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THE STATIC CONDENSATION REDUCED BASIS ELEMENT
METHOD FOR A MIXED-MEAN CONJUGATE HEAT EXCHANGER

MODEL∗

SYLVAIN VALLAGHÉ† AND ANTHONY T. PATERA†

Abstract. We propose a new approach for the simulation of conjugate heat exchangers. First,
we introduce a dimensionality-reduced mathematical model for conjugate (fluid-solid) heat transfer:
in the fluid channels, we consider a mixed-mean temperature defined on one-dimensional filaments;
in the solid we consider a detailed partial differential equation conduction representation. We then
propose a Petrov–Galerkin finite element (FE) numerical approximation which provides suitable
stability and accuracy for our mathematical model. We next apply the static condensation reduced
basis element (scRBE) method: a domain synthesis approach with parametric model order reduction
at the intradomain level to populate a Schur complement at the interdomain level. We first build a
library of “components,” each corresponding to a subdomain with a simple fluid channel geometry;
for each component, we prepare Petrov–Galerkin reduced basis bubble approximations (and error
bounds). We then assemble the system equations by static condensation and solve for the temperature
distribution in the full domain. System-level error bounds are derived from matrix perturbation
arguments; we also introduce a new output error bound which is sharper than the original scRBE
estimator. We present numerical results for a two-dimensional automotive radiator model which
demonstrate the flexibility, accuracy, and computational efficiency of our approach.

Key words. reduced basis, conjugate heat transfer, domain decomposition, a posteriori error
estimation
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1. Introduction. Heat exchangers are designed to improve the heat transfer
between fluid streams. Perhaps the most common application is automotive radiators:
engine coolant passes through an exchanger to discharge heat to external flowing air.
It is important to be able to predict the performance of a heat exchanger in order to
develop effective designs. Some analytical methods, such as the log-mean temperature
difference (LMTD) and the number of transfer units (NTU) approaches [17] permit
calculation of the total heat transferred within a heat exchanger. However, both
methods require estimation of the overall heat transfer coefficient and exchange area;
the former, in particular, can be quite difficult to predict with any accuracy.

A more refined analysis of a heat exchanger hence requires a conjugate heat
transfer model which incorporates the thermal interactions between the constituent
solid and fluid elements. The simplest situation is a fluid flow in a straight channel
with walls of constant thickness; in this case, the conjugate heat transfer problem
can be readily solved analytically. However, in more realistic configurations with
more complex channels and, in particular, finned solid surfaces—such as automotive
radiators—numerical approaches must be invoked [1, 8, 21, 26]. The latter are quite
expensive and typically preclude interactive or conceptual design. In this paper we
consider a compromise between NTU flexibility and conjugate fidelity. In particu-
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lar, we propose several model order reduction strategies which permit us to rapidly
simulate a complete two-dimensional (2D) heat exhanger while still retaining a local
description of the thermal interactions between fluid and solid.

In a first stage, we introduce a 2D mathematical model for some simple channel
“components” in which we couple the 2D conduction equation in the solid to the
one-dimensional (1D) fluid mixed-mean temperature equation in the channel (see
[9, 7, 19] for similar heterogeneous dimensionality reduction approaches). Nusselt
numbers serve to model the heat transfer between the fluid in the channel and the
interior channel walls, and between any external flow and the heat exhanger exterior
walls. Note that both the flow rates in the channels and the local Nusselt numbers
must be included in the model. We then derive a Petrov–Galerkin finite element (FE)
approximation for each of these component models.

In a second stage, we consider an entire heat exchanger system which we synthe-
size from our simple channel components. For each component type, we introduce
several parameters (flow rate, heat transfer coefficients) and perform parametric model
order reduction: we replace the FE approximation with a much less expensive reduced
basis (RB) approximation [23]. Thanks to the latter, we are able to compute very
rapidly the solution over a component for any desired parameter values. To simulate
the entire heat exchanger, we first choose parameters for each subdomain and com-
pute the corresponding RB approximations; we then invoke static consensation to
assemble these component-level contributions in a complete system description. This
approach, denoted the static condensation reduced basis element (scRBE) method
and first introduced in [12], may be viewed as a synthesis of two earlier approaches:
the reduced basis element method [18] and component modal synthesis [11, 4].

The key contributions of this paper are, first, a dimensionality-reduced mathe-
matical model for heat exchanger components; second, a Petrov–Galerkin FE and RB
numerical approximation for these component models; third, a scRBE formulation for
heat exchanger systems;1 and fourth, an improved a posteriori output error bound
which can be broadly applied in the scRBE context well beyond our current heat
exchanger context.

This paper proceeds as follows. Section 2 provides a complete description of our
model for conjugate heat transfer within a single channel component; we also provide
the associated Petrov–Galerkin finite element approximation. In section 3, we recall
the principles of the RB method and present details for our particular Petrov–Galerkin
RB spaces. In section 4, we present some extensions of our model to more complicated
channel configurations in which either a single channel splits into two channels or two
channels merge into a single channel. In section 5, we present the core of our approach,
the scRBE method [12]. Finally, in section 6, we provide numerical results: we start
with a simple 1D problem, for which we know the exact solution, in order to compare
our approach to a ground truth; we then consider 2D systems, potentially large,
corresponding to automotive radiator models.

2. Mathematical model. We consider the heat transfer problem shown in Fig-
ure 1: a fluid flows in a plane channel with interior and exterior walls. We do not
assume a particular shape for the solid domain Ω; in practice, the external wall will
often be finned to increase the heat transfer with the ambient air. For simplicity, we

1Our treatment of the heat exchanger does not extend to general transport problems. In partic-
ular, the stability is provided by the diffusion in the solid and the nonsmoothness is addressed by a
priori knowledge of the mixing locations—a “shock fitting” approach rather than a “shock capturing”
approach.
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Fig. 1. A channel which comprises fluid ([0, L]) and solid (Ω) domains.

assume that the geometry and constitutive coefficients are symmetric with respect to
the xz plane. Furthermore, we suppose that the material properties are constant in
the solid and the fluid, respectively.

The flow is assumed to be independent of the coordinate z. We will consider the
fluid bulk temperature, Tb, defined on a 1D filament corresponding to the channel
axis (the dashed line in Figure 1); for the bulk temperature we take the mixed-
mean temperature [17]. We denote by sf the filament coordinate; for our simple
channel, the filament and solid coordinates are related by the identity mapping x = sf .
Following [17], the fluid bulk temperature Tb(x) satisfies

ρcvAdTb
dx

= Phint(T∂Ωdim
int

(x)− Tb(g(sf ))), 0 ≤ x ≤ L,

where A is the cross-sectional area of the channel, P is the perimeter of the channel,
ρ is the mass density of the fluid, c is the specific heat of the fluid, v is the aver-
age flow velocity, and hint is the heat transfer coefficient between the solid and the
fluid in the channel. The superscript dim stands for “dimensional,” as we will later
nondimensionalize the equations. As a boundary condition, we set Tb(0) = Tinlet.

The equation for the solid domain is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−kΔT = fdim
s in Ωdim,

k
∂T

∂n
= hext(Ta − T ) on ∂Ωdim

ext ,

k
∂T

∂n
= hint(Tb − T ) on ∂Ωdim

int ,

where Δ is the Laplacian, hext is the heat transfer coefficient between the solid and the
external air, k is the thermal conductivity of the solid, Ta is the external (ambient) air
temperature (assumed constant), fdim

s is an optional heat source in the solid domain,
and n denotes outward normal.

Note that we will assume that the heat transfer coefficient hint is constant along
the channel. Hence this model is most appropriate for turbulent flows which enjoy
relatively short development lengths and for which transport is largely dictated by
fluid properties and lateral spatial scales [17]. To support this assumption, we refer,
for example, to the Gnielinski correlation [10] for the Nusselt number of turbulent
flows: the correlation depends only on the Prandtl and Reynolds numbers, which are
both constant for a given channel diameter and small temperature variations within
the fluid. In particular, and as opposed to correlations for laminar flows, correlations
for turbulent flows typically do not depend on the channel wall conditions.
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2.1. Nondimensional equations. We define the following dimensionless quan-
tities: θ = T−Ta

Tinlet−Ta
; φ = Tb−Ta

Tinlet−Ta
; ξ = x

W , where W is a characteristic length (typi-

cally the width of the solid in the y direction); and Λ = L
W . We also define F = ρcvA

Pk
(note that k is the conductivity of the solid and hence F is not a Peclet number),
Biint =

hintW
k , and Biext =

hextW
k . The equations then become

(2.1)

⎧⎨
⎩

−Δθ = fs in Ω,

F dφ

dξ
= Biint(θ∂Ωint − φ), 0 ≤ ξ ≤ Λ,

with the boundary conditions

(2.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θ

∂η
= −Biint(θ − φ) on ∂Ωint,

∂θ

∂η
= −Biextθ on ∂Ωext,

φ(0) = 1,

where η denotes (nondimensional) outward normal. Note fs =
fdim
s W2

k(Tinlet−Ta)
. As a

standard hypothesis, we suppose that Λ > 1, F ≥ 2, Biint > 0, and Biext > 0.

2.2. Weak form. We will now introduce a variational formulation for (2.1)
and (2.2). To this end, we introduce some functional spaces. For the temperature
in the solid, θ, we suppose homogeneous Dirichlet conditions on some part of the
boundary Σ ⊂ ∂Ω such that Σ ∩ ∂Ωint = ∅ and Σ ∩ ∂Ωext = ∅. This subset Σ of
the boundary will later correspond to “ports” where “components” can be connected
(section 5). Hence we take θ ∈ Y for Y = H1

Σ(Ω) ≡
{
w ∈ H1(Ω)|v|Σ = 0

}
, note

that H1
0 (Ω) ⊂ Y ⊂ H1(Ω) (see [22] for definitions of standard function spaces). For

the fluid bulk temperature, φ, we take φ ∈ V for V = {ϕ ∈ H1([0,Λ])|ϕ(0) = 0};
note that to simplify the presentation we assume that the inhomogeneous boundary
condition for the fluid is lifted (and hence we may consider φ(0) = 0). We also define
the spaces W = L2([0,Λ]), X = Y × V , and Z = Y ×W ; here X is the trial space
such that w = (θ, φ) ∈ X , and Z is the test space such that v = (ϑ, ϕ) ∈ Z. We also
define the norms on X and Z,

‖w‖2X ≡
∫
Ω

|∇θ|2 +
∫
[0,Λ]

(
dφ

dx

)2

+ φ2(Λ),

‖v‖2Z ≡
∫
Ω

|∇ϑ|2 +
∫
[0,Λ]

ϕ2.

We are now ready to derive the variational formulation.
We first define the bilinear form a(·, ·) on X ×Z such that for w ∈ X and v ∈ Z,

a(w, v) =

∫
Ω

∇θ∇ϑ+Biext

∫
∂Ωext

θϑ

+Biint

∫
∂Ωint

(θ − φ)ϑ − Biint

∫
∂Ωint

(θ − φ)ϕ + F
∫
[0,Λ]

dφ

dx
ϕ.(2.3)

The bilinear form a(·, ·) thus has an obvious affine decomposition with respect to the
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parameters µ = (Biext,Biint,F),

(2.4) a(w, v;µ) =

Q∑
q=0

θq(µ)aq(w, v),

with Q = 3 and θ0(µ) = 1, θ1(µ) = Biext, θ2(µ) = Biint, θ3(µ) = F . We will suppress
for now the dependence of a(·, ·) on µ and reintroduce it later for the reduced basis
approximation. We also define the linear form f such that for v ∈ Z,

f(v) =

∫
Ω

fsv − a(z, v),

where z ∈ X is the lifted inhomogeneous boundary condition at the fluid inlet.
Now taking the scalar product of (2.1) with v ∈ Z, and incorporating the bound-

ary conditions (2.2), we obtain the weak form: find u ∈ X such that

(2.5) a(u, v) = f(v) ∀v ∈ Z.

Lemma 2.1. The bilinear form a(·, ·) is inf-sup stable and continuous on X ×Z.

Proof. For any w = (θ, φ) ∈ X , we define w∗ = (θ, φ+τ dφ
dx ) ∈ Z for some constant

τ such that 0 < τ ≤ 1. Choosing v = w∗ in the bilinear form gives

a(w,w∗)

=

∫
Ω

|∇θ|2 +Biext

∫
∂Ωext

θ2 +Biint

∫
∂Ωint

(θ − φ)2

− τBiint

∫
∂Ωint

θ
dφ

dx
+ τF

∫
[0,Λ]

(
dφ

dx

)2

+
1

2
(F + τBiint)φ

2(Λ).

Using the inequality (for c ∈ R, d ∈ R, σ ∈ R+) 2|c||d| ≤ 1
σ c

2 + σd2, we obtain

(2.6)

∫
∂Ωint

−2θ
dφ

dx
≥

∫
∂Ωint

− 1

σ
θ2 − σ

(
dφ

dx

)2

.

From the trace theorem [22], and recalling that θ is zero on some part Σ of ∂Ω to
invoke Poincaré–Friedrichs, there exists a constant ρ(Ω) > 0 such that∫

∂Ω

θ2 ≤ ρ(Ω)

∫
Ω

|∇θ|2

(we henceforth suppress the dependence of ρ on Ω). We now choose σ = F
Biint

in (2.6)
and invoke the trace result to obtain

(2.7) −τBiint
∫
∂Ωint

θ
dφ

dx
≥ −1

2
τ
ρBi2int
F

∫
Ω

|∇θ|2 − 1

2
τF

∫
∂Ωint

(
dφ

dx

)2

.

So, finally, noting that Biint
∫
∂Ωint

(θ − φ)2 > 0 and applying (2.7), we find

a(w,w∗) ≥
(
1− 1

2
τ
ρBi2int
F

)∫
Ω

|∇θ|2 + 1

2
τF

∫
∂Ωint

(
dφ

dx

)2

+
1

2
(F + τBiint)φ

2(Λ)

≥ K(τ)‖w‖2X(2.8)
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for τ small enough and

K(τ) = min

(
1− 1

2
τ
ρBi2int
F ,

1

2
τF , 1

2
(F + τBiint)

)
.

Also, from the Cauchy–Schwarz inequality, we have

∫
[0,Λ]

φ(y)2dy ≤
∫
[0,Λ]

(∫
[0,y]

dφ

dx
(x)dx

)2

dy ≤ Λ2

∫
[0,Λ]

dφ

dx

2

(x)dx ∀φ ∈ V,

and as a consequence∫
[0,Λ]

(
φ+ τ

dφ

dx

)2

≤
∫
[0,Λ]

2

(
φ2 + τ2

(
dφ

dx

)2
)

≤ 2(Λ2 + τ2)

∫
[0,Λ]

(
dφ

dx

)2

.

Defining

(2.9) C(τ) = max
(
1,

√
2(Λ2 + τ2)

)
,

it follows that

(2.10) ‖w∗‖Z ≤ C(τ)‖w‖X ∀w ∈ X.

This proves the inf-sup stability of a(·, ·):

inf
w∈X

sup
v∈Z

a(w, v)

‖w‖X‖v‖Z
≥ inf

w∈X

a(w,w∗)
‖w‖X‖w∗‖Z

≥ inf
w∈X

K(τ)‖w‖X
‖w∗‖Z

≥ K(τ)

C(τ)
> 0,

and hence β0(τ) ≡ K(τ)
C(τ) is a lower bound for the inf-sup constant.

The continuity of a(·, ·) as defined in (2.3) follows from the trace theorem and the
Cauchy–Schwarz inequality: for example∣∣∣∣

∫
Ω

∇θ∇ϑ
∣∣∣∣ ≤

(∫
Ω

|∇θ|2
) 1

2
(∫

Ω

|∇ϑ|2
) 1

2

≤ ‖w‖X‖v‖Z ,∣∣∣∣
∫
∂Ωint

θϑ

∣∣∣∣ ≤
(∫

∂Ωint

θ2
) 1

2
(∫

∂Ωint

ϑ2
) 1

2

≤ ρ2
(∫

Ω

|∇θ|2
) 1

2
(∫

Ω

|∇ϑ|2
) 1

2

≤ ρ2‖w‖X‖v‖Z ,∣∣∣∣
∫
∂Ωint

φϕ

∣∣∣∣ ≤
(∫

∂Ωint

φ2
) 1

2
(∫

∂Ωint

ϕ2

) 1
2

≤ Λ

(∫
[0,Λ]

dφ

dx

2
) 1

2
(∫

[0,Λ]

ϕ2

) 1
2

≤ Λ‖w‖X‖v‖Z .

Applying the same ideas to all the terms in a(w, v), we obtain

|a(w, v)| ≤ γ0‖w‖X‖v‖Z ∀w ∈ X ; v ∈ Z,

where γ0 is an upper bound for the continuity constant defined as

γ0 ≡ 1 + Biextρ
2 +Biintρ

2 + ΛBiintρ+Biintρ+ ΛBiint + F .
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It can also be shown that (a(w, v) = 0 ∀w ∈ X) ⇒ (v = 0) which, in conjunc-
tion with Lemma 2.1, proves the well-posedness of (2.5) from the Banach–Nec̆as–
Babus̆ka theorem [6]. Note that our assumption of Dirichlet conditions on Σ can
be relaxed such that we consider what we shall denote the “all natural” problem in
which Y = H1(Ω). In this case we invoke the complete H1 norm over Ω to retain
well-posedness. Throughout this paper (for convenience of exposition and simplicity),
the rigorous analysis will be applied to Y as defined above (i.e., with homogeneous
Dirichlet conditions over part of ∂Ω); however, for purposes of interpretation, we shall
on occasion consider the “all natural” problem.

2.3. Finite element discretization. Let Th be a simplicial mesh of Ω and let
Sh be a mesh of [0,Λ]. We assume that the restriction of Th to the top or bottom part
of ∂Ωint is equal to Sh. We introduce the following discrete spaces: Yh ⊂ Y , the P1

finite element space associated with Th; Vh ⊂ V , the P1 finite element space associated
with Sh; Wh ⊂ W , the P0 finite element space associated with Sh; Xh = Yh × Vh;
and Zh = Yh ×Wh. Note that the dimensions of Vh and Wh are the same thanks to
the condition φ(0) = 0. Also, for φh ∈ Vh, we denote by φh ∈ Wh the average of φh
over each element in Sh. We now invoke these spaces to provide a Petrov–Galerkin
approximation of (2.3).

We define the bilinear form ah(·, ·) onXh×Zh such that for wh ∈ Xh and vh ∈ Zh,

ah(uh, vh) =

∫
Ω

∇θh∇ϑh +Biext

∫
∂Ωext

θhϑh

+Biint

∫
∂Ωint

(θh − φh)ϑh − Biint

∫
∂Ωint

(θh − φh)ϕh + F
∫
[0,Λ]

dφh
dx

ϕh.(2.11)

Note that ah(wh, vh) differs from a(wh, vh) due to the φh terms. The problem for the
discrete solution uh can then be stated: find uh ∈ Xh such that

(2.12) ah(uh, vh) = f(vh) ∀vh ∈ Zh.

Lemma 2.2. The bilinear form ah(·, ·) is inf-sup stable and continuous on Xh ×
Zh.

Proof. The proof is very similar to the continuous case, except that the definition
of w∗

h is slightly different. For any wh = (θh, φh) ∈ Xh, we define w∗
h = (θh, φh +

τ dφh

dx ) ∈ Zh for a small real positive constant τ : we must take the average of φh to
remain in the required discrete test space. Then, exactly as before, we arrive at

ah(wh, w
∗
h) ≥

(
1− 1

2
τ
ρBi2int
F

)∫
Ω

|∇θh|2 +
1

2
τF

∫
∂Ωint

(
dφh
dx

)2

+
1

2
(F + τBiint)φ

2
h(Λ)

≥ K(τ)‖uh‖2X .(2.13)

The key observations are that the φh in ah(·, ·) and w∗
h “match” and that

∫
[0,Λ] φh

dφh

dx =∫
[0,Λ]

φh
dφh

dx . Also, on each element, we have

∫ h

0

(
1

h

∫ h

0

φh

)2

≤ 1

h2

∫ h

0

(∫ h

0

φh

)2

≤ 1

h2

∫ h

0

h

(∫ h

0

φ2h

)
≤

∫ h

0

φ2h,

and so we obtain

(2.14)

∫
[0,Λ]

φh

2 ≤
∫
[0,Λ]

φ2h ∀φh ∈ Vh;

D
ow

nl
oa

de
d 

08
/1

3/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

scRBE FOR CONJUGATE HEAT TRANSFER B301

as a consequence, we retain

(2.15) ‖w∗
h‖Z ≤ C(τ)‖wh‖X ∀wh ∈ Xh.

This proves the inf-sup stability of ah(·, ·):

(2.16) inf
wh∈Xh

sup
vh∈Zh

ah(wh, vh)

‖wh‖X‖vh‖Z
≥ inf

wh∈Xh

ah(wh, w
∗
h)

‖wh‖X‖w∗
h‖Z

≥ K(τ)

C(τ)
> 0.

The continuity proof for ah(·, ·) is the same as for a(·, ·) once we appeal to (2.14).

We thus note that β0(τ) ≡ K(τ)
C(τ) , introduced earlier, is also a lower bound for

the inf-sup constant of ah(·, ·). We now provide details for the computation of this
quantity which shall be needed later for RB a posteriori error estimation. We choose
τ = τ̂ such that

(2.17) 1− 1

2
τ̂
ρBi2int
F =

1

2
τ̂F ⇐⇒ τ̂ =

2

F +
ρBi2int

F
and for which

(2.18) K(τ̂) =
1

2
τ̂F ;

and C(τ̂ ) =
√

2(Λ2 + τ̂2) from (2.9) and our standard assumptions F ≥ 2, τ̂ ≤ 1 and
Λ > 1. Thus for an inf-sup lower bound, we may choose

(2.19) βLB
0 (τ̂ ) ≡ τ̂F

2
√
2(Λ2 + τ̂2)

for τ̂ given by (2.17).
Lemma 2.3. Let u and uh be the solutions to the continuous and discrete prob-

lems, respectively, and let h be the mesh size. Assuming that u ∈ X ∩ H2(Ω) ×
H2([0,Λ]), we then have the following a priori error estimate:

‖u− uh‖X ≤ O(h)(‖u‖X + |u|2),

where | · |2 is the Sobolev seminorm on H2(Ω)×H2([0,Λ]).
Proof. The proof is standard and invokes the first Strang lemma to arrive at

β0‖uh − wh‖X ≤ γ0‖u− wh‖X + sup
vh∈Zh

|a(wh, vh)− ah(wh, vh)|
‖vh‖Z

.

Let φh be the component in Vh of wh. Then from (2.3) and (2.11) it follows that

a(wh, vh)− ah(wh, vh) = Biint

∫
∂Ωint

(φh − φh)(ϕh − ϑh),

and it is then straightforward to show that

sup
vh∈Zh

|a(wh, vh)− ah(wh, vh)|
‖vh‖Z

≤Mh(‖u− wh‖X + ‖u‖X)

for M independent of h. We thus obtain

‖uh − wh‖X ≤ γ0 +Mh

β0
‖u− wh‖X +

M

β0
h‖u‖X.

The desired a priori estimate then follows from standard results in approximation
theory [22] and the triangle inequality.

D
ow

nl
oa

de
d 

08
/1

3/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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3. Reduced basis approximation.

3.1. RB spaces. In the following, we now consider the dependence on the pa-
rameter µ = (Biext,Biint,F), which belongs to a parameter domain D ⊂ R

3. The FE
weak form reads, with explicit parameter dependence now indicated: find uh(µ) ∈ Xh

such that ah(uh(µ), vh;µ) = f(vh)∀vh ∈ Zh.

We first form the RB trial spaces XN ⊂ Xh, 1 ≤ N ≤ Nmax. We introduce the
set of parameters

(3.1) SN = {µ1, . . . ,µN}, 1 ≤ N ≤ Nmax,

as provided by a greedy algorithm [20], and then define the nested spaces

(3.2) XN = span{uh(µn), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

The uh(µ
n), 1 ≤ n ≤ Nmax, are often referred to as “snapshots” of the parametric

manifold Mh = {uh(µ)|µ ∈ D}. It is clear that if, indeed, the manifold is low-
dimensional and smooth, then we would expect to well approximate any member
of the manifold—any solution uh(µ) for some µ in D—in terms of relatively few
snapshots.

In order to understand the RB test spaces we return to the inf-sup discussion of
section 2.3. In particular, we recall that we defined the quantity τ̂ in (2.17) as a func-
tion of the parameters µ. Now that we consider RB approximations, the parameters
are allowed to vary and so we introduce

τ̂min =
2

Fmax +
ρBi2int,max

Fmin

,

where F ∈ [Fmin,Fmax], Biint,max is the maximum of Biint in D, and ρ is the trace
constant computed by solving an eigenproblem. Hence τ̂min is independent of µ and
the choice τ̂ = τ̂min ensures that (2.19) remains valid for all µ ∈ D; note that βLB

0 (τ̂ )
is an increasing function of τ̂ . We also define the * superscript in what follows as

(3.3) u∗h =

(
θh, φh + τ̂min

dφh
dx

)
∈ Zh

for any uh = (θh, φh) ∈ Xh. We are now ready to properly define the RB test space
as ZN = {w∗

N |wN ∈ XN} ⊂ Zh. We can now directly define our RB approximation:
find uN (µ) ∈ XN such that

(3.4) ah(uN (µ), vN ;µ) = f(vN ) ∀ vN ∈ ZN .

The well-posedness of this discrete problem follows from the inf-sup discussion pro-
vided above.

We define the parameter independent quantities

β
LB

0 =
τ̂minFmin

2
√
2(Λ2 + τ̂2min)

,

γUB
0 ≡ 1 + Biext,maxρ

2 + Biint,maxρ
2 + ΛBiint,maxρ+Biint,maxρ+ ΛBiint,max + Fmax,
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which correspond to a parameter independent lower bound for the inf-sup stability
constant and to a parameter independent upper bound for the continuity constant,
respectively, among all possible parameter values.

Proposition 3.1. We have the following a priori error result for the RB ap-
proximation:

‖uh(µ)− uN(µ)‖X ≤
(
1 +

γUB
0

β
LB

0

)
inf

wN∈XN

‖uh(µ)− wN‖X .

We refer to [24] for a proof of this result. Note that in our case, thanks to (3.3),
the supremizer operator is effectively parameter independent.

This demonstrates that the quality of our RB solution depends entirely on the
approximation properties of our RB spaces. Under certain assumptions [3, 2], it can
be shown that the RB greedy spaces yield convergence rates similar to the optimal
Kolmogorov N -width.

3.2. A posteriori error estimation. The central equation in a posteriori the-
ory is the error residual relationship. The error e(µ) ≡ uh(µ)− uN(µ) ∈ Xh satisfies
ah(e(µ), v;µ) = r(v;µ) ∀ v ∈ Zh, where r(v;µ) ∈ Z ′

h (the dual space of Zh) is the
residual, r(v;µ) ≡ f(v;µ) − ah(uN(µ), v;µ) ∀ v ∈ Zh. It is clear that r is bounded

since f and ah are bounded. We define the error estimator ΔN (µ) ≡
‖r(·;µ)‖Z′

h

β0(µ) , for

which we can prove [25] ‖uh(µ)− uN (µ)‖X ≤ ΔN (µ). We will take advantage of this
error bound in the standard Greedy algorithm [20] to construct the RB spaces of sec-
tion 3.1, and also to certify the RB predictions. We note that rather than βLB

0 (τ̂min),
a sharper lower bound may be obtained by the successive constraint method [14].

3.3. Offline-online strategy. We now consider the discrete equations associ-
ated with the Petrov–Galerkin approximation (3.4). We must first choose an appro-
priate basis for our spaces. To this end, we apply the Gram–Schmidt process in the
(·, ·)X inner product to our snapshots uh(µ

n), 1 ≤ n ≤ Nmax, to obtain mutually
orthonormal functions ζn, 1 ≤ n ≤ Nmax: (ζn, ζm)X = δnm, 1 ≤ n,m ≤ Nmax, where
δnm is the Kronecker-delta symbol. We then choose the sets {ζn}n=1,...,N as our bases
for XN , 1 ≤ N ≤ Nmax. We now insert

(3.5) uN(µ) =

N∑
m=1

uN m(µ)ζm,

and vN = ζ∗n, 1 ≤ n ≤ N , into (3.4) to obtain the RB “stiffness” equations

(3.6)

N∑
m=1

ah(ζm, ζ
∗
n;µ) uN m(µ) = f(ζ∗n), 1 ≤ n ≤ N,

for the RB coefficients uN m(µ), 1 ≤ m ≤ N . The offline-online strategy is standard
and it thus suffices to excerpt a brief description from [23]. We note that our system
(3.6) can be expressed, thanks to (2.4), as

(3.7)
N∑

m=1

(
Q∑

q=1
Θq(µ) aq(ζm, ζ

∗
n)

)
uN m(µ) = f(ζn), 1 ≤ n ≤ N.

In the offline stage, we first compute the uh(µ
n), 1 ≤ n ≤ Nmax, and subsequently

the ζn, 1 ≤ n ≤ Nmax; we then form and store the f(ζn), 1 ≤ n ≤ Nmax, and

(3.8) aq(ζm, ζ
∗
n), 1 ≤ n,m ≤ Nmax, 1 ≤ q ≤ Q.
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∂Ω1
int

∂Ω1
int

∂Ω3
int

∂Ω3
int

∂Ω2
int∂Ω2

int

(1 − α)F F
αF

x

y

Fig. 2. A channel mixing component: the colors indicate the identity mappings from ∂Ω to the
fluid mixed-mean temperature filament coordinate.

The offline operation count depends onNmax, Q, andN . In the online (or “deployed”)
stage, we retrieve (3.8) to form

(3.9)

Q∑
q=1

Θq(µ)aq(ζm, ζ
∗
n), 1 ≤ n,m ≤ N,

and we solve the resulting N × N stiffness system (3.7) to obtain the uN m(µ), 1 ≤
m ≤ N .

The online operation count is O(QN2) to perform the sum (3.9) and O(N3) to
invert (3.7)—note that the RB stiffness matrix is full. The online cost—and hence
marginal cost and also asymptotic average cost—to evaluate µ → uN (µ) is thus
independent of N . The implications are two-fold: first, if N is indeed small, we
will achieve very fast response in real-time and many-query contexts; second, we may
chooseN very conservatively—to effectively eliminate the error between the exact and
FE predictions—without adversely affecting the online (marginal) cost. A similar but
more involved offline-online strategy may be developed for the error bound; we refer
the reader to [23].

4. More advanced models.

4.1. Channel mixing. We consider here the case in which two fluid channels
mix into a single channel, as shown in Figure 2. The flows αF and (1 − α)F are
merging into F , where α ∈ [0.1, 0.9] is an additional “flow distribution” parameter.

We describe the main additions to the theory presented in section 2.2. First, we
define three different variables for the fluid bulk temperature, corresponding to the
two incoming channels plus the mixing channel: φ1 is defined on [0,Λ1], where Λ1 is
the nondimensional length of the incoming horizontal channel (blue and left half of
green); φ2 is defined on [0,Λ2], where Λ2 is the nondimensional length of the vertical
channel (orange); and φ3 is defined on [0,Λ3], where Λ3 is the nondimensional length
of the mixing horizontal channel (right half of green and red). The mapping of the
fluid 1D domain to the channel walls is less trivial in this case; the different types of
mapping are represented by colors in Figure 2.

We change the definition of the fluid spaces V and W to

V = {(φ1, φ2, φ3) | φ1 ∈ H1([0,Λ1]), φ1(0) = 0, φ2 ∈ H1([0,Λ2]), φ2(0) = 0,

φ3 ∈ H1([0,Λ3]), φ3(0) = (1− α)φ1(Λ1) + αφ2(Λ2)};
W = L2([0,Λ1])× L2([0,Λ2])× L2([0,Λ3]).
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We also introduce the notation u = (θ, φ1, φ2, φ3) ∈ X = Y × V, v = (ϑ, ϕ1, ϕ2, ϕ3) ∈
Z = Y ×W, and we define the following norms on X and Z:

‖u‖2X =

∫
Ω

|∇θ|2 +
∫
[0,Λ1]

(
dφ1
dx

)2

+

∫
[0,Λ2]

(
dφ2
dy

)2

+

∫
[0,Λ3]

(
dφ3
dy

)2

+ φ23(Λ3),

‖v‖2Z =

∫
Ω

|∇ϑ|2 +
∫
[0,Λ1]

ϕ2
1 +

∫
[0,Λ2]

ϕ2
2 +

∫
[0,Λ3]

ϕ2
3.

The bilinear form a(·, ·) now reads

a(w, v) =

∫
Ω

∇θ∇ϑ+Biext

∫
∂Ωext

θϑ

+Biint

∫
∂Ω1

int

(θ − φ1)ϑ+Biint

∫
∂Ω2

int

(θ − φ2)ϑ+ Biint

∫
∂Ω3

int

(θ − φ3)ϑ

− Biint

∫
∂Ω1

int

(θ − φ1)ϕ1 + (1− α)F
∫
[0,Λ1]

dφ1
dx

ϕ1

− Biint

∫
∂Ω2

int

(θ − φ2)ϕ2 + αF
∫
[0,Λ2]

dφ2
dy

ϕ2

− Biint

∫
∂Ω3

int

(θ − φ3)ϕ3 + F
∫
[0,Λ3]

dφ3
dy

ϕ3.(4.1)

The weak form is then as follows: find u ∈ X such that a(u, v) = f(v)∀v ∈ Z.
This channel mixing model preserves thermal energy. For simplicity we consider

the “all-natural” situation, in which case we may choose for our test function χ = 1.
Then the heat source in the system corresponds to f(χ), and we obtain

f(χ) = a(u, χ)(4.2)

= Biext

∫
∂Ωext

θ + (1− α)F
∫
[0,Λ1]

dφ1
dx

+ αF
∫
[0,Λ2]

dφ2
dx

+ F
∫
[0,Λ3]

dφ3
dy

= Biext

∫
∂Ωext

θ + (1− α)Fφ1(Λ1) + αFφ2(Λ2) + F (φ3(Λ3)− φ3(0))

= Biext

∫
∂Ωext

θ + Fφ3(Λ3).

This corresponds to a global heat balance: heat generated leaves through the wall or
with the fluid.

Lemma 4.1. The bilinear form a(·, ·) is inf-sup stable.
Proof. As in section 2.2, we consider a(w,w∗), but the following new boundary

terms appear due to the channel mixing:

(1− α)F
∫
[0,Λ1]

dφ1
dx

φ1 + αF
∫
[0,Λ2]

dφ2
dy

φ2 + F
∫
[0,Λ3]

dφ3
dx

φ3

= (1− α)Fφ21(Λ1) + αFφ22(Λ2) + F
(
φ23(Λ3)− φ23(0)

)
= α(1− α)F(φ1(Λ1)− φ2(Λ2))

2 + Fφ23(Λ3),(4.3)

where we used the equality φ3(0) = (1 − α)φ1(Λ1) + αφ2(Λ2). The term Fφ23(Λ3) is
directly related to the X-norm. The remaining term α(1 − α)F(φ1(Λ1) − φ2(Λ2))

2
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is positive, and hence can be neglected in the stability proof. The rest of the proof
follows exactly the same arguments as in section 2.2.

The rest of the theory (FE, RB) is similar to the straight-channel case. Note that
for this mixing case, the mathematical model is clearly very approximate. We will
not be able to easily characterize the complexity of the mixing with a constant heat
transfer coefficient. However, it corresponds to a physical limit for which we assume
very good mixing. The same comment also applies to the splitting case described
below.

4.2. Channel splitting. The channel splitting situation is very similar to the
channel mixing, and corresponds to Figure 2 with the flow directions reversed. The
main difference compared with the mixing case is the continuity condition at the point
where the flow splits/mixes: in the mixing case, the fluid mixed-mean temperature
after mixing is a weighted average of the two incoming fluid temperatures, with weights
α and (1 − α); in the splitting case, we simply enforce continuity of the fluid mixed-
mean temperature. The respective conditions ensure the thermal energy conservation
of the model while retaining the stability of the bilinear form.

5. Systemization. We now consider the models presented in the previous sec-
tions as components (or subdomains) from which we will build a system composed
of many similar components connected at ports. To this end, we will apply a static
condensation reduced basis element method, which is a domain synthesis approach
with the following distinct features: reduced basis approximation of finite element
bubble functions at the intradomain level; eigenfunction “port” representation at the
interface level; static condensation at the interdomain level.

The general methodology of scRBE is described in [12] in a rigorous and abstract
framework. Here we use a different path and we present the method based on a simple
example with two subdomains, focusing on matrix transformations of the linear system
derived from the PDE FE discretization. We aim to provide a complementary view
of scRBE with emphasis on the extensions required for the fluid convection equation.

5.1. Static condensation. We suppose our system domain Ω is composed of
two components, Ω1 and Ω2, which share a part of their boundary, P , denoted a port,
as described by the next simple figure.

P

Ω1 Ω2

The PDE finite element approximation yields the global system

⎡
⎣ AP AT

P,Ω1
AT

P,Ω2

AP,Ω1 AΩ1 0
AP,Ω2 0 AΩ2

⎤
⎦
⎡
⎣ uP

uΩ1

uΩ2

⎤
⎦ =

⎡
⎣ fP
fΩ1

fΩ2

⎤
⎦ ,

where we group and reorder to segregate the degrees of freedom on P from the degrees
of freedom internal to Ω1 and Ω2.

We now apply static condensation to remove the degrees of freedom internal to
each component. We define the Schur complement matrix ASC and the Schur right-
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hand side fSC as

ASC = AP −AT
P,Ω1

A−1
Ω1
AP,Ω1 −AT

P,Ω2
A−1

Ω2
AP,Ω2 ,(5.1)

fSC = fP −AT
P,Ω1

A−1
Ω1

fΩ1 −AT
P,Ω2

A−1
Ω2

fΩ2 .(5.2)

The vector of port coefficients uP is then the solution of the Schur complement system

ASCuP = fSC,

which is of size NP, the number of degrees of freedom on P . We observe that com-
putation of the quantity A−1

Ωi
AP,Ωi corresponds to computation of NP FE solutions

of a PDE defined over Ωi with homogeneous Dirichlet conditions on P and different
source terms (arising from the lifting of the port degrees of freedom). We denote by
“FE bubbles” the solutions to these PDEs, one solution associated to each degree of
freedom on P ; we introduce bi

k as the vector of FE coefficients for the bubble in Ωi

associated to the kth degree of freedom on P . Hence we can write

A−1
Ωi
AP,Ωi = A−1

Ωi

[
ai1a

i
2 · · · aiNP

]
=

[
bi
1b

i
2 · · ·bi

NP

]︸ ︷︷ ︸
Ni×NP

,

where aik is the source term (lifted port degree of freedom) for the kth bubble and Ni

is the number of degrees of freedom internal to Ωi.

5.2. Static condensation with reduced basis. We now replace the FE bub-
bles by RB bubble approximations (with an RB space of dimension N):

bi
k −→ Bi

kb̃
i
k,

where Bi
k is the matrix of size Ni × N of FE coefficients of the RB basis functions

(the ζn, 1 ≤ n ≤ N), and b̃i
k are the coefficients of the bubble in the RB space

of dimension N (3.5). We can see that the matrix Bi
k is different for each i, k: we

construct a different RB space for each bubble. The RB bubble coefficients b̃i
k are

obtained by solution of a linear system of size N × N b̃i
k = Ã−1

Ωi,k
ãik, where ÃΩi,k

and ãik are given (effectively) by (3.6). Hence in the end we effect the following
substitution:

A−1
Ωi
AP,Ωi −→

[
Bi

1Ã
−1
Ωi,1

ãi1 Bi
2Ã

−1
Ωi,2

ãi2 · · · Bi
NP
Ã−1

Ωi,NP
ãiNP

]
,

and we obtain an RB approximation ÃSCũP = f̃SC to the original FE truth static
condensation system ASCuP = fSC. By doing so, we need only solve 2(NP + 1) linear
system of size N (to obtain the RB bubbles) and one linear system of size NP. If
N denotes the size of the complete system FE discretization, then the complexity is
reduced from O(N 1+γ) (γ > 0, depending on sparsity and conditioning) to O(NP ×
N3 +N 3

P ), which is significant since typically N � N and NP � N .

5.3. Component to system assembly. The basis functions associated with
the degrees of freedom on the port P are called interface functions. We denote by
ψi
k the restriction on Ωi of the interface function associated with the kth degree of

freedom on P . To construct ψi
k, we first compute the Laplacian eigenmodes χk on
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the port domain P , and then we lift these eigenmodes in the component domains Ωi

such that they satisfy the Laplace equation.
We denote bik the bubble function on Ωi associated with the kth degree of freedom

on P . The general FE solution on a subdomain Ωi, denoted ui, can be expressed with
respect to the port coefficients uk

P as

(5.3) ui =

NP∑
k=1

uk
P(ψ

i
k + bik).

We can now observe that bi
k = A−1

Ωi,k
aik corresponds to the bubble equation ah(b

i
k, v)

= −ah(ψi
k, v)∀v ∈ Zh. Furthermore,

AP = (ah(ψ
1
n + ψ2

n, ψ
1
m + ψ2

m))mn

and

−AT
P,Ωi

A−1
Ωi
AP,Ωi = (ah(b

i
n, ψ

i
m))mn, i = 1, 2,

where m and n denote the row and column indices, respectively. Since functions
with different superscripts do not share support, we see that we can decompose the
static condensation system matrix into two static condensation component matrices,
ASC = A1

SC + A2
SC, where

Ai
SC = (ah(ψ

i
n + bin, ψ

i
m))mn, i = 1, 2.

Hence, in practice, the assembly of the static condensation system is bottom-up: for
each component, we assemble a local matrix Ai

SC, and we construct the complete
static condensation matrix ASC by appropriate summation of the different component
matrices Ai

SC. The advantage of this approach is that, in many cases, several com-
ponents share the same interface and bubble functions, so the assembly of Ai

SC can
be performed only once for a group of components sharing the same parameters. In
the application presented in section 6.2, this advantage holds in particular for the
numerous thermal fin components.

5.4. Convection treatment. In [12], only elliptic problems are considered. In
the current framework, the convection term introduces additional complexities and
in particular requires special treatment at the assembly stage. In connecting the two
components Ω1 and Ω2, assuming the flow is from left to right, there is an interface
function and associated bubble at the inlet in Ω2 but there is none at the outlet in
Ω1, since we consider pure convection and we do not want an artificial boundary layer
at the outlet in Ω1.

We now describe in more detail the assembly of the two local matrices A1
SC and

A2
SC. We assume that the degrees of freedom on P from 1 to NP − 1 correspond to

the solid domain, and the degree of freedom NP is for the fluid inlet in Ω2. First, we
consider the interface functions: for indices 1 ≤ k ≤ NP − 1, the ψi

k ∈ Xh = Yh × Vh
have support only in the solid domain, and as such their component in Vh is null, and
they belong to Zh = Yh×Wh as well. These “solid” interface functions can then serve
both as trial and test functions. The last interface function ψ2

NP
(fluid inlet degree of

freedom in Ω2) has support only in the fluid domain, and thus belongs to Xh but not
necessarily to Zh. For these reasons, we test only on the “solid” interface functions
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to obtain the local component matrices

A1
SC =

⎡
⎢⎣

ah(ψ
1
1 + b11, ψ

1
1) ah(ψ

1
2 + b12, ψ

1
1) · · · ah(ψ

1
NP−1 + b1NP−1, ψ

1
1)

...
...

...
ah(ψ

1
1 + b11, ψ

1
NP−1) ah(ψ

1
2 + b12, ψ

1
NP−1) · · · ah(ψ

1
NP−1 + b1NP−1, ψ

1
NP−1)

⎤
⎥⎦ ,

A2
SC =

⎡
⎢⎣

ah(ψ
2
1 + b21, ψ

2
1) ah(ψ

2
2 + b22, ψ

2
1) · · · ah(ψ

2
NP

+ b2NP
, ψ2

1)
...

...
...

ah(ψ
2
1 + b21, ψ

2
NP−1) ah(ψ

2
2 + b22, ψ

2
NP−1) · · · ah(ψ

2
NP

+ b2NP
, ψ2

NP−1)

⎤
⎥⎦ .

Note A1
SC is of size NP − 1×NP − 1 and A2

SC is of size NP − 1×NP.
We now need to restore the compatibility of the two matrices, and also enforce

the continuity of the fluid temperature at the port. Let φ1 and ξ1k be the component
of u1 and b1k in Vh; then, from (5.3), and recalling that the “solid” interface functions

are zero in Vh, we obtain φ1 =
∑NP−1

k=1 uk
Pξ

1
k. Denoting Λ the filament coordinate of

the fluid outlet in Ω1, we then have φ1(Λ) =
∑NP−1

k=1 uk
Pξ

1
k(Λ). We thus modify the

component matrices as follows:

A1
SC =

⎡
⎢⎢⎢⎣

ah(ψ
1
1 + b11, ψ

1
1) ah(ψ

1
2 + b12, ψ

1
1) · · · ah(ψ

1
NP−1 + b1NP−1, ψ

1
1) 0

...
...

...
...

ah(ψ
1
1 + b11, ψ

1
NP−1) ah(ψ

1
2 + b12, ψ

1
NP−1) · · · ah(ψ

1
NP−1 + b1NP−1, ψ

1
NP−1) 0

ξ11(Λ) ξ12(Λ) · · · ξ1NP−1(Λ) 0

⎤
⎥⎥⎥⎦ ,

A2
SC =

⎡
⎢⎢⎢⎣

ah(ψ
2
1 + b21, ψ

2
1) · · · ah(ψ

2
NP−1 + b2NP−1, ψ

2
1) ah(ψ

2
NP

+ b2NP
, ψ2

1)
...

...
...

ah(ψ
2
1 + b21, ψ

2
NP−1) · · · ah(ψ

2
NP−1 + b2NP−1, ψ

2
NP−1) ah(ψ

2
NP

+ b2NP
, ψ2

NP−1)
0 · · · 0 −1

⎤
⎥⎥⎥⎦ .

Now both A1
SC and A2

SC are of size NP × NP, and upon summing these matrices to
obtain the complete system matrix ASC, the last row is[

ξ11(Λ) ξ12(Λ) · · · ξ1NP−1(Λ) −1
]
.

Finally, we set the last coefficent in the right-hand side to zero, fNP

SC = 0, which will
force the value of the mixed-mean temperature at the fluid inlet in Ω2 to be equal to
the value of the mixed-mean temperature at the fluid outlet in Ω1.

5.5. A posteriori error.

5.5.1. System port error bound. This section briefly describes a bound for
the error in the system-level approximation ‖uP−ũP‖2. The approach presented in [12]
exploits standard RB a posteriori error estimators at the component level to develop
a bound for the Frobenius norm ‖ASC − ÃSC‖F and then applies matrix perturbation
analysis at the system level to arrive at an m a posteriori bound for ‖uP − ũP‖2.
In the current paper, we require a few variations in the general framework of [12],
particularly related to the error bound for ‖ASC − ÃSC‖F . We will now present these
few changes. We refer the reader interested in technical details to [12] for a complete
description.
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In [12], the bilinear form a is assumed to be symmetric, and by taking advantage
of this property, the component matrices are symmetrized; the terms of Ai

SC are of
the form ah(ψ

i
k + bik, ψ

i
k′ + bik′). In our application here, due to the convection term,

the bilinear form a is nonsymmetric, and instead we retain the terms of Ai
SC in the

form ah(ψ
i
k + b

i
k, ψ

i
k′), as presented in the previous sections. Similarly, the coefficients

of Ãi
SC are of the form ah(ψ

i
k + b̃ik, ψ

i
k′ ), where b̃ik is the kth RB bubble. The error

bound for ‖ASC − ÃSC‖F is thus derived as

(5.4) |ah(ψi
k + bik, ψ

i
k′)− ah(ψ

i
k + b̃ik, ψ

i
k′)| = |ah(bik − b̃ik, ψ

i
k′)| ≤ γ0Δ

i,k
N ‖ψi

k′‖X ,

where Δi,k
N is the standard RB error estimators for the kth bubble. To obtain the

complete error bound for ‖ASC− ÃSC‖F , we also need to address the extra row which
we introduced to connect the fluid channels. We directly obtain

|ξ1k(Λ)− ξ̃1k(Λ)| ≤ ‖b1k − b̃1k‖X ≤ Δ1,k
N ,(5.5)

where Δ1,k
N is the standard RB error estimator for the kth bubble in Ω1; this inequality

is obtained since we included the term φ(Λ)2 in ‖u‖2X (where u = (θ, φ)).
We then sum (5.4) and (5.5) on i, k, and k′ to arrive at a bound, denoted σ2, for

the Frobenius norm ‖ASC − ÃSC‖F . All the terms in this error bound are linear with
respect to the RB error bound. Due to these linear terms, we do not expect an error
bound as sharp as for the symmetric case presented in [12], in which all the terms
are quadratic (thanks to the assumption that a is symmetric). Note that a quadratic
effect can still be obtained for nonsymmetric problems based on a primal-dual RB
formulation [13], but the primal-only approach is computationally more efficient—it
scales with N p instead of (N p)2—and hence, if adequate accuracy is obtained, is in
fact preferred. Our final error bound is of the form

‖uP − ũP‖2 ≤ σ1 + σ2‖ũP‖2
σ̃min − σ2

≡ ΔuP ,

where σ1 is a bound for ‖fSC − f̃SC‖2, σ̃min is the minimum singular value of ÃSC [13],
and ‖ · ‖ refers to the l2 (Euclidean) norm. Of course this bound makes sense only if
σ2 < σ̃min.

5.5.2. System output error bound. We now consider as an output of our
system a quantity defined over the port domain and which can be defined as a linear
functional of the system solution uP. In our case, such outputs can be simply the
value of the solution at a particular point in the fluid domain, or the solution average
over the port in the solid domain. We can write the FE output as s = mTuP, with
m ∈ R

NP , and the corresponding RB output as s̃ = mT ũP. We next introduce the
adjoint z ∈ R

NP solution of

ÃT
SCz = −m.

Recalling that ASCuP = fSC and ÃSCũP = f̃SC, we obtain the matrix perturbation
equation

(5.6) ÃSCδuP = δfSC − δASCũP − δASCδuP,

where δuP = uP− ũP, δfSC = fSC− f̃SC, and δASC = ASC−ÃSC. Multiplication of (5.6)
from the left by mT Ã−1

SC = −zT yields

(5.7) s− s̃ = −zT δfSC + zT δASCũP + zT δASCδuP.
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We now bound each term on the right-hand side of (5.7) to obtain a bound for |s− s̃|.
First, we directly obtain

|zT δASCũP| ≤
∑

i,j over port dof

|zi||δAij
SC|bound|ũ

j
P| ≡ εASC

,

where |δAij
SC|bound refers to the bound on the Schur complement entry RB error given

by (5.4) and (5.5). A similar bound εfSC can be obtained for |zT δfSC| as

|zT δfSC| ≤
∑

i over port dof

|zi||δf iSC|bound ≡ εfSC ;

note that in our particular application, δfSC = fSC = f̃SC = 0. To bound the last term
on the right-hand side of (5.7) we appeal to the system port error bound presented
in the previous section,

|zT δASCδuP| ≤ ‖z‖2σ2ΔuP = εquad,

where we recall that the l2 norm is bounded by the Frobenius norm.
Hence our final output error bound is

Δs = εfSC + εASC
+ εquad;

it follows from our derivation that |s − s̃| ≤ Δs. This output error bound is much
sharper than the simple result, which can be derived from continuity arguments,
‖m‖2ΔuP . First, ΔuP is presumably pessimistic because the Frobenius norm in σ2 is
too strong; in contrast, the εASC

term should be relatively sharp—we miss only sign
cancellation. Second, the factor 1

σ̃min−σ2
in ΔuP does not appear in the terms εfSC , and

εASC
; 1

σ̃min−σ2
in ΔuP can be quite large because σ̃min can be small and furthermore

σ2 can be close to σ̃min. Note that the bound ΔuP is still a factor in εquad, but now
premultiplied by σ2, which mitigates the impact.

The term εquad is hence quadratic in the error bounds since it involves the prod-
uct σ2Δ

uP . As a consequence, it should be negligible compared to εfSC + εASC
for

a sufficiently good RB approximation. We may then consider the following simple
output error indicator (not rigorous):

Δ
s ≡ εfSC + εASC

.

This error indicator is interesting from a computational point of view since by elim-
inating εquad we do not need to compute ΔuP , and hence we avoid computation of

the minimum singular value of ÃSC. For large systems where NP is large (typically
NP > 106), the minimum singular value computation can become prohibitive, es-
pecially in a many-query or real-time context. The error indicator Δ

s
is thus an

interesting alternative to the error bound Δs when considering large systems.

6. Numerical examples. All the results presented in this section were obtained
using rbOOmit [16] and libMesh [15].

6.1. Model problem (1D). We first consider a 1D version of our problem for
which we can find a closed-form solution, and which thus permits us to compare our
method to a ground truth. To this end, we set the solid domain to be 1D: Ω = [0,Λ].
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In this case, we can reduce our problem (2.1) to a system of ODEs (see Appendix A)
where both θ and φ are defined on [0,Λ]:

(6.1)

{
−θ′′ +Biextθ +Biint(θ − φ) = f,

Fφ′ − Biint(θ − φ) = 0.

We impose the following boundary conditions: θ′(0) = 0, θ′(Λ) = 0, and φ(0) = 0.

For the values Biext = 1,Biint =
6
5 ,F = 1, f = 1 (we do not require F ≥ 2 in the

1D case), a particular solution of the system (6.1) (without imposition of boundary
conditions) is θ = 1, φ = 1; the set of solutions to the homogeneous system is

⎧⎨
⎩ θ(x) = 2Ae−2x + 45Be

2+
√

19
5 x + 45Ce

2−√
19

5 x,

φ(x) = −3Ae−2x + (48− 6
√
19)Be

2+
√

19
5 x + (48 + 6

√
19)Ce

2−√
19

5 x,
A,B,C ∈ R.

The values for A,B,C are then chosen such that the solution satisfies the boundary
conditions. We show in Figure 3 the graphs of θ and φ for Λ = 4.

We now solve the same problem numerically for a system of four components,
each of unity length. We show in Figure 4a the error in the H1 norm between the FE
static condensation and the analytical solution. We observe that the error is O(h), as
predicted by our a priori error estimate. We now consider RB bubble approximations:
we consider (Biext,F) ∈ [0.33, 3]2 as the parameters of the system of ODEs (6.1), and
we construct RB spaces using the standard Greedy algorithm [20] for N ≤ Nmax ≡ 15
modes (these RB approximations are built on a “truth” FE approximation with a
uniform mesh of size h = 0.002). We consider for the output the fluid temperature at
the outlet, corresponding to s = φ(4). The output error |s− s̃| between the FE static
condensation and the RB static condensation is shown in Figure 4b; we also indicate
the primal output error bound (‖m‖2ΔuP), the dual output error bound (Δs), and
the dual output error indicator (Δ

s
), all presented in section 5.5. The effectivity is

about 103 for the primal error bound, and 102 for the dual error bound; the latter
thus provides about one order of magnitude improvement. We also observe that Δ

s

converges very rapidly to Δs, which confirms our assumption that the term εquad
becomes negligible for a sufficiently good RB approximation.

Fig. 3. Graphs of θ (left) and φ (right) for the simple test case on [0, 4]. Boundary conditions
are homogeneous Neumann for θ and φ(0) = 0.
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Fig. 4. (a) Static condensation FE error with respect to the analytical solution: blue, error in
H1([0,Λ]) of θ; green, error in H1([0,Λ]) of φ; the dashed line indicates a slope of unity. (b) scRBE
error with respect to static condensation FE.

fluid

solid

(a) Single channel + thermal fin. (b) Square angle.

F (1− α)FαF

(c) Channel splitting.

(1− α)F FαF

(d) Channel mixing.

Fig. 5. The component library. Components can be connected at the ports shown in red.

6.2. Simple automotive radiator. We now consider the library of components
shown in Figure 5. All these components are based on the various models presented
in the previous sections. We can now assemble many such components to model an
automotive radiator as shown in Figure 6.

We need to consider parameter values that make sense for a radiator. First,
we consider the parameter F and we assume the following values for purposes of
estimation: the flow rate of coolant through the radiator can vary greatly, from 1
liter/min for economical cars to more than 100 liter/min for sport cars (1 kg/min ≤
ρvA ≤ 100 kg/min for water); the flow is divided equally among 30 coolant tubes; a
coolant duct has a rectangular section of 1 mm× 10 mm (P = 22 mm, A = 10 mm2),
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outlet to engine

inlet from engine

coolant tubes

air fins

Fig. 6. Automotive radiator.

and is modeled as a 2D channel of hydraulic diameterD = 4A
P = 1.82 mm; the radiator

is made of aluminium (k = 250W/(m.K)); the coolant is water (c = 4.2kJ/(kg.K),
kf = 0.6W/(m.K) at 100oC). Since F = ρcvA

Pk , we obtain that 0.4 ≤ F ≤ 40 in the
coolant tubes. In the following numerical results, we limit the range of the parameter
F to [2, 40]. It is important to note that for this range of F , we obtain a Reynolds
number Re = ρvD

μ ∈ [1700, 34000], which justifies our model preference for a turbulent
flow.

We then consider Biint. For turbulent flow, from the Gnielinski correlation, we
obtain a Nusselt number in the range 10 ≤ Nu ≤ 150. Since Nu = hintD

kf
, where D

is the diameter of the channel and kf is the heat conductivity of the fluid, we obtain

Biint = NuW
D

kf

k . Assuming that W
D � 1, it follows that 0.025 ≤ Biint ≤ 0.4.

Finally, for parameter Biext corresponding to the Biot number of the aluminium-
air heat exchange, we assume the following values: the air flow velocity along the
radiator fins varies from 10 m/s to 30 m/s, the distance between two fins is 10 mm,
and the length of a fin from tube to tube is 20 mm, which corresponds to a hydraulic
diameter of 13 mm for the duct created by two parallel fins. For these values and
air properties at 20oC, the Gnielinski correlation gives a Nusselt number in the range
[25, 60]. This corresponds to the range [2 × 10−4, 5 × 10−4] for Biext. Since in our
examples we consider small radiators with far fewer fins than actual radiators, we will
consider higher values of Biext, in the range [0.01, 0.1], so that we can obtain a more
significant heat exchange.

In all of the following, the RB is trained on the previously defined range of pa-
rameters, except Biint is fixed in all cases to 0.1. The online computations can thus be
performed for any parameters [F ,Biext,Biint] ∈ D with D = [2, 40]×[0.01, 0.1]×{0.1}.
For mixing and splitting components we consider the additional parameter α in the
domain [0.1, 0.9]. We use RB spaces of maximum dimension Nmax = 30.

We will now consider a set of examples for a radiator with five coolant tubes and
five fins per tube (35 components), as shown in Figure 7a. As a boundary condition,
we will always set the (nondimensional) fluid bulk temperature at the inlet equal to
1. As the output of interest, s, we will consider the fluid exit temperature at the
radiator outlet. We will consider different scenarios by varying the parameters F and
Biext to demonstrate the design flexibility of our approach, as well as the accuracy
of the error bound for the output. Note that in practice the flow distribution in the
coolant tubes would be determined from some simple “head loss” hydraulic model,
but here we directly specify the flow rates in the different channels: we conserve mass
and invoke symmetry or homogeneity as appropriate.

For the first scenario, we choose Biext = 0.02 and Biint = 0.1 throughout the
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(b) fluid in the inlet channel
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(c) fluid in the coolant tubes

0 2 4 6 8 10 12 14
outlet abscissa

0.915

0.920

0.925

0.930

0.935

0.940

0.945

fl
u
id

 b
u
lk

 t
e
m

p
e
ra

tu
re

(d) fluid in the outlet channel

Fig. 7. Temperature field in the system: Biext = 0.02 and Biint = 0.1; F = 15 at the inlet,
F = 3 in each coolant tube. The red error bar corresponds to the error bound Δs for the fluid
temperature at the exit of the heat exchanger. The jumps in temperature in the outlet channel are
due to mixing components.

whole system. The flow rate at the entrance is F = 15, and then splits so that it is
equal to 3 in each tube. The temperature in the solid domain is shown in Figure 7a.
In the inlet channel (Figure 7b), the fluid bulk temperature decreases more rapidly
after each channel splitting, because the flow rate in the inlet channel diminishes after
each splitting. In the coolant tubes (Figure 7c), the fluid bulk temperature decreases
at the same rate for all tubes, because the parameters Biext and Biint are the same
everywhere, and hence the overall heat transfer coefficient is the same for all tubes. In
the outlet channel (Figure 7d), the fluid bulk temperature jumps after each channel
mixing, which is expected due to our mixing model described in section 4.1. Finally,
at the exit, the fluid bulk temperature is 0.918. The absolute error |s− s̃| of the fluid
exit temperature is 1.3× 10−6, and the error bound Δs is 1.6× 10−3: RB prediction
for the fluid temperature at the exit is certified to incur an error of at most 0.17%
with respect to the FE prediction.

It is important to note the improvement obtained with the new output dual error
bound Δs. Indeed, the primal port error bound at the exit ‖m‖ΔuP is 0.19, corre-
sponding to an effectivity of 105. (Comparatively, the primal error bounds reported
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in [12] have effectivities of 102. This very large difference in effectivities is anticipated
in section 5.5.1 and is due to the linear versus quadratic effect in the RB bubble error
bounds.) But thanks to the new output dual error bound, Δs, a better effectivity
(103 here) and a useful error bound can be recovered. Also, the dual error indica-
tor Δ

s
in this case is 1.2 × 10−3, which is different from, but still rather close to,

Δs = 1.6× 10−3.

As a second scenario, we consider the fact that, in actual practice, it is unlikely
that all coolant tubes will have the same flow rate, especially if some tubes are ob-
structed, corroded, or bent. We retain Biext = 0.02 and Biint = 0.1 throughout the
whole system, but we now modify the flow rates in the coolant tubes: the flow rate
at the entrance is still F = 15, but it then splits as F = 5 in the first coolant tube,
F = 4 in the second, and F = 2 in all other coolant channels. As a consequence, we
can see in Figure 8b that the fluid bulk temperature decreases more in coolant tubes
with the lowest flow rate. However, after the mixing of all coolant tubes, the exit
temperature is almost the same as in the first scenario (0.919). The flow distribution
in the coolant tubes does not have a significant effect on the exit temperature here.
Due to the fact that we use the same RB spaces, the output error and output error
bound are almost exactly the same as for the first scenario.
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(a) constant parameters
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(b) variable flow
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(c) variable heat transfer coefficient
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(d) random heat transfer coefficient

Fig. 8. Fluid bulk temperature in the channels for different scenarios. Note all figures refer to
the radiator configuration of Figure 7a.
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Fig. 9. Temperature field: expanded view of a fin in the solid domain.

For the third scenario, we consider the common situation in which the fins are
dirty with mud or insects and the heat transfer coefficient is correspondingly com-
promised. Thus in this example we take Biext = 0.02 and Biint = 0.1 throughout the
whole system except for the three middle “dirty” coolant channels for which we choose
a smaller value, Biext = 0.01. The flow rate at the entrance is F = 15, and then splits
so that it is equal to 3 in each tube. We can see in Figure 8c that the fluid bulk tem-
perature decreases less in the three middle coolant tubes due to a smaller overall heat
transfer coefficient. This time the outlet temperature is significantly higher (0.938),
confirming that the heat exchanger does not perform as well as in the previous cases.

For the fourth and last scenario, we illustrate the many-parameter and heteroge-
neous capabilities of our method. We take Biint = 0.1 throughout the whole system,
but we select random values of Biext for each component independently, in the range
[0.01, 0.1]. The flow rate at the entrance is F = 15, and then splits so that it is equal
to 3 in each tube. In Figure 8d we observe that the temperature in the coolant tubes
decreases at a variable rate due to the variability of the heat transfer coefficient.

Finally, we show in Figure 9 an expended view of the temperature distribution
in the base of a fin for the first scenario (the case depicted in Figure 7a). We can
see the restriction effect near the base of the fin where the temperature field is 2D,
followed by the low-Biot largely 1D temperature distribution within the fin itself. This
visualization emphasizes why our detailed 2D PDE model in the solid is important.

We conclude with a much larger system, now with 20 coolant channels and 20
fins per channel (440 components in total), in order to illustrate the computational
savings of the scRBE method. The parameters Biext and Biint are chosen to be 0.02
and 0.1, respectively, throughout the whole system. The flow rate at the entrance is
F = 40, and then splits so that it is equal to 2 in each tube. The outlet temperature
is 0.679 and the error bound Δs is 5.5 × 10−3, which corresponds to an error of at
most 0.8% between the RB and FE exit temperature. The quality of the error bound
decreases compared to the previous examples, as expected since we are summing the
RB bubble error bounds over many more components (440 instead of 35).

The computational timings are the following: the assembly of the FE static con-
densation system requires 12 minutes whereas the assembly of the RB static condensa-
tion system takes 1.1 seconds, corresponding to a speedup factor of 500. The resulting
static condensation system is of dimension NP = 8500 and is solved in 0.05 seconds; it
is important to mention that although the Schur complement matrix has dense blocks
between coupled ports, globally there is much sparsity, which can be taken advantage
of when solving the static condensation system. We can also compare the scRBE cost
to an FE solution with all degrees of freedom (before condensation): in this case, the
number of system degrees of freedom is 3× 105. To estimate the cost of the system
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Fig. 10. Exit temperature with respect to Biext for a system with 20 coolant channels and 20
fins per channel. The error bounds (Δs) are shown as red error bars.

FE approach, we solve a 2D Laplacian on a square with 3 × 105 FE degrees of free-
dom: the assembly time is 1.5 seconds, and the solution time is 4 minutes. Hence,
compared to the system FE approach, the scRBE speed up is a factor of 210. We now
turn to the error bound. The predominant cost is the computation of the minimal
singular value σ̃min—about 10 seconds. We thus see the computational advantage
of the error indicator Δ

s
, which only requires the solution of an adjoint problem of

the same size as the primal problem—hence 0.05 seconds. In this example we obtain
Δ

s
= 3.4× 10−3, quite close to Δs = 5.5× 10−3.
It should be noted that other computational savings can be obtained. First, in

the previous timings we did not take advantage of repeated subdomains which share
the same parameters, such as the 400 fin components in the present example. It is
possible to perform the RB evaluation only once for all these fin components, and in
this case the RB static condensation assembly time drops to less than 0.01 s. Second,
we can truncate the Laplacian eigenmode expansion for the degrees of freedom at the
ports in order to reduce NP—often without any significant loss in accuracy of the
method. These computational aspects are discussed in detail in [12, 5].

Finally, we show in Figure 10 the outlet temperature (in our large system of 20
channels) as the parameter Biext is varied from 0.01 to 0.1 (for all components of
the system). This result demonstrates the design potential of the scRBE and the
certification afforded by the error bounds.

Appendix. 1D problem. If Ω is a rectangular domain, and we take the limit as
W → 0 (the width of the solid domain), then Biext → 0, Biint → 0, and the solution
of (2.1) and (2.2) becomes independent of the y coordinate in the solid. In fact, as
W → 0, the PDE (2.1) tends to the following ODEs in which both θ and φ are defined
on [0,Λ]:

(A.1)

{
−θ′′ +Biextθ +Biint(θ − φ) = f,

Fφ′ − Biint(θ − φ) = 0.

We can hence consider (A.1) as the 1D version of our original 2D problem (2.1).
Since this 1D limit is valid as Bi tends to zero, we should then take Λ large in order
to observe any appreciable temperature decay; however, for the purpose of our simple
numerical test in section 6.1, we consider order unity Bi and Λ. We will summarize
in this appendix the few differences between the 1D problem and the 2D problem.
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We denote I = [0,Λ]. The trial space is X = H1
0 (I) × V , where V = {φ ∈

H1(I)|φ(0) = 0}, and the test space is Z = H1
0 (I) × L2(I). The weak form reads as

follows: find u ∈ X such that a(u, v) = f(v)∀v ∈ Z, where

a(w, v)

=

∫
I

dθ

dx

dϑ

dx
+Biext

∫
I

θϑ+Biint

∫
I

(θ − φ)ϑ− Biint

∫
I

(θ − φ)ϕ + F
∫
I

dφ

dx
ϕ.(A.2)

Looking at stability, we obtain

a(w,w∗) ≥
∫
I

(
dθ

dx

)2

+

(
Biext −

1

2
τ
Bi2int
F

)∫
I

θ2

+
1

2
τF

∫
I

(
dφ

dx

)2

+
1

2
(F + τBiint)φ

2(Λ)

≥ K(τ)‖w‖2X(A.3)

for τ small enough. We can take

(A.4) Biext −
1

2
τ
Bi2int
F = 0 ⇐⇒ τ =

2BiextF
Bi2int

so that the second term in the right-hand side of (A.3) vanishes: a(·, ·) is then inf-sup
stable from the same arguments provided in the 2D case. The form a(·, ·) is also
continuous. The methodology for FE and RB approximations then proceeds as in the
2D case.
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