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ABSTRACT

Head Related Transfer Functions (HRTF) for nearby sources were
characterized for human subjects and the Knowles Electronics Manikin for Acoustic
Research (KEMAR). The HRTFs were measured in several reverberant room conditions
for sound source positions at 0, 45, and 90 degrees in azimuth and 15cm and lm from the
center of the head using maximum-length sequences. The effects of reverberation on
interaural time difference, interaural level difference, magnitude response, and spectral
content were examined. Results were consistent with acoustic theory. Reverberation
was found to decrease ILD, cause comb-filtering, and to distort and add frequency-to-
frequency variations to acoustic cues. These affects were most pronounced in room
positions with the most reverberant energy.
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1.0 Introduction

1.1 Head Related Transfer Functions

As a sound travels from its source to the eardrums of a human listener it is

transformed by interactions with the listener's head, neck, torso, and outer ear. This

transformation, which is unique to each listener, varies with the location of the sound

source relative to the head, and is described by the listener's Head Related Transfer

Function (HRTF). In the far field, more than one meter from the head, the HRTF is

independent of distance and varies with azimuth and elevation. In the near field, within

one meter of the head, the HRTF is dependent on distance as well as azimuth and

elevation.

Important cues for sound-source localization are contained in the HRTF,

including interaural time differences (ITDs) and interaural level differences (ILDs)

(defined below) and monaural spectral content. The interaural difference cues are

perceptually robust (i.e., they can be unambiguously determined, independent of source

characteristics) while the monaural spectral cues are dependent on knowing the source

spectrum. The ITD is the time difference in the arrival of the sound at the listener's left

and right ears, and results mainly from differences in path length from the source to the

two ears. ITD cues are primarily used to determine the angle between the vector from

origin to source and the interaural axis. ILDs are the differences in sound intensity at the

listener's right and left ears, and arise primarily from the acoustic interference of the

head. ILDs are largest for frequencies whose wavelengths are small relative to the size of

the head. In anechoic space, ILDs enable the listener to determine source distance from

the head for near-field sources [1, 2, 3]. Perception of sound elevation and front/back
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direction is determined from the monaural spectral cues generated by the direction-

dependent filtering of the pinnae [4, 5]. Due to interactions with the head and ears, some

frequencies are amplified while others are attenuated in a manner dependent on source

direction. The pinnae are essential for even reasonable localization performance in the

median vertical plane, and significantly improve localization accuracy in the lateral

vertical plane [4, 5].

Until recently, most research focused on HRTFs in the far field. Recent near field

research has used spherical representations of the head with diametrically opposed ears

to create mathematical models to estimate the naturally-occurring binaural cues for

nearby sources. In addition, the Knowles Electronics Manikin for Acoustic Research

(KEMAR), a physical model of the average human head, was used by Brungart to

measure the most complete set of near-field HRTFs currently available [1, 2, 3]. This set

includes measurements at every degree in azimuth and at distances from 12 to 100

centimeters from the center of the head.

In this study, HRTFs for nearby sources were measured on human subjects (for

the first time) as well as for KEMAR in a reverberant room. The spatial properties of

these HRTFs are compared to those predicted by the spherical head model. Individual

differences across subjects are also examined. To understand how a room affects

acoustic spatial cues, "pseudo-anechoic" HRTFs (in which only that part of the HRTF

that corresponds to the direct signal reaching the ear is analyzed) are compared with

measurements containing reverberation. Possible sources of error, such as artifacts

produced by the measurement equipment and processing, are identified and analyzed.
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1.2 Spatial Properties of HR TFs

Basic spatial properties of the HRTF can be determined from the spherical head

model. The major characteristics common to the spherical model and KEMAR HRTFs

include: the magnitude of the HRTFs increases with frequency when there is a direct path

from the source to the ear, the high frequency responses of the HRTFs are attenuated

when the ear is in the acoustic shadow of the head, the overall gain of the HRTFs

increases as distance decreases when a direct path exists between the source and the ear,

the overall attenuation of the HRTFs increases as distance decreases when the ear is

shadowed by the head, the magnitude of the HRTF increases more rapidly at low

frequencies than at high frequencies as the source approaches the head, and the "acoustic

bright spot" seen in the sphere model is also present in the KEMAR measurements,

although its structure is more complicated [1]. It follows from these major

characteristics that in both the KEMAR and spherical head models, ILDs increase

substantially both as a source approaches the head and as the frequency increases. The

ILD is near zero in the median plane and generally increases as the source moves lateral

to the head. In contrast, the interaural time difference (ITD) remains constant, roughly

independent of distance.

The spherical head model provides a good first-order approximation to binaural

cues such as ITD and ILD, but does not incorporate some of the features of the HRTF

predicted by KEMAR, such as those due to the irregular shape of the head and the outer

ear as well as those due to diffraction by the neck and torso. The spherical model fits the

KEMAR measurements best at low frequencies (below 2 kHz). At high frequencies (i.e.,

above 5 kHz), KEMAR HRTFs exhibit direction-dependent peaks and notches that arise
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from the geometry of the pinna and are therefore not present in the spherical model.

Because these high frequency characteristics are strongly dependent on ear geometry

(which varies from person to person), it is unlikely that KEMAR's high frequency

characteristics will match those of any particular human listener. As a result, KEMAR

HRTFs may not predict how well listeners can judge source elevation.

One past study analyzed sound localization of nearby sources in anechoic space

[1, 3]. These results were recently compared with results from a comparable study in

echoic space [6]. Generally, errors were larger in reverberant space than in anechoic

space; however directional perception of source distance was better in reverberant space

than in anechoic space (i.e., the reverberation actually improves performance) [7, 8]. In

addition, localization performance improved with practice in the reverberant case, but

not in the anechoic case [8]. These results imply that localization cues are distorted by

reverberation, but that listeners can gradually learn to overcome errors due to such

distortion. This study analyzes and compares "anechoic" and "reverberant" HRTFs to

estimate the form and magnitude of the distortions of spatial cues by reverberation. In

order to determine the extent to which spatial properties of HRTFs are distorted by

reverberation, HRTFs are recorded in echoic space. The impulse response of the HRTFs

is then time windowed, so that only the HRTF resulting from the direct sound remains

and the "anechoic" HRTF can be estimated. The spatial properties of the windowed

HRTF are compared to those of the non-windowed HRTF (which contains room echoes)

to determine the effects of reverberation. It was expected that the reverberation would

degrade the binaural ITD and ILD cues, as well as the monaural spectral cues.

Reverberation was expected to decrease the magnitude of the ILD since the reverberation
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will, on average, arrive from all possible directions and cause near zero ILD. Similarly,

ITD information was expected to be disrupted since echoes will superimpose on the

direct sound and alter interaural phase characteristics. Finally, spectral cues were

expected to be affected by the addition of correlated, delayed sounds, which can cause

comb-filtering effects on the spectrum.

2 Experimental Set-up, Equipment, Techniques, and Procedures

2.1 Experimental Set-up

For the HRTF measurements on KEMAR as well as the human subjects, a

wooden chair was placed on a small platform approximately 1 foot high in the center of

the room. The chair was placed on this platform to increase the distance between the

microphones and the floor so that the first echo (off the floor) would arrive with as large

a delay as possible. This allows the direct sound to die out before the first echo is

recorded. The subjects sat on the wooden chair with their head against a headrest, which

had been attached to the chair's back. The headrest was used to reduce head movement

as much as possible. Microphones mounted in earplugs were inserted into the subject's

ear canals. A head-tracking device was used to center the subject's head on the

coordinate axis in the center of the room. The sound source was controlled by a

computer connected via optical cables to a Tucker-Davis Technologies (TDT) signal

processing system. The output of the D/A converter of the TDT system was fed into an

amplifier and then into a BOSE mini-cube speaker. The raw acoustic responses were

measured by the microphones in the subject's ear canals. The signal from the

microphones was then sent thorough a microphone amplifier and into an A/D converter
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in the TDT system. These raw signals were analyzed to find the HRTFs for the listener

and room.

The maximum sound source level that would not cause clipping for each distance

and angle of interest was used. Using a level that is too high results in clipping while

using a lower level decreases the signal-to-noise ratio and hence degrades the measured

HRTF. Trial and error was used to determine what level was appropriate for each

position being measured. KEMAR was placed in the chair in the center of the room and

the microphones were inserted into his ears. Sounds were presented at several levels for

each sound source position used in the study until the level at which clipping began to

occur was empirically determined. Because the clipping level does vary slightly from

subject-to-subject, a level slightly less (3-5 dB) than the clipping level found for

KEMAR was used for each tested position.

2.2 Measurement Techniques

Initially, the Golay code HRTF measurement technique was considered for this

study, but after examining the advantages and disadvantages of various techniques it was

decided to use binary maximum-length sequences (MLS) instead.

The Golay measurement technique presents a pair of matched acoustic signals

known as Golay codes to the ears. Golay codes have the property that the sum of the

autocorrelation functions for each code is only nonzero at zero lag [9]. The Golay codes

are a complementary pair of radix-two digital sequences that are generated by a simple

recursive relation. The system's impulse response is determined by cross-correlating the

responses to each of the codes in the pair with the codes themselves and summing the
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result. Due to the properties of the Golay codes, the final result of this operation yields

an estimate of the impulse response.

Taking measurements on humans presents a challenge because the measurement

method must be able to handle small variations from a time invariant system since

humans are not capable of remaining perfectly motionless during measurements and

HRTFs are strongly dependent on head position. The effects of time variance on system

responses obtained using Golay codes and MLSs have been examined by Zahorik [9].

The results of Zahorik's research shows that the Golay code method can have particularly

damaging artifacts in the impulse response with even very small subject movements.

Specifically, if the system being measured is time variant, the Golay code responses are

no longer complementary. The sum of the responses to the codes no longer cancels

perfectly to yield the true impulse response, but rather has (incorrect) non-zero elements

near a lag of the L/2 (L = the length of the Golay code). These non-zero elements are the

artifacts introduced by the time variant system. As the length of the Golay codes or the

number of averages taken increases, the time lapse between the presentation of two codes

increases, therefore increasing the chance that the subject has moved during the

measurement and increasing the probably that artifacts contaminated the impulse

response. When measuring HRTFs in a reverberant space, longer codes are required to

capture the entire room response and avoid time aliasing and more averages may be

required to increase the signal-to-noise ratio. This again increases the chance of artifacts

in the impulse response. For this study, human subjects are being used and effects of

reverberation are being studied, so the artifacts introduced by time variant systems when
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using Golay codes could cause significant data contamination. In contrast, according to

the analysis by Zahorik [9] the MLS method is more robust under these conditions.

Binary MLSs are periodic pseudorandom sequences of +1's and -l's with period

length L = 2 "-1 , where n is an integer, generated by n-stage shift registers. To obtain the

desired system frequency response, the system response to the sequences has to be cross-

correlated with the same MLS that was used for exciting the system. MLSs' most

important property is that their Fourier transform has the same magnitude for all

frequency components [10].

2.3 Measurement Procedure

The procedure used to record the HIRTFs was to first read a pre-generated MLS of

32767 (215) bytes containing -l's and +1's into MATLAB. Two sequences were

concatenated. This concatenated sequence was then played through a BOSE cube

speaker and the response was recorded by Knowles Electret microphones positioned at

the entrance to the subjects' blocked ear canals. The concatenated sequence was played

ten times and the results were averaged. The response to the second half of the sequence

was then cross-correlated with the original sequence to obtain the impulse response. The

resulting impulse response was 750 ms long and was sampled at 44.1 kHz. This contains

all the reverberation of the room, as well as the direct-sound HRTF.

In echoic space, the measured impulse responses contain the transfer

characteristics of the head, the room, and the sound delivery and measurement systems.

Therefore, the reverberation, the echoes, and the characteristics of the sound delivery

measurement system must be removed to derive estimates of the "anechoic" HRTFs. In

order to remove the effects of the delivery and measurement system, the MLS technique
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is used to measure the impulse response of the left and right microphones in free space in

the center of the room being used for experiments. These recordings provide insight into

the gain characteristic of the presentation and recording system.

After using temporal windowing to remove the effects of reverberation, the

portion of the HRTF contains the transfer characteristics of both the listener's head and

the sound delivery and measurement system. Presenting the MLSs to the left and right

microphones in the free field and time windowing the resulting impulse responses (as

described above) provides a measurement of the impulse response of the delivery and

measurement system. The inverse of this transfer characteristic has been calculated from

these response measurements separately for the left and right microphone. Post-

compensation for the sound delivery and recording system is accomplished by applying

the inverse filters to the impulse responses from the raw MLSs. While this approach can,

in theory, remove the effects of the measurement system, in practice it can also distort

the phase response of the transfer function. In addition, the magnitude response of the

measurement system is nearly flat, varying smoothly over approximately 10 dB between

300Hz and 20 kHz. For the analysis performed in this study, post-compensation was not

used because of the importance of keeping the room effects and not distorting the room

response and phase information when analyzing the effects reverberation on HRTFs.

2.4 Verification of Measurement Technique

Measurements were taken with the left and right microphones in free space in the

center of the room used for the HRTF measurements. The only correction made to these

measurements was to compensate for the difference in sensitivity of the left and right

microphones. This correction entailed multiplying the raw response of the right
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microphone by a constant (1.22). Measurements in the center of the room indicated that

the first-arriving echo is from the floor and that this echo will arrive no earlier than 5 ms

after the direct sound (for all source locations tested). Measurement taken from the ear

canals of KEMAR confirmed that the amplitude of the direct sound is negligible 5 ms

after the arrival of the direct sound (see Figure 1). Therefore, temporal windowing can

be used to remove the effects of reverberation. Time waveforms were examined for each

subject to determine the appropriate time window for their results. A time window of 9.5

ms was found to be adequate for all subjects and all sound source positions because the

first echo arrived between 9.75 ms and 11 Ims, depending on source position and subject.

X 1 07 Impulse response, 15cm, 0 degrees

4 - ----- --- - -- _ ---- -- ----------................ ..... ..... .

2 - - --

E

-6

2 3 4 5 6 7 8 10 11 12 13
lime (ms)

Figure 1: Impulse response for KEMAR with the sound source at 15 cm and 0 degrees
from center of head (blue is left ear, red is right ear). The large initial impulse
corresponds to the "direct sound" impulse response. Note first reflection at
approximately 1 Ims (roughly 8ms after the onset of the direct sound impulse response).

Figure 2 shows the magnitude of the DFT of the measurements taken with the

microphones in free space in the center of the room for 3 sound source levels (as well as

with the source off, to show the noise floor). Figure 3 shows the same measurement
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Frequency response measured at 4 levels (-10, -20, and -30 dB and the noise floor)
window length 600ms, # of fit samples 26460

180

160

140--

120- -

1 0 0 -....... ....... .. ......... .....

.1 .2 .3 .4 .5 .6 .7 .8.91 2 3 4 5 6 7 8 901112345
Frequency [kHz]

Figure 2: Frequency response measured in the center of the room with sound source im

from microphones. Red is right microphone response and blue is left microphone

response. Relative sound source levels top to bottom are -10 dB, -20 dB, -30 dB, the

noise floor.

windowed with a time window at 10.5 ms to remove the reverberation. In both Figure 2

and Figure 3, it is evident the measured response magnitude grows linearly with

presented source amplitude for frequencies above 200 Hz. The noise floor (the bottom-

most curve on each figure) at 300 Hz is 25 dB below the measurement at -30 dB. Above

3 kHz, the noise floor is 50 dB below the measurement at -30 dB. In other words, above

Frequency response measured at 4 levels (-10, -20, and -30 dB and the noise floor)
window length 10.5 ms, # of fft samples 1024

180

160

100 --

.1 .2 .3 .4 .5 .6 .7 .8 .91 2 3 4 5 6 7 8 9101112345
Frequency [kHz]

Figure 3: Frequency response measured in the center of the room with sound source Im

from microphones. Time window of 10.5 ms used to remove reverberation. Red is right

microphone response and blue is left microphone response. Relative sound source levels

top to bottom are -10 dB, -20 dB, -30 dB, and the noise floor.
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200 Hz, the noise floor amplitude is insignificant compared to the amplitude of the HRTF

measurements and above 300 Hz it is negligible.

The free-field frequency response also varies inversely with source distance, as

expected. Figure 4 shows the frequency response of the direct sound measured with

constant sound source level and the source placed at several distances between 1 m and

15 cm from the microphones. The response amplitude is proportional to 1/distance for

frequencies above 600 Hz. For frequencies less than 600 Hz, there still appears to be a

linear relationship, but the results look noisier because there are fewer points plotted in

the FFT (on this log-frequency scale). The frequency response is also quite flat above

300 Hz.
Frequency response of room, smoothed, 600ms time window, 7 distances, right microphone
200

E /

170 /

1 60 ---- I ...----- L........ .- .. .. _ __ _ _ __ _ _ .... ............... .... ._ _ _ [....... .. .

160 _
.1 .2 .3 .4 .5 .6.7.8.91 2 3 4 5 6 7 8 910112345

Frequency (kHz)

Figure 4: Frequency response of right microphone in free space in center of the room.

Top to bottom distances measured at 15 cm, 19 cm, 25 cm, 38 cm, 50 cm, 75 cm, 1 m. All

distances are measured at the same sound source level. Responses for the left

microphone are similar.

2.0 Results and Discussion

3.1 Pseudo Anechoic KEMAR HRTFs

First we examine the pseudo-anechoic HRTFs for sources near a listener. These

HRTFs are derived by taking measurements when the listeners are located in the center
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of the room and windowing out the reverberation. HRTFs were measured for 15 human

subjects and for KEMAR using the methods and set-up previously described. In this and

most subsequent sections, a set of six locations (relative to the listener) are reported.

These positions consist of two distances (15 cm and lm) and 3 azimuthal angles (0, 45,

and 90 degrees) in the horizontal plane (elevation 0 degrees).

3.1.1 Magnitude Responses

The pseudo-anechoic HRTF magnitude responses measured on KEMAR are

shown in Figure 5. At zero degrees, the magnitudes at the left and right ears are the

same up to frequencies of 6 kHz. Above 6 kHz, there are small differences in the

locations and depths of the notches and peaks
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right ears, probably, due in-part to the asymmetries of KEMAR's pinna. The magnitude

at the left ear is slightly greater than that at the left ear, particularly above 6 kHz. This

may also be caused by a misplacement of the sound source slightly to the left of 0

degrees. The magnitude at the right ear increases when the sound source is moved from 0

to 45 degrees and again when the sound source is moved from 45 to 90 degrees. As the

angle increases, the sound source moves closer to the right ear causing, the observed

increase in magnitude response. At the same time, the response at the left ear decreases

as the sound source moves from 0 to 45 and 45 to 90 degrees. As angle increases, the

distance to the left ear increases and the head interferes with the transmission of sound to

the far side of the head (i.e. there is an acoustic "head shadow"), causing the sound

source magnitude at the left ear to decrease. The response at the right ear also increases

as the sound source moves toward the center of the head (from 1m to 15cm). While the

response at the left ear does increase, it does not increase as much as the response at the

right ear. This slight increase at the left ear also results from the sound source moving

closer to the left ear. The increase is smaller than that at the right ear because the relative

change in distance from the source to the right ear is substantially larger than the relative

change in distance to the left ear and because the "head shadow" becomes larger as the

source moves closer to the head [12].

3.1.2 Interaural Level Differences

The ILD calculated from the measured KEMAR data for the at 6 sound source

positions is shown in Figure 6. Below 6 kHz, the ILD at 0 degrees is approximately 0.

The distance to the left and right ears is essentially the same for a source at 0 degrees, so

the magnitude of the right and left frequency responses should be equal, yielding an ILD
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of zero. In the previous section, it was observed that the left and right magnitude

responses were not exactly equal above 6 kHz; as a result the ILD is not equal to zero

above 6 kHz. As discussed in the previous section, this is due to differences in the high

frequency peaks and notches caused by differences in left and right pinna shapes and

(possibly) a mis-placement of the speaker slightly left of center.

The ILD increases when the sound source is moved from 0 to 45 and from 45 to

90 degrees. This is expected because the right magnitude response increases and the left

magnitude response decreases due to the distance from the sound source to the right ear

decreasing and the distance to the left ear increasing. The ILD decreases when moving

the sound source from 15 cm to 1 m. This occurs because a source at 1 m is nearly

equidistant from the 2 ears (on a log distance scale) so the only significant ILD is caused

by head shadow. Conversely, for a nearby

15 cm, 0 degrees_
S 60 - - - --

a 40 - ---

20 - --1- -

E 0

-20- -2o frequency (kHz) 11
10 10

15 cm, 45 degrees
.6..... ...... - -.......

0

E 0O

-20 -20 frquency (kHz) 1
10 10

15 cm, 90 degrees
6 0 -... -...-..

40 - - -

20 -

E o-

-20

source (at 15 cm), the ratio of the

60

40

20

0

-20

60

40

20

0

-20
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20

0

-9

1m, 0 degrees

- ---------- - -...

--- --- - --

1o frequency (kHz 1

1 m, 45 degrees

- -I

10o frequency (kHz) 101
1 m, 90 degrees

-- -- 4- -

100 frequency (Kr1Z) 101 1 requency (kz) 1

Figure 6: Interaural level difference for KEMA R at 6 sound source positions.
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distances to the right and left ears is much less than 1, resulting in a large ILD that is

essentially added to the head shadow [12]. The high frequency notches and peaks in the

ILD are due to the high frequency notches and peaks in the right and left magnitude

responses being misaligned. As seen in the previous section, the magnitude response

notches and peaks do not occur at the same frequency, nor do they necessarily have the

same magnitude at the left and right ears due to differences in pinna shape. This leads to

ILDs that vary dramatically in magnitude and even sign at high frequencies.

3.1.3 Interaural Time and Phase Differences

The interaural time (ITD) and phase difference (IPD) are related such that the

ITD is equal to lIPD/(2n*frequency). The IPD is the phase difference between the right

and left ears, calculated by dividing the angle of the FFT of the right ear impulse

response by the angle of the FFT of the left ear impulse response. Physiologically, the

brain computes IPD, which is ambiguous in ITD by whole cycle shifts (e.g., 0 ITD is

represented the same way as 2nf). A pure ITD that is constant across frequency leads to

a purely linear IPD across frequency, except for discontinuities due to ambiguity. Thus

phase ambiguity is resolved when multiple frequencies are present in the stimulus. To

estimate true ITD, one simply looks for the constant line ITD trajectory as a function of

frequency. The addition of a factor of +/- k*2 (where k is an integer) is necessary to

compensate for jumps in phase that occur when the phase is greater than 2n or less than

-27r, which cause discontinuities in the IPD waveform and to produce a consistent ITD

value across frequency from inherently ambiguous IPD information.

Figure 7 shows the ITD calculated for KEMAR for 6 sound source positions

using pseudo-anechoic HRTFs. Each color represents one integer value of k ranging
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from -5 to 5. At zero degrees, only k equal to 0 is necessary to obtain linear phase up to

4 kHz. The ITD value at which the linear IPD occurs at zero degrees is 0 s, as expected.

At 45 degrees, k equal to 0 and 1 are necessary for a linear phase, and at 90 degrees, k

equal to 0, 1, 2, and 3 are necessary to obtain linear phase up to 4 kHz. At 45 degrees,

the ITD value at which linear IPD occurs is approximately 0.35 ms while at 90 degrees it

is approximately 0.7 ms. The ITD is a function of sound source position. If the sound

source is placed at 0 degrees, directly in front of the subject, the ITD is expected to be

zero because the left and right ears are equal distance from the sound source and

therefore the sound should reach both ears at the same time. The results shown in Figure
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7 are consistent with this expectation, showing the mean value of the constant ITD curve

is zero at zero degrees. As the sound source angle increases, the sound source moves

towards the right ear and away from the left ear, the ITD is expected to increase because

the difference in the sound source distance to the right ear versus that to the left ear

increases. This difference reaches a maximum at 90 degrees and therefore the ITD

reaches a maximum at 90 degrees. Given the average distance between the ears, this

maximum expected ITD is approximately Ims. Distance should not affect ITD greatly

because the difference in path length to the ears does not change dramatically with

distance. Again the data shown in Figure 7 agrees with expectations: the mean of the

constant phase trajectory increases with increasing angle but is roughly independent of

distance.

3.2 Pseudo-Anechoic HRTFs across Human Subjects

Across subjects, the HRTFs have the same basic shape for each position, but the

frequency and depth of high frequency peaks and notches varies. This pattern of

individual differences is similar to that observed for far-field HRTFs [10]. Anecdotally,

these individual differences appear larger than the measurement error in the HRTFs.

HRT~s below 300 Hz are not reliable since at these frequencies, the noise floor becomes

significant. Large trial-to-trial and subject-to-subject variations are observed at these low

frequencies.

3.2.1 Magnitude Responses

Appendix I shows the pseudo-anechoic magnitude responses for the 15 human

subjects participating in this study. The overall shape and magnitude for the left and

right magnitude responses at a given sound source position and frequency are very
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similar across all subjects (including KEMAR). Although the overall shape is the same,

at high frequencies, the peaks and notches vary in magnitude and in frequency location.

Some subjects appear to have more symmetrical heads than others, as demonstrated by

the fact that the left and right magnitude response are essentially identical at zero

degrees.

3.2.2 Interaural Level Differences across subjects

ILD is similar for KEMAR and the human subjects. As can be seen from the

magnitude plots in Appendix I, the difference between the magnitude response at the

right and left ear increases as angle increases and decreases as distance increases. For

several subjects, the left and right magnitude responses have larger differences at zero

degrees, meaning a larger ILD, than for KEMAR, probably because human subjects tend

to be more asymmetrical than KEMAR.

3.2.3 Interaural Time Di/jerences across Subjects

The ITDs calculated from the HRTFs measured from 15 human subjects and

KEMAR located in the center of the room with 6 sound source positions are shown in

Figure 8. These ITDs were calculated by taking the cross-correlation of the pseudo-

anechoic impulse responses. Since the delay is expected to be less than 1 ms in

magnitude, only peaks at delays in this range were examined. The peak resulting from

the cross correlation corresponds to the delay between the peak of the direct sound

reaching the right and left ears. The results shown in Figure 8 are consistent with the

theory discussed above. The small negative ITDs calculated at 0 degrees indicate the

distance to the left and right ears were not quite equal. This could have been caused by

the subject's head being slightly asymmetrical or the speaker not being perfectly centered
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in front of the subject. Because the ITD is consistently negative at zero degrees, even

with KEMAR (shown by the eighth bar from the left) who has a nearly perfectly

symmetric head, it is most likely that the speaker was always placed slightly left of center

with respect to the subjects' center.

ITD for 6 sound source positions, 16 subjects
1.0

0.8-

0.6

0.

0.20-

-0.2

0 1 2 3 4 5 6 7
15cm 1m 15cm 1m 15cm 1m
0 deg 0 deg 45 deg 45 deg 90 deg 90 deg

Figure 8: ITD for 15 human subjects and KEMAR placed in the center of the room for 6
sound source positions. Each color represents a different subject.

The ITD for a source at 45 degrees is approximately 0.35 ms for both 15 cm and

1 m source distances. This is expected, since the difference in the pathlength from the

sound source to each ear is nearly the same at both distances (distance from the head

really does not matter - only difference in pathlength) [11]. At 90 degrees, the ITD is

approximately 0.7 ms, double that at 45 degrees. This is expected because the difference

in the distance from the sound source to left and right ears approximately doubles. The

maximum ITD calculated at 90 degrees is just under 1 msec. The larger variation in ITD

seen at 90 degrees is due to varying head sizes across subjects, leading to different
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distances between ears. Such differences in head size have the largest effect on ITD

when the speaker is placed at a location yielding the maximum difference in distance

between the speaker and each ear (90 degrees). The data in Figure 7 (the ITD as a

function of frequency for KEMAR) and that in Figure 8 (the mean ITD for the human

subjects at different sound source positions) agrees, showing an average ITD of

approximately 0 ms at 0 degrees, 0.35 ms at 45 degrees and 0.7 ms at 90 degrees.

3.3 Reverberant KEMAR HRTFs

As shown in Figure 1, a time window at 9.5 ms is sufficient to remove

reverberation without removing the direct sound. Reverberant HRTFs were obtained

from the same data as in the pseudo-anechoic case by using a 600 ms time window

instead of a 9.5 ms time window. This time window is sufficiently long to include all

measured reverberation that is above the noise floor.

3.3.1 Magnitude Responses

Figure 9 shows the reverberant magnitude response at 6 source locations for

KEMAR. The magnitude response has the same general shape as in the pseudo-anechoic

case but shows variations around the mean, particularly at the left ear where reverberant

energy is greater and direct energy is weaker. As in the anechoic case, the magnitude

responses of the left and right ears have the same mean at zero degrees, except at high

frequencies where pinna effects increase and small asymmetries can have a large effect.

The same acoustical effects seen in the anechoic case cause the right magnitude response

to increase and the left magnitude response to decrease as angle increases and as distance

decreases.
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Figure 9: Magnitude of the frequency response with 600 ms time window for KEMAR at

6 positions. Red is the right ear and blue is the left ear.

3.3.2 Interaural Level Differences

The reverberant ILDs are shown in Figure 10. Just as in the anechoic case, the

ILD has a mean of zero at zero degrees and increases with increasing angle and with

decreasing distance. The high frequency peaks and notches are similar in location and

depth to those in the anechoic condition, but are somewhat obscured by the large high

frequency fluctuations around the mean ILD. There is much more variation around the

mean in the reverberant case. For all positions, the variations from the mean increase

with increasing frequency.
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3.3.3 Interaural Time and Phase Differences
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As mentioned in section 3.1.3, the IPD can be calculated from the ITD. The

reverberant ITD is shown in Figure 11. The reverberant ITD and IPD appear to have the

same shape and nearly the same mean values as in the anechoic case (Figure 7);

however, there is slightly more variation around the mean in the reverberant case. The

ITD at 0 degrees averages 0 ms, at 45 degrees averages 0.37 ms, and at 90 degrees

averages 0.69 ms at im and 0.82 ms at 15cm (see section 3.5.4.3 for summary of ITD

mean and variance calculated from Figures 7 and 11).
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Figure 11: Reverberant interaural time difference for KEMAR with 6 sound source
positions.

3.4 Effects of Reverberation on HRTFs

The time-windowed (9.5 ms time window) HRTF data was compared to

reverberant data (600 ms time window) to examine the effects of reverberation on

HRTFs. This comparison leads to the conclusion that reverberation essentially adds

noise to the HRTF data. To facilitate calculating numerical values for comparing the

reverberant and anechoic data, the reverberant data was smoothed by averaging each FFT

point with the values from the four adjacent frequencies (i.e., the FFT was convolved

with a flat, 5-point smoothing kernel). The overall shape of the anechoic and reverberant
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HRTF data could then be compared after removing the large frequency-to-frequency

variations introduced by the reverberation. Such processing enables quantitative

comparisons between the anechoic and reverberant mean results, as well as of the

magnitude of the frequency-by-frequency variation present in the reverberant results.

3.4.1 Magnitude Responses

Figure 12a shows the raw magnitude responses with (red) and without (blue)

reverberation in the right ear while Figure 12b shows the same data for the left ear. The

magnitude of the right anechoic and smoothed reverberant responses are roughly equal.

The reverberation does add frequency-to-frequency variations to the right magnitude

response, but does not change its mean. The amplitude of this "noise" is larger when the

sound source is at 1 m than at 15 cm, consistent with the idea that the nearer source

HRTF is more completely dominated by the direct sound, whereas the farther source

HRTF has relatively more reverberant energy. At 15 cm and 45 and 90 degrees, the

effect of reverberation at the right ear is barely noticeable.

At the left ear, for sound source positions at zero degrees, the mean amplitude of

the frequency response is the same with and without reverberation, just as at the right ear.

At zero degrees, the reverberation only adds noise to the magnitude response. In

contrast, at 45 and 90 degrees, the magnitude of the left anechoic frequency response is

roughly equivalent to left echoic responses for frequencies less than 5 kHz. For

frequencies above 5 kHz, the difference between the left anechoic and echoic frequency

responses increases as the sound source distance increases and as the sound source angle

increases from 0 to 90.
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These results can be understood after considering acoustic effects. As the

distance from the head to the sound source increases and the angle increases, the sound

source moves further from the left ear, causing the magnitude of the direct sound at the

left ear to decrease. In particular, as the source moves farther from the head or increases

in laterality, the reverberant response energy (which tends to be omni-directional and has

a flatter spectral shape) tends to fill in the magnitude response and flatten out any notches

in the anechoic (direct-sound) HRTF. For the same sound source movement, the

magnitude of the reverberation does not change very much (the reverberation is roughly

independent of source location). At the right ear, there is very little observable change in

the reverberant magnitude with changes in the sound source location because the

magnitude of the direct sound dominates the right ear response; in fact, the direct sound

magnitude increases as the angle approaches 90. Thus, the relative importance of the

reverberation decreases as the source moves to the right side of the head.

The root mean square (RMS) of the differences between the anechoic and

smoothed reverberant magnitude responses at each frequency were computed to find the

RMS difference caused by the reverberation. A summary of the RMS difference of the

smoothed echoic right magnitude response from the anechoic right magnitude response

for 15 subjects and KEMAR at 6 sound source positions is shown in Figure 13a. The

RMS difference is relatively small for all sound source positions at the right ear. The

fact that the RMS difference is small at the right ear is consistent with the fact that the

reverberation has only a small impact on the total signal at the right ear (e.g., see Figure

12a). For the right-ear signal, the RMS difference is largest at zero degrees. Variations
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Figure 13a: RMS difference between the smoothed anechoic magnitude response and the
echoic magnitude response for the right ear signal of 15 subjects and KEMAR at 6 sound
source locations.
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Figure 13b: Same as Figure 13a, but for left ear signal (Note change in scale from 13a).

across subjects in the right ear RMS difference are also greatest at zero degrees. The

larger RMS difference at zero degrees is consistent with the observation that the

reverberation causes the largest variations around the anechoic HRTF are largest at zero
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degrees in Figure 12a. For sources at 45-90 degrees, the RMS difference is generally

greater at 1 m than 15 cm, which is also consistent with the larger variations around the

mean shown at these sound source positions in Figure 12a.

The RMS difference between the smoothed echoic magnitude response and the

anechoic magnitude response for the left ear signals of the 15 subjects and KEMAR are

shown in Figure 13b. On average, the RMS difference is much larger at the left ear than

at the right. The RMS difference at zero degrees at the left ear is similar to that at the

right ear, ranging between 0.4 - 2.5 dB for all subjects. This is expected, since at zero

degrees, the direct sound source magnitude and the reverberant energy magnitude at the

left and right ears should be comparable. The similarity can also be seen in the plots in

Figures 12a and 12b at zero degrees; the magnitude of the variations of echoic magnitude

responses around the anechoic magnitude response at zero degrees are similar for the left

and right ears. The RMS difference increases as angle increases and as distance

increases, consistent with the fact that the direct sound level decreases at the left ear with

angle or distance increases.

3.4.2 Interaural Level Difference

Comparing the reverberant ILD to the anechoic ILD shows that, for most

positions and frequencies, the anechoic ILD looks like a smoothed version of the echoic

ILD, although, once again, the similarity depends on the relative level of the direct and

reverberant energy. Figure 14 shows the anechoic ILD (red) plotted on top of the

smoothed echoic ILD (blue). For the measurements at zero degrees, the anechoic ILD

passes through the mean of the points in the echoic ILD. Since one might expect the

reverberation to have roughly the same effect (increasing the magnitude slightly) at both
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Figure 14: Anechoic ILD (red) and echoic ILD (blue) measured with KEMA R placed in
the center ofthe room for 6 different sound source positions.

the left and right ears for a sound source at zero degrees azimuth, the net change should

be to decrease the magnitude of the ILD towards zero. As the sound source angle

increases, reverberation has little effect on the magnitude of the frequency response at

the right ear because the direct sound energy is so great, but causes a noticeable increase

the magnitude of the frequency response at the left ear, where the direct sound energy is

small (see Figures 12a and 12b). As a result, the ratio of the sound magnitude at the

right ear to that at the left ear (the ILD) tends to decrease with reverberation. Even in

cases where the right ear direct sound energy is small and the reverberation increases the

right ear level, it will cause a similar increase in the left ear level, thus tending to reduce

the total ELD. The magnitude of the echoic ILD is slightly less than that of the anechoic

ILD when the sound source is placed at 45 degrees for frequencies over 5 kHz. This
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difference is larger at 1 m then it is at 15 cm. In particular, large peaks or valleys in the

ILD are smoothed out for these positions (that is, the smoothed echoic ILD tends towards

smaller magnitudes than the anechoic ILD). There is a more significant difference in the

high frequency ILD at 90 degrees; again, the difference is larger at 1 m than at 15 cm.

The RMS difference between the anechoic and the smoothed echoic ILD was

calculated for each subject and sound source position. The results of these calculations

for the 15 subjects and KEMAR are shown in Figure 15. It is clear that the difference

between the anechoic and echoic ILD grows rapidly with angle; however, it also varies

with distance. These results are consistent with the trends observed in Figure 14. At 0

degrees, increasing distance increases the RMS difference between echoic and anechoic

ILDs slightly. For angles other than 0 degrees, increasing distance increases the

difference between the echoic and anechoic ILDs. This result is predictable because the

RMS difference between smoothed echoic and anechoic left magnitude response
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Figure 15: RMS difference between anechoic ILD and smoothed reverberant ILD across
6 sound source positions and 16 subjects (15 people and KEMAR). Each color
represents one subject.
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relative importance of the reverberation increases as the direct sound level decreases.

The deviation seen between anechoic and smoothed reverberant ILDs at 0 degrees is

small and is mainly due to the high frequency fluctuations in the echoic ILD.

3.4.3 Interaural Time Differences

Figure 16 shows the ITD with and without reverberation calculated for KEMAR

in the center of the room for 6 sound source positions. The anechoic condition is shown

in blue and
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mean. The variance of the echoic ITD is smallest at 0 degrees. These results suggest that

reverberation adds noise to the ITD cue, making it more difficult to localize sound using

ITD in a reverberant room.

3.4.5 Summary of Reverberation Effects

The results in section 3.4 demonstrate that the level of direct sound influences the

degree to which reverberation distorts anechoic localization cues. The relative level of

reverberation is greatest for distant sources and sources to the far side of the head, where

the direct sound energy is decreased. These results also show that the primary effect of

reverberant energy is to cause random phase distortions in interaural time differences,

and to decrease the magnitude of interaural level differences toward zero. Magnitude

spectrum cues are relatively robust in the near ear, but can become substantially degraded

in the far ear. At least to a first approximation, reverberant energy is relatively

independent of the source location relative to the listener in the center of the room, so

that the relative level of direct reverberant energy (and the relative influence of the

reverberation) can be said to vary directly with the direct sound level. The results of

section 3.4 are consistent with these expectations, in that the influence of reverberation

appears to depend only on the relative level of the direct sound at each ear. However,

these results were obtained for a listener positioned in the center of the room. In this

configuration, moving the sound source will generally not result in the source being very

near any wall. Instead, moving the source in any direction will tend to move it closer to

one wall and, at the same time, away from another wall. Since the source is relatively far

from all walls, and since the listeners' ears are also relatively far from all reflecting
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surfaces, changes in source location cause only small modulations in the total reverberant

energy reaching the listener, and the reverberant energy level will be approximately

invariant with source location.

3.5 Reverberant KEMAR HRTFs (Not Room Center)

Since the relative level of direct and reverberant energy determines the effect of

reverberation, additional measurements were taken to examine how reverberant energy

changes with the position of the listener in the room. Unlike the cases measured in the

previous section, when a listener is positioned relatively close to one or two reflecting

surfaces the relative energy contributed by reflections off the nearby surface(s) may

dominate the reverberant energy at the ears. Thus, moving the sound source relative to

the listener may cause large modulations in the energy of both the direct sound and the

reverberation. In addition, since the reflections are now dominated by energy coming

from one or two directions (hemifields), the reverberant energy may differ at the two

ears. For instance, when a listener is placed with his left ear near a wall, most loud

reflections will arise from the left. This in turn may cause a systematic shift in the ILD

(at all frequencies) such that the ILD favors the left ear.

In order to determine whether the contributions of the reverberant energy are

systematic and can vary with source location when a listener is near a reflecting surface,

KEMAR was placed at 3 different positions near (40-100 cm from) the walls in the room.

These positions were 1) with his left ear near a wall, 2) with his back near a wall, and 3)

in a corner so that both his back and left ear were near walls. In all of these positions, the

first echo occurs approximately 2 ms after the arrival of the direct sound, which is long

before the direct sound has died out. Thus, reflections may actually interfere
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constructively or destructively with the direct sound, depending on the exact timing of

the reflections relative to the direct sound. In order to analyze the effects of

reverberation, the reverberant measurements taken near the wall can be compared to the

pseudo-anechoic measurements taken in the center of the room.

3.5.1 Back-to- Wall Position

In the back-to-wall position the reverberant energy reaching both ears increases

dramatically over that in the center position. The reverberant energy should be

essentially equal at the left and right ears.

3.5.1.1 Magnitude Response

With KEMAR's back to the wall, his left and right ears are equal distance from

walls. Therefore, the amplitude of the frequency response is expected to be roughly

equal in both ears for sound source locations at 0 degrees. The echoic and anechoic

magnitude responses at the left and right ears with KEMAR's back to the wall for 6

sound source locations are shown in Figure 17. Just as when KEMAR is in the center of

the room, at zero degrees, reverberation does not change the mean of the magnitude

responses at the left and right ears, but does increase the variation of the magnitude

responses around the mean. At both 45 and 90 degrees and 15 cm, reverberation appears

to decrease the mean of the echoic magnitude response from the anechoic magnitude

response, while at 45 and 90 degrees and 1 m, the mean echoic and anechoic magnitude

responses are about the same. The decrease in the mean of the echoic magnitude

response from anechoic magnitude response at 45 degrees and 15 cm, as well as the

frequency-dependent fluctuations in the left-ear magnitude response, imply

constructive/destructive interference caused by comb-filtering.
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The possibility of comb-filtering is examined in Figure 18, which shows the

center-position left-ear impulse response in red and the back-to-wall left-ear impulse

response in blue. The direct sound energy contained in the first large spike and its

subsequent ripples should be approximately the same in both positions without comb-

filtering. In the center-position, the first echo does not occur until at least 5 ms after the

direct sound and is much weaker than the direct sound. In the back-to-wall condition, the

first echo's impulse occurs before the direct sound has died out and is of the same order

of magnitude as the direct sound. This means that it interferes with the direct sound

impulse, and depending on its exact arrival time with respect to the direct sound, this

interference may be constructive or destructive. The effect of the echoic impulse on the
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total impulse response can be seen by comparing the back-to-wall impulse response to

the center-position impulse response. The large distortions in the frequency and

amplitude of impulse response ripples after the first echo show that comb-filtering

occurs.
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Figure 18: Center of room impulse response (blue) and back-to-wall impulse response
(red) at the left ear with 6 sound source positions.

3.5.1.2 Interaural Level Differences

Figure 19 shows the anechoic ILD in the center of the room (blue), compared to

the smoothed echoic ILD with KEMAR's back close to the wall (red). At 45 degrees and

15 cm, the ILD at low frequencies varies around the anechoic ILD due to frequency-

dependent fluctuations in the left ear magnitude (see Figure 17). These fluctuations and
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the peaks and notches in echoic ILD with frequency are caused by

constructive/destructive interference due to the addition of the direct sound impulse

response plus the wall impulse response leading to a comb-filtering affect (as seen in

Figure 18). At the right ear, cancellation occurs that is not frequency dependent. At 90

degrees, the differences between the anechoic and reverberant ILDs are larger, but follow

a similar pattern.
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Figure 19: Anechoic ILD with KEMAR in the center of the room (red) and smoothed
echoic ILD with KEMAR's back to the wall for 6 positions.

3.5.1.3 Interaural Time and Phase Differences

Figure 20 shows the reverberant and anechoic interaural time differences as a

function of frequency for KEMAR in the back-to-wall position for 6 sound source

positions. The reverberant case is shown in red and the anechoic case is shown in blue.

On average (across frequency), the reverberant ITD equals the anechoic ITD; however
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the reverberant ITD oscillates around the smoother anechoic ITD. The amount of

variation in the reverberant ITD around the anechoic ITD depends on source position,

and is particularly small for a source at 0 degrees and 15cm. As the sound source angle

increases towards 90 degrees, these variations increase significantly. The variations

between reverberant and anechoic ITD are much larger when KEMAR is in the back-to-

wall position than in the center-of-room position (Figure 16). This is expected because

the reverberation is more intense in the back-to-wall position.
15cm, 0 degrees

U
C,,

E

0

COE

0 1 2 3 4
frequency (kHz)

15cm, 45 degrees

X

) 1 2 3 4
frequency (kHz)

15CM, 90 degrees

* - -

0 1 2 3 4
frX ecy(~)

1

0.5

0

-0.5

1

0.5

0

-0.5

0

1

-0.5
0

1rm, 0 degrees

) 1 2 3 4frequency (kHz)
1m, 45 de rees

1 frequency (kHz)4
im, 90 degrees

1

0.5

0

-0.5

1

0.5

0

-0.5

1

0.5

0

-0.5

Figure 20: Interaural time difference for KEMAR in back-to-wall position with six sound
source positions. The pseudo-anechoic case is shown in blue and the reverberant case in
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3.5.2 Left-Ear-to-Wall Position

In the left-ear-to-wall position, reverberant energy at the left ear increases

dramatically while the direct sound at the left and right ears remains unchanged.

3.5.2.1 Magnitude Responses

It is expected that the reverberant energy reaching the left ear will be very strong

compared to the direct sound energy. The direct sound will be affected by a strong

reflection off the left wall. This should lead to increasing left echoic magnitude response

relative to the anechoic magnitude response as the source moves to the right of the head

(which will decrease the magnitude of the direct sound). In contrast, the increase in

energy at the right ear will be very small relative to the energy of the direct sound, since

the reflections off the left wall must pass by the head before reaching the right ear.

Therefore, there should be only a small difference between right ear echoic and anechoic

magnitude responses.

Figure 21 shows the reverberant and echoic magnitude responses at the left and

right ears with KiEMAR in the left-ear-to-wall position for 6 sound source positions. At

zero degrees, reverberation does not change the mean value of the magnitude responses,

similar to the results found in the center of the room and in the back-to-wall position. At

all positions, for both ears, reverberation increases the variance of the magnitude

response with frequency. The frequency-dependent peaks and notches in the left-ear

magnitude response are caused by comb-filtering as in the back-to-wall case. Because

the reverberation is stronger and arrives at the left ear earlier in the left-ear-to-wall

conditions than in the back-to-wall condition, there is more interference between the
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Figure 21: Magnitude response for KEMAR in left-ear-to-wall position for six sound
source positions. Red is right ear echoic, black is right ear anechoic, blue is left ear

echoic, green is left ear anechoic.

direct and reverberant sound and a larger comb-filtering affect. As expected, at 1 m, as

the sound source angle increases towards 90 degrees, the magnitude of the left

reverberant frequency response increases relative to the left anechoic frequency response.

The overall magnitude of the left ear echoic and anechoic frequency responses decreases

with increasing sound source angle while the right ear magnitude response increases with

increasing sound source angle due to the direct sound decreasing at the left ear while

increasing at the right ear. At a greater sound source distance, the magnitude response at

both ears decreases due to decreasing direct sound energy. The variance of the echoic

magnitude response is smaller for the right ear at 15 cm than at 1 m and than at all

positions for the left ear.
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3.5.2.2 Interaural Level Differences

As mentioned in section 3.5.2.1, it was expected that the reverberant energy

reaching the left ear would be strong relative to the direct sound energy, while the

increase in reverberant energy at the right ear will be very small relative to the energy of

the direct sound. Thus, when KEMAR is placed with his left ear near the wall, we

generally expect the ILD at 45 and 90 degrees to be smaller than the anechoic ILD. At 0

degrees, the direct sound should be equal at the left and right ears, but the reverberation

should be much stronger at the left ear, leading to a slightly negative ILD.

Measurements with the left ear very near the wall (less than 50 cm from the wall)

at zero degrees and at 15 cm were found to be very sensitive to sound source location,

especially compared to measurements taken with other subject positions and sound

source distances and angles. Positioning the speaker even a small fraction of a degree

off-center caused large differences in direct sound magnitude at the left versus right ears.

The slight positioning off-center was too small to be noticed by looking at the speaker

position, but was noticeable when the impulse responses were examined. Very slight

deviations from the center point lead to up to a 40% difference in the amplitude of the

direct sound at the left versus right ears, favoring the right ear. This effect is caused by

interference of the impulse response off the wall with the direct impulse response leading

to the to comb-filtering of the left ear response which adds at some frequencies while

subtracting at others.

Figure 22 shows the smoothed reverberant LD with KEMAR's left ear near the

wall (red) and the anechoic ILD with KEMAR in the center of the room (blue) for the

same source positions (relative to the head). As expected, at 0 degrees, the ILD averages
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just a little less than zero, but it has a few sharp peaks above zero, most likely due to

asymmetrical pinna effects. As the sound source angle increases, the difference between

the echoic left-ear-to-wall ILD and the anechoic ILD increases. Increasing distance also

increases this difference. These differences are largest at high frequencies, as they have

been for all other subject positions. The increase in ILD difference as angle and distance

increase is expected because the ratio of reverberation to direct sound energy at the left

ear increases while that at the right ear does not change significantly. Comb-filtering of

the left magnitude response due to interference of the echo and direct sound causes peaks

at some frequencies in the echoic ITD and notches at others. The depth of modulation is

greater at 1 m than at 15 cm due to the echo level being relatively close to the level of the

direct sound at 1 m.
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Figure 22: Anechoic ILD with KEMAR in the center of the room (red) and smoothed

echoic ILD with KEMA R's left ear to the wall (blue) for 6 sound source positions.
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3.5.2.3 Interaural Time and Phase Differences

Figure 23 shows the interaural time difference in the (reverberant) left-ear-to-wall

position (red) and in the (anechoic) center position (blue) for 6 sound source positions.

The mean ITD across frequency in the (echoic) left-ear-to-wall position is approximately

equal to that in the anechoic case although the left-ear-to-wall ITD shows frequency-to-

frequency variations. The magnitude of these variations increases as sound source

distance and angle increase, to the point that in the 1 m, 90 degree condition, there is no

single ITD which is consistent for all frequencies.
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of the direct sound decreases, and as angle increases, reverberant energy increases. Both

of these effects lead to the increased ITD variations

3.5.3 Corner Position

Finally, KEMAR was placed in a corner so that his back and left ear were both

within 1 m of walls. In this position, the reverberation is greater than at the previous

positions. The back wall will tend to increase the reverberant energy reaching both ears

equally. The left wall position will tend to increase the reverberant energy reaching both

ears as well, but will cause a greater increase at the left ear.

3.5.3.1 Magnitude Responses

The magnitude responses at the left and right ears with KEMAR in the corner

position for 6 sound source positions are shown in Figure 24. In Figure 24, the right ear

echoic response is represented by red, the right ear anechoic response is represented by

black, the left ear echoic response is blue, and the left ear anechoic response is green. At

zero degrees, the magnitude responses at the left and right ears are about the same. For

the most part, at zero degrees, the cross-frequency mean of the echoic and anechoic

magnitude responses are the same, but the echoic response shows large frequency-to-

frequency variations. At zero degrees and 1 m, the average of the echoic response

magnitude appears to be just a little greater than that of the anechoic. As angle increases,

the difference between the left and right magnitude responses increases because the

direct sound energy at the left decreases, resulting in an increase in relative reverberation

level. The difference between the echoic and anechoic responses also increases as angle

increases since the relative reverberation level increases with increasing angle. The
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reverberation increases the left magnitude response particularly at high frequencies.

Comb-filtering is evident in the frequency-dependent peaks and notches in the left ear

magnitude responses. There is more reverberant energy in the corner position than in the

back-to-wall and left-ear-to-wall position so the interference leading to comb-filtering

should be largest in the corner position. The frequency-by-frequency variations in the

echoic magnitude responses are greater at the right ear with the speaker 1 m from the

head than at 15 cm, where the direct sound at the right ear is more intense. The

difference between the left and right magnitude responses is also much greater at 15 cm

than at 1 m.
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3.5.3.2 Interaural Level Differences

At zero degrees, the ILD should be near or slightly less than zero (to the extent

that the left wall consistently biases the ILD). The average ILD for the corner position is

expected to be a little less negative than the left-ear-to-wall position because the wall

behind KEMAR will contribute equal reverberation to each ear. As sound source angle

and distance increase, the ILD is expected to decrease (compared to the anechoic ILD).

The direct sound at the left ear decreases as angle increases, but the interaural difference

in reverberation increases as the sound source angle and distance increase.
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Figure 25: Anechoic ILD with KEMAR in the center of the room (red) and smoothed
echoic ILD with KEMAR's left ear and back to walls for 6 positions.

The general trends in the ILD measurements shown in Figure 25 are as expected.

The differences between the anechoic ILD and the echoic corner-position ILD increase
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with increasing angle, distance, and frequency. The corner position ILD is larger than

expected at zero degrees. This could be explained by comb-filtering, which can account

for the cancellation that appears to be occurring. Overall, the ILD appears to average just

above zero at 15 cm and around zero for 1 m. The measurement at 15 cm is most likely

higher than expected because of the extreme sensitivity to sound source placement due to

sensitivity to the relative timing of the direct and reverberant bursts, which affects

whether direct and reflected energy cancels or adds when the left ear is very close to the

wall.

3.5.3.3 Interaural Time and Phase Differences

The ITD for KEMAR in the corner of the room for 6 sound source positions is

shown in Figure 26. The reverberant case is shown in red and anechoic (center-of-room)

case is shown in blue. The reverberant ITD varies more from the anechoic ITD than for

any of the room positions considered in previous sections due to the greater reverberant

energy in this position. In particular, there is no consistency in the ITD cues at different

frequencies. As sound source angle and distance increase, the distortion of the ITD by

the reverberation increases. The discontinuity in interaural phase seen as sound source

angle increases is consistent with comb-filtering.
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Figure 26: Interaural time difference for KEMAR in the corner position with six sound
source positions. The pseudo-anechoic case is shown in blue and the reverberant case is
shown in red

3.5.4 Summary of Room Position Effects

The effects of room position on basic acoustic cues are summarized in this

section. The RMS difference between cue value for the reverberant and corresponding

anechoic conditions is used to summarize the magnitudes of the effects of reverberation

on the acoustic cues.

3.5.4.1 Magnitude Responses

Figures 27a and 27b show the RMS difference in the magnitude responses for the

right and left ears respectively. The RMS difference depends on both room position and

51

- -,Ix~~x
0 1 2 3 4

frequency (kHz)
1m, 45 degrees

- J -

o i 2frequency (kHz)4
1 m, 90 degrees_

x x

x x x-rx^
lie x 'x x ---- ---

x

x oil;

x 
x

x

XX

" 00 

otx 
x

x

00 

0

x ido

X x x

K OW
,x x

-

x-



6

5

4

3

2

1

A

RMS difference between smoothed echoic and anechoic right magnitude response

II
II II

iL~IIL~
center back to wall left ear to wall comer
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source position. The only consistent effect of room position is that the RMS difference is

least when the source is in the room center. In general, the effect of the reverberation is

much larger at the left ear than that at the right ear (as expected given that the right ear

generally receives more direct sound energy).

3.5.4.2 Interaural Level Differences

The RMS difference between the echoic and pseudo-anechoic ILDs was

compared for all four room positions and all six sound source positions. The results are

summarized in Figure 28. As expected, the RMS difference is generally smallest when

KEMAR is located in the center of the room (where the reverberation is weakest).

RMS difference between echoic ILD and anechoic ILD
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Figure 28: RMS difference of echoic ILD at four KEMAR positions in the room and 6
sound source positions from the anechoic ILD in the middle of the room at the same
sound source positions.

When KEMAR is in the back-to-wall position, the RMS difference is generally

greater than that when he is at the center position, and less than when he is in the other
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two positions. Having the wall behind KEMAR affects both ears approximately equally,

which leads to small variations in the ILDs. In contrast, for the corner and left-ear-to-

wall positions, the walls produce strong early reflections, which cancel and reinforce the

direct sound in a frequency-dependent manner. As a result, the RMS difference for these

room positions is generally greater than for other room positions. When KEMAR is

positioned with his back to the wall, the reverberation generally is larger than the

reverberation reaching the ears when KEMAR is in the center of the room. Thus, the

RMS difference is larger for the back-to-wall position than for the center position for

most sound source positions. The exception to this is for angles near 90 degrees, where

the difference in reverberation reaching the left ear versus the right ear is substantially

greater for the center position.

The largest RMS difference occurs for the left-ear-to-wall position. In this

position, the reverberant energy reaching the left and right ears differs drastically. Also,

the greater reverberant energy adds to the weaker left ear signal, causing large effects in

the left ear total signal level. For the left-ear-to-wall position, the center position, and the

corner position, there is a strong correlation between source angle, source distance, and

the RMS difference. Most of this difference occurs at frequencies above 5 kHz.

3.5.4.3 Interaural Time and Phase Differences

Changing the position of the subject in the room is not expected have any

consistent effect on ITD across all frequencies though it is expected to add frequency-

dependent variations in the ITD. Changing the location of the subject does not change

the distance between the subject's ears or their location with respect to one another, so

there is not expected to be any significant change in overall ITD. However, since the
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reverberation will cause frequency-dependent interactions between direct and reverberant

responses, the reverberation should cause variations in the ITD as a function of

frequency.

The results summarized in Figure 29 show that ITD (as computed by cross

correlating the left and right ear signals) is roughly invariant with the subject's position in

the room, but is dependent on sound source position. The small fluctuations seen in ITD

across subject positions in Figure 29 are within the range seen across subjects in Figure

7. These fluctuations are probably caused by slight differences in KEMAR's position or

the sound source position in different trials. As seen in Figure 7, the ITD at 90 degrees is

about twice that at 45 degrees, and the maximum ITD calculated is slightly less than 1

msec. The ITD at zero degrees is again slightly negative. Because KEMAR's head is.
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symmetrical, the negative ILD indicates that the speaker was again placed slightly left of

center in front of KEMAR

Figure 30 shows the average ITD calculated from the ITD/IPD plots for the

anechoic condition and the 4 echoic room positions. These results are consistent with

those found by cross-correlating the left and right ear signals shown in Figure 29. This

confirms that the average ITD depends on sound source position and not reverberation.
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Figure 30: Average interaural time difference calculated from ITD/IPD plots for

anechoic case and 4 KEMAR room positions with 6 sound source position.

The variance of the ITD around its mean was calculated from the ITD/IPD plots

and is shown in Figure 31. This quantifies the observation made in previous sections

that the variance increases with reverberation. Figure 31 shows that variance increases

significantly as reverberation increases. In the anechoic condition, the variance is

negligible measuring less than 0.0ims. In the echoic center condition, the variance
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increases to up to 0.07 ms. In the near-wall room positions, the variance increases

dramatically to as much as 0.35 ms. In general, variance increases as sound source

distance increases (for most positions), and as angle increases.
l1D variance calculated from ID/IPD plots

0.4

0 deg 15cm
0.35- O deg Im

45 deg 15cm
0.3 45 deg Im

0.3 -90 deg 15cm
90 deg 1m

0.25-

0.2-

> 0.15-

0.1 -

0.05-

0
Anechoic Center Back to wall Left Ear to wall Comer

Figure 31: ITD variance calculated from ITD/IPD plots for anechoic condition and 4
KEMAR room positions with 6 sound source positions.

4.0 Conclusions

The results found in this study are qualitatively consistent with acoustic theory.

The effect of reverberation on HRTFs increases as the sound source moves from 0 to 90

degrees and from 15 cm to 1 m. Reverberation has the largest effect on the HRTF at the

ear furthest from the sound source, where the direct energy is smallest. Reverberation

adds frequency-to-frequency variation in the magnitude response, "fills in" notches in the

magnitude response, and for conditions near walls where there is a strong initial

reflection, it causes comb-filtering, sometimes even leading to an overall decrease in the
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energy at the near-reflection ear. In contrast, near the center of the room, essentially

random fluctuations are seen in the magnitude response due to the reverberation. In

general, the reverberation tends to decrease the ILD magnitude as the source moves

laterally or its distance increases. The ILD magnitude is smallest when the subject is

positioned such that the ear with the least direct sound energy receives the most

reverberant energy. These ILD decreases are caused primarily by changes in the signal

level at the farther ear, where the direct sound energy is lowest. For near-wall conditions,

comb-filtering causes fluctuations around the mean anechoic ILD due to frequency-

dependent interactions at the ear near the wall reflections. Reverberation does not cause a

consistent bias in ITD values across frequency, but does result in increased variability in

the ITD. For center-room positions, reverberation has a minor effect on ITD, adding only

very small fluctuations. For near wall conditions, where comb-filtering occurs, there is

large distortion in the ITD across frequency, even though broadband correlation is

unaffected. These "distortions" may contribute to difficulties in localizing sources in the

reverberant space.

Overall, reverberation in which there is no single reflection of a level near that of

the direct sound causes minor distortions of interaural cues, consistent with simply

adding variability and random noise and filling in spectral notches of the spectral

features. From these distortions, some degradation of left/right and up/down perception

is expected for sources near the center of the room. Reverberation off a nearby a wall

(causing a reflection of amplitude near time close to that of the direct sound) causes non-

random, frequency-dependent changes in binaural cues (due to comb-filtering) and

distortion of near-reflection-ear magnitude spectrum. Due to these distortions,
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degradation of left/right and huge degradation of up/down perception is expected for

localization performance when a subject is near a wall. Past studies have shown that

localization with reverberation improves with practice, implying that the acoustic cue

distortion may be overcome with training [7, 8].
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..... ...... - ................. ............ .............

--------- -----

l6ofrequency (kHz)

I m, 90 degrees

........................ .............. ...... ......... ...... ---------------- --- --- ................. ....

..... ............... ..... ----------- ........ ...................... ....... .... ........... -

.... ............................... .. ------------

------------- -- --------------- ... ...... ........................ ....

,6o frequency (kHz)

1 m, 0 degrees

..... ..... ------------------------- - ...... ............................ ..... ...........

................. .......... .--- ------ -------- ....... ... ..........

.......... . ------ .......... ......... ......... ............. .... .- .......... -

------- --- -- ----------- ...... ...... ........... ......... .... .... .......... ........... -

6o frequency (kHz)

1 m, 45 degrees

.......... ....................... ..... .. .......... ............... ............

............. .......... ...... ........ ................

---------------------------- -- ----------- -- -- ---- -- --------

---------- ............. --------------- ................... ..... ................. .. ......

1 oo frequency (kHz)

1 m, 90 degrees

--------- --- ............ ..... .................. ....... ....... ........

..... .....

............ .......... ........ .. ....... -------

--- --------- ............. ..

,Cjo frequency (kHz)

15cm, 0 degrees

.......... .... ...... ..........................

............... ....... . ... .......

.................... ....

...... ....... .................. . ............. .......... ......... ..........

1 oo frequency (kHz)

15cm, 45 degrees

.. ............ ....... ..--- ------------

...... ................. ........ ........

............. ....... .. .... ..............

...... .... ---------- ...... .... ......... ---------------- .... ............

1 Cp frequency (kHz

15cm, 90 degrees

.............. ... ....... ............ ...... -------------- .................. -----------

/ -------------- ---- -

------------ --------- -------- -------------

.................. ................ ................... .......... -

,Cp frequency (kHz)

15cm, 0 degrees

------ ---------- ... ........ . .......... --------------- --------- ... ......... ...... ..................

------- -------- ........ .... -------------------- -- -------------

----------------- ............... ......

------------ ...... ----- -------------- ------------------- ......... ...

I op frequency (kHz)

15cm, 45 degrees

......... . .... ........... ..... .......... -------- --

.. ....... ......... .... .............. .... ------- ------- -

................. .. ............... ............ ..........

.. ....... ................. ............... ..... .. ............. --------- ................

I op frequency (kHz)

15cm, 90 degrees

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

180

180

140

120

100

180

160

140

120

100

180

160

140

120

100

Subject SAH

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

180

160

140

120

100

. ..... ........ - --------- -- ------------ --------------------

.................... .

..........

------------ ............ .................... - --------------------- ........

10, frequency (kHz)
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1 m, 0 degrees

-------------- .............. --------- -- ----- --- -------------- ......... .............. ... -

............. ............. -------- --

........... ........ ----------- -----------

........... ........ -----------

I Oo ft"equency (kHz)

1 m, 45 degrees

... ..... ................. -------------- ----------------------------- --------------- -

............ .... .... - ----------

.. ........
---- ---- ------- .. .. ..

............ -------- -- ------------------- ----------- ................. .

lOo frequency (kHz)

I M, 90 degrees

................. .......................... .......... ... ..................... ------------- -

------------ ............ ........... ................... .. ....... ----- ---------- -

---- ---- ................. ............ ------------ -- - .......... - -

----- ----- ----------- ---------- ------------ ---

1 Oo frequency (kHz)

15cm, 0 degrees

.......... ................. ............. ---------- ------

........ ....... ........................ --------- -------- ---------- ......... .............. .. -

....................... .................. --------------
------------------------- -------- .. ....--- --- ---------- -------- -- -------............ .. .......... ... ...... ........... .... .............................. .. .
................... 

.............. 
............... 

...

-------- -----

1 Oo frequency (kHz)

15cm, 45 degrees

------------------------- ------

......... .. ...... .... ....... ...

................. .................. ........ ...... .......... ............ ....

............................ .. ............ .............

--------------- --- ---- -

16, frequency (kHz)

15cm, 90 degrees

............. ..... ......... -
..... .........

----------------- -- -------
------- ----- .......... ...... .... ..... .... ... ...........

...... ........................... .... -- -------- ------------- --

1 Oo frequency (kHz)

180

160

140

120

100

180-

160-

140

120

1001

180-

160-

140

120

100

ISO

160

140

120

100

ISO

160

140

120

100

180

160

140

120

100
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