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TRANSIENT HEAT TRANSFER INDUCED PRESSURE
FLUCTUATIONS IN THE FUEL COOLANT INTERACTION

ABSTRACT

(9

- Rapid generation of high pressures and mechanical
work may result when thermal energy is transferred from
the hot molten nuclear fuel to the coolant in an LMFBR
accident. Such energetic thermal interactions can
happen if a large heat transfer area is created by
the fragmentation of the molten fuel in the coolant.

A model was developed by Kazimi to simulate the .
dynamic growth of the vapor film around a hot spherical
particle which was suddenly immersed in a coolant. The
- present work extends this model to give the pressure
fluctuations on the interior and exterior due to the
surface pressure of the vapor film as a driving function.

In this work the acoustic wave equation for a
fluctuating pressure is developed for a compressible,
viscous fluid. This equation is solved by the Fourier
transform technique analytically and the finite fast
Fourier transform algorithm is used numerically to
obtain the pressure as a function of time. These tech-
niques are applied to various cases of hot spheres in
water to determine if a previously advanced hypothesis
of cavitation is a principal mechanism in inducing cavi-
tation and a subsequent fragmentation of the hot molten
material in water. In some cases there is a good cor-
relation with the negative pressure trends and the known
fragmentation behavior.
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- CHAPTER I 7

-INTRODUCTION

I.1 Ingpoduction

Small scale lahoratory experiments and TREAT(I)

experiments have shown that Uo, fragments as it comes
into contact with liquid sodium. Other experience(z)
has shown that violent eiblosions can occur if large

- masses of molten metal come into sudden contact with a
coolant (water in many cases). These experiments are
quite convincing in showing that the large rapid energy
‘releases are not due to chemical reactions but instead
are the result of large total heat transfer rates caused
possibly by extensive fragmentationbto expose a large
heat transfer area. The subsequent high pressure can be
assessed in detail by direct measurement and by
establishing models.

It is important to understanding fragmentation to
calculate both interior and exterior ptrossure for the
molten globule. Since the extent of fragmentation
lies mﬁch further down a long chain of events which.
are not well understood, we can hope that by starting
to investigate the parts of the chain where our
knowledge of the physics involved is reasonably secure,
it will be possible to unravel the rest of the problem.
Oone useful result might be t$ establish a correlation

between the pressure history and the extent of



fragmentation. This is useful because we can make a
model calculation for the pressure history..and then use
limited experimental data to extend predictions of
fragmentation to previously unmeasured cases. We are
led to expect this connection by a :suggestion due to
Kazimi(3) tha} the mechanism for fragmentation under
certain conditions is caviéhtion.of-the;hot;material
during a subatmospheric pressure swing (below the vapor
pressure for the hot liquid) at the surface of the drop.
The film pressure at the surface can be obtained
) from a model due to Kaziﬁi(3), ‘The £ilm pressure
obtained in this way can be used to calculate the
interior pressure waves starting from a givenffilm
pressure in o:der to investigate the possibility of
cavitation as a mechanism for inducing fragméntation.
It is clear, however, that any detailed model of

fragmentation will give the film pressure as a function

of time and can be compared to these experimental results.



I.2 A Fragmentation Model

A review by Kazimi(3) of the fragmentation experiments
that have been performed in recent years has shown the
following overall characteristics.

1. When the molten material is at a temperature
iower than the boiling point of the coolant,
fragmentation may occur and will follow a
pattern predicted by hydrodynamic effect
(Weber number effect). ‘

2. At higher temperatures, the fragmentation is
dependent on the temperatures of both the
molten material and coolant. | |

3. Different hot materials dropped into the same

| cold liquid may result in different fragmentation

behavior (e.g., at 600°C Sn fragmente in water_
at 30°C while Zn does not).

The first ‘and second point taken together suggest a

competition between hydrodynamic and thermal effects.

The third point suggests that indeoendent of the external

driving forces the internal dynamics also play a

determining role through such things as the viscosity

and the surface tension of the particular material. These

results suggest the transient heat flow and resulting vapor

film growth affect the interaction of the hot material

and the coolant in a way that only a detailed calculation

can make clear. A complete model should include both the
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hydrodynamic and thermal,effects. However, fhe second
point mentioned earlier suggest there are domains in
which thermal effects are dominant.

Kazimi(a) has developed a model of vapor film
growth which starts from a gaseous (non-condensable)

-15

film (<10 cm thick) surrounding a molten sphere at

3

the time of contact. The subsequent heat flow is used

to calculate the rate of vaporization according to the

equation
dmv aTH amz
L ai— = "’kH -a——- + kf. '5—— (1.1)

R Rg.

where L is the heat of vaporization, m, is the mass of
vapor, k; is the thermal conductivity of the hot body,

kz is the thermal conductivity of the liquid eoolant,

TH is the temperature of the hot body and szis the
temperature of the coolant. We note parenthetically

that there is some question of the validity of

equation (1.1) in the particelar circumstances but
deferldiscussion of this point to Chapter IV. This

vapor then expands as its temperature rises but because
of inertia it over expands causing a pressure drop. Then
as the vapor contracts, there is more heat flow and

more vaporization so that a forced oscillation is setup
which.eventually dies out as the temperature of the molten

sphere approaches the temperature of the coolant.



11
There are three main results of this model.

a) Effect of Water Temperature

The oscillatory behavior is damped quickly when
the water subcooliny is small, in spite of theAinitially
larger pulse. Higher vaporization rates are obtained at
smaller values of water subcooling. This allows the
£film to grow ;moothly without oscillations. The heat
- consumed in vaporization is found to be a small fraction
of the total transferred heat in the model.

Experimentally, the fragmentation of different
materials, including tin,.have been observed to be enhanced
.ﬁith larger subcoolings of water and.to be virtually non-
existent when the water temperature is above 70°C.(4)
One of the aims of this thesis is to establish the relation-

ship between the interior pressure time hiétory and the

degree of subcooling of the water as given by this model.

b) Effect of the Hot Sphere Temperature

Pressure histories for the film around molten tin
spheres initially at 400°C, 500°C and 700°C for the same
water temperature, 20°C, have been calculated. The
ptessure oscillations are more~vigorous initially (up
to .5 msec) as the temperature is increaséd. The
pressure oscillations are dampea faster however for
the sphere at 700°C initial temperature.

In Chapter IITof this thesis we will give formulas

for the internal pressures in the molten drop obtained
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from assuming.a driving pressure at the surface. At this
point, it is enough to know that the solution for the in-

ternal pressure, p(r,t) is

® pw(a,t)e-lmt

dw . (2)

p(x,t) ? Io sin(ka)

where k = w/C

neglecting viscous and compressibility effects. Thus, if
the Fourier component of p(é,t) = pm(a,t) is appreciable
where ka ~ m, then large internal pressures both positive
‘and negative can be obtained. One can see, then, that as

- the hot drop's temperature is increased the initial pressure
increaée becomes larger and sharper (in time) yielding a
higher frequency so that k increases. Therefore as the term
ka approaches w the internal pressures get larger. Of course,
physically there are viscosity and compressibility effects'
so that the integral in Eq. (2) does not go to infinity but
instead goés\through a maximum and then diminishes. The

(4)

experimental results of Cho suggest an enhanced fragmenta-

tion for tin up to 500°C followed by a marked decrease in the

(5)

fragmentation. Limited results of Witte, et al. indicate
‘an increase of ftagméntation with temperatute up to 700°C.
Some British results indicate an increased fragmentation
with temperature but also without an obsérved decrease for
the temperature range investigated. We have not yet been

able to analyze all these experiments sufficiently to re-

solve the apparent discrepancies in observed behavior.
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CHAPTER II.

" THE ACOUSTIC WAVE IN A VISCOUS COMPRESSIBLE FLUID

In this chapter, we begin by deriving the wave
. equation for the pressure in a fluid.

*

The equation of continuity is .

& -

%% +pVsu=0 B :' (2.1)

¥ is the velocity of the fluid at a'point
15*6 is the smail.time varying . part of.the density
p is the équilibriﬁm value of the density
and is a constant in space -and time
‘D:is the total density | |
or . |

D=p+ 6§ . | o . - (2,2)

and the first-order Stokes-Navier equation(s).is

wjw
ol

prg=-Vp+ (n+4/3y) vV (V « 1)

- uVx (Vxu) .. o (2.3)

It is a fundamental theorem.of vector calculus that
Any vector function of positidn such as u can always
be uniquely sépafated.info a longitudinal part EL
for which V ? Ez = 0 and a transverse part for which

Veu =0,
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So define
v x '_Ez = 0 : Co | | (2.4)

.

T.hus:substituting"ﬁ'n and ug into (2.3) separately
[ ~
and using (2.4 and 2.5) we obtain

oA e e

.9y, v ' '

Ex = - . - 2=

aﬁ . . . .
PR =-uVx (VxT) - : (2.7)

It.mhst also be kept in mind that the gradient of a
scélar functi6n (in this case p) is entirely longitudinél,
ie. since VxVp=0 for any p, the equation can bevsplié
into theéé two separate equations. Thus the transverse
part of u, E£ is unrelated to the pfessure wave. The.
'two parts of the velocity solutién! ﬁi'and u, can be

t
solved for separately and need not be combined until we

el
-

come to satisfying the boundary conditions.

The continuity equation (3.l1l) can be rewritten as

.%%i+ pV e ﬁi = 0, since vV . ﬁ£ =0 (2.8)

Next, taking the time derivative of (2.8) we get
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326 L Sae . .
since

°p _

=0

Taking the gradient of(2.8)gives
"

-1 924 = -

Using (2.10) to eliminate V’uz in {2.6) gives

&
p = -Vp - (n + 4/3y)

al o
rrl £l
»

v %ls-  (2.13)

Ol

Takihg the divergence of (2.11) gives

pop V-, =~ - (n_+ 4/3u) 3 g2, (2.12)

Using (2.9) to replace the L.H.S. of (2.12) gives

_3:_§_= 2 (n__j_iL?ﬂj.)a 25 3

The next equation is the equation of continuity for

heat flow.

]
@l
o

n

K V27 S ' (2.14)
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where T is the small time varying part of the temperature,

- % is the time independent equilibrium value of the

temperature, and ¢ is the small time varying part of
the entropy. We have omitted the viscosity loss
iermlbecause it is second order'in.ﬁ.- The first order
effecﬁs of‘vigcosity enter in equation (2.12). The

last two relationship needed are the equation of state,

1 Yelating pressure, volume and temperature in the gas

ana the: second law Qf thermodynamics, relating the

_ Qntrbpy content of the fluid to the other variables.

. These equations are:

6=()p+()?r o (2

U=()T+()P T (2.18)
‘where ) | | | '
£ em !‘. EY. = 1'. §£ ' :
Ry G "r &, - . 2an
1 3V.‘,_._:l 9p x : " :
=5 G, = -5 G, ~ (2.18)

Using (2.17) and (2.18) in (2.15) we obtain

%= pKyp-pBT . (2.19)
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and furthermore

CVKT = Cszﬂor KT = YKS (2.20)
and ;
. _ (9P _
a = (35 = B/Kq | - (2.21)
V .
So using (2.20) and (2.21) in (2.19) we get
6§ = pKy (p -aT)
or
8 = pst (p - at) (2.22)
where |
- 1l (aVv l.9p
Ko 2 - 5 (-—- = =
S V \oP s p oP S

This result holds for any pure material for p and 7
small compared to P and T. By similar methods we can
obtain a similar equation for the entropy

C

_ _y-1 |
o= -% (t zfy——p) | | (2.23)

If we define

_ K |
2n = pCpC (2.24)

and use 2.24 and 2.23 in 2.14 we get

L Vit = %? (t -$530p (2.25)
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Finally if we define

| + 4/3u o
and |
c? =1 (2.27)
Pig’ | - )

then using (2.26) and (2.27) in (2.12) we-get‘

' 2
Vo= Ber-tvc V) (p-on) (2.28)

| Equation (2.28) is the wave equation, modified for the
effects of viscosity and thermal conduction. If there
were no conduction, zn would be zero (see 2.24), T
'would have to equal to (y-1l) p/ya and y(p~-at) would
equal p. This is the approximation which has been |
chosen. This corresponds to adiabatic wave motion and
is a reasonable approximation for the times‘over which
the phenomena of fragmentation oécgrs (10”8 to 1074
seconds). However, in general there are two kinds of waves
depending on which flow predominates. One of them (the
adiabatic wave) has already been discussed. The other
wave corresponds chiefly to heat diffusion; here p is
small compared with at,and the wave veloéity is

proportional to i indicating rapid attenuation. This

‘means that this mode is important only near the boundaries.
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Thus except for fluids with high viscosity or conductivity, .

(2.28) with y (P=at) = p will adequately de§cribe.the
acoustic behaviour"of'the medium everywhere outside
a émall boundary layer. A more careful examination
6f/the problem woqld include the simultaneous solution

of (2.28):and (2.25).
-'Finally we put (2.28) in the form used

4 1l 92 9
Vp=zGE-WwciEv)e (2.29)
Introducing the F. T. (Féurier Transform) of p or
p,; we obtain ‘
(v2 + 24 §2) + k2 '-o -’ o 2.30)
.C_--— pw pw - ( . 0)
or ‘ .
g2 2 ; = 0
B v p, +[x /1 + u.vk)]pw 0 (2.31)
or - |
Vipu+ K?py =0 (2.32)
where

Y k21 - 1g.k)
K= a3

w?
and k2 =
. ct

Tﬁe result then of viscosity is to make the wave

number complex indicating attenuation of the wave.

This result, (2.32) will be used in Chapﬁer ITI. It

has two approximations inherent in its use., First

it is a small amplitude approximation and second it

1

L.
Y
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is for an adiabatic wave. We have calculated'zv.for'tin
at 500°C and found %y = 3.1 i I57 which shows that the
éttenuation due to viscosity effects is quite small so
that losses due to transmission at the boundary

iS'p}obably the dominant energy loss mechanism.

&
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III.2 Numerical Results

22
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CHAPTER III

THE ACOUSTIC WAVE.NEGLECTING VISCOSITY

In Chapter I we discussed the results of a model
‘ by'Kazimi3 in which vapor film growth at the éurface
of a hot liquid sphere (usuallf metallic) gives rise
to a pressurization in time of the surface of the hot
globule. In this chapter we will develop the equa-
tions for the interior and exterior pressure wave as
a function of spaée and time and will present the
numerical results of these equatiohs for various of
_the cases for which the pressure wave at the surface

is already known.

III.1 Theoretical Results

We begin by taking the wave equation developed in
Chapter Ii (equation‘2.29) as our starting point. This
equation was derived in the small'amplitude approximation
for the general case of a viscous fluid with thermal con-
- duction. We begin by neglecting viscous effects, that
is taking %; = 0 so |

. . 2

2 1 23 - 2 1
Vp - = 2B = f£(r,t) where C* = —<— (3.1)
C? at? ) sz

where £(r,t) is the volumetric driving pressure (or
inhomogenous term), p is the density of the medium, Ks'
is the isentropic compressibility, C is the speed of sound,

and p is the pressure difference from equilibrium at a point.



' We apply the Fourier transform (F.T.) technique

which gives

p(T,t) = [ pue” " qu
e
and . .
| -
) +int
Pu(® =35 [ p(E,t) " at

where Py is the F.T. of p.

The F. T. of equation (3.1) is

- v2 Py + kzp;, = - £,(¥) .
where
fo=3, ] £@ " ar
and o |
'k2 gth/CZ

Define g, such that

2 2

v o

- A

This g is the F.T. of the Green's function for an

infinlte medium. However, to satisfy the boundary

g,,,(r. o) *+ kg, (X7, ) = - §(,E,)

(3.2)

(3.3)

.(3.4)

(3.5)

(3.6)

(3.7)

conditions which necessarily include reflections at

the wall we add Xx.

Ny

24
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Where |
?2x+k2x=o e . - (3.8)
60 the F.T. of the appropriate Greens function for
the problem’ is defined by |-
/ '

GN(E"EO) = gm’(;';o) + X . o . (3.9)
G -« - . .

.:Next using one of Green's theorems

¥

‘ )
P, = [y £, G, aV_ + [o [G, ==— P
) Vo w “w o’ Sg W ano w

C-py () 5o G]ds | - (3.10)
n_ - |

where n, is the putward pointing normal and 33— is
: : (e}

the normal derivative at the surface.
In the case at hand we believe that the dominant

source of radiation is the pulsating surface of the
sphere. So for the burposes of the model it should

~ be sufficient to consider only'the surface terms and this

is of course a convenient sxmpllficatlon. For these

reasons, we set fw = 0. We then obtain

-t B oY
.- d

pw = ! [Gw 81?1 pw - pm ag G ] dso . ‘ (3.12)
.8y °

(r = ¥, = @ defines So in this case)
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It is clear then, that p, can be calculated in

general if we know p (a) and 5%—~pw(a). However

we can make another simplifyingoassumption which
should give the right trends to the pressure although
it is not a particularly good assumption. The
assumption we introduce is the assumption of rigid

boundaries which has the result that Gm(a) = 0,

Using this result gives

pu(® = -] pyla) 52— G,(F,F) ds.  (3.13)
So o

Now the Green's function for an infinite medium is

gu = £ h_(xR) | ‘ | (3.14)
h  is a zero order spherical Hankel function and

R = |T-T |

The expansion of g, in spherical coordinates in
terms of the coordinates r, 6, ¢of the measurement

point and Tor Oo¢ ¢o,of the source point is

aT Tm+n) 1 X

gm = 2_]_{_ | z (2m + 1) eh (m-n)’
v RS  (3.15)

(ke Yh (kr) ¢ > x
I ket (kx ) r < x

G

o . . .
*x Yo (0,0)Y ] (6,6,) {

o

<
r'ro = a



and Gm
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is found as

ik
(m+n) ! m n‘-o

+

l : (m=n) ! | G
G, = 5= (2m+1) €y Tt e _,9.)
P A m£0 | nga n °

t

% [Hy = Ady (ke) 3 (kx) )  Bae)

: Impdsing the condition that G, = 0 at r, = a gives

j, (ke)h_(ke) - A3 (kr) 3_(ka) = 0 Gan

or

hy Oka) e
i PN S o .o (3.18)

We need -a-g—- Gy which we can now calculate as

. )

- 9Guw = ik (m- n)!
ang lr =5 T mzo‘z“"” ) en( ™)l Tm,n (e M
1, T
9

o ' , hm (ka) .
n(eor(bo) ¥ ﬁ'g (Hp - ‘j%m 'Jm(kr)Jm(kro)]

~

r=a  (3.19)
and éfier SOme'algebfa B ..;
: \ L
5 h {ka) .
5n° iy (kai Jmétf)J m{kTo) ) r, = a (3.20)
| k2 2 jm(ka) |

Using equatlon (3.20) in (3.19) and substitutlng for

3Guw

in equat;on {3.13) we obtai

L‘»
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)

1 = Gplkry (m-n) !
Pp=7=J p, a) ] (2m+1) z
WA gy 077 p2o In(ka) 1T alo nmE Y
. ) y° L o
f  m,n(e'¢) Ym,n(eo'¢o) dQo ' (3‘21)
o - /!
' ow
IR i cc e L - ‘ . ]
; -[4“ Yo,n(8or8s) 4%, = 21 &m ény S0y (3.22)
and .
Y =Yg =Po=1 | (3.23)
0,0 o o . _ : . . ‘ * o

i

Y
'This means that since there is no angular depehdance
in (3.23) we need only the zero order spherical
harmonics which are also angle independent.

We get

plr,t) = [ 32(}’:? pyla)e C a (3,24
where | |

jo(z) = (sin z);z and k = w/C'

' 80, using equation (3.24)

Ja sin kr —iwt N
‘P(r:t) = ,_”'i' m _Pm (a) e: dw ' B (3.25)
.-.;t,, ’.‘ » '

It is also useful to have an explicit expression for

p(r = o,t) which is

i

o,t) = [° F2_p (a) elut gy (3.26)

p(r sin ka

28

o m——-——
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Furthermore we need the limiting forms for the multiplying

factors of p,(a) in equation (3.25) and (3.26)

So

lim a sin kr

k+o T sinka 1 (3.27)
and

lim ka =1 (3.28)

k+0 sin ka

We are now in a positioﬂ to calculate thé
interior pressure wave given the pressure at the
surface. Numerically this is accomplished by the
use of £he Fast Fourier Transform (FE@) method due
to Cooley and Tukey7. This method has been imple-

8 of the MIT Department of

mented by Norman Brenner
Earth and Planetary Sciences and is on the Math
Library Tape as a load module in single precision.

It is calléd FOURT. This program is used as a
Fortran subroutine to calculate both the forward

and inverse transform.

The solution p(r,t) expressed.in equation (3.25)
has some practical 1imi£ations besides the ones
imposed by the varioué assumptions which have been
made. The most impbrtant limitation is that as the
wavelength corresponding to the frequency at thch P

w)

is small compared to p, at w= o becomés much smaller

9

'

than the radius of the sphere, the solution has many

peaks and valleys which require a large number of -
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‘mesh points over which p(a,t) and p, (a) must be known.
fu:fhe:; more and more significant figures must be -
carried in order to get meaninéful results. One measure
- of ﬁbw good the results obtained are is how small the
;céléulated imaginary part of p(r,t) is. This is

because boéh the real and imaginary_parts satisiy
“the Qave equation gnd the boundary condition for the
.iﬁaginary part is that it be zero at time equal zero.

In the results obtained té date, the imaginary part bf
p(r,ti hag been a factor of 105 smaller than the real
'paft in all cases. This limitation can be alleviated
“to éome extent by using FOURT in double precﬁsion but it
can not be entirely eliminated. | |

- The model so far'presented aiso is limited‘by

two assumptions which have been made. The first énd least
serious:k;fhe neglect of viscosity} This has the effect
of making4thé absolute value of the éressure calculated
in'tﬁe model too large. Its negléct also leads to the
~singular behaviour of p(r,t) as givén in equation (3.25)
siﬂce at ka = 1 the integrand blows ﬁp. In Chapter. II,
we4in¢1udéd viséosity:effects and those results have

led to ﬁhe int:oductién of a convergence factor into

equation (3.25) in the following way:

k = w/C - ie *
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where € is the convergence factor taken as .0l to

avoid the previously mentioned singularity. :-- Of course,
since € is so small, it has no bractical effect

except at ka % =, The second assumption of rigid walls
- is a poor approximation but can still serve as a

point of departure. Neglect of transmission of the
pressure wave is a large effect which also causes

‘the calculated pressures to be too large in absolute
value. The inclusion of this effect will be discussed
in Chapter IV. Finally, the most important property

of equation (3.25) is the resonance behaviour which it
exhibits. That is, when ka = nq, the talculated pressures
get very large (infinite if viscosity .dis neglected).
This will lead to subatmospheric pressures (as we

will see) and even negative pressurés. A third
limitation as was mentioned earlier is the small
amplitude approximation, which means that p/P<<1

for the wave equation to hold. One must, thefefpre,
keep in mind that strictly speaking these results are
not apélicable when p 2 P. HQwever,'the calculated
pressures are certainly indicative of the main trends

within the 1imitations‘already mentioned.

III.1 Numerical Results

In this section the numerical results for various

cases will be discussed. These cases will be the same
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as some of those done by KazimiB. They are given in

.Table 3.1 which shows that the variation of..the:

radius has been divided into two parts. One part

| deals with the variation caused by varying the radius

and not the pressure at the surface and the second

part is concerned with the radius variation plus
+

'the corresponding change in the surface pressure.

'The first case which is of interest to investigate

is the r-dependance.

I. Radial Dépendance

Vfor a small radius (a = .lcm), figure 3.1

'shows a series of pressure versus time curves

(all overlapping) for each of five radii (r =.0,
a/5; 2a/5, 3a/5, 4a/5,'a, a=.lcm)., In‘this
figure, one can see that there is essentzally no
change. One can understand this result by taklng

the limit of equation (3.25) as a (and subsequently r,

- since r <a) goes to zero. The result of this limiting

process is to show that the multiplicative factor of
pﬁ(a) goes to one which means that p(r t) approaches

(a t) for all r. Thls can be understood phy51cally

- as a case in whlch the system will follow the

driving function if the dimensions are small compared

to the .wavelengths present in the driVihg function,

i.e. for a =".1 cm, .3€ A < 50 cm.

~~
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TABLE 3.1
/ CASE |
i NUMBER 1 2 3 4 5 5 10
" VARIABLES
Initial Sphere ‘ .
‘Temperature, °C 500 500 500 400 700 700 700
Water Pool
Temperature, °C 20 50 80 20 20 20 20
Spggre Radius, Varied 3 3 3 3 N 1o
Initial Film -5 -5 -5 -5 -5 -5 -5
Thickness, cm 10 10 10 10 10 10 ~ ;0
Radius Corre- ‘
sponding to : .
Assumed Driving »3 .3 .3 .3 .3 1| 1.0
Pressure,
Figure Showing _ v '
*7.//
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II. Effect of Radius (a) of Sphere

a) In figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 the pres-
.sure time history at r = 0 for case (1) for the different
values of a = .1, .2, .3, .5, .75, 1.0 cﬁ is shown. It
can be seen that the absolute value of thé_pressure
swinés in the initial pulse (the transient behaviour)
increases as a incréases. However, the'lower frequency
oscillations thaf[follow»are relatively unaffected as
the trahsient behaviour decays out. This is a resonance
effect for the high frequencies'such that ka = . ‘wa—
- ever for the rest of the pulse for the radii studied,
conditions areloff resonance. In this case (1) the
‘driving function is kept the same for all radii and
correspbnds torthe Kazimi calculated function for

a= 0.3 cm.

b) Next the total effect of varying the radius is con-
sidered. This includes the variation in the surface
pressﬁre caused by varying the radius. These cases are
labelled 9, 5, and 10 and the results are shown in
figures 3.7, 3.8, and 3.9 for r = 0, a = .1, .3 and

1.0 ecm. The trend here is also for the absolute

value of the preséure in £he transient to increase
except that the variation is much more dramatic as

a result of including the increases in the initial
pulse. It should be kept in mind that the low fre-

5

quency oscillations in the 107 ° to 10-3 sec time

domain are relatively unaffected. The rise times of the
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initial positive going part are getting longer in
contrast to the experimental data of references 3

and 4. However, one can't make too much of the trend as
the rise timeé in the experimental data are‘£Ypically
100 - 500 micro-seconds whereas the Kazimi modelvgives‘
approximately 1 micro-second. Furthermbre,.it seems
clear that the pressure pulse being megsured is the
final pressurization of'the explosion while the
.calculated pressures are those which preceed the
‘explosion and possibly ére causing the interﬁal
vaporization which leads to the explosion. |

III. Effect of Hot Sphere Temperature
" There is a Body of evidence (reviewed in

reference 3) which shows that fragmentétion"is more
extensive as the hot body temperature is increased.
Presumably this would mean the pressure down swings
would be'longer and deeper to induce this 1arger
extent of fragmentation. This has been investigated
in cases 4, 1, and 5 in this work. The results of
the pressure calculation shown in figures 3.10, 3.3
and 3.8 for‘rA= 0 and a = .3 cm was carried out at
hot body temperatures of 400, 500 and 700°C. As
temperature goes up, the amplitude of the transient
(both plus and minus swings) gets larger. 1In all
cases the pressﬁfe goes negative sevefal times -

but for short periods (about 1 micro-second). -
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Furthermore, this is still too short a time to
\cdrrespond to the experimental results altﬂough
bubbles initiated at these times could grow in
response to the subatmospheric part of the éulse
which arrives later, if it were less than the vapor
pressure of the hot liquid at that time andAﬁemperature.

IV. Effect of Water Temperature :

Finally, the effect of increasing thé temperature
,of the water was investigated for cases 1, 2 and 3
which corresponds to temperatures of 20, 50, and 80°C
"and the results for r = 0 are shown in figures ‘“-"‘.'3'///
3.12, and 3.13. Here can be seen that’as the temperature
increases the amplitude of the pressure swings also <
ihcreases. This occurs because of the increase in
| thé peak pressure at the surface in conjunétion with a
conétant rise time. This effect is in matkéd contrast
to the experimental data in which fhe fragﬁéﬁtation
is less and less as the water temperature is increased.
One is therefore tempted to believe that‘tﬁe fragmentation
is best correlated with the amount.of.undershoot at the
later times even though the undershoot never comes down
below 5 psi which is still well above thefvépor pressure
of thevhot liquid (which is in the ranée bf"lo to 40 mm
of Hg). , . .



FIGURE 3.1

Pressure time history for Case 1
and r=0.0, .02, .04, .06, .08 and .1 cm, a=.lcm
and TH=500°C .
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FIGURE 3.2

Pressure time history for Case 1
' and r=0, a=.2cm

39



-3
o

()]
o

) - Conbeerit.
E— . (8,]
(o] o

yZ
w
o

o

GArnsune (5
- n
o (@)

!
-
o

~ FIGURE 3.2-

.

Case Number

Initial Sphere
. Temperature, °C

P

Water Pool
Temperature, °C
Sphere Radius, cm
Initial Film
Thickness, cm,

Observation Point,'qm

500
20 .
.2

107°
0.0

r

‘.

6

12

6

TIME (107" secs)

18

oy



FIGURE 3.3

Pressure time hiétory for Case 1
and r=0, a=.3cm
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" FIGURE 3.3
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FIGURE 3.4

Pressure time history for Case 1
and r=0, a=.5cm ’
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FIGURE 3.4

160
}MC__ A ' Case Number 1
Initial Sphere
120l— ‘ Temperature, °C 500
' ! Water Pool
) ~ Temperature, °C 20
100l— Sphere Radius, cm .5
(1) Initial Film -5
‘ . Thickness, cm , 10
80 L s~ ' Observation Point, ecm 0.0
60 |_ :
u .
) »
zguo -
<
ézo—
o KA
Q50 M
=20
o
-60 | | | | L1 R I L1 | L
0 6 12 .18 2b 30 36 42 48
TIME (10"6 secs)

R%



FIGURE 3.5

Pressure time history for Case 1
and r=0, a=.75cnm
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FIGURE 3.5 .
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FIGURE 3.6

Pressure time history for Case 1
and r=0, a=1.0cm
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FIGURE 3.7

Pressure time history for Case 9
r=0, and a=.lcm
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FIGURE 3.7
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FIGURE 3.8

Pressure time history for Case 5
r=0 and a=.3cm
Ty=700°C
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FIGURE 3.9

Pressure time history for Case 10
: r=0 and a=1.0cm
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FIGURE 3.10

Pressure time history for Case U
Ty=T700°C -
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FIGURE 3.11

Pressure time history for Case 1
sz=20°C
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FIGURE 3.12

Pressure time history for Case 2
T1=50°C
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FIGURE 3.13

Pressure time history for Case 3
T2=8 0°C
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CHAPTER 1V

CONCLUSIONS

In this chapter we would like to take upvtwo
topics. One is the conclusions which can be gained
from .the overall approach used and the second is the
question‘;f which approximations should be‘improved'
and what further work can be done to improve our

"understanding of the fragmentation phenomenon.

IV.i Summary

First we discuss the conclusions which can be
made. We have made the observation-earlier in Chapter 1I
that the phenomena is characterized by an oscillatory
vapor film growth which experimeﬁtally can lead to an
explosion. The Kazimi model can predict this.oscillatory
behaviopr but it uniformly predicts minimum pressures
at the surface which are well above the vapor pressure
of the hot globule and do not by, themselves éredict the
growth of a vapor bubble on the interior which would
lead to a violent explosion. It waé thought that
since the solution to the wave equation has an inverse
r dependance that the depehdance would lead to much
more negative pressure swings at r = O and would
therefore lead to a mechanism for bubble growth and
subsequently a large vapor.explosioﬁ. This has not

materialized for a variety of reasons which we will list.
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First it should be noted from equation (3.25) that

sin kr
kr °

function does not blow up at zero and in fact the ir-

the ‘interior solution is proportional to This
regular solution was discarded as being unphysical for
that reason. Second, the physical situation can be
described qualitatively as being most hearly a driven
resonant cavity (although there is no rigid wall and
henée some transmission of the acoustic wave into the
vapor film) and not a point source for which the earlier
assumptions would be correct. A driven cavity however
offers some possibilities for amplifying the pressure
wave at the surface-as it progresses to the interior.
This approach was investigated and it was found that the

6 seconds) caused

initial pulse of short duration (2*10°
a transient response which was characterized by strong
oscillatipns both positive and negative (also of short
duration) which died out in time. However the longer
duration portions of the surface wave were not affected
' bécause the frequency Fourier components which made them
up were outside the resonance region. Thus there is no
reason to expect vaporization on the interior in this

model except for the very short time intervals mentioned

earlier.

IV.2 Recommendations for Future Work

Next we discuss further work to improve the model.
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From our discussion of viscosity effects in Chapter II

it should be clear that this is not the largest energy
loss mechanism in the system and in fact it is thought
that if the rigid wall approximation were not made the
coupling of the oscillations of the hot globule to the
vapor film would cause much larger-losses (radiation
losses). Seé;nd the acoustical coupling should be

quite large when the film is émall (initially) and should
.become less and less as the film grows. This would

mean that a smaller convergence factor could be used

=6 instead of 10 2) but the losses would still be

(10
quite large because of transmission losses in the
beginning. As the film grows however the transmission
losses will get smaller and the lower frequencies will

be amplified much more because of the. smaller

convergence factor. . We will outline a me#hod by which
these ideas can be implemented.

First we note that if there is to be so&e transmission
out of the sphere, the boundary condition Gw = 0 must be
dropped. In this case however, to calculate the additional
contribution due to the driven motion of the surface,
it is apparent from inspection of (3.12) we must know (%%)a
as a function of‘time. Since we expect the transmission

losses to be reasonably small we can use (3.25) to obtain

(4.1)
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9 = ; a sin kr -iwt
§E(a't) { (cot ka 5) ¥ 5in ka pw(a)e dt
(4.1)

Next we can obtain G (a) by applying the boundary

conditions
[ %
Gwl(a) = Gwz(a) , : (4.2)
(@ = G ) o (4.3)
and
Gz(Rs) = GB(RG) , (4.4)
4 - ‘
Gzr(RG) (Rs) (4.5)

where the subscripts 1, 2, and 3 refer respectively to

the hot globule, the film, and the coolant regions. The
equations can be solved to find thé various reflection

and transmission coefficients and thus determine Gwl(a);
Using this result, p, can be recomputed by adding: on the
additional surface term and the pressure found by doing

the inverse transformation. Thus in effect, we are finding
the fluctuating component of the pressure and the

velocity in the film by knowing the effects of the film

on the hot liquid. To the extent that the change in the

pressure in the film caused by the motion of the surface
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of the hot liquid is small (it is because of poor
acoustic impedance matching between the f£ilm and
the hot liquid, furthermore, £he liquid is rélatively
incompressible), this is a good approximation.
If higher precision is desired one could iterate the
splution, s

| Finally we come to the question of the validity
of using equation K4.17 in Kazimi's thesis to eliminate
‘the vaporization rate as a variable. We begin by
noting that equation K4.17 is used to eliminate the
vaporization rate in K4.23 and K4.24 in the Kazimi
model. However, K4.17 depends through K4.1l6k on

TL and through K4.8b on TR‘ Now both TR and Tnv

are not known until after the simultaneous solution

v

of K(4.7, 4.9, 4.15, 4.23, 4.24, 4.27 and 4.38).

It seems clear that the evaporation rate and the heat

flow ratés should be part of the set of simultaneous
equation which are ultimately solved. It is our opinion
that K4.17 leads to a minimum value for the Qaporization
rate and as a consequence the film thickness calculated
are toé small; In the cases calculated, the film thickness

3 cm which seems small in

- 8 only of the order of 10~
comparison with visual observation of ANL films in
éomparable situations. It may be that if Tzv and TR
are changing sléwly-enough for the ﬁime intervals

used the equation K4.,17 is a reasonable approximation.



The period in time which is most sensitive is during
the initial positive going pulse and effects could

be exﬁected to be largest there. If the integration
time steps can be chosen small enough during this time

the method used may be adequate.
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COMPLEX® ) CATL1(2000),CAT2(2000),FAC,ARGRyARGA$XK(2000) s XI40ONE,CX
l,DAT3(2u5C)9XV7AA
KEALZa P 200) 9 11M0 2CC)4FREQ
PEAL 4 wi K (4000
THTEGER%4 NN(L) yH0INM, TSIGNy IFCRM
TPL = 2.0%32.14159
Cr\i‘:=(l-(4’0.:)
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FG 10 1I=1,4NMy4
JJI=11+3
READ(5,1CL) APLI) TIMII),I=11,dJ)
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10 CCNTINUF .
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JJd=J-1
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TIV(J)= TIM(JI)
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XN=N=1

DT=T/ XN

CF= XN/(T*TSCALE*(XN+1 ))
TPOT=DT/TPI

C INTERFULATICN TO GET NUMRER CF CATA PTSe. A PCWER GF. ThO

n

[ 08

CAT2(1)=F (1)
N=2
Ce 1 I=24N
xJ=1-1
XT=XJ%DT+TIM{]1)
CL 4 K=M,NMF1
JFA(XT=TIN(K)) 54594
KK=K-1
JK=K
CO TL ¢
CONTIMLE
DLT=TIN(JK)=-TIM(KK)
. DATZ(I)—(P(KK)+(XT-TIM(KK))*(P(JK) -P{(KK)}/DLT)
M=KK
CCNTINUE -
WRITE(S6,104)
WRITE(€E,1C2)( DAT2(1)4I=1,4N)

NOIM=1
NNCLY= N
ISIGN=-1

C T+E FOCRWARE TRAASFORM

[FURIA=0

C IFORM=C FIF CATA REAL
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CALL FCURT(LAT2,NN,NDIMyISIGN, IFORMyWORK)
WRITE(E,1C4)
WRITE(E,1C2) ( DAT2(I1)+I=1,N)

M2=N/2

XOGRE=N

LN 23 I=1,4N

CAT2(1)=CAT2(T)/XNORM
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N5=NZ2+]
CO 2 J= 1,4N5
xJd=J-1
FRFQ =CF*XJ
CX= FREQ *TP[/C
XKAJ)=CX=(CNE-XI*EPS)
CCOMTINUE
WRITE(E,1C4) :
PRITELe,1C2) ( DAT2(1I)9I=1,N5)
WRITE(cy1CE)
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XJ=K-1
XP=XJ/5-C
CC ¢ 1=1,4N5
ALCGR=XPaXK(T)*AA
ARGA= XK(1)*AA
FREG=XKI(I)
IfF (FREC «EQG.C.0) GO TC 11
GC T0 15 .
FAC= ONE
CC TG 13

1IF(KeEGC.l) GC TO 17

GCC 7C 18

FAC=ARGA/CSIN{ARGA)

CL TO 13 .
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CONT INUE )
wRITC(E,110)
arITELE,1C2)(DAT3(1),yI=1,4NS)

C ALIASINC THF TRANSFOFM

N3=NZ+2
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NG=N+1

C3 24 I=N3,.N4

CAT3(I)
CCNTINUE
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XY=LuhJdoi

DATLICJ)=
COCNTINUF

DATL1(NE)
WRITE (&,
WRITE(G,1
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AN(L) =N

C IFORM=41 FCR A (
C THE INVERSE TRANSFUPRM
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102
102
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105
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CALL FCU

WRITE(H,

WRITE(E,
-CCNTINUE
Gl TC ¢!
FCRMAT (2
FORMAT (5
FORMAT (10
FCRMAT (R
FLURMAT{1IH
FCRMAT (LN
FCRMAT(IH
FORIMATILLE
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APPENDIX B
SURVEY OF THE FAST FOURIER TRANSFBRM

AS APPLIED TO THE COMPUTATION OF FOURIER INTEGRALS

The solution 6f the acoustic wave equation as
accomplished in this thesis is an éxample of the use of
.

the Fourier transform over the infinite time domain.
Computationally, however, we are interested ocnly in
"finite time intervals so it is necessary to establish
the connection between the finite Fourier transform at
discrete intervals and the continuous transform over an
infinite interval. Suppose we have a function y(t)

which has a F.T.

a(f) = Ié x(t)g"z“ift dt (B.1)

-0l

Then

x (t) 2rift

[T at(f)e af (B.2)

If x(t) is sampled at intervals of length At, then
(2) expressed at the points j - At, j =0, +1, *+ 2,...

can be written
x(3 » at) = [ a(f)e®TIE/F 4¢ (B.3)

where 1/F = At or F = 1/At. This F is twice the

‘Nyquist frequency. This integral can be broken up
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into a sum identical with (B, 3)

o (k+1)F

x(j « At) = . 1 J Ca(£)e2™IE/T 4f (B.4)
=-o kF -
Now
(k+1)F . F ‘ .
[ a(f)eZWLJf/F df = | a(f_’_klf.,)ez'luq(f+k1‘~‘)/F as
kF 'Y K]
(B.5)
but
e21rij(f+kF)/F = e2vrijf/F (B.6)
i.e. it is a function of period F.
so ‘
b F .
] o = ZWiJf/F
x(3  At) = k.i_ [ alf+kF)e ar (B.7)
=-0 0 _
F Zwi'f/F
= | ap(f) ™ ar (B.8)
o
where
o0 o
ap(f) = ] a(f+kF) ' o (B.9)

k=

The'subscript p on a function will denote the peribdic
function formed by the superposition of the nonperiodic
function shifted by all multiples of a fundamental
period. The function ap(fi is aaid to be an "aliased"
version of a(f), with the gliasing occurring relative to

the Nyquist frequency F/2.
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Since ap(f) is a perioﬁic function of £ it has a
Fourier series expansion. Further,we see.from (B.8)
that the coefficients of this expansion are given by 1/F
times the sequence x(j ¢ At). Hence, (B.8) has the
reciprocal equation

(]

ap (£) =‘%-j=§m x(3 + At) e 2Tif/F ~ (B.10)
In tﬂis relationship between ap(f) and x(j < At) the usual
roles of time and freguency are interchanged; i.e., a
periodic, continuous funétion of frequency corresponds
to a sequence of time coefficients.- Now, (B.1l0) is a
discrete Fourier transform but it is not finite. However,
if we consider the values of ap(f) at N equally spaced
points between O and F, i.e. sample ap(f) at"intervals
F = F/N = 1/(NAt), we obtain
© .
ap(naf) = % T x(jat) e-zvijn/N

j::-co

=t

N-1 @ i
) { T x(jat + zNAt)} e~2miIn/N (5 13
j=0 ‘i=-o

The last result fplloﬁs from the fact that e"2 ijn/N is
a periodic sequence of j with period N. Hence we finally

have
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(nAf) = l-N-l Yo (GAE) o~ 2Tijn/N . (B.12)
% F p
3=0
where
Xp(t) = 1 xit+2m) © (B.13)
. Azme—o X |

is periodic of period T = NAt = 1/Af.

It is only a matter of a multiplication constant to

put (B.12) in the form of the finite Fourier transform.
?hus, if two functions are Fourier transforms of one
another then the sequences obtained from them by

, sampling and aliasing in.thiS~fashion are finite Fourier

transforms of one another.
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