Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1002/grl.50234

Publisher
John Wiley & Sons, Inc/American Geophysical Union

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/89477

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

Received 20 December 2012; revised 29 January 2013; accepted 5 February 2013.

[1] We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic aerosol mass concentrations are most sensitive to ammonia (NH₃) emissions in winter and to sulfur dioxide (SO₂) emissions during the rest of the year. However, in the annual mean, the perturbations on Asian population-weighted ground-level secondary inorganic aerosol concentrations of 34% due to changing nitrogen oxide (NOₓ) emissions are comparable to those from changing either SO₂ (41%) or NH₃ (25%) emissions. The persistent sensitivity to NOₓ arises from the regional abundance of NH₃ over Asia that promotes ammonium nitrate formation. IASI satellite observations corroborate the NH₃ abundance. Projected emissions for 2020 indicate continued sensitivity to NOₓ emissions. We encourage more attention to NOₓ controls in addition to SO₂ and NH₃ controls to reduce ground-level East Asian aerosol.

1. Introduction

[2] Atmospheric aerosols have major implications for human health, visibility, and climate. Aerosol concentrations in parts of South and East Asia are the highest in the world with annual mean PM₂.₅ concentrations that exceed 50 μg m⁻³ over broad areas [van Donkelaar et al., 2010]. Such high aerosol concentrations could reduce life expectancy by several years [Lim et al., 2012]. A large fraction of the aerosol mass in Asia is composed of secondary inorganic ions as sulfate (SO₄²⁻), nitrate (NO₃⁻), and ammonium (NH₄⁺) [Huang et al., 2012a, 2012b]. Emission control strategies are complicated by complex chemical feedbacks that affect the relation of secondary inorganic mass with precursor emissions of SO₂, NH₃, and NOₓ [Pinder et al., 2007; Wang et al., 2011, 2012].

[3] Satellite remote sensing reveals intense concentrations over Asia of NOₓ [Richter et al., 2005], SO₂ [Lee et al., 2009], and NH₃ [Clarisse et al., 2009]. Oxidation of SO₂ yields sulfuric acid (H₂SO₄) which has a low vapor pressure such that it exists primarily in the condensed phase. The sulfuric acid can be neutralized by NH₃ to form ammonium bisulfate (NH₄HSO₄) or ammonium sulfate ((NH₄)₂SO₄). The nitric acid (HNO₃) formed from NOₓ oxidation tends to partition into the aerosol phase as ammonium nitrate (NH₄NO₃) if there is free NH₃ that has not reacted with sulfuric acid, and condenses most readily when temperatures are low and relative humidity is high. China has set SO₂ emission control as a high priority in its air quality management strategy with the intention of reducing inorganic aerosol levels (Ministry of Environment Protection in China (MEP), 2009, http://english.mep.gov.cn/standards_reports/soe/soe2009/) [Wang et al., 2012a, 2012b]. Zhang et al. [2012] report that the SO₂ growth rate slowed down in 2005 and that Chinese emissions start to decrease after 2006. However, Lin et al. [2010] suggest that these controls are insufficient to reduce aerosol concentrations. Emissions continue to increase for SO₂ from India and for NOₓ for broad regions of South and East Asia [Prasad et al., 2011; Wang et al., 2012a, 2012b]. The trend in NH₃ emissions is uncertain but likely has a steady or increasing trend [Zheng et al., 2012].

[4] Here we examine the sensitivity of ground-level secondary inorganic aerosol to precursor emissions. We simulate the spatial variation of secondary inorganic aerosol (sulfate-nitrate-ammonium) mass concentration and its sensitivity to precursor (i.e., NOₓ, SO₂, and NH₃) emissions from South and East Asia using the GEOS-Chem nested forward model and population-weighted GEOS-Chem adjoint model simulations. Simulated NH₃ concentrations are evaluated against IASI satellite observations. Projected emissions for 2020 are used to assess long-term sensitivities.

2. Model Description

[5] We use the GEOS-Chem chemical transport model (version 09-01-02; www.geos-chem.org) to calculate the sensitivity of secondary inorganic aerosols to precursor emissions. The GEOS-Chem model is driven by assimilated meteorological data from the Goddard Earth Observation System (GEOS-5) of the NASA Global Modeling and Assimilation Office (GMAO) for the year 2006 with a temporal resolution of 6 h (3 h for surface variables and mixing depths). The nested version of GEOS-Chem for Asia
(70°E–150°E, 11°S–55°N) uses the native resolution of GEOS-5 meteorological fields at 0.5° × 0.67° [Chen et al., 2009]. The lowest model layer thickness is ~130 m. A global simulation at 2° × 2.5° spatial resolution is used to provide the boundary conditions every 3 h for the nested domain. GEOS-Chem includes a fully coupled treatment of tropospheric ozone-NO$_x$-VOC-aerosol chemistry [Park et al., 2004]. Gas-aerosol phase partitioning of the sulfate-nitrate-ammonium-water system is calculated using the ISORROPIA II thermodynamic equilibrium model that includes the effects of temperature and relative humidity [Fountoukis and Nenes, 2007]. We use monthly anthropogenic emissions of NO$_x$ and SO$_2$ from Zhang et al. [2009]. NH$_3$ emissions are from Streets et al. [2003], with a reduction of 30% as recommended by Huang et al. [2012a, 2012b] for Asia, and seasonality as implemented.

Figure 1. Spatial distribution of emissions of inorganic aerosol precursors (NO$_x$, SO$_2$, and NH$_3$) over the Asian region for the year 2006. Inset values indicate the total emission rate over the domain.

Figure 2. Spatial distribution of secondary inorganic aerosol mass concentrations over Asia. The columns on the right show absolute difference in secondary inorganic aerosol mass concentration due to 10% increase in NO$_x$, SO$_2$, and NH$_3$ anthropogenic emissions.
by Fisher et al. [2011]. Errors in the model representation of too shallow nighttime mixing depths and overproduction of HNO₃ are corrected following Heald et al. [2012] and Walker et al. [2012]. The GEOS-Chem secondary inorganic aerosol simulation has been evaluated extensively with measurements over East Asia [e.g., Lin et al., 2010; Zhang et al., 2010; Jeong et al., 2011; Wang et al., 2012a, 2012b].

6. Figure 1 shows the spatial distribution of total (natural and anthropogenic) NOₓ, SO₂, and NH₃ emissions for South and East Asia. Populated regions of East China exhibit substantial collocated NOₓ, SO₂, and NH₃ enhancements associated with power generation, vehicles, and agriculture. North India has pronounced NH₃ sources but weaker NOₓ and SO₂ sources. The total NH₃ source (9.5 × 10⁵ atoms N a⁻¹) is comparable to the sum of SO₂ (4.7 × 10⁵ atoms S a⁻¹) and NOₓ (5.9 × 10⁵ atoms N a⁻¹). Indeed, retrievals from the IASI [Clarisse et al., 2009] (Figure A1) and TES [Shephard et al., 2011] satellite instruments indicate substantial concentrations of gas-phase NH₃ over both East China and North India. This gas-phase NH₃ implies a reservoir that is able to promote aerosol formation if additional sulfuric acid or nitric acid becomes available. We more quantitatively examine the implications of this excess NH₃ in section 3.

7. In addition, we use the GEOS-Chem adjoint model [Henze et al., 2007] with updates to v8-02-01 at a resolution of 2° × 2.5°. The adjoint model provides an efficient means for analyzing the sensitivity of model outputs to changes in model inputs. Henze et al. [2009] demonstrated the applicability of the GEOS-Chem adjoint to inorganic PM₂.5 control strategies. Here the gradient of a cost function (population-weighted secondary inorganic aerosols; Supporting Information) is evaluated with respect to the model input parameters (i.e., emission estimates). For each adjoint run, concentrations from a GEOS-Chem forward simulation are computed and stored first, and are later used during the backward integration of the adjoint. The use of the adjoint allows us to quantify the sensitivity of the population-weighted secondary inorganic aerosols to emissions within specific GEOS-Chem grid cells. Population weighting is chosen for relevance to health implications. The population data are from the Socioeconomic Data and Applications Center Gridded Population of the World v3 [Balk et al., 2010].

3. Sensitivity of Fine Particulate Matter to Emissions

8. We perform four different simulations of the nested forward model, including one standard and three sensitivity simulations with 10% increases to the anthropogenic emissions of NOₓ, SO₂, and NH₃, respectively. The model is spun up for 1 month to minimize influence of the initial conditions. The left column of Figure 2 shows the spatial distribution of annual and seasonal mean secondary inorganic aerosol mass concentrations for the standard simulation. Annual mean concentrations reflect the distribution of precursor emissions with maximum values over East China. Secondary inorganic aerosol mass concentrations are highest in winter (DJF) and lowest in summer (JJA) over both regions, associated with increased nitrate aerosol concentration at low temperatures and high SO₂ and NOₓ emissions in winter. The left column of Figure 3 contains the speciation of this secondary inorganic aerosol. Yang et al. [2011] used a three-channel speciation sampler equipped with nylon filter and denuder for accurate measurement of NO₃ and

Figure 3. The left column indicates the spatial distribution of annual mass concentration of secondary inorganic aerosol, sulfate, nitrate, and ammonium for 2006. The remaining columns indicate the sensitivity of each component to a 10% increase in precursor emissions (NOₓ, SO₂, or NH₃).
found a NO$_3^-$/SO$_4^{2-}$ ratio of 0.64 ± 0.57 in Beijing (40.32°N, 116.32°E) and 0.21 ± 0.16 in Chongqing (29.56°N, 106.53°E) for 2006. This is consistent with the values of 0.77 and 0.32 in our simulation for the same locations and time period.

The remaining columns of Figure 2 show the absolute difference in sulfate-nitrate-ammonium mass concentrations due to 10% increases in NO$_x$, SO$_2$, and NH$_3$ emissions. As expected, secondary inorganic aerosol is most sensitive to SO$_2$ emissions during most of the year [Wang et al., 2012a, 2012b]. In winter, secondary inorganic aerosol is most sensitive to NH$_3$ emissions [Wang et al., 2011; Wang et al., 2012a, 2012b]. However, secondary inorganic aerosol remains sensitive to NO$_x$ emissions in all seasons. In the annual mean, secondary inorganic aerosol is nearly as sensitive to NO$_x$ emissions as to SO$_2$ emissions. The persistent sensitivity to NO$_x$ arises from the availability of excess NH$_3$ as calculated from the molar ratio of (NH$_3$ + NH$_4^+$)/2 × SO$_4^{2-}$. Wang et al. [2011] similarly found that excess NH$_3$ is available to promote ammonium nitrate formation if NO$_x$ emissions increase in the North China Plain and Yangtze River Delta. The sensitivity to NO$_x$ is weakest in winter when ammonium nitrate formation is more often NH$_3$ limited on certain days.

Figure 3 shows the effect on each inorganic ion of changing emission sources. Over China, increasing SO$_2$ emissions increases SO$_4^{2-}$ at the expense of NO$_3^-$ and increasing NH$_3$ efficiently increases NO$_3^-$. Increasing NO$_x$ emissions increases NO$_3^-$ over China and to a lesser extent over India. Increasing NO$_x$ emissions also slightly increases SO$_4^{2-}$ by increasing regional oxidant concentrations.
Figure 4 further quantifies the population-weighted sensitivities using the adjoint model simulation. The population-weighted sensitivities show the amount by which the population-weighted PM$_{2.5}$ concentrations would change per fractional change in emissions at each location. The sensitivities are consistent with forward model sensitivity simulations. We find that annual mean population-weighted secondary inorganic aerosol over the entire domain is notably sensitive to NO$_x$ emissions (34%) compared to SO$_2$ (41%) and NH$_3$ (25%) emissions. While the relative sensitivity of inorganic aerosol over China to NO$_x$ is similar (33%) to that over India (32%), the absolute impact of NO$_x$ on inorganic aerosol over China is much greater (Figures A2 and A3), reflecting a combination of low temperatures over China that favor condensed phase ammonium nitrate, and comparatively less NO$_x$ over India leading to low nitrate formation. The high degree of neutralization of aerosol over India prevents additional SO$_2$ from displacing NO$_3$ in the formation of secondary inorganic aerosol (especially in winter) emissions are needed to reduce aerosol concentrations.

[14] In summary, NO$_x$ emissions are, and could continue to be, a major contributor to secondary inorganic aerosol over East Asia. In addition to ongoing efforts to reduce SO$_2$ emissions for East Asia, concurrent decreases in NO$_x$ and NH$_3$ (especially in winter) emissions are needed to reduce aerosol concentrations.

[15] Acknowledgments. This work was supported by NSERC. IASI NH$_3$ data were provided by L. Clarisse, D. Hurtmans, C. Clerbaux, and P.-F. Coheur (ULB-LATMOS). C.L.H. acknowledges support from NOAA. D.K.H. recognizes support from NASA and the U.S. EPA.

References
Clarisse, L., et al. (2009), Global ammonia distribution derived from infrared satellite observations, Nat. Geosci., 2, 479–483; DOI: 10.1038/ngeo551.
Lin, J. T., et al. (2010), Recent changes in particulate air pollution over China observed from space and the ground: Effectiveness of emission control, Environ. Sci. Technol., 44, 7771–7776.

Wang, S. W., et al. (2012a), Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations, *Atmos. Chem. Phys.*, 12, 4429–4447.

