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ABSTRACT

A fundamental problem associated with mobile robots is planning and control
while moving at high speeds over rough, unstructured terrain. Given a desired path
through rough terrain, a robotic vehicle should be able to autonomously traverse the path
at maximum dynamically-feasible speeds. Wheel slip and ballistic motion should be
considered to attain the desired speeds, resulting in very complex dynamics. The robot
should also have the capacity to quickly detect and handle unforeseen situations through
intelligent actions. At high speeds, this ability is crucial because of limited sensor
information. Uncertainty in vehicle and terrain properties makes it difficult to implement
safe, intelligent control actions.

An important part of control and planning is model-based analysis. Model-based
analysis enables the prediction of robot performance. This thesis develops an approach to
modeling high speed mobile robots in rough terrain, as well as an analysis of sensitivity
to several dynamic parameters. The modeling approach considers complex dynamics and
system uncertainty to develop a comprehensive description of mobile robot motion in
rough terrain.

The first part of the thesis develops a high-order system model of mobile robots
operating in rough terrain. The model is implemented in simulation and validated with
an experimental system. The validation methodology and results are discussed.

The second part of this thesis presents an initial simulation-based investigation of
the system parameter sensitivity and model prediction uncertainty of high-speed motion
of mobile robots operating in rough terrain. The analysis methods and results are
discussed.

Thesis Supervisor: Steven Dubowsky
Title: Professor of Mechanical Engineering
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CHAPTER

1
INTRODUCTION

1.1 Introduction

This thesis presents an approach to modeling and analysis of high-speed mobile

robots operating in rough terrain. The work serves as a foundation for developing

autonomous control and planning algorithms for these vehicles. It embodies the author's

contribution to an ongoing research program at the MIT Field and Space Robotics

Laboratory. The program is jointly funded by the Defense Advanced Research Projects

Agency (DARPA) and the US Army Tank-Automotive and Armaments Command

(TACOM). The DARPA focus is to sponsor "revolutionary, high-payoff research that

bridges the gap between fundamental discoveries and their military use" [DARPA, 2003].

TACOM's focus is to provide "ground combat, automotive, marine, and armaments

technologies and systems, and to generate, provide and sustain mobility, lethality, and

survivability" [TACOM, 2003]. The MIT research program fits squarely within both

frameworks, contributing to the fundamental problems of modeling, control, and

planning, and to the practical problem of developing an autonomous military ground

vehicle system.

A fundamental problem associated with mobile robots is planning and control

while moving at high speeds over rough, unstructured terrain (see Figure 1.1). Given a

desired path through rough terrain, a robotic vehicle should be able to autonomously

traverse the path at maximum dynamically-feasible speeds. Wheel slip and ballistic
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motion should be considered to attain the desired speeds, resulting in complex dynamics.

One control method might be to quickly detect and handle unforeseen situations through

an intelligent reaction scheme. At high speeds, this ability is crucial because of limited

sensor information. Uncertainty in vehicle and terrain properties makes it difficult to

implement safe, intelligent reactive behaviors

A physics-based control and planning strategy would consider information

uncertainty, and slip and ballistic motion at high speeds. In a physics-based strategy, the

system has knowledge of its dynamics through a physics-based model. Vehicle and

terrain models would be used to predict robot motion offline, and the results would be

employed in a fast, online reactive control scheme.

ftxx'2..

Figure 1.1. Image of a high-speed rough-terrain mobile robot

Model-based analysis could play an important role in control and planning. It

enables the prediction of robot performance. The goal of this thesis is to present an

approach to modeling high speed mobile robots in rough terrain, as well as an analysis of

sensitivity to several dynamic parameters. The modeling approach considers complex

dynamics and system uncertainty to develop a comprehensive description of mobile robot

motion in rough terrain.
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1.2 Motivation

Mobile robots can perform difficult tasks in hostile environments, and are

therefore becoming increasingly important in a variety of fields. Exploration, mining,

forestry, and hazardous site inspection are a few applications of mobile robot systems

[Cunningham, et al, 1998; Golombek, 1998; Gonthier, et al, 1998; Osborn, 1989]. In

addition to civilian applications, mobile robots, or autonomous ground vehicles (AGVs),

are becoming extremely important in military applications [Eicker, 2001; Gerhart, et al,

1999]. Potential missions include logistics, surveillance, fire missions, and soldier

assistance. In order to operate effectively in the field, mobile robots must be able to

traverse rough unstructured terrain (see Figure 1.2).

Figure 1.2. Typical military AGV mission environment (Eicker, 2001).

Current autonomous ground vehicle technology is limited to relatively slow

speeds on rough terrain. Rough terrain is defined here as containing spatial frequencies

less than the wheelbase of the vehicle. On the other hand, smooth terrain has spatial

frequencies much greater than the wheelbase of the vehicle. Autonomous high speed

motion has been achieved on hard, smooth surfaces such as pavement [Peng, et al, 1993].

Fully-autonomous motion at moderate speeds on moderately rough terrain was
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demonstrated by the Demo III vehicle, which is depicted in Figure 1.3 [Shoemaker, et al,

2000].

Figure 1.3. Testing of the Demo III UGV (National Institute of Standards and Technology, 2003).

In many military missions, it would be desirable for the mobile robot to move

quickly through rough terrain [Gerhart, et al, 1999]. High speed motion would reduce the

chance of detection and targeting during missions, and would decrease overall mission

time. In addition, it could allow the mobile robot to travel longer distances, which is also

advantageous for exploration missions. Algorithms for autonomous planning and control

would free users from the burden of supervisory control, allowing them to focus on more

important or difficult tasks.

Substantial work has been done in the control of high speed robotic vehicles on

nearly flat terrain [Ben Amar, 1997; Desantis, 1995; Peng, et al, 1993; Pham, et al, 1996].

However, the modeling and control simplifications made are not valid in rough terrain.

Researchers have also investigated control of mobile robots in rough terrain at moderate
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speeds [Kelly, et al, 1997; Langer, et al, 1994; Olin, et al 1991]. This body of work

assumes that no wheel slip and no loss of ground contact, which is not true in general at

high speeds. In summary, few researchers have studied the modeling, analysis, and

control of high-speed, rough-terrain robotic vehicles.

The direction taken in this research program is to develop robust, physics-based

control and planning algorithms for real-time navigation of high-speed mobile robots

operating in rough terrain. These algorithms would accommodate wheel slip and ballistic

motion of the mobile robot. At high speeds, the performance of rough-terrain mobile

robots is heavily dependent on the system dynamics and terrain interactions. The

algorithms will therefore consider vehicle and terrain models. In addition, it will

consider model uncertainty, and the uncertainty in sensory information. A schematic of a

multi-layered approach is presented in Figure 1.4.
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- General knowledge
- General knowledge of goal location

of goal location - Map
- Map i

-Long range sensor info Long Range
---- --- --- Sensor-Based

Motion Planning ,

- Safe, fast trajectory
out to 100 m (approx.)

- Sparse, uncertain"
sensor data

Short Range
Neactive Behavi

- UGV Desired trajectory - Safe trajectory
- UGV Actual position out to 10 m (approx.)
- UGV Actual heading"
- UGV Actual velocity

Dynamnics-Basd
Vehicle Control,

- UGV Throttle command
- UGV Steering command
- UGV Braking commands

Figure 1.4. Schematic of the multi-layered control architecture (Spenko, 2003).

The control scheme is composed of three layers: 1) a high-level, long range motion

planning layer, 2) a mid-level reactive behavior layer, 3) and a low level vehicle control

layer. The three layers work together to form a unified motion planning and control

scheme for high speed mobile robot navigation through rough terrain [Spenko, 2003].

The high-level motion planning layer plans a safe and dynamically feasible high-

speed path toward a destination point through a given terrain. Inputs to this layer include

a goal location, vehicle and terrain model, digital elevation map, and long-range sensor

information. The output from this layer is a safe, dynamically feasible, high-speed

trajectory "band." The variable trajectory band thickness will be defined by the model

and sensor uncertainty. Therefore, it is desirable to quantify the uncertainty in system

response as a function of uncertainty in the system model. This thesis addresses this

issue.
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A mid-level reactive control layer will quickly choose an emergency maneuver, or

reactive behavior, to avoid short-range obstacles and circumstances not accounted for in

high-level motion planning [lagnemma, et al, 2002]. The primary goal of this layer is to

maintain safety of the mobile robot despite terrain, vehicle, and motion uncertainty. The

input to this layer is sparse, short-range sensor data. A safe, short-range trajectory is the

output from this control layer. Reactive behavior selection algorithms will be developed

from extensive off-line modeling techniques. These techniques are the focus of this

thesis. The vehicle model, including uncertainty, will be used to generate safe and

feasible reactive behaviors.

Path-following control is implemented in the lowest-level layer of the control

scheme. The purpose of this layer is to control the robot motion along the desired

trajectory, as prescribed by the two higher layers. Inputs of this layer include the vehicle

state and the current desired trajectory. The layer outputs commands to the robot's

actuators, such as the steering and throttle servos. The control techniques used in this

layer will incorporate a system model, albeit simplified.

This thesis focuses on modeling. The work forms the basis for development of

robust control and planning algorithms described above. The modeling approach

considers complex dynamics, tire interactions, slip, and ballistic motion, and system

uncertainty. In addition to model analysis for control and planning, it would be desirable

to quantify the sensitivity of the system responses to errors in parameter estimates. A

ranking of the sensitivity of dynamic model parameters would enable a user to

appropriately focus modeling effort, so as to minimize expected uncertainty in the

predicted system response. Such results would be useful in studying the modeling or

model-based control of vehicles operating at high speeds in rough terrain.

1.3 Background and Literature Review

Dynamic vehicle modeling has been studied for many years. Varying levels of

modeling detail have been examined, from simple mass-spring-damper systems to high

degree-of-freedom passenger automobiles on nearly smooth roads with complex tire-

terrain interactions. However, complex vehicle models incorporating uneven terrain, out

of plane and ballistic motion, and wheel slip have not been examined. It has been shown
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that highly-detailed models can accurately predict the dynamics of mobile robots

operating at high speeds in rough terrain [lagnemma, et al, 2002], and improve the

performance of AGV navigation systems [Julier, et al, 2003]. The following sections

provide a review of the literature relevant to the modeling of ground vehicles, tire-terrain

interaction, and terrain geometry.

1.3.1 Wheeled-Vehicle Models

Several dynamic lumped-parameter vehicle models have been studied. The most

basic and earliest model is known as the quarter-car model, a schematic of which is

presented in Figure 1.5 [Gillespie, 1992].

Vehicle Mass

Ks BS Suspension

Tire Mass

Kt Bt Tire Properties

Road

Figure 1.5. Schematic of the quarter-car model.

The planar, two-degree-of-freedom (DOF) quarter-car model represents the vehicle

chassis as a sprung mass affixed to a spring-damper representing the suspension of all

four wheels. The wheels are lumped together as a single mass sprung by the cumulative

tire stiffness and damping. Both body and tire masses are constrained to move vertically.

Ground forces due to tire-terrain interactions are neglected and replaced by kinematic

rolling, and the terrain geometry is modeled as a vertical displacement input to the

system. This model grossly approximates the vertical dynamics of a four-wheeled

vehicle, neglecting any in-plane angular motion of the vehicle and all out-of-plane

motion. This model has been recently used for developing active suspension control

systems [Chalasani, 1986; Fischer, et al, 2000; Gordon, et al, 1998; Mucka, 2000;
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Sloyom, et al, 2002]. An extension of the simple model has been implemented for slow-

speed control of mobile robotic vehicles operating in a flat, obstacle-laden terrain

[Talukder, et al, 2002]. In that work, the vehicle-suspension model is combined with a

compliant obstacle model to yield an estimate of the maximum safe traversable velocity.

An advantage of the quarter-car model is that a closed form solution exists and is well

documented [Shabana, 1996].

A more complex four DOF model has been developed that describes both vertical

and angular in-plane motion. Known as the half-car model, it consists of a vehicle body

mass sprung by independent suspension and tire sets. The front and rear suspension and

tire properties are lumped separately. Figure 1.6 shows a schematic diagram of the

model.

a MV

K bK" Br
K Bf

K B,
zIT

Figure 1.6. Schematic of the half-car model.

The half-car model has been used recently in active suspensions system design and

analysis, with the ability to study heave and pitch of the vehicle [Campos, et al, 1999].

Restrictions of this model include the assumption of in-plane motion, small angle

approximations, and kinematic rolling with no slip. A more advanced, nine DOF half-car

model was developed for planar motion of mobile robots in uneven terrain that

incorporates tire-terrain friction forces [Rzepniewski, 2001]. Used for motion planning

of high speed rough terrain vehicles, the model ignores out-of-plane motion and assumes

point contact and simple tractive friction forces. Its utility in predicting general motion

of high speed mobile robots with complex tire-terrain interactions is therefore limited.
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The progression from half-car to a full-car vehicle model is natural, yet complex.

Full-car models limited to small angle approximations that assume kinematic wheel

rolling have been developed for the analysis and control of active suspensions [Chalasani,

1986; Elbeheiry, et al, 1996; and Ikenaga, et al, 2000]. The kinematic rolling constraint

limits the vehicle motion to a straight path, since lateral ground forces are required for

steering. A schematic of the full-car model is presented in Figure 1.7.

Z b

z

K BZi

Figure 1.7. Schematic of the full-car model.

Although this is the most sophisticated vehicle model to date, it suffers in generality from

the small angle approximation and kinematic rolling constraints. The small angle

assumption is generally invalid for high-speed motion of mobile robots on uneven

surfaces. In addition, wheel slip commonly occurs during high-speed motion, warranting

the use of tire-terrain interaction models. Finally, none of these models allow ballistic

motion.

Many researchers have used simplified models to study vehicle turning, the most

common of which is the bicycle model [Gillespie, 1992]. The schematic of this model is

shown in Figure 1.8.
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b

c

Figure 1.8. Schematic of the bicycle cornering model.

For large turn radii, the difference in steer angle of the front wheels is negligible, and thus

the two front wheels are represented by one wheel. The same assumption is made for the

rear wheels. In this model, wheel slip is ignored. This model assumes smooth surfaces,

and does not consider wheel or suspension compliancy, vertical motion, or pitch and roll

dynamics. The vehicle can be considered a point mass moving on a semi-planar surface

subject to kinematic constraints.

Although simple, the bicycle model has been used to develop motion planning

algorithms for autonomous ground vehicles [Shiller, et al, 1991]. Lateral vehicle control

schemes were developed for smooth terrain using this model [Peng, et al, 1993, Pham, et

al 1996]. It has also been implemented successfully in large-scale outdoor vehicles

operating on smooth surfaces [Durrant-Whyte, 1996]. An extension of the bicycle model

with slip and tire forces was used for controlling handling stability directly from the tire

tractive forces [Shino, et al, 2000]. A similar bicycle model that considers slip as an

estimated state has been adopted for modeling the motion of mining equipment

[Scheding, et al, 1999]. In addition to modeling and control, researchers have recently

studied the role of the bicycle model and its impact on performance of autonomous
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navigation systems [Julier, et al, 2003]. The results indicate that higher-order models can

lead to substantial improvements in navigation performance.

It should be noted that all the models presented thus far, with the exceptions of

[Rzepniewski, 2001], assume continuous ground contact of the tires. Hard turning and

ballistic motion at high speeds during obstacle traversal are not captured by these models.

A general model that considers motion in three dimensions, as well as suspension, slip,

tire forces, and ballistic motion is necessary to adequately represent the dynamics of

high-speed motion of mobile robots in rough terrain.

1.3.2 Tire-Terrain Interaction Models

Tire-ground interaction models can be grouped into four categories: a) rigid

ground and deformable tire, b) deformable ground and rigid tire, c) deformable ground

and deformable tire, and d) rigid ground and rigid tire. Rigid ground - deformable tire

models have been studied for several years, originally for passenger automobiles and

trucks operating on paved roads. Originally introduced in 1987, the Magic Formula tire

model (ME-Tire) is one of the most widely used of these formulations [Bakker, et al,

1987]. This early version used trigonometric functions to describe slip conditions. For a

recent version of the MF-tire model, refer to [Pacejka, 1996]. Two revised versions of

the MF-tire were also introduced. One version, called the MF-MCTire, was developed to

handle large wheel camber angles in maneuvers such as rollover [De Vries, 1997].

Another form known as the SWIFT-Tire Model combines the MF-tire slip model with a

rigid ring model of the wheel, handling tire excitation frequencies up to 120 Hz [Maurice,

1999; Zegelaar, 1998].

In addition to rigid-terrain, compliant tire models, researchers have investigated

the interaction of rigid wheels in deformable terrain [Wong, et al, 1967]. This mode of

tire interaction is suitable for rigid-wheel mobile robots such as planetary rovers

operating in soft sand or soil. It would also be suited for high speed vehicles with

pneumatic tires that are firm relative to the soil. Depending on terrain conditions, a

model describing the dynamic interaction between compliant tires and rigid terrain or

compliant tires and compliant terrain would be most appropriate. The case selected for

this study
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1.3.3 Geometric Terrain Models

The control and planning algorithm proposed in Section 1.2 will need to make use

of a sparse digital elevation map of natural terrain. The sparse data is interpolated to

create a dense map suitable for use in the algorithm. Several methods for modeling

natural terrain have been proposed, the simplest of which uses smooth three-dimensional

B-spline patches [Mortenson, 1985]. This method is suitable for modeling smooth,

curved surfaces, such as grassy rolling hills. It has been implemented for dynamic

motion planning of autonomous ground vehicles [Shiller, et al, 1991].

Another technique for modeling naturally occurring terrain employs fractal

geometry. Fractal techniques were selected to model natural-type terrain in this work

because they apply to a range of terrain types. Fractals were originally proposed as a

family of mathematical functions for describing natural phenomena such as coastlines

[Mandelbrot, 1977]. An artificial coastline with fractal geometry is shown in Figure 1.9.

Figure 1.9. Self-similarity of an artificial fractal coastline (Voss, 1989).

Computer graphics researchers have applied fractal theory to generate natural

objects such as trees, mountain ranges, and cloudy skies, with high levels of realism

[Voss, 1985]. More recently, it has been shown that fractal modeling techniques could

apply to a wide range of natural terrain profiles [Ohmiya, 1990]. In parallel, several

researchers have developed methods for estimating the fractal dimension of natural

terrain for reconstructive purposes [Arakawa, et al, 1991 and 1993; Keller, et al, 1987;
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Pentland, 1984]. Natural terrain was then reconstructed from sparse data using fractal

dimension estimates. For a review of several reconstruction methods, see [Arakawa, et

al, 1993].

Researchers have also used wavelets to describe natural terrain for motion

planning algorithms, but no evidence exists to suggest this method is more accurate than

fractal methods [Pai, et al 1998]. In addition, stochastic techniques have been recently

used represent three-dimensional unstructured surfaces and environments considering

sensor uncertainty [Leal, et al, 2002].

1.4 Research Overview

The proposed planning and control algorithms for high-speed mobile robots

operating in rough terrain would use detailed dynamic models of the vehicle, terrain, and

tire-ground interactions. Although a large body of literature exists for various aspects of

the modeling problem, a general model for high-speed motion of vehicles operating in

rough terrain has not been studied. The goal of this research is to develop suitable,

experimentally-validated models for such a dynamic system, and to investigate model

sensitivity and the effect of uncertainty on high-speed motion prediction. It is desired to

show that a high-speed mobile robot system can be modeled with sufficient accuracy.

The sensitivity study could direct modelers and designers to efficiently place modeling

effort in mobile robot systems. This study is limited to robotic vehicles with four

wheels. The model is implemented in simulation using the ADAMS software package.

This work seeks to form a fundamental basis for developing model-based control and

planning schemes for high-speed mobile robots operating in rough terrain.

1.5 Thesis Outline

This thesis is divided into three main chapters: a description of a general high-

speed mobile robot and terrain model (Chapter 2), experimental model validation

(Chapter 3), and a sensitivity and uncertainty analysis (Chapter 4). Chapter 5 presents

conclusions and suggestions for future work. The appendices present analytical and

experimental details.
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CHAPTER

2
HIGH SPEED MOBILE ROBOT MODEL

2.1 Introduction

A basic challenge in developing algorithms for planning and control of high speed

mobile robots operating in rough terrain is to adequately model the system. The

complexity of typical high-speed mobile robotic ground vehicles, and their interaction

with natural, unstructured terrain, makes modeling of these systems inherently difficult.

In addition, the system dynamics are fundamentally different than that of a mobile robot

operating at slow speeds on rough terrain, which can often be solved in closed form. In

general, the equations of motion of this problem are complex and nonlinear, and the

systems cannot be solved analytically.

This chapter describes vehicle and terrain models developed for prediction and

analysis of high-speed mobile robots operating in rough terrain. A high-order lumped-

parameter vehicle model is presented that captures the dynamics of the system, and a tire-

terrain interaction model for hard surfaces and compliant tires is described. In addition, a

method for modeling natural terrain from sparse terrain data is discussed. These models

can then be implemented in simulation for the purposes of motion prediction and

analysis.
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2.2 High Speed Mobile Robot Dynamic Model
A fifteen degree-of-freedom (DOF) model of a high-speed rough-terrain mobile

robot was developed. In order to capture the dynamics of general high-speed motion in
rough terrain, the high-order model considers vehicle roll, pitch, and yaw, suspension
dynamics, tire dynamics, and ground forces. The model will be used for predicting and
evaluating mobile robot dynamics. This model is a lumped parameter representation of
the robot dynamics, including mass and inertial properties of the robot body and wheels,
and compliance and damping of the suspension and tires. A schematic of the lumped-
parameter model is presented in Figure 2.1 and Figure 2.2.
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Figure 2.1. Schematic of the high-speed mobile-robot model (side view).

Chapter 2. High Speed Mobile Robot Model

V.0-

YW& Y'jf

F-Irb FWjf

25



Z

Y

FF~j 1 FW'ffFW, Fwr

Figure 2.2. Schematic of the high-speed mobile-robot model (rear view).

Three translational and three rotational degrees-of-freedom are assigned to the

robot body, which is a lumped mass at the point CGb. The lumped body mass properties

include all suspension components. The robot's wheels are mounted to the body through

independent spring-damper suspensions. This is a general suspension representation.

Unified or linked suspension assemblies can be modeled by adding appropriate kinematic

constraints. Suspension spring and damper elements are assumed to be nonlinear

functions of displacement and velocity, respectively.

Each of the four wheels has a rotational degree-of-freedom for rolling, and a

translational degree-of-freedom for motion relative to the body along the suspension

travel direction. Tire compliance and damping are modeled as a parallel nonlinear

spring-damper acting normal to the local ground contact patch. Rolling resistance of the

tires is neglected for simplicity. Tractive and braking ground forces generated by the tire

are modeled using the Magic Formula tire model, as explained in Section 2.3.1.
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The vehicle command inputs are the torque applied to the rear wheels, r and I,

and the steering angle of the front wheels, 0steer. Figure 2.1 shows the control inputs to

the model. Although commands are modeled independently for each wheel, it is often

the case in a real mobile robotic system to control torque to the rear wheels through a

differential with a motor or engine. Heading is often controlled by setting the steering

angle of the front wheels with a mechanism. The mechanism can kinematically constrain

the steering wheels to enable geometries such as Ackerman steering [Gillespie, 1992].

2.3 Rigid Terrain Model

Typical high-speed rough-terrain robotic systems have pneumatic tires and

operate on a wide range of surfaces. It is important to model both terrain geometry and

ground forces generated by terrain-tire interaction. Because of the wide scope of terrain

types, this thesis is limited to dry, hard terrain as in Figure 1.3. Fractal-based geometry

has been shown to accurately depict some natural terrains (see Chapter 1). Also, rigid-

terrain, flexible-tire models can represent the ground forces generated by such systems,

including the system presented in Section 3.2.1. Both of these model types are employed

in this work, as explained below.

2.3.1 Magic Formula Tire Model

The compliant tire, rigid-terrain interaction model used to compute ground forces

in this work was first introduced in 1987 and is known as the Magic Formula Tire Model

[Bakker, et al, 1987]. Several versions of this model have appeared over the years, a

recent version of which is used here [Pacejka, 1996]. The Magic Formula (ME Tire)

model was chosen for its accuracy and its capacity to handle zero and near-zero angular

wheel velocities. Although the MF Tire was implemented here, any appropriate tire

force model can be used.

The Magic Formula model computes the forces exerted on the tire by the ground

as a function of the tire's mechanical properties, friction at the tire-road interface, road

structure, and relative motion between the tire and the road, or tire slip. The MF Tire

model computes the steady-state ground forces acting on the tire using semi-empirical
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mathematical formulas. The tire forces (Fl, Fy) and moments (Ms, My, M,) due to ground

interaction are computed using the longitudinal and lateral slip (K, a), wheel camber (y),

and vertical tire force (F,) as inputs. A block diagram of the model inputs and outputs is

shown in Figure 2.3.

Input Output

KMX

a Magic Formula MY
Tire Model -- Mz

Fz Fx
Fy

Figure 2.3. Block diagram of the Magic Formula tire model.

The MF-Tire model can compute the steady state and the transient dynamics of the tire

up to 8 Hz. For the purposes of this work, the MF-tire tractive force parameters were

taken to be those of an automobile tire. See [Pacejka, 1996] for more information

regarding this tire model. The vertical stiffness and damping of the tires is modeled as a

linear spring-damper.

2.3.2 Modeling Rough Terrain Geometry

In this work, a technique called the midpoint displacement method (MPD) is used

to model the geometry of natural terrain over a regular grid. For details of this method,

see [Mandelbrot, 1977]. Fractal-based terrain models interpolate between sparse data

points using fractal geometry [Arakawa, et al, 1993]. The key feature of methods such as

the MPD is that fractals are self similar at any length scale, and thus the grid spacing can

be made arbitrarily small while preserving the basic geometric structure for some

terrains. An example of terrain generated using the MPD technique is presented in

Figure 2.4.
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Figure 2.4. Example terrain using fractal MPD method.

The midpoint displacement method is a recursive interpolation technique. The

method begins with a square grid of points with prescribed heights, as shown in Figure

2.5.
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Figure 2.5. Initial midpoint displacement grid.

The height of the grid midpoint Zm is computed by averaging the corner points and

adding a scaled random number:

1
Zm =-( z, + Z2 + Z3 + Z4)+ Xn4

(2.1)

The midpoint heights on the edges of the original grid are computed by averaging the

four closest points, and adding random noise. During the first iteration, only the three
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closest points are used to compute the average. For example, the midpoint height

between points 1 and 2 is

(2.2)1
Z,12 =-(Z + Z 2 + Z, )+ X3

Figure 2.6 shows these two steps. New points are black, while previously computed

points are white.
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zl,13 4
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Figure 2.6. First iteration to compute the a) grid and b) segment midpoints.

A second iteration of this process would result in the grids shown in Figure 2.7.
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Figure 2.7. Second iteration to compute the a) grid and b) segment midpoints.

This process is iterated N times to generate a mesh with d/(N+J) grid spacing. The

random number X, added to the averaged heights is computed from a uniform

distribution centered at zero with range of

1
U = O<H<1 (2.3)

n2( n-)H

where n denotes the n't iteration. The range is scaled so that the added random noise

decreases with the grid spacing. The parameter H characterizes the randomness of the

geometry. For a three dimensional surface, the fractal dimension D is defined as

D=3-H (2.4)

The fractal dimension can be thought of as a measure of the roughness of the terrain. For

fractal dimensions approaching 2.0, the terrain does not exhibit fractal properties, while

terrain with a fractal dimension near 3.0 is extremely rough and physically unrealistic. A

fractal dimension of 2.5 represents unbiased Brownian motion of the midpoint

displacements. Figure 2.8 illustrates several artificial terrain profiles of different fractal

dimensions.

Chapter 2. High Speed Mobile Robot Model 31

Am /-11



(a) D = 2.1

(b) D = 2.3

(c) D =2.5

Figure 2.8. Images of flat terrains with varying fractal dimension D.

The terrains given in the above figure were generated in MATLAB with 289 grid points.

The heights of the corner points are prescribed to be zero, and the MPD method is used to

interpolate between the corner points. The terrains above are representations of what

would be described as a flat terrain patch given a sparse digital elevation map. The
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representations vary greatly with the fractal dimension. Methods have been proposed to

estimate the fractal dimension of natural terrain from sparse data (refer to Section 1.3.3).

If knowledge of the fractal dimension is available, dense representations of natural terrain

can be generated from sparse data using this method. This type of terrain geometry

model is used to represent rough terrain in predictive simulation of high speed maneuvers

for sensitivity and uncertainty analysis as explained in Chapter 4. In addition, primitive

geometric terrains are used for the validation simulations as explained in Chapter 3.

2.4 Model Simulation Environment

The complexity of the equations of motion for the models presented in this

chapter precludes a closed form or analytic solution. Thus, instead of writing the

equations of motion explicitly, the vehicle and terrain models were implemented in the

commercial dynamic analysis software package, ADAMS 12.0. ADAMS was originally

developed at the University of Michigan, and is now marketed by MSC Software. It

enables the dynamic simulation of complex mechanical systems by integrating sets of

nonlinear differential equations. The software has a graphical CAD-style interface for

creating system components such as bodies, links, springs, and dampers, and for applying

forces and constraints. Mass properties can be defined by part geometry and material, or

can be user-specified.

A key feature used extensively in this study is the ability to model complicated

vehicle systems and tire interactions in the ADAMS-Car software package. ADAMS-

Car, or A/Car, is an ADAMS interface designed specifically to model and simulate the

dynamics of wheeled vehicles. All computer simulations presented in this work were

developed and run in A/Car. In this interface, subsystems consisting of basic system

elements are used to modularize the vehicle model. These subsystems are then

assembled in a complete vehicle model consisting of a body, drive system, brake system,

suspensions, and wheels. Uneven terrains are defined as three-dimensional meshes for

the analyses presented in this work. Also, the software contains a library of tire models,

including the Magic Formula introduced in Section 2.3.1. Figure 2.9 and Figure 2.10
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show views of the A/Car simulation model of the physical system described in Section

3.2.1.

Figure 2.9. ADAMS high-speed model wire frame.
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Figure 2.10. View of the high-speed mobile robot model in ADAMS.

During a dynamic simulation, ADAMS solves the set of nonlinear differential and

algebraic equations defined by the model. The software provides several numerical

integration techniques, including both stiff and non-stiff integrators. A system is said to

be numerically stiff when it has widely separated eigenvalues, with the high frequency

eigenvalues being over damped. See [Wielenga, 1986] for a discussion of numerical

stiffness. Stiff integrators can handle numerically stiff problems, as opposed to non-stiff

integrators. Many mechanical systems can be considered numerically stiff, so it is

reasonable to select a stiff integrator for simulation of the model given above. The G-

Stiff Integrator was chosen for the simulations in this work because of its high-speed,

accuracy, and robust ability to handle a variety of analysis problems. For details on stiff

integrators, see [Brayton, et al, 1972; Brenan, et al, 1996; Gear, 1971; Van Bokhoven, et

al, 1975]. In all simulations, the integration time step was set to 0.005, and the allowable

displacement error was set to 0.01 mm.

For more detailed information about the ADAMS software package and its

capabilities refer to [ADAMS, 2002].
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2.5 Summary

This chapter presented a set of models to describe the motion of high-speed

mobile robots operating in rough terrain. The mechanical components of the mobile

robot are modeled with a fifteen-degree-of-freedom lumped-parameter model. A model

for computing the ground forces on the tires is presented. This model assumes a rigid

terrain and compliant tire. An established method for modeling the geometry of natural

terrain is also discussed. The method, called midpoint displacement, uses fractals to

interpolate sparse digital elevation data and preserve the geometry of natural terrain at all

length scales. Finally, the simulation environment used to implement the high-speed

mobile robot model is described.
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CHAPTER

3
EXPERIMENTAL VEHICLE MODEL

VALIDATION

3.1 Introduction

Physics-based models for high-speed mobile robots operating in rough terrain are

generally complex and of high order. Such models do not lend themselves to closed form

solutions. Instead, simulations are used to numerically solve the model. It is important to

experimentally validate these simulation models. A particularly suitable validation

method is to model a physical system, apply similar input commands in experiment and

simulation, and compare the dynamic response. In this way, one can measure accuracy

and develop confidence in the model.

This chapter discusses the experimental validation of the high-speed mobile robot

model introduced in Chapter 2. A small, high-speed, experimental mobile robot was built

for validation purposes and is described. Parameter identification was performed on the

system and the results are presented. The experimental setup used for capturing model

validation data is discussed. Simulations of the model validation experiments are

discussed, and the results are compared to experimental data.

3.2 Experimental System

The following sections discuss the physical mobile robot and the experimental

system and procedures for capturing model validation data for comparison with the

simulation model.
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3.2.1 High-Speed Tele-Operated Mobile Robot

A 1/10 scale, DC motor-driven mobile robot was built for model validation

experiments. The system was based on inexpensive, off-the-shelf components, including

chassis, suspension, drivetrain, and wheels. Figure 3.1 depicts the mobile robot.

Dat Recive

Ac & eaoplatnie

Figure 3.1. Picture of the high-speed tele-operated mobile robot.

The robot is tele-operated and has two control inputs: a rear-wheel drive input,

and a front wheel steering servo. The rear wheels are coupled through a differential, and

driven by an electric DC motor. The motor is controlled by an electric speed control that

responds to inputs from the radio transmitter. An Ackerman linkage couples the front

wheels to a steering control servo. The steering control is also commanded by the radio

transmitter. The transmitter fixes a desired servo angle, and the servo attains that

position.

The robot has a tunable, independent spring-damper suspension. Each of the rear

suspensions is a four-bar linkage, while the front suspensions are five-bar linkages. The

spring-dampers consist of coil-over springs and oil-bath dashpots. The mobile-robot also

has deformable rubber tires mounted on stiff, plastic rims. The vehicle chassis houses a

large quad D-size battery pack, electronic speed controller, radio signal receiver, three-

axis accelerometer, portable data recorder, and sensor battery pack. A frame was devised
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to mount the sensor equipment, and mounted to main vehicle chassis. In addition, a

tough, ABS plastic shell was built to house and protect the onboard electronics.

Experimental identification of the mobile robot's dynamic parameters was

performed for use as an input to the simulation model. The lumped parameters include

mass properties of the vehicle body and wheels, and stiffness and damping of the

suspension and tires. The suspension stiffness and damping are assumed to be nonlinear

functions, while the tire stiffness and damping are taken to be linear. See Appendix A for

further discussion about the identification methods used, and for a presentation of the

resulting data. Figure 3.2 shows the axis conventions and Table 3.1 summarizes the

physical parameters.

Vertical Z

Figure 3.2. Diagram of the mobile robot axis conventions.
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Table 3.1. Physical parameters of the high-speed, tele-operated mobile robot

Parameter Value Units

Mass 3.1 kg

Dimensions 0.30 x 0.30 m

Longitudinal Axis Moment of Inertia 0.0065 kg-m2

Transverse Axis Moment of Inertia 0.022 kg-m2

Vertical Axis Moment of Inertia 0.023 kg.m2

Wheel Radius, Width 0.061, 0.066 m

Wheel Axial Moment of Inertia 0.0004 kg-m2

Wheel Transverse Moment of Inertia 0.0003 kg-m2

Wheel Stiffness 6000 N/m

Wheel Damping 18 N-s/m

Suspension Stiffness 500 N/m

Suspension Damping 74. 1V2 + 41v N-s/m
(v is compression rate)

3.2.2 Validation Experiments

Experiments were conducted to validate the high-speed mobile robot simulation

models. In these experiments, the mobile robot discussed in the previous section was

commanded to traverse a positive obstacle while a portable data recorder logged

measurements from an onboard three-axis accelerometer. A positive obstacle is defined

as an object that protrudes above the surrounding terrain surface. Figure 3.3 presents a

diagram of the experimental system and procedure.
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Figure 3.3. Model validation experimental setup and procedure.

Ten experiments were completed at three different speeds for each obstacle (ramp and

impulse bump) to mitigate the effects of variation in control input. Thus, the total

number of experiments per obstacle is thirty.

The vehicle approach speed was set by maintaining a set control level. The

vehicle was driven on a flat surface for several meters so as to attain a steady-state

velocity prior to traversing the obstacle.

A digital video camera recorded the robot's motion to measure the approach

velocity. Markers were placed along the approach path at a measured distance in the

field-of-view of the camera. By measuring the video frame times that the vehicle passes

the final marker and contacts the obstacle, the approach speed is estimated by

d I~2 1\
Vapproach = t -t

obs marker

where d is the distance between the last marker and the obstacle, tobs is the time at the

obstacle, and tmarker is the time at the marker. The frame rate of the camera is 30 Hz. A

sample image from the digital camera showing the mobile robot traversing the ramp

obstacle is shown in Figure 3.4.
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Figure 3.4. Image of the tele-operated mobile robot traversing ramp obstacle.

The surface chosen for validation experiments was MIT's Astroturf practice field.

The turf is flat, and rigid relative to the mobile robot's tires, so it can easily be modeled in

simulation as a rigid, flat surface. Also, the friction coefficient between the tires and the

turf is sufficiently high to prevent wheel slip. Complex tire-terrain interaction models are

therefore unnecessary, simplifying the model parameter identification process. In

simulation, the friction coefficient was set sufficiently high to prevent wheel slip. Two

rigid, physical obstacles were constructed. The bump obstacle is made of wood, while

the ramp surface is made of fiber board with wooden supports.

A three-axis accelerometer was used in conjunction with a portable data logger to

record the dynamic response of the mobile robot during obstacle traversal. The

accelerometer is the Crossbow CXL04M3 three-axis model. The accelerometer specs are

given in Appendix A. Accelerometer output voltages were recorded with a Pace

Scientific XR440-M Pocket Logger. The pocket Logger is a small programmable flash

memory module that can simultaneously measure and store four channels of voltages at

prescribed intervals. Appendix A provides a summary of the pocket logger specifications.

3.3 Validation Methodology

The high-speed, rough-terrain mobile robot model presented in Chapter 2 has

been experimentally validated with a small experimental system described in Section 3.2.

The validation method consists of three phases: 1) execution of experiments to measure

the dynamic response of a high-speed mobile robot on simplified terrain; 2) computer

simulation of the mobile robot model executing the same motion in 1) on a modeled

terrain; and 3) comparison of the results. A diagram of this scheme is presented in Figure

3.5.

42Chapter 3. Experimental Vehicle Model Validation



Modelino

Physical Simulation
System Model

mmand
'-Iput

-veocity
eding

bhscal Suation

EieMent Fpement

Figure 3.5. Model validation block diagram.

In this method, the dynamic parameters of the physical system are identified

experimentally, and a model of the system (see Chapter 2) is created in simulation

software. Similar torque and steering commands are input into the experimental system

and simulation model. The dynamic motion of the system is recorded in both cases and

compared.

Flat terrain with simple geometric features was used for validation experiments,

since geometric terrains are easily modeled in simulation. This allows us to study the

accuracy of the dynamic system model irrespective of the terrain model. For this

analysis, two geometric obstacles were used - a ramp and impulse bump, shown in Figure

3.6. These terrain geometries were chosen to excite the in-plane pitch dynamics of the

vehicle, and for ease of implementation.
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Figure 3.6. Model validation experiment positive obstacle geometries.

In this analysis, the mobile robot is commanded to approach the obstacles at a

constant speed. In experiment, the tele-operated mobile robot is commanded a fixed

drive torque through the experiment by maintaining a set position of the control trigger

on the radio transmitter. The experimental obstacle approach velocity is measured and

used as the desired velocity for the simulation model. A simple proportional controller is

used to control the simulated robot's speed before and during positive obstacle traversal.

Linear accelerations in three axes are recorded for the duration of the experiment and

compared to simulation.

3.4 Computer Simulations

A simulation model of the mobile robot and terrains presented in Section 3.2 was

created using the ADAMS/Car software package (see Chapter 2). The positive-obstacle

validation experiments described in Section 3.2.2 were then simulated. Images of the

positive obstacle simulations are provided in Figure 3.7.
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Ramp Obstacle

Figure 3.7. Images of bump and ramp simulation experiments.

The obstacle and surface geometry were modeled using measurements of the

physical system. The simulated terrain was defined to be rigid relative to the tires, and

the friction coefficient between the tires and the terrain was set to P = 1.0. This high

value sufficiently constrained the tires to little or no slip, as is the case in the

experimental system. The Magic Formula tire model discussed in Section 2.3.1 was

used. See Appendix B for a list of the MF-Tire model parameters.

A proportional controller regulated the velocity of the simulated mobile robot.

The controller set the robot velocity equal to that measured during experiments. The

control law applies equal torque to both wheels, and is given as follows:

{K(Vdes-Vact ) T < 'nx (3.2)

where K is the proportional gain, Vdes and Vact are the desired and actual vehicle speeds,

respectively, and rma is the saturation limit. Torque is limited by the maximum output of

the mobile robot's electric motor. In the simulations, the vehicle starts from rest and

accelerates to a constant velocity before contacting the obstacle.
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The simulated vehicle maneuvers described above are defined using Driver

Control Files (DCF) in ADAMS/Car. Appendix C contains example of the DCF files

used in these simulations.

3.5 Results

The following sections present simulation and experiment data of the tele-

operated vehicle traversing both the bump and ramp obstacles at three different speeds.

Linear acceleration in three axes was recorded for each trial, and compared to

accelerations computed in simulation. In addition, visual data is presented from

experiment and simulation of the vehicle traversing a negative obstacle at various speeds.

Because the physical and numerical experiments in this chapter are effectively planar (i.e.

no out-of-plane dynamics were excited), only the accelerations in the plane are presented

and compared.

3.5.1 Negative Obstacle

In these experiments, the mobile robot was commanded to approach a negative

obstacle along a straight path at three different speeds. A negative obstacle is defined to

be a depression in the local terrain surface, such as a ditch. The vehicle was commanded

to traverse the obstacle at 1.4 m/s, 3.2 m/s, and 7.4 m/s. A simulation was then

performed at each of these speeds. Figure 3.8 shows a photo series of the experimental

and simulated robot traversing the obstacle at 7.4 m/s.
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t= 0.16 s

Figure 3.8. Photo series of the experimental and simulated vehicle traversing a negative obstacle,
V=7.4 m/s.

The experiment and simulation correspond well. At this speed, the experimental robot

successfully traversed the obstacle. The simulation correctly predicted the traversability

at this speed. Table 3.2 presents the traversability results at each speed for both

simulation and experiment.

Table 3.2. Negative obstacle traversability results.

Chapter 3. Experimental Vehicle Model Validation

Speed (m/s) Experiment Simulation

1.4 Success Success

3.2 Failure Failure

7.4 Success Success
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At the intermediate speed, the physical and simulated robots collide with the far edge of

the obstacle, and the traverse fails. The simulation model correctly predicted

traversability at each of the speeds. However, the model-based analysis was found to be

highly sensitive to the terrain model. This would suggest that modeling effort should

focus on an accurate representation of wheel-terrain interaction.

3.5.2 Impulse Bump Obstacle

In these experiments, the mobile robot was commanded to approach the bump

obstacle along a straight path ten times at three different speeds. A simulation was then

performed with the approach speed equal to the mean value of each set of the three

speeds. Table 3.3 summarizes the approach velocity data for experiment and simulation.

Table 3.3. Impulse bump experiment speeds.

Experiment

Trial

1

2

3

4

5

6

7

8

9

10

Low Speed

(m/s)

1.7

1.8

1.8

1.8

1.8

1.8

1.8

1.7

1.8

1.8

Mid Speed

(m/s)

2.7

3.0

2.6

3.0

3.0

2.9

2.6

3.0

3.0

2.9

High Speed

(m/s)

4.2

4.6

3.7

3.9

3.4

3.4

3.7

3.2

3.4

3.7

Experiment
1.8 2.9 3.7

Mean

Simulation 1.8 2.9 3.7
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For illustration, Figure 3.9 shows a comparison of the experimental and simulated

trajectories during bump traversal at an approach speed of 3.0 m/s.

I bump
t=0.0s

t =0.13 s

t =0.26 s

t =0.39 s

Figure 3.9. Impulse bump experiment and simulation image sequence; V = 3.0 m/s.

Acceleration data in two axes was compared for each experiment and simulation

trial. The longitudinal acceleration along the length of the vehicle, and the vertical

acceleration normal to the length of the vehicle (see Figure 3.2) are plotted for various

speeds in Figure 3.10, Figure 3.11, and Figure 3.12. All acceleration data are aligned so

that initial obstacle contact occurs at 0.5 seconds. The average experimental acceleration

at each time step is plotted with the simulated acceleration. The simulation approach

speed was set to the average of the ten experimental trials. The simulation data was

saturated to replicate experiment sensor saturation at 40 m/s2

Figure 3.10 shows the experimental and simulated acceleration for an average

approach speed of 1.8 m/s.
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Figure 3.10. Bump obstacle longitudinal and vertical acceleration; 1.8 m/s approach speed.

Deviations are apparent in the longitudinal acceleration at t = 0.65, 0.8 seconds. This is

due largely to the difference in velocity control schemes. Proportional control in

simulation attempts to counter the obstacle-induced deceleration by applying more torque

to the rear wheels, causing the vehicle to accelerate at two instances: after the front

wheels pass the obstacle (t = 0.65), and after the rear wheels pass the obstacle and regain

contact with the ground. The constant torque drive in the experimental system does not

exhibit this behavior. The experimental and simulated vertical acceleration data show

good correspondence over most of the maneuver. Aside from the controller-induced

differences, the simulated data follows the experimental data quite well.

Figure 3.11 shows the acceleration data for an approach velocity of 2.9 m/s.
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Figure 3.11. Bump obstacle longitudinal and vertical acceleration; 2.9 n/s approach speed.

As in the previous case, proportional control causes a large peak in the simulated

longitudinal acceleration at t = 0.8 seconds. The vertical acceleration data correlates

well, except for the large spike in simulation data at t = 0.6 seconds. This is due to the

averaging of temporally-spaced peaks. Accelerometer saturation occurs at about 40 m/s 2.

The simulation data was artificially saturated to replicate the experiment conditions. The

simulation and experiment acceleration data compare favorably in light of the

proportional control errors.

The acceleration data for the final approach velocity of 3.7 m/s is presented in

Figure 3.12. This is a very high speed with respect to the size of the vehicle.
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Longitudinal Acceleration

0.6 0.7 0.8
Time (sec)

0.9 1 1.1 1.2

Vertical Acceleration
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Time (sec)

Figure 3.12. Bump obstacle longitudinal and vertical acceleration; 3.7 n/s approach speed.

From the figure, it can be seen that the simulated acceleration data closely follows the

average experiment acceleration data. The relatively large longitudinal acceleration peak

in the simulated data at t = 0.8 seconds can be attributed to the proportional controller, as

in the previous cases. The large discrepancy in vertical acceleration peak heights at about

t = 0.57 seconds is due to averaging of temporally-spaced peaks over the experiment

trials. Overall, the simulation and experimental data compare very favorably at this

speed.
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3.5.3 Ramp Obstacle

In these experiments, the mobile robot was commanded to approach the ramp

obstacle along a straight path ten times at three different speeds. A simulation was then

performed with the approach speed equal to the mean value of each set of the three

speeds. Table 3.4 summarizes the approach velocity data for both experiment and

simulation.

Table 3.4. Ramp experiment speeds.

Experiment Low Speed Mid Speed High Speed

Trial (m/s) (m/s) (m/s)

1 2.0 2.9 3.7

2 2.6 3.0 3.4

3 3.0 3.0 3.7

4 2.7 2.7 3.4

5 2.7 2.9 3.4

6 2.4 2.9 3.7

7 2.3 2.5 3.2

8 2.3 2.9 3.4

9 2.2 2.6 3.4

10 2.2 2.9 3.4

Experiment 2.5 2.8 3.5
Mean

Simulation 2.5 2.8 3.5

For illustration, Figure 3.13 shows a comparison of the experimental and simulated

trajectories of the mobile robot during ramp traversal at approach speeds of 2.9 m/s, and

2.8 m/s, respectively.
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ramp

t=0.0 s

t 0.27 s

t=0.4 s

t =0.53 s

Figure 3.13. Images of ramp experiment and simulation image sequence; V= 3.0 m/s.

As in the previous section, acceleration data in two axes was captured for each

experiment and simulation trial. The longitudinal acceleration and the vertical

acceleration (see Figure 3.2) are plotted in Figure 3.14, Figure 3.15, and Figure 3.16.

This acceleration data is aligned so that initial obstacle contact occurs at 0.5 seconds.

The average experimental acceleration at each time step is plotted with the simulated

acceleration. The simulation approach speed was set to the average of the ten

experimental trials.

Figure 3.14 shows the experiment and simulation acceleration for an average

approach speed of 2.5 m/s.
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Figure 3.14. Ramp obstacle longitudinal and vertical acceleration; 2.5 m/s approach speed.

The data shows good correlation between simulation and experiment over most of the

maneuver. However, moderate peaks occur in the simulated data between 0.8 seconds

and 0.1 seconds that are not evident in the experiment data. At this slow approach speed,

the electric motor of the experimental system has a low power output, and therefore the

speed maintained during obstacle traversal varies significantly from one trial to the next.

Therefore, the experiment peaks from each trial are temporally spaced, and when

averaged, form a single broad peak. On the whole, the simulation data closely correlates

to the experimental data.

Figure 3.15 presents the simulated and experiment data for an approach velocity

of 2.8 m/s.
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Figure 3.15. Ramp obstacle longitudinal and vertical acceleration; 2.8 m/s approach speed.

Again, the simulation and experiment data correlate well over most of the maneuver at

this moderate speed. The simulated and experimental longitudinal acceleration vary

because of the differences in the velocity control schemes, as in the bump experiments.

Overall, the acceleration from simulation and experiment agree well at moderate speed.

Figure 3.16 shows the data for the high speed case, where the average approach

speed was measured to be 3.5 m/s.
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Figure 3.16. Ramp obstacle longitudinal and vertical acceleration; 3.5 n/s approach speed.

At high speed, the data suggests good agreement between simulation and experiment.

The large acceleration peak at 0.9 seconds in the simulated longitudinal acceleration is

again due to the proportional control scheme.

3.6 Summary and Conclusions

This chapter presented the methodology and results of a series of experiments and

simulations designed to validate a model of a high-speed mobile robot operating in rough

terrain. A small, tele-operated experimental vehicle was introduced and discussed. The

experimentally-determined model parameters were also presented. Simulation and
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experimental methodology were discussed, and resulting data from both experiment and

simulation were presented.

Good agreement was observed between the simulation model and the physical

system. This implies that model order is sufficient, and that important system dynamics

are captured. Discrepancies in the simulation and experiment data have been attributed to

disparity in the velocity control schemes and averaging of temporally-spaced peaks in the

experiment data. Overall, the results indicate that the simulation model accurately

predicts complex motion of high-speed mobile robots on uneven terrain if the system

parameters are known. Therefore, it is important to accurately determine system

parameters for modeling complex, high-order dynamic systems.

Chapter 3. Experimental Vehicle Model Validation 58



CHAPTER

4
SENSITIVITY AND UNCERTAINTY ANALYSIS

4.1 Introduction

The dynamics of high-speed mobile robots operating in rough terrain are complex

and inherently uncertain. Uncertainty arises from practical limits of physical

measurements, changing parameters, and unknown environment conditions. From a

practical perspective, it would be desirable to quantify the sensitivity of the robot

dynamic response to uncertainty in individual system parameters. The end user of a

physics-based control and planning algorithm (see Chapter 1) could use the sensitivity

results to shift modeling effort to the most sensitive system parameters.

The algorithms presented in Chapter 1 use off-line simulations to predict the

dynamics of mobile robots during high-speed maneuvers. Uncertainty in mobile robot

model parameters results in uncertainty in the predicted motion. It would be desirable to

quantify the relationship between parameter uncertainty and behavior uncertainty. This

could lead to the development of an algorithm that is robust to modeling uncertainty.

Knowledge of the prediction uncertainty would also enable a control and planning

algorithm to set performance bounds on the predicted motion, and adjust the trajectory

and control accordingly.

This chapter presents an initial simulation-based investigation of the system

parameter sensitivity and model prediction uncertainty of high-speed motion of mobile

robots operating in rough terrain. Two representative maneuvers were chosen for these
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studies: high-speed turning, and emergency braking. These maneuvers were chosen

because they are aggressive, dynamic behaviors that could be used in a high-speed

reactive control architecture to avoid unforeseen obstacles. The sensitivity of these

maneuvers to various system parameters is investigated using a statistical technique

developed for nonlinear models. The method is validated against a simplified analytical

model. Results are presented for the representative maneuvers. The relationship between

system parameter uncertainty and output response uncertainty is also studied for both the

braking and turning maneuvers.

4.2 Simulated Maneuvers

Mobile robot motion can be decomposed into combinations of a set of

fundamental maneuvers: turning, acceleration, and braking. In this composition, straight

motion is classified as a turn with infinite radius of curvature. When linked together,

these basic maneuvers can form an arbitrarily complex trajectory. It is desired to study

the sensitivity of these fundamental maneuvers. If the sensitivity of these fundamental

maneuvers can be understood, the analysis could be extended to more complex motions.

Two basic maneuvers were studied in this work. These are emergency braking

and constant-speed, constant radius turning. Emergency braking was chosen because of

its importance as an emergency maneuver. It represents an aggressive, dynamic,

reactive-type behavior that would be employed in high-speed mobile robot control and

planning. Turning is also fundamental to mobile robot motion on rough terrain. In the

analysis presented here, the high-speed turn is studied as an open-loop maneuver, similar

to a reactive "hard turn" for avoiding a short-range obstacle. The maneuvers are

simulated on rough, level terrain generated using the fractal techniques described in

Section 2.3.2. A more thorough description of these maneuvers is presented below.

4.2.1 Emergency Braking

Emergency braking, or skid stopping, would be used to bring the mobile robot to

a sudden stop on rough terrain. This maneuver might be executed if a robot cannot

sufficiently re-plan and execute a path to avoid an obstacle. This is a very important

maneuver necessary to insure the safety of the vehicle. The robot must be able to safely
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stop within range of the obstacle. Due to system and environment uncertainty, the actual

stopping distance would deviate from the desired stopping distance. Therefore the

sensitivity and uncertainty of stopping distance to system parameters is studied. Figure

4.1 presents a schematic of the behavior.

V

d Obstacle
VI

Figure 4.1. Schematic of the emergency braking simulation.

The maneuver consists of applying a braking force to the rear wheels such that

they lock up and the robot skids. The friction force generated by the skidding tires slows

the vehicle to a stop. In simulation, this is implemented by using a proportional

controller to set the angular velocity of the rear wheels to zero throughout the maneuver.

The vehicle begins the maneuver with an initial velocity Vi. The braking torque is

immediately applied, which causes the simulated robot to skid to a stop. The stopping

distance is recorded. Typical ADAMS run time for this model on a Pentium 111 1000

MHz machine with 512 Mb RAM is about 30 seconds.

4.2.2 Constant-Speed Turning

Constant-speed turning is a fundamental maneuver in high-speed motion on

uneven terrain. Trajectory tracking algorithms often employ constant-speed turning

under closed-loop control. In a reactive behavior algorithm, a constant-speed turn would

be used to quickly avoid a short-range obstacle. See Figure 4.2 for a schematic of this

maneuver. On a smooth surface with perfect knowledge of the system parameters, the

control command could be applied to result in a prescribed constant-radius turn path.
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Due to system and environment uncertainty, the actual path would deviate from the

desired path. Therefore, the sensitivity and uncertainty of turning performance to system

needs to be investigated.

Actual Path

Figure 4.2. Schematic of the high-speed turn simulation.

The high-speed turn is executed by rotating the robot's front wheels while

maintaining initial velocity Vi with a proportional controller. The steering angle 0 of the

front wheels is stepped to the max angle 0,.a for fixed time. The steering command is a

cubic approximation to a step function, shown in Figure 4.3.

- I

U U

U U
I I

0.1 s 0.5 s 0.1 s

Figure 4.3. Open-loop command for constant radius turn.

The steering command was designed to result in a 90* heading change after a

constant radius turn at Vi = 4 m/s. The function is defined for a fixed time so that all
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paths have approximately the same length. The deviation of an actual rough-terrain path

from this "nominal" path is then measured as the performance metric. The th normalized

root-mean-square (RMS) path error is defined as

E(j)= y , ) (4.1)

where S(j) is the length of the j't path, [xji, yji] is the ith coordinate of the path, [xi, y] is

the i'h coordinate of the nominal path, and N is the number of points in the path. The

RMS error is normalized by the path-length to formulate an error per unit distance

traveled along the turn. Typical ADAMS run time for this model on a Pentium 1111000

MHz machine with 512 Mb RAM is about 45 seconds.

4.3 Sensitivity Analysis

Sensitivity analysis can be used to quantify the relative importance of system

parameters in predicting high-speed motion of mobile robots in rough terrain. End users

of model-based control and planning algorithms could use this information to optimize

modeling strategies for physical systems by appropriately distributing modeling effort.

The system under consideration consists of a mobile robot operating on uneven

terrain at high speeds, as discussed in previous chapters. The system parameters of

interest include the mass properties of the robot body and tires, stiffness and damping

properties of the suspension and tires, ground friction, and terrain roughness. Ground

friction was chosen as a representative tire-terrain interaction parameter because of its

simplicity, and terrain roughness was selected to describe the geometric nature of the

terrain. Terrain roughness is defined in the fractal sense, as described in Section 2.3.2. A

summary of the parameters studied in this analysis are presented in the Table 3.1.
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Table 4.1. Model Sensitivity Parameters

Parameter Name Description

Mv Body Mass Mass of the vehicle (without wheels)

IV Body Inertias Inertia of the vehicle (without wheels)

Position of the center of mass of the vehicle
CGv Body Center of Mass

(no wheels)

Mt Wheel Mass Mass of a single wheel

it Wheel Inertias Inertia of a wheel

Kt Tire Stiffness Linear stiffness of the compliant tire

Bt Tire Damping Linear damping of the compliant tire

Linearized stiffness of the compliant
K, Suspension Stiffness

suspension element

Linearized damping of the compliant
By Suspension Damping supnin lmn

suspension element

Coefficient of friction between the tires and
/t Ground Friction

ground

D Terrain Roughness Fractal dimension of the rough terrain

Several assumptions are made to simplify the analysis and reduce the parameter space.

The inertia, center of mass coordinates, and stiffness and damping properties are lumped

as single parameters. For example, the stiffness of all independent suspensions are

considered as a single parameter, as are the three body center of mass coordinates. The

spring and damper values are also assumed linear.

The sensitivity analysis is studied in simulation, using the validated simulation

model presented in Chapter 2, and the parameter values of the physical system introduced

in Chapter 3.

4.3.1 Sobol Method

Since the maneuvers investigated here are complex and substantially excite the

robot dynamics, it is likely that the system parameters interact nonlinearly to affect the

resulting motion. Therefore, it is desirable to employ a sensitivity method that makes no
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assumptions about the model structure. It is also desired to estimate the sensitivity,

including nonlinear interaction effects, with a minimal amount of computation. Several

sensitivity methods have been developed, including one-at-a-time, sampling, local,

variance-based, and graphical methods. A review of sensitivity methods can be found in

[Frey, et al, 2002; Saltelli, et al, 2000]. The method selected for this analysis is a

variance-based scheme known as the Method of Sobol [Sobol, 1993]. It decomposes

functional output variance into components based on Sobol's functional description. The

factor sensitivity is then computed from the "partial variances." This method allows

models with nonlinear interactions and uses Monte Carlo methods to estimate the total

sensitivity of a factor.

The total sensitivity estimate using the Sobol method is more efficient than a full-

factorial (brute force) approach for a large number of factors [Saltelli, et al, 2000]. The

total number of model evaluations N needed to estimate all the total sensitivity indices

using the Sobol method is

N = n (k +1) (4.2)

where n is the number of samples used to estimate an integral, and k is the number of

parameters. In order to estimate the all interactions and nonlinear effects using a full-

factorial approach with r levels, the number of model evaluations is

N = rk. (4.3)

For good accuracy with the Sobol method, approximately n = 1000 samples should be

used. In order to estimate nonlinear effects including interactions with the full factorial

approach, at least r = 3 levels should be used. For k = 11 parameters, the total number of

model evaluations for each method is

NSobol =12000

Nfactoral =177147

The Sobol method is substantially more efficient in estimating nonlinear and interaction

effects than the full-factorial approach for large parameter sets, and makes the analysis

computationally feasible.
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The Sobol method is based on Sobol's functional decomposition [Sobol, 1967].

For details regarding this method, see Appendix B. The function input factor space is

defined over the unit cube, i.e. the region

Qk = (x I0! xi !1; i =I,.., k). (4.4)

where k is the number of parameters, also called factors. The function f (x) is

decomposed into summands of increasing dimensionality as follows:

k

f (X1I--,k) = fo +Lf ,x)+ Z fij Q,,x )+---+ fi,2,...,k X1,---,xk). (4.5)
i=1 1 i<j5k

Sobol bases this decomposition on a general representation using multiple integrals, and

has shown that it is unique. The variance-based sensitivity indices are derived very

naturally from the scheme. The total variance D of f (x) is

D = f 2 ()dx-f 2. (4.6)
Qk

The partial variances due to each term in (4.5) are computed as
1 I

D = -.. f.J, (x ,I...,x, )dx,,,...,dx . (4.7)
0 0

The sensitivity index for each term in (4.5) is then defined to be

S , = ''' . (4.8)

The sensitivity indices compute the relative importance of a factor, or interaction of

factors, as compared to the whole. A complete characterization of the system would

require computation of 2k -1 sensitivity indices. However, the total sensitivity index can

be defined as the sum of all sensitivity indices involving the factor in question. The total

sensitivity index is defined as

D.
TS(i)=1-2~ i=1,...,k (4.9)

D

where D-i is the variance compliment to x,. The total sensitivity index estimates the

overall effects of the i' factor, including first and higher order terms. The integrals

required to compute the total sensitivity indices are estimated using Monte Carlo

integration [Press, et al, 1992]. A total of k +1 Monte Carlo integral computations are
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required, with n model evaluations per integral. For details regarding Monte Carlo

estimation of the indices, see Appendix B.

4.3.2 Sobol' Method Validation

The Sobol' method for sensitivity analysis has been validated using a simplified

analytical function for the braking maneuver. An analytical model has been derived for

the distance required to stop a vehicle by locking the rear wheels. The analytical model

assumes a rigid suspension, rigid wheels, flat ground, and continuous ground contact. A

diagram of this model is given in Figure 4.4.

0- X

m~g

INf L

Figure 4.4. Schematic of analytical model for emergency braking.

Appendix B provides a derivation of the stopping distance using this model. The

stopping distance is derived as

x, = " m +4m,+-j(L+p(r+h)) (4.10)
xtp=2pug (m + 4m,) V r2

where V is the initial velocity, and u is the friction coefficient between the tires and

ground. The closed form solution depends nonlinearly on several vehicle parameters.

A comparable rigid simulation model was created in ADAMS based on the model

described in Chapter 2. Here, the rigid suspension and tires are approximated with stiff
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linear springs and dampers. The terrain is flat, and rear wheel control is achieved using

the method described in Section 4.2.1.

Sobol's method was used to compute total sensitivity in two ways: by evaluating

the stopping distance with equation (4.10), and by using the simulation model explained

above. Empirical sensitivity indices computed with the analytical and simulation models

were then compared. The factors investigated include the vehicle mass, m, ; tires mass,

m, ; tire inertia, I,; and friction coefficient, u. Upon investigation of equation (4.10),

the mass terms drop out of the equation when the angular inertial term is negligible,

which is the case here. The resulting function depends only on the initial velocity, friction

coefficient, and geometry of the vehicle. Therefore, it is expected that the sensitivity of

the mass terms is negligible compared to the total sensitivity of the friction coefficient

The sensitivity indices were computed using n =1000 samples per Monte Carlo estimate

(see Appendix D). A total of N = 5000 model evaluations were required per analysis.

The range for each factor was set to 20% of the mean, and the initial velocity was taken

as V, = 4 m/s. The total sensitivity indices are plotted in Figure 4.5 for both the

analytic and simulation models.
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Figure 4.5. Analytic vs. simulation stopping distance total sensitivity estimates.

The results indicate that friction is the most sensitive factor for this model, and

that the other factors have negligible sensitivities, as expected. It is also evident that the

sensitivity estimates from both models closely match, validating the use of Sobol's

method for a simulation-based model. Error in the simulation model estimates is due to

inaccuracy of the Monte Carlo integration method.

Convergence of the analytical Sobol' sensitivity indices were investigated as a

function of samples per Monte Carlo estimate. Sobol's method was run one hundred

times at different Monte Carlo sample sizes. The statistics for each index were computed

and plotted for all sample sizes. The statistical boxplots for each index are presented in

Figure 4.6. The analytical values for each index are plotted as solid lines.
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Figure 4.6. Convergence of total sensitivity indices with Monte Carlo sample size.

The results indicate that even at 1000 samples, some error exists. This error leads to the

small differences between the simulation and analytical index values plotted in Figure

4.5. However, it is apparent that increasing the sample size beyond 1000 would not

dramatically improve accuracy. For practical purposes, a sample size of n =1000

samples was chosen for this analysis, and for the high-speed turn and braking analyses.

4.3.3 Results

Total sensitivity indices of the eleven factors introduced in Section 4.3 were

estimated for both the braking and turning maneuvers discussed in Sections 4.2.1 and

4.2.2, respectively. For each maneuver, the Monte Carlo sample size was chosen to be

n =1000 for accuracy and computational feasibility. For k =11 factors, a total of

N =12000 simulations were run per analysis, requiring approximately 100 hours of
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computer time on 1000 MIHz Pentium III machines. The initial velocity was set to V, = 4

m/s for both maneuvers, and the range for each parameter was taken to be 20% of the

mean value. The total sensitivity indices computed for the braking maneuver are

presented in Figure 4.7.
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Figure 4.7. Plot of the emergency braking total sensitivity indices.

The total sensitivity indices indicate that tire-ground friction is significantly more

sensitive than the other factors. This is expected, as the friction force generated by the

sliding tires is the dominant force decelerating the vehicle. Terrain roughness also slows

the vehicle with energy absorption through the suspension and tires. This effect is

observed in the relatively high sensitivity of the physical tire parameters. Tire mass

shows high sensitivity, due to tire ballistic motion through the rough terrain. Tires of

lesser mass, for constant suspension stiffness, more closely track undulations in the

terrain, while heavier tires tend to remain airborne for a longer time, on average. This

effectively limits the friction force acting to decelerate the robot. Tire damping is least

sensitive, as variations in the damping value have negligible effects on stopping distance.
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In addition, changes in the terrain roughness are only moderately sensitive. This is due to

the range assigned for the roughness factor.

The total sensitivity indices computed for the high-speed turning maneuver are

presented in Figure 4.8.
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Figure 4.8. High-speed turning total sensitivity indices.

These results again indicate that tire-ground friction is the most sensitive factor.

This result is expected because the ground forces generated by the tire are the dominant

forces acting to turn the vehicle. The other factors are approximately equally sensitive.

The finite precision of the estimates limits comparison of the secondary factors. Overall,

it is reasonable to conclude that the tire-terrain interaction parameters are most sensitive

in affecting the performance of high-speed maneuvers in rough terrain.

4.4 Uncertainty Analysis

Uncertainty analysis seeks to answer the question: Given uncertainty in the input

of a system, what is the uncertainty in output? Here the inputs are system parameters

such as inertia and ground friction, and the output is robot response. Planning and

Chapter 4. Sensitivity and Uncertainty Analysis 72



control algorithms would use knowledge of system output uncertainty in robust planning

and control algorithms. High-speed reactive behaviors will employ this information in

the form of vehicle safety margins and maneuver risk assessment.

The analysis presented here investigates the effects of uncertainty on high-speed

turning and emergency braking. The same system parameters used for the sensitivity

analysis are used in this analysis (see Section 4.3). For this analysis, a normal

distribution is assumed for each of the system parameters. This is because physical

measurements of such parameters are typically described by normal distributions. The

standard deviation of the distributions is prescribed to represent a parameter uncertainty

level, and a point in the parameter space is randomly sampled from the distribution. The

parameter input sample is randomly sampled to represent noisy physical measurement of

the parameters. The simulation model is evaluated for each sample, and an output

distribution is formed from the results of many samples. The output uncertainty is

measured from the statistics of these distributions. The following sections discuss the

methodology and results of this analysis.

4.4.1 Method

The uncertainty analysis method presented here is as follows:

1. Prescribe a normal distribution for each system model parameter with nominal

values x,, and standard deviation o;,,. This is the input parameter space.

2. Randomly sample a set from the input parameter space.

3. Evaluate the simulation model using the parameter set.

4. Repeat Steps 2) and 3) n times to generate an output distribution with n points.

5. Estimate the output distribution 99% confidence interval.

6. Repeat Steps 2) through 5) for six different input standard deviations.

7. Compare the output distributions and plot the input vs. output uncertainty.

In this analysis, the uncertainty of any of the parameter is

(4.11)
x.
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where o is the standard deviation, and T is the mean of the i'h parameter. The

uncertainty is taken to be 3-sigma (99% confidence interval) divided by the parameter

mean. All parameters are then defined to have the same uncertainty level, which take on

the discrete values u = [0.02,0.05,0.1,0.2,0.3,0.5]. An example of a two dimensional

distribution of n = 1000 points for the first two parameters listed in Table 4.1 with

u = 0.20 is presented in Figure 4.9
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Figure 4.9. Scatter plot of normally distributed mass and inertia parameters.

The high-speed maneuver is simulated for every parameter sample at each

uncertainty level, the functional output evaluated, and the resulting distributions are

compiled. The 99% confidence output interval is then plotted for the each input

uncertainty.
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4.4.2 Results

The uncertainty for the emergency braking and constant-speed turning maneuvers

was studied in simulation. For both maneuvers, the input parameter space was sampled

n = 1000 times at six different uncertainty levels, u = [0.02,0.05,0.1,0.2,0.3,0.5]. A

total of 6000 model evaluations per maneuver were computed in simulation, requiring

approximately 50 hours of total computer time on a 1000 MHz Pentium III machine. The

initial velocity for each trial was V0 = 4 m/s.

The resulting distributions in stopping distance for the braking maneuver are

presented for each uncertainty level in Figure 4.10.

Chapter 4. Sensitivity and Uncertainty Analysis 75



Stopping Distance Distributions
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Figure 4.10. High-speed braking stopping distance distributions
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The stopping distance distributions are normally distributed. The output normal

distributions indicate that the emergency braking maneuver can be approximated as a

linear system for the range of values studied here. Although the variance increases with

input uncertainty as expected, the distribution width does not approach zero as the input

uncertainty vanishes. This is captured in the following figure (Figure 4.11), which plots

3o- (99% confidence) of each distribution as a function of input uncertainty.
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Figure 4.11. Plot of the emergency braking stopping distance uncertainty.

The curve indicates that as system parameter uncertainty approaches zero, the

width of the predicted stopping distance distribution approaches a finite-valued

asymptote. This can be explained by the statistical nature of the terrain model. In this

analysis, the maneuvers were simulated on level, rough terrain generated using fractal

techniques. Each sample from the input parameter space contains a new terrain

roughness (fractal number), and a new terrain is generated for each model evaluation.

The process used to build the fractal terrain generates different terrains even for the same

roughness. Therefore, stochastic terrain models such as fractal terrains pose a

fundamental limit on braking motion prediction, regardless of the uncertainty in the
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system model. Extrapolating the curve to zero input uncertainty, the stopping distance in

this case can be predicted with maximum accuracy of about 0.25 meters.

In addition to the braking maneuver, a constant-speed turning uncertainty analysis

was also performed. The results from the analysis are presented below. To illustrate the

variation in turn paths, the trajectories for n =1000 samples with input uncertainty

u = 0.20 are plotted with the desired, or nominal path. The trajectory plot is shown in

Figure 4.12.
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Figure 4.12. Uncertain turn trajectories; n = 1000, u = 0.02.

The uncertain trajectories vary about the nominal path. The resulting distributions in

scaled root-mean-square path error for each input uncertainty level are presented in

Figure 4.13.
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Path Error Distributions
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Figure 4.13. High-speed turning path error distributions.
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The path error was fit-tested with several different random distributions. The beta

random variable was found to best fit the data. This indicates that the turning path error

nonlinearly transforms the input normal distributions to output beta distributions. For

more information on beta random variables, see [Hahn, et al, 1994]. The fitted Beta

distributions are superimposed on the output distributions. As the input uncertainty

increases, the distributions tend to increase in width and decrease in peak magnitude.

However, the distribution width does not tend toward zero as the input uncertainty

vanishes. This is the same phenomenon observed for the braking maneuver. It is

captured in Figure 4.14, which plots input uncertainty versus the 99% confidence interval

computed from the fit Beta distributions.
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Figure 4.14. High Speed turning path error uncertainty.

The curve indicates that as the system parameter uncertainty approaches zero, the

output uncertainty approaches a finite asymptote. Similar behavior was observed for the

braking maneuver. Again, the terrain model stochastically changes the terrain shape from

sample to sample. Therefore, stochastic terrain models such as fractal terrains pose a

fundamental limit on predicting turning motion, regardless of system model uncertainty.
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Extrapolating the curve to zero input uncertainty, the path error in this case can be

predicted with maximum accuracy of about 0.055 m/m. A deterministic terrain model

would not exhibit this property, but would be difficult to realize in natural, uneven

terrain.

4.5 Summary

This chapter presented an initial sensitivity and uncertainty analysis for high-

speed motion of mobile robots in rough terrain. Constant-speed turning and emergency

braking were investigated in simulation using the model discussed in Chapter 2. The

method of Sobol was used to estimate the total sensitivity of stopping distance and turn

path error to several system parameters. Sobol's method is an efficient technique for

estimating sensitivities of many factors, and accounts for interaction and nonlinear

effects. The results indicate that tire-terrain interaction parameters, in this case ground

friction, are significantly more sensitive than vehicle dynamic parameters and terrain

geometry. Uncertainty in predicting high-speed mobile robot motion was also studied in

simulation with the same turning and braking maneuvers. The results indicate that

prediction uncertainty decreases with system parameter uncertainty. However, it was

observed for both maneuvers that prediction uncertainty approaches a finite value as the

parameter uncertainty goes to zero. This behavior is due to stochastic nature of the

terrain model implemented in this analysis.
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CHAPTER

5

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

5.1 Contributions of this Work

This work presented a dynamic model for studying high-speed mobile robots

operating in rough terrain, and has investigated the sensitivity and prediction uncertainty

of high-speed motion to system parameters.

A simulation-based dynamic model was presented, which includes a tire-ground

interaction model, and geometric terrain model. A general, 15 degree-of-freedom vehicle

model was introduced. Tire-ground forces were computed with the Magic Formula tire

model, and uneven terrain was created from sparse elevation data using a fractal-

technique known as the Mid Point Displacement method. The model was implemented

in simulation using the ADAMS software package

Experimental validation of the model was presented. A high-speed tele-operated

mobile robot was built and used for model validation. The mobile robot was commanded

in simulation and experiment to traverse bump and ramp obstacles at various speeds.

Vertical and longitudinal acceleration data was then compared. The results indicate that

the simulation model accurately predicts high-speed motion over uneven terrain. Small

discrepancies between simulation and experiment data were attributed to differences in

the velocity control techniques and saturation of the sensor.
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A sensitivity analysis of high-speed motion of mobile robots in rough terrain was

presented. Constant-speed turning and emergency braking maneuvers were studied in

simulation on rough terrain. The method of Sobol' was used to investigate the sensitivity

of stopping distance and turning path to uncertainty in system parameters, including mass

properties, suspension and tire mechanical properties, and terrain properties. The method

was validated using a simplified analytical model. The results from both maneuvers

indicate that tire-terrain parameters (the friction coefficient in this case) are substantially

more sensitive than all other system parameters. This is justified by the importance of the

tire forces in executing high-speed maneuvers.

An uncertainty analysis for prediction of high-speed motion of mobile robots in

rough terrain was also presented. For this investigation, constant-speed turning and

emergency braking maneuvers were studied in simulation on rough terrain. System

parameters were randomly sampled from a normal distribution of prescribed standard

deviation, and the model was evaluated. The results indicated that for both maneuvers,

the prediction uncertainty decreased with the uncertainty in the system parameters, as

expected. However, the prediction uncertainty approached a finite limit as system

parameter uncertainty went to zero. This is explained by the stochastic nature of the

fractal-based terrain model used in this work.

5.2 Suggestions for Future Work

Over the course of this work, several issues were studied. However, the study

was introductory at best, due the complexity of the systems and analysis. For this reason,

a more thorough extension of this work would prove worthwhile.

The model validation study should be extended to include out-of-plane motion.

This work included only planar motions, but for completeness, maneuvers incorporating

yaw or roll dynamics should be investigated. Suggested maneuvers include a hard turn

on flat terrain, and a laterally-offset positive obstacle. In addition, a complex motion on

unstructured terrain would provide a very convincing argument for the accuracy of the

simulation model. The analysis could also be extended by randomly varying the system

parameters in simulation according to a measured distribution, and generating a

simulation data band rather than a single curve per experiment.

Chapter 5. Conclusions and Suggestions for Future Work 83



Work should also continue toward developing a more complete and thorough

sensitivity analysis of high-speed motion in rough terrain. The presented maneuvers

should be studied over a range of velocities and terrain roughness. It would also be

practical to examine the sensitivity over various input parameter ranges. A capstone

study would examine the sensitivity of system parameters for complex motion on rough

terrain under closed-loop control.

The prediction uncertainty analysis was limited in that only a single velocity and

roughness were studied. This investigation should be expanded to include more

maneuver velocities, different degrees of roughness, and in the case of the turning

maneuver, different turn radii. It would also be instructive to individualize the parameter

uncertainties based on the physical system. This study should be extended to include

other important high-speed behaviors such as ballistic motion. An important aspect to

study is the effect of terrain grid spacing on prediction uncertainty. Finally, a good

conclusion to the uncertainty analysis would be to study a complex motion on rough

terrain under closed-loop control.
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APPENDIX

PARAMETER IDENTIFICATION

This Appendix presents the methods and results of the experimental parameter

identification of the mobile robot described in section 3.2.1. The system parameters

include robot body and wheel masses, robot body center of mass, robot body moment of

inertias, wheel moment of inertias, effective suspension stiffness and damping, and tire

stiffness and damping normal to the road surface.

A.1 Mass Properties

The robot body mass, center of mass, moments of inertia, and wheel mass and

moment of inertia were determined experimentally. The robot body and wheel masses

were measured using a digital scale. The masses are presented in Table A. 1.

Table A.1. Mass properties.

A.1.1 Center of Mass

The body center of mass was computed by elevating part of the robot, measuring

the normal force at the wheel axles with a scale, measuring the inclination angle, and

solving the equations of static equilibrium. To compute the location in 3-axis, three

Appendix A. Parameter Identification

Component Mass (kg)

Body 2.31

Wheels (each) 0.196
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configurations are needed: the front two wheel axles elevated at two different heights,

and the side two wheel axles elevated. These configurations are shown in Figure A. 1

I
a) b) b)

Figure A.1. Schematic of experiment configurations to determine a) the longitudinal, b) vertical, and
c) transverse center of mass coordinates.

The three static equilibrium equations to be solved are then

-mg cos E, mg sine, 01 bl -m 1 gLcos 01
-mg cos02 mg sin 02 0 h -ms, 2 gLcose 2

0 -h tan 0 1_ _c_ -W(1-Ms,3g/Mg)

(A.1)

where m is the mass of the robot without wheels, ms,i, ms,2, ms,3 are the measured scale

masses for each configuration, L is the wheelbase of the robot, w is the tip-tip axle width,

el and 62 are the pitch inclination angles for the first two configurations, and 0 is the

roll inclination angle for the last configuration. The longitudinal, vertical, and transverse

center of mass coordinates b, h, and c are computed by solving equation (A.1). The

inclination angles were measured using an inclinometer. The resulting values are given

in Table A.2.

Table A.2. Center of mass coordinates.

Appendix A. Parameter Identification

Center of Mass
Distance (m)

Coordinate

b 0.122

h 0.12

c 0.067
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A.1.2 Moment of Inertias

The moment of inertia of the robot body and wheels were experimentally

determined by hanging them from a metallic cable, and measuring the frequency of

angular oscillation of the component. Figure A.2 shows a schematic of the experimental

setup to measure the body moment of inertias.

//////

Cable, K

CO

Figure A.2. Schematic of the moment of inertia experiments.

The body oscillates about the axis A in the robot inertial frame R with an angular

frequency c. The cable has rotational stiffness K. The rotation axis in the robot frame is

defined as

X= li+mj +nk. (A.2)

The moment of inertia about the A axis can be computed with the following relation

[Meriam, et al, 1997]:

(A.3)
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IZ = Inj2 + I,,YM 2 + Izn 2 - 2I.,lm - 2I1nl - 2IYmn
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The moment of inertia about the A axis can be computed by measuring the period of

oscillation T of the hanging body about the axis of the cable:

T = 2gIA/K. (A.4)

where K is the linear rotational stiffness of the cable. The stiffness was measured using a

simple proof mass of calculable rotational inertia. Rotational damping is neglected. It is

then possible to compute the inertias in the robot frame by measuring the moment of

inertia about six arbitrary axis of rotation. These axes are defined by hanging the robot

body from six different cable mount locations. Combining equations (A.3) and (A.4), the

equation for the body inertia is then

1, 1 , 2 m -211 mh -211 n, -2 nr Ixx- ( I / z

12 mi mi -21,m, -211n, -2mnn Ixx K (T/2r) 2

12 mi m -21^m -21i, -2mnr Ixx K (T /2;r)2
3 )2 (A.5)

142 m m -211m, -211n, -2mnr I. K (T /,2z|

152 m m -21i, -21,nj -2mnn Ixx K (T /2;r)2
_62 mni mi -211mh -211nh -2mnn_ _I"x - K({T12;)2

The robot body was hung from each of the four wheel axles and two arbitrary positions

on the body. The direction of the axis of rotation was determined from the geometry of

the mount points relative to the center of mass. The period of oscillation was then

measured for each configuration. Equation (A.5) was then solved for the inertia values.

The resulting inertia tensor is

0.0220 -0.0002 0.0022

IV = -0.0002 0.0065 0.0030 kg -i 2 . (A.6)

0.0022 0.0030 0.0230

Similarly, the inertia tensor of an individual wheel was determined to be

0.0003 0 0

Iw= 0 0.0003 0 kg -m2  (A.7)
0 0 0.0004
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A.2 Suspension Properties

The effective spring and damping relations for each independent suspension were

determined experimentally. The methodology and results are presented below.

A.2.1 Suspension Stiffness

The stiffness of each independent suspension was measured experimentally. The

four-bar suspension was modeled as a parallel, four-bar mechanism mounted on the

vehicle chassis with revolute joints and torsion spring-damper. Figure A.3 shows a

diagram of this model. The wheel is mounted at the end of the four-bar mechanism.

Vehicle \Parallel Link
Body

Wheel

Figure A.3. Schematic of the suspension system model.

The functional relationship for the torsion spring was determined experimentally by

loading the suspension at the wheel mount point with a known force, and measuring the

resulting angle, 0 with an optical encoder. A diagram of the experimental setup is

shown in Figure A.4.
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L
Vehicle
Body

Figure A.4. Schematic of the suspension stiffness experiment.

Several different masses were statically hung at the tip of the suspension, and the angular

displacements were measured. Neglecting the mass of the suspension, the spring-torque

equation for static equilibrium is

T(0)= mgL cos O (A.8)

The experiment was repeated three times for each suspension. The resulting data is

presented in Figure A.5, Figure A.6, Figure A.7, and Figure A.8.
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Front Left Suspension

0 Trial 1
1.2 - 0 Trial 2

O Trial 3
- Average linear fit

0.6 -

0 .4 - - - - - - -- - - - - - - - -- -

0 0
0 .2 - - - -.- -. .- -..- -. .-.- -. .- - - - -

nl
-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Deflection Angle (rad)

Figure A.5. Spring torque curve for the front left suspension assembly.

Front Right Suspension

0 Trial 1
0 Trial 2
0 Trial 3

- Average linear fit
. .. . . . . . . . .. . ... . . Q . .

-- -- -- - - - - -. ...-- - ..- - .- - .- .-.-
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0.6 -

0.4 -
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0.2

0
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Deflection Angle (rad)

Figure A.6. Spring torque curve for the front right suspension assembly.
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1.6

1.4

1.2

-0.2 -0.1 0 0.1 0.2 0.3 0.4
Deflection Angle (rad)

Figure A.7. Spring torque curve for the rear left suspension assembly.

Right Rear Suspension

0 0.1 0.2 0.3 0.4 0.5
Deflection Angle (rad)

Figure A.8. Spring torque curve for the rear right suspension assembly.
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The torsion stiffness curves are very linear through the range of motion. The nonlinearity

at large displacements is due to bending of the suspension links after the spring reached

full compression. Table A.3 summarizes the linear stiffness coefficients for each of the

suspensions.

Table A.3. Suspension assembly spring coefficients.

A.2.2 Suspension Damping

The functional relation for the suspension damping as depicted in Figure A.3 was

determined experimentally. The suspension is overdamped, so techniques such as

logarithmic decrement are not applicable. The setup is shown in Figure A.4, with the

spring removed. A mass was hung at the axle tip, the system released from rest, and the

angle 6(t) was measured for the duration of the motion. This was repeated several times

for different hanging masses. The dynamic equation of motion for the system is

I( 6 ) = mlcos 0( g - Lcos ON + L sin#2 ) (A.9)

where r( ) is the torsion damping. The angle 6 was measured with an optical encoder

for all t, while the angular velocity 0 and angular acceleration 0 were computed using

centered difference formulas [Mathews, et al, 1999]. The torque was computed for each

mass trial at the maximum angular velocity so that the acceleration term goes to zero.

The torque-velocity curves were generated using this method, and are shown for each

suspension in Figure A.9, Figure A.10, Figure A. 11, and Figure A.12.
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Linear Stiffness K
Suspension (N-mlrad)

Front Left 0.69

Front Right 0.73

Rear Left 1.59

Rear Right 1.62
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Figure A.9. Damping torque curve for the front left suspension assembly.
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Figure A.10. Damping torque curve for the front rear suspension assembly.
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Figure A.11. Damping torque curve for the rear left suspension assembly.
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Figure A.12. Damping torque curve for the rear right suspension assembly.
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A.3 Tire Properties

The stiffness and damping properties normal to the road surface for two tires were

determined experimentally. The methodology and results are presented below.

A.3.1 Tire Stiffness

Tire stiffness normal to the surface was determined experimentally for two of the

tires. The wheel was placed on a flat surface with the suspension spring and damper

removed, and the axle was loaded with several hanging masses. The tire deflection was

determined by measuring the suspension state with an optical encoder. The displacement

was then computed from the geometry. A diagram of this setup is shown in Figure A.13.

Wheel

Vehicle Parallel Link
Body

Figure A.13. Schematic of the tire stiffness experiment.

The resulting data is presented in Figure A. 14 and Figure A. 15 for the front left and rear

right tires, respectively.
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Figure A.M4. Front left tire stiffness curve.

0 0.002 0.004 0.006

Displacement (in)

0.008

0.008

Figure A.15. Rear right tire stiffness curve.

The stiffness values are summarized in Table A.4.
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Table A.4. Summary of the tire stiffness coefficients.

A.3.2 Tire Damping

The tire damping was determined from the dynamic response of the tire and hung

mass to an impulse input. The tire and hanging mass as shown in Figure A. 13 were

released from a height above the surface. The underdamped dynamic response was

recorded with an optical encoder, and the vertical tire displacement was computed from

the geometry. This procedure was repeated for several hung masses. The damping

coefficient was then computed using logarithmic decrement [Shabana, 1996] for each

trial, and averaged. The logarithmic decrement is

=ln 'i (A.10)
xi+1

where xi and x,1 are successive peak amplitudes. The damping factor is computed from

the logarithmic decrement by

(A.11)
(27z) 2 +82

The damping coefficient is then computed from the damping factor, measured spring

coefficient and sprung mass:

b = 2 Vi (A.12)

The resulting damping coefficients for the front left tire and rear right tire are given in

Table A.5.
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Tire Stiffness (N/m)

Front Left 5344

Rear Right 6183
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Table A.5. Summary of the tire damping coefficients.

Damping
Tire

Coefficient (N-s/m)

Front Left 17.3

Rear Right 18.9

A.4 Accelerometer and Datalogger Specifications

The technical specifications for the Crossbow CXL04M3 three-axis accelerometer and

the Pace Scientific XR440-M Pocket Logger are presented in Table A.6 and Table A.7,

respectively.

Table A.6. Specifications for the Crossbow CXL04M3 accelerometer.

Table A.7. Specifications for the Pace Scientific XR440-M Pocket Logger.
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Specification Value Units

Input Range ±4 g

Sensitivity 500 mV/g

Non-linearity 0.2 % FS

Noise 10 mg rms

Bandwidth DC-100 Hz

Specification Value Units

Resolution 12 bits

Memory Capacity 86016 readings

Size 4.7 x 2.4 x 0.93 % FS

Max Sampling Rate 200 Hz
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APPENDIX

B
METHOD OF SOBOL

This appendix presents a detailed discussion of the method of Sobol. A derivation

of the sensitivity indices is presented. A quasi-random sampling strategy is discussed.

Finally, the derivation of the analytical stopping distance equation of Section 4.3.2 is

presented.

B.1 Sobol Method Sensitivity Indices

The derivation of Sobol's variance-based sensitivity indices can be found in

[Saltelli, et al, 2000]. The input factor space for k factors is defined as a k-dimensional

unit cube:

gAk = (x10 < x, :! 1; i=1..k). (B.1)

The function f (x) is decomposed into summand of increasing dimension:

k

f(xi,...,xk)=fo+Zf(Xi)+ I f,,(xXj)+...+f,2 . k(Xl,...,xk). (B.2)
i=i 1: i<j!k

In order for this to be true, f0 must be constant, and

f .fi, i(Xl --. xi 5 =0 if 1 k s (B.3)
0

which says that the integral of each summand over any of its variables is zero. The

consequence is that all the summand functions are orthogonal, and that

f0 =f f (x)dx. (B.4)

Sobol has showed this decomposition is unique, and the terms can be evaluated with

integrals. The formulas for the first and second order terms are
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i (xx) ==-- f ...y ff(x )- _fx -.
0 0

0 0

where dx-i denotes integration over all variables except xi. The total variance D is

defined to be

D = f 2 (x)dx-fo2 (B.5)

while partial variances are determined from each term of the decomposition:

D -f ... ff2 ,...,x )dx,,...,dx . (B.6)
0 0

By squaring and integrating the decomposition over 92k, the partial variances are shown

to sum to the total variance:

k

D=ZDi+ E D+-- + D,2,...,. (B.7)
i=1 1 t<j5k

The sensitivity indices are defined to be the partial variance divided by the total variance:

S = ''"~"'" . (B.8)

The total sensitivity indices are defined to measure the individual influence of all

factors, including interaction effects between the factors. The total sensitivity for the ith

factor is

D.
TS (i) =1 ~_ --,S, (B.9)

D

where S_- is the sum of all the terms S that do not include the index i. The total

sensitivity does not provide a complete characterization of the system, but gives a more

reliable estimate than the first-order indices.

The integrals need to compute the total sensitivity indices are estimated

numerically using Monte Carlo integration. For details on Monte Carlo integration, see

[Press, et al, 1992]. The computational formulae for f, D, and D i are given as follows:
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f=If(x,) (B.10)
m=1

D =-Z f (xm)- f ,1 (B. 11)
nM=1

D~i =- fx , f x ,x, - f,. (.2
n M=1 (m (B 12

The superscripts (1) and (2) indicate that two different data sampling matrices are being

used for x.

The sampling strategy employed in the Monte Carlo estimation is called

Quasirandom Sampling, which was first developed by Sobol [Bratley, et al, 1988]. The

method generates sequences of sub-random numbers using a deterministic process. It has

been shown that the Monte Carlo estimates converge at with this sampling technique,

where n is the number of sample points used. This is much faster than the 1

convergence of random sampling schemes. Figure B.1 shows a comparison of

quasirandom and random sequences for illustration.
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Figure B.1. A comparison of random and quasirandom sequences; a) random, n = 256; b) random,

n = 1024; c) quasirandom, n=256; d) quasirandom, n=1024.

B.2 Analytical Stopping Distance

The analytical equation for stopping distance during emergency braking on flat

ground as presented in 4.3.2 was derived using Lagrange's method. A free-body diagram

of the dynamic model is presented in Figure B.2.
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Figure B.2. Free body diagram for the analytical model of emergency braking.

The differential equation of motion was derived using Lagrange's method. The coenergy

of the system is

T*=1 m, +4m, +2 2.i. (B.13)

The potential energy of the system is constant, and the generalized force is

F = -Nr. (B.14)

The normal force on the rear tires is determined from the constraint of continuous ground

contact. Summing the forces in the vertical direction, and summing the moments about

the center of mass, the normal force was found to be

g (L - b)(m, +4m,)
Nr =~ lrh . (B.15)'L+pi(r+h)

The equation of motion is then

m, +4m, +2 - lig(L-b)(m,+4m, (B.16)
r 2 L+ p (r+ h

or

meffx= -F (B.17)

This equation can be solved by integrating twice. The resulting solution for x(t) is
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1 F
x(t=- e t2 +Vt. (B.18)

2 meff

The time to stop is found by differentiating this equation, setting the velocity to zero, and

solving for the time. The stopping time is plugged back into equation (B.18) to get the

stopping distance. The final simplified equation for the stopping distance is

V2 m+4m, +2kL 1L+pu(r+h)
xStOP = 2i ( Lb(r42. (B.19)

""2pg (L -b) (m, +4m,
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