PESQ can
predict the quality of various conditions for a given coder as well as across coders. (3)
While PESQ is effective in handling time shifts that occur during silence, it does not
seem as effective when such shifts occur during speech. (4) A simple extension of PESQ
can evaluate wideband speech as well as it evaluates narrowband speech. (5) When clean
speech is used as reference, EMBSD predicts DMOS better than when noisy speech is
used as reference. (6) PESQ predicts DMOS better when using noisy speech than with
using clean speech as reference.
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Chapter 1

INTRODUCTION

Speech quality assessment is an essential part of the development of speech coders.

Effective speech quality measures make it possible to evaluate speech coders during

development, to compare different speech coders, and to measure the quality of speech

communication channels.

Since speech quality is ultimately judged by the perception of speech by human

listeners, current speech quality tests are performed mainly by subjective measures that

use human listeners to evaluate speech samples. However, subjective tests are time

consuming, costly, and not highly consistent. These disadvantages have motivated the

development of objective measures that can predict subjective scores, but without using

human listeners.

This thesis is on objective speech quality measures. The scope of the thesis

includes the evaluations of two objective measures, Enhanced Modified Bark Spectral

Distortion (EMBSD) and Perceptual Evaluation of Speech Quality (PESQ), and attempts

to use objective measures for wideband speech evaluation and for the prediction of

Degradation Mean Opinion Scores. The study of PESQ was performed as part of the

effort at Texas Instruments to evaluate PESQ for the ITU-T standardization process.

The major findings of this thesis are as follows:
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" EMBSD accurately predicts the quality of various conditions for a given coder, but

does not consistently predict the quality across coders. (Chapter 4)

" The feasibility of using forward masking in the frame distortion measure of EMBSD

was investigated and found to be unsatisfactory. (Chapter 4)

* The performance of Ll averaging was compared with the performance of Peak Over

Block (POB) averaging. Although LI averaging is better under certain conditions,

POB performs better overall. (Chapter 4)

* PESQ accurately predicts the quality of various conditions for a given coder as well

as across coders. (Chapter 5)

* The time alignment mechanism in PESQ is effective in handling time shifts that occur

during silent periods. However, it does not seem as effective when such time shifts

occur during speech periods. (Chapter 5)

* A simple extension of PESQ, denoted as PESQ-WB, evaluates wideband speech as

well as PESQ does on narrowband speech. (Chapter 6)

" The ability of EMBSD and PESQ in predicting DMOS in noise conditions was

investigated. When clean speech is used as reference, EMBSD predicts DMOS better

than when noisy speech is used as reference. On the other hand, PESQ predicts

DMOS better when using noisy speech than with using clean speech as reference.

The organization of the thesis is as follows:

* Chapter 2 provides background information and describes several subjective and

objectives measures.
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" Chapter 3 describes the use of two metrics for evaluating objective measures:

correlation coefficient between objective and subjective scores and root mean-

squared error in the prediction of subjective scores.

" Chapter 4 treats the evaluation of EMBSD and investigation of it's the performance

when forward masking and LI averaging techniques are used.

" Chapter 5 focuses on the performance of PESQ, including the effectiveness of its time

alignment mechanism.

* Chapter 6 introduces PESQ-WB and discusses its performance.

* Chapter 7 examines the feasibility of EMBSD and PESQ in evaluating DMOS.

* Chapter 8 presents conclusions and recommendations for further research.
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Chapter 2

BACKGROUND

Since speech quality is ultimately judged by the human ear, subjective measures provide

the most direct form of evaluation. Even though subjective measures evaluate speech

quality in a direct manner, they have disadvantages. Subjective measures require special

testing environments, human listeners, money, and time. Test scores are also inherently

subjective and difficult to reproduce. These disadvantages have motivated the

development of measures to predict subjective scores objectively, without human

listeners. This section provides background information on subjective and objective

measures that have been developed.

2.1 Subjective Speech Quality Measures

Subjective measures are based on ratings given by human listeners on speech samples.

The ratings use a specified score table, and then are statistically analyzed to form an

overall quality score. Discussed below are the three subjective measures that are

included in the ITU-T Recommendation P.800: the Absolute Category Rating (ACR), the

Degradation Category Rating (DCR), and the Comparison Category Rating (CCR) [I].

2.1.1 Absolute Category Rating

The Absolute Category Rating (ACR) produces the widely used mean opinion score

(MOS). Test participants give MOS ratings by listening only to the speech under

I I



test,without a reference. The five-point MOS rating scale is shown in Table 1.

MOS Rating Speech Quality
5 Excellent
4 Good
3 Fair
2 Poor
1 Unsatisfactory

Table I MOS Rating Scale

The ACR provides a flexible scoring system because listeners are able to make their own

judgment on speech quality. However, this flexibility can result in varying quality scales

due to different individual preferences.

2.1.2 Degradation Category Rating

The Degradation Category Rating (DCR) measure is a comparison test that produces

Degradation MOS (DMOS). In DCR, listeners compare the distorted speech with the

reference speech. The reference is always played first and the listener is aware of this.

The listeners use the impairment grading scale shown in Table 2 to evaluate the

difference between distorted and reference signals.

DMOS Rating Level of Distortion
5 Imperceptible
4 Just Perceptible, but not annoying
3 Perceptible and slightly annoying
2 Annoying, but not objectionable
1 Very Annoying and bjectionable

Table 2 DMOS Rating Scale
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DCR is often used to judge speech quality in background noise conditions such as car,

street, and interference talker noise. The amount of noise and the type of noise will affect

the perceived degradation level.

The format of the DMOS measure is similar to the structure of most objective

measures. Therefore, some believe objective measures are better suited to predicting

DMOS than to predicting MOS. More discussion is included in Chapter 7.

2.1.3 Comparison Category Rating

The Comparison Category Rating (CCR) method is another comparison test that

produces Comparison MOS (CMOS). The CCR method is similar to DCR except that

the distorted and reference signals are played in a random order and listener is not told

which signal is the reference. The listener ranks the second signal against the first on a

scale shown in Table 3.

CMOS Rating Comparison Level
3 Much Better
2 Better
1 Slightly Better
0 About the Same

-1 Slightly Worse
-2 Worse
-3 Much Worse

Table 3 CMOS Rating Scale

If the order of the signals played is 1. Distorted 2. Reference, the raw score is reversed

(i.e. -1 4 1,-24+2, ... , 2 4-2,34 -3) [1].
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The CCR method allows the processed signal to be ranked better than the

reference. Consequently, coders with characteristics such as noise suppression and signal

enhancement can be rated higher than the reference. CMOS is also suitable for

comparing signals coded by different coders where the better coder is not known in

advance.

2.2 Objective Speech Quality Measures

There are many advantages to objective measures. Since the measures are computer

based, they provide automated and consistent results. Objective measures can speed up

speech coder development by automating design parameter optimization. Objective

measures also do not have the disadvantages of subjective testing caused by listener

fatigue and lack of concentration.

Objective measures are also useful in applications where subjective tests are

ineffective. For example, Voice over Internet Protocol (VoIP) network monitoring

systems can use objective measures to provide real-time feedback. A speech signal can

be passed through the network and returned to the same location such that both the

original and processed signals can be input into an objective measurement device. The

score produced by the objective measure can report the speech quality provided by the

system and immediate modifications can be made as necessary. Using subjective tests

does not make sense in such real-time applications.

Most objective speech quality measures compare the distorted signal to a

reference. Objective measures lack an internal model of quality and therefore, use the

original, undistorted signal as the reference. There are objective measures that do not
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utilize a reference signal such as the Output-Based Speech Quality, but they are not

included in this research [2]. This section outlines how most objective measures compare

the distorted signal to the reference, and describes the different types of objective

measures.

2.2.1 Framework of Objective Measures

There is an agreement on a basic structure to design objective measures [3][4]. Figure 1

shows the structure consisting of three stages: alignment, frame distortion measure, and

time averaging. Unless said otherwise (see Chapter 7), original, clean speech is used as

the reference signal.

reference processed

alignment

frame distortion measure

time averaging

objective measure

Figure 1 Objective Measure Framework
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Alignment

In the alignment stage, the reference and distorted signals are compared, and time

synchronization of the two signals is performed. If the signals are not time-

synchronized, a large error may be erroneously calculated. Level normalization and

equalization are performed, also as part of this stage. Equalization adjusts for linear

filtering effects on the distorted signal relative to the reference.

Frame Distortion Measure

In the frame distortion measure stage, the speech signals are broken into short segments,

or frames, with a typical duration of 10 to 30 ms. For each frame, a distortion value is

calculated by comparing the distorted speech signal with the reference. The comparison

may be done in time domain, frequency or spectral domain, or perceived loudness

domain. Loudness domain approaches have achieved the greatest success.

Time Averaging

In the time averaging stage, frame distortions are averaged over the duration of speech

under test, to produce a single overall distortion measure. An example averaging method

is the Lp norm. Various weighting methods are usually incorporated to handle different

types of distortions. The overall distortion measure may be mapped to produce a

subjective score prediction.
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2.2.2 Types of Objective Measures

Objective measures can be divided into three types: time domain, frequency domain, and

perceptual measures [3]. Examples of each type are described in this section. Most of

the measures encompass only the frame distortion and time averaging stages of the

objective measure framework. Of the measures presented here, only Perceptual Analysis

Measurement System (PAMS) and Perceptual Evaluation of Speech Quality (PESQ)

include all three stages.

Time Domain Measures

Signal to Noise Ratio (SNR): Signal to Noise Ratio measures are suited for measuring

analog and waveform coding systems. An SNR measure is easy to implement; however,

it is very sensitive to the time alignment of the original and distorted speech signals.

SNR measures compare the distorted and reference signals on a sample-by-sample basis

and hence are appropriate in general for high bit-rate coders. In particular, they are not

able to estimate accurately the perceived quality of low rate coders.

Segmental SNR (SNRseg): The segmental SNR measure is an improvement on the

SNR. The SNRseg is an average of the SNR over smaller segments of the speech signal.

The overall speech signal is broken down into smaller segments, allowing the SNRseg to

achieve a greater level of granularity. Like the SNR, the usefulness of SNRseg is limited

to waveform coders [3].
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Frequency Domain Measures

There are a number of ways to calculate frequency domain measures. Three such

measures are discussed here.

Log Likelihood Ratio (LLR): The LLR is also known as the Itakura distance measure

[5]. The LLR is the distance between the all-pole model representations of the reference

and distorted speech signals. The measure is based on the assumption that a pth order all-

pole model can represent a frame of speech. Therefore, the LLR is limited to speech

signals that are well represented by an all-pole model.

Linear Prediction Coefficients (LPC): The LPC measure is based on the

parameterizations of the linear prediction vocal tract models. The parameters can be

prediction coefficients or transformations of the prediction coefficients. Each type of

parameters quantifies the distance between the reference and distorted signal differently.

Of all parameters, the log area ratios had been recorded as the best [3][6].

Cepstral Distance Measure: The cepstral distance measure is based on cepstral

coefficients calculated from linear prediction coefficients. The resulting cepstrum is an

estimate of the smoothed speech spectrum.
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Perceptual Domain Measures

Recent objective measures have shown large improvements over time and frequency

domain measures by incorporating psychoacoustic principles. These principles include

critical band frequency analysis, absolute hearing thresholds, and masking.

Critical band frequency analysis helps explain how the ear processes signals. A

frequency-to-place transformation takes place in the inner ear. Distinct regions in the

inner ear are sensitive to different frequency bands, or critical bands. By separating

signals into critical bands, objective measures can capture the particular sensitivities that

the ear has to different frequencies. The absolute hearing threshold is a level that

determines the amount of energy needed in a pure tone that can be detected by a listener

in a noiseless environment [7]. This is used as the minimum audible threshold at which

distortions must exceed in order to be considered. Masking refers to the process where

one sound is made inaudible because of the presence of other sounds. Simultaneous

masking refers to a frequency domain masking that is observed with critical bands. The

presence of a strong masker creates an excitation in the inner ear to block the detection of

a weaker signal. Nonsimultaneous masking is the extension of simultaneous masking in

time. Effectively, a masker of finite duration masks signals prior to the onset of the

masker (backward masking) and immediately following the masker (forward masking).

Objective measures can use masking to increase the audible threshold.

Bark Spectral Distortion (BSD): The Bark Spectral Distortion (BSD) measure was

developed at the University of California at Santa Barbara [8]. BSD was one of the first

measures to incorporate psychoacoustic responses into an objective measure. BSD
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transforms the reference and distorted signals to Bark spectral representation. The

objective score is then the distance measure between the two spectra. The objective

scores correlated so well with subjective scores that BSD became the basis for many new

objective measures.

The BSD requires that the reference and distorted signals must be time aligned

first. Once the speech signals are broken into frames, both the reference and distorted

signals are transformed using psychoacoustic principles: critical band filtering, perceptual

weighting of spectral energy, and subjective loudness. The method is described below.

Critical band filtering is based on the observation that the human auditory system

has poorer discrimination at high frequencies than at low frequencies. The frequency

axis is scaled from Hertz, f, to Bark, b using Equation 1.

Y(b)= f =600sinh(b/6) (1)

which has been called the critical band density. A prototype critical-band filter smears

the Y(b) function to create the excitation pattern, D(b). The critical-band filters are

represented by F (b) in Equation 2.

101og10 F(b)= 7 -7.5*(b- 0.215)-17.5[0.196+(b- 0.215) 2 I2 (2)

The smearing operation is a straightforward convolution since all critical-band filters are

shaped identically. The resulting operation is a convolution as shown in Equation 3.

20



D(b) = F(b) * Y(b)

Perceptual weighting adjusts for the fact that the ear is not equally sensitive to

stimulations at different frequencies. In order to transform intensity levels at different

frequencies to equal perceptual loudness levels, intensity levels are mapped against the

standardized reference level set at the threshold at I kHz. The scale is the sound pressure

level (SPL) and is measured in phons. Using equal loudness functions at I kHz, equation

3 converts dB intensity levels to loudness levels in phons. D(b) is the loudness intensity

function in phons.

Subjective loudness deals with the perceptual nonlinearity. The increase in

phons needs an adjustment in the subjective loudness. The adjustment varies with the

loudness level. For example, while an increase of 10 phons is required to double the

subjective loudness at 40 phons, an increase of 10 phons near threshold level increases

the subjective loudness by ten times. The following equation is used to convert each

phon P in D(b) to a sone subjective loudness level L.

L=24" W if P 40 (4)

L=(P/40)2 64 if P<40 (5)

P is the phon loudness level.

The BSD score is an average across all BSDk, where k represents the speech frame. For

each segment, BSDk is calculated with Equation 6.

21
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BSDk kXR (i) - L 1 (i)]2  6)

x=reference, y=distorted signal
N = number of critical bands

The BSDk are then time averaged with an Lp norm.

Enhanced Modified BSD (EMBSD): The Enhanced Modified BSD (EMBSD),

developed at Temple University, is an improvement on the BSD measure [9]. A noise-

masking threshold (NMT) and a peak-over-block (POB) averaging model were the

improvements in EMBSD. The NMT sets a minimum intensity level. Distortions must

be above this level order to be included in the distortion measure. The NMT is

determined by the critical band spectrum of the reference signal, the spectral flatness

measure (SFM), and the absolute hearing threshold.

The critical band spectrum produces tone-masking noises and noise-masking

tones. Tone-masking noises are estimated as (14.5 + b) dB below the critical spectrum in

dB, where b is the bark frequency. Noise-masking tone is estimated as 5.5 dB below the

critical spectrum [10]. The SFM is used to determine if the critical band spectrum is a

noise or tone.

The POB method groups consecutive frames together in sets of 10 to form a

'cognizable segment.' The maximum frame distortion value over the cognizable segment

is chosen as the perceptual distortion value, P6). A residual distortion value Q(j) is the

distortion value of the previous cognizable segment scaled down by 0.8. The distortion

value of the current cognizable segment is defined as the larger value, PO) or Q(j).
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Therefore, larger errors are emphasized and are allowed to mask smaller errors. The

following equations summarize the process:

P(j) = max(frdist(i), frdist(i -1),..., frdist(i - 9)) (7)

Q(j)= 0.8* C(j- 1) (8)

C(j) = max(P(j),Q(j)) (9)

j refers to a cognizable segment.
frdist(i) is the frame distortion frame i.
i denotes the last frame in the cognizable segment.

The final EMBSD score is the average of CO) over all j. Professor Robert Yantorno from

Temple University provided the source code of EMBSD for use in this research.

Perceptual Analysis Measurement System (PAMS): The Perceptual Analysis

Measurement System (PAMS) was developed at British Telecom in 1998 [11]. PAMS

utilizes the psychoacoustic principles used in BSD. To improve the time-frequency

transformation used in BSD, PAMS uses a bank of linear filters. PAMS also adds an

alignment stage including time and level alignments and equalization functions. These

improvements lead to a better evaluation on end-to-end applications than BSD, such as

telephony and network communications [11].

ITU Standards: The Perceptual Speech Quality Measure (PSQM) was developed by

Beerends and Stemerdink [12]. PSQM performs similar transformations as BSD and

incorporates two significant changes: characterizing asymmetry in distortions and

weighting distortions differently in silence and during speech. PSQM seeks to capture
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the asymmetry in distortions by treating additive and subtractive distortions differently.

Because additive distortions are more audible, they are weighted more heavily.

Distortions that occur during speech are also more disturbing than those in silent periods.

PSQM uses a weighting function to treat the two distortion types differently [12].

The I.T.U. Technology Standardization Sector performed a study during 1993-

1996 on five different objective measures, one of which was the PSQM. PSQM was

determined to be the best and was accepted in 1996 as the ITU-T Recommendation

P. 861 for the objective measurement of narrowband speech codecs [14]. The ITU is

currently in the process of replacing the P.861 with a new recommendation in 2001.

PSQM had limitations; it could not reliably evaluate channel error conditions. The draft

of the ITU-T P.862 recommendation introduces a new objective measure, the Perceptual

Evaluation of Speech Quality (PESQ) [13]. PESQ is a combination of both the PSQM

and the PAMS.

Perceptual Evaluation of Speech Quality (PESQ): PESQ overcomes many of the

limitations faced by previous measures, such as linear filtering and delay variations.

Linear filters may not have much effect on subjective quality, but it can cause the

distorted signal to be very different from the reference. PESQ applies filters to equalize

the distorted signal to the reference in order to avoid evaluating inaudible differences as

errors. PESQ also improves upon the time alignment capability of PAMS. The time

alignment component in PESQ tries to resolve time misalignments in silent periods as

well as speech periods. The PESQ measure was provided to Texas Instruments (TI) for

the purpose of evaluation as part of the ITU-T recommendation process.
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Chapter 3

EVALUATING OBJECTIVE MEAURES

The performance of an objective measure is assessed by comparing its scores to the

subjective measure it tries to predict. In PESQ and EMBSD measures, objective measure

scores are compared to MOS. The process of evaluating objective measures begins with

obtaining reference databases. The database contains sentence pairs that are phonetically

balanced and spoken by males and females. As shown in Figure 2, the reference database

is then processed to form the distorted database. Distortion can be coding distortions,

channel errors, background noise, and time delays. A test condition may involve one or

more of these distortions.

Reference
Database

Apply Coding
and other
Distortion

t Distorted Database

Objective
Measure

Subjective
Measure

ve Scores Sibji

Statistical
Analysis

Figure 2 Process for Evaluating Objective Measures

ective ScoresObjecti
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Objective and subjective scores are collected for the entire database and the scores are

averaged over all sentence pairs, for each condition. Comparisons between the objective

and subjective measures will be made using the averaged condition scores only. Future

references to scores will refer to the averaged condition scores.

Additional processing to "linearize" objective scores is required before they can

be compared with subjective scores. Because of the nature of subjective measures,

subjective ratings are affected by factors such as listener preferences and the context of a

test. For example, the relative quality of the coders included in the test affects overall

scores. If a mediocre quality coder A is tested with high quality coders, Coder A will

score lower than if it was tested with low quality coders. For these reasons, it is difficult

to directly compare two subjective tests. Some form of mapping may be necessary to

compensate for these differences. The same argument applies to comparing objective

scores with to subjective scores.

It is reasonable to expect the order of the conditions should be preserved, so that

difference between two sets of scores should be a smooth, monotonically increasing

mapping [13]. The ITU-T recommends a monotonic 3d -order polynomial function [13].

For each subjective test a separate mapping is performed on the objective scores; the

mapped objective scores are then compared with the subjective scores for the test under

consideration. Scores that undergo this mapping process will be referred to as

polynomial-mapped scores.

The correlation coefficient between objective scores X(i) and subjective

measures Y(i) is shown in Equation 10.
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-(x(i)-)Xy -)(10)

i =

(x5)-)2 ~)_y2

x(i) is the ith objective score.
y(i) is the izh subjective score.
N is the total number of scores.

Correlation coefficients range from -1 to +1. As the value approaches +1, the two sets of

data are more alike.

The correlation coefficient gives a reasonable estimate of overall similarity

found in the two sets of scores. However, the metric is particularly sensitive to outliers,

which can greatly improve or degrade a correlation coefficient. Also, the correlation

coefficient does not take into the account the significance of differences in the two sets of

scores.

The Root Mean-Squared Error metric, used along with the correlation coefficient,

provides a better evaluation of the objective measure. The RMSE gives an average

distance measure or error between the objective and the subjective scores, as shown in

equation 11.

(X(i) - Y(i))
RMSE = (11)

N

X(i) is the it' objective score.
Y is the iP subjective score.
N is the total number of scores.
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Before computing the RMSE measure, it makes sense to map the objective score to

provide a prediction of the subjective score, as we are trying to compute the RMS

prediction error.

The RMSE can also be obtained from the standard deviation of the subjective

measure and the correlation coefficient as shown in Equation 12.

RMSE =a (I-p2 (12)

a is the standard deviation of the subjective scores.
p is the correlation coefficicnt.

Given the same correlation coefficient, the RMSE will decrease as the variation in the

subjective scores gets smaller.

A smaller RMSE shows that the two sets of scores are more closely related in

terms of numerical value. The RMSE characterizes the prediction capability of an

objective measure and should be used to evaluate this capability. As noted above,

objective measures that produce distortion scores need to be mapped to provide

prediction values before they can be evaluated by the RMSE metric. In assessing the

RMSE, it is worth noting that MOS score differences are usually statistically significant

if the differences are at least 0.15.
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Chapter 4

INVESTIGATION OF EMBSD

This chapter discusses the evaluation of EMBSD and investigation of its the performance

when forward masking and LI averaging techniques are used.

4.1 Forward Masking

EMBSD uses the Peak Over Block (POB) method to implement forward masking. POB

generalizes the masking across critical bands and time, and groups all masking signals in

time frames together across critical bands. According to research in psychoacoustics,

forward masking is frequency sensitive. A different forward masking technique is

investigated to evaluate the sensitivity of masking within a critical band. Two changes are

made to the EMBSD. First, the masking threshold based on simultaneous masking is

replaced with a comprehensive threshold that is based on simultaneous and forward

masking. Second, the POB method is replaced with a Ll norm average.

In order to capture the effect of maskers in previous frames and to allow the larger

maskers to increase the audible threshold in future frames, a comprehensive threshold is

used. The comprehensive threshold extends the simultaneous masking thresholds up to

200 ms, the equivalent of 10 frames. Consequently, it increases the threshold at a given

particular critical band by the maximum threshold value over the set of previous 9 and

current frames. A scale factor is used to reduce the threshold with each additional frame,

and consequently, to decrease the effect of a masker over time.
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The process is summarized in Equation 13.

FNMT[j]= max(dq * nmt(,-q)[j], q =0,1,2,...9) j=1,2,...,B (13)

FNMT1 is the new comprehensive noise-masking threshold in sonesforframe i.
nmt i is the noise masking threshold for the frame i.
j is the critical band number
B is the total number of critical bands.
d is the scale factor.

The original EMBSD and EMBSD with the new comprehensive threshold are tested on

four databases. Data are summarized in Table 4. The results show that the new

comprehensive threshold did not improve EMBSD over the original masking threshold.

DatabaseCorrelation Coefficient
EMBSD w/ forward masking EMBSD

A 0.91 0.92
B 0.75 0.83
C 0.84 0.89
D 0.80 0.85

Table 4 Correlation Coefficient Data for EMBSD and EMBSD w/ forward masking

[d =0.75, d=0....0.90 were tested and all values performed worse than EMBSD]

Beerends also performed forward masking experiments. His efforts to apply forward

masking to the PSQM were also not beneficial. According to Beerends, masking effects

may not be applicable to telephone-band speech because of the limited bandwidth and the

large distortion [16].

4.2 POB vs. Li norm

The LI norm method was used in an earlier version of EMBSD. It was subsequently

replaced by the Peak Over Block (POB) method, to better evaluate background noise and

bursty error distortions [9]. Even though POB has shown improved correlation results, it
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may not be the best method in all situations. For example, the LI norm may be more

effective in 'no error' conditions or when errors are not bursty. To explore this

possibility, the comparison between POB and LI norm was studied. Let EMBSD-L1

refer to the implementation of EMBSD with LI norm.

The average frame distortion used in EMBSD-LI was shown in Equation 14:

EMBSD - Lp score = X( framedistortion[l]) }(14)
N is the total number offrames
p is the order of the Lp norm

Quackenbush, et.al. evaluated the effect of Lp averaging in various spectral distance

measures [3]. They reported that variations in p had a moderate effect on the

performance of objective measures. In certain cases, higher correlations were obtained

for lower values of p. Lp norms other than LI were tested for a few databases; however,

correlation scores did not show consistent improvement over LI and POB.

4.3 Performance of EMBSD

Seven test databases are used to evaluate the performance of EMBSD and EMBSD-L1.

The descriptions of these databases are listed in Table 5.
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Database # of Coders tested Conditions
Conditions
Evaluated

T1 32 GSM Full Rate, GSM Enhanced channel signal to interference
Full Rate, G.728, CELP coders ratios (C/1) of 19 dB to 1dB,
at 7.45 kb/s and 11.85 kb/s level variations, no error,
source coding bit rates MNRU

T2 22 G.726, G. 729, 4kb/s coders Bit error, frame erasure,
no error, tandem,
level variations, MNRU

T3 32 G.726, G.729, G.729D, level variations, tandem
G.723.1, 4 kb/s coders conditions, no error, MNRU

T4 32 G.726, G.729, G.729D, bit error, frame erasure,
G.723.1, 4 kb/s coders MNRU

T5 32 G.726, G.729, G.729D, level variations, tandem,
G.723.1, 4 kb/s coders no error, MNRU

T6 20 CELP coders at 11.9 kb/s & 9.5 C/I 4,7, and 10 dB,
kb/s, PCS1 900 at 13 kb/s, no error, tandem, MNRU
Variable Rate CELP at 9.6 kb/s
&5.8 kb/s, G.728,
GSM Full Rate, GSM Half Rate

T7/T8 39 CVSD at 16 kb/s, CVSD at 8 bit error, no error, and
kb/s, G.726, VSELP, LPC, two jeep noise distortions, MNRU
STC at 2.4 kb/s, STC at 4.8
kb/s, MBE at 2.4 and 4.8 kb/s,

_ _ CELP at 4.8 kb/s

Table 5 Database Descriptions

T7 and T8 were provided by Arcon Corporation for evaluating objective measures. Both use the same
speech data and test plan and were evaluated by two different listening groups.

4.3.1 Distortion Mapping for MOS Prediction

The goal here is to map or transform distortion values to provide a prediction of the MOS

score. One way to map distortion values is to use the regression line between MOS and

EMBSD scores as the mapping function, as given in Equation 15.
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N
Y =ax+b s.. min by -5,)2 (15)

y is the MOS value,
x is the distortion value

y is the corresponding mapped value

Different databases can be used to calculate the regression used to determine the values

of a and b. Two possible methods are presented. Method 1 developed at Bell

Laboratories is based on the assumption that the MOS of MNRU conditions are

consistent across different databases[ 17]. A regression analysis is performed on MNRU

conditions collected from many databases. The resulting parameters are used to create

the distortion-to-MOS mapping function. Method 2 seeks to create a mapping function

that is computed or trained over many databases, involving coded speech and MNRU

conditions. The training database is obtained by selecting roughly one-half of the

conditions from the available databases.

Both methods are applied to the eight databases and the results are presented in

Table 6.

EMBSD Polynomial Mapped EMBSD
Data Set Method I Method 2 Method 1 Method 2

Ti 0.51 0.49 0.24 0.24
T2 0.69 0.67 0.21 0.21
T3 0.45 0.45 0.34 0.34
T4 0.37 0.33 0.25 0.25
T5 0.55 0.49 0.32 0.32
T6 0.63 0.74 0.52 0.52
T7 0.69 0.93 0.38 0.38
T8 0.78 0.98 0.42 0.42

Table 6 RMSE values for Methods 1 and 2.
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Although EMBSD shows different results for the two methods, polynomial mapped

EMBSD results are identical. Since Method 2 is better for more databases under the raw

EMBSD scores, it is used for the remainder of the RMSE calculations that are presented

in this dissertation.

4.3.2 EMBSD Results

EMBSD scores were computed and mapped for all eight databases. The correlation

coefficients and RMSE values are listed in Table 7 and EMBSD versus MOS scatter plots

are shown in Figures 3(a)-(p). In each row, the left plot shows the raw EMBSD scores;

the smooth curve shown is the 3rd order polynomial mapping function. The right plot

shows the polynomial-based EMBSD.

Database EMBSD Polynomial Mapped EMBSD
Correlation RMSE Correlation RMSE

T1 0.91 0.42 0.96 0.24
T2 0.92 0.67 0.95 0.21
T3 0.83 0.45 0.85 0.34
T4 0.89 0.33 0.92 0.25
T5 0.85 0.49 0.86 0.32
T6 0.70 0.74 0.72 0.52
T7 0.70 0.93 0.88 0.38
T8 0.71 0.99 0.86 0.42

Table 7 Correlation and RMSE data for EMBSD

Correlations above 0.9 for TI, T2, and T4 show that EMBSD is good at predicting speech

coded by high quality coders that included many error distortions, such as bit error, frame

erasure, and channel error conditions. The measure was not as effective in databases (T6-

T8) where lower quality coders and no error conditions were predominant.
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4.3.3 EMBSD-L1 Results

EMBSD-Ll scores were calculated for the eight databases. Results are shown in Table 8.

EMBSD-Ll Polynomial mapped EMBSD-Ll

Data Set Correlation RMSE Correlation RMSE

T1 0.84 0.54 0.94 0.30
T2 0.91 0.71 0.92 0.23
T3 0.80 0.42 0.82 0.37
T4 0.85 0.66 0.96 0.17
T5 0.82 0.46 0.88 0.30
T7 0.62 1.47 0.78 0.50
T8 0.64 1.50 0.79 0.45

Table 8 Correlation and RMSE data for EMBSD-L1 before and after polynomial-mapping
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Comparisons between the correlation coefficients of EMBSD in Table 7 and EMBSD-L1

in Table 8 show that EMBSD is better than EMBSD-Ll in five of the seven data sets.

Though EMBSD-LI produces improvement in T4 and T5, the improvement is small.

Next, performance was investigated over individual condition-groups including

no error, error, MNRU, high-rate coders, mid-rate coders, low-rate coders, noise, and

tandem. Since each condition-group has a different range of subjective ratings and a

different numbers of conditions, it may be inappropriate to directly compare correlation

coefficients among condition-groups [18]. Therefore, only RMSE results are used for

this analysis.

Table 9 displays the comparison of RMSE for EMBSD and EMBSD-LI. The

comparison is shown for no error, error, MNRU, high-rate, mid-rate, low-rate, noise, and

tandem condition-groups. The error condition-group includes bit error, frame erasure,

and different C/I levels. The high-rate condition-group includes G.726, CVSD, G.726,

G.729, and GSM-enhanced full rate. The mid-rate condition-group includes coders such

as VSELP, G.723. 1, GSM full rate, and coders around 5 kb/s. The low-rate condition-

group includes coders like LPC, MBE, STC, and low-rate CELP.
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CaeoyObjective ________RMSE 
______

Category Measure TT2 T3 T4 T5 T7 T8
EMBSD 0.79 0.25 0.18 0.28 0.34 0.34 0.30

No error EMBSD-L1 0.76 0.33 0.18 0.27 0.30 0.35 0.41
EMBSD 0.26 0.18 0.32 0.30 X 0.48 0.34

Error EMBSD-L1 0.31 0.19 0.36 0.25 X 0.72 0.68

MNRU EMBSD 0.30 0.14 0.34 0.55 0.23 0.42 0.59
EMBSD-L1 0.41 0.12 0.19 0.31 0.12 0.59 0.56

EMBSD 0.22 0.26 0.49 X 0.30 0.49 0.44
High-rate EMBSD-LI 0.21 0.34 0.43 X 0.35 0.44 0.47

EMBSD 0.34 0.23 0.31 0.15 0.33 0.61 0.79
Mid-rate EMBSD-LI 0.40 0.30 0.40 0.13 0.28 0.47 0.57

. EMBSD X X X x x 0.49 0.62
NoiseXEMBSD-LI X X X X X 0.40 0.41

EMBSD x 0.24 0.51 X 0.38 X X
Tandem EMBSD-LI X 0.25 0.55 X 0.39 X X

EMBSD X X X X x 0.38 0.35
Low-rate EMBSD-L1 X X X 0.50 0.49

Table 9 RMSE data for EMBSD and EMBSD-LI

By using POB averaging, EMBSD produces lower RMSE results for the error

category. EMBSD-LI predicts the no error category as well as, and in some cases, better

than EMBSD. EMBSD-L1 performs better under MNRU conditions in four of seven

databases. It might be due to the type of noise used in MNRU. The noise in MNRU is

uncorrelated with the signal and is stationary throughout the signal. While EMBSD may

perform better under bursty error than EMBSD-Ll, EMBSD-Ll may perform better

under uncorrelated, stationary noise.

Background noise can be stationary or bursty. The jeep noise in T7 and T8 can be

categorized more as a consistent disturbance throughout the speech than a bursty type of

distortion. The noise conditions have low RMSE when averaged by the EMBSD-LI.

The tandem condition may be viewed as a special case of a background noise condition.
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Distortions introduced by the first coder in the tandem play the role of added noise to the

second coder.

For low rate coders, POB shows improvements over the LI norm. In fact, there is

a trend of lower RMSE for POB under categories where low-rate coders are prominent.

In T7 and T8, containing a number of low rate coders, POB produces lower RMSE for no

error, error, and low-rate coders. Even though LI norm performs just as well as POB in a

number of conditions, POB will be used in the remainder of this research because of the

clear improvement it produces in the correlation analysis.

4.4 Predicting Quality Under Various Conditions for a Given Coder

The ability to predict speech quality under various conditions is important for an

objective measure. Various distortion conditions were evaluated for a given coder. As

only a small number of conditions are available in the databases for a given coder, the

results may not be conclusive. However, the results lead to some interesting observations.

Figures 4(a) - (d) represent a sampling of the results obtained from the test

databases used to evaluate EMBSD. Each figure shows both EMBSD and MOS as a

function of the test condition.
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(d) CELP coder at 11.85 kb/s
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Figure 4 (c) and (d) Plots of EMBSD and MOS for Various Conditions

In each figure, conditions are ordered from the lowest to the highest MOS. The

conditions include bit error, frame erasure, tandem, level variation, and MNRU. The

right ordinate is a quality scale for MOS and the left ordinate is a distortion scale for

EMBSD scores. The distortion axis is inverted so that the EMBSD and MOS curves

slope in the same direction.
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EMBSD scores seem to generally predict qualitative trend of various conditions. As

shown in figures 4(a)-(d), EMBSD scores, in general, decrease in distortion when MOS

increase in quality. Figure 4(a) and (b) shows that EMBSD has difficulty evaluating

level variations, which are conditions 2, 3, and 4. A closer examination shows that the

separation between the lowest and highest point is very small, only about 0.3 MOS.

EMBSD is not able to predict such a small difference in this case.

4.5 Predicting Quality Across Coders

In standards competitions, subjective tests are used to choose the highest quality coder. If

objective tests are to replace or augment subjective tests, it is important that they can

rank coders accurately.

Figures 5(a)-(d) each show 4 coders: GSM Enhanced Full Rate, GSM Full Rate,

11.85 kb/s CELP, and 7.45 kb/s CELP.

(a) NO ERROR (b) C/1 10

Coders Coders

4 2 3 1 2 1 3 4
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Figure 5 (a)-(b) Plots of EMBSD and MOS Across Coders
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In each figure, the speech is tested under a different condition; figure 5(a) shows the no

error condition and figures 5(b)-(d) show increasing bit error conditions.

The distortion axis used for EMBSD is on the left of the graph and the quality

axis for MOS appears on the right. Grid lines are all 0.2 points apart based on the Quality

scale and attempts were made to keep the distortion and quality axis on similar numerical

scales to enable comparisons between figures. Coders were ordered in terms of

increasing MOS. Coders 2 and 3 are properly aligned in all figures. Coders 2 and 4 are

correctly aligned as well except in figure 5(a). However, incorrect orderings are also

frequent, including coder 2 versus coder 4 in figure 5(a), coder 1 versus coder 3 in figures

5(a), 5(b), and 5(d), and coder 1 versus coder 2 in figure 5(c).

From the results presented in this and the previous section, it may be concluded

that (1) EMBSD performs well in predicting speech quality of a given coder under

different conditions and (2) EMBSD is unable to provide a consistently good prediction

across different coders.
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Chapter 5

EVALUATION OF PESQ

Chapter 5 focuses on the performance of PESQ, including the effectiveness of its time

aihament mechanism.

5.1 Perforn ance of PESQ

PESQ has been developed and optimized extensively for MOS prediction. PESQ was

tested on the same eight databases used for testing EMBSD. The databases are

summarized in Table 5, Section 4.3. Table 10 summarizes the results of correlation

coefficients and RMSE between PESQ and MOS. PESQ scores are plotted against MOS

in Figures 6(a)-(o). The results include PESQ and polynomial-mapped PESQ. In

addition, a comparison between the correlation coefficients of PESQ and EMBSD is

presented in Figure 7(a). The similar comparison for RMSE is shown in Figure 7(b).

Results shown in Figures 7(a) and 7(b) refer to polynomial-mapped PESQ and EMBSD.

PESO______ Polynomial-Mapped PESO
Database Correlation RMSE Correlation RMSE

TI 0.98 0.27 0.99 0.14
T2 0.92 0.26 0.96 0.16
T3 0.80 0.53 0.87 0.32
T4 0.88 0.40 0.91 0.26
T5 0.84 0.62 0.89 0.30
T6 0.84 0.45 0.85 0.39
T7 0.87 1.06 0.90 0.36
T8 0.87 0.90 0.89 0.37

Table 10 Correlation and RMSE data for PESQ before and after polynomial-mapping
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Figure 6 (a)-(f) Plots of PESQ vs. MOS before and after polynomial-mapping
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Figure 7(a)-(b) Correlation Coefficient and RMSE data for PESQ and EMBSD

Across the databases, PESQ shows a more consistently high correlation with MOS than

EMBSD. RMSE results show that PESQ can predict MOS quite well in databases with

good quality, such as T 1, T2, and T4. In addition, PESQ provides higher correlations and

lower RMSE than EMBSD in almost all cases, especially, in the databases with lower bit

rate coders and poorer quality conditions, such as T6-T8.

5.2 Effectiveness of Time Alignment

In VoIP transmissions, there is a buffer at the receiver to hold incoming packets. The

buffer reduces the effect of packet loss but also introduces delay. Practical systems try to

balance packet loss and delay with dynamic algorithms that resize the buffer as needed.

Buffer resizing changes the overall packet delay and causes a delay variation in packet

flow. As a result, the transmitted signal is not aligned with the reference. If delay

variations are too short to be perceived by the human ear, it is important that the
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distortion is ignored by the objective measure. Many objective measures have difficulty

distinguishing audible distortions from inaudible misalignments.

PESQ claims to be capable of handling variable delays in both silent and speech

periods with a time alignment mechanism [13]. To evaluate the effectiveness of the time

alignment mechanism, PESQ was evaluated under delay variation conditions in both

silent and speech periods.

5.2.1 Delay Variations in Silent Periods

Data A has no delay variations and contains seven sentence pairs. Each sentence pair is

encoded and decoded by the G.729 coder. To create Data B, 10 ms of delay or additional

silence is inserted between encoding and decoding approximately every 160 ms only

during a silent period. Since the human ear can tolerate up to 250 ms of delay before

perceiving a drop in quality, A and B should sound identical [19]. If PESQ effectively

aligns delay variations in silence periods, PESQ scores should be very similar.

MOS Prediction
Database

A B

PESQ 3.809 3.762
Difference from A 0 0.047

Table I I Comparison between Databases A and B.

PESQ scores were averaged for both data sets and recorded in Table 11. Results show

that the scores for A and B are practically the same. Thus, PESQ is able to align

effectively speech with delay variations in silence periods.
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5.2.2 Delay Variations in Speech Periods

Using A, Data C is created with delay variations in silence as well as speech periods. To

process C, 10 ms of delay or silence is inserted every 160 ms between encoding and

decoding. C is different from B because delay insertions occur in speech periods as well

as during silence.

Delay variations in speech periods should make C sound degraded compared with

A. However, PESQ scores of C cannot be evaluated directly because MOS for C is not

available. An alternative approach was taken by creating Data D. D is the same as C

except that a modified version of the G.729 decoder was used. The modified G.729

utilizes a different playback method, which treats delay variations differently from the

G.729 used in C. The PESQ scores of C and D were then compared with subjective

scores obtained with an A/B comparison test, in an effort to evaluate the capability of

time alignment of PESQ. The subjective A/B Comparison test was run and the results

are presented in Table 12. ' PESQ scores for D and C are summarized in Table 13.

C D

AB Comparison Preference Scale
Strong Slight No Slight Strong

Number of Votes 0 2 j18 j129 17

Table 12 A/B Test Results for Databases C and D

Database

C D
PESO 2.830 2.795

Table 13 PESQ Scores for Databases C and D

'The subjective A/B Comparison test is similar to the CCR test. Listeners vote on a 5-category

scale shown in Table 12. The A/B Comparison test is suitable for evaluating distortions between
two sets of data.
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AB Comparison test scores show that D is preferred to C by 80% and strongly preferred

by 30%. In other words, there was a clear preference for D over C in this A/B listening

test. If the time alignment mechanism of PESQ evaluates the different playback methods

properly, PESQ scores of C and D should be consistent with that of the A/B comparison

test, with D having a higher PESQ score than C. However, PESQ scores of D and C are

very close. Further investigation is recommended to evaluate the PESQ time alignment

mechanism, especially for delay variations during speech.

5.3 Predicting Quality Under Various Conditions For a Given Coder

As noted before, the ability to predict quality among various conditions is an integral part

of objective measure performance. Similar to comparisons made in section 4.2.4, PESQ

scores were compared to MOS under various conditions for a given coder. Polynomial-

mapped scores were used in all cases. Figures 8 (a)-(d) show representative results

obtained in this evaluation. In each figure, the conditions are ordered from lowest to

highest MOS. The conditions include bit error, frame erasure, tandem, level variation,

and MNRU.
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Figure 8(a) and (d) Plots of MOS and PESQ for Various Conditions

Figures 8(a)-(d) show that PESQ consistently orders the conditions correctly with MOS.

In figures 8(b)-(d), the scores are nearly the same. The accuracy of PESQ scores

in figure 8(b) for MNRU suggests that PESQ can predict quite well the quality for

conditions where the distortion is uncorrelated with speech. Results in figures 8(c) and

(d) are aligned well overall, except condition seven in figure 8(c) and condition five in

figure 8(d). Both conditions are low input level conditions. This suggests that PESQ may

have problems handling to low input level conditions.

53

(d) EFR

CD

a
(I)

(L

0
0

5
4.5

4

3.5

3

2.5

2

1.5

1

0.5
0



JW W- - - - -- ' . -" - - - - .-- W - - - - -- - 1

5.4 Predicting Quality Across Coders

If objective tests are to replace or augment subjective tests, it is important that they

evaluate and rank coders accurately. The same coders from the previous section are used

in the following figures. Figures 9(a)-(d) show results for the 4 coders.
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Figure 9(a)-(d) Plots of PESQ and MOS Across Coders

In each figure, the speech was tested under a different condition; figure 9(a)

shows the no error condition and figures 9(b)-(d) show increasing bit error conditions.
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Coders are ordered in terms of increasing MOS. In general, PESQ orders coders

correctly with MOS. In figures 9(c) and (d), MOS for coder b is significantly lower than

for coder a; however, PESQ is unable to capture those differences. Even though this

points out that PESQ is not perfect, PESQ is much more effective in evaluating coders

than EMBSD.
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Chapter 6

WIDEBAND EXTENSION OF THE PESQ MEASURE

The results shown in the previous chapter suggest that PESQ is an effective objective

measure. However, PESQ is recommended for the evaluation of narrowband speech,

which is restricted to the 300 to 3400 Hz telephone bandwidth.

The desire for better than toll-quality speech has led to increasing demand for

wideband speech. Wideband greatly improves quality by extending the bandwidth and

dynamic range of narrowband speech. Wideband speech spans roughly 50 to 7000 Hz.

The upper band extension gives a crisper and more intelligible speech while the lower

band extension produces a more natural sound. Applications of wideband speech include

audio and video teleconferencing, digital radio broadcasting, third generation wireless

communications, and Voice over Internet Protocol (VoIP).

In 1988, the CCITT, which is now known as the ITU, established a:. international

standard for high quality 7 kHz audio coding, known as G.722 [20]. Currently, the ITU

is pursuing a new standard for wideband speech coding at 16 kb/s. The developments in

wideband speech coding motivate the extension of the PESQ measure to handle

wideband speech. This wideband extension is denoted here as PESQ-WB.

6.1 Extension of the PESQ Measure

From a thorough examination, it was determined that only a few changes were required
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to extend PESQ to evaluate wideband speech. The changes included removing the

telephone band filters and ensuring that the psychoacoustic mapping of spectra ranged

from 50 to 7000 Hz.

6.2Perforace of PESOQ-TD

Three wideband tests, T9-T11, were used to evaluate PESQ-WB. T9 includes error free,

bit error, frame erasure, tandem, and various input level conditions. There are thirty-six

conditions in total including six wideband MNRU conditions. The coders tested are

versions of G.722 and a CELP-based wideband coder in various bit-rates ranging from

12 kb/s to 64 kb/s. Test T1O is similar to T9 except that the G.722 and wideband CELP

coders range from 16 kb/s to 64 kb/s. There are a total of 24 conditions, 4 of which are

wideband MNRU conditions. Test T 1I evaluates various levels of static C/i conditions at

the nominal input level. A wideband CELP coder and G.722 are tested at various bit

rates along with 6 MNRU conditions.

Figures 10(a)-(f) show the results for Tests T9, TbO, and Tb 1. Figures 10(a), (c),

and (e) show scatter plots between the MOS and PESQ scores, with the smooth curve

showing the 3rd-order polynomial mapping.
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The performance of PESQ-WB was evaluated with correlation values and PMSE.

Results are summarized in Table 14.

PESQ-WB_____ Polynomial-mapped PESQ-WB
Database Correlation RMSE Correlation RMSE

T9 0.922 1 0.22410.93810.189
T10 0.922 0.384 0.944 0.265
T1I 0.946 0.337 0.965 0.213

Table 14 Correlation and RMSE data for PESQ-WB

The correlation values of PESQ-WB for wideband speech are higher than most of the

correlation values of PESQ with narrowband speech shown in Table 10. The results

demonstrate that PESQ-WB has a good potential for being an effective predictor of

speech quality for wideband speech. Further investigation involving different wideband

databases is recommended.
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Chapter 7

DMOS PREDICTION

The goal of EMBSD, PESQ, and other objective measures is, in general, to predict MOS.

However, the prediction of other subjective scores, such as DMOS, should also be

considered. This section focuses on how well EMBSD and PESQ are able to predict

DMOS.

DCR measures are typically used to evaluate speech under background noise

conditions. There are three different input signals that can be used by the objective

measure: the clean signal, the direct signal, and the processed signal as shown in Figure

11.

clean directcprocessed

noise

Figure 11 Speech under Background Noise Conditions

The clean signal is the clean source signal that is typically used as the reference in the

objective measures to predict MOS. The direct signal is the clean signal with added

noise. The processed signal is the direct signal after it has been processed by the coder.

In DCR tests, listeners rate the processed signal compared to the direct signal.

Therefore, it is logical to use the direct and processed signals as the reference and

distorted inputs, respectively, for an objective measure.
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7.1 Combination Score

The presence of added noise, however, may affect the listener's perception of the speech

quality. The listener may give lower ratings in DCR tests simply because the speech is

noisy. To capture such an effect, the direct signals can be compared against clean signals

in objective tests. Let (C,D) denote the objective test score that uses the clean and direct

signals as reference and distorted inputs, respectively. Let (D,P) denote the score where

direct and processed signals are used instead.

A combination of the foregoing two objective scores may predict perceived

quality better than (D,P) score alone. The calculation of Combination score is shown in

Equation 16.

Combination score = a[D, P]+ (1- a)[C, D] a 1 (16)

However, the (C,D) scores are often the same across all coder conditions since the same

uncoded sentences, clean and direct signals, are used for each noise condition. The

outcome makes the (C,D) term be a constant. Therefore, the correlation results for

Combination scores will not differ from the conelation results for (D,P) scores when

considering a single noise type. Let (C,P) denote the objective test score that uses the

clean and processed signals as reference and distorted inputs, respectively. (Recall that

PESQ recommends using (C,P) for MOS prediction.) Because the processed signal is

coded, the (C,P) term will not be uniform across coder conditions.
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Combination score = b[D, P]+ (1- b)[C, PJ b I1 (17)

Below, only the Combination Score given in Equation 17 is used.

7.2 Performance of EMBSD

The performance of the EMBSD measure in DMOS prediction was evaluated with three

databases, T12-T14. Both correlation and RMSE of the EMBSD scores were evaluated.

T12 and T13 deal with street and car noise conditions, respectively. In both tests, the

error conditions include various levels of static C/I conditions at a nominal input level.

Both tests use five different coders within a range of 8 kb/s to 20 kb/s. The coders

include G.729, GSM Full Rate, GSM Enhanced Full Rate, CELP coder at 5.15 kb/s, 7.45

kb/s, and 11.85 kb/s. Six MNRU conditions are also included. T14 deals with car noise

conditions. All conditions were tested under error free conditions at a nominal input

level. The test has 8 different coders ranging from 5.6 kb/s to 11.9 kb/s. The coders

include CELP coders at 11.9 kb/s and 9.5 kb/s, Variable-rate CELP at 9.6 kb/s and 5.8

kb/s, PCS 1900, G.728, GSM Full Rate, and GSM Half Rate. Two MNRU conditions are

also included in the test. The results are summarized in Table 15.

Database Objective EMBSD Polynomial-Mapped EMBSD
Score Correlation RMSE Correlation RMSE
(D,P) 0.750 0.798 0.836 0.456

T12 Combination 0.772 2.174 0.830 0.491
(C,P) 0.770 2.549 0.849 0.441
(D,P) 0.799 0.832 0.850 0.492

T13 Combination 0.816 1.079 0.862 0.474
(C,P) 0.814 2.230 0.896 0.414

(D,P) 0.740 0.556 0.776 0.440
T14 Combination 0.811 0.535 0.813 0.421

_(CP) 0.827 0.501 0.893 0.301

Table 15 DMOS Prediction data for EMBSD (b=0.30)
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The results show that (C,P) scores correlate better with DMOS than do the Combination

and (D,P) scores. Combination scores correlate with DMOS better than (D,P) scores

alone. The (C,P) measure also produces, in general, low RMSE values, for polynomial-

mapped EMBSD.

7.3 Performance of PESQ

The performance of the PESQ measure in the prediction of DMOS used the same three

test databases as in the evaluation of EMBSD. In addition, PESQ-WB is evaluated by

three other wideband DCR databases, T15, T16, and T17.

7.3.1 Narrowband Speech Data

Database Objective PESO Polynomial-Mapped PESO
Score Correlation RMSE Correlation RMSE
(DP) 0.90-5 0.749 0.943 0.277

T12 Combination 0.920 0.943 0.929 0.308
(CP) 0.720 1.470 0.850 0.438
(DP) 0.917 0.790 0.961 0.256

T13 Combination 0.926 0.912 0.970 0.225
______ (CP) 0.844 1.246 0.944 0.308

(DP) 0.801 0.444 0.832 0.396
T14 Combination 0.850 0.841 0.949 0.226

(CP) 0.677 1.142 0.678 0.525

Table 16 DMOS Prediction data for PESQ (b=0.70)

Unlike the outcome for the EMBSD measure, the PESQ measure clearly shows that

Combination scores correlate the best with DMOS. The percentage of the (D,P) and (C,P)

scores leading the best correlation differs among the three tests; however, a 70/30

percentage split favoring the (D,P) score produces good overall results for all tests.
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The RMSE for Combination scores are larger than for (D,P) before the polynomial

mapping function was applied. However, results after cubic mapping show the RMSE

for the Combination scores are lower than for (D,P) and for (C,P) for Test 2 and Test 3.

Results in Table 16 also show that (D,P) scores are consistently more effective than (C,P)

scores.

7.3.2 Wideband Speech Data

Three wideband tests, T I5-T17, were used to evaluate the performance of PESQ-WB on

DMOS prediction with many different noise conditions. T15 and T16 evaluated street

and car noise conditions, respectively. In both tests, the error conditions included various

levels of static C/I conditions at a nominal input level. Six coders were tested. They

were three wideband coders under test and the G.722 at 64, 56, and 48 kb/s. MNRU

conditions were also part of the two tests. T17 evaluated four different types of noise:

office, babble, car, and interference talker. Error conditions were not included in the test.

Five coders were tested with bit rates ranging from 12 kb/s to 56 kb/s. The coders

included G.722 at 48 and 56 kb/s, and a CELP-based wideband coder.

Database Objective PESO-WB Polynomial-Mapped PESO-WB
Score Correlation RMSE Correlation RMSE
(DP) 0.901 0.444 0.926 0.348

T15 Combination 0.810 0.950 0.852 0.482
(CP) 0.367 1.142 0.511 0.790
(DP) 0.884 0.715 0.929 0.318

T16 Combination 0.832 1.024 0.884 0.402
(C,P) 0.453 1.889 0.619 0.673
(DP) 0.886 0.394 0.914 0.279

T17 Combination 0.904 0.636 0.921 0.268
(CP) 0.391 1.497 0.515 0.590

Table 17 DMOS Prediction data for PESQ-WB (b= 0.70)
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Unlike PESQ narrowband results, Combination scores do not perform as well as (D,P)

scores. For the tests T15 and T16, Combination scores are significantly worse than (D,P)

scores. For test T17, Combination scores show some improvement, but the improvement

is not as great as in the narrowband tests. However, like PESQ, PESQ-WB produces

consistently higher correlations with (D,P) scores than with (C,P) scores. As shown in

Table 17, the difference between correlation coefficients of the two cases is very

dramatic. On average the (D,P) scores correlate at 0.89 while the (C,P) correlate at 0.40

only.
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Chapter 8

CONCLUSION

In this thesis, we evaluated the EMBSD and PESQ objective speech quality measures. In

the investigation of EMBSD, we have found that forward masking did not show

satisfactory results. Li averaging was found to be better at evaluating the no error

condition and conditions where the distortion was stationary. The time alignment

mechanism in PESQ is suitable for evaluating delay variations in silent periods; however,

it does not seem as effective for evaluating delay variations in speech periods. PESQ-

WB showed promising results in evaluating wideband speech. Future developments of

wideband coders will find the results useful. In addition to predicting MOS, it was found

that EMBSD and PESQ could predict DMOS.

Further research is warranted in the following areas: use of forward masking in

wideband speech evaluation, improving EMBSD in evaluating different coders, and

performing a more thorough testing of PESQ's time alignment mechanism using data

with MOS scores.
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