
MIT Open Access Articles

Adaptive Construction of Surrogates for 
the Bayesian Solution of Inverse Problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Li, Jinglai, and Youssef M. Marzouk. “Adaptive Construction of Surrogates for the 
Bayesian Solution of Inverse Problems.” SIAM Journal on Scientific Computing 36, no. 3 (January 
2014): A1163–A1186. © 2014, Society for Industrial and Applied Mathematics

As Published: http://dx.doi.org/10.1137/130938189

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: http://hdl.handle.net/1721.1/89467

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/89467


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. A1163–A1186

ADAPTIVE CONSTRUCTION OF SURROGATES FOR THE
BAYESIAN SOLUTION OF INVERSE PROBLEMS∗

JINGLAI LI† AND YOUSSEF M. MARZOUK‡

Abstract. The Bayesian approach to inverse problems typically relies on posterior sampling
approaches, such as Markov chain Monte Carlo, for which the generation of each sample requires one
or more evaluations of the parameter-to-observable map or forward model. When these evaluations
are computationally intensive, approximations of the forward model are essential to accelerating
sample-based inference. Yet the construction of globally accurate approximations for nonlinear for-
ward models can be computationally prohibitive and in fact unnecessary, as the posterior distribution
typically concentrates on a small fraction of the support of the prior distribution. We present a new
approach that uses stochastic optimization to construct polynomial approximations over a sequence
of distributions adaptively determined from the data, eventually concentrating on the posterior distri-
bution. The approach yields substantial gains in efficiency and accuracy over prior-based surrogates,
as demonstrated via application to inverse problems in partial differential equations.

Key words. Bayesian inference, cross-entropy method, importance sampling, inverse problem,
Kullback–Leibler divergence, Markov chain Monte Carlo, polynomial chaos
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1. Introduction. In many science and engineering problems, parameters of in-
terest cannot be observed directly; instead, they must be estimated from indirect
observations. In these situations, one can usually appeal to a forward model mapping
the parameters of interest to some quantities that can be measured. The correspond-
ing inverse problem then involves inferring the unknown parameters from a set of
observations [15].

Inverse problems arise in a host of applications, ranging from the geosciences
[43, 33, 28, 13] to chemical kinetics [34] and far beyond. In these applications, data
are inevitably noisy and often limited in number. The Bayesian approach to in-
verse problems [22, 42, 43, 47] provides a foundation for inference from noisy and
incomplete data, a natural mechanism for incorporating physical constraints and het-
erogeneous sources of information, and a quantitative assessment of uncertainty in
the inverse solution. Indeed, the Bayesian approach casts the inverse solution as a
posterior probability distribution over the model parameters or inputs. Though con-
ceptually straightforward, this setting presents challenges in practice. The posterior
distributions are typically not of analytical form or from a standard parametric fam-
ily; characterizing them exactly requires sampling approaches such as Markov chain
Monte Carlo (MCMC) [7, 10, 44, 8]. These methods entail repeated solutions of the
forward model. When the forward model is computationally intensive, e.g., specified
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A1164 JINGLAI LI AND YOUSSEF M. MARZOUK

by partial differential equations, a direct approach to Bayesian inference becomes
computationally prohibitive.

One way to accelerate inference is to construct computationally inexpensive ap-
proximations of the forward model and to use these approximations as surrogates in
the sampling procedure. Many approximation methods have been successfully em-
ployed in this context, ranging from projection-based model reduction [48, 35, 17]
to Gaussian process regression [49, 24] to parametric regression [4]. Our previous
work [29, 30, 31] developed surrogate models by using stochastic spectral methods
[18, 51] to propagate prior uncertainty from the inversion parameters to the forward
model outputs. The result is a forward model approximation that converges in the
prior-weighted L2 sense. Theoretical analysis shows that if the forward model approx-
imation converges at certain rate in this prior-weighted norm, then (under certain
assumptions) the posterior distribution generated by the approximation converges to
the true posterior at the same rate [42, 31, 1]. Constructing a sufficiently accurate
surrogate model over the support of the prior distribution, however, may not be pos-
sible in many practical problems. When the dimension of the parameters is large
and the forward model is highly nonlinear, constructing such a “globally accurate”
surrogate can in fact be a formidable task.

The inverse problem fortunately has more structure than the prior-based uncer-
tainty propagation problem. Since the posterior distribution reflects some information
gain relative to the prior distribution, it often concentrates on a much smaller portion
of the parameter space. In this paper, we will propose that (i) it can therefore be more
efficient to construct a surrogate that maintains high accuracy only in the regions of
appreciable posterior measure, and (ii) this “localized” surrogate can enable accurate
posterior sampling and accurate computation of posterior expectations.

A natural question to ask, then, is how to build a surrogate in the important
region of the posterior distribution before actually characterizing the posterior? In-
spired by the cross-entropy method [14, 40] for rare event simulation, we propose an
adaptive algorithm to find a distribution that is “close” to the posterior in the sense
of Kullback–Leibler (K-L) divergence and to build a local surrogate with respect to
this approximating distribution. Candidate distributions are chosen from a simple
parameterized family, and the algorithm minimizes the K-L divergence of the can-
didate distribution from the posterior using a sequence of intermediate steps, where
the optimization in each step is accelerated through the use of locally constructed
surrogates. The final surrogate is then used in a posterior sampling procedure such as
MCMC. We demonstrate with numerical examples that the total computational cost
of our method is much lower than the cost of building a globally accurate surrogate of
comparable or even lower accuracy. Moreover, we show that the final approximating
distribution can provide an excellent proposal for MCMC sampling, in some cases
exceeding the performance of adaptive random-walk samplers. This aspect of our
methodology has links to previous work in adaptive independence samplers [23].

The remainder of this article is organized as follows. In section 2 we briefly
review the Bayesian formulation of inverse problems and previous work using polyno-
mial chaos (PC) surrogates to accelerate inference. In section 3, we present our new
adaptive method for the construction of local surrogates, with a detailed discussion of
the algorithm and an analysis of its convergence properties. Section 4 provides sev-
eral numerical demonstrations, and section 5 concludes with further discussion and
suggestions for future work.

2. Bayesian inference and PC surrogates. Let y ∈ R
ny be the vector of

parameters of interest and d ∈ R
nd be a vector of observed data. In the Bayesian
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ADAPTIVE CONSTRUCTION OF SURROGATES A1165

formulation, prior information about y is encoded in the prior probability density
π(y) and related to the posterior probability density π(y|d) through Bayes’ rule:

(2.1) π(y|d) = π(d|y)π(y)∫
π(d|y)π(y)dy ,

where π(d|y) is the likelihood function. (In what follows, we will restrict our attention
to finite-dimensional parameters y and assume that all random variables have densities
with respect to Lebesgue measure.) The likelihood function incorporates both the data
and the forward model. In the context of an inverse problem, the likelihood usually
results from some combination of a deterministic forward model G : Rny → R

nd and a
statistical model for the measurement noise and model error. For example, assuming
additive measurement noise ε, we have

(2.2) d = G(y) + ε .

In this work we consider only the case where the distribution of ε is completely
prescribed (i.e., with no unknown hyperparameters). If the probability density of ε is
given by πε(ε), then the likelihood function becomes

(2.3) π(d|y) = πε(d−G(y)).

For conciseness, we define π∗(y) := π(y|d) and L(G) := πε(d−G) and rewrite Bayes’
rule (2.1) as

(2.4) π∗(y) =
L(G(y))π(y)

I
,

where

(2.5) I :=

∫
L(G(y))π(y)dy

is the posterior normalizing constant or evidence. In practice, no closed form analyt-
ical expression for π∗(y) exists, and any posterior moments or expectations must be
estimated via sampling methods such as MCMC, which require many evaluations of
the forward model.

If the forward model has a smooth dependence on its input parameters y, then
using stochastic spectral methods to accelerate this computation is relatively straight-
forward. As described in [29, 30, 31, 16], the essential idea behind existing methods is
to construct a stochastic forward problem whose solution approximates the determin-
istic forward model G(y) over the support of the prior π(y). More precisely, we seek

a polynomial approximation G̃N (y) that converges to G(y) in the prior-weighted L2

norm. Informally, this procedure “propagates” prior uncertainty through the forward
model and yields a computationally inexpensive surrogate that can replace G(y) in,
e.g., MCMC simulations.

For simplicity, we assume prior independence of the input parameters, namely,

π(y) =

ny∏
j=1

πj(yj) .

(This assumption can be loosened when necessary; see, for example, discussions in
[3, 41].) Since G(y) is multidimensional, we construct a PC expansion for each com-
ponent of the model output. Suppose that g(y) is a component of G(y); then its Nth
order PC expansion is [30, 50]
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A1166 JINGLAI LI AND YOUSSEF M. MARZOUK

gN (y) =
∑
|i|≤N

aiΨi(y),(2.6)

where i :=
(
i1, i2, . . . , iny

)
is a multi-index with |i| := i1 + i2 + · · · + iny , ai are the

expansion coefficients, and Ψi are orthogonal polynomial basis functions, defined as

Ψi(y) =

ny∏
j=1

ψij (yj) .(2.7)

Here ψij (yj) is the univariate polynomial of degree ij , from a system satisfying or-
thogonality with respect to πj :

Ej [ψiψi′ ] =

∫
ψi (yj)ψi′ (yj)πj (yj) dyj = δi,i′ ,(2.8)

where we assume that the polynomials have been properly normalized. It follows that
Ψi(y) are ny-variate orthonormal polynomials satisfying

E [Ψi(y)Ψi′(y)] =

∫
Ψi (y) Ψi′ (y) π(y) dy = δi,i′ ,(2.9)

where δi,i′ =
∏ny

j=1 δij ,i′j .

Because of the orthogonality condition (2.8), the distribution over which we are
constructing the polynomial approximation—namely, each prior distribution πj(yj)—
determines the polynomial type. For example, Hermite polynomials are associated
with the Gaussian distribution, Jacobi polynomials with the beta distribution, and
Laguerre polynomials with the gamma distribution. For a detailed discussion of these
correspondences and their resulting computational efficiencies, see [52]. For PC ex-
pansions corresponding to nonstandard distributions, see [46, 2]. Note also that in
the equations above, we have restricted our attention to total-order polynomial ex-
pansions, i.e., |i| ≤ N . This choice is merely for simplicity of exposition; in practice,
one may choose any admissible multi-index set J � i to define the PC expansion in
(2.6).

The key computational task in constructing these polynomial approximations is
the evaluation of the expansion coefficients ai. Broadly speaking, there are two classes
of methods for doing this: intrusive (e.g., stochastic Galerkin) and nonintrusive (e.g.,
interpolation or pseudospectral approximation). In this paper, we will follow [31] and
use a nonintrusive method to compute the coefficients. The main advantage of a non-
intrusive approach is that it only requires a finite number of deterministic simulations
of the forward model, rather than a reformulation of the underlying equations. Using
the orthogonality relation (2.9), the expansion coefficients are given by

(2.10) ai = E[g(y)Ψi(y) ],

and thus ai can be estimated by numerical quadrature

(2.11) ãi =

J∑
j=1

g(y(j))Ψi(y
(j))w(j),

where y(j) are a set of quadrature nodes and w(j) are the associated weights for
j = 1, . . . , J . Tensor product quadrature rules are a natural choice, but for ny ≥ 2,
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ADAPTIVE CONSTRUCTION OF SURROGATES A1167

using sparse quadrature rules to select the model evaluation points can be vastly more
efficient. Care must be taken to avoid significant aliasing errors when using sparse
quadrature directly in (2.11), however. Indeed, it is advantageous to recast the ap-
proximation as a Smolyak sum of constituent full-tensor polynomial approximations,
each associated with a tensor-product quadrature rule that is appropriate to its poly-
nomials [12]. This type of approximation may be constructed adaptively, thus taking
advantage of weak coupling and anisotropy in the dependence of G on y. More details
can be found in [11].

3. Adaptive surrogate construction. The PC surrogates described in the
previous section are constructed to ensure accuracy with respect to the prior; that is,
they converge to the true forward model G(y) in the L2

π sense, where π is the prior
density on y. In many inference problems, however, the posterior is concentrated in
a very small portion of the entire prior support. In this situation, it can be much
more efficient to build surrogates only over the important region of the posterior.
(Consider, for example, a forward model output that varies nonlinearly with y over
the support of the prior. Focusing onto a much smaller range of y reduces the degree
of nonlinearity; in the extreme case, if the posterior is sufficiently concentrated and
the model output is continuous, then even a linear surrogate could be sufficient.) In
this section we present a general method for constructing posterior-focused surrogates.

3.1. Minimizing cross entropy. The main idea of our method is to build a
PC surrogate over a probability distribution that is “close” to the posterior in the
sense of K-L divergence. Specifically, we seek a distribution with density p(y) that
minimizes the K-L divergence from π∗(y) to p:1

(3.1)

DKL(π
∗‖ p) =

∫
π∗(y) ln

π∗(y)
p(y)

dy =

∫
π∗(y) ln π∗(y) dy −

∫
π∗(y) ln p(y) dy .

Interestingly, one can minimize (3.1) without exact knowledge of the posterior distri-
bution π∗(y). Since the first integral on the right-hand side of (3.1) is independent
of p, minimizing DKL(π

∗‖ p) is equivalent to maximizing∫
π∗(y) ln p(y) dy =

∫
L(G(y))π(y)

I
ln p(y) dy .

Moreover, since I is a constant (for fixed data), one simply needs to maximize∫
L(G(y)) ln p(y)π(y) dy.

In practice, one selects the candidate distributions p from a parameterized family
PV = {p(y;v)}v∈V , where v is a vector of parameters (called “reference parameters”
in the cross-entropy method for rare event simulation) and V is the corresponding pa-
rameter space. Thus the desired distribution can be found by solving the optimization
problem

(3.2) max
v∈V

D(v) = max
v∈V

∫
L(G(y)) ln p(y;v)π(y) dy .

1Note that the K-L divergence is not symmetric; DKL(π
∗‖ p) �= DKL(p‖π∗). Minimizing the

K-L divergence from π∗ to p as in (3.1) tends to yield a p that is broader than π∗, while minimizing
K-L divergence in the opposite direction can lead to a more compact approximating distribution,
for instance, one that concentrates on a single mode of π∗ [27, 45]. The former behavior is far more
desirable in the present context, as we seek a surrogate that encompasses the entire posterior.
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A1168 JINGLAI LI AND YOUSSEF M. MARZOUK

3.2. Adaptive algorithm. In this section, we propose an adaptive algorithm
to solve the optimization problem above. The algorithm has three main ingredients:
sequential importance sampling, a tempering procedure, and localized surrogate mod-
els. In particular, we construct a sequence of intermediate optimization problems that
converge to the original one in (3.2), guided by a tempering parameter. In each inter-
mediate problem, we evaluate the objective using importance sampling and we build a
local surrogate to replace expensive evaluations of the likelihood function. Note that
the tempering procedure is used to improve the computational efficiency the case
where the posterior is concentrated in a very small region. In this case, unless one
starts with a distribution that is close to the posterior, the likelihood function values
of most samples (if not all) are practically zero and as a result one cannot have a good
estimate of D. More precisely, though the estimate of D will remain unbiased, it will
have very large variance. Tempering is used to artificially “widen” the posterior so
that D can be estimated more accurately.

We begin by recalling the essentials of importance sampling [39]. Importance
sampling simulates from a biasing distribution that may be different from the original
distribution or the true distribution of interest, but corrects for this mismatch by
weighing the samples with an appropriate ratio of densities. By focusing samples on
regions where an integrand is large, for example, importance sampling can reduce the
variance of a Monte Carlo estimator of an integral [25]. In the context of (3.2), a näıve
Monte Carlo estimator might sample from the prior π, but this estimator will typically
have extremely high variance: when the likelihood function is large only on a small
fraction of the prior samples, most of the terms in the resulting Monte Carlo sum will
be near zero. Instead, we sample from a biasing distribution q(y) and thus rewriteD as

(3.3a) D(v) =

∫
L(G(y)) ln p(y;v)

π(y)

q(y)
q(y) dy

and obtain an unbiased importance sampling estimator of D:

(3.3b) D̂(v) :=
1

M

M∑
m=1

L
(
G(y(m))

)
l(y(m)) ln p(y(m);v),

where l(y) := π(y)/q(y) is the density ratio or weight function and the samples {y(m)}
in (3.3b) are drawn independently from q(y).

Next we introduce a tempering parameter λ, putting

L(y;λ) := [L(y)]
1
λ ,

and defining π∗(y;λ) as the posterior density associated with the tempered likelihood
L(y;λ). Here L(y;λ) and π∗(y;λ) revert to the original likelihood function and
posterior density, respectively, for λ = 1. The algorithm detailed below will ensure
that λ = 1 is reached within a finite number of steps.

The essential idea of the algorithm is to construct a sequence of biasing distribu-
tions (p(y;vk)), where each p is drawn from the parameterized family P . Each biasing
distribution has two roles: first, to promote variance reduction via importance sam-
pling, and second, to serve as the input distribution for constructing a local surrogate
model G̃k(y). The final biasing distribution, found by solving the optimization prob-
lem when λ = 1, is the sought-after “best approximation” to the posterior described
above.

Steps of the algorithm are detailed in Algorithm 1. The basic idea behind the
iterations is the following: since p(y;vk), the biasing distribution obtained at step k,
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ADAPTIVE CONSTRUCTION OF SURROGATES A1169

Algorithm 1. Adaptive algorithm.

1: Input: probability fraction ρ ∈ (0, 1), likelihood function level γ > 0, minimum
step size δ > 0; initial biasing distribution parameters v0, importance
sampling sample size M , surrogate polynomial degree/truncation N

2: Initialize: k = 0, λ0 =∞
3: while λk > 1 do
4: Construct G̃k(y), the approximation of Gk(y) with respect to p(y;vk)

5: Draw M samples {y(1), . . . , y(M)} according to p(y;vk).

6: Compute λk+1 such that the largest 100ρ% percent of the resulting likelihood

function values {L(G̃k(y
(m);λk+1))}Mm=1 are larger than γ.

7: if λk+1 > λk − δ then
8: λk+1 ← λk − δ
9: end if

10: if λk+1 < 1 then
11: λk+1 ← 1
12: end if

13: Solve the optimization problem:

vk+1 = argmax
v∈V

D̂k+1(v)

= argmax
v∈V

1

M

M∑
n=1

L(G̃k(y
(m));λk+1) ln p(y

(m);v) lk(y
(m)),

where lk(y) := π(y)/p(y;vk).

14: k ← k + 1
15: end while

is close to π∗(y;λk), then in the next step, if one can choose λk+1 such that π∗(y;vk)
and π∗(y;vk+1) are close, the forward model surrogate and the importance sampling
estimator based on p(y;vk) should be effective for the optimization problem at step
k+1. Detailed discussions on implementation issues in the cross-entropy method can
be found in [14, 40]. A more formal discussion of the convergence properties of the
algorithm is given in section 3.3. Note that for reasons of computational efficiency,
we want the distributions over which we construct the surrogates to remain relatively
localized. Thus a good choice for v0 would keep the variance of p(y;v0) relatively
small and perhaps center it at the prior mean. The value of λ will automatically
adjust to the choice of initial biasing distribution.

An important part of the algorithm is the choice of a parameterized family of
distributions PV . The distributions should be flexible yet easy to sample and be
straightforward to use as an input distribution for the construction of polynomial
surrogates. To this end, multivariate normal distributions are a convenient choice.
Not only do they suggest the use of the well-studied Gauss-Hermite PC expansion for
the forward model, but they also make it possible to solve the optimization problem
in step 13 of Algorithm 1 analytically. For example, let p(y;v) be an uncorrelated
multivariate Gaussian:

(3.4) p(y;v) =

ny∏
j=1

pj(yj) , pj(yj) =
1√
2πσj

exp

(
− (yj − μj)

2

2σ2
j

)
,
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A1170 JINGLAI LI AND YOUSSEF M. MARZOUK

where the reference parameters are now v = (μ1, . . . , μny , σ1, . . . , σny ). Assuming

that D̂ in step 13 of Algorithm 1 is concave and differentiable with respect to v, we
obtain the solution to maxv D̂ by solving

(3.5) ∇vD̂ = 0 .

Substituting (3.4) into (3.5) yields

∂D̂

∂μj
=

1

M

M∑
m=1

L(G̃k(y
(m))) lk(y

(m)) (2y
(m)
j − 2μj) = 0 ,(3.6a)

∂D̂

∂σj
=

1

M

M∑
m=1

L(G̃k(y
(m))) lk(y

(m))

(
(y

(m)
j − μj)

2

σ3
j

− 1

σj

)
= 0(3.6b)

for j = 1 . . . ny, the solution of which can readily be found as

μj =

∑M
m=1 L(G̃k(y

(m)))lk(y
(m))y

(m)
j∑M

m=1 L(G̃k(y(m)))lk(y(m))
,(3.7a)

σj =

√√√√∑M
m=1 L(G̃k(y(m)))lk(y(m))(y

(m)
j − μj)2∑M

m=1L(G̃k(y(m)))lk(y(m))
.(3.7b)

We emphasize that our method does not require any specific type of biasing distribu-
tion and that one can freely choose the family PV that is believed to contain the best
approximations of the posterior distribution.

3.3. Convergence analysis. By design, the tempering parameter λ in Algo-
rithm 1 reaches 1 in a finite number of steps, and as a result the algorithm converges
to the solution of the original optimization problem. Thus we only need to analyze
the convergence of each step. Without causing any ambiguity, we will drop the step
index k throughout this subsection.

First, we set up some notation. Let G̃N (y) be the Nth order PC approximation
of G(y), based on a biasing distribution q(y). Also, let

(3.8) DN (v) :=

∫
L(G̃N(y)) ln p(y;v) l(y) q(y) dy

and

(3.9) D̂N,M(v) :=
1

M

M∑
m=1

L
(
G̃N (y(m))

)
ln p(y(m);v) l(y(m)) ,

where l(y) := π(y)/q(y), and y(m) are sampled independently from q(y). Note that
for any v, D̂N,M is a random variable but DN is a deterministic quantity. We make
the following assumptions.
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Assumption 3.1.

(a) The biasing distribution q(y) satisfies

(3.10) ‖ ln(p(y;v))l(y)‖L2
q
<∞,

where ‖ · ‖L2
q
is the L2-norm with weight q(y).

(b) The likelihood function L(g) is bounded and uniformly continuous (with re-

spect to g) on {g = G(y) : q(y) > 0} ∪ {g = G̃N (y) : q(y) > 0, N ≥ 1}.
Now we give a lemma that will be used to prove our convergence results.
Lemma 3.2. Suppose that Assumption 3.1(a) holds. If

lim
N→∞

‖G̃N(y) −G(y)‖L2
q
= 0,

then

lim
N→∞

‖L(G̃N(y)) − L(G(y))‖L2
q
= 0.

Proof. See the appendix.
Our main convergence result is formalized in the proposition below.
Proposition 3.3. Suppose that Assumption 3.1 holds. Then we have

(3.11) lim
M,N→∞

‖D̂N,M(v)−D(v)‖L2
q
= 0.

Proof. The variance of estimator (3.9) is

‖D̂N,M(v) −DN (v)‖2L2
q
=

1

M

(
‖L(G̃N(y)) ln p(y;v) l(y)‖2L2

q
−D2

N

)
≤ 1

M

(
C‖ ln p(y;v) l(y)‖2L2

q
−D2

N

)
,(3.12)

where C > 0 is some constant, and it follows immediately that

(3.13) lim
M→∞

‖D̂N,M(v) −DN (v)‖L2
q
= 0.

We then look at the truncation error between DN(v) and D(v):

|DN (v) −D(v)| =
∣∣∣∣∫ (L(G̃N (y)) − L(G(y))) ln p(y;v) l(y)q(y) dy

∣∣∣∣
≤
∥∥∥(L(G̃N (y)) − L(G(y))) ln p(y;v) l(y)q(y)

∥∥∥
L1

q

≤ ‖L(G̃N(y)) − L(G(y))‖L2
q
‖ln p(y;v) l(y)‖L2

q
(3.14)

by Hölder’s inequality. Using Lemma 3.2 and (3.10), one obtains

(3.15) lim
N→∞

|DN (v)−D(v)| = 0,

which with (3.13) implies that D̂N,M (v)→ D(v) in L2
q, as M, N →∞.

We note that the analysis above is not limited to total-order PC expansions; it
is applicable to other PC truncations and indeed to other approximation schemes.
What is required are the conditions of Lemma 3.2, where N is any parameter that in-
dexes the accuracy of the forward model approximation, such that limN→∞ ‖G̃N (y)−
G(y)‖L2

q
= 0.
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3.4. Independence sampler MCMC. In addition to providing a surrogate
model focused on the posterior distribution, the adaptive algorithm also makes it pos-
sible to employ a Metropolis–Hastings independence sampler, i.e., an MCMC scheme
where the proposal distribution is independent of the present state [44] of the Markov
chain. When the proposal distribution is close to the posterior, the independence sam-
pler can be much more efficient than a standard random-walk Metropolis–Hastings
scheme [19, 32, 37], in that it enables larger “jumps” across the parameter space.
This suggests that the final biasing distribution p(y;v) found by our method can be
a good proposal distribution for use in MCMC simulation.

Let the final biasing distribution obtained by Algorithm 1 be denoted by p(y;v∞),

and let the corresponding surrogate model be G̃∞(y). In each MCMC iteration,
the independence sampler updates the current state yt of the Markov chain via the
following steps:

1. Propose a candidate state y′ by drawing a sample from p(y;v∞).
2. Compute the Metropolis acceptance ratio:

(3.16) α =
L(G̃∞(y′))π(y′)

L(G̃∞(yt))π(yt)

p(yt;v∞)

p(y′;v∞)
.

3. Put r = max(α, 1). Draw a number r′ ∼ U(0, 1) and set the next state of the
chain to

yt+1 =

{
y′, r′ ≤ r;
yt, r′ > r.

Given the final surrogate G̃∞(y), one could also use a standard random-walk
MCMC sampler, or any other valid MCMC algorithm, to explore the posterior in-
duced by this forward model approximation. A comparison of the Metropolis inde-
pendence sampler with an adaptive random-walk MCMC approach will be provided
in section 4.2.

4. Numerical examples. In this section we present two numerical examples to
explore the efficiency and accuracy of the adaptive surrogate construction method.
The first example is deliberately chosen to be low-dimensional for illustration pur-
poses. The second is a classic time-dependent inverse heat conduction (IHC) problem.

4.1. Source inversion. First we will apply our method to the contaminant
source inversion problem studied in [30], which uses a limited and noisy set of ob-
servations to infer the location of a contaminant source. Specifically, we consider a
dimensionless diffusion equation on a two-dimensional spatial domain:

(4.1)
∂u

∂t
= ∇2u+ s(x, t), x ∈ D := [0, 1]2,

with source term s(x, t). The field u(x, t) represents the concentration of a contam-
inant. The source term describes the release of the contaminant at spatial location
xsrc := (x1, x2) over the time interval [0, τ ]:

s(x, t) =

{
s

2πh2 exp
(−|xsrc − x|2/2h2) , 0 ≤ t ≤ τ,

0, t > τ.
(4.2)

Here we suppose that the source strength s is known and equal to 2.0, the source
width h is known and equal to 0.05, and the source location xsrc is the parameter of
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interest. The contaminant is transported by diffusion but cannot leave the domain;
we thus impose homogeneous Neumann boundary conditions:

∇u · n = 0 on ∂D.

At the initial time, the contaminant concentration is zero everywhere:

u (x, 0) = 0.

The diffusivity is spatially uniform; with a suitable scaling of space/time, we can
always take its value to be unity.

Sensors that measure local concentration values are placed on a uniform 3 × 3
grid covering D, and sensor readings are provided at two successive times, t = 0.1
and t = 0.2, resulting in a total of 18 measurements. The forward model thus maps
the source position to the values of the field u(x, t) at the prescribed measurement
locations and times, while the inverse problem consists of inferring the source position
from noisy measurements. We write the forward model as d = G(xsrc) + ε, where d
is the vector collecting all the measurements and ε is the measurement error. Each
component of ε is assumed to be an independent zero-mean Gaussian random variable:
εi ∼ N(0, σ2) with σ = 0.1 for i = 1 . . . 18. In this example we generate simulated
data d by solving the forward model with xsrc = (0.25, 0.25) and adding noise. To
complete the Bayesian setup, we take the prior to be a uniform distribution over D;
that is, xj ∼ U(0, 1) for j = 1, 2.

First we characterize the posterior distribution using the proposed adaptive method.
We fix the polynomial order of the surrogates G̃k(x1, x2) to N = 3 and take the bi-
asing distribution to be an uncorrelated Gaussian:

(4.3) p(x1, x2;v) =
1

2πσ1σ2
exp

(
− (x1 − μ1)

2

2σ2
1

− (x2 − μ2)
2

2σ2
2

)
,

where the means μ1, μ2 and standard deviations σ1, σ2 comprise the reference param-
eters v. The initial biasing distribution is centered at the prior mean and has small
variance; that is, we choose μ1 = μ2 = 0.5 and σ1 = σ2 = 0.05. We set ρ = 0.05,
γ = 10−3, and put δ = (λ0 − 1)/10 (namely, we require λ to reach 1 in at most 10
iterations). In each iteration, a 3 × 3 tensor product Gaussian–Hermite quadrature
rule is used to construct a Hermite polynomial chaos surrogate, resulting in nine true
model evaluations; M = 5× 104 surrogate samples are then employed to estimate the
reference parameters. It takes four iterations for the algorithm to converge, and its
main computational cost thus consists of evaluating the true model 36 times.

As a comparison, we also construct a polynomial surrogate with respect to the
uniform prior distribution. Here we use a surrogate composed of total order N = 9
Legendre polynomials and compute the polynomial coefficients with a level-6 sparse
grid based on Clenshaw–Curtis quadrature, resulting in 417 true model evaluations—
about 12 times as many as the adaptive method. These values were chosen so that the
prior-based and adaptive polynomial surrogates have comparable (though not exactly
equal) accuracy.

In Figure 1, we show the points in parameter space at which the true model
was evaluated in order to construct the two types of surrogates. Contours of the
posterior density are superimposed on the points. It is apparent that in the prior-
based method, although 417 model evaluation points are used, only five of them
actually fall in the region of significant posterior probability. With the adaptive
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(a) Prior-based surrogate.
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Iteration 1
Iteration 2
Iteration 3
Final

(b) Adaptive surrogate.

Fig. 1. Source inversion problem: model evaluation points used to construct the prior-based
(top) and adaptive (bottom) surrogates. In the bottom figure (adaptive method), the circles, squares,
diamonds, and filled circles are the points evaluated in the first, second, third, and fourth iterations,
respectively. Contours of the posterior probability density are superimposed on each figure.

method, on the other hand, 8 of the 36 model evaluations occur in the important
region of the posterior distribution. Figure 2 shows the posterior probability densities
resulting from both types of surrogates. Since the problem is two-dimensional, these
contours were obtained simply by evaluating the posterior density on a fine grid,
thus removing any potential MCMC sampling error from the problem. Also shown
in the figure is the posterior density obtained with direct evaluations of the true
forward model, i.e., the “true” posterior. While both surrogates provide reasonably
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x
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(a) “True” posterior density (solid line), compared with the posterior den-
sity obtained via the prior-based surrogate (dotted line).

x
1

x 2

0.15 0.2 0.25 0.3 0.35
0.15

0.2

0.25

0.3

(b) “True” posterior density (solid line), compared with the posterior den-
sity obtained via the adaptively constructed surrogate (dashed line).

Fig. 2. Source inversion problem: posterior density of xsrc obtained with the three different
approaches. In the bottom figure, the two sets of contours are virtually indistinguishable.

accurate posterior approximations, the adaptive method is clearly better; its posterior
is essentially identical to the true posterior. Moreover, the adaptive method requires
an order of magnitude fewer model evaluations than the prior-based surrogate.

4.2. Inverse heat conduction. Estimating temperature or heat flux on an
inaccessible boundary from the temperature history measured inside a solid gives
rise to an IHC problem. These problems have been studied for several decades due
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to their significance in a variety of scientific and engineering applications [6, 36, 48,
26]. An IHC problem becomes nonlinear if the thermal properties are temperature-
dependent [5, 9]; this feature renders inversion significantly more difficult than in the
linear case. In this example we consider a one-dimensional heat conduction equation:

(4.4)
∂u

∂t
=

∂

∂x

[
c(u)

∂u

∂x

]
,

where x and t are the spatial and temporal variables, u(x, t) is the temperature, and

c(u) :=
1

1 + u2

is the temperature-dependent thermal conductivity, all in dimensionless form. The
equation is subject to initial condition u(x, 0) = u0(x) and Neumann boundary con-
ditions:

∂

∂x
u(0, t) = q(t),(4.5a)

∂

∂x
u(L, t) = 0,(4.5b)

where L is the length of the medium. In other words, one end (x = L) of the domain
is insulated and the other (x = 0) is subject to heat flux q(t). Now suppose that
we place a temperature sensor at x = xs. The goal of the IHC problem is to infer
the heat flux q(t) for t ∈ [0, T ] from the temperature history measured at the sensor
over the same time interval. The forward model is the mapping from the heat flux
to the temperature measured by the sensor. A schematic of this problem is shown in
Figure 3.

For the present simulations, we put L = 1 and T = 1 and let the initial condition
be u0(x) = 0. We parameterize the flux signal with a Fourier series:

(4.6) q(t) = a0 +

Nf∑
j=1

(aj cos(2jπt/T ) + bj sin(2jπt/T )) , 0 ≤ t ≤ T,

where aj and bj are the coefficients of the cosine and sine components, respectively,
andNf is the total number of Fourier modes. In the following tests, we will fix Nf = 4;
the inverse problem is thus nine-dimensional. The sensor is placed at xs = 0.4, the
temperature is measured at 50 regularly spaced times over the time interval [0, T ], and
the error in each measurement is assumed to be an independent zero-mean Gaussian
random variable with variance σ2 = 10−2. Our discretization of (4.4) is second-order
accurate in space and time, with 100 spatial nodes and 200 timesteps.

To generate data for inversion, the “true” flux is chosen to be

(4.7) qtrue(t) =

4∑
j=1

(1.5 cos(2jπt) + 1.5 sin(2jπt)) ,

L

q(t) sensor

0

Fig. 3. Schematic of the one-dimensional heat conduction problem.
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i.e., a0 = 0, aj = 1.5, and bj = 1.5 for j = 1 . . . 4. Figure 4(a) shows the entire solution
of (4.4) with the prescribed “true” flux, with the sensor location indicated by the
dashed line. The inverse problem becomes more ill-posed as the sensor moves to the
right, away from the boundary where q is imposed; information about the time-varying
input flux is progressively destroyed by the nonlinear diffusion. Figure 4(b) makes this
fact more explicit, by showing the temperature history at x = 0 (i.e., the boundary
subject to the heat flux) and at x = 0.4 (where the sensor is placed). The data
for inversion are generated by perturbing the latter profile with the independent and
identically distributed Gaussian observational noise. A finer numerical discretization
of (4.4) is used to generate these data than is used in the inference process. To
complete the Bayesian setup, we endow the Fourier coefficients with independent
Gaussian priors that have mean zero and variance 2.

We now use the adaptive algorithm to construct a localized polynomial chaos
surrogate and compare its computational cost and performance to that of a prior-
based surrogate. In both cases, we use Hermite polynomial chaos to approximate
the forward model and use sparse grids based on tensorization of univariate delayed
Kronrod–Patterson rules [38] to compute the polynomial coefficients (nonintrusively).
To test the prior-based method, we use two different total-order truncations of the
PC expansion, one at N = 3 (with sparse grid level S = 6) and the other at N = 5
(with sparse grid level S = 7). Sparse grid levels were chosen to ensure relatively
small aliasing error in both cases.

To run the adaptive algorithm, we set ρ = 0.05, γ = 10−3, and δ = (λ0 − 1)/20
(see Algorithm 1) and we use M = 105 samples for importance sampling at each
step. The initial biasing distribution is centered at the prior mean, with the variance
of each component set to 0.5. As described in (3.4), the biasing distributions are
chosen simply to be uncorrelated Gaussians. The optimization procedure takes 14
iterations to converge, and at each iteration, a new surrogate with N = 2 and S = 3
is constructed with respect to the current biasing distribution. Once the final biasing
distribution is obtained, we construct a corresponding final surrogate of the same
polynomial order, N = 2. Here we typically employ the same sparse grid level as
in the adaptive iterations, but we also report results for a higher sparse grid level
(S = 5) just to ensure that aliasing errors are small. The total number of full model
evaluations associated with the adaptive procedure, contrasted with the number used
to construct the prior-based surrogates, is shown in the second column of Table 1.

With various final surrogates G̃ in hand (both prior-based and adaptively con-

structed), we now replace the exact likelihood function L(G) with L(G̃) to gen-
erate a corresponding collection of posterior distributions for comparison. We use a

Table 1

Cost and performance comparison of prior-based and adaptively constructed surrogates.

Number of DKL(π
∗‖πPC) DKL(π

∗‖πPC)
Surrogate model evaluations π(a1, b1) π(a4, b4)
Prior-based
N = 3, S = 6 11,833 124 1.89
Prior-based
N = 5, S = 7 35,929 8.37 0.383

Adaptive
N = 2, S = 3 2445 0.0044 0.0129
Adaptive

N = 2, S = 5 4459 0.0032 0.0127
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solution

x

t
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(a) Solution of the nonlinear diffusion equation (4.4) as a function of space
and time. The dashed line indicates the location of the sensor.
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u(0,t)
u(0.4,t)

(b) Temperature history at x = 0 (the boundary where the time-
dependent heat flux q(t) is imposed, solid line) and at x = 0.4 (location
of the sensor, dashed line).

Fig. 4. Forward solution of the transient heat conduction problem.

delayed-rejection adaptive Metropolis (DRAM) MCMC algorithm [20] to draw 5×105
samples from each distribution and discard the first 104 samples as burn-in. To exam-
ine the results, we cannot visualize the nine-dimensional posteriors directly; instead
we consider several ways of extracting posterior information from the samples.
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(a) π∗(a1, b1).
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(b) Temperature history at x = 0 (the boundary where the time-
dependent heat flux q(t) is imposed, solid line) and at x = 0.4 (location
of the sensor, dashed line).

Fig. 5. Inverse heat conduction problem: marginal posterior densities of pairs of Fourier
coefficients. Thicker solid lines are results of the exact forward model; thinner solid lines are from
the adaptive surrogate; dotted lines are from the prior-based surrogate.

First, we focus on the Fourier coefficients directly. Figure 5 shows kernel density
estimates [21] of the marginal posterior densities of Fourier coefficients of the heat
flux q(t). Figure 5(a) shows coefficients of the lowest frequency modes, while Fig-
ure 5(b) shows coefficients of the highest-frequency modes. In each figure, we show
the posterior densities obtained by evaluation of the exact forward model, evaluation

D
ow

nl
oa

de
d 

08
/1

3/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1180 JINGLAI LI AND YOUSSEF M. MARZOUK

of the adaptive surrogate, and evaluation of the prior-based surrogate. The latter
two surrogates correspond to the second and fourth rows of Table 1 (marked in bold
type). Even though construction of the prior-based surrogate employs more than six
times as many model evaluations as the adaptive algorithm, the adaptive surrogate
is far more accurate. This assessment is made quantitative by evaluating the K-L
divergence from the exact posterior distribution to each surrogate-induced posterior
distribution (focusing only on the two-dimensional marginals) πPC. Results are shown
in the last two columns of Table 1. By this measure, the adaptive surrogate is three
orders of magnitude more accurate in the low-frequency modes and at least an order
of magnitude more accurate in the high-frequency modes. (Here the K-L divergences
have also been computed from the kernel density estimates of the pairwise posterior
marginals. Sampling error in the K-L divergence estimates is limited to the last re-
ported digit.) The difference in accuracy gains between the low- and high-frequency
modes may be due to the fact that the posterior concentrates more strongly for the
low-frequency coefficients, as these are the modes for which the data/likelihood are
most informative. Thus, while the adaptive surrogate here provides higher accuracy
in all the Fourier modes, improvement over the prior surrogate is expected to be most
pronounced in the directions where posterior concentration is greatest.

To further assess the performance of the adaptive method, we use posterior sam-
ples of the Fourier coefficients to reconstruct posterior moments of the heat flux it-
self, again using the exact forward model, the adaptively constructed surrogate, and
the prior surrogate. Figure 6 shows the posterior mean, Figure 7 shows the poste-
rior variance, and Figure 8 shows the posterior skewness; these are moments of the
marginal posterior distributions of heat flux q(t) at any given time t. Again, we show
results only for the surrogates identified in the second and fourth lines of Table 1.
The adaptively constructed (and posterior-focused) surrogate clearly outperforms the
prior-based surrogate. Note that the nonzero skewness is a clear indicator of the
non-Gaussian character of the posterior.
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Fig. 6. Inverse heat conduction problem: posterior mean of the flux q(t) computed with the
true model, the prior-based surrogate, and the adaptively constructed surrogate.
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Fig. 7. Inverse heat conduction problem: posterior variance of the flux q(t) computed with the
true model, the prior-based surrogate, and the adaptively constructed surrogate.
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Fig. 8. Inverse heat conduction problem: posterior skewness of the flux q(t) computed with the
true model, the prior-based surrogate, and the adaptively constructed surrogate.

Moving from moments of the marginal distributions to correlations between heat
flux values at different times, Figure 9 shows the posterior autocovariance of the heat
flux computed with the adaptive surrogate, which also agrees well with the values
computed from the true model.

Finally, we evaluate the MCMC independence sampler proposed in section 3.4,
comparing its performance with that of the adaptive random-walk sampler (DRAM).
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Fig. 9. Inverse heat conduction problem: posterior covariance of the flux q(t). Solid lines
are computed from the exact-model posterior, while dashed lines are computed with the adaptive
surrogate.
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Fig. 10. Chain autocorrelation of an MCMC independence sampler derived from the adaptive
algorithm, versus an adaptive random-walk MCMC sampler.

For the present IHC problem, the mixing of each sampler is essentially independent of
the particular posterior (exact or surrogate-based) to which it is applied; we therefore
report results for the adaptive surrogate only. Figure 10 plots the empirical autocor-
relation of the MCMC chain as a function of lag, computed from 5 × 105 iterations
of each sampler. We focus on the MCMC chain of a1, but the relative autocorrela-
tions of other Fourier coefficients are similar. Rapid decay of the autocorrelation is
indicative of good mixing; MCMC iterates are less correlated, and the variance of any
MCMC estimate at a given number of iterations is reduced. Figure 10 shows that
autocorrelation decays considerably faster with the independence sampler than with
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the random-walk sampler, which suggests that the final biasing distribution computed
with the adaptive algorithm can indeed be a good proposal distribution for MCMC.

5. Conclusions. This paper has developed an efficient adaptive approach for
approximating computationally intensive forward models for use in Bayesian infer-
ence. These approximations are used as surrogates for the exact forward model or
parameter-to-observable map, thus making sampling-based Bayesian solutions to the
inverse problem more computationally tractable.

The present approach is adaptive in the sense that it uses the data and likeli-
hood function to focus the accuracy of the forward model approximation on regions
of high posterior probability. This focusing is performed via an iterative procedure
that relies on stochastic optimization. In typical inference problems, where the pos-
terior concentrates on a small fraction of the support of the prior distribution, the
adaptive approach can lead to significant gains in efficiency and accuracy over pre-
vious methods. Numerical demonstrations on inference problems involving partial
differential equations show order-of-magnitude increases in computational efficiency
(as measured by the number of forward solves) and accuracy (as measured by poste-
rior moments and information divergence from the exact posterior) over prior-based
surrogates employing comparable approximation schemes.

The adaptive algorithm generates a finite sequence of biasing distributions from
a chosen parametric family and accelerates the identification of these biasing distri-
butions by constructing approximations of the forward model at each step. The final
biasing distribution in this sequence minimizes K-L divergence from the true poste-
rior; convergence to this minimizer is ensured as the number of samples (in an internal
importance sampling estimator) goes to infinity and the accuracy of the local surro-
gate is increased. As a byproduct of the algorithm, the final biasing distribution can
also serve as a useful proposal distribution for MCMC exploration of the posterior
distribution.

Since the adaptive approach relies on concentration of the posterior relative to
the prior, it is best suited for inference problems where the data are informative
in the same relative sense. Yet most “useful” inference problems will fall into this
category. The more difficult it is to construct a globally accurate surrogate (for
instance, as the forward model becomes more nonlinear) and the more tightly the
posterior concentrates, the more beneficial the adaptive approach may be. Now in an
ill-posed inverse problem, the posterior may concentrate in some directions but not
in others; for instance, data in the IHC problem are less informative about higher
frequency variations in the inversion parameters. Yet significant concentration does
occur overall, and it is largest in the directions where the likelihood function varies
most and is thus most difficult to approximate. This correspondence is precisely to
the advantage of the adaptive method.

We note that the current algorithm does not require access to derivatives of the
forward model. If derivatives were available and the posterior mode could be found
efficiently, then it would be natural to use a Laplace approximation at the mode
to initialize the adaptive procedure. Also, an expectation-maximization algorithm
could be an interesting alternative to the adaptive importance sampling approach
used to solve the optimization problem in (3.2). Localized surrogate models could be
employed to accelerate computations within an EM approach, just as they are used
in the present importance sampling algorithm.

Finally, we emphasize that while the current numerical demonstrations used
polynomial chaos approximations and Gaussian biasing distributions, the algorithm
presented here is quite general. Future work could explore other families of biasing
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distributions and other types of forward model approximations—even projection-
based model reduction schemes. Simple parametric biasing distributions could also
be replaced with finite mixtures (e.g., Gaussian mixtures), with a forward model ap-
proximation scheme tied to the components of the mixture; this could be particularly
useful when the posterior distributions are multimodal. Another useful extension
of the adaptive algorithm could involve using full model evaluations from previous
iterations to reduce the cost of constructing the local surrogate at the current step.

Appendix A. Proof of Lemma 3.2. We start with L(G) being uniformly
continuous, which means that for any ε > 0, there exists a δ > 0 such that for any
|GN −G| < δ, one has |L(GN )−L(G)| <√ε/2. On the other hand, GN (y)→ G(y)
in L2

q as N →∞, implying that GN (y)→ G(y) in probability as N →∞; therefore,
for the given ε and δ, there exists a positive integer No such that for all N > No,
P[|GN (y) −G(y)| > δ] < ε/4. Let Ω := {z : |GN (y)−G(y)| < δ} and let Ω∗ be the
complement of Ω in the support of q. Then we can write

‖L(GN (y)) − L(G(y))‖2L2
q

(A.1)

=

∫
Ω

(L(GN (y)) − L(G(y)))2q(y)dy +

∫
Ω∗

(L(GN (y)) − L(G(y)))2q(y)dy.

The first integral on the right-hand side of (A.1) is smaller than ε/2 by design. Now
recall that the likelihood function L(·) is bounded, and without loss of generality we
assume 0 < L(·) < 1. It then follows that the second integral on the right-hand side
of (A.1) is smaller than ε/2 too. Thus we complete the proof.
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