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STUDY OF A MODEL EQUATION IN DETONATION THEORY*
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Abstract. Here we analyze properties of an equation that we previously proposed to model the
dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for
shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut—i-% (u2 — uu (0_7 t))l =

f (z,u (0_,t)) , ¢ <0, t > 0. It describes a detonation shock at x = 0 with the reaction zone in
x < 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance
law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence
of instability followed by a cascade of period-doubling bifurcations leading to chaos.
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1. Introduction. A detonation is a shock wave that propagates in a reactive
medium where exothermic chemical reactions are ignited as a result of the heating by
the shock compression. The energy released in these reactions, in turn, feeds back to
the shock in the form of compression waves and thus sustains the shock motion. The
dynamics of such shock-reaction coupling is highly nonlinear due to the sensitivity of
the chemical reactions to temperature, making the problem significantly more chal-
lenging than shock dynamics in nonreactive media. A steady planar detonation wave
is rarely observed in experiments. Complex time-dependent and multidimensional
structures tend to develop [14, 26]. Numerical simulations of the equations of reac-
tive gas dynamics are able to reproduce at a qualitative level the complex structures
observed in experiments (see, e.g., [40, 1, 30]). However, obtaining physical insights
into the basic mechanisms of the instability requires simplified modeling and remains
challenging.

In one dimension, the instabilities of the reactive shock wave manifest themselves
in the form of a “galloping detonation” [15, 14], wherein the shock speed oscillates
around its steady value. It has been shown through extensive numerical experiments
that as the activation energy, F, a parameter in the equations measuring the temper-
ature sensitivity of the chemical reactions, is varied, the shock speed transitions from
a constant to an oscillatory function. Further increase of E leads to a period-doubling
bifurcation cascade, which ultimately results in the shock moving at a chaotic speed
[29, 20]. The mechanism for such instabilities is still not completely understood.

In this paper, we show that the model introduced in [23], which consists of a single
nonlocal partial differential equation (PDE), is capable of reproducing the complexity
observed in one-dimensional simulations of reactive Euler equations. The model pos-
sesses traveling wave solutions precisely analogous to the ZND theory (named after
Zel’dovich [44], von Neumann [41], and Déring [6], who independently developed the
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theory in the 1940s), with both the Chapman—Jouguet (CJ) case and the overdriven
solutions present. Furthermore, stability analysis and unsteady simulations of the
model demonstrate the complexity seen in galloping detonations, particularly their
chaotic dynamics. These findings suggest that a theory much simpler than the full re-
active Euler equations may be capable of describing the rich shock dynamics observed
in one-dimensional detonation waves.

Simplified models have been used in the past to study detonations. Both ration-
al asymptotic theories and ad hoc models have been introduced previously to gain
insight into the dynamics of detonation. The reader can find extensive references in
the recent review articles and books [45, 26, 5]. The most relevant to our study is the
theory of weakly nonlinear detonations [32], which is a model derived asymptotically
from the reactive Euler equations. Before [32], Fickett [9] and Majda [27] indepen-
dently introduced ad hoc analog models, which were based on the idea of extending
Burgers’ equation by an additional equation modeling chemical reactions. The effect
of chemical reactions in these analogs appears as a modification of the flux function
to include the chemical energy term. The analog models received much attention in
the past [9, 10, 11, 12, 13, 31] and continue to attract interest from a mathematical
point of view [21]. These simplified models possess a theory analogous to steady ZND
theory, with its CJ, strong, and weak detonation solutions. The weakly nonlinear
model [32] is a result of an asymptotic reduction of the reactive Euler equations. It
applies in any number of spatial dimensions, reducing in one dimension to equations
very similar to those of the analogs and therefore also containing the theory of steady
ZND waves. The analog models have been thought to perform poorly in describing
galloping one-dimensional instabilities and the transition to chaos. However, the re-
cent work of Radulescu and Tang [31] demonstrates that a slightly modified version
of Fickett’s analog, to include a two-stage chemical reaction with an inert induction
zone and a following reaction zone, reproduces much of the complexity of detonations
in reactive Euler equations. We suggest that even a much simpler scalar equation can
capture many of the known phenomena of pulsating detonation waves.

The remainder of this paper is structured as follows. In section 2, we introduce
the model and discuss its connection with the weakly nonlinear model. Next, we
develop a general theory for the proposed equation and compute the possible steady
ZND solutions. In section 3, we derive a dispersion relation for the linear stability
and prove certain important properties about the distribution of the eigenvalues.
Finally, in section 4, we focus on a specific example, for which we perform an extensive
numerical study. With the example, we calculate the linear stability spectrum, the
onset of instabilities, and the long-time nonlinear dynamics of solutions. Using tools
from the theory of dynamical systems, we show that the solution goes through a
sequence of period-doubling bifurcations to chaos, much like in the reactive Euler
equations.

2. The model. Our model construction is based on two basic ideas: weakly
nonlinear approximation [32] and nonlocality of the chemical energy release rate [10].
The precise nature of this nonlocality is explained below. The weakly nonlinear theory
of detonation in one dimension, in the inviscid limit, results in the following simplified
system [32]:

u? g
(2.1) us + (74—5)\)" —0,
(2.2) Ay =w(Au),
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where ¢ and 7 are time and spatial variables, respectively; A is the mass fraction of
reaction products, going from 0 ahead of the shock to 1 in the fully burnt mixture; u
can be thought of as, for example, a temperature; w(\, u) is the reaction rate; and ¢ is
a constant representing the chemical heat release. Note that (2.2) propagates waves
instantaneously since the time derivative is missing in the equation. Nevertheless,
(2.1)-(2.2) constitute a hyperbolic system.

In [32], (2.1)—(2.2) are derived under the assumption of weak heat release and
high activation energy. This is consistent with a weakly nonlinear theory in which (in
appropriate dimensionless units) the waves and the heat release have size O(¢), while
the activation energy is O(1/¢€), where 0 < e < 1.

Consider a shock moving into an unreacted (A = 0), unperturbed (u = 0) region.
At the shock, we apply the Rankine-Hugoniot conditions to (2.1) to obtain

(2.3) —Du]+ = [W*] + 2 [\ =0,

where D is the shock speed and the brackets denote the jump across the shock in the
enclosed variables. Using [A] = 0 and that u = 0 ahead of the shock, it follows from
(2.3) that D = 15 = us/2, where 15(t) is the shock position and us = u (n; ,t) denotes
the postshock value of u. A change of variables to the shock-attached frame, given
by x = n — n,(t), yields

2
(2.4) up + <%+%)\—Du)w —0,
(2.5) Az = w (A u)

for x <0,and u =0, A =0 for x > 0.

Now we make the important assumption that w(\, u) = w(A, us). This simplifying
assumption is the reason why we call the model nonlocal, because the change of A at
any given point x at time ¢ is determined not by w (z,t) at that point, but by u at
the shock, = 0. This means that any change of us (¢) propagates instantaneously
over the whole domain, = < 0. Note that such an assumption is sometimes used in
modeling detonation in condensed explosives. The idea behind it is that the energy
release is primarily controlled by how hard the explosive is hit by the shock [42, 10].

As a consequence of the assumed form of w, equation (2.5) can now be integrated
over z to yield A = F(z,us). Upon differentiation of the latter with respect to « and
substitution into (2.4) (letting ¢F,/2 = f), we obtain one nonlocal equation on the
half-line, x < 0, given by

(2.6) ug + % (u® — uus)w = f(z,us).

Conversely, it can be shown that for any positive function, f, a function w(\, us) can
be found such that (2.6) is equivalent to the system given by (2.4)—(2.5).

The shock, which is now located at z = 0 for any ¢, must satisfy the Lax condi-
tions, that is, ¢(07,¢) > 0 > ¢(0",t), where ¢ = u — uy/2 denotes the characteristic
speed in (2.6). It follows that D () = us/2 =c¢(07,¢) > 0.

Initial data for (2.6) are given as u (z,0) = g (z) for z < 0, where g () is a suitable
function and u (z,0) = 0 for z > 0 is assumed implicitly. An important feature of (2.6)
is that the boundary value of the unknown, ug, is contained within the equation. This
is one of the key reasons for the observed complexity of the shock dynamics. While
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the boundary information from the shock at * = 0 is propagated instantaneously
throughout the solution domain at x < 0, there is a finite-speed influence propagating
from the reaction zone toward the shock along the characteristics of (2.6).

In characteristic form, (2.6) can be written as

du

(2.7) pri I (z,us),
dx Ug

where the characteristic speed is ¢ = u — us/2. Therefore, (2.6) incorporates, within
a single scalar equation, the nonlinear interaction of two waves. One is the usual
Burgers wave propagating toward the shock at a finite speed, ¢. The other is of an
unusual type, as it represents an instantaneous effect by the state us at the shock,
x = 0, on the whole solution region x < 0. Physically, this second wave corresponds
to the particle paths carrying the reaction variable, as explained in [23]. In the weakly
nonlinear limit, these paths have, effectively, an infinite velocity.

3. Steady solutions and their stability. In this section, we explore some
general properties of the proposed model. Keeping in mind the connection with det-
onation theory, we restrict our attention to f(x,us) such that ffoo flx,us) de = q/2
= const. This condition means that the amount of energy released by the reactions
is finite and fixed. We consider only exothermic reactions; hence, f(z,us) > 0. Al-
though these assumptions facilitate some of the computations, they are not required
for most of the results presented here, and more general forms of the forcing can be
considered without adding much more complexity to the analysis.

3.1. Steady-state solutions. Let ug (x) denote a steady-state smooth solution
of (2.6). It is a solution of

(3.1) (uo — USS) ug = f(x,uos),

where “’ 7 denotes the derivative with respect to z and ugs = ug (0) is the steady-
state value of u at x = 0, which is to be found together with ug (x). Integration of
(3.1) from 0 to z yields a quadratic equation for ug,

u(2) — UoUps = 2/ f (yauOs) dy7
0

where the integration constant vanishes in view of the boundary condition at = = 0.
The solution profile is thus given by

2 x
(3.2) uo () = ”; + \/”40 + 2/0 f (y, uos) dy.

The plus sign is chosen here to satisfy the boundary condition at x = 0. We note that
for up (x) in (3.2) to be real, f must be constrained so that, at any x, the expression
under the square root is nonnegative. Effectively, this is the requirement of overall
exothermicity of the source term.

The choice of ugps depends on the behavior of the solution at x — —oo. For the
square root in (3.2) to be real at = —oo, we require that

0
(33) Ups = C 2\/2/ f (y,u()s) dy
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with some ( > 1. The effect of ¢, which is the analogue of the overdrive factor in
detonation theory, on the shape and the stability of the traveling wave can be readily
appreciated in the nondimensional formulation given in section 4. The case with
¢ =1, whereby

0
(3.4) Ugs = 2\/2/ [ (Y, uos) dy,

is an important special case commonly referred to as the CJ solution, because the
characteristic speed at x = —o0 is ¢o (—00) = ug (—00) — ugs/2 = 0. Therefore, the
characteristics point toward the shock everywhere at x < 0, becoming vertical at
r = —oo. Cases where ( > 1 are related to piston-driven detonations wherein the
state at x = —oo remains subsonic, i.e., ¢ > 0. In the context of the Euler detonations,
they are known to be more stable than CJ waves [25, 37].

3.2. Spectral stability of the steady-state solution. Consider the linear
stability of the steady-state solution obtained in the previous section. For simplicity,
we limit the analysis to the CJ case, but the overdriven solution can be similarly
analyzed. Let u (x,t) = ug () + euq (z,t) + O(€?) with € — 0, and linearize (2.6). We
find that

/

s 0
(3.5) ur + (uo — UTO) Uly + upuy = (% (2, u0s) + %) uy (0,¢) .

The steady-state characteristic speed is

U0os r
(3.6) co = ug — ; 2\/2/ I (y,uos) dy,

and the coefficient on the right-hand side of the linearized equation above is

of uy _ Of f (@, uos) _ Of 1

3.7) bp=— s — = LN S L U0s - )

(3.7) bo Oug (, u0s) + 2 Oug 2¢o () Oug (w, uos) + 260(‘71)
Both ¢g and by are functions of z.

Thus, the linear stability problem requires that the following linear nonlocal PDE

with variable coefficients,

(xvu()s) +

(3.8) uyy + courz + cour = bouy (0,1),

be solved subject to appropriate initial data, u; (x,0). If spatially bounded (in some
norm, to be defined below) solutions of (3.8) grow in time, then instability is obtained.
At this point, we can proceed with either the Laplace transform in time (as in [7]) or
normal modes (as in [25]). We choose the latter and substitute the normal modes,

(3.9) up = exp (ot) v (x),
into (3.8) to obtain
cov’ + chv + ov = by (z) v (0).

This equation can be integrated directly to yield

exp (a / ) Codgfy)) o (@) () =0 (0)0 (0) = (0) [ "o (€) exp (a / 5 Codfy)) .
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Denoting p = fg? dy/co (y) > 0, we obtain the final solution for the amplitude of the
normal mode:

0
(3.10) v (@) = v ()¢ (2) P [ [ @ e e —eo )]

The existence of an unstable eigenvalue with (o) > 0 and bounded v(z) is equivalent
to normal-mode instability. On physical grounds, we require that f be integrable in
x at any given t (i.e., the L' norm of f is bounded). This requirement follows from
the implicit assumption that f is in fact the z-derivative of some reaction progress
variable, A\, varying between 0 and 1. We impose the same constraint on wu; hence
ve LY (R7).

Note that p (x) — oo as x — —oo; therefore, the factor in front of the brackets
in (3.10) tends to infinity as @ — —oo. To prevent this superexponential growth, the
term in the brackets must vanish as x — —oo. In fact, this condition is also sufficient
for instability.

THEOREM 1. Provided that ||bo(x)||1 < 0o, the existence of a o with R(c) > 0
such that

0
(3.11) / bo (&) e~ PO de — ¢4 (0) = 0
is both necessary and sufficient for the existence of unstable normal modes, (3.9).

Proof. If condition (3.11) is not satisfied, then v(z) — oo as x — —oo. Now,
suppose that (3.11) is satisfied. Then, v(z) takes the form

(3.12) v (x) = v (0) /I b (5) e*U(P(f)*P(m))dé

Co (33) —o00

We now show that ||v (z) |11 < co. From (3.12), it follows that

0
ol = 0@ s aE |\/ by (€) e~ (©-P() g¢

< |v(0 |/ dg/ dr—— Ibo( )| e RO @@ —p()

We change the integration variable in the inner integral from z to z = p (§) — p (),
so that do = —dz/p’ (x) = ¢o (z) dz. Then,

p(&)—p(0)
13 elw <o) [ a [T depo@le o < O,

which proves that the unstable perturbations are bounded in the L' norm, provided
that by € L' (R™). Thus, (3.11) is necessary and sufficient for the existence of unstable
normal modes. d

It is interesting that the dispersion relation (3.11) closely resembles that of [3, 4],
where the detonation dynamics is analyzed in the asymptotic limit of strong overdrive.
In this limit, the entire flow downstream of the lead shock has a small Mach number
relative to the shock; hence the postshock pressure remains nearly constant. For
this reason, such approximation is called quasi-isobaric. However, the underlying
assumptions in the present model and those in the quasi-isobaric theory are quite
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different. For example, in [3, 4], the authors assume that the detonation overdrive
(i.e., the detonation speed normalized by the CJ speed) is large and that the ratio
of specific heats is close to unity. The weak nonlinearity in [32], on the other hand,
comes from the small heat release assumption there.

Another important result is that, under appropriate assumptions on f, the unsta-
ble modes have a bounded growth rate. This result shows that the so-called “patholog-
ical” instability, inherent to square-wave models of detonation in the Euler equations
[43, 8, 11, 19], does not occur in our model for smooth steady-state solutions. However,
in section 4.2.2 we show that this pathological instability occurs in the square-wave
limit of our model, when f is replaced by a delta function.

THEOREM 2. Provided that ||boco||,~ = M < oo, there exist no eigenvalues with
o > M/co(0).

Proof. Notice that

0 0 0
‘/ bo(x)e~ "W da S/ ‘bo(x)e*””(””) dx:/ ‘bo(x)e"”p(w) dx.

Let z = p(x) and note that this function is invertible since p is monotonic. Substitu-
tion into the previous integral yields

0 (oo}
| @ @lae = [ oot @Deato (e da

oo 0

> 1
< max_|bpco| e %*dx = — max_ |bycol,
—oco<z<0 0 Oy —00<x<0

and thus for o, > (maxec<z<o |bocol) /co(0), we obtain

0
1
}/ bo(x)e”p(w)dx} < — ma}é0|boco| < ¢o(0).

Oy co<

This contradicts the dispersion relation stated in Theorem 1. a

If f(x,ups) is integrable and bounded and aans (z,u0s) is bounded, then it can be
shown that bycy € L°°. These constraints are sufficient to eliminate the pathological
instabilities in which arbitrarily large growth rates are present.

THEOREM 3. If ||bocoll> = M < oo, there exists a bounded interval I large
enough that all eigenvalues with o, > 0 have imaginary part |o;| < I.

Proof. By application of the Riemann—Lebesgue lemma, we find that

0 oo
/ bo(z)e TP dx = / bo(z)co(x)e™%dz
—0o0 0

= / (bo(z)co(z)e %) €7 %dx — 0 as o; — o0,
0
provided that bo(p~1(2))co(p~t(2))e=°* € LL. If 0, > 0 and byco is bounded, then
it follows that indeed bo(p~1(2))co(p~1(2))e~77% € L. Therefore, the integral above
vanishes as o; — oo, which cannot happen because the integral should be equal to
00(0):’(1,05/2>0. 0

THEOREM 4. o = 0 is never an eigenvalue.

Proof. The condition f_ooo bo (€) e~ P& d¢ — ¢4 (0) = 0 is still necessary for the

eigenfunctions to remain bounded, even when o = 0. Therefore, f?oo bo (&) d€ —
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¢o (0) = 0, or equivalently

/ooo [g_i (& ups) + %co(g)’] d¢ — ¢ (0) = 0,
c(0)

0 8f
2

= (& uos) d€ =

oo OUs
Since we assume that f integrates to a constant, then

O af d
- aus(f,u@s)d£:= .

0
[ £ (€. upa) dE = 0.

But ¢(0) = ugs/2 > 0, and therefore no such eigenvalue can exist. Thus, at the onset
of instability, the eigenvalues must have nonzero frequency. d

Because o = 0 is never an eigenvalue, when the behavior of the system as a func-
tion of parameters is explored, the transition from a stable steady state to instability
usually involves a Hopf bifurcation. In our numerical calculations we find that this
bifurcation is a supercritical Hopf bifurcation, so that a stable time periodic solution
takes over from the steady state.

4. An example. In the previous section, we presented necessary and sufficient
conditions for the normal-mode instability of a traveling wave profile. We now focus
on a specific choice of f(x,us) and illustrate with it the general results on the linear
instability. We also examine, by means of direct numerical simulations, what happens
once the traveling-wave solution becomes unstable as a bifurcation parameter is varied.
The example mimics, on a qualitative level, a situation wherein the chemical reaction
has an induction zone that delays the beginning of an energetic exothermic reaction.
The idea is to have a function that peaks at some distance away from the shock, with
this distance depending on the shock strength. A simple choice for such a function is

_a 1 | (e (u)?

IV 13 '

Here, x; is the point where f peaks, and that point depends on the current state at
the shock, us = u (0,t). The parameter 8 determines the width of the reaction zone.
As = 0, f tends to 26 (x — x;); this limit yields what is called a square-wave profile,
wherein f kicks in only at © = x;. We choose z; as

(4.2) xiﬁ):~—k< 1o )a,

us (t)
which depends on the shock strength, us; the steady-state shock strength, ugs; and

the parameters £ > 0 and o > 0. Remembering the connection with the weakly
nonlinear model, where f = g\, /2, we require that

(4.1) /

0 q
(4.3) JC
and thus renormalize f as follows:!

S :
2 [0, fda <1—|—Erf [k(;‘oﬁs)_a/%/ﬁ]) Viarp

f

exp

_@+kw%mgﬂj
45 '

INote that in [22, 23], f was not renormalized.
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Next, the variables are rescaled as follows: u = wst, * = kZ, t = kt/ugs, and 3 =
k23, where the variables with the tildes are now dimensionless. Using ugs = 2¢ vV
which follows from (3.3) and (4.3), equation (2.6) takes the dimensionless form

(4.4) i + <“—2 - M) = f(&, 1),

where
(4.5)

(T, 10s)

1 1 (z+ @) )

e (1+Erf [a(o,f)a/Q\ﬁD \/IBeXp - 43

This equation contains only three parameters: «, which is a measure of the shock-
state sensitivity of the source function (analogous to the activation energy in Euler
detonations); B=8 /k?, which is the width of f (analogous to the ratio of the reaction-
zone length, /B, and the induction-zone length, k); and ¢, which is the overdrive
factor. The role of ¢ is now easily appreciated: it scales the forcing term by ¢ ™2 such
that the overdrive reduces the magnitude of the forcing and hence has a stabilizing
effect.

Our focus below is on the CJ case, ( = 1, which leaves only a and S as the param-
eters of the model. Although the expression for the forcing is a little bit cumbersome,
its shape is simply that of a Gaussian shifted to the left of 2 = 0 by @(0,7)~ and
renormalized to integrate to a constant on (—o00,0). A few examples of f are shown
in Figure 4.1(a) for different values of us and fixed «, 8. The main qualitative feature
of f is that it has a maximum at some distance from x = 0 and that the maximum
is close to the shock when ug is large and far from the shock when ug is small. These
features mimic the behavior of the reaction rate in the Euler equations as a function
of the lead-shock speed.
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Fic. 4.1. (a) The forcing term at various us. (b) The steady-state profiles (top) and the forcing
function (bottom) as 8 is varied.

From now on, we drop the tilde notation, but it should be understood that all
the variables below are dimensionless.

4.1. Steady-state solutions. Steady-state CJ solutions can be computed as
shown in section 3.1. Figure 4.1(b) shows how § affects the traveling wave profile.
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The picture suggests a square-wave solution in the limit 5 — 0. It is important
to remember that a plays no role in the steady-state profiles because ugs = 1 in
dimensionless form. In some sense, « represents the sensitivity to changes in the
steady-state profile. Next, we study the linear stability of these traveling wave profiles
in the o — B parameter space.

4.2. Linear stability analysis.

4.2.1. The dispersion relation. By Theorem 1, spectral instability is equiva-
lent to (3.11), provided [|bo| 1 < co. A straightforward computation shows that

f(iC, uOs)
2¢o ()

and therefore spectral stability of (4.4) is equivalent to

dx < 00,

0
0
llbollLr = /700 ‘81{5 (2, uo0s) +

/ 0 bo (€) e~7POdg = ¢o(0),

where by, ¢o, and p are defined as in section 3.2. Although we have reduced the spectral
stability of our problem to finding complex roots of a single equation, the equation is
(although analytic in o) numerically difficult. For a given « and 3, an equation with
three levels of nested integration must be solved,

(1.6 [ 85\/ [ s
0 dx
o _U/f \/2ffoof(y7u05)dy

where 0 = 0, +i0; and f is given by (4.5). Interestingly, the original formulation of the
linear stability problem by Erpenbeck [7] requires the same three levels of numerical
integration (the steady-state solution, then the solution of the adjoint homogeneous
problem, and then the evaluation of the dispersion relation). In general, these integrals
require nearly machine-precision evaluation of the functions in the integrands in order
to obtain the eigenvalues with only a few significant digits of accuracy. Except for
the limiting case of § = 0, we find the roots numerically using the fsolve function
of MATLAB, which uses a version of Newton’s method, and then we use Cauchy’s
argument principle to verify that we have found all the roots in a given region of
the complex plane. Here, Theorem 2 plays a fundamental role, since it tells us that
all eigenvalues must be within a finite region. When f = 0, we compute the roots
analytically, and they serve as initial guesses in the numerical continuation root-
finding procedure when £ is small.

4.2.2. The square-wave limit. When g — 0, we obtain the square-wave solu-
tion. In this limit, it can be shown that

8isf(gc,uos) = —a%f(x,uos) +0 <%6_41ﬂ> [z, ups).

Even though f(x,ups) tends to a delta function when 5 — 0, this function is in-
tegrated in the dispersion relation, and therefore the contribution of the second
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term above to the dispersion relation is exponentially small in the limit due to the

O(ﬁe_ﬁ) factor. In the limit, the dispersion relation (3.11) becomes

0 0 a 1
[m bo(z) e~ P(®) 4o — [m <—8I{s (x,u0s) + B
0 )
= /_OO <—aa—£(x,uos)) e~ 7P@) g

Integrating by parts and performing simple algebraic manipulations, we find that

o af 1 /% o
_ I —op(x) z I —op(T) g —
a[m D (x,ups) € dx + 2/700 5 (co(x))e dzx = ¢o(0),

g

—af(0,ups) + aocy(0) — (a02 + 5) / co(z)e™7%dz =
0

Noticing that

and

we obtain

0
ao ac? o 2 .
:7_(T+Z>/O ¢ Tdr -
ac 1\ 5, 1
:<7+Z)e —3

=0.

Therefore, the dispersion relation in the square-wave limit takes a very simple form
of a transcendental equation,

1
(4.7) e* =ao + 3

This dispersion relation has exactly the same form as that of Fickett’s analogue [11],
which in his case arose from his differential-difference equation for shock perturbation.
Therefore, it predicts the same pathological instability as in the classical square-wave
detonations. Pathological instability implies that the linear stability problem for the
square wave is ill-posed in the sense of Hadamard. For completeness, we exhibit below
the solutions to this equation, since they are used as initial guesses in our algorithm
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to compute the solutions when [ is small but not zero. Let o = o,- +i0;, and separate
the real and imaginary parts of (4.7):

€277 cos (20) = a0, + %, €277 sin (204) = ao;.
If o, is to be large, the first equation requires cos (20;) to be small; i.e., o; should be
close to m/4d+nmw/2,n=0,1,2,.... We let
T nm
(4.8) o; = 4+ 5 +¢,
where ¢ is a small correction. Then, from the second equation, we find sin (20;) ~ 1
and therefore o, ~ % In (awo;). For this o, to be large, we need n to be large, in which
case
1

(4.9) or R 5 In(n).
Thus, the square-wave dispersion relation admits arbitrarily large growth rates that
occur at simultaneously large frequencies. It is interesting that the growth rate in-
creases with frequency logarithmically. Similar growth happens in the square-wave
model of detonations in the reactive Euler equations (see, e.g., [43, 8, 2, 34, 35, 19]).
However, in the latter, the dispersion relation involves several exponential functions
due to the presence of multiple time scales associated with different families of waves
propagating from the shock into the reaction zone. Waves of different families of
characteristics propagate at different speeds, resulting in several different time inter-
vals for the signals to propagate from the shock to the “fire” and back. Since in the
limit of large frequencies one of the exponentials dominates, the dispersion relation
becomes essentially the same as in our model. In the numerical calculations of deto-
nation instability in the Euler equations with finite-rate chemistry but high activation
energies [35], a similarly slow growth can be seen. However, we do not know whether
the growth is logarithmic in frequency.

Remark. Theorem 2 is not contradicted here since ||boco|| ¢ L in the limit,
because now f ¢ L°°.

4.2.3. The unstable spectrum for 8 > 0. The pathological instability of
the model as f — 0 was shown to be caused by an infinite number of unstable
eigenvalues, with the real part arbitrarily large. From Theorem 2, we know that if
[[boco||~ = M < oo, then there can be no unstable eigenvalues with o, > M /¢ (0).
A quick computation shows that if & < oo and 8 > 0, then the real part of the
unstable spectrum of (4.4) is bounded from above.

Next, we fix a = 4.05 and numerically investigate the effect of 5 on the eigenval-
ues. Using as an initial guess the eigenvalues found from the square-wave dispersion
relation, (4.7), we use the numerical root finder, fsolve, from MATLAB to locate
the eigenvalues for successively larger values of 5. Figure 4.2(a) shows the results,
reaffirming that for any value of 5 > 0 there are only a finite number of unstable
eigenvalues. Furthermore, it suggests that the magnitude of [ is closely related to
the frequencies of the unstable eigenvalues. This can be understood as follows: as the
shock is perturbed, it creates waves that propagate into the reaction zone. If 3 is large
enough, the reaction zone is smooth, and there is little resonance between the shock
and the peak of the reaction in the reaction zone. However, as (3 is decreased, the
sharp peak in the reaction zone reflects waves back to the shock, and this resonance
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(a) The spectrum for o = 4.05 with g varied. (b) The spectrum for 8 = 0.001 with « varied.

F1G. 4.2. The linear spectrum.

causes the instability. If £ is small but positive, then high enough frequencies do not
“see” the sharp peak in the reaction rate and are not reflected back to the shock. A
similar mechanism is at work in Euler detonations as well. For example, in [36], as
the length of the main heat-release layer is decreased relative to that of the induction
zone, the detonation is found to become more unstable.

We also look at the effect of o on the distribution of the eigenvalues. In Fig-
ure 4.2(b), we show the spectrum for fixed f = 0.001 and varying «. This figure
suggests that the eigenvalues are merely shifted when « is decreased. Interestingly,
the imaginary part of the dominant eigenvalue, i.e., the one with the largest real part,
is always the same as we change « and keep  fixed. This observation was tested for
different values of 5. As (8 decreases, the frequency of the most unstable mode is seen
to increase.

To ensure that no roots of the dispersion relation have been lost in the numerical
computations, we apply the argument principle to (3.11). Since

0
F(o) = / bo (€) =P dE — co(0)

— 00

has no poles in the region o, > 0 (which follows from ||bg||r, < ©0), the argument
principle guarantees that the number of zeroes, N, of F'(0) in a closed contour C
(counting multiplicity) is given by

_ 1 [ F)
-2 Jo F(2)

(4.10)

This can be related to the winding number of a curve by the substitution w = F(z),
which yields N = # fF(C) dw/w. We show in Figure 4.3 two Nyquist plots of the
dispersion relation, corresponding to parameters with 2 and 20 unstable eigenvalues.
The predictions agree with the number of roots found using the root solver.

4.2.4. The neutral curves. We follow the first five unstable eigenvalues (or-
dered according to their imaginary part) and show their neutral curves in Figure 4.4.
We see that for large values of 3 the lowest frequency eigenvalue is the one that first
becomes unstable, but for very small values of 8 the stability of the traveling wave
is controlled by the higher frequency perturbations. Moreover, the smaller the 3, the
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Fic. 4.3. Values of w = F (2) along a large semicircle in the right-half plane of the z-plane
(radius 10 for 4.3(a) and 100 for 4.3(b) ), plotted in the F-plane. The total number of loops around the
origin in the F-plane gives the winding number, which is equal to the number of unstable eigenvalues.
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Fi1G. 4.4. The neutral curves for the first five eigenvalues. The numbers next to each curve
correspond to the index of the eigenvalue. Below the envelope of the curves, we have discrete spectral
stability; in fact, numerical calculations indicate that the solutions are stable at these parameters.

higher the frequency of the most unstable mode, consistent with our earlier calculation
of the square-wave-limit pathology. The whole unstable region is given by the union
of the unstable regions for each eigenvalue and is generally located at large-enough «
for any given 3, or small-enough g for any given «.

4.3. Numerical simulations. The previous section was concerned with the
linear stability of traveling wave solutions of (4.4). We were able to compute the
spectrum of unstable modes and obtain the neutral curves in the a-3 parameter space.
In this section, we investigate the behavior of solutions in the nonlinear regime by
numerically solving the PDE using the WENO algorithm described in the appendix.
All the simulations start with a steady-state solution, and instabilities (when present)
are triggered by the numerical discretization error alone. The goal of this section
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is to demonstrate that, as in detonation waves in the reactive Euler equations, the
shock dynamics goes through a Hopf bifurcation followed by a period-doubling cascade
when the sensitivity parameter, «, is varied, suggesting a possible chaotic regime for
large-enough a.

4.3.1. Linear growth and comparison with stability analysis. We first
compare the results obtained from the linear stability analysis with the numerical
results from the simulation. We perform a least-squares fit on the deviation from the
steady-state value of the form Y ;_, cre? " cos(o;,t + d;), where n is the number of
unstable eigenvalues found in the linear stability analysis. For instance, when 5 = 0.1
and a = 4.05, from Figure 4.2 we expect one unstable mode to appear, and thus,
at least for a small time interval, we expect the solution to behave like e“**, up to
translation and scaling. The results obtained from the comparison are presented in
Table 4.1. We restrict ourselves to fitting up to two eigenvalues (eight parameters) and
fit up to a time when the perturbation is of the order 10~7. The original perturbation
is of the order 10~1°.

TABLE 4.1
Comparison of eigenvalues from stability analysis and from numerics at o = 4.05.

| B | o from theory | o from numerics |
0.10 0.00309 + 0.381441 0.00311 + 0.381521
0.01 0.20092 + 0.304314 0.20581 + 0.299641
' 0.61295 + 3.785121 0.61298 + 3.785074

The first case of § = 0.1 in Table 4.1 is near the neutral curve, and both the
growth and frequency of the perturbation are well captured by the linear stability
predictions. Simulations show that for this “slightly unstable” regime, the predicted
frequency is valid well into the nonlinear regime, an observation often made in det-
onation simulations as well. In the second case, when 3 = 0.01, we see a larger
discrepancy between the linear theory and the numerical simulations, especially when
capturing the effect of the least unstable mode. This is to be expected, since the ef-
fects of all unstable modes except for the most unstable one quickly become negligible
as the dominant mode starts to grow. This second case is far from the neutral curve
and much more unstable, with a growth rate two orders of magnitude larger than in
the first case. Very fast growth of the perturbations is likely to result in nonlinear
effects starting to play an important role.

4.3.2. Limit cycles and period-doubling bifurcations. We now study the
long-time asymptotic behavior of solutions that start from a small perturbation (given
by the discretization error) of the initial steady-state solution. The shock value of the
solution, wu4(t), is analyzed. For all the simulations that follow, we fix § = 0.1 and
vary a. When « slightly exceeds the critical value o, =~ 4.02, predicted by the linear
analysis as the neutral boundary, the numerical solutions show that the steady-state
solution is unstable, with the long-time evolution leading to a limit cycle.

For a range of a between «. and a7 = 4.72, the long-time dynamics is that
of a simple limit cycle (Figure 4.5(a)). Subsequent increase of « leads to a period-
doubling bifurcation. When « is between 1 and ao &~ 4.91, we observe the limit cycle
shown in Figure 4.5(b). This period-doubling process continues until eventually, at
= Qo & 4.97, the solution (apparently) becomes chaotic. Figure 4.5(c) illustrates
the behavior of us (t) for very large values of ¢ (around 20, 000), when all the transients
are likely to have vanished. The respective power spectra, computed using a large
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Fic. 4.6. Characteristic fields (white curves) at various «, at periods 1, 2, and chaotic. The
color shows the magnitude of u.

time window, 10,000 < t < 22,000, are also shown. In the periodic case, the power
spectrum is clearly marked by peaks in the natural frequency and its harmonics, as
seen in Figure 4.5(a), (b). In Figure 4.5(c), although there is a dominant frequency
in the signal, many other frequencies are present, indicating possible aperiodicity or
chaos. Further analysis of the computational results is required to establish whether
the solution is indeed chaotic, analysis which is done in the subsequent sections.

Although we focus on u4(t), the behavior presented in Figure 4.5 is not unique
to the shock value. That said, we must pick an “interesting” point, meaning a point
close enough to the shock, if we want to capture the rich dynamics. After the Hopf
bifurcation occurs, u (z,t) is periodic in time, and as the bifurcation parameter («
in this case) is increased further, w (z,t) appears to become chaotic. This is illus-
trated in Figure 4.6, where the color represents u (z,t) and the white lines are the
characteristics.

The bifurcation process is best illustrated by means of a bifurcation diagram,
where the local maxima of the shock value, u(t), are plotted at different values of the
bifurcation parameter o (Figure 4.7). The bifurcation points, presented in Table 4.2,
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Fic. 4.7. The bifurcation diagram at 3 = 0.1.

TABLE 4.2
Bifurcation points.

(nl 11 2 [ 3 | 4 [ 5 |
an [ 402 [ 47202 | 49100 | 4.95565 | 4.96553
Fn| - | 360 | 4.16 162

are used to compute the Feigenbaum number, which appears to approach the well-
known constant § ~ 4.669. The bifurcation diagram in Figure 4.7 and the power
spectra in Figure 4.5 all suggest (although they do not prove) that the chaos in the
system is real. In section 4.4, we analyze the apparently chaotic series of wuy (t) at
very large t, i.e., on the attractor.

An interesting feature of the example presented above is that, as in the reactive
Euler equations (e.g., [24]), inner shocks can form inside the smooth region, 2 < 0.
These shocks subsequently overtake the leading shock, rendering its dynamics non-
smooth. The inner-shock formation is simply due to the wave breaking, and it depends
on the initial data as well as the parameters in f. For example, as the parameter «,
which controls the shock-state sensitivity, is increased, the characteristics are seen to
converge toward each other at large ¢ until, at a critical value of «, the characteristics
collide into an inner shock. This shock then overtakes the leading shock at x = 0, as
shown in Figure 4.8. A point to emphasize is that the characterization of chaos when
such nonsmooth dynamics is present is not easy, particularly due to difficulties of
computing the solution with high accuracy. Our analysis of chaos is therefore limited
to moderate values of o, when we know that the internal shock does not form yet a
chaotic signal is observed.

4.4. Time series analysis. In this section, we use tools of dynamical systems
to understand the shock signal. The shock signal represents a one-dimensional mea-
surement of the infinite-dimensional phase space where the solutions live. Relying on
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F1G. 4.8. Formation of an internal shock wave. The color shows the magnitude of w. The white
curves are the forward characteristics.

Takens’ theorem [39], we embed the signal in higher dimensions by choosing a delay,
7, and an embedding dimension, m (note that choosing an appropriate 7 is a delicate
question). We then use this embedded m-dimensional signal to compute quantities of
interest, such as the correlation dimension and the largest Lyapunov exponent. The
numerical calculations are performed using the open source software OPENTSTOOL
[28].

4.4.1. Delay reconstruction of the attractor. We embed the signal u? =
us(ty) in m dimensions by creating the points

1 1+7 1+(m—1)7
wltT L ultmehT),

_ 2 24 24+(m—1
P2 = (usaus Ta"'vus (m )T)v

py = (N, a7 ,ué\”r(m*l)T),

where N is limited by the number of available values of us. The m-dimensional
points (p1,...,pn) then live in an attractor of dimension at most m. It was shown
by Takens that, provided m > 2d 4 1, where d is the dimension of the attractor
where us lives, there exists a diffeomorphism between the reconstructed attractor and
the “actual” attractor (in the limit of the infinite amount of noise-free data). This
immediately allows us to use the reconstructed attractor to compute quantities such
as the correlation dimension and the Lyapunov spectrum.

Notice that although in theory any choice of 7 will allow such reconstruction,
in practice the situation is quite delicate. The finite amount of noise-polluted data
makes the choice of 7 a nontrivial issue, still the subject of much current research.
Since no fail-proof method appears to exist, we choose 7 as the first minimum of the
mutual information function of u,. The reasons for such a choice can be found in [16].
In the next subsection, we explore how the reconstructed attractor, its dimension, and
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the largest Lyapunov exponent (LLE) change as we vary the sensitivity parameter,
«. We choose av = 4.7,4.85,4.96,4.97,5,5.1 and see how these quantities change as
the dynamics goes from periodic to chaotic.

4.4.2. Largest Lyapunov exponent (LLE). A chaotic system is characterized
by at least one positive Lyapunov exponent. This means that information must be lost
in the system as time progresses. Predictability is thus highly limited. Because the
largest Lyapunov exponent (LLE) determines the dominant rate at which information
is lost, we are primarily interested in the LLE. The magnitude of the LLE gives
an indication of how quickly nearby trajectories in the phase space diverge as time
progresses. The inverse of the LLE is an estimate of the relevant time scale for this
divergence. Thus, the larger the LLE, the more chaotic the dynamics. In particular,
Table 4.3 shows how sensitive this exponent is to small changes in the parameter o
near the onset of chaos, where « is the “activation energy” parameter, measuring the
sensitivity of the reaction to the shock strength. Several methods are available for
computing the LLE, and we choose to use the one presented in [33]. The algorithm
used here is discussed in the appendix.

The sequence of period doubling observed in Figure 4.7 and Table 4.2 suggests
that the sequence first saturates at a. =~ 4.97. After this critical value, the solution
seems to become aperiodic, as indicated by its power spectrum. We compute the LLE
for values of « slightly below and slightly above a. in order to illustrate the drastic
change in the magnitude of LLE. The values of LLE are presented in Table 4.3, where
the error estimates are merely educated guesses of a confidence interval obtained from
running the algorithm for different embedding dimensions (from dimension 3 to 10).
It is particularly difficult to obtain quantitative error estimates because the sources
of error are unknown and the algorithm requires some subjective choice of a “range”
(see the appendix).

TABLE 4.3
The LLE and correlation dimension (D) for different values of «, the bifurcation parameter.

[ o] 4.85 4.96 | 4.97 | 5 | 5.1

LLE 0 0 0.004+£2-10"4]0.018 £3-1075{0.032+8-10~*
De [1.000£3-107%1.002+2-1072| 1.67+7-10"2 | 1.87+3-10"2 | 1.91+2-102

A study of the dependence of the LLE on the embedding dimension is presented
in the appendix. Although precise error estimates are not available, there is still some
value in the predictions made; namely, a clear difference is observed between o = 4.96
and « = 4.97, which corresponds to the apparent saturation point of the bifurcation
diagram presented in Figure 4.7.

4.4.3. Correlation dimension estimate. While the Lyapunov exponent mea-
sures the rate at which information is lost in a dynamical system, the correlation
dimension gives an upper bound on the number of degrees of freedom a system has.
This is an important concept for distinguishing deterministic chaos from stochastic
chaos. For simple attractors the correlation dimension is an integer, but for strange or
chaotic attractors the dimension is fractal. We compute the correlation dimension of
our time series using the algorithm presented in [18]. The results for different values of
« are shown in Table 4.3. The magnitude of D¢ is seen to be about 1.9 in the chaotic
regime. The implication is that the dynamics of the system is nearly two-dimensional;
i.e., a two-dimensional phase space is in principle sufficient to describe the observed
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dynamics. Of course, this gives no hint at what that description should be, but the
importance of D¢ is in providing an estimate of the degrees of freedom involved.

5. Conclusions. A simple model equation consisting of an inviscid Burgers
equation forced with a term that depends on the current shock speed is analyzed
by calculating its steady-state solutions, the linear stability properties of these solu-
tions, and the nonlinear, time-dependent evolution that starts with the steady state
as an initial condition. It is found that the theory and numerical results for the
model equation parallel those of the reactive Euler equations of one-dimensional gas
dynamics, which have been extensively used to describe detonation waves.

The steady-state theory of the model is analogous to that of the ZND theory
of detonation, describing both self-sustained and overdriven solutions. The normal-
mode linear stability theory of the model is qualitatively similar to the detonation
stability theory, reproducing comparably complex spectral behavior. The nonlinear
dynamics, computed with a high-accuracy numerical solver, exhibit the Hopf bifur-
cation from a stable solution to a limit cycle, together with a subsequent cascade of
period-doubling bifurcations, resulting eventually in what is, very likely, chaos. All of
these features have their counterparts in the solutions of the reactive Euler equations.
The qualitative agreement between the two systems, so drastically different in their
complexity, hints at the possibility that a theory for the observed complex dynamics
of one-dimensional detonations may be rather simple. Multidimensional detonations
are likely to be much more challenging.

Appendix. Numerical algorithms.

A.1. PDE solver. The hyperbolic system presented in this paper is solved using
a method of lines approach, in which we discretize in space and then evolve the
resultant ODE system in time. For the spatial discretization, we use a five-point
weighted essentially nonoscillatory (WENO) method [38]. Our stencils are biased to
the right by one point. As usually done in WENO methods, we introduce a small
parameter, €, to guarantee that the denominators in the smoothness indicators of
the method do not become zero when calculating the weight coefficients. For the
problems investigated here, we experimented with € between 107° and 10719, and the
solutions appear to be unaffected by this choice. The chosen € for all computations
was € = 1076,

To avoid spurious oscillations, we use a third-order total variation diminishing
(TVD) Runge-Kutta time stepping algorithm [17]. Convergence tests were performed
using the steady-state solution in the stable regime, for which fifth-order convergence
in space was obtained.

A.2. The LLE. The algorithm for the LLE consists of the following steps:

1. Given a time series u}, embed it in an m-dimensional space with delay 7, as
outlined in section 4.4.1.

2. For a given point p;, find the closest point p;, such that |i — j;| > the mean
period, where the mean period is estimated by the inverse of the dominant
frequency of the power spectrum.

3. Define d}*(n) = ||pit+n—pj+n|. Then, d;(n) represents the divergence between
trajectories starting at p; and p;;,.

4. Choose N points randomly on the attractor and compute an average diver-
gence of trajectories by d™(n) = + Zf\il dj*(n). The number N is limited
either by the amount of available data or by computational restrictions.
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(b) Plots of log(Cy) vs. log(r) for different em-
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Fic. A.1. Dependence of the LLE and correlation dimension on the choice of the embedding

dimension.

5. Plot log(d™(n)) versus nAt.

6. Repeat steps 1-5 for different values of the embedding dimension, m, and
find a region ¢,y < t < tmaz such that the plot of log(d™(n)) versus nAt is
nearly a straight line for the values of m used.

7. Do a least-squares fit in the region tnin < t < tmax to extract A\* for each

embedding dimension m.

8. If the values of A" do not vary much for a wide range of embedding dimensions
m, let A\1 be the average over all embedding dimensions computed.

The algorithm suggested above, which is presented in [33], has some parameters that
are not objectively chosen. The value of A\; depends on, among other things, the
choices of 7, the range of m considered, the choices of ¢y, and tmax, and on N.
Of course, it also depends on the quality of the data set and the amount of noise
present in it. In [33], a numerical study of this parameter-dependence is performed,
and it is claimed that the algorithm is rather robust. In our study, we use the range
3 < m <20, fix 7 = 150, choose N = 20,000, and choose tyi, and tyax by looking
at the plot of log(d) versus t. A typical plot is shown in Figure A.1, where oo = 5,

tmin = 100, and tmax = 200.
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In Table A.1, we present the values of the LLE calculated for each given dimension
from Figure A.1.

TABLE A.1
The LLE and the correlation dimension for different embedding dimensions.

[ m | 3 [ 4 | 5 [ 8 [ 10 [ 15 ] 20 |
LLE | 0.0185 ] 0.0182 [ 0.0184 [ 0.0180 | 0.0181 | 0.0180 | 0.0183
Dg [ 1.8306 [ 1.8507 | 1.8500 | 1.8904 | 1.9147 | 1.9317 [ 1.9432

For other values of «, the same methodology is applied. The values shown in
Table 4.3 are obtained by averaging the LLE over multiple dimensions. The error
estimates are the maximum differences between the averages and the entries.

A.3. Correlation dimension. The algorithm for computing the correlation
dimension follows that of [18]. It consists of the following steps:
1. Given a time series u7, embed it in an m-dimensional space with delay 7, as
outlined in section 4.4.1.
2. Construct a grid 7 = (rq,...,71), where r1 > min; ;(||[ul — u||) and r, <
max; ;(|Jug — ull).
3. For each r; define the correlation sum, at a given dimension m, to be C™(ry,) =
1 N et — d
7z 2ijo1 Ok — [lug — ul])).
4. Plot log(C™ (1)) versus log(ry).
5. Repeat steps 1-4 for different values of the embedding dimension m, and find
a region Ty, < 1 < Tmaee such that the plot of log(C™(r)) versus log(r) is
nearly a straight line for the values of m used.
6. Do a least-squares fit over the region ryin < r < rmax to extract D for each
embedding dimension m.
7. If the values of D¢ do not vary much for a wide range of embedding dimen-
sions m, let D¢ be the average over all embedding dimensions.
Similar to the LLE calculation, the computed value of D¢ depends on many param-
eters that cannot be objectively chosen. The choices of 7, m, rmin, and 7rpax in
particular have an appreciable effect on the value of De. In our study, we use the
range 3 < m < 20, fix 7 = 150, choose N = 5000, and choose ryi, and Tyax by look-
ing at the plot of log(C™(r)) versus log(r). A typical plot is shown in Figure A.1(a),
where a = 5, log(rmin) = —8, and log (rmax) = —4.
In Table A.1, we show the computed values of the correlation dimension for the
data presented in Figure A.1(b). Notice that the variability here is much higher than
in the computation for the LLE.
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