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1 Introduction

The B+→ K+µ+µ− and B0→ K0
Sµ

+µ− decays are rare, flavour-changing neutral-current

processes that are mediated by electroweak box and penguin amplitudes in the Standard

Model (SM).1 In well motivated extensions of the SM [1, 2], new particles can introduce

additional amplitudes that modify the angular distribution of the final-state particles pre-

dicted by the SM.

In this paper, the angular distributions of the final-state particles are probed by deter-

mining the differential rate of the B meson decays as a function of the angle between the

direction of one of the muons and the direction of the K+ or K0
S meson in the rest frame

of the dimuon system. The analysis is performed in bins of q2, the dimuon invariant mass

squared. The angular distribution of B+→ K+µ+µ− decays has previously been studied

by the BaBar [3], Belle [4], CDF [5] and LHCb [6] experiments with less data.

For the decay B+→ K+µ+µ−, the differential decay rate can be written as [2, 7]

1

Γ

dΓ

d cos θl
=

3

4
(1− FH)(1− cos2 θl) +

1

2
FH +AFB cos θl , (1.1)

where θl is the angle between the direction of the µ− (µ+) lepton and the K+ (K−)

meson for the B+ (B−) decay. The differential decay rate depends on two parameters, the

forward-backward asymmetry of the dimuon system, AFB, and a second parameter FH,

1The inclusion of charge conjugated processes is implied throughout.
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which corresponds to the fractional contribution of (pseudo)scalar and tensor amplitudes

to the decay width in the approximation that muons are massless. The decay width, AFB

and FH all depend on q2.

The structure of eq. (1.1) follows from angular momentum conservation in the decay of

a pseudo-scalar B meson into a pseudo-scalar K meson and a pair of muons. In contrast to

the decay B0→ K∗0µ+µ−, AFB is zero up to tiny corrections in the SM. A sizable value of

AFB is possible in models that introduce large (pseudo)scalar- or tensor-like couplings [1, 2].

The parameter FH is non-zero, but small, in the SM due to the finite muon mass. For

eq. (1.1) to remain positive at all lepton angles, AFB and FH have to satisfy the constraints

0 ≤ FH ≤ 3 and |AFB| ≤ FH/2.

Since the B0 and B0 meson can decay to the same K0
Sµ

+µ− final state, it is not possible

to determine the flavour of the B meson from the decay products. Without tagging the

flavour of the neutral B meson at production, it is therefore not possible to unambiguously

chose the correct muon to determine θl. For this reason, θl is always defined with respect

to the µ+ for decays to the K0
Sµ

+µ− final-state. In this situation any visible AFB would

indicate that there is either a difference in the number of B0 and B0 mesons produced,

CP violation in the decay or that the AFB of the B0 and B0 decay differ. Any residual

asymmetry can be canceled by performing the analysis in terms of |cos θl|,

1

Γ

dΓ

d|cos θl|
=

3

2
(1− FH)(1− |cos θl|2) + FH , (1.2)

where the constraint 0 ≤ FH < 3 is needed for this expression to remain positive at all values

of |cos θl|. This simplification of the angular distribution is used for the B0→ K0
Sµ

+µ−

decay in this paper.

2 Data and detector description

The data used for the analysis correspond to 1 fb−1 of integrated luminosity collected by the

LHCb experiment in pp collisions at
√
s = 7 TeV in 2011 and 2 fb−1 of integrated luminosity

collected at
√
s = 8 TeV in 2012. The average number of pp interactions, yielding a charged

particle in the detector acceptance, per bunch crossing was 1.4 in 2011 and 1.7 in 2012.

The LHCb detector [8] is a single-arm forward spectrometer covering the

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c

quarks. The detector includes a high-precision tracking system consisting of a silicon-strip

vertex detector surrounding the pp interaction region, a large-area silicon-strip detector lo-

cated upstream of a dipole magnet with a bending power of about 4 Tm, and three stations

of silicon-strip detectors and straw drift tubes [9] placed downstream of the magnet. The

combined tracking system provides a momentum measurement with relative uncertainty

that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution

of 20µm for tracks with large transverse momentum. Different types of charged hadrons

are distinguished by information from two ring-imaging Cherenkov detectors [10]. Pho-

ton, electron and hadron candidates are identified by a calorimeter system consisting of

scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
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calorimeter. Muons are identified by a system composed of alternating layers of iron and

multiwire proportional chambers [11].

Samples of simulated B+→ K+µ+µ− and B0→ K0
Sµ

+µ− decays are used to under-

stand how the detector geometry, the reconstruction and subsequent event selection bias

the angular distribution of the decays. In the simulation, pp collisions are generated using

Pythia [12] with a specific LHCb configuration [13]. Decays of hadronic particles are de-

scribed by EvtGen [14], in which final state radiation is generated using Photos [15]. The

interaction of the generated particles with the detector and its response are implemented

using the Geant4 toolkit [16, 17] as described in ref. [18].

3 Selection of signal candidates

The LHCb trigger system [19] consists of a hardware stage, based on information from

the calorimeter and muon systems, followed by a software stage, which applies a full event

reconstruction. In the hardware stage of the trigger, candidates are selected with at least

one muon candidate with transverse momentum, pT > 1.48 (1.76) GeV/c in 2011 (2012). In

the second stage of the trigger, at least one of the final-state particles from the B0 or B+

meson decay is required to have pT > 1.0 GeV/c and impact parameter larger than 100µm

with respect to any primary vertex (PV) from the pp interactions in the event. Tracks

from two or more of the final-state particles are required to form a secondary vertex that

is displaced from all of the PVs.

The K0
S mesons from the decay B0→ K0

Sµ
+µ− are reconstructed through their decay

K0
S→ π+π− in two different categories: the first category contains K0

S mesons that decay

early enough that the final-state pions are reconstructed in the vertex detector; and the

second contains K0
S mesons that decay later, such that the first track segment that can

be reconstructed is in the large-area silicon-strip detector. These categories are referred to

as long and downstream, respectively. Candidates in the long category have better mass,

momentum and vertex resolution.

Reconstructed tracks that leave hits in the LHCb muon system are positively identified

as muons. Two muons of opposite charge are then combined with either a track (K+) or

a reconstructed K0
S to form a B+ or B0 candidate. The π+π− pair from the reconstructed

K0
S is constrained to the known K0

S mass when determining the mass of the B0 candidate.

Neural networks, using information from the RICH detectors, calorimeters and muon sys-

tem, are used to reject backgrounds where either a pion is misidentified as the kaon in the

B+ decay or a pion or kaon are incorrectly identified as one of the muons.

An initial selection is applied to B+ and B0 candidates to reduce the level of the

background. The selection criteria are common to those described in ref. [20]: the µ± and

the K+ candidates are required to have χ2
IP > 9, where χ2

IP is defined as the minimum

change in χ2 of the vertex fit to any of the PVs in the event when the particle is added to

that PV; the dimuon pair vertex fit has χ2 < 9; the B candidate is required to have a vertex

fit χ2 < 8 per degree of freedom; the B momentum vector is aligned with respect to one of

the PVs in the event within 14 mrad, the B candidate has χ2
IP < 9 with respect to that PV

and the vertex fit χ2 of that PV increases by more than 121 when including the B decay

products. In addition, the K0
S candidate is required to have a decay time larger than 2 ps.
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The initial selections are followed by tighter multivariate selections, based on boosted

decision trees (BDTs) [21] with the AdaBoost algorithm [22]. The working points for

the BDTs are chosen to maximise NS/
√
NS +NB, where NS and NB are the expected

numbers of signal and background candidates within ±50 MeV/c2 of the known B0 or

B+ meson masses, respectively. For the B+ → K+µ+µ− decay, the variables used

in the BDT are identical to those of ref. [20]. In contrast to that analysis, how-

ever, the multivariate selection is trained using a sample of simulated events to model

the signal and candidates from the data with K+µ+µ− invariant masses in the range

5700 < m(K+µ+µ−) < 6000 MeV/c2 for the background. This background sample is not

used in the subsequent analysis, where the invariant mass of the candidates is restricted

to the range 5170 < m(K+µ+µ−) < 5700 MeV/c2. The multivariate selection has an effi-

ciency of 89% for signal and removes 94% of the background that remains after the initial

selection. For the B0→ K0
Sµ

+µ− decay, two independent BDTs are trained for the long

and downstream categories. Samples of simulated events are used in the signal training

and candidates from the data with masses 5700 < m(K0
Sµ

+µ−) < 6000 MeV/c2 for the

background training. The following information is used in the classifiers: the B0 candidate

momentum and pT, its vertex quality (χ2) and decay time, the K0
S candidate pT, and the

angle between the B0 candidate momentum and the direction between the PV and the B0

decay vertex. For the long category, the K0
S candidate χ2

IP is also included. The multivari-

ate selection removes 99% of the combinatorial background and is 66% and 48% efficient

for the long and downstream signal categories.

Combinatorial backgrounds for the B+ → K+µ+µ− decay, where the K+, µ+ and

µ− candidates do not all come from the same b-hadron decay, are reduced to a small

level by the multivariate selection. After applying the multivariate selection, the signal-

to-background ratio in a ±50 MeV/c2 range around the known B+ mass is better than

six-to-one. Remaining backgrounds mainly come from b-hadron decays that are fully or

partially reconstructed in the detector. The B+→ J/ψK+ and B+→ ψ(2S)K+ decays2

are rejected by removing the regions of dimuon mass around the charmonium resonances

(8.0 < q2 < 11.0 GeV2/c4 and 12.5 < q2 < 15.0 GeV2/c4). These decays can also form a

background to the B+→ K+µ+µ− decay if the kaon is incorrectly identified as a muon

and the muon with the same charge is incorrectly identified as a kaon. This background is

removed by rejecting candidates with a K+µ− pair whose invariant mass (under the µ+µ−

mass hypothesis) is consistent with that of the J/ψ or ψ(2S) meson, if the reconstructed

kaon can also be matched to hits in the muon system. A narrow range in q2 from 0.98 <

q2 < 1.10 GeV2/c4 is also removed to reject B+→ φK+ decays, followed by the φ→ µ+µ−

decay. The region m(K+µ+µ−) < 5170 MeV/c2 is contaminated by partially reconstructed

b-hadron decays such as B0 → K∗0µ+µ− where the pion from the K∗0 → K+π− decay

is not reconstructed. This region is not used in the subsequent analysis and dictates

the lower bound of the 5170 < m(K+µ+µ−) < 5700 MeV/c2 mass range. Backgrounds

from fully hadronic b-hadron decays, such as the decay B+→ K+π+π−, are reduced to a

2Throughout this paper the decays B+ → J/ψK+ and B0 → J/ψK0
S refer to decays of B+ and B0

mesons to K+µ+µ− and K0
Sµ

+µ− final-states, respectively, through the decay J/ψ→ µ+µ−.
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negligible level using stringent muon-identification selection criteria. A further requirement

is applied on the K+µ− pair to remove a small contribution from B+→ D0π+ decays with

D0→ K+π−, where the pions survive the muon-identification requirements. Candidates

are rejected if the mass of the K+µ− pair, computed under the K+π− hypothesis, is in the

range 1850 < m(K+π−) < 1880 MeV/c2. After the application of all selection criteria, the

background from other b-hadron decays is reduced toO(0.1%) of the level of the signal. The

total efficiency for reconstructing and selecting the B+→ K+µ+µ− decay is around 2%.

Due to the long lifetime of the K0
S meson, there are very few b-hadron decays that can

be mistakenly identified as B0→ K0
Sµ

+µ− decays. The largest source of fully reconstructed

background is the decay Λ0
b→ Λµ+µ−, where the proton from the Λ→ pπ− decay is incor-

rectly identified as a π+. This background is removed by rejecting K0
S meson candidates if

the mass of the π+π− pair, under the pπ− mass hypothesis, is consistent with that of a Λ

baryon within ±10 MeV/c2 (±15 MeV/c2) for long (downstream) candidates. This veto is

95% efficient on genuine K0
S meson decays and removes more than 99% of Λ baryons. The

total efficiency for reconstructing the B0→ K0
Sµ

+µ− decay is about 0.2%, which is a factor

of ten lower than for the charged decay. This is due to a combination of three effects: the

long flight distance of K0
S mesons in the detector, the K0

S→ π+π− branching fraction, and

the requirement of having four, rather than three, tracks within the detector acceptance.

After applying the selection procedure, the signal-to-background ratio in a ±50 MeV/c2

range around the known B0 mass is better than three-to-one for the B0→ K0
Sµ

+µ− decay.

After applying the full selection criteria, more than 99% of the selected events contain

only one B+ or B0 candidate. Events containing more than one candidate have all but one

candidate removed at random in the subsequent analysis.

4 Angular acceptance

The geometrical acceptance of the LHCb detector, the trigger and the event selection

can all bias the cos θl distribution of the selected candidates. The angular acceptance

is determined using a sample of simulated signal events. The acceptance as a function

of cos θl is parameterised using a fourth-order polynomial function, fixing the odd-order

terms to zero so that the acceptance is symmetric around zero. Any small asymmetry

in the acceptance for B and B mesons, due to charge asymmetries in the reconstruction,

cancels when combining B and B meson decays.

At small values of q2, there is a large reduction of the signal efficiency at values of

cos θl close to ±1, as seen in figure 1. This results from the requirement for muons to have

p >∼ 3 GeV/c to reach the muon system. Smaller reductions of the signal efficiency also arise

from the pT requirement of the hardware trigger and the impact parameter requirements

on the µ± in the selection.

For the decay B+ → K+µ+µ−, the D0 veto described in section 3 introduces an

additional bias to the angular acceptance: at a fixed value of q2, there is a one-to-one

correspondence between cos θl and the reconstructed D0 mass, and the D0 veto therefore

removes a narrow region of cos θl in each q2 bin. The D0 veto results in the dip in the

– 5 –
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Figure 1. Angular acceptance as derived from simulation in the dimuon mass squared ranges

(a) 1.1 < q2 < 6.0 GeV2/c4 and (b) 15.0 < q2 < 22.0 GeV2/c4. The dip in the acceptance for

B+→ K+µ+µ− decays results from the veto used to reject B+→ D0π+ decays (see text). The

acceptance is normalised to unit area to allow a comparison of the shape of the distributions.

acceptance seen in figure 1. The impact of the veto is approximated as a step function in

the acceptance model and determined using a SM-like sample of simulated events.

5 Angular analysis

The m(K+µ+µ−) and m(K0
Sµ

+µ−) invariant mass distributions of candidates that pass the

full selection procedure are shown in figure 2, for two q2 intervals. The long and downstream

categories are combined for the decay B0 → K0
Sµ

+µ−. The angular distribution of the

candidates is shown in figure 3.

For the B+→ K+µ+µ− decay, AFB and FH are determined by performing an unbinned

maximum likelihood fit to them(K+µ+µ−) and cos θl distributions of the candidates in bins

of q2. The signal angular distribution is described by eq. (1.1), multiplied by the acceptance

distribution described in section 4. The signal mass distribution is parameterised by the

sum of two Gaussian functions with power-law tails, with common most probable values and

common tail parameters, but different widths. The parameters of the these signal functions

are obtained fitting the m(K+µ+µ−) distribution of B+→ J/ψK+ candidates in data. The

peak position and width parameters are then corrected, using simulated events, to account

for kinematic differences between the decays B+ → K+µ+µ− and B+ → J/ψK+. The

m(K+µ+µ−) distribution of the combinatorial background is parameterised by a falling

exponential function. Its angular distribution is parameterised by a third-order polynomial

function multiplied by the same angular acceptance function used for the signal.

Decays of B0 and B0 mesons to the K0
Sµ

+µ− final state cannot be separated based on

the final-state particles. The angular distribution of |cos θl| is described by eq. (1.2), which

depends only on FH. Simultaneous unbinned maximum likelihood fits are then performed

to the |cos θl| and m(K0
Sµ

+µ−) distributions of the two categories of K0
S meson (long and

downstream). The only parameter that is common between the two simultaneous fits is FH.

The m(K0
Sµ

+µ−) shape parameters of the two categories are determined in the same way as

that of the decay B+→ K+µ+µ−, using B0→ J/ψK0
S decays. Information on the angular

– 6 –
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Figure 2. Top, reconstructed mass of B+→ K+µ+µ− candidates in the ranges (a) 1.1 < q2 <

6.0 GeV2/c4 and (b) 15.0 < q2 < 22.0 GeV2/c4. Bottom, reconstructed mass of B0 → K0
Sµ

+µ−

candidates in the ranges (c) 1.1 < q2 < 6.0 GeV2/c4 and (d) 15.0 < q2 < 22.0 GeV2/c4. The data

are overlaid with the result of the fit described in the text. The long and downstream K0
S categories

are combined for presentation purposes. The shaded region indicates the background contribution

in the fit.

shape of the background in the likelihood fit is obtained from the upper mass sideband,

5350 < m(K0
Sµ

+µ−) < 5700 MeV/c2. For candidates in the long K0
S category, the number

of candidates in the sideband is so small that the shape is assumed to be uniform. For

the downstream category, the shape is parameterised by a second-order polynomial. The

signal and background angular distributions are then both multiplied by the signal angular

acceptance distribution. The m(K0
Sµ

+µ−) distribution of the background candidates is

parameterised by a falling exponential function.

The likelihood fits for the B+→ K+µ+µ− decay and the two categories of K0
S meson

in the B0→ K0
Sµ

+µ− decay are performed in two dimensions, treating m(K+µ+µ−) and

cos θl as independent variables. In total, there are 4746±81 reconstructed signal candidates

for the B+→ K+µ+µ− decay and 176 ± 17 for the B0→ K0
Sµ

+µ− decay, summing the

yields of the individual q2 bins.

6 Results

For the decay B+ → K+µ+µ−, the results are presented as two-dimensional confidence

regions for AFB and FH and as one-dimensional 68% confidence intervals for AFB and FH.

The two-dimensional confidence regions demonstrate the correlation between AFB and FH

– 7 –
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Figure 3. Top, angular distribution of B+→ K+µ+µ− candidates with (a) 1.1 < q2 < 6.0 GeV2/c4

and (b) 15.0 < q2 < 22.0 GeV2/c4. Bottom, angular distribution of B0→ K0
Sµ

+µ− candidates with

(c) 1.1 < q2 < 6.0 GeV2/c4 and (d) 15.0 < q2 < 22.0 GeV2/c4. Only candidates with a reconstructed

mass within ±50 MeV/c2 of the known B+ or B0 mass are shown. The data are overlaid with the

result of the fit described in the text. The long and downstream K0
S categories are combined for

presentation purposes. The shaded region indicates the background contribution in the fit.

arising from eq. (1.1). The one-dimensional intervals are intended for illustration purposes

only. Two-dimensional confidence regions, for the q2 ranges 1.1 < q2 < 6.0 GeV2/c4 and

15.0 < q2 < 22.0 GeV2/c4 are shown in figure 4; the other q2 bins are provided in the

appendix, with the numerical values available in the attachment.3 The one-dimensional

confidence intervals for B+→ K+µ+µ− decays are shown in figure 5 and given in table 1.

The result of the fits to | cos θl| for the decay B0→ K0
Sµ

+µ− are shown in figure 6 and

given in table 2. Results are presented in 17 (5) bins of q2 for the B+ → K+µ+µ−

(B0→ K0
Sµ

+µ−) decay. They are also presented in two wide bins of q2: one at low hadronic

recoil above the open charm threshold and one at large recoil, below the J/ψ meson mass.

The confidence intervals on FH and AFB are estimated using the Feldman-Cousins tech-

nique [23]. Nuisance parameters are incorporated using the so-called plug-in method [24].

At each value of FH and AFB considered, the maximum likelihood estimate of the nui-

sance parameters in data is used when generating the pseudoexperiments. For the B+→
K+µ+µ− decay, AFB (FH) is treated as if it were a nuisance parameter when determining

the one-dimensional confidence interval on FH (AFB). The physical boundaries, described in

3Data files are provided as supplementary material and are available at this article’s web page.
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Figure 4. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ− in

the q2 ranges (a) 1.1 < q2 < 6.0 GeV2/c4 and (b) 15.0 < q2 < 22.0 GeV2/c4. The confidence intervals

are determined using the Feldman-Cousins technique. The shaded (triangular) region illustrates

the range of AFB and FH over which the signal angular distribution remains positive in all regions

of phase-space.

section 1, are accounted for in the generation of pseudoexperiments when building the con-

fidence belts. Due to the requirement that |AFB| ≤ FH/2, statistical fluctuations of events

in cos θl have a tendency to drive FH to small positive values in the pseudoexperiments.

For the B0→ K0
Sµ

+µ− decay, fits are also performed to cos θl allowing for a non-zero

AFB using eq. (1.1). The value of AFB determined by these fits is consistent with zero, as

expected, and the best fit value of FH compatible with that of the baseline fit.

The data for FH in figures 5 and 6 are superimposed with theoretical predictions from

ref. [25]. In the low q2 region, these predictions rely on the QCD factorisation approaches

from ref. [2], which lose accuracy when the dimuon mass approaches the J/ψ mass. In

the high q2 region, an operator product expansion in the inverse b-quark mass, 1/mb, and

in 1/
√
q2 is used based on ref. [26]. This expansion is only valid above the open charm

threshold. A dimensional estimate of the uncertainty associated with this expansion is

discussed in ref. [27]. Form-factor calculations are taken from ref. [28]

Two classes of systematic uncertainty are considered for AFB and FH: detector-related

uncertainties that might affect the angular acceptance, and uncertainties related to the

angular distribution of the background.

The samples of simulated events used to determine the detector acceptance are cor-

rected to match the performance observed in data by degrading the impact parameter

resolution on the kaon and muons by 20%, re-weighting candidates to reproduce the kine-

matic distribution of B+ candidates in the data and re-weighting candidates to account for

differences in tracking and particle-identification performance. Varying these corrections

within their known uncertainties has a negligible impact on AFB and FH ( <∼ 0.01).

The acceptance as a function of cos θl is determined from simulated events in each bin

of q2. This assumes that the distribution of events in q2, within the q2 bin, is the same in

simulation and in data. To assess the systematic uncertainty arising from this assumption,
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Figure 5. Dimuon forward-backward asymmetry, AFB, and the parameter FH for the decay B+→
K+µ+µ− as a function of the dimuon invariant mass squared, q2. The inner horizontal bars indicate

the one-dimensional 68% confidence intervals. The outer vertical bars include contributions from

systematic uncertainties (described in the text). The confidence intervals for FH are overlaid with

the SM theory prediction (narrow band). Data are not presented for the regions around the J/ψ

and ψ(2S) resonances.
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Figure 6. Results for the parameter FH for the decay B0→ K0
Sµ

+µ− as a function of the dimuon

invariant mass squared, q2. The inner horizontal bars indicate the one-dimensional 68% confidence

intervals. The outer vertical bars include contributions from systematic uncertainties (described

in the text). The confidence intervals are overlaid with the SM theory prediction (narrow band).

Data are not presented for the regions around the J/ψ and ψ(2S) resonances.

the acceptance as a function of cos θl is determined separately for simulated events in the

lower and upper half of the q2 bin, and the average acceptance correction for the bin is

re-computed varying the relative contributions from the lower and upper half by 20%. This

level of variation covers any observed difference between the differential decay rate as a

function of q2 in data and in simulation and introduces an uncertainty at the level of 0.01

on AFB and FH.

In order to investigate the background modelling, the multivariate selection require-

ments are relaxed. With the increased level of background in the upper mass sideband, an

alternative background model of a fourth-order polynomial is derived. Pseudoexperiments

are then generated that explore the differences between the AFB or FH values obtained with
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q2( GeV2/c4) FH (stat) FH (syst) AFB (stat) AFB (syst)

0.10− 0.98 [+0.01,+0.20] ±0.03 [−0.09,−0.01] ±0.01

1.10− 2.00 [+0.00,+0.21] ±0.03 [+0.00,+0.10] ±0.01

2.00− 3.00 [+0.05,+0.30] ±0.03 [+0.01,+0.11] ±0.01

3.00− 4.00 [ 0.00,+0.04] ±0.02 [−0.02,+0.01] ±0.01

4.00− 5.00 [ 0.00,+0.09] ±0.03 [−0.01,+0.05] ±0.01

5.00− 6.00 [ 0.00,+0.14] ±0.02 [−0.04,+0.04] ±0.01

6.00− 7.00 [ 0.00,+0.08] ±0.02 [−0.01,+0.04] ±0.01

7.00− 8.00 [ 0.00,+0.03] ±0.03 [−0.02,+0.02] ±0.01

11.00− 11.75 [+0.06,+0.23] ±0.03 [+0.03,+0.12] ±0.01

11.75− 12.50 [+0.00,+0.10] ±0.02 [+0.00,+0.05] ±0.01

15.00− 16.00 [+0.06,+0.20] ±0.02 [−0.10,−0.03] ±0.01

16.00− 17.00 [+0.00,+0.12] ±0.02 [−0.05,+0.00] ±0.01

17.00− 18.00 [+0.01,+0.16] ±0.02 [−0.06,+0.00] ±0.01

18.00− 19.00 [+0.05,+0.23] ±0.02 [−0.03,+0.05] ±0.01

19.00− 20.00 [ 0.00,+0.10] ±0.04 [−0.02,+0.05] ±0.02

20.00− 21.00 [ 0.00,+0.14] ±0.04 [−0.01,+0.07] ±0.02

21.00− 22.00 [+0.04,+0.41] ±0.05 [+0.03,+0.19] ±0.02

1.10− 6.00 [ 0.00,+0.06] ±0.02 [−0.01,+0.02] ±0.01

15.00− 22.00 [ 0.00,+0.07] ±0.02 [−0.03,+0.00] ±0.01

Table 1. Forward-backward asymmetry, AFB, and FH for the decay B+→ K+µ+µ− in the q2 bins

used in this analysis. These parameters are also given in a wide bin at large (1.1 < q2 < 6.0 GeV2/c4)

and low (15.0 < q2 < 22.0 GeV2/c4) hadronic recoil. The column labelled stat is the 68% statistical

confidence interval on FH (AFB) when treating AFB (FH) as a nuisance parameter. The column

labelled syst is the systematic uncertainty.

q2( GeV2/c4) FH (stat) FH (syst)

0.1− 4.0 [+0.22,+1.46] ±0.28

4.0− 8.0 [+0.13,+0.85] ±0.08

11.0− 12.5 [+0.20,+1.47] ±0.20

15.0− 17.0 [+0.12,+0.77] ±0.07

17.0− 22.0 [ 0.00,+0.58] ±0.04

1.1− 6.0 [+0.32,+1.24] ±0.09

15.0− 22.0 [+0.09,+0.59] ±0.03

Table 2. The 68% confidence interval on the parameter FH for the decay B0→ K0
Sµ

+µ− in q2

bins. In addition to the narrow binning used in the analysis, results are also given in wide bins at

large (1.1 < q2 < 6.0 GeV2/c4) and low (15.0 < q2 < 22.0 GeV2/c4) hadronic recoil. The column

labelled stat is the 68% statistical confidence interval. The column labelled syst is the systematic

uncertainty.
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the default and the alternative background model. A systematic uncertainty is assigned

based on the sum in quadrature of the root-mean-square of these differences and the mean

bias. The method introduces an uncertainty at the level of 0.01 on AFB and 0.02− 0.05 on

FH for the B+→ K+µ+µ− decay and 0.04− 0.20 for the B0→ K0
Sµ

+µ− decay.

The dependence of the one-dimensional AFB (FH) confidence interval on the assumed

true value of the FH (AFB) nuisance parameter is negligible ( <∼ 0.01).

The fitting procedure for B+→ K+µ+µ− (B0→ K0
Sµ

+µ−) decays is also tested using

samples of B+→ J/ψK+ (B0→ J/ψK0
S ) decays where AFB = FH = 0, due to the vector

nature of the J/ψ meson. These samples are more than one hundred times larger than

the signal samples. Tests are also performed splitting these samples into sub-samples of

comparable size to the data sets in the individual q2 bins. No indication of any bias is seen

in the fitting procedure in either set of tests.

7 Conclusion

In summary, the angular distributions of charged and neutral B → Kµ+µ− decays are

studied using a data set, corresponding to an integrated luminosity of 3 fb−1, collected by

the LHCb experiment. The angular distribution of the decays is parameterised in terms

of the forward-backward asymmetry of the decay, AFB, and a parameter FH, which is a

measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width.

The measurements of AFB and FH presented for the decays B+ → K+µ+µ− and

B0 → K0
Sµ

+µ− are the most precise to date. They are consistent with SM predictions

(AFB ≈ 0 and FH ≈ 0) in every bin of q2. The results are also compatible between the

decays B+→ K+µ+µ− and B0→ K0
Sµ

+µ−. The largest difference with respect to the SM

prediction is seen in the range 11.00 < q2 < 11.75 GeV2/c4 for the decay B+→ K+µ+µ−.

Even in this bin, the SM point is included at 95% confidence level when taking into account

the systematic uncertainties on the angular observables.

The results place constraints on (pseudo)scalar and tensor amplitudes, which are van-

ishingly small in the SM but can be enhanced in many extensions of the SM. Pseudoscalar

and scalar amplitudes were already highly constrained by measurements of the branch-

ing fraction of the decay B0
s → µ+µ− [29, 30]. The results presented here, however, also

rule out the possibility of large accidental cancellations between the left- and right-handed

couplings of the (pseudo)scalar amplitudes to the B0
s→ µ+µ− branching fraction. Tensor

amplitudes were previously poorly constrained.
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Figure 7. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ− in the

q2 ranges (a) 0.10 < q2 < 0.98 GeV2/c4, (b) 1.10 < q2 < 2.00 GeV2/c4, (c) 2.00 < q2 < 3.00 GeV2/c4

and (d) 3.00 < q2 < 4.00 GeV2/c4. The confidence intervals are determined using the Feldman-

Cousins technique and are purely statistical. The shaded (triangular) region illustrates the range of

AFB and FH over which the signal angular distribution remains positive in all regions of phase-space.
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Figure 8. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ− in the

q2 ranges (a) 4.00 < q2 < 5.00 GeV2/c4, (b) 5.00 < q2 < 6.00 GeV2/c4, (c) 6.00 < q2 < 7.00 GeV2/c4

and (d) 7.00 < q2 < 8.00 GeV2/c4. The confidence intervals are determined using the Feldman-

Cousins technique and are purely statistical. The shaded (triangular) region illustrates the range of

AFB and FH over which the signal angular distribution remains positive in all regions of phase-space.
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Figure 9. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ− in

the q2 ranges (a) 11.00 < q2 < 11.75 GeV2/c4, (b) 11.75 < q2 < 12.50 GeV2/c4 and (c) 15.00 <

q2 < 16.00 GeV2/c4. The confidence intervals are determined using the Feldman-Cousins technique

and are purely statistical. The shaded (triangular) region illustrates the range of AFB and FH over

which the signal angular distribution remains positive in all regions of phase-space.
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(b) 17.00 < q2 < 18.00 GeV2/c4
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(c) 18.00 < q2 < 19.00 GeV2/c4

Figure 10. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ−

in the q2 ranges (a) 16.00 < q2 < 17.00 GeV2/c4, (b) 17.00 < q2 < 18.00 GeV2/c4 and (c) 18.00 <

q2 < 19.00 GeV2/c4. The confidence intervals are determined using the Feldman-Cousins technique

and are purely statistical. The shaded (triangular) region illustrates the range of AFB and FH over

which the signal angular distribution remains positive in all regions of phase-space.
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(a) 19.00 < q2 < 20.00 GeV2/c4
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(b) 20.00 < q2 < 21.00 GeV2/c4
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Figure 11. Two-dimensional confidence regions for AFB and FH for the decay B+→ K+µ+µ−

in the q2 ranges (a) 19.00 < q2 < 20.00 GeV2/c4, (b) 20.00 < q2 < 21.00 GeV2/c4 and (c) 21.00 <

q2 < 22.00 GeV2/c4. The confidence intervals are determined using the Feldman-Cousins technique

and are purely statistical. The shaded (triangular) region illustrates the range of AFB and FH over

which the signal angular distribution remains positive in all regions of phase-space.
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