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Abstract A measurement is presented of the φ×BR(φ →
K +K −) production cross section at

√
s = 7 TeV using pp

collision data corresponding to an integrated luminosity of
383 µb−1, collected with the ATLAS experiment at the LHC.
Selection of φ(1020) mesons is based on the identification
of charged kaons by their energy loss in the pixel detector.
The differential cross section is measured as a function of the
transverse momentum, pT,φ , and rapidity, yφ , of the φ(1020)
meson in the fiducial region 500 < pT,φ < 1200 MeV, |yφ | <

0.8, kaon pT,K > 230 MeV and kaon momentum pK <

800 MeV. The integrated φ(1020)-meson production cross
section in this fiducial range is measured to be σφ ×BR(φ →
K +K −) = 570 ± 8 (stat) ± 66 (syst) ± 20 (lumi) µb.

1 Introduction

Perturbative quantum chromodynamics (QCD) successfully
describes physics of hadronic interactions at high momentum
transfer (Q2 � 1 GeV2), while phenomenological models
are needed for soft interactions at lower momentum transfers.
An accurate description of these soft interactions is required
to model so-called underlying events present in hard scat-
tering events. Measurements of the φ (1020)-meson probe
strangeness production at a soft scale Q ∼ 1 GeV, which is
sensitive to s-quark and low-x (x ∼ 10−4) gluon densities.
The measurement is therefore sensitive to the proton parton
distribution function (PDF), which is used by Monte Carlo
(MC) generators to describe the longitudinal momentum dis-
tributions of the proton’s constituent partons. Production of
φ(1020) mesons is also sensitive to fragmentation details and
thus φ(1020) measurements can constrain phenomenological
soft hadroproduction models.

This paper presents a measurement with the ATLAS detec-
tor [1] of the φ(1020)-meson production cross section in pp
interactions at

√
s = 7 TeV, using the φ → K +K − decay

mode. The cross section is not corrected for the branching

� e-mail: atlas.publications@cern.ch

fraction in the fiducial range. The cross section is measured in

bins of transverse momentum, pT,φ , or of rapidity |yφ |.1 The
selection of φ(1020)-meson candidates requires the identi-
fication of kaons in order to reduce the large combinatorial
background from other charged particles. Charged particles
are reconstructed with the inner detector, which consists of
a silicon pixel detector, a microstrip semiconductor tracker
(SCT), and a straw-tube transition radiation tracker (TRT).
The inner detector barrel (end-cap) parts consist of 3 (2 ×
3) pixel layers, 4 (2 × 9) layers of double-sided silicon strip
modules, and 73 (2 × 160) layers of TRT straws. A track
traversing the barrel typically has 11 silicon hits (3 pixel
clusters, and 8 strip clusters), and more than 30 straw-tube
hits. The whole inner detector is immersed in a 2 T axial
magnetic field. The specific energy loss of charged particles
in the pixel detector is used to identify low-momentum pions,
kaons and protons [2].

To avoid model-dependent extrapolations outside the
detector acceptance, the cross section is measured in the fidu-
cial region, defined as 500 < pT,φ < 1200 MeV, |yφ | <

0.8, kaon transverse momentum pT,K > 230 MeV and kaon
momentum pK < 800 MeV. In the region 0.8 < |yφ | <

1.0, φ(1020) decays would only be accepted up to pT,φ ∼
700 MeV, because the requirement of pK < 800 MeV has
a lower efficiency at higher rapidity. The fiducial range is
limited to the region where the differential cross section can
be measured and where correcting for the losses due to the
requirements on kaon momentum is reliable. The measure-
ment is corrected for detector effects and can be compared
directly with MC generators at particle level.

Many measurements of the φ(1020) production cross
section have been performed at different centre-of-mass

1 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-axis
along the beam pipe. The x-axis points from the IP to the centre of the
LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ)
are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ

with respect to the beamline as η = −ln[tan(θ/2)].
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energies, using different decay modes and in different rapid-
ity ranges. Among these are a study at

√
s = 7 TeV

by ALICE [3] in a similar rapidity region and another by
LHCb [4] in the forward rapidity region. The φ(1020) pro-
duction cross section presented in this paper is compared to
the measurement by ALICE and to MC predictions.

2 Data set and event selection

A data sample with an integrated luminosity of 383 µb−1

from pp collision data taken in April 2010 at
√

s = 7 TeV
is used. The contribution of pile-up, i.e. multiple collisions
per bunch crossing, is negligible for this data sample, with a
peak luminosity of 1.8 × 1028 cm−2 s−1. The luminosity is
measured in dedicated van der Meer scans with an estimated
uncertainty of 3.5 % [5]. The data sample was selected with
the minimum bias trigger scintillators (MBTS) [6] to min-
imize any possible bias in the measured cross section. The
MBTS are mounted at each end of the tracking detector in
front of the liquid-argon endcap-calorimeter cryostats at z =
± 3.56 m and were configured to require one hit above thresh-
old from either side of the detector. This trigger is shown to be
highly efficient in selecting inelastic pp collisions [6]. Tracks
are fitted with a kaon-mass assumption to account for energy
losses in the detector material. Events are required to contain
at least two tracks with pT > 150 MeV and to have a primary
vertex (PV, defined as the vertex in the event with the largest
�pT over all reconstructed tracks associated to the vertex) [7]
reconstructed using the beam spot information [6].

MC simulations are used to correct the data for detec-
tor effects and to compare with the fully corrected data.
The MC generators used are PYTHIA6 [8], PYTHIA8 [9],
Herwig++ [10] and EPOS [11,12]. Different versions
of the same MC generator, that differ in sets of tunable
parameters used in modeling the soft component of proton-
proton interactions, are called tunes. Both PYTHIA6 and
PYTHIA8 are general purpose generators which implement
the Lund string hadronisation model [13] and describe non-
diffractive interactions (including Multiple Parton Interac-
tions, MPI) via lowest-order perturbative QCD, with phe-
nomenological regularisation of the divergence of the cross
section as pT → 0. Diffractive processes are included which
involve the exchange of a colour singlet. Both inelastic
non-diffractive and diffractive processes are mixed in accor-
dance with the generator cross sections. The PYTHIA tunes
considered are MC09 [14] with PYTHIA6 version 6.421,
DW [15] and Perugia0 [16] with PYTHIA6 version 6.423,
and two A2 tunes with PYTHIA8 version 8.153, i.e. with the
MSTW2008LO [17,18] and CTEQ6L1 [19] PDF sets. The
MC09 and Perugia0 tunes use a pT-ordered parton shower
model with MPI and the initial-state shower interleaved in
a common sequence of decreasing pT. For the PYTHIA8

A2 tunes, the final-state showers are also interleaved in this
way. The DW tune utilises the older virtuality-ordered parton
shower which is not interleaved with MPI.
Herwig++ version 2.5.1 is used with the UE7-2 [20]

tune. Herwig++ is also a general purpose generator but
differs from PYTHIA in that it uses a cluster hadroni-
sation model [21] and an angular-ordered parton shower.
Herwig++ contains a tunable eikonalised MPI model which
assumes independence between separate scatters in the event.
In order to simulate inelastic minimum bias events the fol-
lowing mechanism is used. For a fixed impact parameter,
Poisson distributions are sampled to provide the number of
soft and perturbatively-treated semi-hard scatters to simulate
per event.
EPOS 1.99 v2965 is used with the EPOS-LHC [22] tune.

EPOS contains a parametrised approximation of the hydrody-
namic evolution of initial states using a parton based Gribov-
Regge [23] theory which has been tuned to LHC data.

The ATLAS detector is simulated [24] using GEANT4
[25]. The reconstruction of K ± tracks from φ → K +K −
decays generated by PYTHIA6 MC09 is used for the calcu-
lation of the tracking efficiency. A consistency test of the full
φ(1020)-meson reconstruction is performed with PYTHIA6
MC09 and Herwig++ UE7-2.

As the φ(1020) meson has no measurable decay length,
only tracks originating from the PV are used. Each track must
pass the following requirements: more than one pixel cluster
and more than one SCT hit; pT > 230 MeV; p < 800 MeV
and |η| < 2.0. The condition pT > 230 MeV is adopted
since the tracking efficiency for kaon tracks with pT,K <

230 MeV and central |η| is close to zero. Kaons produced
with such low momenta effectively deposit all their energy
in the detector and support materials before reaching the SCT.
The cut on track momentum of p < 800 MeV is dictated by
particle identification requirements and is explained in the
next section.

3 Particle identification

Every pair of oppositely charged tracks passing the tracking
cuts is examined. The identification of a pair of tracks candi-
date for a φ → K +K − decay requires a particle identifica-
tion (PID) step to remove the large combinatorial background
from pairs containing one or two charged particles that are
not kaons. Discrimination between background (consisting
mostly of pions) and kaons is achieved using energy loss in
the pixel detector. The mean energy deposited by a charged
particle is described by the Bethe–Bloch formula as a func-
tion of the particle’s velocity [26]. For momenta larger than
1 GeV, the energy lost by the particles starts to be dominated
by relativistic effects and can no longer be used for particle
identification. The mean energy loss per unit length is esti-
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Fig. 1 The truncated mean (see text for detailed explanation) for the
energy loss per track as a function of signed momentum for tracks
accepted in the analysis. The bands corresponding to the energy lost by
pions, kaons and protons are labelled

mated as the energy deposited by a particle in the traversed
layers of the pixel detector divided by the local thickness
traversed in the detector material. The energy deposited is
calculated after removing the pixel cluster with the largest
charge for particles with three or four associated pixel clusters
or after removing the two clusters with the largest charge for
particles with more than four pixel clusters. The track dE/dx
is calculated using a truncated mean of the dE/dx values of
the individual pixel clusters as this gives a better resolution
than the simple mean. The expected energy loss for a kaon
with pK = 500 MeV is 2.4 MeV g−1 cm2. For a pion with
the same momentum, an energy loss of 1.2 MeV g−1 cm2

is expected. The average energy loss per track as a function
of signed momentum, qp, where q is the particle charge, is
shown in Fig. 1; bands indicating pions, kaons and protons
are clearly visible.

A comparison between data and MC prediction of track η,
of the number of hits in the pixel and SCT detectors associ-
ated with tracks (with a requirement of at least two pixel clus-
ters and two SCT hits) and of average energy loss per track is
presented in Fig. 2. The distributions agree well, demonstrat-
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Fig. 2 Comparison between data (black dots) and MC simulation (histogram) for a track η, b number of pixel clusters assigned to the track, c
number of SCT clusters assigned to the track and d the average track energy loss (see text). Statistical uncertainties are smaller than the marker size
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ing a good understanding of track simulation and reconstruc-
tion in the inner detector. The slight disagreement in Fig. 2d,
where the location of the peak of the average energy loss is
overestimated by ∼0.05 MeV g−1 cm2 in the MC simulation,
is due to the relative abundances of different particle species
being slightly different for data and simulation.

The most probable value of the specific energy loss for a
pion, kaon or proton hypothesis is parameterized as a func-
tion of the charged particle’s Lorentz factor βγ . The mea-
sured energy loss is used to calculate the probability Pparticle

of compatibility with a given hypothesis [2]. Kaon candi-
dates are required to satisfy Ppion < 0.1 and Pkaon > 0.84
conditions. The candidate φ(1020) decays are searched for
by selecting the oppositely charged track pairs for which
both tracks pass the tracking and PID requirements defined
above and combine to an invariant mass in the range 1000 <

m(K +K −) < 1060 MeV.

4 Determination of the cross section

The fiducial region is divided into eight bins in |yφ | and ten
bins in pT,φ with bin widths of 0.1 and 70 MeV, respectively.
Unless specifically stated, the cross section is not corrected
for the branching fraction of φ(1020)-meson decays to kaons.

Each φ(1020) candidate is assigned a weight to correct for
experimental losses. Firstly, a weight is given for trigger and
vertex reconstruction efficiencies [6], which have both been
measured in data to rapidly increase to 100 % for events with
four or more tracks. The trigger and vertex reconstruction
efficiencies were found to have a negligible effect on this
analysis and were applied on an event-by-event basis. Sec-
ondly, a weight is given for track reconstruction and kaon
identification efficiencies on a track-by-track basis. These
efficiencies are calculated separately for tracks from posi-
tively and negatively charged particles, because fewer pixel
clusters are expected on the tracks of low-momentum nega-
tively charged particles, which may pass in between two pixel
modules due to the tiling and tilt of the modules. The average
number of pixel clusters on tracks which pass the selection
detailed in Sect. 2 is 2.96±0.01 per positively charged parti-
cle and 2.79 ± 0.01 per negatively charged particle. Finally,
a weight is given on a track-by-track basis to correct for the
fraction of selected tracks passing the kinematic selection
for which the corresponding generated kaon is outside the
kinematic range. Following the determination of the weight
of each of the candidate φ(1020), the efficiency-corrected
number of reconstructed candidates is determined with a fit
to the invariant mass distribution.

The calculation of track reconstruction efficiency, kaon
identification efficiency and the subsequent signal yield
extraction are explained in the next sections.

4.1 Track reconstruction efficiency

The track reconstruction efficiency, εrec, is based on MC
‘truth-matching’, where generated particles are matched to
reconstructed tracks. The simulation-based method is based
on a matching probability evaluated using the number of
common hits between particles at generator level and the
reconstructed tracks, and is described in Ref. [6]. The aver-
age tracking efficiency for the two tracks of a φ → K +K −
decay is about 40 % for the lower pT,φ bins and increases
to 65 % in the highest pT,φ bin. It is ∼ 50 % for all bins in
rapidity.

Only to estimate the quality of the MC description of εrec

in data, the number of tracks passing all cuts in bins of pseu-
dorapidity is divided by the number of tracks passing the
cuts with one cut loosened. This efficiency is referred to as
the relative efficiency εrel. The behavior of εrel with one fewer
pixel cluster or one fewer SCT hit required per track and a
lower momentum cut is compared between simulation and
data and found to be consistent within 0.5 %. The systematic
uncertainty inferred is 0.7 % per track pair.

The dominant source of uncertainty is due to uncertainty
in the MC material description, denoted as εrec(material).
It is described in Ref. [6] and is given in bins of track η

and pT. The material uncertainty, expressed as a fraction
of the corresponding tracking efficiency, is 2–3 % for most
tracks accepted in this analysis. To evaluate the impact of this
uncertainty, the yield is extracted with the nominal tracking
efficiency, and with the nominal tracking efficiency varied
up and down by this uncertainty. The systematic uncertainty
arising from εrec(material) is accounted for per bin in pT,φ

or |yφ | and is 5 % per track pair.
The number of reconstructed decays is corrected for the

fraction of selected tracks passing the kinematic selection for
which the corresponding primary particle is outside the kine-
matic range. The distributions are subsequently corrected
using a MC derived factor to account for the migration of
reconstructed φ(1020)-meson candidates into the fiducial
volume. The systematic uncertainty arising from this migra-
tion correction is evaluated by re-calculating the migration
correction after re-weighting the kaon momentum spectrum
at particle-level to get a good description of the data at detec-
tor level. The variation of the extracted yield using the default
and re-weighted migration correction is assigned as a system-
atic uncertainty and is below 1 %.

The statistical uncertainty on the tracking efficiency,
εrec(stat), is in the range 1–5 % and is propagated as a sys-
tematic uncertainty on the cross section. The total system-
atic uncertainty in the tracking efficiency determination is
obtained by adding the previously mentioned components in
quadrature and is summarized in Tables 1 and 2 as a function
of pT,φ and |yφ |, respectively.
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Table 1 The fitted number of
φ(1020) candidates (Signal), the
differential production cross
section dσ/d pT (µb/MeV) of
φ → K +K − and its statistical
uncertainty in bins of pT,φ with
500 < pT,φ < 1200 MeV,
|yφ | < 0.8, pT,K > 230 MeV
and pK < 800 MeV and the
systematic uncertainties due to
track reconstruction efficiency
(εrec), kaon identification (εpid)
and fitting procedure. The
uncertainty on the luminosity is
3.5 %

Bin (MeV) Signal
(in units of 104)

dσ/d pT
(µb/MeV)

Systematic uncertainty (µb/MeV)

εrec εpid Fitting

500 < pT,φ ≤ 570 1.22 ± 0.07 0.44 ± 0.03 ± 0.03 ± 0.03 ± 0.03

570 < pT,φ ≤ 640 2.34 ± 0.09 0.87 ± 0.04 ± 0.06 ± 0.05 ± 0.05

640 < pT,φ ≤ 710 2.71 ± 0.10 1.01 ± 0.04 ± 0.06 ± 0.06 ± 0.06

710 < pT,φ ≤ 780 3.19 ± 0.11 1.19 ± 0.04 ± 0.07 ± 0.09 ± 0.07

780 < pT,φ ≤ 850 3.16 ± 0.11 1.18 ± 0.04 ± 0.06 ± 0.10 ± 0.07

850 < pT,φ ≤ 920 2.85 ± 0.10 1.05 ± 0.04 ± 0.05 ± 0.09 ± 0.06

920 < pT,φ ≤ 990 2.15 ± 0.09 0.79 ± 0.04 ± 0.03 ± 0.08 ± 0.06

990 < pT,φ ≤ 1060 1.81 ± 0.07 0.67 ± 0.04 ± 0.03 ± 0.07 ± 0.05

1060 < pT,φ ≤ 1130 1.30 ± 0.06 0.48 ± 0.04 ± 0.02 ± 0.05 ± 0.03

1130 < pT,φ ≤ 1200 1.23 ± 0.08 0.46 ± 0.04 ± 0.02 ± 0.06 ± 0.03

Table 2 The fitted number of
φ(1020) candidates (Signal), the
differential production cross
section dσ/d|y| (mb) of
φ → K +K − and its statistical
uncertainty in bins of |yφ | with
500 < pT,φ < 1200 MeV,
|yφ | < 0.8, pT,K > 230 MeV
and pK < 800 MeV and the
systematic uncertainties due to
track reconstruction efficiency
(εrec), kaon identification (εpid)
and fitting procedure. The
uncertainty on the luminosity is
3.5 %

Bin Signal
(in units of 104)

dσ/d|y|
(mb)

Systematic uncertainty (mb)

εrec εpid Fitting

0.0 < |yφ | ≤ 0.1 3.44 ± 0.10 0.90 ± 0.03 ± 0.04 ± 0.06 ± 0.05

0.1 < |yφ | ≤ 0.2 3.39 ± 0.10 0.88 ± 0.03 ± 0.04 ± 0.07 ± 0.05

0.2 < |yφ | ≤ 0.3 3.22 ± 0.09 0.84 ± 0.03 ± 0.04 ± 0.06 ± 0.05

0.3 < |yφ | ≤ 0.4 3.18 ± 0.09 0.82 ± 0.03 ± 0.04 ± 0.06 ± 0.05

0.4 < |yφ | ≤ 0.5 3.36 ± 0.11 0.88 ± 0.03 ± 0.05 ± 0.08 ± 0.05

0.5 < |yφ | ≤ 0.6 2.53 ± 0.12 0.66 ± 0.03 ± 0.04 ± 0.06 ± 0.04

0.6 < |yφ | ≤ 0.7 2.01 ± 0.11 0.51 ± 0.02 ± 0.03 ± 0.05 ± 0.04

0.7 < |yφ | ≤ 0.8 1.18 ± 0.07 0.30 ± 0.02 ± 0.02 ± 0.04 ± 0.02

4.2 Particle identification efficiency

The particle identification efficiency, εpid, is extracted from
simulation as a function of both pK and η. The data sample
is not large enough to determine the PID efficiency with a
purely data driven technique in bins of pK and η. Therefore
a data-driven tag-and-probe technique is used to determine
the PID in bins of pK and this is used to rescale the Monte
Carlo estimates of the PID efficiency. The data sample is
split up into five bins of pK and the efficiency is measured
as the fraction Nprobe/Ntag, where Nprobe is the number of
candidates for which both kaons pass the PID requirement
of Ppion < 0.1 and Pkaon > 0.84, and Ntag is the number of
candidates for which at least the K + or the K − passes. To
measure the signal yields Ntag and Nprobe, the invariant mass
distribution in each bin of pK is fitted with a probability den-
sity function (p.d.f.) that describes the signal and background
contributions separately and which is detailed in Sect. 4.3.
A final efficiency correction factor is defined by multiply-
ing the two-dimensional efficiency from MC simulation by
the ratio of data to MC tag-and-probe efficiencies, which is
close to unity for pK < 500 MeV, but decreases to a factor
of slightly more than 0.3 for 700 < pK < 800 MeV. The
decreasing efficiency is due to the decreasing discrimination

power using energy loss with increasing momentum, seen in
Fig. 1, where from pK ∼ 600 MeV the bands start to overlap.

The tag-and-probe method is validated using MC simula-
tion by ascertaining that the εpid values obtained using MC
truth-matching and the tag-and-probe method in bins of pT,φ

and |yφ | agree within MC statistical uncertainties. The par-
ticle identification efficiency decreases with increasing aver-
age kaon momentum from ∼90 % for 230 < pK ≤ 400 MeV
to ∼10 % for 700 < pK < 800 MeV.

The systematic uncertainty due to εpid is evaluated by fix-
ing the background shape parameters in the tag sample to
the values given by the fit to the same-sign background dis-
tribution (a maximum uncertainty of 10 %) and by adding
the same-sign background samples to the fitted data sets for
the tag-and-probe validation in PYTHIA6 to vary the signal
to background ratio (a maximum uncertainty of 6 %). Pos-
sible dependence of the cross section on the choice of Pkaon

requirement is tested by varying the requirement by 10 % and
is found to be well within the uncertainty due to fixing the
background shape parameters. The statistical uncertainty on
εpid is calculated using a binomial probability distribution,
which leads to a relative uncertainty on εpid of at most 5 %,
denoted by εpid(stat). These uncertainties (evaluated per bin
in pT,φ or |yφ |) are added in quadrature and are included as
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Fig. 3 Examples of invariant K +K − mass distributions in the data
(dots) compared to results of the fits (solid lines), as described in the
text, for a the lowest pT,φ bin, b one of the middle pT,φ bins, c the most

central |yφ | bin and d most forward |yφ | bin. The dashed curves show
the background contribution and the dotted red curves demonstrates the
signal contributions, with paremeters listed in the legend

systematic uncertainties on the cross section as summarized
in Tables 1 and 2.

4.3 Signal extraction

To extract the signal yields, a binned χ2 fit to the invariant
mass spectrum is performed in each region of phase space
after applying corrections for the selection efficiencies to the
tracks. The signal shape is described by a relativistic Breit–
Wigner,

fRBW(m; m0, �0) = m2

(m2 − m2
0)

2 + m2
0�

2(m)
, (1)

where the mass-dependent width is given by

�(m) = �0

[
m2 − 4m2

K

m2
0 − 4m2

K

]3/2

. (2)

In Eq. (1), m0 is fixed to the φ(1020)-meson mass of
1019.45 MeV [27], �0 to the natural width of 4.26 MeV
[27], and mK in Eq. (2) is the charged kaon mass [27].

The signal shape is convoluted with a Gaussian resolution
function, with the mean and standard deviation left free in the

fit. The mean of the Gaussian is interpreted as the actual value
of the φ(1020) mass, while its standard deviation corresponds
to the experimental resolution. The values obtained from the
fits are in the range σexp =1.0–2.5 MeV.

This signal description is added to an empirical back-
ground description,

fBKG(m) = (1 − e(2mK −m)/C ) ·
(

m

2mK

)A

+ B

(
m

2mK
− 1

)
, (3)

where A, B and C determine the background shape. Initial
values for A, B and C are found by fitting the background
p.d.f. to a sample of events with two kaons of the same charge.
This same-sign sample contains the same sources of com-
binatorial background as the nominal selection but no true
φ(1020) mesons, and so it provides a good initial description
of the background shape. It was checked that the background
model provides stable fitting results in all bins in pT,φ and
|yφ | for the same-sign sample.

Fits of the invariant mass of K +K − pairs are shown in
Fig. 3 for four regions. It was found that the maximum of the
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Fig. 4 The φ(1020) × BR(φ → K +K −) cross section in the fiducial
region, with 500 < pT,φ < 1200 MeV, |yφ | < 0.8, pT,K > 230 MeV
and kaon momentum pK < 800 MeV, as a function of pT,φ (left) and
|yφ | (right). The error bars represent the statistical uncertainty and the

green boxes represent the quadratic sum of the statistical and systematic
uncertainties. The 3.5 % uncertainty on the luminosity is not included.
The data are compared to various MC expectations as described in the
legends

signal peak, mpeak, is shifted upwards by almost 1 MeV for
the lowest pT,φ bin. This is covered by the uncertainty on the
momentum scale for the low-momentum tracks.

Three tests are conducted to estimate the systematic uncer-
tainty on the extracted signal yield due to uncertainty on the
signal, background shape and detector resolution. Firstly, the
signal is extracted using a non-relativistic Breit–Wigner line-
shape convolved with a Gaussian to describe the signal shape.
This leads to a conservative estimate of the uncertainties in
the extracted signal of 5–6 %, which are evaluated bin-by-bin
in pT,φ and |yφ |. Secondly, the extracted yield changes by
at most 2 % if the signal shape is convolved with a Crystal
Ball [28] resolution function, rather than a Gaussian. Thirdly,
the extracted yields vary by at most 3 % if the background
p.d.f. is fitted to the sample of same-sign pairs of tracks in
each bin and the shape is fixed to the result of this fit. Adding
the relative changes in the yield in quadrature, a conservative
estimate of 6–7 % is assigned to the systematic uncertainty
and summarized in Tables 1 and 2.

The cross section σ i
bin in bin i is determined by

σ i
bin = Ni

L , (4)

where L is the integrated luminosity and Ni is the number of
efficiency-corrected reconstructed φ → K +K − candidates
in bin i .

5 Results

The differential φ × BR(φ → K +K −) cross section in the
fiducial region 500 < pT,φ < 1200 MeV, |yφ | < 0.8, kaon
transverse momentum pT,K > 230 MeV and kaon momen-
tum pK < 800 MeV is shown in Fig. 4 a) as a function of

pT,φ and in Fig. 4 b) as a function of |yφ | and compared to
simulation. Tables 1 and 2 give the differential cross sections
and the relevant systematic uncertainties. The total statistical
uncertainty ranges from 3 to 8 % and the total systematic
uncertainty is 8–12 %. The uncertainty on the luminosity is
3.5 % [5] for all bins. The integrated cross section is calcu-
lated as the sum of the differential cross sections as a function
of pT,φ . This determination is less sensitive to mismodelling
of the pT,φ distribution than a determination based on the
sum of the differential cross sections as a function of |yφ |
and is measured to be σφ × BR(φ → K +K −) = 570 ± 8
(stat) ± 68 (syst) ± 20 (lumi) µb.

The fiducial cross section increases as a function of
pT,φ in the range 500–700 MeV, reaches a maximum at
pT,φ ∼ 750 MeV and decreases for pT,φ ≥ 850 MeV. The
increase in the number of measured decays as pT,φ rises to
700 MeV is due to the cut on kaon transverse momentum
pT,K > 230 MeV, along with the increasing phase space
for φ(1020) production. The fiducial cross section is seen to
decrease from |yφ | ≥ 0.5. This is due to the pK < 800 MeV
requirement for efficient PID which excludes an increas-
ing fraction of kaons as the rapidity increases. The region
|yφ | < 0.8 is well within the rapidity plateau at LHC ener-
gies, therefore the differential cross section for φ(1020) is
expected to be flat as a function of |yφ | in the measured range
of |yφ |.

The cross section is best described by the PYTHIA 6
tune DW and by the EPOS-LHC tune. These provide a good
description for the pT,φ and |yφ | dependencies as well as for
the total yield. The PYTHIA6 MC09 tune slightly overesti-
mates the data in the fiducial region. The PYTHIA6 Peru-
gia0 tune underestimates the cross section by around a fac-
tor of two compared to the data in the whole fiducial vol-
ume. The two PYTHIA8A2 tunes, based on different PDFs,
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show similar predictions for the cross section, which are also
about a factor of two too small. Herwig++ provides a good
description for the cross section for pT,φ < 700 MeV and
for |yφ | > 0.6, but exhibits an overly steeply falling pT,φ

dependence, such that the cross section is underestimated for
pT,φ > 700 MeV and in the mid-rapidity range |yφ | < 0.6.

6 Extrapolated cross section

The kaon momenta requirements arising from tracking and
PID cuts (pT,K > 230 MeV and pK < 800 MeV) reject a
significant number of φ → K +K − candidates. In order to
allow comparison with other measurements, the cross sec-
tion in the fiducial region is extrapolated to a cross section
in the kinematic region 500 < pT,φ < 1200 MeV and cen-
tral rapidity |yφ | < 0.5, using MC particle level information.
The variation of the expected correction between the dif-
ferent generators considered is 10 % and is included as an
additional systematic uncertainty on the extrapolated result.
A correction for the branching fraction is also applied. The
systematic uncertainty on the branching fraction is 1 % [27].
The extrapolation is done with PYTHIA6, because the cross
section’s dependence on pT,φ within the fiducial region is
well described by this generator, as shown in Fig. 4. The
extrapolation is restricted to |yφ | < 0.5, where the fiducial
acceptance is large, over 70 %. The extrapolation factor is
2.78 for the lowest pT,φ bin, then decreases to 1.08 at pT,φ ∼
900 MeV and becomes 1.21 in highest pT,φ bin.

The extrapolated cross section is compared to the mea-
surement by the ALICE Collaboration of the φ(1020) pro-
duction cross section as described in Ref. [3]. A compar-
ison between the cross section measurements is shown in
Fig. 5. The measurements as a function of pT,φ are in agree-
ment to within 10 % in the first two bins and to within
3 % in the other bins, which is well within the systematic
uncertainties.

7 Summary

This paper presents a measurement of the differential pro-
duction cross section of the φ(1020) meson using the K +K −
decay mode and 383 µb−1 of 7 TeV pp collision data col-
lected with the ATLAS experiment at the LHC. To avoid
model-dependent extrapolations outside the detector accep-
tance, the cross section is measured in a fiducial region, with
500 < pT,φ < 1200 MeV, |yφ | < 0.8, kaon pT,K > 230 MeV
and kaon momentum pK < 800 MeV requirements, which
are determined by particle identification and track recon-
struction constraints.

The φ(1020) production cross section is in agreement with
the predictions of the MC generator tunes EPOS-LHC and
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Fig. 5 The φ(1020)-meson cross section as a function of pT,φ , extrap-
olated using PYTHIA6 to the kinematic region with 500 < pT,φ <

1200 MeV and |yφ | < 0.5, is compared to the measurement by the
ALICE Collaboration [3]. The error bars represent the statistical uncer-
tainty and the boxes represent the quadratic sum of the statistical and
systematic uncertainties. The 3.5 % uncertainty on the luminosity is not
included

PYTHIA6 DW. PYTHIA6 predictions using different tunes
are observed to differ significantly. The cross section is also
underestimated byPYTHIA8 and byHerwig++. This mea-
surement can provide useful input for tuning and develop-
ment of phenomenological models in order to improve MC
generators.
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