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TRANSIENT HEAT TRANSFER INDUCED PRESSURE
FLUCTUATIONS IN THE FUEL COOLANT INTERACTION

ABSTRACT

Rapid generation of high pressures and mechanical
work may result when thermal energy is transferred from
the hot molten nuclear fuel to the coolant in an LMFBR
accident. Such energetic thermal interactions can
happen if a large heat transfer area is created by
the fragmentation of the molten fuel in the coolant.

A model was developed by Kazimi to simulate the
dynamic growth of the vapor film around a hot spherical
particle which was suddenly immersed in a coolant. The
present work extends this model to give the pressure
fluctuations on the interior and exterior due to the
surface pressure of the vapor film as a driving function.

In this work the acoustic wave equation for a
fluctuating pressure is developed for a compressible,
viscous fluid. This equation is solved by the Fourier
transform technique analytically and the finite fast
Fourier transform algorithm is used numerically to
obtain the pressure as a function of time. These tech-
niques are applied to various cases of hot spheres in
water to determine if a previously advanced hypothesis
of cavitation is a principal mechanism in inducing cavi-
tation and a subsequent fragmentation of the hot molten
material in water. In some cases 'there is a good cor-
relation with the negative pressure. trends and the known
fragmentation behavior.
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,CHAPTER I

-INTRODUCTION

X1 introduction

Small scale laboratory experiments and TREATM

experjiments have shown that UO2 fragments as it comes

into contact with liquid sodium. Other experience (2)

has shown that violent explosions can occur if large

masses of molten metal come into sudden contact with a

coo,1ant (water in many cases). These experiments are

quite convincing in showing that the large rapid energy

releases are not due to chemical reactions but instead

are the result of large total heat transfer rates caused

possibly by extensive fragmentation to expose a large

heat transfer area. The subsequent high pressure can be

assessed in detail by direct measurement and by

establishing models.

Xt is important to understanding fragmentation to

calculate both interior and exterior ptossure for the

molten globule. Since the extent of fragmentation

lies much further down a long chain of events which.

are not well understood, we can hope that by starting

to investigate the parts of the chain where our

knowledge of the physics involved is reasonably secure,

it will be possible to unravel the rest of the problem.

one useful result might be to establish a correlation

between the pressure history and the extent of
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fragmentation. This is useful because we can make a

model calculation for the pressure .history..and then use

limited experimental data to extend predictions of

fragmentation to previously unmeasured cases. We are

led to expect this connection by a :suggestion due to

Kazimi(3) that the mechanism for fragmentation under

certain conditions is cavit'ation 'of -the hot material

during a subatmospheric pressure swing (below the vapor

pressure for the hot liquid) at the .surface of the drop.

The film pressure at the surface can be obtained

from a model due to Kazimi (3). The :film pressure

obtained in this way can be used to calculate the

interior pressure waves starting from a given'film

pressure in order to investigate the possibility of

cavitation as a mechanism for inducing fragmentation,

It is clear, however, that any detailed model of

fragmentation will give the film pressure as a function

of time and can be compared to these experimental results.
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1.2 A Fragmentation Model

(3)A review by Kazimi of the fragmentation experiments

that have been performed in recent years has shown the

following overall characteristics.

1. When the molten material is at a temperature

lowei- than the boiling point of the coolant,

fragmentation may occur and will follow a

pattern predicted by hydrodynamic effect

(Weber number effect).

2. At higher temperatures, the fragmentation is

dependent on the temperatures of both the

molten material and coolant.

3. Different hot materials dropped into the same

cold liquid may result in different fragmentation

behavior (e.g., at 600*C Sn fragments in water

at 30*C while Zn does not).

The first ~ind second point taken together suggest a

competition between hydrodynamic and thermal effects.

The third point suggests that independent of the external

driving forces the internal dynamics also play a

determining role through such things as the viscosity

and the surface tension of the particular material. These

results suggest the transient heat flow and resulting vapor

film growth affect the interaction of the hot material

and the coolant in a way that only a detailed calculation

can make clear. A complete model should include both the

........... .11,111,1111, ........... , - 1-
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hydrodynamic and thermal .effects. However, the second

point mentioned earlier suggest there are domains in

which thermal effects are dominant.

(3)Kazimi has developed a model of vapor film

growth which starts from a gaseous (non-condensable)

film (<10-15 cm thick) surrounding a molten sphere at

the time of contact. The subsequent heat flow is used

to calculate the rate of vaporization according to the

equation

dmv aTH 2IL = -kH ij +k (1.1)

where L is the heat of vaporization, my is the mass of

vapor, kH is the thermal conductivity of the hot body,

k is the thermal conductivity of the liquid coolant,

T is the temperature of the hot body and T is the

temperature of the coolant. We note parenthetically

that there is some question of the validity of

equation (1.1) in the particular circumstances but

defer discussion of this point to Chapter IV. This

vapor then expands as its temperature rises but because

of inertia it over expands causing a pressure drop. Then

as the vapor contracts, there is more heat flow and

more vaporization so that a forced oscillation is setup

which eventually dies out as the temperature of the molten

sphere approaches the temperature of the coolant.
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There are three main results of this model.-

a) Effect of Water Temperature

The oscillatory behavior -is damped quickly when

the water subcooling is small, in spite of the initially

larger pulse. Higher vaporization rates are obtained at

smaller values of water subcooling. This allows the

film to grow smoothly without oscillations. The heat

consumed in vaporization is found to be a small fraction

of the total transferred heat in the model.

Experimentally, the fragmentation of different

materials, including tin, have been observed to be enhanced

with larger subcoolings of water and.to be virtually non-

existent when the water temperature is above 70*C.

One of the aims of this thesis is to establish the relation-

ship between the interior pressure time history and the

degree of subcooling of the water as given by this model.

b) Effect of the Hot Sphere Temperature

Pressure histories for the film around molten tin

spheres initially at 400*C, 500*C and 700*C for the same

water temperature, 20*C, have been calculated. The

pressure oscillations are more vigorous initially (up

to .5 msec) as the temperature is increased. The

pressure oscillations are damped faster however for

the sphere at 700*C initial'temperature.

In Chapter IImof this thesis we will give formulas

for the internal pressures in the molten drop obtained
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from assuming .a driving pressure at the surface. At this

point, it is enough to know that the solution for the in-

ternal pressure, p(r,t) is

p (a,t)e- it
p(r,t) fo in(ka) dw (2)

where k =/C

neglecting viscous and compressibility effects. Thus, if

the Fourier component of p(a,t) = p (a,t) is appreciable

where ka nu n, then large internal pressures both positive

and negative can be obtained. One can see, then, that as

the hot drop's temperature is increased the initial pressure

increase becomes larger and sharper (in time) yielding a

higher frequency so that k increases. Therefore as the term

ka approaches -the internal pressures get larger. of course,

physically there are viscosity and compressibility effects

- so that the integral in Eq. (2) does not go to infinity but

instead goes through a maximum and then diminishes. The

experimental results of Cho(4 ) suggest an enhanced fragmenta-

tion for tin up to 500 0C followed by a marked decrease in the

fragmentation. Limited results of Witte, et al.(5) indicate

an increase of fragmentation with temperature up to 700*C.

Some British results indicate an increased fragmentation

with temperature but also without an observed decrease for

the temperature range investigated. We have not yet been

able to analyze all these experiments sufficiently to re-

solve the apparent discrepancies in observed behavior.

...............

, , " jw"" ow-- - - ___ - ___ - - . _ _ _ - I .
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CHAPTER II

THE ACOUSTIC WAVE IN A

VISCOUS COMPRESSIBLE FLUID

0
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CHAPTER II

THE ACOUSTIC WAVE IN A VISCOUS COMPRESSIBLE FLUID

In this chapter, we begin by deriving the wave

equation for the pressure in a fluid.

The equation of continuity is

a+ p V 0 (2.1)

is the velocity of the fluid at a point

6 is the small time varying part of the density

p is the equilibrinm value of the density

and is a constant in space -and time

D Is the total density

or

D p+6 (2.2)

(6)and the first-order Stokes-Navier equation is

aui
p =- Vp + (TI + 4/3y1) V (V - )

-yV x (V x) (2.3)

It is a fundamental theorem of vector calculus that

any vector function of position such as U can always

be uniquely separated .into a longitudinal part u

for which V x = 0 and a transverse part for which

V . t = 0.Ut
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So define

V x 0 (2.4)

? -- U 0 (2.5)

Thus substituting u, and u into (2.3) separatelyt

and using (2.4 and 2.5) we obtain

P -=- Vp + (J + 4/3yj) V2U (2.6)

Vu
P V x (V xu) (2.7)

It must also be kept in mind that the gradient of a

- scalar function (in this case p) is entirely longitudinal,

le. since VxVp=O for any p, the equation can be split

into these two separate equations. Thus the transverse

part of u, ut is unrelated to the pressure wave. The.

two parts of the velocity solution, uL and ut can be

solved for separately and need not be combined until we

come to satisfying the boundary conditions.

The continuity equation (3.1) can be rewritten as

u + p V, = 0, since V ut =0 (2.8)

Next, taking the time derivative of (2.8) we get
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. + p V - - = 0

since

ap=0

Taking the gradient of(2.8)gives

V + pV u = 0

Using (2.10) to eliminate V2U in 12.6)

p- Vp - (n + 4/3y) V

Taking the divergence of (2.11) gives

p V . U2, - V2p - (ri + 4/3pj) a
at~P a

(2.9)

(2.10)

gives

(2.11)

(2.12)

Using (2.9) to replace the L.H.S. of (2.12) gives

28=V 2p h + 4/31j)3 a 2p~~ + _=tV (2.13)

The next equation is the equation of continuity for

heat flow.

U

T = K V2 ((2.14)
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where T is the small time varying part of the temperature,

T is the time independent equilibrium value of the

temperature, and a is the small time varying part of

the entropy. We have omitted the viscosity loss

term because it is second order in ii. The first order

e-ffects of viscosity enter in equation (2.12) . The

last two relationship needed are the equation of state,

relating pressure, volume and temperature in the gas

wnd the second law of thermodynamics, relating the

entropy content of the fluid to the other variables.

These equations are:

3P() p T() T (2.15)
T P

T p (2.16)
P T

where
-- v = (2.'17)

T

Using (2.17) and (2.18) in (2.15) we obtain

(2.19)



and furthermore

CKT p K or KT yK

and

a =5) = /KT

So using (2.20) and (2.21) in (2.19) we get

6 = pKT (p -aT)

or

6 = pyK5 (p - at)

where

K = - V )S

This result holds for any pure material for p and T

small compared to P and T. By similar methods we can

obtain a similar equation for the entropy

C
y = -E (- - 1~:p)0T ay

(2.23)

If we define

(2.24)I = K
n pC C

p

and use 2.24 and 2.23 in 2.14 we get

L 
(22 

= 
.

n at ( L -1 )pYa

18

(2.20)

(2.21)

(2.22)

= a

(2.25)
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'inally if we define

n+ 4/3p 2.6

a~nd

C2  (2.27)
pK -

then using (2.26) and (2.27) in (2.12) we get

V~U7 at2 at- L ~ (p - aT) (2.28)

Equation (2.28) is the wave equation, modified for the

effects of viscosity and thermal conduction. If there

were no conduction, Zn would be zero (see 2.24), T

would have to equal to (y-1) p/ya and y(p-MT) would

equal p. This is the approximation which has been

chosen. This corresponds to adiabatic wave motion and

is a reasonable approximation for the times over which

the phenomena of fragmentation occurs (108 to 10

seconds). However, in general there are two kinds of waves

depending on which flow predominates. One of them (the

adiabatic wave) has already been discussed. The other

wave corresponds chiefly to heat diffusion; here p is

small compared with at,and the wave velocity is

proportional to i indicating rapid attenuation. This

means that this mode is important only near the boundaries.
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Thus except for fluids with high viscosity or conductivity,

(2.28) with y(p-a-r) = p will adequately de'cribe the

acoustic behaviour of the medium everywhere outside

a small boundary layer. A more careful examination

of the problem would include the simultaneous solution

of (2.28) and, (2.25).

Finally we put (2.28) in the form used

2 p= ( - C V p (2.29)

Introducing the F. T. (Fourier Transform) of p or

p- we obtain

(V2 4 2 ) p+ k2 p= 0 (2.30)

or

V2 p + [k2/1 + y k)]p = 0 (2.31)

or

V2pW + K2pW = 0 (2.32)

where

K2 = k(+ tivk) and k2  -

The result then of viscosity is to make the wave

number complex indicating attenuation of the wave.

This result, (2.32) will be used in Chapter III. It

has two approximations inherent in its use. First

it is a small amplitude approximation and second it
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Is for an adiabatic wave. We haye calculated IV for tin

at 500*C and found I v = 3.1 x 1 7 which shows that the

attenuation due to viscosity effects is quite small so

that losses due to transmission at the boundary

is probably the dominant energy loss mechanism.



III.1 Theoretical Results

111.2 Numerical Results

22

Page

23
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CHAPTER III

THE ACOUSTIC WAVE NEGLECTING VISCOSITY

a
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CHAPTER III

THE ACOUSTIC WAVE NEGLECTING VISCOSITY

In Chapter I we discussed the results of a model

by Kazimi 3 in which vapor film growth at the surface

of a hot liquid sphere (usually metallic) gives rise

to a pressurization in time of the surface of the hot

globule. In this chapter we will develop the equa-

tions for the interior and exterior pressure wave as

a function of space and time and will present the

numerical results of these equations for various of

the cases for which the pressure wave at the surface

is already known.

III.1 Theoretical Results

We begin by taking the wave equation developed in

Chapter II (equation 2.29) as our starting point. This

equation was derived in the small amplitude approximation

for the general case of a viscous fluid with thermal con-

duction. We begin by neglecting viscous effects, that

is taking V 0 so

2 1 2 2 1
V p t f(r,t) where C = (3.1)

C 2 t 2IKs

where f(r,t) is the volumetric driving pressure (or

inhomogenous term), p is the density of the medium, Ks

is the isentropic compressibility, C is the speed of sound,

and p is the pressure difference from equilibrium at a point.
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We apply the Fourier transform (F.T.) technique

which gives

p (rt) = f pe dw (3.2)

and

1 0 M

Pw(r) P (, t) ' dt (3.3)

where pw is the F.T. of p.

The F. T. of equation (3.1) is

V2 Pm +k 2 p w fW (3.4)

where

f f (r ,t) e+i dt (3.5)

and

2 .2 2k /C (3.6)

Define g such that

2 - -2 --V- g(rr ) + k g (Fr) = - ,r) (3.7)

This g. is the F.T. of the Green's function for an

infinite medium. However, to satisfy the boundary

conditions which necessarily include reflections at

the wall we add X.
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Where

V2 X + k2 X 0 (3.8)

So the F.T. of the appropriate Greens function for

the problem is defined by

G o = g.( O) + X (3.9)

Next using one of Green's theorems

PW f f a G dVo + fs aGn6P
VOo o

-p(r) G I dS (3.10)
o0

where n is the outward pointirlg normal and is
.0 3n0

the normal derivative at the surface.

In the case at hand we believe that the dominant

source of radiation is the pulsating surface of the

sphere. So for the purposes of the model it should

be sufficient to consider only 'the surface terms and this

.s of course a convenient simplification. For these

reasons, we set f W 0. We then obtain

ppd

(r = r = a defines S0 in this case)
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It is clear then, that p. can be calculated in

general if we know pw(a) and $ pm(a). However
a0

we can make another simplifying assumption which

should give the right trends to the pressure although

it is not a particularly good assumption. The

assumption we introduce is the assumption of rigid

boundaries which has the result that G (a) = 0.

Using this result gives

Pr( = f p(a) G ( ) ds. (3.13)

Now the Green's function for an infinite medium is

ik
g h o (kR) (3.14)

h is a zero order spherical Hankel function and
0

R jr-ri

The expansion of g. in spherical coordinates in

terms of the coordinates r, 6, $of the measurement

point and r0 , Oo, $, of the source point is

1k (2rm -n)
gW - I (2m + 1) c' X

4ff) ni (m+n)I,(n,ko -(3.15)

X G ('o~ G (9if jm. (kr ) hm. (k r) r > r0

mfn M~n0 0 im(kr) hg (kr 0) r < r0

r,r 0 <a
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and G. is found as

ik I (2m+l) n-n) I G ( oF)Gw~W XI - n n(m+n) I m,n

X, [Hm, - Ajm(kr)jm(kr)] (3.16)

Imposing the condition that G= 0 at r = a gives

j(kr)h (kc) - Ajm (kr) jm (ka) = 0

or

hm(ka)
A a jm(ka)

We need 3n Gw which we can now calculate
0

(3.17)

(3.18)

as

Ono -r6=a
k X ( 2m+l) e -n(m-n) I Ym

41 m=0 n,a n m+n) m,n

xY (e ,4 )a [H m(kr) j(kr )Ixm , n o o mn (ka M.W~ M
no

r.= a

and after some algebra

(3.19)

4.

h Ika)
~ii~- [m - j~(ka) .M(kr) j (kr0 )r

ik 3m(kr)
2 -2 3jm(ka):

(3.20)

Using equation (3.20) in (3.19) and substituting for

in equation (3.13) we obtain
an

(e0.1,

4



* p

1 f4
P 41 -.4 or(a)

j- (kr)-

Om(ka) (2m+l)
m=0 jmkT

28
(m-n)!

n, a

ax y m (04)

ow

f Yn(0, ) d =2r 6m on 6a,4vi mt~n 0 0 0 00

Y 1
0,r0

Y =1P =1
0

This means that since there is no angular dependance

in (3.23) we need only the zero order spherical

harmonics which are also angle independent.

We get

prt) -iwtp(rtt) ka) Pui(a)e (

(3.21)

(3.22)

(3.23)

W

3 . 24)

where

j (z) = (sin zz and k = w/C

So, using equation (3.24)

p(r,t) = I 0 sin kr p(a) e-iwt d
r 52.fsi ka pWa etd

(3.25)

It is also useful to have an explicit expression for

p(r = o,t) which is

kak (a) e-i1t dwp~ ~ ~ si k9 oP) 3.6

and

Y (0, Fto) dQg
I

N

p (r =- ot) = fe (3.26)



29

Furthermore we need the limiting forms for the multiplying

factors of pw(a) in equation (3.25) and (3. 6)

So

lim a sin kr (
kpor sin ka -l (3.27)

and

.olim ka (3.28)k- o sin. ka

We are now in a position to calculate the

interior pressure wave given the pressure at the

surface. Numerically this is accomplished by the

use of the Fast Fourier Transform (FFT) method due

7to Cooley and Tukey7 . This method has been imple-

8mented by Norman Brenner of the MIT Department of

Earth and Planetary Sciences and is on the Math

Library Tape as a load module in single precision.

It is called FOURT. This program is used as a

Fortran subroutine to calculate both the forward

and inverse transform.

The solution p(r,t) expressed in equation (3.25)

has some practical limitations besides the ones

imposed by the various assumptions which have been

made. The most important limitation is that as the

wavelength corresponding to the frequency at which p

is small compared to p. at tq = o becomes much smaller

than the radius of the sphere, the solution has many

peaks and valleys which require a large number of
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mesh points over which p(a,t) and p,(a) must be known.

Further; more and more significant figures must be

carried in order to. get meaningful results. One measure

.of how good the results obtained are is how small the

calculated imaginary part of p(r,t) is. This is

because both the real and imaginary parts satis.y

the wave equation and the boundary condition for the

imaginary part is that it be zero at time equal zero.

In the results obtained to date, the imaginary part of

p(r,t) has been a factor of 105 smaller than the real

part in all cases. This limitation can be alleviated

to some extent by using FOURT in double precision but it

can not be entirely eliminated.

The model so far presented also is limited by

two assumptions which have been made. The first and least

serious is the neglect of viscosity. This has the effect

of making the absolute value of the pressure calculated

in the model too large. Its neglect also leads to the

singular behaviour of p(rit) as given in equation (3.25)

since at ka = w the integrand blows up. In Chapter- II, - -

we. included viscosity effects and those results have

led to the introduction of a convergence factor into

equation (3.25) in the following way:

k W/C - ie

J__/
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where e is the convergence factor taken as .01 to

avoid the previously mentioned singularity. --Of course,

since e is so small, it has no practical effect

except at ka ' t. The second assumption of rigid walls

is a poor approximation but can still serve as a

point of departure. Neglect of transmission of the

pressure wave is a large effect which also causes

the calculated pressures to be too large in absolute

value. The inclusion of this effect will be discussed

in Chapter IV. Finally, the most important property

of equation (3.25) is the resonance behaviour which it

exhibits. That is, when ka = nit, the calculated pressures

get very large (infinite if viscosity .is neglected).

This will lead to subatmospheric pressures (as we

will see) and even negative pressures. A third

limitation as was mentioned earlier is the small

amplitude approximation, which means that p/P<<l

for the wave equation to hold. One must, therefore,

keep in mind that strictly speaking these results are

not applicable when p > P. However, the calculated

pressures are certainly indicative of the main trends

within the limitations already mentioned.

11I.1 Numerical Results

In this section the numerical results for various

cases will be discussed. These cases will be the same
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.3as some of those done by Kazimi3 . They are given in

Table 3.1 which shows that the variation of..the

radius has been divided into two parts. One part

deals with the variation caused by varying the radius

and not the pressure at the surface and the second

part is concerned with the radius variation plus

the corresponding change in the surface pressure.

The first case which is of interest to investigate

is the r-dependance.

I. Radial Dependance

For a small radius (a = .1cm), figure 3.1

shows a series of pressure versus time curves

(all overlapping) for each of five. radii (r= 0,

a/5, 2a/5, 3a/5, 4a/5, a, a = . cm). In this.

figure, one can see that there is essentially no

change. One can understand this result by taking

the limit of equation (3.25) as a (and subsequently r,

since r <a) goes to zero. The result of this limiting

process is to show that the multiplicative factor of

p (a) goes to one which means that p(r,t) approaches

p(a,t) for all r. This can be understood physically

-.as a case in which the system will follow the

driving function if the dimensions are small compared

to the wavelengths present in the driving function,

i.e. for a = .1 cm, .3 < A&, 50 cm.

...........
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TABLE 3.1

CASE
1 2 3 4 5 9 10

VARIABLES

ta Shere C500 500 500 400 700 700 700Temperature, 0C

Water Pool
Temperature, *C 20 50 80 20 20 20 20

Sphere Radius, Varied .3 .3 .3 .3 .1 1.0cm

Initial Film 10-5 10-5 10-5 10-5 10-5 10-5 10-5
Thickness, cm1

Radius Corre-
sponding to .3 .3 .3 .3 .3 1.0
Assumed Driving
Pressure,

Fue Showing 3.3-3.6 3.12 3.13 3.10 3.8 3.7 3.9R esults

.. ........
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II. Effect of Radius (a) of Sphere

a) In figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 the pres-

sure time history at r = 0 for case (1) for the different

values of a = .1, .2, .3, .5, .75, 1.0 cm is shown. It

can be seen that the absolute value of the pressure

swings in the initial pulse (the transient behaviour)

increases as a increases. However, the lower frequency

oscillations that follow are relatively unaffected as

the transient behaviour decays out. This is a resonance

effect for the high frequencies such that ka = -f. How-

ever for the rest of the pulse for the radii studied,

conditions are off resonance. In this case (1) the

driving function is kept the same for all radii and

corresponds to the Kazimi calculated function for

a = 0.3 cm.

b) Next the total effect of varying. the radius is con-

sidered. This includes the variation in the surface

pressure caused by varying the radius. These cases are

labelled 9, 5, and 10 and the results are shown in

figures 3.7, 3.8, and 3.9 for r = 0, a = .1, .3 and

1.0 cm. The trend here is also for the absolute

value of the pressure in the transient to increase

except that the variation is much more dramatic as

a result of including the increases in the initial

pulse. It should be kept in mind that the low fre-

quency oscillations in the 10- to 10-3 sec time

domain are relatively unaffected. The rise times of the

. .........



initial positive going part are getting longer in

contrast to the experimental data of references 3

and 4. However, one can't make too much of the trend as

the rise times in the experimental data are typically

100 - 500 micro-seconds whereas the Kazimi model gives

approximately 1 micro-second. Furthermore, it seems

clear that the pressure pulse being measured is the

final pressurization of the explosion while the

calculated pressures are those which preceed the

explosion and possibly are causing the internal

vaporization which leads to the explosion.

III. Effect of Hot Sphere Temperature

There is a body of evidence (reviewed in

reference 3) which shows that fragmentation is more

extensive as the hot body temperature is increased.

Presumably this would mean the pressure down swings

would be longer and deeper to induce this larger

extent of fragmentation. This has been investigated

in cases 4, 1, and 5 in this work. The results of

the pressure calculation shown in figures 3.10, 3.3 -

and 3.8 for r = 0 and a = .3 cm was carried out at

hot body temperatures of 400, 500 and 700*C. As

temperature goes up, the amplitude of the transient

(both plus and minus swings) gets larger. In all

cases the pressure goes negative several times

but for short periods (about 1 micro-second).

35



Furthermore, this is still too short a time to

correspond to the experimental results although

bubbles initiated at these times could grow in

response to the subatmospheric part of the pulse

which arrives later, if it were less than the vapor

pressure of the hot liquid at that time and temperature.

IV. Effect of Water Temperature

Finally, the effect of increasing the temperature

of the water was investigated for cases 1, 2 and 3

which corresponds to temperatures of 20, 50, and 80*C

and the results for r = 0 are shown in figures Ate

3.12, and 3.13. Here can be seen that as the temperature

increases the amplitude of the pressure swings also

increases. This occurs because of the increase in

the peak pressure at the surface in conjunction with a

constant rise time. This effect is in marked contrast

to the experimental data in which the fragmentation

is less and less as the water temperature is increased.

One is therefore tempted to believe that the fragmentation

is best correlated with the amount of undershoot at the

later times even though the undershoot never comes down

below 5 psi which is still well above the vapor pressure

of the hot liquid (which is in the range of 10 to 40 mm

of Hg) .

36
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FIGURE 3.1

Pressure time history for Case 1
and r=0.0, .02, .04, .06, .08 and .1 cm, a=.lcm

and T =5000CH



FIGURE 3.1
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FIGURE 3.2

Pressure time history for Case 1
and r=O, a=.2cm

0



FIGURE 3.2
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FIGURE 3.3

Pressure time history for Case 1
and r=O, a=.3cm
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FIGURE 30.3
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FIGURE 31.4

Pressure time history for Case 1
and r=0, a=.5cm



FIGURE 3.4
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FIGURE 3.5

Pressure time history for Case 1
and r=0, a=.75cm
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FIGURE 3. 6

Pressure time history for Case 1
and r=O, a=1.Ocm

p



FIGURE 3.6
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FIGURE 3.7

Pressure time history for Case 9
r=O, and a=.lcm

M- 011. TW P. R" OPPIR IR"ll"'ll"Will-Mill



FIGURE 3.7
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FIGURE 3.8

Pressure time history for Case 5
r=0 and a=.3cm

TH=7000C
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FIGURE 3.8
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FIGURE 3.9

Pressure time history for Case 10
r=0 and a=1.Ocm
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FIGURE 3.10

Pressure time history for Case 4
TH=7 00 0C

'NMI



FIGURE 3.10
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FIGURE 3.11

Pressure time history for Case 1
TL=204C



FIGURE 3.11-
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FIGURE 3.12

Pressure time history for Case 2
Tt=50*c
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FIGURE 3.12
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FIGURE 3.13

Pressure time history for Case 3
TP= 8 0*C
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FIGURE 3.13
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CHAPTER IV

CONCLUSIONS

In this chapter we would like to take up two

topics. One is the conclusions which can be gained

from the overall approach used and the second is the

question of which approximations should be improved

and what further work can be done to improve our

understanding of the fragmentation phenomenon.

IV.1 Summary

First we discuss the conclusions which can be

made. We have made the observation-earlier in Chapter I

that the phenomena is characterized by an oscillatory

vapor film growth which experimentally can lead to an

explosion. The Kazimi model can predict this oscillatory

behaviour but it uniformly predicts minimum pressures

at the surface which are well above the vapor pressure

of the hot globule and do not by. themselves predict the

growth of a vapor bubble on the interior which would

lead to a violent explosion. It was thought that

since the solution to the wave equation has an inverse

r dependance that the dependance would lead to much

more negative pressure swings at r 0 and would

therefore lead to a mechanism for bubble growth and

subsequently a large vapor explosion. This has not

materialized for a variety of reasons which we will list.
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First it should be noted from equation (3.25) that

sin kr.
the interior solution is proportional to kr . This

function does not blow up at zero and in fact the ir-

regular solution was discarded as being unphysical for

that reason. Second, the physical situation can be

described qualitatively as being most nearly a driven

resonant cavity (although there is no rigid wall and

hence some transmission of the acoustic wave into the

vapor film) and not a point source for which the earlier

assumptions would be correct. A driven cavity however

offers some possibilities for amplifying the pressure

wave at the surface-as it progresses to the interior.

This approach was investigated and it was found that the

-6
initial pulse of short duration (2*10 seconds) caused

a transient response which was characterized by strong

oscillations both positive and negative (also of short

duration) which died out in time. However the longer

duration portions of the surface wave were not affected

because the frequency Fourier components which made them

up were outside the resonance region. Thus there is no

reason to expect vaporization on the interior in this

model except for the very short time intervals mentioned

earlier.

IV.2 Recommendations for Future Work

Next we discuss further work to improve the model.
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From our discussion of viscosity effects in Chapter II

it should be clear that this is not the largest energy

loss mechanism in the system and in fadt it is thought

that if the rigid wall approximation were not made the

coupling of the oscillations of the hot globule to the

vapor film would cause much larger losses (radiation

losses). Second the acoustical coupling should be

quite large when the film is small (initially) and should

become less and less as the film grows. This would

mean that a smaller convergence factor could be used

(10-6 instead of 10- 2) but the losses would still be

quite large because of transmission losses in the

beginning. As the film grows however the transmission

losses will get smaller and the lower frequencies will

be amplified much more because of the. smaller

convergence factor.. We will outline a method by which

these ideas can be implemented.

First we note that if there is to be some transmission

out of the sphere, the boundary condition G= 0 must be

dropped. In this case however, to calculate the additional

contribution due to the driven motion of the surface,

it is apparent from inspection of (3.12) we must know ar a

as a function of time. Since we expect the transmission

losses to be reasonably small we can use (3.25) to obtain

(4.1)
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(co Ca -1) a sin kr ~~E(a, t) f (cot ka - a -iwt d
a r sina w,;

(4.1)

Next we can obtain G,(a) by applying the boundary

conditions

G l(a) = G (a) (4.2)

/

G r (a) = G 2 (a) (4.3)

and

G2 (R6) = G3 (R6) (4*)

G 2r(R6) = G3r 6) (4.5)

where the subscripts 1, 2, and 3 refer respectively to

the hot globule, the film, and the coolant regions. The

equations can be solved to find the various reflection

and transmission coefficients and thus determine Gw 1 (a).

Using this result, p can be recomputed by adding on the

additional surface term and the pressure found by doing

the inverse transformation. Thus in effect, we are finding

the fluctuating component of the pressure and the

velocity in the film by knowing the effects of the film

on the hot liquid. To the extent that the change in the

pressure in the film caused by the motion of the surface
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pf the hot liquid is small (it is because of poor

acoustic impedance matching between the film and

the hot liquid, furthermore, the liquid is relatively

incompressible), this is a good approximation.

if higher precision is desired one could iterate the

solution.

Finally we come to the question of the validity

of using equation K4.17 in Kazimi's thesis to eliminate

the vaporization rate as a variable. We begin by

noting that equation K4.17 is used to eliminate the

vaporization rate in K4.23 and K4.24 in the Kazimi

mnodel. However, K4.17 depends through K4.16b on

Ttv and through K4.8b on TR. Now both TR and Tv

are not known until after the simultaneous solution

of K(4.7, 4.9, 4.15, 4.23, 4.24, 4.27 and 4.38).

It seems clear that the evaporation rate and the heat

flow rates should be part of the set of simultaneous

equation which are ultimately solved. It is our opinion

that K4.17 leads to a minimum value for the vaporization

rate and as a consequence the film thickness calculated

are too small. In the cases calculated, the film thickness

is only of the order of 10-3 cm which seems small in

comparison with visual observation of ANL films in

comparable situations. It may be that if TLv and TR

are changing slowly enough for the time intervals

used the equation K4.17 is a reasonable approximation.

4,
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The period in time which is most sensitive is during

the initial positive going pulse and effects could

be expected to be largest there. If the integration

time steps can be chosen small enough during this time

the method used may be adequate.

0 j



LISTING OF THE COMPUTER PROGRAM FOR ACOUSTIC PRESSURE WAVES

COMPLEX. ATl(2000),CAT2(2000),FAC,AR, ARGAXK(2000),XIONECX
1,CLAT 3(.2%l C),X IAA

A P( 2 C), 11f( 2CC),FRE0
P EAL t-4 RK (4 J
IJT EGE P4 *N ( 1 ,NDW I, I IGN, IFCPM
TPI = 2.(-3.141:9

CANE=( 1 .C ,0.C)
XI=(0.L,1.C)

C IS VELECITY COF SOJUND IN MEDIUM IN CM/SEC AND A(RADIUS) IS IN CM.
N IS A.JUBERi CF DATA POINTS
N NLST hE AN FVEN NIMBER BECAUSE OF SIMPLE ALIASING METHOD USED

M IS AUMbEI CF PPESSURE PTS.
IS MAXIMUM VALUE ut- TII(E)

F IS CELTA FPFC
K IS AVIE A\U3ER
21 CCNTINLE

REAC(5, 100) NM,N,T,C,TSC
W ITF ( ,1CO) NN TpCTSC

r0 10 II=1,No,4
JJ= II+3
k- EAD(5,101) (P( I),TIM( I)
Ou ITE (6, 103) (P( I), T I (I

10 CCNTIN(IUE
CO 8 I=1,NM
J=NtP-I +2

AND IS
IN UNIT

ANY INTEGER
S OF TSCALE&

LESS THAN OR EQUAL TO 256

ALE,PINF,A,EPS
ALEPINF, A,EPS

,I=II,JJ),
),I=I IJJ)

JJ=J-l
PC(J)=P(JJ)
TIV(J= TIM(JJ)

8 CCAIINLF
P (1) =P IN F
TIt1.( )=C.0
A f'P I=N t+1

CC 7 I= 1,MP1
P(I)= F(1)-PINF

7 CCNT INHE
t T F. ( C, i C3) ( P(I) , I =1, AMP1)

S

C
C
C
C,
C,
C,
C

A
T
D
X

0



X = N-I1
DT=T/XN
CF=XN/(T*TSCALE*(XN+ I.))
TPIJT=DT/TPI

C INTERFULAT I'LI\ TO GET NUMPER CF
lPAT?( 1)=P( 1)

PC-; 1 I=2,N

XT=XJXLJT+T IP ( -)
CC 4 K=MNMPI
T.F(Xr-T Lt K 5 t5 5,54

5o KK=i(-1
JK=K

4
Cri TL 6

CCII rLE
DLT=TIM(JK)-TIM(KK)
CAT2( I)=(P(KK)+(XT-T

DATA PTS. A POWFR CF. TimO

IM(KK))*(P(JK)-P(KK.fl/DLT)

1 (CC(TINUE
W4RITECS, 104)
%RTTE((.,IC2) DAT2(I) ,I=lN)

rl\N(J= (\
ISIGN=-1

C T F E Ff~kwAPC TRArKSFORM
I F 1-:

C 1FOJPM=C F)F CATA REAL
CALL FCUPr(rAT2,p\NNDU'~ISIGNIFORMvWORK)

4klTF(6,1C2) CDtT2(1),1,lN)

XN 2; i= I\

CO 23 1=19N
CAT? C I)=1AT2(1I)/XNOPM

2 3 cC.NT I NU -



N5=N2+1
CO 2 J=

XJ=J-1
FP F

1,N5

=CF XJ
CX= FRECQ
X K( J ) = CX '* ( C

2 C1N T INUE
vPITE(6,lC4)
RI TE( c , 1C2)

WRITE(e,1C6)
S1T F (6,102

R I TE (6, 1C5)

A A= A tC, NE

*TP I/C
NE-X I* .:E PS)

DAT2(I),I=1,N5)

(XK (II) I 1=1,5)

OF,DT

CC 20 K=1,l
XJ=K-1
Yp=XJ/5.C

CC 1=1,N5

ARGA= XK(I)*AA
FREAC=XK(I)
IF (FREC .F O.C.0)

GC TO 15
11 FAC= NE

CC TO 13
15 IF(K.EC.1) GO TO 17

CC TG 18
17 FAC=ARGA/CSIN(ARGA)

CL TO 13
16 FAC=CSIN(
13 UAT3(I)=
9 CNT INUE

'API TC (6,
A P I TE ( E

C AL IASINC I FF
N-3=N2+2

ARGR)/CSIN(
GAT2( I)xFAC

110)
1C2)(DAT3(
TRANSFOFM

GO TG 11

ARCA)/XP

1),I=1,N5)
.4

0

(



N4=N+ 1
CC 24 I=A3,AN4

CAT3( I) =(C.O,0.0)
24 CCNTINUE

CO 22 J=1,N
nATl(J)=C4T3(J)
JK=N -J+2
Xy=rAT3(JK)
XY=CuNJG (XY)
DAT 1(J)=C'AT 1(J)+XY

22 CCN TINUF
DAT1(N5)=DAT1(N5)/2.0

%RIT E (f;,C)
. %RITE(6,9102) (DATl(J),.,J=1,N)

IS I GN=+ 1
IFC<,M=+ .
NK (1) =

IFO9M=+1 FCA A CC;APLEX FLNC1ION(DATA)
TI-E IAVERSE TRANSFCPM

CALL FCURT(DAT1,NNNDTtISIGNIFORM,WCRK)
wRITE(6,101)
0 RITE(6,102)( DATC(),=1,N

20-CCN TINUE

IGC
1 1
102
103?

105
106
1u7

110
111

G-r TC 21
FCRVAT (21 5,3E10.3,3F10.4)
FPMAT ( (tC.4))
FCtMAT(10(l1XE12.6))P Cx M A T (C) (1 X', E 10 2 -I )6
FGRNAT (8(4X,EIC.4))
F;jRMAT ( H ,41-DATA)
FCPMAT(ill ,1(H CF AND CT)
FCRIVAT(1H ,2FXK)
FCRMXAT(tH ,113HATA PRESSURE)

FCPMAT(1H ,'1HFIAAL TRAASFCRM)
FURMAT(IH ,41CATI)

FCrk'-AT (2 (5X, E 12.6))
t.ND

0

C
C
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APPENDIX B

SURVEY OF THE FAST FOURIER TRANSFORM

AS APPLIED TO THE COMPUTATION OF FOURIER INTEGRALS

The solution of the acoustic wave equation as

accomplished in this thesis is an example of the use of

the Fourier transform over the infinite time domain.

Computationally, however, we are interested only in

finite time intervals so it is necessary to establish

the connection between the finite Fourier transform at

discrete intervals and the continuous transform over an

infinite interval. Suppose we have a function X(t)

which has a F.T.

a(f) = X(t)e ift dt (B.1)

Then

X(t) = Go a(fe21rift df (B.2)

If X(t) is sampled at intervals of length At, then

(2) expressed at the points j - At, j = 0, + 1, + 2,...

can be written

X(j o At) = f* a(f)e2-if/F df (B.3)

where 1/F = At or. F = 1/At. This F is twice the

Nyquist frequency. This integral can be broken up
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into a sum identical with (B.3)

x(i - At) =

Go (k+l)F

I kf
kia-m kF

-a(f)e 2 ij f/F df

(k+l) F
fo
kF

a(f)e 2nijf/F df = fF a(f+kF)e 21ij(f+kF)/F

*I .0

but

e21rij(f+kF)/F e 2 ijf/F

i.e. it is a function of period F.

So

X(j - At) F a(f+kF)e 2 rijf/F
d2r

f ap(f). e2Trijf/F dF
0

where

ap (f) = a(f+kF)

(B.7)

(B.8)

(B.9)

The subscript p on a function will denote the periodic

function formed by the superposition of the nonperiodic

function shifted by all multiples of a fundamental

period. The function ap(f) is aaid to be an "aliased"

version of a(f), with the aliasing occurring relative to

the Nyquist frequency F/2.

Now

(B.4)

df

(B.5)

(B.6)
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Since a (f) is a periodic function of f it has a
p

Fourier series expansion. Further,we see.from (B.8)

that the coefficients of this~ expansion are given by 1/F

times the sequence X(j - At). Hence, (B.8) has the

reciprocal equation

0

ap(f) = 4 x(j At) e -2wifj/F (B.10)

In this relationship between ap(f) and X(j - At) the usual

roles of time and frequency are interchanged; i.e., a

periodic, continuous function of frequency corresponds

to a sequence of time coefficients.- Now, (B.10) is a

discrete Fourier transform but it is not finite. However,

if we consider the values of aP(f) at N equally spaced

points between 0 and F, i.e. sample aP(f) at intervals

F = F/N l/(NAt), we obtain

a (nAf) = X(jAt) e-2wijn/N

N-1 m.
" I I X(jAt + LNAt) e- 2 wijn/N (B.11)

j=O L=-00

The last result follows from the fact that e-2 ijn/N is

a periodic sequence of j with period N. Hence we finally

have
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N-I -2rj/ B 2ap (nAf) N 1 Xp (jAt) e 2 Wijn/N (B.12)

where

xp (t) = X (t + XT) (B.13)

is periodic of period T = NAt = 1/Af.

It is only a matter of a multiplication constant to

put (B.12) in the form of the finite Fourier transform.

Thus, if two functions are Fourier transforms of one

another then the sequences obtained from them by

sampling and aliasing in this fashion are finite Fourier

transforms of one another.
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