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Abstract

This thesis is divided into two parts. Part I assesses the feasibility of an ultrasound

diagnostic tool for taking monthly breast measurements in order to detect breast can-

cer sooner than it can be detected in a mammogram. It describes simple phantom

experiments in which a 0.3 cm 3 mass could be detected with 100% accuracy. A finite

element breast model produced similar results. Part II describes a tradeoff between

shift invariance and depth resolution that seems to occur in almost all imaging sys-

tems. A metric for shift variance and depth resolution are described and are then

applied to three different imaging systems.
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Chapter 1

Ultrasound Introduction

Currently, 1 in 8 women in the United States are expected to develop breast cancer

[4]. The main form of imaging used to detect breast cancer is the mammogram,

which is recommended approximately once a year once a woman reaches 40. Due to

low contrast and noise, mammograms, miss roughly 10% of all tumors [5]. One could

improve tumor visibility by comparing images taken at different times, but due to the

non-rigid nature of tissue, the breast is never positioned exactly the same with each

measurement and thus the two mammograms will not be aligned. One solution to

this problem is to develop elaborate registration algorithms to align multiple images.

Many people are working on this but image registration is still a major unsolved

problem in digital mammography [6]. Another possible solution is to take multiple

mammograms at each sitting to ensure that at least two will align, but because x-

rays in high doses cause cancer, the number of images that can be taken per year is

limited.

An alternative form of imaging that avoids ionizing radiation is ultrasound. With

ultrasound, many measurements of the breast can safely be taken and thus mea-

surements taken at different times could be more easily aligned without the need

for complex image registration algorithms. While ultrasound has significantly worse

resolution than mammography, forming high quality images is not necessarily a re-

quirement for detecting tumors. If measurements can be accurately aligned and

compared and if changes in the healthy tissue are small compared to tumor growth, a

15



high quality image will not be necessary for detection. An additional improvement on

mammography is that with ultrasound, measurements can be taken monthly, instead

of yearly, thus further increasing the probability of detection.

Our goal was to investigate the feasibility and performance of an algorithm that

obtained monthly ultrasound data from precisely aligned transducers. Accomplish-

ing this task required two innovations. The first was in determining how to generate

growth data that would resemble biological data. To address this task, we ran phan-

tom experiments and compared these experiments to a Finite Element simulation.

The second innovation was that once realistic data was created, we needed to de-

velop a detection algorithm. The major detection algorithm used had two major

parts, data reduction, using Principal Component Analysis, and classification, using

Nearest Neighbor Learning. We will conclude with plans for future work.
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Chapter 2

Fundamental Physics

2.1 Ultrasound Propagation in Tissue

Waves propagate through air by the compression and expansion of the air molecules.

These waves are known as acoustic waves. At frequencies (v) between 20 Hz and

20 kHz, they are within the range of human hearing and are called sound waves.

Similar physical principles show that these compression waves also propagate through

other media, including water, steel, and biological tissue. Ultrasound is a simply a

compression wave with a frequency that is higher than 20 kHz. Many linear waves

that can be found in nature, including light, sound, and vibration. Simple wave

propagation can be described by Equation 2.1, where x = position, t = time, c =

the wave propagation speed, and can be any wave variable including pressure (p),

velocity (u), density (p) etc.

a2 = c 2a 
(2.1)

Solutions to this equation are of the form f(x ± ct), and the sinusoidal solution

to this problem is = oeik(x±ct), where k = the wave number. Other important

fundamental equations to be aware of are c = Av, where A = wavelength, k = v/27r,

and w = 27rv, where w is the angular frequency, and c = VK/p, where K is the bulk

modulus of the medium and p is the density. Some intuition for this last equation can
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Figure 2-1: A system made of identical masses and springs with dynamics that follow

the wave equation as the spacing between elements becomes infinitely dense

be gained by imagining the propagation medium as a meshwork of uniform springs

and masses as shown in Figure 2-1. We know that by solving the simple, homogeneous

ODE mrn + kx = 0 for a spring-mass system with no damping, the natural frequency

equals /n/. The higher the natural frequency, the sooner a displacement of an

individual element will affect its neighboring elements, leading to a faster disturbance

propagation and a higher c. For the continuous medium, we simply have p instead

of m and K instead of k. An overview of acoustics with a detailed derivation of the

wave equation can be found in [7] and a brief overview can be found in [8].

So clearly, when modelling wave propagation in tissue, one must know c. If the

propagation medium is perfectly homogeneous and lossless, then c is the only pa-

rameter we need. The next level of complexity is when a plane wave propagates

through a homogeneous medium and encounters an interface with a second homoge-

neous medium as shown in Figure 2-2. Like light waves, acoustic waves obey the laws

of reflection and refraction. 0, = 62 and Snell's law, M = gives Ot. To determine
si t C2

how much of the wave is transmitted to the second medium, one must calculate the

reflection and transmission coefficients, as described in Chapter 6 of [7]. To do so,

one needs to know, the impedance of each medium (Z). For a plane wave, Z = pc.

18



Medium 1 Medium 2

!L (p1 ,cl) (P2,02

Figure 2-2: The reflection and refraction of a plane wave at an interface

Thus when multiple media are present, one must also know p.

Parameters c and p are relatively easy quantities to measure and can be found in

[2] and [3] respectively. While tissue is known to support shear waves, these waves

are damped locally, and their energy dissipates. It turns out that their dissipation

can be included with the attenuation [9].

Another level of complexity appears when we account for the fact that as a wave

propagates through a medium, even if it is homogeneous, its energy dissipates as it

propagates. The damped wave is expressed as =oe--eik(x±ct), where a is the bulk

attenuation coefficient. This dissipation can be divided into three categories: viscous

losses, heat losses, and molecular losses. Viscous losses result from relative motion

between different parts of the medium. Heat losses occur because regions of the fluid

that are under a higher pressure are also at a higher temperature; some of this heat

flows to the lower pressure and temperature regions through conduction. Molecular

losses occur when some of the wave energy is transferred to vibrational energy of the

molecules within the medium. More discussion can be found in Chapter 9 of [7].

Additional losses come from the wave scattering off small particles inside the fluid.

Scattering in soft tissue is a very complex phenomenon that is not easy to quantify.

A good overview can be found in [8]. Analytical solutions for plane wave scattering

off solid cylinders and spheres was derived by Faran [10] and elliptical geometries

have also been solved for [11]. However, because scattering in general is very difficult
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0

Figure 2-3: Representation of backscattering coefficient. 1 is the intensity of the

incident plane wave, V is the volume of the scatterer and P is the scattered power.

to model, it is often modelled by two bulk parameters; the backscatter coefficient

(o) and the differential backscatter coefficient (9d). e7 is a measure of the power

scattered in a given direction by a unit volume of a material that is hit with a plane

wave of unit intensity as shown in Figure 2-3. It is defined according to Equation 2.2,

where V = the volume of the material, 1 is the intensity of an incoming plane wave,

and PQ(6, q) is the scattered power per solid angle as a function of the angles 0 and

0. 0 = ff UddOd#. To eliminate confusion, it should be noted that a has units of

1/(mSr). I = 1pu which has units of W/m 2 while PQ has units of W/Sr.

I Pq(6, #1r = ( (2.2)
V Io

The material properties of actual biological tissue are shown in Table 2.1. It should

be noted scattering measurements made by different labs can vary by a factor of 10,

as can be seen when comparing [12], [1], [13], and [14]. Moreover, in [15], phantoms

with identical properties were made in Madsen's laboratories and then sent to 10

different groups for measurement. Even among these measurements, a varied by a

factor of 10. While this variance is discouraging, the a ratio between various tissue

types for a given measurement technique has much higher agreement across labs.

It should be noted that a fifth property of tissue, its nonlinearity, often referred to

as B/A, has not been discussed at all. With low amplitude waves, nonlinear effects

become negligible, but when the pressure rises, the wave propagation can change

dramatically. An overview of nonlinear ultrasound can be found in [16]. In our
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Material p c ao n. 9- n.,
(kg/m 3 ) (m/s) (dB/cm) - (10- (cm Sr MHz) 1) -

Water 1000 1488 0 - 0 -

Fat 937 1440 .158 1.7 9.5 x 10-5 1.9
Parenchyma 1060 1540 .87 1.5 5.2 x 10-3 1.3
Tumor 1080 1580 .57 1.3 2.6 x 10-4 0.8

Table 2.1: Tissue Properties. -(f) = o-ofn and a(f) = aof , where f is the frequency
in MHz. The attenuation and scattering properties were taken from [1]. The c values
were estimated from figures in [21. The p values were taken from [3]

analysis, we will be assuming small displacements and we ignore nonlinear effects.

2.2 Piezoelectric Transducers

Ultrasound waves are typically generated using piezoelectric transducers. Piezoelec-

tric materials have the property that when a voltage is placed across them, they

deform, and when a force is exerted on them, they create a voltage drop. Piezoelec-

tric materials exhibit this behavior because they are made up of polar, non-sperical

molecules, as shown in Figure 2-4. At rest, the molecules all have a random orienta-

tion. When a voltage is applied across the materials, the molecules align to minimize

their energy, causing the material to expand in one dimension and contract in an-

other. If the voltage applied to the material is a 5MHz sinusoid, then the transducer

will create a 5MHz acoustic wave. Conversely, if a force is exerted on the piezo-

electric material, the molecules inside will also align, causing a voltage drop to be

present which can be measured. Thus the same transducer that sends a pulse can

receive it as well. Common piezoelectric material used in ultrasound transducers are

lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF). A more in depth

discussion of piezoelectric materials can be found in [17].
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PZT at rest PZT with Applied Voltage

Figure 2-4: PZT at rest and with an applied voltage or displacement

22



Chapter 3

Phantom Experiments

To test the feasibility of a differential detection algorithm and get a feel for what a

growing tumor might look like, tissue mimicking (TM) breast phantoms were created.

Ernest L. Madsen, at University of Wisconsin developed TM material for the purpose

of testing ultrasound equipment and many aspects of our phantom design came from

his work [18], [19], and [20]. As discussed in Chapter 2, when creating TM phantoms

that have the acoustic properties of biological tissue, there are four important bulk

properties to match: c, p, a and -.

This thesis will discuss two types of phantoms that were developed. The first used

gelatin to simulate breast tissue and vegetable shortening to simulate a tumor. The

second involved filling angioplasty balloons with solutions of water and glass beads

to simulate tumor and glandular tissue. The gelatin phantoms were the only ones to

yield useful and qualitatively reasonable results and so they will be discussed first. A

discussion as to why the angioplasty balloons failed will be saved for Chapter 5

3.1 Experimental Setup

In our first round experiments, we chose to construct a very simple phantom made of

gelatin and water. There are two major materials that can be used for constructing

phantoms: gelatin and agar. These materials have similar speeds of sound and densi-

ties to tissue, but in their pure form, they have very low attenuation and back scatter.
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Gelatin consists mostly of a collagen, a major structural protein that is present in

bone, hooves, and cartilage. Agar is a structural galactose polymer found in the cell

walls of red algae. Both come in powder and they create gels by linking together

and forming large molecular networks when placed in water. Advantages of agar are

that it has a high melting point of 78 C and it is resistant to bacterial decay, whereas

gelatin melts at room temperature and decays within weeks. On the other hand,

gelatin mixes more uniformly than agar and since we were not concerned with long

term phantom storage at room temperature, we chose gelatin for our initial experi-

ments. To preserve the gelatin phantom, one can add formaldehyde, as described in

[20], but this also was unnecessary for our experiments.

Our first set of phantoms were created by mixing one knox gelatin packet (7.1

g) with one cup of water inside of a hemispherical mold with a 4.6 cm inner radius.

These phantoms were placed in a cold storage room at 6 C overnight or longer.

We used the experimental setup shown in Figure 3-1 to measure the speed of

sound through the gelatin. We placed our phantom on top of a piece of metal and

then placed a transducer on top of the hemisphere such that it was parallel to the

metal base. The transducer sent a pulse through the gelatin which reflected off the

stage and returned to the transducer. The pulse continued to bounce back and forth

between the transducer and metal baseplate. A plot of the received signal is shown in

Figure 3-2. Then, by using the simple relation c = d/t where d = distance the pulse

traversed (9.2 cm) and t = time of flight (60 ps), corresponding to distance between

peaks in Figure 3-2, we could easily estimate c to be 1530 m/s.

Since our phantom is composed almost completely of water, we know that its

density is very close to 1000 kg/m 3 . In these phantoms, backscatter and attenuation

are very low. We tried mixing the gelatin with graphite, oil, and glass beads as

described in in [18] and [20]. Unfortunately, we did not have a device with which

to rotate the gel as it set and thus the graphite settled to the bottom while the oil

floated to the top. Rather than spend more time developing more complex phantoms,

we chose to continue using gelatin. The scattering and attenuation are added in the

postprocessing stage.
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Figure 3-1: Experimental Setup forFigue 31: Epermenal StupforFigure 3-2: Data taken from speed of
the speed of sound through sound experiments. Each peak corre-

gelatinsponds to the detection of a reflected

pulse.

To simulate tumor growth, we injected vegetable shortening into the phantom

through a syringe. Vegetable shortening is essentially fat and so it has very similar

acoustic properties. The shortening was injected at a rate of approximately 2 mm3 /s

and data was recorded from the transducers every 0.4 s. It should be noted that the

vegetable shortening growth was not predictable. The "tumors" maintained a disk

shape as they grew. At a full size of 0.3 cm 3 , the disk had a diameter of approximately

15 mm and a thickness of 1.5 mm. The orientation of the disk, which can be defined

as the direction in which the normal to its surface pointed, was unpredictable and

seemed random. We believe that the disk orientation is determined by the fracture

plane that develops in the gelatin when the needle is inserted. In addition, the position

of the tumor with respect to the needle was not controllable and could vary by as

much as 15 mm. Since the 6 dB beam focus of our transducer was 1.6 mm, this

variation could lead to experiments in which the ultrasound pulse completely missed

the tumor and nothing was detected. This problem could have been avoided if we

had the capability to acquire data from multiple transducers at once.

A phantom stage was designed by Kateri Garcia for positioning the syringe and the

phantom. The phantom stage is shown in Figure 3-3. The syringe is fit into a syringe

holder made of aluminum, which is attached to a lead screw for horizontal translation,

bringing the needle into and out of the breast phantom. The distance travelled by
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Figure 3-3: AutoCAD rendering of the phantom stage showing the isometric and side

views. Designed by Kateri Garcia.
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(PhaOscill sadp)
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Figure 3-4: Schematic of data acquisition apparatus.

the syringe can be read from an embedded scale on the lead screw housing. When the

syringe is positioned, a micrometer attached to the syringe pump is used to control

the volume injection. The phantom is placed on a teflon plate, which is positioned

on the base plate by a kinematic coupling which allows it to be repeatably located

should it be desired to move the phantom. The transducer holder, which is a plastic

shell that has the same size as the phantom, allows for the placement of cylindrical

transducers.

A simple schematic of the test apparatus is showin Figure 3-4. We use a 5 MHz,

single element contact type ultrasound transducer from Panametrics. Table 3.1 lists

its characteristics. Signal generation, 59 dB of amplification, and bandpass filtering

between 1-10 MHz is done by a Panametrics Model 5072PR pulser/receiver, which can

26



Freq. 5 MHz
Diameter 0.25 in.
Near Field Distance 1.309 in.
Focal Length Point Target 0.43 in.
Beam Diameter (-6 dB) 0.0642 in.
Focal Zone 1.7877 in.

Table 3.1: Parameters of the single element ultrasound transducer used in our exper-
iments (5 MHz). All parameters are measured in water.

be operated in both transmit/receive and transmission mode. The data is displayed

on an oscilloscope, which is connected to a GPIB board and a PC for data acquisition.

The sampling rate was 50 MS/s.

It should be noted that we used contact transducers when we should have used

immersion transducers. Contact transducers have a high impedance for matching

other high impedance solids like aluminum and steel. Immersion transducers are

designed to go under water and thus they have a low impedance so that they couple

well to media like gelatin and water. It would have made more sense to use immersion

transducers. By using high Z transducers, much of the input pulse is reflected straight

back off the transducer/coupling gel interface, resulting in a weaker signal.
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Figure 3-5: Raw Data from a single transducer

3.2 Phantom Experiment Data Analysis

3.2.1 The Preprocessing Stage

Some sample data taken from the transducer are shown in Figure 3-5. There are two

major features that occur in this data. One at 5 ps and one at 25 [is. The 5 ps

feature comes from the electrical signal sent to the transducer from the pulser. Since

the electrical impedance of the cable does not exactly equal the electrical impedance

of the transducer, some of this signal gets reflected back to the oscilloscope. While this

feature of the data occurs at the same time of the initial pulse, it does not represent

what this pulse actually looks like and is ignored in any future data processing.

The second feature at 25 ps comes from reflections off the vegetable shortening. If

the shortening were perfectly homogeneous and its boundaries with the gelatin were

smooth, one would expect to see a few perfect reflections from the gelatin-shortening

interface. Even if the boundaries were rough, we would expect a more distorted signal,

but it would have a more uniform envelope rather than the triangular envelope that we

see. The reason we see this triangular shape is due to backscatter from the vegetable

shortening. The vegetable shortening is nonhomogeneous and there are likely to be

small air bubbles inside that scatter the acoustic wave as it passes through. The

scattered power should increase linearly with volume as described in Chapter 2. The

actual shape of the tumor is typically narrow at the edges and wide at the center,
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Time (0-30 ps)

Figure 3-6: The waveform of 10 tu-
mors that have reached their final vol-
ume of 0.3 cm 3

Time (0-15 ps)

Figure 3-7: Windowed data from
phantom experiments.

so the scattering is low when the pulse first encounters the tumor, then increases as

the cross-section of the tumor grows wider, and then decreases once the wave moves

beyond the center of the tumor.

As mentioned in Section 3.1, there were many experiments where the tumor grew

in a location where it was not visible to our transducer. These experiments needed

to be thrown out in order to develop a successful classification algorithm and so we

kept the ten most visible tumors experiments. The last measurement of each of these

experiments, when the tumor has reached a size of 0.3 cm 3 is shown in Figure 3-6.

The first issue was to align and window the data. When a doctor tries to determine

if a suspicious mass is a tumor, he typically focuses attention on a particular mass

and its surrounding tissue, ignoring the rest of the image. Sometimes, the properties

of the surrounding tissue are important and should not be ignored. However, the

algorithm attention should be somewhat limited to ease the detection task. The

center for each window is set to be the maximum value of the wave. The window is

then set to be wide enough to include the largest tumor size. The windowed data is

shown in Figure 3-7.

The next step is to add the effect of tissue scattering to these waveforms. As

mentioned is Section 3.1, unlike breast tissue, the scattering inside the gelatin is

almost zero. Thus the experiments with no tumor growing produced a signal that was
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Figure 3-8: Windowed data with scatter added

never larger that ± 0.03 V. Detecting tumor growth in this environment is a trivial

task. To make the task more difficult and more like the actual task of detecting

a tumor in real breast tissue, we added the effect of scattering to the windowed

waveforms. The scattering waveforms were generated using PZFlex, a finite element

ultrasound simulation. The details of their generation will be discussed in Chapter 4.

The new waveforms with the additional scattering are shown in Figure 3-8(a). The

simulated scattering alone is shown in Figure 3-8(b).

3.2.2 The Classification Algorithm

Nearest Neighbor Learning

One simple way to classify the data is to do Nearest Neighbor Learning, as described

in Chapter 4 of [21]. The basic principles of Nearest Neighbor (NN) Learning are

illustrated in Figure 3-9. NN is a form of supervised learning for classification. One

starts with a set of data points that are classified into n different classes. When a

new data point of unknown type is received, the distance between that point and

every other known point (D) is calculated. The new point is then determined to be

of the same class as its closest neighbor. A modification to NN is known as kNN,

which simply stands for k Nearest Neighbors. With kNN, instead of just classifying
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Figure 3-9: Illustration of Nearest Neighbor Learning. Here, since the unknown point

is closest to a point in class 0, it is identified as being in class 0.

a point by its nearest neighbor, one looks at k neighbors, giving each neighbor one

vote to determine the classification outcome. One can also choose to give all points

equal votes, or to weight each vote by the distance of the unknown point from each

of its neighbors.

The most obvious choice for a distance metric is the Euclidean distance, shown in

Equation 3.1. But, there are others, including the Lk norm shown in Equation 3.2.

A more in depth discussion can be found in [21]. [22] discusses an optimal distance

measure for nearest neighbor classification.

N )1/2

D(a, b) = ( a- b . (3.1)

N 1/k

L(a,b) = k - b) . (3.2)

When implementing this algorithm on the experimental data, one can represent

each waveform as a vector (vi) in N dimensional space, where N is the number of

points in the waveform. Recall that in each experiment, approximately 100 wave-
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forms were stored as the tumor grew from nothing to its full size. For our detection

algorithm, we chose to look only at 6 waveforms per trial, where the tumor volume

increased by .06 cm 3 each time. To capture the entire growth history of the tumor

in a single data point, one only has to concatenate a series of vi vectors, such that

if vi is a row vector representing a single waveform, then V = [vi v 2 . . .vw]. The

dimensionality of V is now at most 6N. Each individual waveform is approximately

15 ps long and the sampling rate was 50 MS/s, so N = 750 and 6N = 4500.

The first test of this algorithm was to look only at the final waveform, vn, the

"image" of the tumor once it has reached full growth. To determine the class of a par-

ticular experiment (Vi) we began with m experimental data points V = [Vi ... Vm],

and eliminated Vi from the set to achieve V = [V1 ... Vj_1 Vi+1 ... Vm]. We then

used the Euclidean distance metric to find the point or points in V that were closest

to Vi and identified Vi as being from that class. Using this method for evaluating

a classification scheme is known as the Leave One Out method, as the training set

includes all data points except for the one being tested.

The results of this test were very poor. The best classification scheme gave an

accuracy of 54%. Interestingly, it occurred when k = 1. As k increased or as more

waveforms were added to V, the accuracy dropped to 50%, which was no better than

flipping a coin. This poor performance of this algorithm illustrates what is known

as the curse of dimensionality, which states that as data takes on higher and higher

dimensions, the number of possible classification boundaries increases very quickly.

Right now, the problem we are trying to solve has from 750 to 4500 dimensions but

we have only 20 data points with which to fill this space. One solution is to try and

gather more data, but this is an infeasible solution as it would take at least thousands

of points to fill this space. The task becomes even more difficult when we start using

T transducers, which adds another multiplicative factor to the dimensionality of our

problem. An alternative solution is to use data reduction techniques that reduce the

number of dimensions in our problem.
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stead, classification will be 100%.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique that is commonly used for di-

mension reduction. An introduction is provided in [23]. It can be used for a wide

variety of tasks including face recognition as described in [24]. The essential func-

tion of PCA is illustrated in Figure 3-10. The principal component of the data in

Figure 3-10 is in the direction of maximum variance, x'. If we want to represent

each point with only one dimension instead of two, PCA tells us the vector along

which this dimension should lie in order to minimize the error between the reduced

representation and the actual representation.

The principal components are calculated by taking the eigenvalues (Aj) and eigen-

vectors (uj) of the covariance matrix (E) of the data. When there are fewer data points

(m) than there are dimensions, as is often the case, the covariance matrix is singular

and has rank m. Thus there can be at most m principal components. The eigenvec-

tors with the largest eigenvalues are the most significant principal components. To

project vi onto our new space, one simply calculates vi -uj for all j.
Some intuition for why PCA would improve the performance of our NN algorithm
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can be seen by revisiting Figure 3-6. We see that at the beginning and end of each

waveform, there is just noise. The values of waveforms at these points are completely

useless, but the NN algorithm uses them when computing the distance between data

points. PCA can reduce the role that these points play in calculating the NN distance.

PCA is not the only data reduction technique. [25] explains that PCA is specifi-

cally designed to yield the minimum least squared error when representing data and

it is not necessarily designed for classification, as illustrated in Figure 3-11. In the

figure, we see that the least important dimension according to PCA is actually the

most important dimension when it comes to classification. [25] discusses alternate

data reduction techniques. For example, one scheme looks at the mean of the two

different classes and the primary dimension points along the line connecting the means

of the two different classes. The problem with this simple reduction scheme is that

for two classes, all the data gets reduced to a single dimension which is often not

enough for adequate data representation. Thus more sophisticated methods are also

used. [25] then uses some different techniques to classify 21 different data sets. PCA

averages 80.1% accuracy while the best alternative technique averages 82.4%. Thus

even though PCA may not be an optimal form of data reduction for classification, it

appears to still perform very well in general. Another option for data reduction would

be to use wavelets, which are often used for decomposing time dependent waveforms

A plot of the principal components of vn in order of biggest to smallest is shown

in Figure 3-12(a). The orthonormal vectors that correspond to these components are

shown in Figure 3-12(b). Notice how the principal component vectors have similar

features to those in Figure 3-7. Both the actual data and the first principal compo-

nents have peaks in the middle. The less important principal components look more

like noise.

3.2.3 Results

kNN was performed with k = [1,3,5,7] on the PCA'd data. The data entered into the

PCA was of the format V = [v1... vi] where i indicates the volume of the tumor.

The results are shown in Figures 3-13 and 3-14 for k = 1 and k = 7 respectively.
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These plots show the central result for this part of the thesis. Notice that at 0

volume, the changes of detecting a tumor are around 50%, which is no better than

flipping a coin. As the tumor grows and more data is acquired, the accuracy of the

algorithm improves. The rate of improvement depends upon the number of principal

components used to represent the data. The accuracy for k = 1 reaches 100% when

the tumor reaches a full size of 0.3 cm 3 and p = 2-5. When k = 7, the maximum

accuracy is 95%.
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Figure 3-13: The results from running the detection algorithm on the processed ex-

perimental data where k = 1. p is the number of principal components used in the

kNN algorithm. V = [v, ... vi] where i indicates the volume of the tumor in the plot.
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Figure 3-14: The results from running the detection algorithm on the processed ex-

perimental data where k = 7. p is the number of principal components used in the

kNN algorithm. V = [v 1 ... vi] where i indicates the volume of the tumor in the plot.
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Chapter 4

The Simulation

4.1 The Model

As mentioned in Section 3.2, a finite element simulation was used to generate the

scattering data that was added to the experimental data in Figure 3-8(a). An addi-

tional benefit of developing a finite element model is that we have the advantage of

completely controlling the geometry and we can run thousands of experiments with

almost no effort. The package that we used was PZFlex, a linear, finite-element ul-

trasound simulation package made by Weidlinger Associates. To check the validity of

the software, we simulated a plane wave scattering off a glass sphere. The results are

shown in Figures 4-1 and 4-2. The following figures compare the analytical solution

to data taken from the computer simulation. Notice how the qualitative shapes of the

figures agree. Spheres that are smaller than a wavelength scatter most of the power

back toward the source, while spheres that are larger than a wavelength scatter most

of the power away from the source. Also notice that the total scattered power as a

function of the sphere radius (a) in Figure 4-2 matches the theory reasonably well.

The major discrepancy between the simulation and the theory is the roughness of the

simulated curves when compared to the smooth analytical solution in Figure 4-1. We

believe that this is due to the discrete nature of the simulation.

We chose to look only at 2D simulations because we believe they provide the

same intuition as 3D simulations, but are much less computationally intensive. In
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Figure 4-1: Ud for a plane wave scattering off a glass sphere in water. The source is

located at 180'. Note that no simulations were run for A = 207ra because the mesh

size required to run these simulations with a reasonable looking sphere would require

a prohibitively long simulation time.
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Figure 4-2: Scattered Power from a glass sphere in water. a is the sphere diameter,
and k, is the wave number of water

a typical simulation a tumor with a = 6 mm was be placed 2 cm from the source,

and so a 3 x 1.5 cm window was used, as shown in Figure 4-3. For a 1 MHz signal

with a wavelength of 1.5 mm, the window is 20 x 10A. Also, typically 25 elements/A

were needed for reasonable results, so the geometry contains 500 x 250, or 125,000

elements. These simulation took 4 minutes on a Pentium III, 1 GHz computer. If we

were to switch to 3D, we would need 500 x 250 x 250 elements, thus increasing the

time required by a factor of 250 to 16.7 hours. Since we needed to run hundreds of

simulations for our learning algorithms, 3D was clearly infeasible.

There are some important qualitative differences between 2D and 3D. Mainly, the

intensity of a cylindrical wave decreases as 1/V, while a spherical wave decreases as

1/r, where r is the distance from the scatterer. Thus the magnitude of returning waves

in a 2D simulation will typically be larger than that of a 3D simulation. However,

when we model the scattering of the environment, the "noise" from this environmental

scattering is also be artificially increased, thereby negating the benefit from increased

tumor scattering.

The geometry for the simulations is shown in Figure 4-3. The tissue indicated in

the figure is either glandular tissue or a tumor. The boundaries of the simulation were
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Figure 4-3: Simulation Geometry. a is the radius of the tissue

perfectly absorbing. The transducer was modelled by simply specifying a pressure

value at a particular region of the model. The input pulse was the first derivative of a

gaussian, -et2/2,2, where a is the spread. The input pulse is shown in Figure 4-4.

o- was chosen so that the frequency would be centered at .75 MHz and less than 10%

of its peak value at 2 MHz. Data was "acquired" by simply recording the pressure at

the point of interest. This simulation completely neglects the transfer function of the

transducer and any coupling effects between the transducer and the breast. These

can be added later.

Parameters c and p were assigned according to Table 2.1. Attenuation was ne-

glected. It increases the speed of the simulation by a factor of 2 by removing the need

to calculate extra variables. At 1 MHz, attenuation through fat is .158 dB/cm. Thus

even after a wave travels 4 cm, it has only attenuated .63 dB, resulting in a loss of

only 8.4%.

The backscatter coefficient was a value that could not easily be programmed

into the simulation because it comes from the the geometry of the structure itself.

As discussed in Chapter 2, backscatter can occur on very small scales and is very

difficult to model accurately. Our model for backscatter was inspired by Madsen's
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Figure 4-4: Input pulse from simulated transducer.

attempt to experimentally simulate breast tissue in [31, where he uses oil droplets and

glass beads to cause acoustic scatter. Inside our tumor, we placed tiny spheres with

a radii between 30 pm and 120 pm. We placed 20 spheres/mm 2 in glandular tissue,

2 spheres/mm 2 in the tumor and 1 sphere/mm 2 in the fat. This was to match the

property that glandular tissue typically scatters 10 times more power than tumors and

tumors scatter twice as much power as fat. The material properties of the scatterers

were chosen to be c = 850 m/s and p = 1350 kg/m 3 . We chose to use a c and p that

is smaller than that of the fat because a higher c would have needed to be higher than

the fastest c of the simulation. This means the shortest A would be shorter and a

finer mesh would have been required for the simulation, thus increasing the simulation

time. The specific values were chosen by hitting an area of these scatterers with a

plane wave and measuring the returning power. We can modify Equation 2.2 for

2D, as shown in Equation 4.1, where A is the cross-sectional area of the scatterer, I

its length out of the plane, and P is force per unit length. Running the simulation

with the above values for c and p and then measuring P allowed us ta calculate that

c- = 6.3 x 10-5 cm-1 Sr- 1 .

1- _ 1 (4.1)
Al Io A Io

Of course, this is probably a grossly inaccurate model of how scattering occurs in
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Figure 4-5: Scattering in the PZFlex simulation

biological tissue. But, it is a place to start. One artifact to be aware of is that, as

mentioned earlier, we typically used 25 elements per wavelength, so at 1 MHz, the

element size was 60 pm. The smallest scatterer also had a diameter of 60 Pm, and

so it takes up exactly one element in the simulation. The largest scatterer takes up

14 elements. These scatterers only vaguely resemble spheres. While biological tissue

does not have these sharp boundaries, it is also not perfectly spherical. Again, more

sophisticated model can be used later.

Figure 4-5 shows the scattering properties of our simulated tissue as a function of

cross-sectional area. According to Equation 2.2, we would expect the scattered power

to increase linearly with volume. Since we are using a 2D simulation, all geometric

features have infinite length in the third dimension and volume is directly proportional

to the area. What we see, however, is that the scattered power increases much slower

than linearly. One possible reason for this trend is that the scatterers were not hit

with a plane wave, but rather with a wave from a transducer of finite aperture. When

the tissue of interest is significantly larger than the width of the beam, the effective

volume hit by the pulse only increases with r instead of r2
, leading to a slower increase

in the scattered power. Another feature to note is that while the scatterer density in

the glandular tissue is 10 times greater than in the tumor, the power scattered by the

glandular tissue is only a factor of 4 greater than the power scattered by the tumor .

This discrepancy is due to the fact that the scatterers are added digitally and placed
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in random locations that do not depend on the position of the other scatterers. Thus

at high scatterer concentrations, scatterers are likely to overlap.

As mentioned in Section 3.2, this simulated scattering was added to the experi-

mental data before the detection task. The data was generated by simulating a wave

propagating through fat and measuring the scattered power received. This wave was

then compressed in time by a factor of 5 because the experiments were run using 5

MHz transducers while the simulation operated near 1 MHz. The scattered pressure

wave was also scaled by an arbitrary amount before being added to the experimental

data. If the scale factor was too high, it was impossible to see the vegetable short-

ening signal, but if it was too low, the detection task was too easy. Calculating the

correct value for the scale factor requires knowledge of the transducer efficiency and

the scattering properties of vegetable shortening, both of which were unavailable at

the time of this publication.

4.2 Results

Data from the simulations are shown in Figure 4-6. This data, like the experimental

data, was also aligned and windowed, but this time the data was aligned using the

center of mass of the absolute pressure, rather than the maximum. This change in

the windowing method was used because the scattering from these simulations had a

relatively flat envelope compared to the experimental data. No additional scattering

needed to be added because scattering was present in the model. This data was then

entered into the PCA and kNN algorithm from 3.2. The PCA'd data was of the form

V = [v1... vi], where i indicates the current radius of the tumor. The results are

shown in Figure 4-7 and 4-8 for k = 1 and k = 7 respectively . Using the simulation,

we were able to simulate both tumor growth and glandular growth, and then try

to distinguish a tumor from a gland (Figure 4-7(a) and 4-8(a)) and a tumor from

an empty background (Figure 4-7(b) and 4-8(b)). Not surprisingly, it was easier to

discern a tumor from an empty background of scatterers than to decide whether the

growing tissue was a tumor or a gland. The plots show the same trends that were

43



a =O0mm

C
C
CYU

C:
CU

CO

0
E

a =1mm a=2mm a=4mm a=6mm

Time (0-50 gs)

Figure 4-6: Pressure data from simulations. The columns are for different tissue radii.
The rows are divided into two groups, one set of three for tumor simulations and a
second set of three for glandular tissue. The random positioning of the scatterers is
different for the waveforms within each group.

present in the experiment.
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Figure 4-7: The results from running the detection algorithm on the simulated data.

k = 1. p is the number of principal components used in the kNN algorithm. V

[vi . . .vi], where i is the tumor radius shown in the plot.

100-0

20-

15

0. .6

0 Radius (cm)
p

(a) Distinguishing tumor from gland

100-

20-

100

.0.2

0 Radius (cm)
p

(b) Distinguishing tumor from background

Figure 4-8: The results from running the detection algorithm on the simulated data.

k = 7. p is the number of principal components used in the kNN algorithm. V

[vi .. .vi], where i is the tumor radius shown in the plot.

45



46



Chapter 5

Phase II Experiments

In an attempt to create an experimental environment in which we had more control

over the acoustical properties of the materials involved, we devised a second experi-

ment. This experiment ultimately failed to provide qualitatively reasonable results,

but we have included its description for completeness.

These experiments made use of angioplasty balloons, growing inside a bath of

water, as shown in Figure 5-1. The balloons were donated to us by Boston Scientific.

The orientation and expansion profile of the balloon is shown in Figure 5-2. The

angioplasty balloons were 1 cm in diameter and 6 cm long was filled with two different

fluids: ethanol, and a 3 : 1 mixture by weight of water to hollow glass beads 2-20

pm in diameter. Ethanol was used because it had a different speed of sound (1207

m/s) and density (790 m/s), but very low backscatter. It simulated the tumor. The

glass beads solution had a significantly higher scattering coefficient than the water,

and thus it simulated the glands. Two sets of data were taken for d = [1,5] cm and 8

= [-45,-30,-15,0,15,30,45] degrees. Thus there were a total of 28 sets of data for each

fluid. It should be noted that this positioning was not precise, and there was probably

an estimated 20% error. The purpose of this round of experiments, however, was just

to obtain a wide sampling of data and then try to separate the different classes fluid

from each other. Thus it was not necessary to achieve precise, repeatable alignment.

The experiments consisted simply of filling the syringe with the desired fluid and

then filling the balloon by manually depressing the plunger of the syringe. A mea-
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Figure 5-2: The cross section of the balloon as it expands.
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surement was taken after every 0.3 cm 3 was injected until the balloon was full at 3.0

cm 3 . Data from the Phase II experiments is shown in Figure 5-3. Notice how many

of the plots have very sharp spikes. These spikes are due to reflections off the front

and back interfaces of the balloon. It is these spikes that dominate the signal, and

while the solution filling the balloon has some effect on the waveform, it was much

too small.

0% full 25% full 50% full 75% full 100% full

0
0.2 0.2 0.2 0.2 0.2

0 0

C 0 0 0 0

CU
-0.2 -0.2 -0.2 -0.2 -0.2

-0.4 -0.4 0.4 0.4 0.4
0 50 0 50 0 50 0 50 0 50

0.2 0.2 0.2 0.2 0.2
0 0 0- 0 0

2 -0.2 -0.2 -0.2 -0.2 -0.2

-0.4 -0.4 -0.4 -0.4 -0.40 50 0 50 0 50 0 50 0 50

b 0.2 0.2 0.2 0.2 0.2

0 0 0IT" 0 0
-0.2 020 .2  -. -0.2 -0.2
-0.4 -0.4 1-0.41 - 0.4 0.4

0 50 0 50 0 50 0 50 0 50

LO~ 0.2 0.2 0.2 0.2 0.2

.4i0 60AT1*a 0 0 0 J 0

CO -0.2 -0.2 -0.2 -0.2 -0.2

-0.4 -0.4 -0.4 --0.4- -0.4-
0 50 0 50 0 50 0 50 0 50

Time (gs)

Figure 5-3: Example data from phase II experiments. Each row of data shows 5
waveforms for a single balloon as it inflates. The balloon was filled with either ethanol
or the water/bead mixture and the angle of the balloon with respect to the transducer
(8) was either 0' or 45'. This distance from the balloon to the transducer (d) was 1
cm.

The experimental data do not display the qualitative traits that we expected at

the beginning. The question to be asked, then, is will these traits be relevant in

actual, biological data and thus must be considered, or are these traits artifacts of
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our particular experiment that simply confuse the issue. We believe that the latter

is true. We are not sure exactly what type of plastics the balloons are made of, but

plastics in general have a c > 2200 m/s, while c for water and breast tissue ranges

between 1430 - 1580 m/s. When these experiments began, it was hoped that because

the balloon walls were so thin, the scattering from the plastic would be negligible

when compared to that of the bead-water solution. This may have been the case if

these balloons expanded like a typical rubber balloon, such that their surface remained

smooth throughout the experiment. However, as illustrated in Figure 5-2, the balloon

surface was very wrinkled, causing significant scattering. Therefore, we decided to

use an acoustic simulation package to generate data.
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Chapter 6

Conclusions and Future Work

We have developed simple phantom experiments and a 2D model for simulating ul-

trasound propagation in breast tissue. In the experiments, we were able to detect

the growth of a disk shaped tumor with 100% accuracy when it reached 0.3 cm 3,

we achieved 100% accuracy when the tumor radius reached 0.6 cm.. The algorithm

can also differentiate between tumor tissue and glandular tissue. The simulation

and experiment should be compared only qualitatively because it is uncertain if the

scattering model implemented in the experiments was scaled properly.

Of course with any simulation or phantom experiment, there is the possibility of

ignoring important physics or real life details. For example, throughout this thesis

we have assumed the ability to achieve precise transducer alignment. The the next

step is to ensure correspondence between our simulation and some more realistic

experimental results. We suggest working with Professor Madsen's group to design

and fabricate phantoms for our study. Like the simulation, Madsen can control c, p,

a, and u of a material in order to simulate all types of breast tissue. Moreover, he

can create multiple molds that are identical except for a change in the diameter of a

single sphere, thus allowing for the simulation of tumor growth with a small shift in

the surrounding tissue .

After establishing correspondence between the simulation and experimental data,

the next step is to develop a more accurate model for how the breast changes from

month to month. One way of viewing our problem is that we are trying to detect the
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tumor signature through environmental noise. By using randomly placed scatterers,

we are in effect modelling this environmental noise as gaussian. If this noise is actually

gaussian, the problem becomes relatively straight forward, and a matched filter is

the best algorithm for extracting the signal from the background. However, if this

noise is correlated, the task becomes more difficult and understanding how the breast

changes with time and ignoring the benign changes becomes an important task. To

our knowledge, no study of the monthly evolution of breast tissue has been undertaken

to date. Thus, an additional task is to perform such a study where the evolution of

the acoustic properties of tissue is monitored.

Once the acoustic evolution of the breast is understood and the simulation has

been verified, many more simulations should be run. Our simulation detected the

growth of a spherical tumor at a particular location with particular acoustic prop-

erties. A much more rigorous test, varying tumor shape, position, and material

properties should performed to further test the detection algorithm. In addition,

there are a wide variety of possible detection algorithms that can be tried, includ-

ing Neural Networks, Support Vector Machines (SVM), and Hidden Markov Models

(HMM). This thesis primarily focused on Nearest Neighbor learning because it was

easy to implement, had a fast run time, and performed well. Moreover no significant

performances were seen when the Neural Net or SVM were tried on the experimental

data.

The HMM, briefly descibed in [21], is of particular interest because it has suc-

cessfully been used for speech recognition, which shares many similarities with our

problem. In both applications, one measures the properties of a waveform and how it

evolves with time in order to decide which class it falls in. In speech recognition, the

vocal cords modulate the voice, causing it to change with time. The task of the HMM

is to interpret how these modulations occur over time and then decide which word

has been spoken. In tumor detection, the tissue scatters the input pulse, creating

a waveform that changes with time. So possibly, a similar HMM may be used to

interpret the acoustic waveforms. In addition, it may be possible to use a higher level

HMM to interpret the monthly changes in the waveforms that are caused by tissue
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growth.

In conclusion, we have found results that suggest that monthly ultrasound mea-

surement using precisely aligned transducers will be able to detect smaller tumors than

those currently detected in mammography. It is recommended that further work be

done to better understand how the acoustic properties of breast tissue change from

month to month and that more realistic experiments be run to confirm the results

presented here.
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Part II

The Tradeoff between Shift

Invariance and Depth Resolution
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Chapter 7

Shift Invariance vs. Depth

Resolution Introduction

Known imaging systems capable of resolving object structure along the axial dimen-

sion (e.g. confocal microscopes, interferometers, binocular vision systems) usually

exhibit limited lateral shift invariance; i.e., they possess a location-dependent impulse

response. For example, the confocal microscope [26], shown in Figure 7-1, achieves

depth resolution via two means: (1) active illumination is focused on a specific object

point, and (2) a pinhole placed at the detector plane rejects all out-of-focus light

coming from the object. Both features severely limit the shift invariance of the sys-

tem. If the pinhole is gradually opened up from its ideal zero diameter, the amount

of lateral image information allowed through proportionally increases, whereas the

depth-resolving capability decreases. In the limit of the pinhole becoming as wide as

the field of view, axial imaging capability is essentially eliminated but that system

has become perfectly shift invariant.

photo-
detector

object

source objective collector pinhole

Figure 7-1: Confocal microscope.
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The imaging process can generally be divided into two steps. First, projections of

the object of interest are acquired. Because all detectors are limited to at most two

spatial dimensions, the projections are also limited to 2D. To acquire a full 3D image,

a second step is required, fusing multiple projections to form a single image. For

example, a confocal microscope obtains projections that contain information about a

single point within an object. By scanning along all three spatial dimensions, many

point projections can be combined to form a full 3D representation of the object.

Other examples of imaging systems that behave in such a way are radar, which

integrates a series of measurements taken over time, and computed tomography, which

uses the Radon transform to integrate projections of an object into the image or a

slice from the object. Most good imaging systems will be shift invariant once the

final image has been created. In this thesis, we are concerned with the behavior of

individual projections.

We conjecture that lateral shift invariance and depth resolution are coupled in

any object projection. Thus, by measuring the amount of shift invariance one should

be able to estimate the depth resolution capability of an imaging system. Perhaps

more interesting is the possibility of trading shift invariance off for depth resolution

when designing an imaging instrument.

Among optical elements, volume holograms provide the capability of "tuning"

the shift invariance at will. For example, this property has been studied in the

context of holographic correlators for optical pattern recognition [27]. Recently, it

was shown that a volume holographic matched filter can replace the pinhole of a

confocal microscope to provide depth selectivity [28].

Here, we are interested in quantifying the shift invariance vs. depth resolution

trade-off for general optical systems. For this purpose, we define metrics Ar and

1/Az of shift invariance and axial resolution, respectively, such that they can be

applied to general imaging systems. We then apply the definitions to a diffraction-

limited confocal microscope and a binocular system, and show that shift invariance

and depth resolution exhibit opposite trends as the pinhole radius of the system

increases.

56



Chapter 8

Metrics for Shift Invariance and

Depth Resolution:

The axial, longitudinal, or depth direction 2 (we use all three terms interchangeably)

with respect to an imaging system is the direction of an optical axis, if one is defined.

If more than one axes can be identified in the system (e.g., in the case of multiple

cameras), then we define the "effective axial" direction i as the average of the axes

of the system. The case of multiple optical axes will be further discussed when we

examine the binocular system.

Let h(x, y; x', y') denote the lateral intensity impulse response of an arbitrary

imaging system at a fixed depth zo. (x, y) are the coordinates of the source impulse

at the input plane and (x', y') are the coordinates at the output plane. We define the

shift variance domain Ar based on the function

ff [h(x, y; x', y') - h(0, 0; x' - x, y' - y)J2dx'dy'
S(X y) = . (8.1)'dy

ff~c 0h(0, 0; x' - x, y' - y)I2 dx'dy'

We will refer to h(0, 0; x' - x, y' - y) as the shifted on-axis impulse response of the

system. S gives a measure of the shift invariance of the system when the object

is at (X, y). The denominator of (8.1) serves as a normalizing factor so that S is

independent of the energy incident on the detector. A typical plot of S is shown in

Figure 8-1. It is easy to see that S always equals 0 when (x, y) = (0,0) because the
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Figure 8-1: Shift Invariance for a Confocal Microscope. r is the radial coordinate
normalized to the numerical aperture of the system, i.e. r = v 2 + w 2

two terms in the numerator are the same. In a perfectly shift invariant system, such

as a thin lens and detector with a fish-eye field of view, when an object shifts from

(0, 0) to (x, y), the image recorded by the detector also shifts by (x, y) and so the

shifted impulse response exactly equals the image of the shifted object, making S=0

for all (x, y).

In a shift variant system, as the object moves away from the origin, the image

measured at the detector can become distorted as in Figure 8-2. Thus the numerator

in (8.1) diverges from zero. The more shift variant the system, the faster S(x, y)

diverges. The value of S(x, y) may in fact increase beyond 1 if the overlap between

the region where the impulse response and the shifted on-axis response becomes

insignificant as shown in Figure 8-2. If we assume

I | Ih(x, y; x', y')12dx'dy' < 0 h(0, 0; x',y')| 2 dx'dy', (8.2)

meaning that the intensity reaching the detector from a laterally shifted object is

always less than or equal the intensity of the on axis object, then the impulse response

and the shifted on-axis response may each contribute a total normalized intensity of

at most 1. Therefore, 0 < S(x, y) < 2 for a single detector. If there are multiple

detectors, as in the binocular system, then 0 < S(x, y) < 2N, where N is the number

of detectors. In a system with a finite field of view,
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+00
lim Ih(x, y; x', y') I'dx'dy' = 0 (8.3)

x)Y->oo _f00

meaning the intensity measured at the detector approaches 0 as (x, y) approaches

infinity, S(x, y) converges to 1.

The metric we have created for shift invariance was designed to measure how fast

S diverges from 0 as the object is moved away from the origin. The sooner the image

becomes distorted, the more shift variant the system. The shift invariance metric we

chose was the distance (Ar) from the origin required for S to reach 0.9, as shown in

Figure 8-1. The value 0.9 was chosen because a typical shift variant system with a

finite field of view will converge to 1, but for some systems, like the pinhole camera,

S may not reach 1 until (x, y) reaches infinity. For a perfectly shift-invariant system,

S never grows larger than 0 and so Ar is infinity. On the other hand, consider an

infinitesimally small pinhole in the geometrical optics approximation. Such a system

exhibits severe shift variance and its Ar approaches zero. For finite pinhole size and

diffraction-limited imaging, Ar takes intermediate values, as we show later.

A simple way to measure axial imaging capability is to use the inverse of the

uncertainty 1/Az in determining the axial location of a point source around some

reference depth zo. This may depend on several factors, primarily detection noise

but also image quantization due to a pixelated detector. Defined this way, 1/Az also

agrees with the common notion of "axial resolution." Both metrics Ar and 1/Az

generally depend on zo; complete analysis of this phenomenon is beyond the scope of

this paper, however. The 1/Az for three different imaging systems will be discussed

in more detail in the following section.
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Figure 8-2: Shift Invariant vs. Shift Variant Systems. In the shift invariant system

the image of a shifted object looks exactly like the shifted impulse response of that

object. However, in the shift variant system, the image of a shifted object becomes

distorted and no longer matches the shifted impulse response.
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Chapter 9

The Behavior of S and 1/Az in

representative systems

9.1 The Confocal Microscope

Consider the confocal microscope system of Figure 7-1, equipped with a scanning

mechanism, which allows it to acquire 3D data. This system is exceptional in that

the shift variance and resolution do not depend on the depth zo; this is because the

system has a focal plane and the image data are acquired one point at a time. This

property simplifies the understanding of the trade-offs that we want to discuss here.

The shift invariance data, shown in Figure 9-1, were generated from (8.1) using the

in-focus lateral intensity impulse response of a lens, squared (to account for confocal

illumination) and multiplied by the pinhole mask (radius a) as shown in normalized

coordinates in (9.1).

h(v, v', w', w') = -[ 4
2 J1 ( (v - v') 2 + (W - w)2)

(v - v')2 + (w - U/)2
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Figure 9-1: Confocal microscope tradeoff. (a) Shift Invariance vs. (b) Depth Resolu-

tion. Ar and Az are normalized to the numerical aperture of the system
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The depth resolution data of Figure 9-1 were generated using the integrated in-

tensity derivation of [29, sec. 8.8.3]. The resolution Az was defined as the full width

at half maximum (FWHM) point. This is slightly pessimistic because it does not

account for the improved signal-to-noise ratio at large pinhole diameters. With this

caveat, the loss of shift invariance as depth selectivity improves is apparent from

Figure 9-1.

9.2 The Binocular System

Now consider the binocular system of Figure 9-2. The origin for the object is selected

to be location where the the focal planes of the two cameras intersect, and the optical

axis for the system (i) is taken to be (z^1 + i 2 )/2. The lateral axes are chosen such

that i lies in the same plane as 1 and 2̂ and is perpendicular to 2. y = 2 x y.
This system is actually perfectly shift invariant in the k direction. The shift

invariance in the R direction, however, has been destroyed. As the object moves in

the R direction, it moves out of the focal plane of each camera, thereby widening the

point spread function (PSF) compared to that of the impulse response. In addition,

as the object shifts on-axis, it moves closer to one camera and farther from the other.

As the object moves closer to a camera, the magnification of the object by the lens
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Figure 9-2: The Binocular Sys- Figure 9-3: How the PSF shifts in

tem. the Binocular System.

also increases, thus increasing the displacement beyond what would be expected in

a shift invariant system. The opposite is true when the object moves away from the

camera. Both of these effects can be seen in Figure 9-3.

The corresponding shift invariance metrics for each detector, Si and S2 , are cal-

culated individually, and S for the entire system is Si + S2. In addition, since the

system is symmetric, S1 = S2 , making S = 2S1. There are now two detectors in the

system, so S has an upper bound of 4. This is twice the upper bound for a single

detector. Because we ignore the finite field of view of the lenses in this example, S

converges to this upper bound. A plot of S for a line segment that lies in the xk-plane

and is perpendicular to the 2 axis is shown in Figure 9-4. We ignore the y dimension

because the system is shift invariant in this direction. A plot of Ar vs. 9 (the angle

between the two cameras) is show in Figure 9-5. The derivation of the equations used

to generate this figure is given in the Appendix.

There are two possible metrics for calculating the depth resolution. One takes

into account the pixel size of the detector. With this metric, the depth is calculated

by triangulation. Using simple geometry, we can see from Figure 9-2 that tan(6/2) =

Ax/Az and Ax = MAx', where M is the magnification of the lens. The resolution

limit is when the pixel size (p) is equal to Ax'. Hence
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Figure 9-5: Binocular system
tradeoff. (a)Shift Invariance vs.
(b) Depth Resolution for triangu-
lation and (c) Depth Resolution
for PSF multiplication.

1/Az = M tan(0/2)/p. (9.2)

The other possible metric for calculating 1/Az is to compute the FWHM in the

i direction for the 3D PSF of the system. The PSF is generated by taking the PSF

of one camera and point multiplying it by the PSF of the second camera. Figure 9-6

shows this point multiplication graphically. This second depth resolution metric is

interesting because it does not depend on pixel size and is limited only by noise. Plots

of both 1/Az metrics are shown in Figure 9-5. Notice that when 0 = 0, the optical

axes of the two cameras are parallel and the system performs no differently than if

there was a single camera. It is perfectly shift invariant and has no depth resolution.

As 0 increases, the system becomes less shift invariant, while the depth resolution

improves.

With the addition of more cameras, we point multiply by an additional camera

PSF to get the system PSF and so depth resolution improves even more. This agrees

with the intuition resolution should improve as the number of detectors increases.

The addition of extra cameras also increases S, which is now E> Si, causing Ar to

decrease.
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Figure 9-6: Point Spread Function Multiplication.

9.3 The Shear Interferometer

Now consider the shear interferometer of Figure 9-7 where an ideal point source creates

a sinusoidal pattern on the detector. The intensity seen at the detector is given by

I(x, z) = 1 + cos 7rb (2(x ,O) h (9.3)
1 Az.

where b is the shear introduced by a Bates interferometer or using a birefringent slab

crystal [301. From (9.3), we see that a oc 1/z where a is the spatial frequency of the

intensity at the output plane. Thus, as the point source moves away from the detector,

the spatial frequency of the pattern on the detector decreases. Since the depth can

be determined directly from a by using (9.3), the depth resolution can be calculated

by just differentiating I(x, z), which yields Aa/Az oc 1/z 2 and by rearranging the

equation, we get 1/Az Oc 1/(Aaz2 ). According to the Nyquist criterion, 1/Az oc pz 2

the minimum pixel size p = 2/Aa.

Also from (9.3), we see that the phase of the pattern varies linearly with x and

so the system is perfectly shift invariant. When the point source is close to the

birefringent material, we have a shift invariant system with very high depth resolution

and at first there appears to be no trade off at all. In this case, however, we have
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Figure 9-7: The Shear Interferometer

a new tradeoff between lateral ambiguity and depth resolution. When an object is

close to the detector and f is high, there are a large number of positions in the lateral

direction at which the object could be located, but when the object is far from the

detector and f is low, there are only a few. This tradeoff is shown in Figure 9-8.
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Figure 9-8: Ambiguity of the shear interferometer. In both pictures, the solid disk

represents the actual position of the point source and the unfilled disks show other

possible object locations that would have yielded identical patterns. A thin slab gives

a low frequency interference pattern with poor depth resolution but has low lateral

ambiguity, while a thick slab gives a high frequency interference pattern but has high

lateral ambiguity
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Chapter 10

Discussion and Conclusions

The competition among shift invariance and depth resolution is clear from the data of

Figures 9-1 and 9-5 . It is also evident in many imaging systems that evolved in Na-

ture. For example, humans can tolerate limited depth selectivity in favor of relatively

large domain of shift invariance. This is because humans' cognitive capabilities can

compensate depth and shape perception from other cues, such as object size, shading,

texture and general knowlegde. We believe that similar exchanges can be applied to

the design of artificial "smart" imaging systems which trade aspects of their image

quality to maximize overall performance in cognitive tasks.

The fact that shift invariance and depth resolution are related suggests that there

is an underlying property that many of these imaging systems share. Consider two

Hopkins matrices. H1 is simply the identity matrix, I. H2 is H1 , but with its rows

randomly permuted, such that all the rows are still orthogonal linearly independent,

but the ones don't all fall along the diagonal. H1 and H 2 both have the same mutual

information, but H 1 is perfectly shift invariant while H 2 is highly shift variant. It

seems, then, that one could prove that in many imaging systems, a Hopkin's matrix

like H 2 cannot exist.
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Appendix

ZI<

We start with the Gaussian lens formula below, where f is the focal length and

so and si, are shown above.

M (1)
Si

1 1 1 (2)
--- -=-(2
SO Si f

If the object is shifted by a small amount, J, in the X^ direction, the image shifts

by +6,, sin(O/2), along the z1 axis and -J- sin(6/2) along the z 2̂ axis. For simplicity,

we will define 6z, = - sin(O/2). Modifying the Gaussian lens formula yields

1 1 1
-_ . (3)

S = so -6 (4)

s siC +6 (5)

M'- -s (6)
si

Using a Taylor series expansion and assuming so, si > 6,1, C, we have

1 6" 1 E 1
SO s2 Si si f

By subtracting (2) from (7),
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2
e = ozi.(8)

51

Solving for M' in terms of 64, so, and si, gives

Mso 6=- (9)si + M 26z 1

Using a Taylor series expansion and again assuming so, s, 6, c, we can simplify

M' to

, So ^ oz (se/s2)6z
M - 1  (10)

S1 SO s1

To simplify further, we introduce AM and A.

A - [+ ] (11)

AM = M'- M =A6, (12)

Now, if the system were perfectly shift invariant, a shift of 6, in the object plane

would result in a shift of M6, in the image, but in reality we see a shift of M'6z,

which equals M64, + A(6z, )2. Another way to express this property would be to say

that in a shift invariant system, if an object moved at a constant speed in the i

direction, it would appear to move at a constant speed in the observation plane, but

in a shift variant system, the object appears to accelerate. Moreover, the larger the

angle between the cameras, the faster the acceleration will occur and the more shift

variant the system. It should be noted that all these calculations for M' have been

done for the camera that object moves toward when shifting in the * direction. For

the other camera, M' = M - AM, and the object appears to decelerate rather than

accelerate.

To calculate an approximate value for S, we start with a line of width W that is

normal to 2 and lies in the Ri plane. Since the system is completely shift invariant in

the k direction, we have chosen to reduce S(x, y, x', y') to S(x, x') for simplicity. Using
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geometrical optics, we estimate that this object forms a line of length M'W cos(O/2)

on each camera. The response for this object is

h(x, x') = rect[M'(x)W cos(O/2) - AM(x)]. (13)

A more precise calculation would involve using a point source and accounting for

diffraction. S and Ar for this more complex system would exhibit the same qualitative

behavior as our simple example.
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