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Chapter 1

Introduction

1.1 Paraboloidal reflector antennas

An antenna is the part of a transmitting or receiving system which is designed to radiate

or receive electromagnetic waves [1]. It provides a transition from a guided wave on a

transmission line to a wave in free space. A reflector antenna is an antenna consisting of

one or more reflecting surfaces and a radiating feed system. Reflector antennas are used

to provide a pencil-beam radiation, which gives a magnification to the gain of the source

radiator and focuses the radiated energy into a specific direction. Most reflector surfaces

are derived from the conic sections with well known geometrical properties such as circles,

parabolas, hyperbolas, and ellipses [2]. Reflecting surfaces are generated by translation or

by rotation of the curves around the focal axis. In principle, such reflectors are wideband

devices, capable of operating from radio to optical frequencies [3]. As a source of high-gain

microwave beam, reflector antennas are more preferred to lens and array antennas because

18



they are the simplest, the cheapest, and the lightest option [2][4].

Among various types of reflector antennas, paraboloidal reflectors are the most utilized

[2]. They are used as stand-alone reflectors or as primary reflectors in both the Cassegrain

and the Gregorian reflector systems. A paraboloidal reflector surface is specified by two

parameters: (1) the diameter D, and (2) the focal length f. However, it is often stated in

terms of the size D and the shape of the paraboloid by the focal-to-diameter ratio f/D. The

f /D ratio represents the curvature of the dish when D is fixed. The angle 00 from the main

axis to the rim of the reflector is related to the f/D ratio by

60 = 2 tan ( (1.1)

which can be rewritten as

1
f/D = (1.2)

4 tan(60 /2)

Equation (1.2) suggests that a reflector with diameter size D becomes flatter as the f/D

ratio increases.

Two properties of the paraboloid make it an efficient structure for focusing radiation

energy into a directional beam. First, the path lengths from the focal point to the aperture

plane via the paraboloidal reflector are the same for all (geometrical optics) rays. Second,

the reflected rays from the reflector surface are parallel to the reflector axis [5][6]. Thus,

a paraboloidal reflector will transform radially emerging rays from a point source at the

focus into parallel rays at the aperture plane of the reflector.1 Such structure can be used

The aperture plane of an antenna is a surface on which it is convenient to make assumption regarding
the field values for the purpose of computing the radiated fields. It is often taken to be a plane near the

19



to convert electromagnetic waves with a spherical phase front into those with a plane phase

front [7]. In addition, we will find that the field on the aperture plane has a uniform phase.

The feed is a very important part of reflector antenna systems. It requires a good combi-

nation of amplitude, phase, and polarization of the field incident on the reflector to achieve

the maximum efficiency. The feed of a reflector antenna should be small in size and give

a spherical phase front as if the energy is radiated from a single point. The amplitude of

the radiation from the feed must be uniform over a wide angle to illuminate the entire area

of the reflector adequately. A good feed must also direct most of its radiation energy into

the area of the reflector to avoid the spill over, which is a loss of energy by waves radiated

from the feed that fail to strike the reflector. The radiation characteristic of the feed should

be such that all the waves will be polarized in the same direction after reflection from the

reflector surface. Radiation from the perpendicularly polarized component of the aperture

field will contribute to minor lobes and be wasted [2].

The paraboloidal reflector is a wideband antenna. The bandwidth of a reflector is de-

termined at the low frequency by the size of the reflector. It should be at least several

wavelengths in extent. Towards the high frequency end, performance is limited by the

smoothness of the reflector surface. Surface distortions must be much less than a wavelength

to avoid significant phase errors in the aperture.

antenna which is perpendicular to the direction of maximum radiation [1].
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1.1.1 Radiation patterns of paraboloidal reflector antennas

Radiation pattern or antenna pattern is the angular variation of radiation intensity at a fixed

distance from an antenna when it is transmitting. Since most antennas are reciprocal devices,

they display the same characteristic when they are used for transmission and reception of

electromagnetic waves. Figure 1-1 shows a typical radiation pattern of paraboloidal reflector

antennas with dipole feeds located at the focal point. The area around the center of the

co-polarized pattern is the main lobe, which represents the solid angle containing the most

intense portion of the radiation. This is because the fields from various parts of the antenna

arrive at this area more in-phase than they do for other directions [6]. The highest peak

is located at the center of the main lobe, which is the direction where the radiation field is

strongest. The rest of the pattern are collectively called minor lobes or side lobes, which

represent the radiated energy that is not contained in the main lobe.

In most applications, it is undesirable to transmit or to receive electromagnetic energy in

different directions other than that of the main lobe. If an antenna with high side lobe level

is used at the transmitter, a large amount of the radiated energy will be wasted. This leaked

energy may cause interference to the nearby receivers. At the receiver, an antenna with a

high side lobe level has more potential to pick up unwanted energy from the background,

which may degrade the signal-to-noise ratio.

The radiation pattern of a reflector antenna is a function of the reflector geometry and the

feed illumination. The most basic method to analyze reflector antennas is to use geometrical

optics to find the aperture-field distribution by tracing geometrical optics rays from the

source to the aperture. For the paraboloidal reflectors, all rays from the feed travel the same
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Figure 1-1: A typical radiation pattern of paraboloidal reflector antennas showing the co-
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distance to the aperture plane, and the field distribution on the aperture will have a uniform

phase. However, the distribution of the amplitude need not be uniform. 2 Once the aperture-

field distribution is known, the radiation field can be found by solving a two-dimensional

diffraction integral of the aperture field. The integral is given by

e eikr
E(T) = iwy -(9fo + fo) (1.4)

47rr

f(0, 0) = IA Eape ikp'sin cos(-')p'dp'dO' (1.5)

where the primed variables are those associated with the aperture plane, and the unprimed

variables are those associated with the radiation field. The integral in Equation (1.5) can be

rewritten to illustrate the Fourier relationship between the aperture field and the radiation

field as follow

f(0, 0) = Eap(X', yI)e-ikux'-iky'dx'dy' (1.6)

where u = sin 0 cos # and v = sin 0 sin q are the pattern variables. Alternatively, we may use

physical optics to approximate the induced surface currents, which can be integrated over

the reflector surface or on the aperture plane.

The size of reflector antennas is closely related to the beamwidth. Reflector antennas

with larger size compared to the wavelength have narrower beamwidths for the main lobe

and yield higher maximum gains. These two features are desirable in most reflector antenna

2The following polynomial function is often used as a practical approximation of the aperture-field dis-
tribution [8]

Eap(p) = Eo[B + (1 - B)(1 - p2/R2)p] (1.3)

where E0 is a constant, p is the radial coordinate of a point on the circular aperture (0 < p R), R is
the maximum radius of the aperture, and B is a constant that specifies the degrees of edge tapering. B is
dimensionless and is usually converted to decibels by taking the logarithm and multiplying by 20.
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applications. In radar and radio astronomy applications, antennas with narrow beamwidths

give better angular resolution and bring greater accuracy. In communication systems, an-

tennas with high maximum gain bring good signal-to-noise ratios for the transmitted and

received signals using the same level of transmission power [9].

1.2 Effect of random surface errors on the performance

of reflector antennas

The surfaces of reflector antennas in operating conditions are subjected to deviations from the

ideal surface. The deviations make it difficult to maintain the desired amplitude and phase of

the fields on the aperture, making the overall performance of the antenna deteriorates. Many

important measures of reflector antenna performance-the maximum gain, the beamwidth,

the maximum side lobe level, and the cross-polarization interference-are degraded by the

presence of surface errors. This section describes the nature of the surface errors on reflector

antennas along with the effects of random surface errors on the performance parameters

outlined above.

1.2.1 Surface errors on reflector antennas

Surfaces of large reflector antennas, such as those required for radio astronomy or interplan-

etary sciences, are subject to distortions caused by forces of gravity, wind loads, thermal

strains, manufacturing tolerances, and misalignment of the panels [10][11][9]. The surface

errors caused by these conditions can be put into two categories: the deterministic errors
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Table 1.1: The manufacturing tolerance ratios of some large reflector antennas

Agency/Location D(m) Erms(mm) R
Cal Tech, Owens Valley 10.4 .025 416000
Univ. Massachusetts 13.7 .100 137000
ESSCO 20.1 .150 134000
Crimean RT-22 22.0 .120 183000
NRAO, Charlottesville 25.0 .070 357000
IRAM, Grenoble, Spain 30.0 .090 333000
RRL, Kashima, Japan* 34.0 .127 268000
Nobeyama 45.0 .200 225000
Effelsberg** 60.0 .400 150000
JPL*** 70.0 .430 163000
Effelsberg 100.0 .730 137000

*Proposal **Inner 60 m of the 100 m Effelsberg antenna ***Proposed upgrade

and the random errors. The causes of deterministic, or systematic , distortions include the

gravitational forces, wind loads, thermal expansions, and structural designs such as support

ribs and slots between panels [12]. To a large extent, the deterministic surface deformations

can be mechanically compensated for by manually adjusting the antenna profiles or by us-

ing adaptive reflector surfaces [13][14]. Electromagnetic compensation techniques based on

feed array can be used to supplement the mechanical techniques to deal with subtle residual

errors.

Most moderate to large reflectors are constructed from many pieces of panels which must

be fabricated and assembled to form the final reflector. However, there is always some

tolerance allowed in the manufacturing precision of the panels, which is a well-known cause

of random surface errors. The manufacturing tolerance R = D/Erms is specified by the ratio

of the dish diameter D to the root-mean-square surface error 6 rms of the reflector [13][9].

Some manufacturing tolerance ratios of large antennas are presented in Table 1.1 (From [9]).

Precise measurement of the reflector accuracy during the fabrication and assembly, as
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well as during the operation, is necessary for maximum performance. Conventional mechan-

ical and optical surveying techniques provide high degrees of accuracy in the production and

construction of reflector antennas. During the fabrication and assembly stages, theodolite,

prism, and inclinometer (for the measurement of angle) are useful. During the installation

process, tape, rod, wheel, linear transducer, and modulated laser are used to give measure-

ment of distance. Laser, microwave, and acoustic interferometric and holographic techniques

can be applied to the surface metrology, which will be used to determine the surface profiles

of antennas in operation [8].

In practice, a measure for the accuracy of the reflector surface is the surface rms, defined

as the root-mean-square of one-half of geometrical optics path-length changes at discrete

points on the aperture [15]. It has been discovered that the surface deviations are usually

random and Gaussian in character, or at least likely to follow a bell-shaped curve [11].

The deviations may not be uniformly distributed, but for most part of the reflector this

assumption holds true. The region of correlation of the surface deviations tends to be circular

when the contours of adjustment are spaced in uniform grids. The number of uncorrelated

regions over the reflector surface depends on the panel size and spacing of the target points.

1.2.2 Effect on the gain, directivity, and radiation pattern

The directive gain, or the gain, G(O, #) of an antenna describes the variation of the radiation

intensity with direction in space. G(6, #) can be measured experimentally for an antenna

with a matched feed [5]. It is defined as the ratio of the Poynting's power density S,(0, 0)
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radiated in the (0, #) direction to the total power radiated by an isotropic antenna 3

G(0,q#) = (05) > (1.7)
P, /47rr 2

where P, is the total radiated power, which is calculated by integrating S, over a sphere of

radius r with r --+ 00.

The radiation pattern p(6, #) of the antenna is the relative distribution of radiated power

as a function of direction in space. The radiation pattern is the gain normalized to unity by

the maximum gain

_G(0, #)
p(0, # = G' (1.8)

The radiation pattern is often displayed in two planar sections called the E-plane and H-plane

patterns. The E-plane pattern is a view of the radiation pattern obtained from a section

which contains the electric field vector and the direction of maximum radiation. Similarly,

the H-plane pattern is a sectional view which contains the magnetic field vector.

The directivity of an antenna is a measure of its ability to concentrate the radiated power

in a given direction. The directivity is the maximum value of the gain of the antenna

Gmax= max{G(0,j#)} (1.9)

3There are inconsistent definition and usage of the terms "directive gain", "gain", and "directivity". Our
definitions are compatible with [16] and [7]. The IEEE [1] uses the same definition for the directive gain but

uses the term "directivity" synonymously. The gain is defined differently by replacing P, in Equation (1.7)
with Pt, the amount of power accepted by the antenna. The two will become equivalent if the antenna
radiates with 100 % efficiency.
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The directivity of a paraboloidal reflector antenna is given by [17]

Gmax = (TD ) 2  (1.10)

where D is the diameter of the aperture, A is the wavelength, and Yap is the aperture efficiency.

The aperture efficiency is the ratio of the directivity of an antenna to its standard directivity

(7rD/A) 2, i.e., directivity of the aperture when illuminated by a uniform plane wave.

Equation (1.10) suggests that the antenna peak gain increases indefinitely with increasing

frequency. In reality, however, the gain is often limited by deviations on the antenna surface

from the ideal shape. Based on the antenna tolerance theory [11], the maximum gain is

reduced by an exponential factor

Gmax Yap (+ A e( (1.11)

where 6 rms is the root-mean-square value of surface deviations. Figure 1-2 shows the max-

imum gain of some large antennas as a function of frequency. For a given antenna, the

reduction of the antenna peak gain increases with the frequency, and there is a value for the

operating frequency which yields the maximum peak gain. The wavelength at this optimal

frequency is found to be A = 47rrms. Further increase of operating frequency beyond this

value will lead to more reduction of the peak gain [9].

The radiation patterns are very sensitive to the phase distribution on the antenna aper-

ture. Beam direction, maximum gain, and the side lobe levels are strongly dependent on the

aperture phase distribution. The random surface errors degrade the radiation patterns
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largely through the introduction of random phase errors to the aperture field [11][10].

For the axially symmetric reflector antennas, the direction of the peak gain is on the axis of

symmetry. If the random surface errors are uniformly distributed over the antenna surface,

the direction of the maximum gain will not change because the effects from the random

phase errors tend to cancel each other [18].

1.2.3 Effect on the side lobe

The average level of side lobes is a measure of how well the power is concentrated into the

main lobe. The side lobe level (SLL), which is the ratio between the gain of the peak side

lobe to that of the peak main lobe, is expressed by

SLL = 10 log10 max{ Gside lobe }
G max

The design of reflector antennas usually involves tradeoff between the aperture efficiency rap

and the side-lobe level. Many high-performance antennas are designed so that the amplitude

of the aperture field is tapered towards the edge of the reflectors as much as possible to reduce

the peak of the side lobes. However, because of the Fourier relationship between the aperture

field and the far field, efforts to decrease the side lobes by tapering the aperture field may

result in broader main beams, which decrease the directivity and the aperture efficiency.

Random surface errors cause the side lobes to rise on average. Research results show that

reflector antennas with low SLL have a stronger requirement on the surface rms to wavelength

ratio (Erms/A) [10]. It has been found that the side lobes degrade much faster than the peak

gain, and for a given manufacturing tolerance level, a considerably smaller Erms/A is required
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to keep the side lobes within the required bounds. Thus, the requirement on the maximum

side lobe is likely to be a decisive factor to determine the maximum operating frequency of

reflector antennas.

1.3 Effect on the beamwidth

The beamwidth is a measure of the ability to focus for reflector antennas. There are two

definitions of beamwidth in common use. The first one measures the angular spread of

the main lobe between the first-null positions, which is known as the first-null beamwidth.

The other measures the angular spread between the half-power points of the main lobe,

which is known as the half-power beamwidth. Another performance parameter related to

the beamwidth is the beam efficiency of an antenna, which is defined as the ratio of power

radiated in the main-beam region to the total radiated power. There are two definitions of

the main beam in correspondence to the definitions of the beamwidth; one uses the first-

null beamwidth, while the other uses 2.5 times the half-power beamwidth [19]. The beam

efficiency is higher for reflectors with tapered aperture illumination because they have lower

side lobes.

One of the effects of the random surface errors on the radiation patterns is the broadening

of the main beam. In addition, The presence of random surface errors also reduce the beam

efficiency [19]. The degree of reduction is largely determined by the level of the rms surface

errors compared with the wavelength and the tapering of the aperture illumination.
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Figure 1-3: Polarization of the aperture field for a paraboloidal reflector antenna with a
vertically oriented electric dipole feed.

1.3.1 Effect on the cross-polarization

The polarization describes the vector nature of electric fields radiated by an antenna. Fig-

ure 1-3 shows the polarization on the aperture field of a paraboloidal reflector with a dipole

feed. The field component perpendicular to the polarization of the feed is called the cross-

polarized aperture field, and the radiation resulting from it is called the cross-polarized radi-

ation. The cross-polarized radiation will not be picked up by the receiver and will be a waste

of the transmission energy. Hence, efficient antennas are designed to minimize the cross-

polarized radiation. In addition, the quality of polarization is important for dual-polarized

antennas, which use orthogonal polarization to provide two communication channels for

each frequency band. A high level of cross-polarized radiation will degrade the quality of
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the orthogonal signals by mutual inteference.

For axially symmetric reflector antennas, the cross-polarized radiation field does not

appear on the E-plane and the H-plane, as well as on the main axis. This is a result of

two factors: (1) adjacent quadratures of the reflectors have their cross-polarization in anti-

phase, and (2) the path length from the focus to the aperture plane is constant for all rays.

Surface errors may increase cross-polarization level on the main axis in two ways. First, the

amplitude distribution of cross-polarized components may differ in different quadrants of the

aperture, and the cancellation of their contribution to the fields on axis may not be complete.

Second, there will be phase variations on the aperture caused by path-length differences. If

the surface errors are small, which is the case for most antennas, the amplitude errors are

negligible. However, effects from the phase variations cannot be ignored.

1.4 Work in the past

The effects of random surface errors on reflector antennas have been studied since the mid

1950's. By far, the most recognized work is the antenna tolerance theory developed by J.

Ruze [11] to predict changes in the average pattern as a result of random surface errors. He

was among the first to use statistical approach to analyze the effect of random phase errors

in the aperture of an antenna caused by the path length differences. The antenna tolerance

theory states the effects of random surface errors on the average gain pattern in terms of the

antenna's aperture illumination, root-mean-square surface errors, and correlation distance.

The random phase errors are assumed to be Gaussian distributed with Gaussian spatial

correlation function, which closely reflect the true distribution of the surface errors. The
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formula of the antenna tolerance theory can be reduced to a simple expression to determine

the gain loss in the axial direction. For any reflector antennas, there is a wavelength at which

the gain reaches a maximum. This wavelength depends on &rms, the rms deviation of the

reflector surface from the ideal surface and is given by A = 4 7rErms.

There is an attempt to modify Ruze's work to make the statistical model and the illumi-

nation function more realistic by M. Zarghamee. He extends Ruze's analysis by relaxing the

assumption that the error distribution must be uniform, which is likely to make the estimate

of the gain reduction too pessimistic [15]. He assumes instead that the distribution of the

rms surface error is tapered towards the rim of the reflector. However, this effect is minor if

the surface deviations are not a large fraction of the operating wavelength.

D. K. Cheng took a deterministic approach to analyze the effects of random surface errors

on radiation patterns [20]. He disagrees with the statistical approach where only the average

behavior of a large number (an ensemble) of antennas and the average radiation pattern

can be discussed. This is because the pattern of the individual antenna will differ from the

average pattern. In practice, it is desirable to be able to predict the maximum effect on the

gain, beamwidth, and etc., if the maximum phase error is given for an individual antenna

even when the exact phase distribution is unknown. In his own work, he determines the

maximum loss in the gain from the maximum phase error on the aperture of the antenna.

In addition, the maximum change in the beamwidth of the main lobe can also be predicted

from the slope of the radiation pattern near the half-power point and from the maximum

phase error.

Y. Rahmat-Samii develops a useful mathematical model to study the degradation on the
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average power pattern caused by the random surface errors [10]. The analysis begins with a

division of the reflector surface into annular regions. Each region is given a root-mean-square

value for the deviations from the ideal position. A closed-form expression for the average

radiation pattern from each ring is derived before it is used to find the average pattern

for the whole reflector, which results in an efficient and time-saving computational method.

The model incorporates information on the focus-to-diameter (f/D) ratio and allows non-

uniform surface errors and non-uniform illumination functions. The simulation results show

that reflector antennas with lower side lobe levels are more sensitive to the rms surface errors.

This model has been used subsequently to study the effects of random surface errors on the

beam efficiency and on the side lobe level [21][19]. It has been shown that the model could

be extended to include other types of errors such as the misalignment errors in addition to

the random surface errors [22].

S. I. Ghobrial studies the effect of surface imperfections on the axial cross-polarization

performance of reflector antennas [18][23]. His results show that the average cross-polarization

due to random surface errors is proportional to the root-mean-square error and the corre-

lation diameter of the surface errors. In addition, it is also a function of the polarization

efficiency of the antenna. The axial cross-polarization probability density is also found to be

close to the Rayleigh distribution for relatively large errors. In [18], he derives expressions

for the probability density and the average value of cross-polarization on the main axis. He

shows that for small errors, the average on-axis cross-polarization is directly proportional

to the rms surface error. For relatively large errors (A > 0.04) the cross-polarization is

proportional to the square root of (1 - e-2 ), where a is the rms phase errors.
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V. K. Tripp presents a different approach to analyze the effects of random errors on the

aperture antennas [24]. In stead of using the statistics of the phase term in the aperture field,

he introduces the error as the field scattered from defects, which are randomly positioned.

The defects are represented by a matrix of scattering function which can be calculated,

assumed or measured. A closed-form vector expression is derived for the average power

pattern in terms of the unperturbed aperture field, the scattering matrix of a defect, and

the probability density function of a defect position. Some good features of this model are

that the surface errors need not be small, and their distribution over the aperture is not

restricted. However, the drawback seems to be that this model is not convenient for doing

parametric studies due to the complexity of implementation.

1.5 Motivation

There are a few reasons to be interested in the study of effects of random surface errors

on the performance of reflector antennas. The most important is its usefulness in assessing

performance of antennas at various operating frequency ranges and in the specification of

antenna surface accuracy during the construction or upgrade. The quantitative results of

such study can be used by antenna engineers to specify the required level of manufacturing

tolerance. If the manufacturing tolerances are set too loose, the reflector may not perform

according to the specifications. On the other hand, the manufacturing tolerances that are

set too tight may result in excessive costs [21]. As the use of microwave frequencies continues

to increase, there will be a growing demand for more accurate manufacture, installation, and

validation of reflector surfaces.
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Almost all previous studies on the effects of random surface errors on reflector an-

tenna performance have focused on the analysis of phase errors on the antenna aperture

[11][15][10][25][26][20][27][24][23][18][21][19]. These efforts result in some useful mathemati-

cal models and closed-form formulas which are suitable for parametric studies but are often

compromised with simplified assumptions on the characteristics of the error distribution and

in the formulation of analysis. For instance, it has been widely accepted that the errors

are distributed more or less with the Gaussian distributed height and having the Gaus-

sian correlation function. Yet, no known computer simulation-based study in the past has

incorporated this model to the full extent.

So we think the study can be improved in many areas in order to have more accurate

results. A modern approach is to do a Monte Carlo simulation by generating an ensemble of

instances of the random surface errors that may appear on the reflector surface and study the

statistics of the radiation patterns. This approach should allow more realistic assumptions

on the statistical distribution of random surface errors, which will lead to more accurate

results. Furthermore, a collection of data from the simulation will enable us to understand

the statistics of the performance parameters of interest in addition to the mean values.

1.6 Objective

The purpose of this project is to develop a simulation program to study the radiation pat-

terns of paraboloidal reflector antennas whose surfaces are subjected to random errors. The

emphasis of this project is on using an accurate representation of the statistics of the ran-

dom surface errors, and on making the results truly reflect their presence. The program
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should produce the co-polarized and cross-polarized radiation patterns on three planes of

observation-E-plane, H-plane and 45-degree plane. It should be flexible enough for users to

change the size D, shape f/D, and feed pattern G(6', 0') of the paraboloidal reflector.

1.7 Approach

There are three high-frequency methods for the computation of the radiation from reflec-

tor antennas in common use: geometrical optics/aperture integration (GO/Al), physical

optics/surface integration (PO/SI), and physical optics/aperture integration (PO/AI) [28].

The aperture integration methods-GO/Al and PO/AI-are the most popular methods to

analyze radiation field from reflectors because they avoid integration over a non-planar sur-

face. In GO/AI, ray tracing is used to find equivalent currents in the aperture plane based

on intensity of the field in ray tubes. In PO, the induced current elements on the reflector

surface are approximated to be twice the magnetic field intensity. However, the radiation

integral can be performed either on the reflector surface or on the aperture plane. From the

formulation, PO is potentially superior to GO because it includes axially directed surface

current elements, while GO does not. In addition, PO accounts for surface normal variations

as well as phase variations due to surface distortions, whereas typical application of GO only

considers phase variations due to changes in path lengths.

A formulation based on geometrical optics ray-tracing will be used in this study. Geomet-

rical optics has theoretical foundations based on Maxwell's equations [29][7]. This technique

can be used to analyze reflector antennas when the size of the structures are much larger

than the wavelength. When applied to the analysis of reflector antennas, solutions obtained
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from GO are found to agree with those obtained from other potentially superior approaches

such as physical optics (PO) and geometrical theory of diffraction (GTD) up to the first few

side lobes [30][31][28][32].

We assume the reflector has a point-source feed, and electromagnetic energy radiated

from the feed can be thought to flow in ray cones with their bases on a spherical wave front.

The ray cones will be generated in such way that they have equal solid angle, so that on a

wave front, the cones will support the same amount of base area. Thus, the radiation power

contained in each cone will depend only on the source's gain factor.

When the incident ray vectors hit the reflector, they will be reflected according to the

law of reflection. The positions where the ray vectors intersect with the aperture plane will

be recorded as well as the distances that they travel from the source to the aperture plane

and the polarization of the electric field associated with them. This information will be used

to calculate the radiation pattern which depends on the field distribution on the aperture

plane.

By the field equivalence principle, the fields on the wave front can be replaced by an

equivalent source, and we put an equivalent current sheet on the base of each ray cone. These

current sheets will be substituted by a dipole with equal current moment. The location of

the dipole is chosen at the centroid of the current sheet.

For the ideal paraboloidal reflector, the phase term of the aperture field distribution will

be equal due to the property of parabolas. With the addition of a random rough surface, the

distance that the rays must travel from the source to the aperture plane will not be the same;

hence the difference in the phase term. The difference in the phase term is the main factor

39



for the change in the radiation pattern. Other factors include changes in position of the

reflected rays due to the angle of reflection and changes in amplitude of the electromagnetic

field intensity for each ray.

The surface errors which appear on the reflector surface are assumed to come from the

manufacturing or during the construction process. The random errors are assumed to be

uniformly Gaussian in distribution and in correlation pattern, with a specified correlation

length over the reflector surface. The degradation in the performance of reflectors will be

quantified with respect to the root-mean-square values of the height distribution.

1.8 Scope of the project and this document

The scope of this project will be limited to the study of some performance parameters of the

reflector antennas which can be determined from the radiation patterns. From the radiation

pattern, we will be interested in the effects of random surface errors on the gain pattern,

directivity, beamwidth, side-lobe levels, and on-axis cross-polarization. We will be concerned

only in the far field because most applications assume far distance between the source and

the receiver.

Throughout the project, the reflector will be assumed to have the size D = 40 A and shape

f/D = 0.5 with a linearly polarized isotropic point-source feed at the focus. In addition, we

will use one value of the correlation interval for the ensemble of Gaussian random surfaces.

In our application of geometrical optics, it will be assumed that the currents on the

shadow region of the reflector have negligible effects on the far-field pattern. The diffractions

on the edge of the dish are also not included.
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Chapter 2 begins with the theory of geometrical optics followed by an analysis of radiation

field from a paraboloidal reflector based on GO and the Huygens' principle. The solution

will be used to compare with the numerical results from ray tracing before it will be used

to study reflectors with random surface errors. We also present results based on PO and

compare them with those from GO ray tracing, along with an analysis of the maximum angle

of observation where GO and PO results would agree.

Chapter 3 describes the theory and a method to create the Gaussian random surfaces to

be used as the surface errors in the Monte Carlo simulation. A series of verification is made

to validate the computer-generated results and to illustrate some properties of the Gaussian

random surfaces.

Chapter 4 begins with the effects on the GO and PO current elements brought by the

incorporation of random surface errors to a paraboloidal reflector. As a result of the Monte

Carlo simulation, we present the average patterns from GO and PO in both polarizations

(co-polarization and cross-polarization) on the three major planes of observation (E-plane,

H-plane, and 45-degree plane). The results from GO and PO will be discussed, and compared

with those from the antenna tolerance theory.

Chapter 5 contains conclusions from our study and recommendations for the future work.
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Chapter 2

Analysis of radiation patterns from a

paraboloidal reflector

In this chapter, we formulate a model based on ray tracing to study the radiation field from

paraboloidal reflector antennas. The model is intended to be used to analyze paraboloidal

reflectors with small surface errors. We begin with the fundamentals of geometrical optics

(GO). Next we present an analysis of the aperture field of paraboloidal reflectors with a lin-

early polarized point feed based on GO. The Huygens' principle is used to find the diffracted

field from the aperture field. Then we describe a scheme to produce the ray vectors, which

will be used for ray tracing. A general formulation to find the radiation field from the ray

vectors are derived. Several pattern plots are presented to compare between the analytical

results of geometrical optics and the numerical results from ray tracing. The purpose is to

verify the correctness of the formulation and its implementation on a computer program.

The last part of this chapter contains an analysis of paraboloidal reflectors based on PO.
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The potential for PO to produce results with higher accuracy will be the basis for using

PO-based results as our reference standard when the random surface errors are added to the

reflectors.

2.1 Geometrical optics analysis of radiation patterns

from a paraboloidal reflector

In this section, we derive an analytical solution to the radiation field of a paraboloidal

reflector with a linearly polarized isotropic feed. We use geometrical optics to find the field

distribution on the aperture plane of the reflector. Then we apply Huygens' principle to the

aperture field to find the radiation field. The radiation field will be described in terms of the

co-polarized and the cross-polarized radiation patterns. The appearance of these patterns

will depend on the definition of the polarization reference vectors.

2.1.1 Geometrical Optics

Geometrical optics (GO) is a very high frequency approximation to solutions of Maxwell's

equations [16][7][29]. Geometrical optics is very accurate for use in the design and analysis

of optical devices since optical wavelengths are extremely small compared to the dimensions

of optical systems. At microwave frequencies, the operating wavelengths are not always rela-

tively small compared to the dimensions of microwave systems. However, geometrical optics

remains sufficiently accurate even for antennas with dimensions as small as five wavelengths

[33]. In general, geometrical optics can be used to analyze and synthesize optical and mi-
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crowave systems to the approximation that diffraction and interference from the edges can

be neglected.

In classical geometrical optics, the wavelength, the phase, and the polarization of the

electromagnetic waves are omitted [29]. The extension of classical geometrical optics to

microwave analysis includes the above factors, which can be done by using the asymptotic

solution of the Maxwell's equations as w -+ oo(A -+ 0). This extension consists of the

following: (1) assuming a small but finite wavelength, (2) identifying the wave fronts with

equiphase surfaces, and (3) assuming electromagnetic plane waves propagating along the

geometrical optics rays in a homogeneous medium.

Let us consider the following plane-wave solution to the Maxwell's equations

E(f) = EeikoL(f) (2.1)

H(f) = HeikoL(f) (2.2)

where ko = w/c and ko -+ oc. The phase function L(f) is known as the eikonal. Substituting

Equation (2.1) and Equation (2.2) into the source-free Maxwell's equations for isotropic

media

VxE = iwpH

VxH = -iwfE

V-.= 0

V .H= 0 (2.3)
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and using the vector identities V x (Aq) = #V x A+ V x A, and V -(AO) = V -A+ V -A,

we find

VL(f) x H + nE

VL(f) xE- nr7 H

i V xH
ko

ko

ko

ko

where n = cf/lic is the refractive index, and r = 0./c is the characteristic impedance of the

media.

In the high frequency limit, the right-hand sides of Equations (2.4)-(2.7) are equal to

zero. The governing equations of geometrical optics are

VL(f) x 7h

VL(F) x E

VL(f) -H

=-TE
r

= n/7

(2.8)

(2.9)

(2.10)

(2.11)

= 0

=0

Note that Equations (2.8)-(2.11) are independent of frequency. Substituting Equation (2.9)

into Equation (2.8) and making use of Equation (2.10), we obtain the eikonal equation in

geometrical optics

IVL(f)12 2 (2.12)
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The wave fronts are described by letting L(i) equal to a constant. The vector VL(f)

evaluated at any point in space is always normal to the wave front passing through it. From

Equation (2.12), we have

VL = n (2.13)

where s is the unit normal to the wave front. The vector sn is called the ray vector. From

Equation (2.10) and Equation (2.11), the electric and magnetic fields at each point on a ray

are always perpendicular to the ray. The time-average Poynting's vector is expressed by

1 1
< 3> = Re{E x H*} = Re{E x (VL x E)*}

2 2nru

= (E -E*)VL
2nrq

= s E12 (2.14)
2r/

The Poynting's vector has a unit of W/m 2 and can be viewed as the power density per unit

area along the ray vector.

In order to trace geometrical optics rays through a system, it is necessary to know the

behavior of the rays in the media and at the boundaries. Let f(s) be the position vector

along a ray path in terms of the arc length parameter s. Since df/ds = ., we find from

Equation (2.13)

d2 i dr di VL VL
d 2 d- V(--)= .V(P)= .V( ) (2.15)
ds2 ds ds nn n

For homogeneous media in which n is a constant, we find from Equation (2.12) and
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Equation (2.15)

d 2f I V |d 2 = V( 2 = 0 (2.16)

Thus the ray path is a straight line in homogeneous media.1

Next we derive Snell's law from the solutions of geometrical optics. Snell's law governs

the behavior of rays at the boundaries between two media. We integrate Equation (2.13)

around a ribbon-like contour across the boundary separating two media with indices ni and

n 2 as shown in Figure 2-1.

Applying Stoke's theorem and letting the ribbon width 6 -+ 0, we have

dS - V x (sn) = di A. n = 0 (2.17)

where dS is the unit vector perpendicular to the ribbon area, and dl is the differential line

element along the closed contour of the ribbon. The contributions to the integral from the two

sides of the ribbon perpendicular to the surface are negligible because they are proportional

to the vanishing 6. Thus, the tangential components of the ray vectors are continuous across

the boundary. For the transmitted ray, we find from Equation (2.17)

n1 sin 6 = n2 sin Ot (2.18)

'The ray path can also be determined from Fermat's principle. The optical path length along a ray path
C is defined as the line integral fc nds, where n is the index of refraction of the medium and s is the arc
length along C. Fermat's principle states that electromagnetic energy travelling between two points will
follow any ray path that makes the integral stationary. In a homogeneous medium, ray paths will be straight
lines.
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n
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ni
C

6 d iOt

Transmitted ray

Figure 2-1: Derivation of Snell's law using geometrical optics.

For the reflected ray, we use Ot = 7r - 6 , and n 2 = ni. From Equation (2.18), we find

ni sin Oi = i sin 0,. Thus the angle of reflection 0, is equal to the angle of incidence Oi. This

derivation is valid as long as the radii of curvature of the incident wave and of the boundary

surface are large compared to the wavelength [7].

2.1.2 Aperture field of paraboloidal reflectors

In this section, we use geometrical optics to find the aperture field of a paraboloidal reflector

antenna with a linearly polarized point feed at the focus. The assumption that the source is a

point radiator is justified if the main reflector is in the far field of the feed [16]. In the far field,

any current distribution reduces to a point source or can be described adequately in terms

of wave fronts and rays. We shall assume that wave fronts from the source are concentric
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Figure 2-2: Geometrical optics analysis of the aperture field of a paraboloidal reflector.
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spherical with the center at the source point. Figure 2-2 displays the ideal paraboloidal

reflector, which is described by

0'
r' =f sec 2 - 0 < 0' < 0 (2.19)

2 0

where r' is the distance from the origin to the surface of the paraboloid, f is the focal length,

and 0' is the angle between the main axis and the rim of the paraboloid. Ej and Er are

the incident and the reflected electric fields respectively. The vectors sj and s, denote the

incident and the reflected ray vectors.

Assuming there is a point-source feed located at the focus. The incident electric field

vector on the paraboloidal surface at a distance r' from the focal point is

eiwr'/c
Ei = 6i E(0', ') , (2.20)

The amplitude E(9', #') is related to the gain factor G(O', #') of the source by

1 Pt101I12)
-|E(' ' _= G4 (', (2.21)
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where Pt is the total power radiated by the source.

We will assume that the point source at the focus is y'-polarized. The polarization of the

incident wave, which is specified by the unit vector ji, is given by

' x (y' x ') Q' - (V' - y')22'
1 P XWXP) W -(fI(2.22)

| f' (' x f'|) y'- (jf' - j')j?'|
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We find i in rectangular coordinates by a substitution ofr' P = 'sin 9' cos 0'+ 'sin 9'sin 0'+

' cos 9' into Equation (2.22), which gives

= { ' 6sin2 O' sin O' cos O'

1 - sin 2 9' sin 2  -o

+$' (1 - sin2 9' sin2 #') - s' sin 9' cos 9' sin #'}

The reflected electric field Er is determined from Ej and h, the unit normal vector to the

paraboloidal surface, by using the following electromagnetic boundary conditions

ix (Er + Ez) = 0

n -Ej = f . Er

(2.24)

(2.25)

Equation (2.24) states that the tangential electric fields vanish at the reflector surface, which

is assumed a perfect conductor. Equation (2.25) states the continuity between Ej and Er.

Cross-multiplying Equation (2.24) by h and making use of Equation (2.25), we find

(2.23)

- 0 wr'/c
Er = 2ft( - Ei) - Ei = r E(' I#) , (2.26)

The unit vector dr, which is the polarization of the reflected wave, is given by

8r = 2ft(h -6j) - 8i (2.27)

In order to find 8,, we begin with the unit normal to the reflector surface ft. Taking the
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gradient of Equation (2.19), we find the normal vector to the reflector surface

2 / r
' 0'

-- cos -
2 2

(2.28)

Normalizing the above expression by - cos(6'/2) and using the following transformation of

vectors from the spherical to the rectangular coordinate systems

i= sncoso+ sinsino+ cos

6 = ±cos~cos#+ cos6sin# -2sinO

0 = -isinO+9cos6

i = -s' sin - cos'- sin - sin ' cos -
N2te tath2e 2

Note that the vector ft above points toward the concave side of the paraboloid.

we find

(2.29)

(2.30)

(2.31)

(2.32)

The po-

larization vector 8, of the reflected wave is determined from Equations (2.23), (2.27), and

(2.32)

{s' (1 -cos0')
1 - sin 2 0' sin 2 4,

sin 0' cos #' - Q' (cos 0' sin 2 4' + cos 2 4') 1

The incident ray vector sj is the same as the position vector ' and is expressed by

sj= d' sin0' cos 0' + ' sin0' sin 4' + ' cos 0' (2.34)
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The reflected ray vector s, is determined from the following vector equations

fix (si - s,) =0 (2.35)

h -si = t - sr (2.36)

Equation (2.35) states that the three vectors-si, sr, and ?-lie on the same plane. Equa-

tion (2.36) is the Snell's law of reflection in vector form. We cross-multiply Equation (2.35)

by h and make use of Equation (2.36) to obtain

sr = si - 2it(h - si) (2.37)

From Equation (2.32) and Equation (2.34), we find that -i = - cos(6'/2) and 2h(h -.si) =

i'sin 0'cos #' + 9'sin 6'sin 0' + i'2 cos2 ('/2). Hence, sr can be expressed in rectangular

coordinates as

(2.38)

So the reflected rays are parallel to the axis of symmetry of the paraboloid. Equation (2.38)

agrees with Equation (2.33), which shows no i'-polarized component for the reflected wave.

We obtain the electric field at the aperture plane from Equation (2.26) and Equa-

tion (2.27)
zk(r'+,' cos 0') ei2k f

Eap = drE(O', #') r =rE(6', 0') r/ (2.39)

The phase term of Eap increases from that of Er in Equation (2.26) by kr'cos9', where

k = w/c. The increment is due to the extra distance that the reflected rays must travel from
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the reflector surface to the aperture plane. The magnitude of EaP equals the magnitude of Er

on the reflector surface because the reflected rays are parallel to the axis of the paraboloid,

making the power density per unit area unchanged. The aperture field is composed of

the co-polarized and cross-polarized components. The co-polarized component is the field

component which is parallel to the polarization of the feed (Q' in this case), while the cross-

polarized component is in the perpendicular direction. The cross-polarized component comes

from the x' component of 6r, which is caused by the curvature of the paraboloidal surface.

If the feed is isotropic, E(O', ') will be uniform in all directions. From Equations (2.39)

and (2.33), the co-polarized component of Eap is symmetrical around the x'-axis (#' = 0)

and y'-axis ( = ir/2). The cross-polarized component of Eap is symmetrical around the

4/ = 7r/4 and #' = 37r/4 lines, and anti-symmetrical around the x'-axis and y'-axis. This

information will be useful in the discussion about the radiation patterns of the reflector in

the next section.

In the above analysis, we made two assumptions regarding the application of GO. First,

there is no surface current on the shadow side of the reflector. Second, the discontinuity

in the surface current at the edge of the reflector is negligible; hence, there will be no edge

effect. These assumptions usually restrict the accuracy of the radiation pattern to the main

beam and the first few side lobes [34][35]. The pattern in the far side lobe region can be

determined more accurately by including diffraction from the rim of the reflector. This can

be done by an augmentation of diffraction effects to the results of GO using the geometrical

theory of diffraction (GTD) [6][36][29].
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2.1.3 Radiation field from the aperture distribution

Once the field on the aperture is obtained, the field in the forward direction can be found

from Huygens' principle. The aperture field Eap can be thought of as a plane wave hitting a

screen made of perfect conductor with an open circular slit, making the field zero everywhere

except on the aperture area. The aperture field contains the tangential components of

electromagnetic fields on the surface of a large volume in free space which contains the point

of observation. The geometry for finding the radiation field from the aperture field of a

paraboloidal reflector is shown in Figure 2-3.

The Huygens' Principle

Huygens' principle states that the field solution in a region V' is completely determined

by the tangential field specified over the surface S' enclosing V'. In mathematical terms,

Huygens' principle expresses the fields at an observation point in terms of fields at the

boundary surface. Consider a hypothetical surface S' enclosing a radiating source. The

region V' is the volume bounded between S' and a spherical surface with an infinite radius.

The electromagnetic field outside the surface S' is [7]

E(F) = fj dS' {iwp(T, ') - [h x H(F')] + V x G(7, T) - [f x E~T')]} (2.40)

H(T) J dS' {-iwe (T,7') [ii x 1E(7')] + V x V(T, ')- [h x H(T')]} (2.41)
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y,y

x
z

Figure 2-3: Geometry used for finding the radiation field from the aperture field of a
paraboloidal reflector antenna. The primed coordinates are used for the analysis of the
reflector's aperture field.
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where ft is the outward normal to the surface S', and G(F, T') is the three-dimensional

dyadic Green's function given by

Gerr')= I +-ik-V I (2.42)G~~ k2I .i 477;7 - V'I

The del operator V in Equation (2.42) is given by

0 1 1 &
V = r-a + + r1n9 + (2.43)

ar T 090 r sin 0 i&#

Note that P(F) in Equation (2.40) is expressed in terms of the tangential electric and mag-

netic field components at the surface S'.

Consider the diffraction of a plane wave normally incident on an aperture in an infinite

conducting plane. So the fields are zero everywhere on the other side of the screen except on

the aperture area. At the aperture we use the equivalence principle 2 to assume a magnetic

current sheet with M. = -2h x E and no electric current sheet. 3 From the Huygens'

principle,

E(T)= Jj dS' {iwp(7, ') J, (') - V x (, I') M,(T')} (2.44)

H(7) = dS' {-iwc(F, F') - M,(F') + V x G(f, F') -J,(')} (2.45)

2When we are interested in a limited region of space, we can replace all uninteresting regions outside this
space by using equivalent sources. The equivalent sources can be placed in the uninteresting regions or on
the boundaries of the region of interest. The equivalent sources are not unique and can be constructed in
many different ways.

3Alternatively we may use the following equivalent sources: (1) an electric current sheet J8 = h x H and
a magnetic current sheet M, = -ft x E or (2) an electric current sheet with J8 = 2f x H and no magnetic
current sheet.
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we find

E(F) = 2 dS' V x (f, [') xE(')]

S2V x Jj dS'h x U(4, ') - E(r')

2V x dS' h x E(') e (2.46)
sA 47rr 7; '

When the observation point is very far from the aperture, the diffracted field is equivalent

to the radiation field due to an aperture antenna with a surface current distribution. In the

radiation zone, the observation points are so remote from the aperture that all wave vectors

originating from the aperture are essentially parallel. This condition allows the radiation

field approximation kIf - ?' ~ kr - k - f'. Using this approximation, the electric field in

Equation (2.46) becomes

E~r) ~ 2V x ei dS x (f')e-
47r JAs

-iir k X Js dS'f x E(7')ek' (2.47)

where we replace the del operator V by ik in the last step.4

4 In Equation (2.47), the del operator

9 +10 -a 1 &
V = r-+9--+5-

Or r a9 r sinO &

eikr a.
operates on the product of and the surface integral term. The operator gives ik when operated on

47rr ar
eikr which yields a term of the order of 1/r to the final solution. All other terms of the del operator yield
terms of the order of (1/r)2 or higher. In the far field, kr > 0, and only the terms of the order of 1/r are
kept. So in this case we can replace V by ik.
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Application of Huygens' principle to the aperture field

From previous analysis, the aperture field of a paraboloidal reflector can be expressed by

)e-i(W/c)(r'+rcosO) 0 < 0' < 010 (2.48)

where r' f sec 2 (6'/2), and B, = 1 {I.'(1-cos 6') sin 0' cos 0'-Q'(cos 6' sin2 /+
1 - sin 2 0' sin2 ,

cos 2 #')}. Note that Eap is completely described in terms of the angular parameters 6' and

0'. We can think of Eap as a result of a normally incident plane wave on a screen made

of perfect conductor with a circular aperture on it. We apply Huygens' principle to Eap to

find the radiation field from the aperture field as we would for a diffraction problem. From

Equation (2.47)

ieikr

- 2xr

Kx

- 27rr

ieikr-27rr

ie ikr

7x
27rr

hA'
hfA'

hA

ffA

dA'h x Eape~i ;

dA' ft x {' (' -Eap) + P' (P' -ap)}e

dA' i x { -& (' - Eap) + 9 (9 Eap)}e k '

dA' (-&Fy + PFx)

F= - dA' (i'. ap)e kP'

Fy = hA dA' (9' Eap)ez k7
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and dA' denotes the differential area on the aperture. F, and Fy are the contributions to the

radiation field from the cross-polarized and co-polarized components of the aperture field

respectively. In the derivation of Equation (2.55), we replace h by and use the fact that x

and x' point to the opposite directions.

We substitute into Equation (2.49) k = ,k sin 0 cos 0 + 9k sin 0 sin q + k cos 0 and

p' = -: p' cos 0' + 1p' sin ' and use the transformation of vectors from the spherical to

the rectangular coordinate system

x = rsin0coso+0cos cosq$- 5 sin4 (2.52)

= sin sinq#+Ocos sin#+ cos# (2.53)

z = rcos0-Osin0 (2.54)

to obtain E(f) expressed in spherical coordinates

27rr=ieik

i {-iksiFcos-±QkFcos0+i(Fsin cos x+Fsin sin#)}
27rr

ikeikr
= j~27r {9(-Fxcos# - Fysin#) + 4(Fxcos0sin# - Fycos cos#)} (2.55)

where

Fx= 'IAdp'do'p'(i' . Eap)eikp' sin0cos(c++') (2.56)

F= = dp'do' p' (92' Ea)eikp' sin0cos(0+0') (2.57)
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Polarization of the radiation field

Since our feed is linearly polarized, it should be easy to determine the co-polarized and the

cross-polarized radiation fields. However, there are more than one way to define the directions

of the co-polarization and cross-polarization reference vectors. Our choice of polarization

reference vectors corresponds to the second definition of polarization proposed by A. Ludwig

[371, which is illustrated in Figure 2-4b along with two other alternatives. This definition

is chosen because the polarization vectors are always tangential to a spherical surface (and

hence the radiation field) and because it is simple to understand. In addition, this definition

is the most convenient in comparing between the calculated and the measured patterns [35].

The polarization unit vectors are defined in a system of coordinates x1 , yi, zi which is

related to the original system x, y, z by x1 = x, yi = z and z, = -y. For a feed which is

linearly polarized along the y'-axis of the feed coordinate system, the co-polarization vector

ico and the cross-polarization vector icr are given by

{-isin2 6 sin # cos #
1 - sin 2 0 sin2

+9(1 - sin 2 0 sin 2 ) - 2 sin 6 cos 0 sin #}

{cos 0 sin 0 + 5 cos 0} (2.58)
1 - sin 2 0 sin2

Zcr

S {f cos 0 - i sin 0 cos }
1 - sin 2 0 sin2 4

{0 cos# - qcos 0 sin } (2.59)
1 - sin 2 0 sin2
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Figure 2-4: Three definitions of polarization. (a) In a rectangular coordinate system, one
unit vector is taken as the direction of co-polarization, and another for cross-polarization.
(b) In a spherical coordinate system, unit vectors tangential to a spherical surface are used.
(c) The polarization vectors are defined according to the field measurement system. (Left:
directions of the reference polarization. Right: directions of the cross polarization.) The
co-polarization and cross-polarization reference vectors are perpendicular to each other at
any points of observation.
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The radiation field can be decomposed into the co-polarized and cross-polarized terms as

follow

E( f) = Eco + Ecr (2.60)

where Ec = (E() cc, and Ecr = (E(r) -cr)icr. The resulting co-polarized and cross-

polarized components of the radiation fields are

Eco = E(F) - Co

ikeikr 1 {(-F, cos - Fy sin q)cos 6 sink
2irr 1 - sin 2 0 sin 2 g

+(F, cos 6 sin -Fy cos 0 cos q) cos $}

ikeikr Fy cos O (2.61)
27rrF 1- sin 2 0 sin2 g

Ecr E(T) * =cr

ikeikr 1
{r 1 (-F, cosq5- Fy sin #)cos27rr 'I - sin 2 0 sin 2

+(-F cos 0 sin + F. cos 6 cos 0) cos 0 sin $}

ike ikr 1 {-F,(1 - sin 2 0 sin 2 )
27r 1 - sin 2 0 sin 2 q

-F. sin 2 0 sin # cos #} (2.62)

where Fx and Fy are expressed by Equations (2.56) and (2.57) respectively.

Figure 2-5 and Figure 2-6 show the radiation patterns for a paraboloidal reflector with

diameter size D = 40 A and with the focus-to-diameter ratio f /D = 0.5. The feed is isotropic

(G(0', #') = 1) and y'-polarized. Figure 2-5 shows the radiation patterns on the principal

E-plane and H-plane, where q = 7r/2 and # = 0 respectively. We display only one side of the
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Figure 2-5: Co-polarized radiation patterns on the principal E-plane and H-plane for a
paraboloidal reflector (D = 40 A, f/D = 0.5) with a linearly polarized isotropic feed at the
focus.
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Figure 2-6: Co-polarized and cross-polarized radiation patterns on the plane tilted at 45
degrees from the principal E-plane and H-plane. The cross-polarized pattern is normalized
with respect to the peak gain of the co-polarized pattern.
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co-polarized patterns because they have a symmetry around the main axis on these

planes. The cross-polarized patterns are not displayed because they do not appear on these

planes due to the anti-symmetry of the cross-polarized component of Eap around the q' = 0

and 0' = 7r/2 lines. The E-plane and H-plane patterns look almost identical near the main

lobe. The first null is located at 0 = 1.8 degrees. The peak side lobe level is -18.8 dB below

the peak gain at 0 = 2.4 degrees.

Figure 2-6 shows the radiation pattern measured on the plane tilted at 45 degrees (0 =

7r/4) between the principal E-plane and H-plane. Near the main axis where 0 is small, F,

contributes most to E, (see Equation (2.62)), making the cross-polarized component on the

aperture field the major cause of cross-polarized radiation on this plane. The co-polarized

pattern on this plane looks similar to those on the principal planes; however, there is a

significant increase in the level of cross-polarized radiation. In fact, this is the plane where

the cross-polarization level reaches its maximum due to the symmetry of the cross-polarized

component of Eap around the 7' = ir/4 and #' = 37r/4 lines. The maximum level of the

cross-polarized pattern is -25.5 dB below the peak gain at 0 = 1.7 degrees.

2.2 Numerical analysis of radiation pattern from a

paraboloidal reflector by ray tracing

Ray tracing provides a numerical solution to electromagnetic problems by using the geomet-

rical optics approach. In this section, we use ray tracing to find the aperture-field distribution

of the ideal paraboloidal reflector with a linearly polarized isotropic feed. For each ray vec-
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tor, four quantities will be determined and recorded: (1) the field intensity, which is related

to the amplitude of the field, (2) the point of intersection with the aperture plane, (3) the

polarization of the geometrical optics field represented by the ray, and (4) the path length

that the ray travels from the feed to the aperture.

Numerical results from ray tracing will be compared with those obtained analytically

from geometrical optics in the previous section in order to verify the accuracy of the imple-

mentation for the ideal paraboloidal reflector case. Later, this program will be used to find

radiation patterns from reflector with random surface errors on the reflector surface.

2.2.1 The amplitude of the aperture field

Power distribution on the aperture of a paraboloidal reflector

In this section we use the concept of ray tube in geometrical optics to calculate the power

distribution on the aperture of paraboloidal reflectors.

Equation (2.14) tells us that the radiated power flows along the paths of ray vectors. A ray

tube is a feature of all the rays that pass through any given closed curve. The amount power

flowing across any cross-section of a ray tube must be conserved since no power can flow

across the lateral surfaces of the tube. Thus, as the cross-section of the ray tube increases,

the power density per unit area decreases, and vice versa. These two cases correspond to

converging and diverging rays respectively. For a ray tube passing through a differential area

dA 1 on a wave front W1 and intersects another wave front W2 in the differential area dA 2 ,

the total power flowing through dA 1 must be equal to the total power flowing through dA 2 .
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We can express this conservation of power in terms of the power density as follow

S1 dA 1 = S2 dA 2  (2.63)

where S, is the power density (power per unit area) at dA1 on W1, and S2 is the power

density at dA 2 on W2.

The concept of power flowing in ray tubes can be applied to the free-space region between

the primary feed and the aperture of reflector antennas [38]. In the analysis of the power

distribution on the aperture of the antenna or in the design of the feed for optimum illu-

mination, the ray tube concept can be used to find an approximation to the relative power

distribution. To determine the relative power distribution S2/S, by Equation (2.63), it is

necessary to know the ratio dA 1/dA 2 only to within a multiplicative constant. It turns out

that this ratio can be easily determined from ray tracing.

Let So be the power density at a wave front with radius R' centering at the source point

o (see Figure 2-7). So is related to the gain factor G(', #') of the source by

I1 Pt G(0'5 #')
so = -- |E(', 0')|2 = (' (2.64)

2r/ 4ir R'2

where Pt is the total radiated power from the source to the reflector. We will assume that

G(', 0') is symmetrical around the z'-axis and is a function of 0' only.

Let S, = dP 1/dA 1 and S2 = dP2/dA 2 be the power density at the reflector surface and at

the aperture plane respectively. By the conservation law of geometrical optics, the amount of

power flowing in the ray cone from the source to the reflector surface is equal to the amount
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Geometrical optics analysis of power distribution on the aperture of a
paraboloidal reflector.
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of power flowing in the ray tube from the reflector surface to the aperture. This power

is equal to

dP = dP2 = R'2 SodQ' = t G(O')dQ' (2.65)
47r

From the definition, we find the power density on the aperture

dP2  Pt dQ'
S2(0') =- =dP2 -d-G( A) (2.66)

d A2 4r d A2

We substitute into Equation (2.66) dQ' = sin O'd6'd' and dA 2 = p'dp'do' where p' = r'sin 0'.

Since the paraboloidal reflector surface is described by r' + r' cos 0' = 2f which gives r' =

f sec 2 (0'/2), we find p' = 2f tan(O'/2) and dp' = f sec 2 (0'/2)dO' = r'dO'. Finally, we obtain

S 2 (0') =PtG sin O'dO'd'
(r r'2 sin O'd6'do'

Pt 0'
- G(') cos - (2.67)

4,7r 2

If the source point is isotropic, i.e., G(9', 0') is uniform, the field amplitude distribution on

the aperture will be tapered around the edge of the dish by a factor of cos 2 (6'/2). The

distribution can be made uniform by making the gain of the source G(6', 4') = sec 4(0'/2),

which will bring the maximum aperture efficiency to the reflector.

Substitution of the aperture field with equivalent electric dipoles

In order to compute the far-field pattern from the aperture field distribution which is ob-

tained by ray tracing, we divide the aperture area into a number of small patches. Each

patch contains the point of intersection of a reflected ray and the aperture plane. The elec-
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tromagnetic field on the patch will be replaced by an equivalent electric dipole located at the

point of incidence. The magnitude and polarization of the dipole moment will be determined

from the geometrical optics field which the ray vectors represent.

On the aperture plane, we find the magnitude of the electric and magnetic fields from

Equation (2.14)

S2 (0') = |E 2 12 = |7 2 |2 (2.68)
277 2

Using the equivalence principle [39], we may replace the electromagnetic field on the aperture

by an equivalent current sheet j, = 2(h x H 2) whose magnitude is equal to

PtG(0') 2 '
( 2') 2 ) cos2 - (2.69)

27rqf 2  2

We replace the surface current on a patch with area Ai by an electric dipole with dipole

moment lil. The magnitude of the dipole moment is equal to

| = I |,(')| dA 2

ff PtG(0') 2 2 40
cos _2 sec - sin 0' dO'd4'

JJw 27rnf 2  2 2

- 2 PtG(0') C4'f2 cos -sec -dQ
27r17f 2  2 2

= C sec2 dQ' (2.70)

PtG
where C = 2f for an isotropic source and Q' is the solid angle at the point source

s 27r

supported by area Ai (see Figure 2-7). We choose Ai such that they are supported by equal
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amount of solid angles AQ' = Af'. We can write Equation (2.70) as

jIj1j = AQ'Csec2 - (2.71)
2

where #' is the 'mean value' of 6' that makes the left hand sides of Equations (2.70) and

(2.71) equal for each A2. The existence of 6' is guaranteed by the Mean Value Theorem of

calculus.

2.2.2 The ray vectors

Division of solid angles

We divide a spherical wave front surrounding the feed into patches with equal area. Each

patch is the base of a ray cone whose vortex is located at the feed point. It is clear that

each one of these cones will support the same amount of solid angle. The radiated power

contained in a ray cone will be represented by a ray vector. The benefit of this scheme is

that the power density associated with any ray will be a function of G(6', #') only, which will

make the implementation of ray tracing on a computer program easier. In case the source

is an isotropic radiator, the average power flowing inside each of the cones will be the same,

and each of the rays will represent electromagnetic field with equal amplitude.

When the ray vectors are generated for the purpose of studying the reflector by ray

tracing, there are two points that we are concerned with. First, the number of rays must

be large enough to cover adequately small areas on the reflector surface under the study.

Second, the concentration of the rays should be distributed evenly over the spherical wave
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Figure 2-8: Division of a spherical wave front into M annular rings. The ith ring is supported
by the solid angle AQ', where 0' = 0' is the maximum angle supported by the poraboloid.
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Figure 2-9: A view of solid angles on the aperture plane. The area on the jth ring is divided
into Nj patches with equal area where A# = 27r/Nj.
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front surrounding the point-source feed. This will result in the reflector surface being

sampled non-selectively by the incident rays, making different areas on the reflector surface

be equally represented by the outcome. A larger number of evenly distributed rays results

in smaller spacing among the rays. This will bring a higher level of accuracy to the output

of ray tracing, which can be thought of as a discrete geometrical optics.

In Figure 2-8, a spherical wave front supporting the solid angle Q' is divided into M

rings. Each ring contains a group of Ni, i = 1, 2, ..., M, patches with equal surface area.

The first ring is the spherical cap in the middle, which is bounded between the angles 0' = 0

and 0' = 0'. The solid angles of the rings are calculated from the differential element

dQ' = sin O'dO'dq' and are given by

zAQ' = 27r(I - cos 0')

= 27r (cos 0' - cos 6)

AGQ' = 27r(cos' 1 - cos 0') (2.72)

Let AQ', the solid angle supported by the patch at the center, be the amount of solid angle

supported by a ray cone. Then AQ'Q must be a Ni multiples of AQ', which we can express

by the following equations

N 1 = 1

N2 = Q/
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1 - cos 0'-2
1 - cos 9/i

603
N3 =A1

cos 0' - cos 60

1 - cos 61
1- Cos 0

' - (1 + N2 )1 - cos 91

NM =

Cos - cos 0'

1 - cos 9'
m (I + N2 + + NM-1) (2.73)

1 - cos 0'

Equation (2.73) has too many unknowns, and we cannot solve for 0' and Ni without imposing

more constraints. As we mentioned earlier, we should have a uniform sampling on different

parts of the the reflector surface in order to have more accurate results from ray tracing.

For a given number of rays, they should be spread so that the ray vectors are distanced

from each other as much as possible. To this end, the shape of the patches on each ring

should become as close to a square as possible in order to maximize the mutual separation.

Our solution is to have 9', 1 < i < M be odd multiples of 9/, so that 0' = (2i - 1)0'/ for

1 < i < M where 0' = (2M - 1)0/. The number of patches Ni are obtained by substituting

W into Equation (2.73) and rounding the answers to the nearest whole numbers.

Figure 2-10 plots the number of patches on each ring for a dish with size D = 40 A

and with the number of annular rings M = 200. The minimum distance between points of

incidence on the reflector is approximately 0.1A, which should be sufficient to give accurate

results to ray tracing. In general, the diameter of the dish is equal to the product of twice
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Figure 2-10: A plot showing the number of patches on each ring for a dish with D = 40 A
and M = 200 (total number = 149,131).

the sampling distance and M.

Directions of the incident ray vectors

Using the equivalence principle, we replace the aperture field by an equivalent electric current

sheet. Later, we divide the aperture area into patches and replace the current sheet on each

patch by an electric dipole. The locations of the dipoles are determined from the angles 6O

(see Equation (2.71)). We will approximate such angle for every patch from its centroid.

Figure 2-11 shows the centroid of a spherical arc which is bounded by the angles 0' and 6.

The centroid of the arc is located at position V' = ?'r' + j'r from the point source where

/ _,2 r 2sin 6'dO'
rcx 0/

fe, 2 r dO'
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Figure 2-11: For a ray cone, the direction of the incident ray vector is taken to be the centroid
of the spherical arc which is at the base of the ray cone.
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r'(cos 0 - cos 0(.)
=1 , ,01 (2.74)

1 - 1

1f2 r' 2 cos O'dO'

f2 rd6'

r'(sin0' - sin 0')
0/2 -0/ 1 2.75)

The angle O' between C and the z' axis is

O' = tan-' (c)
(CO O &-- Cos Of

tan / o (2.76)sin 6 - sin 0'

2.2.3 Path lengths of the rays and polarization of the associated

field

The path lengths which the rays travel from the source to the aperture plane determines the

phase of the aperture field. From the assumption of geometrical optics, the electromagnetic

energy travels along a ray is a local plane wave. Therefore, the phase of the field on a wave

front is proportional to its distance from the source.

We begin with a description of the incident and reflected ray vectors for the case of the

ideal paraboloid. Next, we determine points of incidence on the reflector surface from the

incident rays, and use them to find points of intersection between the reflected rays and the

aperture plane. The path lengths are determined from the distances between the source,

points of incidence, and points of intersection. The polarization of the field associated with

the ray vectors are determined from the polarization of the feed, the direction of the ray

78



vectors, and the normal vector at the point of incidence.

The ray vectors

There are two types of ray vectors in our use of ray tracing to find the field distribution

on the aperture of the reflector. The incident ray vectors si are simply unit vectors in the

direction of incident rays onto the reflector surface and will be determined by the angles 0'

and #'. We can express si in terms of the feed coordinates as

sj = ' sin 6' cos 0' + ' sin 6' sin 0' + i' cos 0' (2.77)

The reflected ray vectors s, are unit vectors in the directions of reflected rays from the

reflector surface. They are determined from the incident ray vector sj and the unit normal

vector h to the reflector surface at the point of incidence

Sr = Si - 2h(h - si) (2.78)

For the ideal paraboloidal reflector, h is found to be

0' 0' 0'
n = -x sin - cos #' sin - sin5 -z cos - (2.79)

2 2 2

and sr is equal to

-z (2.80)
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Points of incidence on the reflector surface

The points of incidence of the incident ray vectors on the reflector surface are determined

from equations describing both entities either in the rectangular or the spherical coordinate

systems. In the rectangular coordinate system, the paraboloid is described by

X'2 +y = 4f (f - z') X'2 + Y'2 < - (2.81)
4

where f is the focal length, and D is the diameter of the dish. In the spherical coordinate

system, the paraboloidal surface is given by

r' = 2f _fsec2 (2.82)
1+ cos6' 2

In both expression, the focal point of the paraboloid lies at the origins of the coordinate

systems. In the spherical coordinate system, a point of incidence (rb, 60, O) and its distance

d from the origin are easily found from Equation (2.82) for a given sj. In the rectangular

coordinate system, the point of incidence (x', y6, z4) and its distance d from the origin can be

found for a given incident vector si by solving Equation (2.81) with the parametric equations

X' = d sin 6'cos 0' (2.83)

y1 = d sin 0' sin$' (2.84)

Z' = d cos 0' (2.85)
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in which the solutions are

d 2f (1 - cos 6') (2.86)
sin2 0'

2f(1 - cos 6') cos q'
s'n =1 (2.87)

sin 6'2f (1 - cos 0') sin#'(8)
Yo sin 01(288

' 2f (1 - cos 0') (2.89)
sin 2 (

Points of intersection between the reflected rays and the aperture plane

The locations of the electric dipoles on the aperture plane are determined from the equations

of the reflected rays and the aperture plane. The parametric equations of the line passing

through the point Po = (x, y', z') along the direction of s, are

x = xo+d.ss (2.90)

y = Y + d Sry (2.91)

z = z4 + d Srz (2.92)

where d is the distance from (x', y', z') to (x', y', z), and srxSry,Srz are the x',y',z' compo-

nents of sr respectively. If we choose the focal plane (the xy-plane) to be the aperture plane,

d will be given by

d =- (2.93)
Srz
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The coordinates (Xap, Yap) of the point of intersection between the reflected ray and the

aperture plane are

Xap = X' - zr (2.94)
srz

Yap = y -Sry (2.95)
Yap =YO ZOsrz

Polarization of the field associated with the ray vector

Assuming that the source is '-polarized, the polarization of the electric field associated with

an incident ray vector is determined from the polarization of the feed and the direction of

the incident ray by

si x (Q' x sj) y'-(si 09')i
= s~ (~'~~) fj'(Wj'.§~(2.96)

= i x (' x si1) - - (si 0 9')si(

The polarization of the reflected ray is determined from the polarization of the incident ray

and the unit vector at the point of incidence by

8, = 2ft(h -8z) - 6 (2.97)

2.2.4 Radiation field from the aperture dipoles

Figure 2-12 shows the distribution and polarization of equivalent electric dipoles on the

aperture plane as a result of ray tracing. Differences in polarization and magnitudes of the

dipole moments are captured by the orientation and sizes of the vectors. The symmetry

and anti-symmetry of the components of the dipoles reflect those of the co-polarized and

cross-polarized components of the aperture field.
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Figure 2-12: Distribution and polarization of equivalent electric dipoles on the aperture plane
of a paraboloidal reflector with a linear isotropic feed obtained by ray tracing.

83



The current density for the electric dipoles located on the aperture are

JjQi') = Yile ikdi 6(T, _-T

= jI xleik(i6( ' - +) + I 6' -I') (2.98)

where Ij1 designate the current dipole moments, I;ix and Ivl are the x and y components

of lil respectively, 7' are the positions of the dipoles on the aperture plane, and di are the

path lengths of the geometrical optics rays. In case of the ideal paraboloid, di are equal

to r' + r'cos 0' = 2f and will have no effect on the radiation patterns. In general, random

deviations on the reflector surface will make the path lengths differ from each other. If the

point source at the focus is linearly polarized in the Q direction, 7*yl will correspond to the

co-polarized components of the aperture field and hixl will correspond to the cross-polarized

components. The vector current moments 7f(0, #) for the dipoles are [7]

f(O, ) = dV' Ji(T')e-kr'

N ~ dV' lile ikdi 6(71 - T)-Tf

= (:2iIixl + Q Iiyl)eii 'r (2.99)

Using the following transformation of vectors from the rectangular coordinates to the spher-

ical coordinates

= P sino cos # + cos 0 cosq# - & sin # (2.100)

Q= sin 0 sin #+O cos 6 sin #+q cos # (2.101)
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we can express the vector current moments in Equation (2.99) in spherical coordinates as

fi(6, 0) = eikdie-ik' {f(Iol sin 0 cos q$+ Iiyl sin 0 sin#)

+(Iil cos 6 cos q + Ijl cos 0 sin #) + k(-Ij, l sin # + Iiy l cos #$)} (2.102)

In the far-field region, the electric field is expressed in terms of the 0 and components of

the vector current moment by (see Appendix A)

E(T) =- iWp-(Ofo + Of4)
47rr

(2.103)

The total field is a superposition of the fields from the individual dipoles and is expressed

by

N eikr

E(T) = iwpl (fiO + fio)
47rr

N ikr

= (-Iwp sie + ikdie ikc{s 
147rr

+0(-Ij 'l sin 0 + IjY1 Cos #}

cos 6 cos 0 + IYl cos 6 sin 4)

(2.104)

From our definition of polarization, the co-polarized and cross-polarized components of the

radiation field are

Ec = E(r) - ic

eikr N

47rr i=1

(fio cos0sin+ fipcos)
1 - sin 2 6 sin 2 g
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eikr N

= ik N 1 eIki e-kr''{(Iid cos 0 cos q + Iyl cos 0 sin q) cos 0 sin q
4 rri=1 -sin 2 0 sin2 0

+(-h.l sin + IjYl cos#) cos#}

e ikr N 1
= imp*- E e ikd,-e-ik''-i J jSsin2 0Sin COS#

47rr j=1 1 -sin 2 0 sin 2 5

+Ieyl(1 - sin 2 O sin 2 0)} (2.105)

Ecr =E(r) -cr

i (fi fCos#+ficos0sin#)
i=4rr =7 1- sf osin2

eikr N k, i.F
= . E ekdi e-k' {(Isj, cos 0 cos 4 + Ijyl cos 0 sin #) cos q

47rr 1  1 -sin 2 0 sin2 g

+(-I jl sin q + IjY l cos 0) cos 0 sin #}

= ik N 1 eikd e -ik'' Ije cos 0 (2.106)
47rr i=i 1 - sin 2 0 sin2 0

Figures 2-13 and Figure 2-14 show the radiation patterns of a paraboloidal reflector with

parameters D = 40 A and f/D = 0.5, which are obtained from ray tracing. The feed is

assumed isotropic (G(0', 0') = 1) and vertically polarized. Figure 2-13 shows the radiation

patterns on the principal E-plane (0 = 7r/2) and and H-plane (# = 0). Only the co-polarized

patterns are displayed because the cross-polarized patterns do not appear on these planes.

This can be explained from Equation (2.106) when we take into account the symmetry of the

reflector and the anti-symmetry of Ii.1 around the x-axis and y-axis. The E- and H-plane

patterns look almost identical at the main lobe, which suggests a near circular shape for the

main beam. The first null is located at 0 = 1.9 degrees. The peak side-lobe level is -20.0 dB

at 0 = 2.4 degrees. Near 0 = 45 degrees the level of the last side lobe is -58.8 dB on the

E-plane and -55.8 dB on the H-plane.
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Figure 2-13: Co-polarized radiation patterns on the principal E-plane and H-plane for a
paraboloidal reflector (D = 40 A, f/D = 0.5) with a linearly polarized isotropic feed obtained
by ray tracing.
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Figure 2-14: Co-polarized and cross-polarized radiation patterns on the plane tilted at 45
degrees from the principal E-plane and H-plane obtained by ray tracing.
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Figure 2-15: Comparison of the co-polarized radiation patterns on the E-plane between GO
analysis and ray tracing.
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Figure 2-16: Comparison of the co-polarized radiation patterns on the H-plane between GO
analysis and ray tracing.
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Figure 2-17: Comparison of the cross-polarized radiation patterns on the 45-degree plane
between GO analysis and ray tracing.

Figure 2-14 shows the radiation patterns measured on the plane tilted at 45 degrees

= r/4) between the principal E-plane and H-plane. The co-polarized pattern on this

plane looks similar to those on the E-plane and H-plane. However, there is a significant

increase in the cross-polarization level, which reaches its maximum on this plane. The

maximum level of the cross-polarized pattern is -25.9dB below the peak gain at 0 = 1.7

degrees.

Figures 2-15 to 2-17 show a comparison between (1) results obtained from GO analysis of

aperture field and application of Huygens principle and (2) results obtained from ray tracing

and evaluation of the far field based on a superposition of electric dipoles. Both methods

yield almost identical results near the main lobe. The radiation patterns obtained from both

methods agree well in the region near the main lobe, especially in the positions of the null
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points, which are almost identical. This is a good confirmation that the formulation and the

implementation of the ray tracing program are correct.

2.3 Physical Optics

The radiation field can be found precisely if the exact current distribution on the reflector

is known. However, in practice, it is unlikely that we know the exact current distribution

on most radiators except for a few cases where the geometry is simple. Physical optics

(PO) is often used to approximate the induced current distribution on the reflector surface.

PO is a high-frequency method that can be used to find scattered field from a reflecting

surface accurately when the PO approximation current is reasonably close to the true current

distribution. The physical optics approximations of the induced surface currents are valid

when the transverse dimensions of the reflector, the radii of curvature of the reflector, and

the radius of curvature of the incident wave front are much larger than the wavelengths. PO

is considered more general than geometrical optics (GO) since the equations obtained from

PO for the scattered field from a conducting body can be reduced to the equations of GO

in the high-frequency limit [6].

2.3.1 Physical optics analysis of radiation pattern from

a paraboloidal reflector

In this section, PO will be applied to find the radiation field of a paraboloidal reflector with

a point-source feed at the focus. The incident wave on the reflector surface can be expressed
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by

Ej = 6iE(0', 0') ,irl (2.107)
r/

where r' is the distance from the point source to the reflector surface. The magnitude of

E(6', 0') is related to the gain factor of the feed according to Equation (2.21), and 6i is

given by Equation (2.23). The currents which excite the scattered field are induced on the

conducting surface by the incident wave. According to physical optics, the induced current

density on the reflector surface can be approximated by

is = h X (Hi + Hr) (2.108)

where ft is the unit normal to the paraboloid, Hi is the incident magnetic field, and Hr is

the reflected magnetic field. The inexplicit assumption for the PO approximation is that the

incident wave upon the reflector surface reflects locally as a plane wave. This approximation

is true only on the illuminated side of the reflector since we assume no current density on

the shadow side. On a perfectly conducting surface, h x Hi = ii x H, making

is = 2(h x Hj) = 2(ii x Hr) (2.109)

1 - 1 -
In terms of the incident and reflected electric fields, Hi = -si x Ej and Hr = s, x Er, the

surface current density becomes

- 2 2
Js = X (si XE)] = -- [h X (sx Er)] (2.110)
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For the ideal paraboloidal reflector, r = -i' and --Y' - h = cos 6'/2. We find

- 2' 2E(', 0') eik''
J, = r Cos - - 6'(i - dr)] ,2 7 r

where Br is given by

1

1 - sin 2 9' sin2 4Y
- cos 0') sin O' cos 4' - Q'(cos 6' sin 2 4' + cos 2 0')}

Once the current distribution on the reflector surface is known, we may find the radiation

field from

E(T)= e ikr + Nf
47rr

= (tcofco
47rr

+ icrfcr) (2.113)

where the vector current moment is given by

f = JJ dS'Jsij,')e (2.114)

The vector current moment in Equation (2.113) can be expressed in terms of the co-polarized

and the cross-polarized components because the polarization vectors are always perpendic-

ular to r. In Equation (2.114), the differential area dS' on the paraboloidal surface is

0'
dS' = (r' sin O'd5') (r' sec - dO')

2 = f 2 sec5 - dQ'
2

and the phase retardation factor inside the integral is, according to the geometry in Figure 2-
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3,

k - f' = -kr'(sin 0 sin 0' cos(#' + q) + cos 6 cos 0') (2.116)

In the radiation zone, the time-average Poynting's vector is given by

< Sr >= 1 (f)12 - (k 2 ( 2 + f2 2 2 + Ifcr12) (2.117)
S> 2,q ') 2 ''4rr~ 1 0  

' 2 4irr

The antenna gain is, in terms of the polarized components of f(6, #),

< Sr> _ k __k2_

G(, <) Pr/>w) - (1fo1 2 + If412) P2 (Ifc02 + fcr12 ) (2.118)
P,/(47rr2) 87rP, 87rP

2.3.2 Numerical results

In the numerical analysis of PO, we begin with the identification of the incident ray vectors

j; each one is given in terms of the angles 9' and 0' of the feed coordinate system. The surface

current density will be computed according to Equation (2.110) for each ray vector. The

vector current moment is computed for each sj from Equations (2.114), (2.115), and (2.116).

The radiation field can be computed from Equation (2.113), but we will be more interested

in the radiation pattern, which is independent of the distance from the reflector. According

to Equation (2.118), the gain can be computed from the components of the vector current

moment. The radiation pattern will be obtained by normalizing the gain by its maximum

value, which will appear on the main axis.

Figure 2-18 and Figure 2-19 compare the co-polarized radiation pattern in the E-plane

and H-plane between the numerical results obtained from PO and GO. In the case of the
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Figure 2-18: Comparison of the co-polarized radiation patterns on the E-plane between PO
and GO ray tracing.

paraboloidal reflector, the excellent agreement between PO and GO is confirmed by the

theoretical work [32]. Figure 2-20 shows a comparison of the cross-polarized pattern on the

45-degree plane between PO and GO. The obvious discrepancy between the two patterns is

due to the z'-component of the PO current elements.

2.3.3 Region of good agreement between GO and PO

On the main axis, the far field obtained from the geometrical optics/aperture integration

(GO/Al) method and the physical optics/surface integration (PO/SI) method are identical

[6][40]. However, there is a limit to this agreement as the point of observation moves away

from the main axis. We want to find the maximum value of the angle of observation where

results from PO and GO remains in agreement.
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Figure 2-20: Comparison of the cross-polarized radiation patterns on the 45-degree plane
between PO and GO ray tracing.
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Figure 2-21: Path-length difference between the current elements of PO and GO to the plane
of observation.
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Let Ps be a point on the reflector surface and PA be a point on the aperture plane related

to PS as shown in Figure 2-21. The current element at PA has additional phase compared

2ir
to the current element at Ps by the amount of -r' cos 6'. The total path-length difference

A

from the observation plane to the current elements at Ps and PA is given by

6'
A R = r' cos 6'(1 - cos 9) = f sec2 - cos 0'(1 - cos 6) (2.119)

2

The maximum value of AR occurs when the integration points Ps and PA are on the main

axis

ARmax = f (1 - cos O) (2.120)

The minimum value of AR occurs when the Ps is on the reflector rim, and PA is on the

circumference of the aperture

AZRmin = f 1 - (1 - cos 6) (2.121)

Thus, the maximum value of variation in the path-length difference is equal to

A Rmax - ARmin = -- (1 - cos 9) = sin2 - (2.122)
16f 8f 2

In the far field, the reason for the discrepancy between PO and GO patterns is the variation

in the path-length difference. This variation is caused by the curvature of the reflector

surface.

By convention, the far field begins at the distance where the path-length variation due
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to the far-field approximation is less than A/16 for any points on the radiator [7][6]. By the

same criterion, the maximum value of 0 where GO still agrees with PO is given by

si -- = - -- -A ((2.123)
2 \2 D D

In our case, we substitute D/A = 40 and f/D = 0.5 and obtain

1
OM= 2sin 16~ 9.00 (2.124)

Thus, the curvature of the paraboloidal reflector surface will limit the region of good agree-

ment between GO and PO to less than the observation angle 0 = 9.0'. However, the axial

components of PO current elements may reduce this range further.

2.4 Conclusion

We have formulated a computational method based on geometrical optics to analyze the

radiation field from paraboloidal reflector antennas with a linearly polarized point feed. Our

scheme is based on finding the current elements (electric dipoles) on the aperture plane

which will determine the pattern of radiation in the far field. The magnitude, location,

phase, and polarization of each dipole contain information about the point of incidence,

so the whole collection of dipoles would reflect the condition on the reflector surface. The

model is intended to be used to study radiation fields from paraboloidal reflectors with small

random surface errors. One of the nice features of our approach is that we are not required
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to know the field values at any predetermined locations on the aperture plane, which is

demanded if the original diffraction integral is used to find the radiation field. We think this

task will be complicated with unorganized ray vectors such as those reflected from surfaces

with random errors.

For the case of ideal paraboloidal reflector, we have compared our numerical results with

those from obtained from analysis. The good agreement so far is a confirmation that our

results will be acceptable in the fine limit. After we incorporate random errors into the

reflector surface, the results will be compared with those obtained from PO.
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Chapter 3

Generation of the Gaussian random

surfaces

To study the effect of random surface errors on the radiation pattern by Monte Carlo sim-

ulation, a number of random surfaces will be created. These random surfaces will be added

to the surface of a paraboloidal reflector. This chapter describes a procedure to generate the

Gaussian random surfaces, which is believed to be the most realistic model for the random

surface errors [11]. We begin with a mathematical description of the Gaussian random sur-

faces, which have a Gaussian height distribution and a Gaussian correlation function. Next

we describe a scheme to generate random surfaces with specified correlation characteristic

from a given correlation function. Finally, we describe the procedure that we use to generate

the Gaussian random surfaces and their parameters. The computer-generated results will

be verified with the theory for their characteristics.
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3.1 Mathematical description of the Gaussian random

surfaces

The Gaussian random surfaces are characterized by the Gaussian distributed height and the

Gaussian correlation function between any two points on the random surfaces [7]. For any

two points (XI, Yi) and (X 2, Y2) on a Gaussian random surface, the joint probability density

function (pdf) is given by

Pg,g2 (g1 (X1 , yi), 92 (X2 , Y2)) = 1 2e-(g-2cgg2+g)/2 2 (1c 2 ) (3.1)

where gi and g2, the heights at point 1 and point 2 respectively, are random variables with

< 9192 > 2a zero mean, C is the correlation coefficient defined as C = 2 ,> or2  g2 > is the

variance of the random height, which will be assumed the same at every point on the surface,

and the angle brackets denote ensemble averaging.

Equation (3.1) specifies the probability that the random surface will have its height

between gi and g, + dg at point 1 and between 92 and 92 + dg at point 2. The marginal

height probability density function is obtained by integrating Equation (3.1) over all possible

values of g2. We obtain the following Gaussian distribution for the surface height at a single

point

pg (gi(x, y)) = 1 eg /2 2  (3.2)
v/27rU2

Many random surfaces can be treated as statistically homogeneous, meaning that the

surface statistics are independent of the locations on the surfaces. For such surfaces, the
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marginal height pdf is the same everywhere, and the correlation function C is a function

of the distance between the two points. For the Gaussian random surfaces, the correlation

function C(p) is assumed to have the following Gaussian form

C(p) = e-P2/12 (3.3)

where 1 is the correlation length. Note that C(O) = 1 and C(oo) = 0, which means that

the random surfaces are less correlated with themselves when the correlation distances get

larger.

3.2 Generation of random surfaces with specified

correlation functions

In this section, we describe a scheme to generate random surfaces with specified correlation

functions from a random surface with independent random heights. Assuming that we

have a surface with independent random heights, we will use the concept of digital filtering

to correlate these independent random inputs. The height of the output surface will be

correlated according to the coefficients of the filter, which are determined from the specified

correlation function [41][42]. The actual height distribution of the output random surface

will depend on the length and the shape of the filter.

The output from filtering an input surface hj,m with a two-dimensional digital filter Wj,m
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is expressed by
N N

gk,1 = Z Z Wj,mhkj,lm
j=1 m=1

The autocorrelation Ci,n of the output is

N N N N

Ci,n = E[gk,gk+i,I+nl] = 1 1 1j 1 Wj,mWp,qE[hj+k,m+hp+k+i,q++n]
j=1 m=1 p=1 q=1

Since the heights of the input surface are mutually independent, i.e.,

E[hj+k,m+lhp+k+i,q+l+n] =
0

1,

j $ p + i or m = q +n

j = p + i or m = q +n

(3.6)

the autocorrelation in Equation (3.5) can be simplified to

(3.7)

By assuming that the filter is symmetric, i.e., Wj-i,m-n = Wi-j,n-m, Equation (3.7) can be

written as
N N

Ci'n = E E Wj,mWi-j,n-m
j=1 m=1

(3.8)

which tells us that the autocorrelation function Ci,n is the two-dimensional convolution of

the digital filter Wj,m with itself.

Next, we determine the filter coefficients W,m from a given correlation function Cin. We

will assume that Ci,n are uniform samples of a continuous function C(u, v), and Wj,m are

also samples of W(u, v). From Equation (3.8), the Fourier transform of C(u, v) is equal to a
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(3.5)

N N

Cin= E[gk,lgk+i,I+n] = E E Wj,mWj-i,m-n
j=1 m=1



square of the magnitude of the Fourier transform of W(u, v) [43]. Thus W(u, v) is the inverse

Fourier transform of the square root of the Fourier transform of the continuous correlation

function C(u, v), i.e., W,m are samples of the function

W(u, v) = F { F{C(u, v)}} (3.9)

where F and T-1 signify the Fourier transform and inverse Fourier transform operations

respectively.1 This approach is valid when the correlation functions and the filter coefficients

are non-negative, which is the case for the Gaussian correlation functions as we will illustrate

in the next section.

3.3 Procedure to generate the Gaussian random

surfaces

In this section, we describe the procedure and the parameters used to generate the Gaussian

random surfaces. The output surfaces are verified by being compared with the specifications

and the theoretical values.

Let the Gaussian random surface with a zero mean and a unit standard deviation be

represented by a matrix g. The elements gk of the matrix are distributed according to the

'The two-dimensional Fourier transform pair are defined as follow

F(C, ) = F{f (u, v)} = JcJ'f (u, v)e-i 2 7Cu-i 2 irovdudv (3.10)

f (u, v) = _F 1 {F((, )} = fJ 0 F((, )ei2ru(+i2vC d(d (3.11)
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following probability density function

-g 19~) e- g2/2 (3.12)

The elements are correlated according to the discrete Gaussian correlation function, which

is given by

Cin = exp - n)2 (3.13)

where 11, 12 are correlation lengths in the x- and y-directions respectively. Note that Equa-

tion (3.13) is the discrete version of the continuous correlation function in Equation (3.3).

Equation (3.9) suggests that we can find the filter coefficients W,m from the discrete

correlation function in Equation (3.13). Since the Gaussian correlation function can be

separated into a product of two single-variable functions, we will derive the expression for

Wj,m from the one-dimensional case. From Equation (3.3), the autocorrelation in the x

direction is

C(u) = e-(U/112 (3.14)

The filter coefficients Wj are obtained from a uniform samples of

W(U) = Y-1 { Y{e-(/1) 2}

= Y-'{ liVge-1(7) 2

_ 2 e2(u/11) 2  (3.15)
l1fr
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and are expressed by

W = exp [-2 (3.16)

The two-dimensional filter coefficients W47 ,m are products of coefficients from two one-dimensional

filters

Wy,, = Wi WM

2 j j2 /m )2]
= exp [-2 -- 2  - (3.17)

V/71112 11 2

In the computer program, we create a random matrix with independently and identically

distributed (IID) elements at the first step. There are many standard procedures to generate

independent random numbers with various kinds of distribution to choose from[44], and

we choose one giving a uniformly distributed random numbers. Then we compute a 2-D

convolution between the random matrix and the correlation filter, whose coefficients are

calculated according to Equation (3.17). The correlation lengths 11 and 12 are chosen to be 4

units, with a unit length equal to the distance of 10 discrete intervals between the elements of

the matrix. Figure 3-1 shows the correlation filter with size M x M = 120 x 120. The output

matrix is normalized so that it has a zero mean and a unit standard deviation. Figure 3-2

and Figure 3-3 display two profiles of the computer-generated random surfaces with a = 1.0

and with matrix size N x N = 400 x 400. The figures show they are distinct, and the changes

on the surfaces appear to be sufficiently smooth. The many local bumps also have the look

of a 2-D bell-shaped curve.

In order to verify the output surfaces, their statistical characteristics will be computed
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to compare with the theoretical values. These characteristics include the surface height

distribution, the correlation coefficients in the x-, y-, and xy-directions, and the distribution

of the surface slopes.

Because each element on the output matrix is a weighted sum of independent random

elements, the output surface should have a Gaussian height distribution according to the

Central Limit Theorem [42][45]. The size of the correlation filter should be large enough to

make the actual results agree with the theory. Figure 3-4 and Figure 3-5 show the distribu-

tions of the height of the computer-generated surfaces displayed in Figure 3-2 and Figure 3-3.

The distributions are compared with the Gaussian probability density function with A = 0

and o- = 1.0. Figure 3-6 shows the average height distribution of 20 surface profiles compared

with the Gaussian pdf. Figure 3-7 shows a comparison between the correlation coefficients

of the output in the x- and y-directions and the Gaussian autocorrelation function in Equa-

tion (3.13). Figure 3-8 shows a comparison between the correlation in the xy-direction and

its theoretical values derived from Equation (3.13). In both cases, the computer-generated

results agree well with the specification, especially when the distance is less than twice the

correlation length.

Because any linear transformation of a Gaussian function remains a Gaussian function,

the slopes and all the higher order derivatives of a Gaussian random surface will also have

a Gaussian distribution [46]. The probability density function for the slopes of a Gaussian

random surface can be derived from Equation (3.1) and is equal to [47]

P(a, M I exp -2 2 (3.18)27r.2|C"1(0)|1 26r2|IC"1(0)|1

107



where a is the standard deviation of the height of the random surface, C"(0) is the double

&f(x, y)derivative of the correlation function at p = 0, which is equal to -212, and a = ' and
ax

a = ', are the local slopes in the x- and y-directions. For the Gaussian correlation
Dy

function with correlation length 1, a2IC"(0)l is the mean-square slope and is equal to

s2 =2C"(0) = 2 2  (3.19)12

Figure 3-9 and Figure 3-10 show the average distribution of the local slope in the x- and

y-directions respectively from 20 computer-generated Gaussian random surfaces. They are

compared with the Gaussian pdf with p = 0.0 and a = s = V2/40. The good agreement sug-

gests that the mean-square slope of the computer-generated Gaussian surfaces is practically

the same as the theoretical value.

Thus, we have succeeded in creating Gaussian random surfaces with a zero mean and

a unit variance. The above verifications show that the random surfaces generated by the

previously described procedures have the characteristics of the Gaussian random surfaces. So

an ensemble of these surfaces can be used to study the effects of the random surface errors on

the radiation patterns by the Monte Carlo simulation. The roughness of the random surfaces

can be adjusted by changing the root-mean-square height and the correlation length. The

former can be done easily by multiplying the elements of the standard random surfaces with

the new rms value.
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Figure 3-2: Example of a computer-generated Gaussian random surface with variance ou 2

1.0 and correlation lengths 11 = 12 = 4 units (= 40 intervals). The filter size is M x M =
120 x 120, and the size of the surface is N x N = 400 x 400.

0,

-2,-

-3 --

-4--
400-

350
300 - -400

250 30 350
200 - - -250

150 -0- 
200

1 50 50 100 15

4

Figure 3-3: Another example of a computer-generated Gaussian random surface.

110



nr.

Figure 3-4: Height distribution
Gaussian pdf (p = 0.0, -= 1.0).

of the random surface in Figure 3-2 compared with the

32-2 -1 0
Height

Figure 3-5: Height distribution
Gaussian pdf (p = 0.0,o = 1.0).

of the random surface in Figure 3-3 compared with the

111

I

I

0.5

0.4 -

0.3 -

0.2 -

0.1

0L
-3 -; -l U

Height

0.

0.5 F

0.4 -

0.3 -

a.

0.2 -

0.1

0
-3

- theoryim surface height distribution

L-

12 3

1-theory
Ssurface height distribution

6 1 1 1 1



0.6
- theory

simulated

0.5 -

0.4-

. '0.3-

C .
p0.2

0.1 -

-2 -1 0 1 2
Height
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Figure 3-7: The autocorrelation of the random surfaces in the x- and y-directions compared
with the Gaussian correlation function. The autocorrelation is obtained from an ensemble
of 20 surface profiles.
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Figure 3-8: The autocorrelation of the random surfaces in the xy-direction (the diagonal
direction) compared with the Gaussian correlation function.
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Figure 3-9: Distribution of the local slope in the x-direction on average obtained from 20

samples compared with the Gaussian pdf (p = 0.0, a = v/40).
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compared with the Gaussian pdf (t = 0.0, a = v/2/40).
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Chapter 4

Effects of random surface errors on

the radiation patterns

In this chapter, we will use the model developed in Chapter 2 to compute the radiation fields

from a paraboloidal reflector with random surface errors of the Gaussian characteristics

described in the previous chapter. After some adjustment are made to incorporate the

surface errors to the paraboloidal reflector, results from the Monte Carlo simulation will be

presented. They will be compared with results obtained from the antenna tolerance theory.

4.1 Incorporation of the random surfaces to the

paraboloidal surface

The Gaussian random surfaces with appropriate parameters will be added to the surface of

a paraboloidal reflector surface to study the effects of random surface errors on the radiation
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patterns. The incorporation of the surface errors will change the locations of the points of

incidence and the normal vectors at those points. These changes will affect both the GO

and PO approaches to the analysis of radiation patterns. They will have more significant

effect on the positions, phases, and polarizations of the current elements for both GO and

PO, and with very little effect on the amplitude.

4.1.1 Change of locations of the incident points

The local deviation on the reflector surface at the point of incidence (x', y', z) will be

determined from the two-dimensional random surface by the method of bilinear interpolation

[44]. Bilinear interpolation is a method to approximate the height of a point in a rectangular

grid from the coordinates and the heights of the corner points. Alternatively, a number of

curve-fitting schemes have been suggested in some similar studies [48][31][14], but bilinear

interpolation can be used in situations where the first-order level of accuracy is sufficient.

Let P0 = (x', y', z) be a point of incidence on the zero-error paraboloidal surface, and

h be the local surface deviation in the direction perpendicular to the paraboloidal surface as

shown in Figure 4-1. The point of incidence will be moved to a new location P = (x', y', z'),

which is related to Po by

P1 = P + 9i l

- h
= Ph - i- (4.1)

si - ho

where 1 is the distance between P0 and P along the direction of the incident ray vector.
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The local deviation h will be determined from the uniform samples gij of the Gaussian

random surface g(x', y'). A point of incidence will fall into one of the grids formed by the

sampling intervals (see Figure 4-2). Four corners of the grid are denoted by, starting from the

lower-left corner and moving counterclockwise, g, = gij = g(x'I, yI), g2 = gj+i,i = g(xI 1, YI),

93 = gj+,i-i = g(x'y+1,y y-), and g4 = gj,i-1 = g(x', y_ 1 ). The indices i, j are determined

from the location of Po, the size of the random matrix N, and the diameter of the dish D

as follow

N -1 N+ 1
= y + 2 (4.2)

= D N + 2 (4.3)

After the indices are obtained, the coordinates of the lower-left corner are determined from

/N+ 1 D (44)
S2 N-1I

Z - N + 1 D (45)
= K 2 2N-1

The coordinates of the remaining corners can be determined by adding or subtracting the

increment of D/(N - 1) from x' and y' according to Figure 4-2. The local height deviation

will be approximated by bilinear interpolation according to the formula [44]

h(x', y') = (1 - t)(1 - u)g1 + t(1 - U)92 + tug 3 + (1 - t)ug 4  (4.6)

where gi are the heights of the random surface at the corners, and 0 < t, u < 1.
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Figure 4-1: Changes in the location of a point of reflection and in the direction of the reflected
ray vector due to the incorporation of surface errors with the paraboloidal surface. Po, ho,
and srO are the point of incidence, the unit normal vector, and the reflected ray vector on
the ideal reflector surface. P1, i, and sr1 are the point of incidence, the unit normal vector,
and the reflected ray vector on the reflector surface with surface errors.
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Figure 4-2: A random surface is mapped vertically onto the paraboloidal surface. The cross
is the position of a point of incidence, which will be used to determine the corners of the
grid.
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4.1.2 Change of the normal vectors

The addition of the random surface errors onto the surface of the paraboloidal reflector

will change the direction of the normal vectors at the points of incidence, which in turn will

change the direction of the reflected rays. In order to simplify the analysis, we use a different

assumption in the way we add the random surface to the surface of the paraboloid. The

random surface will be added to the paraboloidal surface in the direction of the main axis as

if the surface errors were measured in that direction. The resulting surface will be expressed

by

fi(x', y') = fo(x', y') + g (x', y') (4.7)

where g(x', y') represents the random surface, fo(x', y') is the ideal paraboloidal surface, and

fi (x', y') is the paraboloidal surface with random errors. The unit normal vector hi on the

modified surface is given by

= a,±23+(4.8)

Sfi(x', y') Ofo(x', y') Og(x', y') Of (, y') +fo(X' y') 1g (, y')where 1  ax, + ax and 31 - f ,y , + gy

The partial derivatives of the paraboloidal surface can be expressed by

afo(x', y') (4f 2 _ X12 _ Y 2) 4f
ax' ax'

-x'

2f
0'

= tan cos ' (4.9)
2
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and

fo (x', y') (4f 2 - X' 2 _ y/2 ) 4f

Dy' Dy'
-y'
2f

9'
= tan sin' (4.10)

2

where we use x' = p' cos 0' = 2f tan(9'/2) cos 0' and y' = p' sin 0' = 2f tan(9'/2) sin 0' to get

Dg(x', y') Dg(x' y')
the results above. The partial derivatives ', and ', at the point of incidence

(X', y6, z) can be approximated to the first order by using a method borrowed from the

bilinear interpolation with the following formula

Og _ (1-U)9 2 ±Ug3  (1 -u)g 1 - ug 4

Dx' D/(N - 1)
Dg _ (1 - t)g4 + tg3 - (1 - t)g1 - tg2  (4.12)
Dy' D/(N - 1)

4.2 Results from the Monte Carlo simulation

An ensemble of random surfaces created in the previous chapter will be used to simulate

the random surface errors. The different root-mean-square surface values are achieved by

multiplying elements of the standard Gaussian random surfaces by &rms, which is the ratio

between the rms surface error and the wavelength. For each rms value, one hundred samples

will be used in the Monte Carlo simulation.

Figure 4-3 and Figure 4-4 show the changes that the random surface errors with Erms =

0.005A and Erms = 0.05A brought on the distribution of the electric dipoles in Figure 2-12.
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The change is obscure in the first case where 8 rms is less than A/100 but looks more obvious

when 6 rms is ten times larger.

Figure 4-5 and Figure 4-6 show the co-polarized radiation patterns on the E-plane form

the distributions of dipoles in Figure 4-3 and Figure 4-4 respectively. The patterns in the first

figure (&rms = 0.005A) are almost identical to each other and to the ideal pattern. However

there are several obvious changes in the second figure (&rms = 0.05A). First, the maximum

gain are reduced from the ideal case for both GO and PO by similar amount. Second, the

levels and locations of the peak side lobe are very different from the ideal pattern. Third,

the GO and PO patterns are in good agreement until the observation angle 0 ~ 5 where

they begin to diverge.

Figures 4-7 to 4-12 show average gain patterns from a paraboloidal reflector with different

degrees of random surface errors on the E-, H-, and 45-degree planes. The patterns are

obtained from the GO ray tracing formulated in Chapter 2. The co-polarized patterns show

a steady reduction in peak gain and increase in the levels of side lobes with the rising level

of Crms in all planes of observation. The null positions are almost unchanged for the co-

polarized patterns. The cross-polarized patterns show a steady on-average increase in all

planes of observation. The level of the on-axis (9 = 0) cross-polarization increases almost

linearly in the log scale, corresponding to the similar way 6 rms increases. Similar trends

appear for patterns from PO in Figures 4-13 to 4-18, which show average gain patterns from

a paraboloidal reflector with different degrees of random surface errors on the E-, H-, and

45-degree planes.

122



Figure 4-3: The effect of random surface errors (Erms = 0.005A) on the distribution of

equivalent electric dipoles on the aperture plane.

Figure 4-4: The effect of random surface errors (6rms = 0.05A) on the distribution of equiv-

alent electric dipoles on the aperture plane.
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Figure 4-5: Comparison of GO and PO gain patterns of the co-polarized field on the E-plane

from a paraboloidal reflector with Crms = 0.005A.
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Figure 4-6: Comparison of GO and PO gain patterns of the co-polarized field on the E-plane

from a paraboloidal reflector with 6 rm8 = 0.05A.
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Figure 4-7: Average gain patterns of the co-polarized field on the E-plane from a paraboloidal

reflector with various degrees of random surface errors. The patterns are obtained from the

GO ray tracing model.
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tained from the GO ray tracing model.
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Figure 4-9: Average gain patterns of the co-polarized field on the H-plane from a paraboloidal
reflector with various degrees of random surface errors. The patterns are obtained from the

GO ray tracing model.
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Figure 4-10: Average gain patterns of the cross-polarized field on the H-plane from a

paraboloidal reflector with various degrees of random surface errors. The patterns are ob-

tained from the GO ray tracing model.
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Figure 4-11: Average gain patterns of the co-polarized field on
a paraboloidal reflector with various degrees of random surface
obtained from the GO ray tracing model.
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Figure 4-12: Average gain patterns of the cross-polarized field on the 45-degree plane from

a paraboloidal reflector with various degrees of random surface errors. The patterns are

obtained from the GO ray tracing model.
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Figure 4-13: Average gain patterns of the co-polarized field on
paraboloidal reflector with various degrees of random surface errors.
tained from PO.
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Figure 4-14: Average gain patterns of the cross-polarized field on the E-plane from a

paraboloidal reflector with various degrees of random surface errors. The patterns are ob-

tained from PO.
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Figure 4-15: Average gain patterns of the co-polarized field on

paraboloidal reflector with various degrees of random surface errors.

tained from PO.

V

0

40

- .001
- .0025

30 - .005
- .01

.025

20 -
.05

100-

0

10

20-

30 -

the H-plane from a
The patterns are ob-

1 2 3 4 5 6 7 8 9 10
Theta (degree)

Figure 4-16: Average gain patterns of the cross-polarized field on the H-plane from a

paraboloidal reflector with various degrees of random surface errors. The patterns are ob-

tained from PO.
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Figure 4-17: Average gain patterns of the co-polarized field on
a paraboloidal reflector with various degrees of random surface
obtained from PO.
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Figure 4-18: Average gain patterns of the cross-polarized field on the 45-degree plane from

a paraboloidal reflector with various degrees of random surface errors. The patterns are

obtained from PO.
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4.3 Comparison with the antenna tolerance theory

We would like to make a comparison between our results and those obtained from the

antenna tolerance theory [11]. The antenna tolerance theory predicts the average changes

on the radiation pattern as a function of the root-mean-square surface error and its spatial

correlation distance. The theory is obtained by analyzing the statistical phase change on the

aperture field of the reflector due to the random surface errors. The statistics of the phase

deviations is assumed Gaussian, which is the same statistics that we use for creating the

random surface errors, making the tolerance theory an analytical approach in close parallel

to our proposed scheme.

4.3.1 The antenna tolerance theory

The gain of an aperture antenna with an arbitrary phase error J(p) may be written as

47r I f dA f(pe e )
G(O' #) = --2 ffdAf 2 (p) (4.13)

where p is a position vector on the aperture, k is a vector in the direction of observation, f(p)

is the aperture illumination function, and 6(p) is the aperture phase perturbation function.

The numerator may be written as

fJ dA f (p)2e ) ]]J dA1dAs f (fi1)f (p1 + r-)e-ke-() (4.14)

where 7= P1 - P2 and -y(T) = O(p1 ) - 6(p 2 ).
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Let I(t) be the correlation of the illumination function, which is defined as

f f(pi)f (pi + t)dA
if f 2 (pi)dAj

(4.15)

We can rewrite Equation (4.13) as

G(, ) =A ff dArT( )et es (4.16)

The expected value of G(6, 0) in Equation (4.16) is expressed by

(4.17)

For large values of T compared to the correlation interval 21, the phase values at the two

points should be uncorrelated, making y(r) a normally distributed random variable with

zero mean and variance 2a.2 , where a.2 is the variance of 6(p). When T is getting small, y(r)

approaches zero with a zero variance. We will assume that -y(T) has the following variance

function

< 7Y2(T) >= 20.2 (1 _ e-,2/412)

Then we have

< cos Y(T) > = cos y e-f2 4<-2>dy

0e2-
2/41 2)

< sin y(T) > = 0
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(4.19)

(4.20)

< G(O, #) >= 47 dA.4)(t)e~-ik-(< cos-y(;r) > +i < sin-y(f) >)



Equation (4.17) can be rewritten as

< G(0, #) > = e- 2 f dAr(-)e-ikte0
2e(/

2
12

4A2 -f

00o 2n

= 7 e "2 f dA r (-)r ik-t o e-n-r/21)
2

= Go(6, 2)e + 47e-2 0] dAA(i)e-" e-n(r/2)2 (4.21)
n=1 fn

where GO(O, q) is the zero-error gain, and I is half the length of the correlation interval.

We will assume that the correlation interval c = 21 is small compared to the aperture

size. If we assume that the illumination correlation function I1(-) in Equation (4.21) has a

unit value, the integration can be performed, which yields the following result

< G(O, q) >= Go(6, #)eA 2 8 e-" fJo( r sin 6)eMT2/42Td (4.22)

Using the following substitution

0Jo ( 2fT sin 6)e-n 2 /4,2 TdT =_ 212 e- (sin 0/\) 
2 /n (4.23)

we have the general form of the antenna tolerance theory

< G(6,1 ) >= Go(9,1 )e- 2 + 4Ar( e_2 E e(2xIsinO/A) 2 / (4.24)
n=1 - n!

According to the first term of Equation (4.24), the gain is reduced by an exponential

factor to account for power scattered into the side lobes. The reduction for the gain on axis
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is expressed by

< G(0, 0) > 2 1 41 2 2 02n

=O e0 +)-- - e (4.25)Go (0, 0) r/ap D n- n

where inap = Go (0, 0) (A/7rD) 2 is the aperture efficiency of the reflector, and D is the diameter

of the circular aperture. For a shallow reflector, we may assume the following relation

between the standard deviation o of the phase perturbation and the root-mean-square value

of the normal surface errors (see Appendix B)

o- r 41rErms/A (4.26)

where Erms is the rms surface error. For a small correlation interval, the second term in

Equation (4.25) can be neglected, leaving

Gmax = TlrD e_(47r,, /X2 (4.27)

By assuming fixed values of qap, D, and Erms and taking the derivative of Equation (4.27) with

respect to A, we arrive at the optimal operating wavelength Amax = 4 7rErms. The maximum

gain at this wavelength is equal to Gmax ~ !a (D/Erms)2, which is at 4.3 dB below the error-
43

free level. The optimum gain is determined by the square of the precision of manufacturing

D/Erms and the aperture efficiency.
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4.3.2 Results

Figure 4-19 and Figure 4-20 show patterns on the E-plane from the antenna tolerance theory.

The results are calculated from Equation (4.24) with Go(0, 0) being the ideal pattern from

GO. They display similar trends for pattern degradation like those obtained previously from

GO and PO. However, the degree of deterioration is much worse for the case of the tolerance

theory as we can see from the side lobes of the co-polarized patterns and the on-axis (0 = 0)

cross-polarization.

Figure 4-21 and Figure 4-22 show two comparisons between the average patterns from

GO and PO and those from the antenna tolerance theory for 6 rms = 0.005A and Erms = 0.05A

respectively. It is clear from the figures that the antenna tolerance theory predicts worse

degradation than our results. In any case, results from PO should be used as a standard due

to its superior formulation. It can be seen that in the region near the main lobe, our results

agree better with those from PO than those given by the tolerance theory.

4.4 Conclusion

In this chapter, we present results from the application of our model to study the effects

of Gaussian random surface errors on the paraboloidal reflector based on the Monte Carlo

simulation. The results show that almost all of the performance parameters associated with

the radiation patterns are degraded by the presence of random surface errors on the reflector.

We found that the the maximum gain decreases with the increasing level of rms surface

errors, whereas the side lobe and cross-polarization levels increases. The only exception is
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Figure 4-19: Average gain patterns of the co-polarized field on the E-plane from a
paraboloidal reflector with various degrees of random surface errors. The patterns are ob-
tained from the antenna tolerance theory (D = 40.0, A = 1.0, 1 = 4.0, n = 100).
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Figure 4-20: Average gain patterns of the cross-polarized field on the
paraboloidal reflector with various degrees of random surface errors. The
tained from the antenna tolerance theory (D = 40.0, A = 1.0, 1 = 4.0, n = 1
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Figure 4-21: A comparison between results from GO, PO and the antenna tolerance theory
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the beamwidth, which does not display obvious changes. In addition, we have found that

our model gives better results than the antenna tolerance theory, which is the analog to our

GO-based approach. The results seem to agree well when the erms/A is lower than 1/100.

When the ratio rises beyond this level, the disagreement is quite large, and results from the

antenna tolerance theory should not be considered accurate.
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Chapter 5

Conclusion and suggestions for future

work

We have proposed and presented the development of a method to study the effects of random

surface errors on the performance of paraboloidal reflector antennas. Our method is based on

geometrical optics ray tracing and integration of the current elements on the aperture plane

of the reflectors. The parameters that describe the current elements will reflect changes due

to the random surface errors on the antenna surface, which will present themselves in the

radiation patterns.

The random surface errors are assumed to have Gaussian statistics. An ensemble of these

surfaces are created to be used in the Monte Carlo simulation.

The results show that almost all of the performance parameters associated with the ra-

diation patterns-the maximum gain, side lobe levels, and cross-polarization-are degraded

by the presence of random surface errors on the surface of the reflector. The degree of degra-
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dation increases with the levels of the rms surface errors. In addition, we have found that

our model gives better results than the antenna tolerance theory, whose accuracy is limited

to the very low level of rms surface errors.

Based on this work, we would like to make a few suggestions for future work. First, our

program can be used to study the effects of random surface errors on paraboloidal reflector

antennas with different configurations such as the sizes, shapes of the dish, and the feed

factor.

Second, from the collection of data from the Monte Carlo simulation, we should be able

to arrive at some probability laws to describe some performance parameters such as the

directivity, the gain, the beamwidths, the cross-polarization interference, and the side lobe

levels. This will be a more useful information than the mean distribution of these parameters

to characterize the influence of the random surface errors on the radiation patterns. In

addition, we will have an opportunity to study some features that have seldom been reported

in the literature such as the shifting of positions of the peak side lobes (see Figure 4-6) or

the null positions as a function of the rms surface errors.
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Appendix A

Radiation from electric current source

In antenna and radiation problems, we are interested in finding the electromagnetic solution

to Maxwell's equations given a time-harmonic current source distribution J(F). We begin

with the Faraday's and Ampere's laws in phasor form

VxE(r) =

V x H(F) =

By substituting H(f) from

equation

iwH()

-iwcE(7) + J(7)

(A.1)

(A.2)

Equation (A.1) into Equation (A.2), we obtain the following

(A.3)

where k2 = W2
1ue. Assuming that the source distribution J(T) lies in an unbounded isotropic

medium, and the observation point is outside of the source region as shown in Figure A-1.

In terms of the scalar Green's function in spherical coordinates , we find a solution for the
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Figure A-1: Radiation from a current source.

electric field [7]

(7) = iwe 7+ 1v] - dV' 7(r') (A.4)
rik2vv 4 7 _ Tr|

Once the electric field is solved, the magnetic field can be calculated from Faraday's law in

Equation (A.1).

For observation points which are very far away from the source, all wave vectors originat-

ing from different parts of the source are essentially parallel. The radiation field (far field)

can be approximated with the following conditions

-f - = r -r ' (A.5)

kr >> 1 (A.6)
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In the radiation zone, the k vector is in the ? direction (k = ki). Neglecting T -' in the

denominator, the electric field is

E(7) = iw1 I + JJ- dV' J(')

= iwp + - e JJr dV'Jr')e- (A.7)
k2 47rr NJ

Since the current density J(T'), which is weighted with the phase retardation factor e-f'',

is integrated over the volume of ', the electric field will be a function of 0 and q only. In

terms of the vector current moment, which is defined as

f(6, #) = J dV' J(T')e-' ' (A.8)

and replacing the del operator by ik, the far field in Equation (A.7) becomes

=e - eikr

47rr

eikr
= ew9 (OfO + 5Of) (A.9)

4irr

where f(6, f) = fr + 6fo + qf4.

Under the same far-field approximation, the magnetic field H(f) is

1 k - e ikr( f o71(f) =WP V x P(T) = W x E(T) = ik ( -r) (A. 10)
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Appendix B

Change of path length due to

deviation on the reflector surface

At a point on the reflector surface at which the normal surface deviation is equal to hi, the

total change in the geometrical optics path length is

AR

= d1 + d1 cos 2ai

= 2d, cos 2 ai

= 2hi cos ai (B.1)

Thus, the total change in the path length at a point on the reflector surface is equal to twice

the axial component of the normal deviation at that point. When the reflector is relatively

flat or at locations near the center, we may assume AR = 2hi.
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Figure B-1: Change of path length due to deviation on the reflector surface
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