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ABSTRACT

A method has been developed for generating resonance-self-
shielded cross sections based upon an improved equivalence
theorem, which appears to allow extension of the self-shielding-
factor (Bondarenko f-factor) method, now mainly applied to fast
reactors, to thermal reactors as well.

The method is based on the use of simple prescriptions
for the ratio of coolant-to-fuel region-averaged fluxes, in the
equations defining cell averaged cross sections. Linearization
of the dependence of these functions on absorber optical thick-
ness is found to be a necessary and sufficient condition for
the existence of an equivalence theorem. Results are given for
cylindrical, spherical and slab geometries. The functional form
of the flux ratio relations is developed from theoretical con-
siderations, but some of the parameters are adjusted to force-fit
numerical results. Good agreement over the entire range of fuel
and coolant optical thicknesses is demonstrated with numerical
results calculated using the ANISN program in the S8Pi option.
Wider application of these prescriptions, to fast and thermal
group applications, is suggested.

The present results are shown to include the Dancoff
approximation and Levine factor results, developed previously
for thermal reactors, as limiting cases. The theoretical
desirability of correcting for the effects of neutron moderation
in the fuel region of fast reactor unit cells is demonstrated:
a refinement not required in thermal reactors.

The method is applied to U.-238 self-shielding in thermal
and fast reactor applications. Heterogeneity corrections in
fast reactors are so small that the method is not severely tested.
Calculations of PWR unit cells are compared with LEOPARD program
calculations. Epithermal group cross sections for U-238 calcu-
lated from the LIB-IV fast reactor cross section set using the
present method agree with the LEOPARD results within about +1%
for typical PWR lattices; and while disagreement is larger for
larger and smaller unit cells, all of the qualitative features
of group cross section dependence are in agreement.
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Chapter 1

INTRODUCTION

1.1 FOREWORD

An essential step in most reactor physics calculations

is the replacement of heterogeneous regions by equivalent

homogeneous regions, one of the more important examples being

unit cell homogenization. The method most widely applied for

use in the homogenization process is the well-known

"equivalence theory" approach in which prescriptions for

obtaining heterogeneous results from the corresponding homo-

geneous resonance integrals are defined (D2, Hl, L4, M2). The

results of applying this technique to the strong resonance

absorption in fertile species are, however, still not satis-

factory, and state of the art LWR computer methods, such as

LEOPARD, presently rely upon normalization to an experimental

base (L5). Past work at MIT on conventional and moderated

LMFBR blanket designs motivated concern over the adequacy of

both fast and thermal reactor based methods to deal with this

problem. Recently initiated work on tight-pitch PWR lattices

has increased the priority assigned to resolution of this

uncertainty. Very little work has been done on strongly

epithermal systems of the above types since the Naval Reactors

efforts of the early 1950's (S8). Furthermore, in the work

completed by Kadiroglu (Kl) (and prior to him by Gregory (Gl))

at MIT, the general groundwork for a new approach has been
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laid down. The purpose of the research reported herein is,

therefore, to extend, to evaluate and to fully exploit this

new methodology. A secondary objective will be to unify the

hitherto separate approaches developed for fast and thermal

reactor applications.

1.2 BACKGROUND AND PREVIOUS WORK

Development of the method of equivalence theory was a

major step towards facilitating the process of unit cell

homogenization. The method is based on the following two

theorems (Dl, D2, F6, to cite a few):

(i) Heterogeneous systems with the same a0 ' have

equal resonance integrals.

(II) A heterogeneous system will have the same resonance

integral as a homogeneous system evaluated at a0

where

= tnf + 1 tm

N+-Tt N

is the modified constant "background" cross section

per.target nucleus f

= volume-homogenized total cross section of the non-
Unf

resonance elements admixed with the fuel

= volume-homogenized total cross section of the

nuclides in the moderator/coolant region
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N = volume-homogenized number density of the resonancef

absorber nuclei

a = is the Levine correction factor (L2)

T = total optical thickness of the moderato - see
tm

Eq. (1.7)

The key to this method is the use of the concept of

collision or escape probabilities - that is, the probability

that a neutron originating in one region will make its next

collision in another region; this, in effect, allows one to

separate the treatment of the spatial and energy variables in

the study of neutron slowing down in the cell. Furthermore,

to correct for the effect of absorber lump interferences, it

is necessary to use the concept of rod shadowing (Dl, D2) -

that is, fewer neutrons are incident on the part of the lump

that faces another lump than on the part that faces only

moderator. To account for this fact an effective surface area

S eff is introduced and defined as (F6):

S eff S(1-c) (1.2)

where

(1-C) is the "Dancoff-correction"

C is the Dancoff-Ginsberg factor

S is the lump surface area.
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The inability of the method, however, to predict suffi-

ciently accurate equivalent homogenized cross sections was

immediately apparent. As a result, there has been a continuing

effort aimed at improvement (B1, C2, F3, G3, G4, K2, K3, L3,

Si, S2, S3, Tl), concentrating mainly on developing more

accurate expressions for the required escape probabilities

and the associated Dancoff factor. Although substantial im-

provements have been incorporated into the method, the desired

accuracy has yet to be achieved (F3, K3, L2, L3, S2). Among

recent investigations, the work of Kirby and Karam (K2) is

of interest here, as they have shown that the long-standing

and controversial flat-flux assumption is not the source of

the discrepancy between the conventionally-predicted and

experimentally-obtained results. This in turn emphasizes the

need for a somewhat different and more fundamental approach.

In what follows, we will have to preview certain expres-

sions and some results developed in more detail in later

chapters, for the purpose of explaining the features of the new

approach, and contrasting them to the corresponding features

of the conventional approach. Let us, therefore, start with

the hopefully familiar,- and rigorous, definition of the

equivalent homogenized cross section (Hi).

a x(ET) f(E,T,aO)dE

a = g (1-3)

AEgVell f(E 0 V m ,T,a0)]dEcell cell
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or
CrJ(E.,T)i (E,ca )dE

Cr, fAEr 
f0

a = (1.4)
xg V V

f + m -R] (ETlaO)dE

AEg cell cellRf T 0

where

x = particular process (e.g.. capture, fission,

scattering);

= isotope index;

g = energy group index;

T = temperature;

AEg = energy group width; here chosen so as to contain

but a single resonance

tnf + (1.5)
N N

is the constant "background" cross section per

target nucleus j

N. are as previously defined
tnf' tin'

m (E,T,c
0R , is what we have defined as the flux

f (E.5T% 0 ratio

To be able to evaluate Eq. (1.3) rigorously one would

need to have the correct expressions for and m Although

approximate forms for the above fluxes are available in terms

of escape probabilities (H1), their direct use in Eq. (1.3)

is an extraordinarily complicated prospect. Instead, what
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is conventionally done for the purpose of obtaining "equivalent

homogenized" cross-sections is as follows:

(1) first a homogeneous version of Eq. (1.3) is

considered:

f a (E,T)hom (E,T,a0 )dE / (.6)

AEg 6
AEg hom(E,T,a

0 )dE

(2) next the "second equivalence theorem" - which basically

involves replacing 0 by a properly modified value,

Y00, is applied to Eq. (1.6) to obtain the required

"equivalent homogenized" cross section.

The practice of replacing the true integrated hetero-

geneous flux, as given by the denominator of Eqs. (1-3) and/

or (1.4), by a homogeneous flux evaluated at 00' is at best

a very crude and approximate approach.

In the present work a different approach, aimed at

evaluating Eq. (1.2) as it stands, is proposed. The key to

practical exploitation of this approach is development of a

simple prescription for the flux ratio, R(E); this task will

constitute a major portion of the present study.

As will be shown later, the above flux ratio has the

following form:

E) 1+F(T ,T ,T ,T )-T (E) Q
R - f.a sf, sm af m

() 1+F~t ,t ,T ,1 )-Tam(E) Qf(E) am af- sm sf am E)Q(17

fN
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where

T =E (E)-9, the optical thickness for process x inxi x *ii opcl

region i

k = mean Dirac penetration chord length through region i

E = z macroscopic cross section summed over all j
x .x

isotopes in the region i (fuel, f, or moderator, m)

Qm(E) = fraction of neutron source originating in the

moderator

Q (E) = fraction of neutron source originating in the fuel

Analytic expressions for R have been derived for cylindrical

unit cells for small T af and T by Gregory (Gl); and for

large Taf by Kadiroglu (K1): they obtained for the function

F lower and upper asymptotic values of 1/3 and 2/3, respectively.

A major contribution of the present work will be development

of an expression for F which accurately joins the two asymp-

totic values [1/3,2/3]. Similar analyses will also be carried

out for other unit cell geometries of interest: the sphere

and the slab.

A key feature of the present methodology is that it

handles cases not easily dealt with conventionally - e.g.

when fuel moderation is not negligible compared to that of

the coolant and/or moderator (i.e. Q #O), as is true in fast

reactor applications. This permits satisfaction of one goal

of the present work, which is the development of a unified

method, both simple and accurate, for treating the heterogeneity

corrections pertaining to both fast and thermal reactors.
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1.3 OUTLINE

The body of the report which follows parallels in its

organization the sequence suggested by the preceding discussion.

In Chapter 2 simple analytic expressions for R, the ratio of

the spatially-averaged coolant-to-fuel fluxes, suitable for

future applications, are developed. Next in Chapter 3, so-

called homogeneous self-shielding is reviewed to develop the

basic concepts necessary for subsequent extension of the

methodology to heterogeneous media to obtain a new equivalence

relation (see Sections 3.3.2 and 3.3.3). Finally, results

obtained using the new methodology are checked against the

results of the LEOPARD Code (L5) when applied to U-238 capture

in a typical PWR unit cell. In. Chapter 4 the far less pro-

minent effects of heterogeneity in fast reactors are investi-

gated. An approximate equivalence relation is derived which

explicitly accounts for the effect of moderation in the fuel;

this expression is essentially identical to the one derived

by Kadiroglu (Kl) via basically different arguments. The

concluding chapter, 5, summarizes the work and proposes

follow-on research. Finally, there are appendices which

contain tabulated results, subsidiary derivations, discussions,

and numerical examples.
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Chapter 2

FLUX RATIOS IN UNIT CELLS

2.1 INTRODUCTION

As noted in Chapter 1, the key to the approach analyzed in

the present work is the use of simple analytic expressions for

the ratio of coolant/moderator to fuel fluxes suitable for our

future applications. In this chapter we will develop Flux Ratio

Models for three different types of unit cells: cylindrical,

slab, and spherical. In developing the models various tech-

niques such as Escape Probability and Integral Transport methods

will be used in conjunction with approximations such as those

suggested by consideration of high and low optical. thickness

limits. Finally, the above models will be checked using numerical

methods.

2.2 THE UNIT CELL

This section will deal, very briefly, with the definition

and description of the three classes of unit cells mentioned above.

Almost all reactor cores have a periodic structure in which one

particular subelement, namely a fuel element with its adjacent

coolant/moderator, is repeated throughout the core. This sub-

element is commonly called the unit cell. Most reactors, (LWR,

LMFBR), have cylindrical fuel elements, hence cylindrical unit

cells., but there are other reactors, (Pebble Bed, HTGR), with

spherical unit cells. Finally, there are also reactors with

thin slab-type fuel elements such as the familiar "Swimming Pool"
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and related designs. Although actual cores are not precisely

regular, but contain nonuniformities due to the presence of

control rods, instrumentation devices, nonuniform fuel loadings

and coolant/moderator densities, core boundaries and so on,

for the purpose of the present work the core will be represented

as an infinite array of identical lattice cells. The ultimate

goal here is to obtain "cell-homogenized" equivalent group

parameters such as , ... etc., which may be assumed

constant over the volume occupied by any given unit cell. To

achieve this goal a detailed calculation of the flux distribu-

tion in a given unit cell of the lattice is needed.

Since all unit cells are identical and the lattice infinite,

there can be no net flow of neutrons from one cell to another,

i.e., the net current vector J(r,E) perpendicular to the outer

surface of the cell vanishes (Hl). Mathematically:

n.s(r,E) = 0 (2.1)

for all pointsr on the surface of the cell, where n is a unit

vector normal to the surface of the cell.

To facilitate the flux calculation within a unit cell it is

also necessary to replace the actual lattice cell by a simpler

geometry - for example by cylindricalizing or sphericalizing

the unit cells. The assumption of the zero-net current boundary

condition together with the simplification of the cell geometry

is known as the Wigner-Seitz method. Figures 2.1 and 2.2
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illustrate several unit cell configurations (in two dimensions

sphericalized and cylindricalized unit cells look alike).

A square lattice with a given pitch, Ps, has its equivalent

outer cell radius given by:

P
R =- (2.2)m 7

For a hexagonal lattice the equivalent outer cell radius is

given by:

R [,/3)1/2 h (2.3)

Throughout our work we will be working with two-region,

heterogeneous, unit cells. The three regions, gap, clad, and

coolant/moderator are homogenized into one region called the

"moderator" region, producing a two-region unit cell with the

fuel comprising the interior region and the moderator the outer

region. It will be shown later that the above homogenization

can be done without introducing appreciable error, as also

reported in Ref. (H2). Appendix B, however, will discuss an inter-

face flux prescription which would allow approximate inclusion

of the clad as a separate region for situations in which it

is deemed necessary.

At this point some unit cell related parameters needed in

the succeeding sections will be introduced - the fuel and

moderator penetration chord lengths, (M2), defined as:

4V
f(2.4)
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4(V -V)

m cell f (2.5)
Sf

Applying the above definitions we get:

2 2
2(r 2 r )

Cylindrical unit cell: t = 2r 9 m f (2.6)P f m(26
rf

4 4 (rm - r 3)
Spherical unit cell: f = r = 3 2 (2.7)

rf

Slab unit cell: 9. = 4d f = L4 (d - d ) (2.8)P P m m f

2.3 PROPOSED FLUX-RATIO MODEL

As already noted, a model describing the detailed flux

distribution in the unit cell is essential. Since each region

of the cell is homogeneous, a simple model will suffice: one

which expresses the ratio of the average moderator flux to that

in the fuel as a function of various parameters, the most im-

portant of which are the fuel optical absorption thickness, the

moderator optical absorption thickness, and the fractional

neutron source in both the moderator and the fuel regions. As

will be shown, the proposed model has the following form

m(E) 1+F[T af(E),Tam (E),T sf(E),T sm(E)]-T af(E)-Q M(E)

= am aE sm sm am f(9

where:

T (E) Z (E)Y., the optical thickness for process x

in region i

k = mean Dirac penetration chord length through

region i



27

Z i macroscopic cross section summed over all jx ix

isotopes in the region i (fuel, f, or moderator, m)

Q = fraction of neutron. source originating in them

moderator

Qf = fraction of neutron source originating in the

fuel

Analytic expressions have in the past been derived for the

cylindrical case of low Taf and Tam by Gregory (Gi); and for

large Taf by Kadiroglu (Kl): they obtained for F(T f T ,T ,

T ) values of 1/3 and 2/3, respectively. A major contributionsm

of the present work will be development of an expression for

F( ,Tam'fTsf3Tsm), and its symmetrical counterpart in the

denominator of Eq. (2.9), which accurately joins the two asymp-

totic values 11/3,2/3]. We have also carried out an analysis

paralleling that of Gregory and Kadiroglu for the other common

geometries - spherical and slab - and determined their asymptotic

values: [9/32,9/16], and [1/4,1/2] respectively.

In the next several sections. several methods will be analyzed*

to develop a rationale for specifying the functional form of the

smoothing function, F(Taf'Tm'IM'sm) Since sufficiently

simple exact solutions are not obtainable, approximate methods

will be adopted and their adequacy evaluated by subjecting the

final form of the model to numerical verification.
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2.t4 ESCAPE PROBABILITY MODEL

The method of escape probabilities is frequently employed

in problems of this type. Here we follow an illustrative example -

tested by Gregory (Gl) - his report may be referred to for a more

detailed exposition. Let us assume a two-region cylindrical

unit cell as shown in Fig. 2.3.

The objective is to derive an expression for the ratio of

the average fluxes in the cylindrical unit cell; the following

parameters are defined:

S = isotropic, uniformly distributed, source in

region i (neutrons/cm3

p = escape probability: fraction of source neutrons

escaping region i

P = escape probability for neutron entering region i

In what follows the key assumption is made that P. applies

to neutrons of all generations. Consider successive events for

a neutron born in the fuel, region 1; S p neutrons per cm 2
1 r

of surface per second escape the fuel initially, (S 1p )(P2P)

escape the fuel after returning, (S p 1l)(P 2 do so after a

second return to the fuel, and so on. Summing all the escapes

from the fuel one gets:

S pr1 r1

(1-P1 P 2)

which is the current leaving the fuel. In the same manner one

can obtain a similar expression for the moderator, region 2:



f: fuel J+: partial current entering the

m: moderator fuel rod

J-: partial current leaving the

fuel rod

FIG. 2.3 STANDARD, TWO-REGION CYLINDRICAL

UNIT CELL

29
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2 2r -r

S 2 1

1 current leaving the moderator
(1 - P1 P2

r
Consider neutrons returning to each region: S p 1 2 2

neutrons escape the fuel and return, (S1 p1 2 2)(P 1 P2 ) re-escape

and return a second time, and so on. Summing up, one gets

S p 1 P
112 2

(1 - P P2)

neutrons per cm2 per second entering the fuel due to the source

S within the fuel. Again, similarly, the current entering the

moderator due to sources within the moderator is

2 2
r2 -r1

32P2  2r 1

(1 - P 1P2 )

The partial current entering the fuel rod is the sum of

entries due to neutrons of both internal and external origin:

ri 
r2 2-r 12

S p 2 P 2 2  2r
J 2 1 (2.10)

(1 - 2 1 2

the partial current leaving is:
2 2

r r2 -r2 1 pP
S p1  2 2  2r 1

J- + (2.11)
(1-P 1P2) (1 P1P2)



and the net current into the rod is:

J = J -J

2 2
Sp r 2 -r1  (1-P S r

2P2 22r l l 1 2

(1 - P 1P2)

A neutron balance on the fuel rod, (region 1), in terms of

the average neutron flux is:

a 1l 1 2 2lrrJ+ Tr 2S1 1 1

2J + S 1r1
1 r

(2.13)

(2.14)
a 1

For the moderator region, (region 2), one similarly obtains:

2 2 =2 2
a 2 (r 2 -r1 ) -27r 1 J+Tr(r 2 -r1 )S2 (2.

2

or 2

15)

2

-2J + S '2 1
2 r

2 2
r2 -r

a2 r1

I
(2.16)

Using Eqs. (2.12), (2.14), and (2.16), we get:

$2 _ lr p (1-P 2 221P1 + S2z2 (P 1 2 ar

S S2 z2P2 (1-P1 ~ S1r p (1-P2) + S (1-P1P2) a z 22

2 2

where: z2 2 1-

31

(2.12)

or

(2.17)
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First and second order approximations are available for the

escape probabilities in Eq. (2.17) for the case of uniformly

distributed, isotropically oriented sources:

14
=1 -4 r (2.18)

p2 a z2 (2.19)3 a2

8 2

P 1 1- 2 Ea r 1 a r 2 (2.20)
1 1

P2  1-2 a z2 + 8 z 2 (2.21)
2 2

See references (M2,Gl) for further explanation.

Substituting the above expressions for the probabilities

into Eq. (2.17) we get:

S
a+2  ri 2 S

2 m 11 1 2
-mS (2.22)
f 1+ Z z

3 a2 2 S +S2

Using the expressions obtained for the penetration chord-lengths

of cylindrical unit cells obtained at the end of Section 2.2,

and also defining:

S

Q S +2 fraction of the source originating in the
ode1 at2
moderator
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S
Q +S fraction of the source originating in

1 2
the fuel

one can now write Eq. (2.22) in a more compact form, as follows:

$) 1+-T Q
m = 3 af m (2.23)

1+ T am~f

Upon comparing Eq. (2.23) with Eq. (2.9) we find that

F( T 3'sTF) = , which, as mentionedF(f am Tf,T =m Fam af1s f 3

earlier, is the result obtained by Gregory (Gl), for the limits

of low Taf and lowT am

2.5 INTEGRAL TRANSPORT METHOD

In this section we will, very briefly, state and employ the

Integral Transport Method to determine the unit cell Flux Ratio

Model. More importantly, the final result will be used to

investigate the effects of fuel and moderator scattering on the

Flux Ratio Model; and to obtain the functional dependence on

these parameters. Towards the end of the section the results of

various other arguments pertaining to scattering effects will be

presented. In what follows we will rely upon the treatment used

by Kadiroglu, and his report (Kl) should be referred to for

additional explicatory material.

The transport equation for the neutron flux anywhere in the

cell represented by Fig. 2.3 is given by the Peierls' Equation

(Cl,G2):
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$(r) = G(r/r')[q,(rT ) + E $r)]dr'

V

(2.24)

where $(r) are the fluxes at vector points rand r'

q(r') is the source at r'

V is the volume of the cell

G(r/r') is the first flight kernel giving the uncollided

flux at r due to a unit isotropic source at r'.

Under the flat-flux assumption, one can manipulate Eq. (2.24)

to obtain the following set of equations for the moderator and

fuel average fluxes in terms of volume-average kernels and

sources:

m mm m m m]m mf f sf f f

= KfmQM+E V m m] + K ff[Q+E sf V fy]

(2.25)

(2.26)

where:

1, f q(r)dr
i Vi

=1 fraction of neutron source originating

in region i

total neutron source

under the flat-flux assumption q(r) = q which is constant.

Q i

Note:
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K. = dr G(r/r')drl

V. V

is the flux produced in region i per unit source in region

and from the reciprocity theorem:

K.. =.K.
ii j

The above approach has been used by a number of investigators

(C2,Fl,Tl) to study planar and cylindrical geometries for small

optical thicknesses.

Solving for the flux ratio, / , from Eqs. (2.25) and

(2.26) and rearranging the coefficients one obtains:

K Kmm Kff
1 + -- + K fVmmQ

Kmf mf Kmf sf f m

m (2.27)

1+ K + K - ff Kmm V Q
mf fm K sm m f
.m fm

The similarity of Eq. (2.27) to Eq. (2.23) is evident; note

that in both equations the denominator can be obtained by cyclic

permutation of the subscripts in the numerator. Hence in what

follows the algebra can be considerably simplified by considering

the case Qf = 0 since the general case can be readily recovered.

The effect of moderator and fuel scattering on the flux

ratio is to be examined. Certain simplifying assumptions will

prove useful for this purpose:

(1) assume: low Taf and Ta (near transparent case)

(2) assume: Taf > Tf
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(3) observe: E V x k f x T
sf f sf f sf

(4) assume: K
mm

-T

~ e tm & K ne
mf

( tf +tm)

(5) assume: (K - 1) (e tf
Kf

(6) assume:
Kff T

K 1tmKmf

- 1)

- 1)

Using the above we can obtain the following:

K K -(T +T )
(7) (K - ff mm tf tm)

fm Kmf

1 - Ttf

(8)

(9)

Ttm

(T +2T )
_ tf tm 1

- (1+Ttf+2Ttm) -(rtf+tm)

assume: Qf = 0; therefore Q = 1

assume: T f Tam af

The multitude of assumptions will not prove limiting because

we are not interested in an exact answer; but, rather, in deter-

mining how the effects of scattering can be taken into consideration.

Accuracy will be recovered by later resorting to force-fitting

numerical results.

Using the listed assumptions in Eq. (2.27)

1+ [Ttf - Tsf(Ttf+Ttm)] (2.28)
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and factoring out T af

m 1 + [1 + T af -af T +T +T )]-T af

Simplifying further

~ 1+ (l1 +
Taf

T f
Lf 

Taf
T ). T
sm af

1 + [(l-T sf) + r-( 1 -Ts )]-Taf
af

m
- l+[ 1

(+Fsf)
+

af (1+T ) af
sm

further:

In
1 +.(1+ s )(1+ )

(1+T sf)

1
2 (1+T

af (1+u ) 2(1+T )

At this point we choose to replace the term in brackets

by a single lumped parameter:

-m 1 + 2.(1+ )(l+T ).T
sf sm af

m

m

(2.29)

or:

(2.30)

(2.31)

(2.32)

+

sm)

-o af (2.33)

(2.34)
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Furthermore, for later convenience, we will want to implement

the correction by multiplying both Tsf and Tsm by a parameter,

W . Hence, 2 will in turn be replaced by w' so as to yield an

equivalent effect. Therefore:

1+ + W'T )(+W'T )T
3 sf sm af (2.35)

The factor of 1/3 has been introduced to make Eq. (2.35)

compatible with Eq. (2.23) in the no-scatte'ing limit.

As pointed out in the beginning of the section, there are

other methods, such as diffusion theory and/or track length

arguments, that can be utilized for studying scattering effects.

Let us consider an "inside-out" cell, a cell similar to that of

Fig. 2.3 but with the fuel and the moderator regions interchanged.

Assuming that diffusion theory applies, then:

-DV 2 (r) = q''' (2.36)

q q
I- m q mwhere: q2

m Tr

Equation (2.36) has a solution of the form:

q mr2
$(r) A - 4tD( 2) (2.37)

1

We also have the boundary condition of zero return current if

the fuel region is black, hence:

The use of the extended reciprocity theorem (G1) permits us to
do this.

*

r
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J = 0 = + ad at r = r1

q q
Thus: A - F = 2 2D Dm

or A = qm( + )

The average moderator flux is:

2

(2.38)

(2.39)

(2.40)

(2.41)

r

$ (r) *2'r dr = A - ffD

0

Using Eq. (2.40) we get:

m l 1+

m1
(2.42)

Since flux is track length per unit volume, we can define an

effective penetration chord length as:

eff

Substituting Eq. (2.142) into Eq. (2.43) we get:

r 2
P eff =r= + 1 and since D

Therefore:

(2.43)

= r1 + r sm = 2r ( + rsm) (2.44)

But:

X = 2r for a cylindrical unit
p 1

cell (Section.2.2)
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Therefore:

P = 2Z (I + 3T ) c , (1 + W ' )eff p 2 32 sm p sm (2.45)

The result in Eq. (2.45) suggests a multiplicative moderator

scattering correction to T of the form (1 + W'T sm) in the

formula for the Flux Ratio Model, Eq. (2.9). It is encouraging

to see that two different methods, namely the Integral Transport

Method and the diffusion theory method, yield the same functional

form.

Finally consider a track length argument.

assume an "inside-out" unit cell.

Define the following parameters;

= 2r

Let us, again,

penetration chord length (Section 2.1)

e = .4r escape chord length for isotropic uniform

internal source. This quantity is derived

by Gregory in (Gl).

Assumptions are: weak absorption & scattering

A neutron entering the inner region of the unit cell will

penetrate an average distance proportional to the penetration

chord length of the region prior to scattering, hence

ds = w'''-kp (2.46)

where: ds is the average distance moved by the neutron,

on its first flight, prior to scattering

W11 Iis a proportionality factor, and is less than

unity (w''' < 1).
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The scattered neutron, once in the rod region, will now trace out

on the average a distance equal to the escape chord length, i.e.,

'43r4. The total distance traveled by the neutron will thene 3V

be:

dt = '89 + 2, wlIttI + ( .7
p e p 3 P

or

dt = (wI + )-p p' (2.48)
3 pp

If the neutron had not been scattered it would have traveled an

average distance X through the rod, thus the extra distance
p

traveled is:

dextra dt -

or

d = w''*-. - = (w'' -1).2, w '. (2.49)extra p p p p

Therefore to include the effect of the scattering on the pene-

tration chord length, we will have to define a new effective

penetration chord length as follows:

= + W'o.2 -T (2.50)eff p p sm

or

z = 2. (1 + W'T ) (2.51)eff p sm
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where: k is the penetration chord length without scattering
p

& -k is the extra chord length due to scattering
p

and T  = probability of being scattered

Compare Eqs. (2.35), (2.45), and (2.51): having three

different approaches yield the same result strengthens our

confidence in the choice of the functional form used to correct

for moderator (and fuel) scattering.

2.6 ADDITIONAL RESULTS OF THE TRACK LENGTH METHOD

2.6.1 Near-Black Fuel and Near-Transparent Moderator

In the last two sections we were dealing with low optical

absorption thicknesses for both the fuel and the moderator regions.

The value obtained for the F(TafTam' Tsf Tsm) of Eq. (2.9)

without taking the effects of scattering into consideration

was 1/3. We shall now obtain another asymptotic value of F for

the limits of high optical absorption thicknesses. Furthermore,

we will display parallel results for all unit cell geometries

mentioned in Section 2.2.

Consider an "inside-out" cylindrical unit cell with the fuel

surrounding a rod of moderator. As already stated the reciprocity

principle (Gl) permits us to do this without loss of generality.

The following assumptions are made:

(a) the moderator contaiT's a spatially uniform source of

neutrons and is optically transparent - i.e. has a small

optical thickness for both scattering and absorption.
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(b) the fuel is very black - i..e. a strong absorber and a

weak scatterer.

A neutron born in the moderator will trace out a distance

given by the mean escape chord length =r . Then from thee 3 1

definition of flux as track length per unit volume, the moderator

flux is:

e 3 r$m ~ 3 1= (2.52)
m r 3wr

In the fuel each entering neutron completes a track length

only one mean free path long - i.e. f= f= 1 /( )af Thus the

fuel flux is:

= - 1 (2.53)
f af f

Employing the definition of the penetration chord length.

for the fuel region we get:

4V 4V
fuel f f

P Sm 1

or
Tr

urfuel
V = ~ p (2.54)

Substituting Eq. (2.54) into Eq. (2.53)

2 2 (2.55)
f = r X fuel 7r - .af

1 p af



44

Upon dividing Eq. (2.52) by Eq. (2.55)

Taf (2.56)

Therefore, the other asymptotic value for F(Taf' am' sf' sm

is 2/3, which is the value obtained by Kadiroglu (Ki) using

essentially the same treatment.

As for the spherical and the planar unit cells, the same

steps can be repeated, replacing the cylindrical escape and pene-

tration chord lengths by the associated spherical and planar

escape and penetration chord lengths. The spherical and planar

escape chord lengths are derived in Appendix A.

Using the spherical escape chord length of k - , ande 71

fuel penetration chord length of 2 fuel= (4V )/(4xr 2), we get

for the ratio of average fluxes:

S r 2 Yfuelf(
m 2(2.57)

2'
f 16 rr1

or

- 9 Taf (2.58)

4V
For the slab: = 2d k fuel f

e p 2

Hence:

fuel

mn p a (2.59)
2
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or

m -*T
- af (2.60)

Equations (2.58) and (2.60) indicate that for the spherical

unit cell F(Taf1T amT sf' ) = 9/16, and for the planar unit cell

F(TafTam'Tsf Tsm) = 1/2, as mentioned in Section 2.3.

2.6.2 Near-Black Fuel and Near-Black Moderator

As a final case, we shall investigate the effect of two

strongly absorbing media adjacent to one another. The following

assumptions are made:

(a) "inside-out" unit cell with the source in the

interior region (moderator).

(b) no scattering in either medium.

(c) am << r

Due to the third assumption, which indicates that the moderator

mean free path is much less than the radius of curvature of the

rod, the three different geometries - i.e. sphere, cylinder and

plane - will look the same to the neutron. Hence, the following

analysis and the results will be exactly the same for the three

different unit cells.

track length am m (2.61)
m unit volume V

m
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where: q is the total source in the moderator.
m

Escapes into the fuel are ignored.-

It can be shown for an infinite slab containing a uniformly

distributed source, that particles within one fourth of the

tmedium's mean free path, (-4), can escape the surface of the

slab uncollided. Utilizing this result to obtain the fuel flux:

am m af
$ =S - (2.62)

where: S = surface area of the interior rod.

Dividing Eq. (2.61) by Eq. (2.62) gives:

4.X .q .y .ym _ am m m f (2.63)
-S 2* 'q, *am m af

or:

m
-- = T (2.64)
- af

Hence, for the two adjacent highly absorbing media

F(TfTT Tf) = 1, for the three different unit cells.

In the next section results obtained in the Sections 2.4

through 2.6 will be used to formulate a complete Flux Ratio Model.

2.7 FINAL FORM OF THE FLUX RATIO MODEL

So far we have discussed the general form of the Flux Ratio

Model and the functional form of F(TafT , T s, T 5 ) under the

two asymptotic limits of high and low optical thicknesses. Our
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task now is to use the results obtained in the preceding sections

as guidelines for suggesting an analytic function for

F(Tafa sf' am), so as to be able to cover the intermediate

ranges of optical thicknesses.

Recall Eqs. (2.23) and (2.56), namely:

1 + T (2.23)3af

which was derived under the assumption of. weak absorption and

scattering for both the fuel and the moderator region. Note also

that we have set Q = 0.

ffmTa ~l 3 af(2.56)

Since: Taf 1

which was derived under the assumption of strong fuel absorption,

weak moderator absorption, and, finally, weak scattering for

both regions.

There are numerous functions that could smoothly join the

lower asymptotic slope of 1/3, (Eq. 2.23), to the upper. asymptotic

slope of 2/3, (Eq. 2.56). Among them we have chosen the one

that is both the simplest in form and best agrees with the

numerical results (to be discussed later). This function has

the following form:

n

F(Taf) = (l + af (2.65)
1 + WT

af



Note that for T f 0

and when T + e1,
af

F( T ) +1/3
af

F(T ) + 2/3
af

The constant "" is a fitting parameter which we have selected

to force agreement with numerical results, and "n" is a positive

power to which T is raised.

So far weak moderator absorption has been assumed in conjunc-

tion with the two cases of weak and strong fuel absorption.

Recall that weak scattering has also been assumed for both the

fuel and the moderator. Let us now consider the problem of two

adjacent black media with weak scattering in both regions. In

Eq. (2.64) we have obtained the following result:

= lTaf ~ 1 + 1-T af (2.64)

Since: T af 1

By comparing Eqs. (2.65) and (2.64) the following function

is suggested:

F(T f T) =

WTfL
+ ) + WT

1+WT n am
af

1 + WT n
am

(2.66)

where "n'" is a positive power to which T

Note that for Taf -+ 0 F(T T )am)- F(Taf

is raised.
am

oTn

= ( + W T

af-

and whent + o and Taf am
-*00 F(T Tam

48
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As for the effects of scattering, Eqs. (2.51), (2.45),

(2.35) suggested a functional dependence of the following form:

F(T f T) = (1+ W'T )(1 + W'T )

Combining Eqs.

form:

(2.66) and (2.67) we get the following final

n

1(1+1+oTa
af

) + WiTn
am

F( Taf' Tm Tsf m 
1+ WT

am

*(l+bi'Tsf )(l+'T)sm

(2.68)

And using the fact of symmetry, as mentioned in Sect-ion 2.5:

F(Tam 5Taf' Tsm' Tsf )

WTn
(1+ am

1+oT.aSam

+ f

1 + WT
(1+WT )f(1+W'T

(2.69)

Substituting Eqs. (2.68) and (2.69) into Eq. (2.9) there results:

n

1 af(1+ n
3 +(A3Tn am

1+o
-(l+w' Tsf) (l+w' Tsm af M

WT

am) af
3 1+or n af

af,
1+WT 

f
1 bif

-(1+W'T )(l+W'T )-Ta "f

and

(2.67)

1 +

1 +

(2.70)
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which is the final form of the Flux Ratio Model for the cylin-

drical unit cell. As for the planar and the spherical unit

cells, similar models can be generated by the same treatment.

Therefore it is sufficient here to note that for the slab case

the factor 1/3 in Eq. (2.70) should be replaced by 1/4, and

for the spherical case it should be replaced by 9/32 The

rest of the equation will look essentially the same as Eq. (2.70);

(but see page 62 regarding the slab case).

2.7.1 Flux Ratio Model Cast in Terms of IR Parameters

Up till now no mention has been made of resonance cross-

sections, and the way in which the associated WR, IR, and NR

approximations are to be incorporated into the Flux Ratio

Model. In what follows we shall be assuming resolved (and non

self-overlap) resonances of a single resonance absorber - i.e.,

we assume no other resonance absorber present in appreciable

amount.- Some of the above assumptions, however, will be relaxed

in later chapters.

Consider a flux of neutrons in Energy-space heading towards

a single resonance, as shown in Fig. 2.4. The condition for

application of the nar'row resonance (NR) approximation is that

the maximum energy loss irf an elastic scattering collision of

.a neutron with an absorber nucleus, i.e., (1-aa)Ei, in the

vicinity of a resonance should be much greater than the practical

width, TP, of the resonance. Under this condition both scattering
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FIG. 2.4 CROSS SECTIONS IN THE VICINITY OF

A RESONANCE
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and absorption processes will remove neutrons from under the

resonance. There are instances, however, when the maximum

energy loss is much less than the Practical Width, rp, of the

resonance; this condition requires use of the so-called Wide

Resonance (WR) approximation. In this case, it is only the

absorption process that removes neutrons from under the resonance.

Lastly, there is a third approximation intermediate between the

two aforementioned, which neither completely denies nor totally

admits the role of scattering for removing neutrons. This

approximation is called the Intermediate Resonance (IR) approxi-

mation and it is implemented through the introduction of three

new parameters X, v, and I. We shall discuss the IR approximation

and its associated parameters further in Section 3.3.1. However,

for a more detailed explanation of the above ideas refer to

(B2,G3,G4,G5,H3,L4,S3,S4). Therefore, in the IR approximation

it is the absorption process plus a fraction of the scattering

process which removes neutrons from under the resonance. For a

resonance absorber with no admixed moderator the above will mean:

aremoval of resonance a(E) a af(E)+Xa (E) (2.71)
absorber in fuel

where X determines the fraction of the scattering present in

the removal cross-section.

Note that for X=l:

a (E) =af(E) + af(E) = atf(E) (2.72)

which is the NR case
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and for A=O:

af(E) = Gaf (E) (2.73)

which is the WR case.

Similarly, when moderator is admixed with the resonance

absorber:

of non-resonance
element in fuel

and for the moderator/coolant

Cremoval of moderator(E)

(E)Enf(E)=anf (E)+v6 snf( E)

in the moderator/coolant

= am(E) = am(E)+a (E)am. sm,

region:

(2.75)

To implement the above ideas in conjunction with the

Flux Ratio Model, it is convenient to introduce the following

parameters, which greatly simplify the subsequent notation:

6 f(E) =Taf(E) + XT sf(E)

= Ta (E)

+ T anf(E) + vT nf(E)

+ sm(E)

8(E) = 1 + o'[(1-A)T f (E)

1removal (2.74)

6 m(E)

(2.76)

(2.77)

(2.78)+ (1-v)T snf (E)]



p(E) = 1 + ('(l.i)TsjE)

1
-[1
3

+ 6 n (E)
+ ] - I
1+6n (E)

f

+ W6 (E)
m

1 + 6m (E)m

1 W6 (E)
[1 + n ] + o (E)

3 +n(E) +
m

1 + o61f (E)

Using Eqs. (2.76)-(2.81)

jm (E)

i (E)
= R(E)

in Eq. (2.70) we get:

1 + a (E)(E)p(E)6 f(E)Qm(E)

1 + am(E)6(E)p(E)6m(E)Q f(E)

which is the generalized form for the Flux Ratio taking

account the IR parameters. Note

into

that Eq. (2.82) is a continuous

function of energy; its discretization into energy groups will

be discussed in the next section.
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(2.79)

a f (E)

a m(E)

(2.80)

(2.81)

(2.82)
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2.7.2 The Flux Ratio in an Energy Group Sense

Although Eqs. (2.70) and (2.82) are exhibited as continuous

functions of energy, their mode of derivation did not suggest

this fact explicitly. In all the various steps that led to

Eq. (2.70) we were, invariably and implicitly, assuming a

"Tone-group" model: that is a neutron balance was performed for

a fine energy group of width dE about E. The energy discretiza-

tion, however, in the sense of going from the fine group to a

coarser group structure in Eqs. (2.70) and/or (2.82) is straight-

forward; and one may refer to any of several references for

further details, e.g. (Hl, 01); basically it just involves

proper definition of the cross sections.

Recall that removal applies to the combination of all

processes that remove neutrons from the group into one sum called

the total removal cross-section for group g:

Eg Etg gg ag sg gg ag g g (

and that group scattering is that portion of the scattering cross-

section which leaves the neutron within the group - i.e., Egg

Using the above definitions, and following the format of

Eqs. (2.76) through (2.81):

6 fg= T + Tn + 1Tfgg + T (2.84)
fg afg anfg sg' snfg'g

(g'g includes down-scattering and upscattering if any).

6 mg = Tamg + T (2.85)
g'/g smg'g



= 1 + W (T
sfgg + snfgg)

-1 + smgg

+ )6
+Wfg

+ w6nImg

(2.88)6 , 
rug

+ n

1 + wng + (6 n

1+w6 fg

1 + w6nI

Using Eqs.

m

g

R

in Eq. (2.70) we get:

1 + a g p gg6 gQmg

u+ a pgg 6mg fg
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p
gg

(2.86)

(2.87)

1

mg
(2.89)

(2. 90)

(2.84)-(2.89)
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The discrete energy form of the Flux Ratio Model will

prove useful in subsequent chapters. In the following sections

numerical results verifying Eq. (2.90) will be presented, and

as a result its validity will be established on even firmer

grounds.

2.8 COMPARISON OF MODEL RESULTS WITH ANISN CALCULATIONS

In what follows we will be discussing numerical results

developed using the ANISN code (Al), comparing them with our

predicted results. The calculations are done for two-region

unit cells with the white boundary condition used for the outer

region of cylindrical and spherical unit cells to minimize the

effects of specular reflections (Nl).

2.8.1 Effects of Scattering and Removal

The dependence of the flux ratio on the magnitude of scat-

tering and removal cross-sections in cylindrical unit cells

is shown in Figs. 2.5 and 2.6. The numerical values plotted in

the figures are tabulated in Appendix B. Similar results for

spherical and slab unit cells will be presented in Appendix B.

As seen, the predicted results are within a maximum discrepancy

of 15%, and an average error of about 5%,of the ANISN results.

Most of the calculations were carried out in the S8 and P1
approximations, higher order quadrature sets, i.e. Sl6, were
also used for the slab case.
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The agreement could be improved substantially, if desired, by

a different choice of values for the fitting parameters (n,n')

and (w,w') in the range of maximum interest. The important

thing to note, however, is the correct dependence of the Flux

Ratio Model on the various optical thicknesses. The above point

will be discussed further in Appendix B, and more tabulated

results will be given. Moreover, it is important to note that

our model was derived on the basis of the flat-source (birth and

scattering) approximation while ANISN distributes scattering

events according to the local flux shape. Hence the good agree-

ment validates our claim that the flat-source restriction has

in fact been partially relaxed.

2.8.2 Effects of Source Distribution

An important and, perhaps, the most unique aspect of the

Flux Ratio Model lies in its ability to predict correctly the

effects of source distribution; a property which is very impor-

tant in Fast Reactor calculations. In some literature on fast

reactor calculations , it is implicitly assumed that the slowing-down

source is entirely in the coolant, an erroneous assumption.

Figure 2.7 shows the flux ratio as a function of the source

fraction in the fuel, Qf, for various 6 As seen, the predicted

and the numerical results are in excellent agreement.
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2.8.3 Further Remarks about the Flux Ratio Model

In Sections 2.6 and 2.7 parameters such as (n,n') and

(w,w') were introduced, which are found to have the following

values for the three different unit cells:

(1) Cylindrical:

n=1.0 ; n'=0.5

O=0.24 ; w'=0.0 6

(2) Spherical:

n=O.5 ; n'=0.5

w=0.27 ; w'=0.09

(3) Planar:

n=1.0 ; n'=0.5

w=0.15 ; w'=0.03

Cylindrical and spherical unit cells share similar func-

tional forms for the Flux Ratio Model: only the values of (n,n')

and (wo') are changed. The planar case, however, required

inclusion of an extra term of the form (1+wV'n 1 ), introduced
m

here without proof; interested readers may refer to Ref. (Zl)

for justification. Also mentioned in Section 2.7 was the choice

of a simple functional form for F(Taf), given by Eq. (2.65),

from among many candidate functions that are equally attractive,

such as:

F(Taf) = l(l + TanhwTaf) (2.91)

or

SWT afF(T ) 1=(2-e )(2.92)af 3



63

and, no doubt, many others, Others may select a candidate of

their own choosing.

Finally, many other tests of the Flux Ratio Model have

been carried out, such as the functional dependence on coolant

optical thickness, the effect of lump size at constant optical

thickness and the applicability of the extended reciprocity

theorem,as documented in Refs. (Gl,Kl).

2.9 CONCLUSION

In this chapter simple analytic expressions were derived

for the ratio of moderator to fuel fluxes in unit cells. Pre-

dicted results were shown to be in good agreement with numerical

results. A literature search failed to uncover more complete

expressions for the disadvantage factor that could reproduce,as

accurately ,results over the wide range of optical thicknesses

and source distributions covered by the present model. As

noted in Section 2.8.3 there is still some room left for fine

tuning which could further narrow the gap between the predicted

and numerical results. However, the results will be shown to

be more than adequate for present purposes: a 6% error in the

flux ratio will typically affect homogenized group cross sections

in the resonance region by less than 2%, a value which is

tolerable in view of the often only modest precision of input

data in this region and the consequences of other simplifying

assumptions which must be introduced to make the larger problem

tractable.
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Chapter 3

ENERGY SELF-SHIELDING OF RESONANCES

3.1 INTRODUCTION

In this chapter an expression will be derived for the

heterogeneous capture cross-section of a given isotope in the

fuel region of a unit cell in an infinite lattice. The key

to the above derivation will be the use of the simple flux ratio

model developed in Chapter 2. Also, for the sake of generality,

the intermediate resonance parameters are introduced to make

the above approach applicable to any resonance of any isotope

for all energies in the slowing down region. The final expres-

sion for the homogenized cross-section is given in terms of

homogeneous parameters, hence leading to a new equivalence

theorem. Finally, results obtained using the above method will

be checked against the results of the LEOPARD code (L5) when

applied to U-238 capture in a typical PWR unit cell.

3.2 HOMOGENEOUS SELF-SHIELDING

The discussion which follows is confined to homogeneous

systems where the spatial and angular dependence of the flux

are suppressed, and only the energy variable, E, is of concern.

The reason for starting with homogeneous self-shielding is to

introduce the basic concepts necessary for the extension of

the methodology to heterogeneous media in later sections. As

the name implies, resonance self-shielding occurs as the result
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of flux depression under resonance peaks. Since resonance

cross-sections are strongly temperature dependent, it therefore

follows that self-shielding is a temperature-dependent phenomenon

as well. Self-shielding also depends on cell composition and

on the geometry of the problem in a complex way. However, all

composition and geometry effects can be embodied in one para-

meter, the total cross-section of non-resonance-absorber-nuclei

per absorber nucleus, a0 . In the subsequent sections we will,

briefly, treat some of the above ideas in more detail.

3.2.1 Low Material Concentrations

The fundamental and physically meaningful assumption made

in most reactor physics calculations is conservation of total

reaction rate. In fact, it is through the utilization of the

above assumption that we shall define group-averaged homogeneous

cross-sections as:

f f E3 (E)$(E)dVdE = E of $(E)dVdE (3.1)
Vcell AE x xg Vcell AEg

where the quantity on the left of Eq. (2.92) is the true reac-

tion rate, "J " is the macroscopic group-averaged cross-sectionxg

for the particular process "x" of isotope "J", and the double

integral multiplying "E" is the true total flux of neutronsxg

in the energy range AEg. If we now assume that an element is

present in a medium in low concentration, then its particular

resonance structure will not induce any significant effect on

the neutron spectrum. As a result, a smooth weighting function
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C(E) can be used in the group-averaging process. Hence,

Eq. (3.1) in the low concentration limit will be given as:

/AEg ax(E)C(E)dEa0 = ~ (3.2)
xg C(E)dE
AEg

wheretypically, C(E) is taken to be a Maxwellian spectrum at

low energies, a l/E spectrum in the mid-range, and a fission

spectrum at high energies; and a is the "infinitely dilute"
xg

isotope cross-section for group 'g" and process "x".

Here AEg is to be interpreted as a fine-width group

containing only one resonance.

3.2.2 Higher Material Concentrations

Although the method described in this work can be extended

to low and high energy limits as well as to most physical pro-

cesses such as scattering, fission..., etc., the analysis here

will be restricted to the slowing-down range and to the finding

of group-averaged homogeneous capture cross-sections for a

single dominant resonant isotope. Let us, now, treat the case

where the material concentrationis not negligible, so that

its resonance structure will affect the neutron spectrum in the

mixture. Because of this, a proper weighting function (flux)

is needed for the purpose of cross-section averaging. The

appropriate weighting flux can be found by solving the slowing

down equation for a uniform mixture of infinite extent:
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E/a a

[a0 tf(E,T)](E,T,a0 (1-a ) E' +
E. m

Otf 0a (ET))*('-~ 1

+ ff sf(E1T) ( dE' (33)
E f

where

ttmm= constant moderator cross-section0 N ' tm -

am sm
N = number of resonance absorber nuclei per
0

unit volume

aaf'af pf = resonance absorption, resonance scattering,

potential scattering, cross-sections, respec-

tively, of the resonance absorber

asf (E,T) = arf (ET)+a

atf(ET) = aaf(ET)+asf (E,,T)

A.-l 2
*= (j A +12 A being the ratio of the mass of isotope j

to the mass of the neutron

Note that "moderator" in the above usage refers to all non-

resonance-absorber nuclei present. If we use the NR approximation

for the moderator and the IR approximation for the absorber (G4),

we get:

$ ( E T , a O ~ 0a+ ;k r Ca + a ( , )). aaf(ET)+Xa f (E9T)+ pf103~
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11where the source is normalized such that "$=-" will be theE
off-resonance reference value for the flux per unit energy.

Upon substituting Eq. (3.4) into Eq. (3.1) one obtains:

a a0 + XG pf - ac (E,Td
(AEg af (E,T)+Ad sf(E,T)+a 0  c( E

cg '(T a + Aa (3.5)0 pf dE
fAEg af ET)+Xsf(ET)+'0

Because a0 and a are ,essentially constant within AEg, they

can be cancelled-out from the numerator and denominator of

Eq. (3.5) to give:

ac (ET) dE

fAEg ac,T+AsET)+a0Wa (T, a =Ag C af\(Ej~)+Xa s(E,Ta0 E(36
cg 0 1 dE

AEg a af (E,T)+Xa s(E,T)+a 0

which is the effective capture cross-section at temperature T

and with the constant background cross-section a0.

3.2.3 Definition of Homogeneous Self-Shielding Factor and its

Parametrized Forms

The idea and method of self-shielding factors was first

popularized in the widely used publication of the so-called

"Bondarenko" cross sections in 1964 (B3). Since then, the

self-shielding factor approach has become common practice in

the fast reactor field, due primarily to its ease of application;

there are, however, minor disadvantages in the method, as

described in Ref. (K5).
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The self-shielding factor, f (T,a is defined by thexg T~ 0)isdfndbth

equation:

ar MTa )=f (T2a )a.0  (3.7)
xg 0 xg 0 xg

where the complications involved in the integration over

resonance structure, as indicated by Eq. (3.5), are separated

from the calculation of the effective multigroup constants for

a specific mixture/composition. Tables of f-factors are pre-

computed for the elastic, fission, capture, total, and transport

cross sections and for arbitrary sets of T and a0 values. The

f-factors for any given T and a0 can then be obtained by inter-

polating in these tables. Having obtained the f-factor we

can then multiply it by the proper infinite-dilution cross

section to get the required effective cross section, axg (T,aO 0

represented by Eqs. (3.5) and (3.7). The success of the above

approach relies heavily on the availability of accurate schemes

for both temperature and a0 interpolation of the self-shielding

factor, f g(Tja0 ). One expression for the self-shielding factor

as a function of a0 at a fixed temperature T, which is used

as a fitting function, is:

fcg (a) = AtanhB(kna 0 +C)+D (3.8)

where A, B, C, and D are constants determined by four values

of fcg at given a0 values.
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An alternative expression is:

f (CY pf 0 2(39fcg 0 a Op+ a + (3.9)
gtf +pf 0

where qtf is the total cross section at the resonance peak, and

oI and a0 are as previously defined.pf0

Equation (3.9) is an accurate representation of the self-

shielding factor provided the group contains more than a few

resonances - i.e. is applicable to coarse groups (S7). With a

little algebra, Eq. (3.9) can be transformed into a more useful

form, as follows:

2 = Aa + B (3.10)
1 - f (a) 0

cg 0

where A, B are constants determined by two values of f at
cg

given 0 values.

Note that the parameters ntf and a appearing in Eq. (3.9)

are contained in the constants A and B of Eq. (3.10), which are

easily determined from the f-factor tables. Expression (3.8)

is an empirical relation suggested by Kidman (K4); while

Eq. (3.9) is an analytical expression obtained by Segev (S7).

As for temperature interpolation at a fixed cr0 , a Lagrange-

three-point interpolation scheme predicts, very accurately, the

shielding factors for any current temperature, T.

Finally, let us very briefly discuss one last important

item - namely the a0- ambiguity. As already defined, a0 is given

by:
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01 g 00 c ej g
0 1 -~ i~ NJ f~ ci y 1 + fIf Gfj +g gjCe

fg g0 (3,ll)in,j in

where c capture; f fission; e elastic-scattering; in

inelastic-scattering. If at least one of the other elements -

i.e. an element other than isotope i, in the mixture has a

resonant cross section, then d 0 will be ambiguous, A common

remedy for this ambiguity is an iteration scheme, as. follows:

(0)fg
x,1

(n) g -1 N(n-1) g g
01 f N. . a (n=1,2,...) (3.12)

i ixj '. J xi

where the superscript n denotes the order of iteration and x

refers to the various processes, as explicitly defined in

Eq. (3.11).

It suffices to say that the above iteration scheme converges;

however, the question as to whether or not it converges to

the correct value remains open. Since $n the present work we

are treating the case of a single dominant resonant isotope,

the question of a0-ambiguity will not be crucial to our work.

Interested readers may refer to Refs. (S6,S7) for a thorough

investigation of the above problem.
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This concludes the discussion of homogeneous self-shielding,

hopefully adequate to lay the groundwork for the introduction

of heterogeneous self-shielding factors. For more complete

expositions on the subject of homogeneous self-shielding the

following references are recommended: B3,Gl,Kl,K4,K6,S6,S7.

Appendix D contains a more detailed discussion of the interpolation

schemes introduced in this section, and the method of their

application.

3.3 HETEROGENEOUS SELF-SHIELDING

Concentrating the fuel in a region separate from that of

the moderator leads to a number of advantages, and a few dis-

advantages, from the reactor physics viewpoint. The benefits of

having a heterogeneous system, however, generally outweigh the

principal disadvantage, namely, the reduction in thermal utiliza-

tion. The most important advantage associated with heterogeneity

is the decrease of the resonance region absorption of neutrons

undergoing slowing. down, due to the self-shielding effect in

the fuel lumps, see Fig. 3.1, i.e., the neutron flux is enhanced

in the moderator and depressed in the fuel, which increases

the resonance escape probability. The heterogeneous arrangement

also .results in an increase in the fast effect. All of these

phenomena have been recognized from the earliest days of reactor

design.

In what follows only the resonance self-shielding is to

be analyzed.
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3.3.1 Volume-Averaged Fuel Flux in the WR, NR, and IR

Approximations

In this section an &xpression will be derived from the

basic slowing down equations for the spatially-averaged fuel

flux in terms of the moderator-to-fuel flux ratio "R" for a

two-region unit cell. It Is at this point that we depart from

conventional methods, where both the fuel and the moderator

fluxes (the two essential quantities needed for cell-homogenization

purposes) are found in terms of escape probabilities; in the

present work the corresponding two quantities are the fuel flux

"f(E)" and the flux ratio "R(E)", and no escape probabilities

are directly involved in the final results.

Ideally one would seek an exact analytical solution to

the slowing-down equations; unfortunately such is not available.

As a result, the narrow-resonance (NR) and wide-resonance (WR)

approximations were introduced as initial attempts to obtain

approximate analytical solutions. Improvements in these first

approximations were subsequently made by iteration on the basic

integral equation (B2). However there are instances when a

choice between the two limiting approximations, NR and WR, is

difficult to make. To overcome this difficulty a third approxi-

mation, namely, the intermediate resonance (IR) approximation

was introduced (refer to Secton 2.7.1) which is designed to

characterize all intermediate situations, including the limiting

NR and WR extremes.



The slowing-down equations, subject to the following

conditions:

(a) n-l(r,E) = 0 (no leakage)

(b) X(E) = 0 (no fission source in the slowing-down range)

(c) elastic scattering is isotropic in the center of mass

system,

are:

Etm(E) m(E)

V
P (E )

f.vm

= [l-Pm(E)]

E

E

dE'Esf (E 1) (E ')

(1-a f)

[l-Pf(E)l

E

s (E' ) (E')sm m
(1-a M

where P (E) is the probability that a neutron off energy E

born in the fuel will escape from the lump without

a collision

75

dE I+

(3.13)

( E') )

(1 f)
dE' +
E,

V
P m(E) -m

m f IF
E

dE'
E, 1 (3.14)

E/am
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P (E) is the probability that a neutron of energy Em

born in the moderator has its next collision in

the fuel.

P f(E) and Pm(E) are thus escape-probabilities for average

neutrons in the fuel and moderator. Moreover, it is important

to note that, in general, the sum of P f(E) and P (E)

unity; the two probabilities belong to different initial sources

of neutrons.

Considering the general case, in which some moderator is

admixed with the fuel, and utilizing the (IR) parameters as

introduced in Section 2.7.1, one can then solve Eqs. (3.13) and

(3.14) to obtain the following results:

[Eam (E)+E sm(E)]m(E) = [1-P (E)1PE (E)2 +.M s E

[1-Pm(E)][1-]E sm(E)j (E) + P (E)Vf[E{X
f m

Vf

m

[Eaf(E)+E f(E)+E anf (E)+ snf(E)]4f(E)

+ [l-P (E)][(1-X)E
sf

F (E) V7 -sm(E)
V

P (

= [1-P (E)][AE +v (E)]f p f snf E

(E)+(-v)E snf (E)]If(E) +

sm (E)m(E)

is not

+vE (E) I C +

(3.15)

(3.16)+
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Parameter C is a normalization constant given by

q V
C cell

Vm m m fpf

where q is the slowing-down density. Strictly speaking, C is

an energy-dependent quantity which should reflect the decrease

in q when moving down the resonance ladder from one resonance

to the next. However, if the group width is such that it contains

just a few resonances, then assuming a single mean value for q,

and hence for C, leads to very little error.

Upon adding Eqs. (3.15) and (3.16), the terms multiplying

the escape probabilities cancel out, and the following simpler

expression remains:

Vm (E)+E sm (E)Ijm(E)+V Eaf (E)+E f(E)+E f (E)+Zsnf (E)]5(E)

= Vm v (E)K + V (-) (E)m(E) + Vf[XE +Vz (E)]2m sm E m sm snf E

+ Vf [(1-X)Esf(E)+(1-v)Esnf(E)] f (E) (3.17)

which is further reduced to:

Vm [ am(E)+y7E (E)] m(E) + V [ (E)+XE (E)+F (E)+

) ( =m sm f sf nf E

(3.18)



78

Equation (3.18) can now be used to obtain the spatially-averaged
- (E)

fuel flux in terms of the flux ratio R(E) - m as follows:
(E)

V ()E (E)+V Xf+V v f(E)
V (E) = 

ampsfVf[Eaf (E)+AE sf(E)+E (E)+vf (E)]+V [E (E)+pE (E)]R(E) E

(3.19)

As it stands, Eq. (3.19) is a quite general expression for

the spatially-averaged fuel flux in terms of the flux ratio R(E);

and it could thus serve as a weighting function. There are,

however, a number of simplifying assumptions that can be intro-

duced into Eq. (3.19) at this stage without significant loss of

generality, and which greatly simplify some of the subsequent

analysis: these assumptions are the following:

(a) E (E), a (E), En(E), and Ea(E) are all weakly

dependent on energy, especially within a given energy

group; hence they will be replaced by group-averaged

parameters.

(b) All moderator elements will be treated as NR scatterers.

The error of the NR approximati n as applied to the

moderator is of the order of 2rp where r

practical half-width of the resonance, E (1-am
r m

maximum energy loss in a moderator collision. For

light moderators E (1-am) is usually much greater thanr m
pT ,(G4).
p
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(c) Setting the normalization constant, C, arbitrarily

equal to 1.0; this will lead to $(E) = as the off-

resonance reference value for the flux per unit

energy.

(d) Eam <Z sm and Zanf snf

Introducing the above assumptions into Eq. (3.19) the following

simpler expression is obtained:

(E) = msm+V fsnf+Vf pf 1 (3.20)
V f[ af(E)+X sf(E)+Etnf]+Vm tm R(E) E

Equation (3.20) reduces to the WR limit when X=0, and to the NR

limit when A=l.

3.3.2 Effective Group Capture Cross-Section for a Resonance

Absorber

We are now at a stage where almost all the groundwork

necessary for generating "equivalent" group parameters , .1

E cg gg... etc.), which are constant over the entire volume

occupied by any given cell in a reactor, has been developed.

The group constants generated should, when used in a group-

diffusion-theory calculation for the whole reactor, reproduce

the same average reaction rates over a given cell as would be

determined if an exact energy dependent transport calculation was

performed for a heterogeneous reactor with all the geometrical

characteristics of the unit cells treated explicitly.
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To start with a rigorously accurate definition of equivalent

homogenized cross-section, recall the explanation given in

Section 2.1 and especially the constraint set by Eq. (2.1) -

namely:

n-i(r,E) = 0 (3.21)

Then, the definition of an equivalent homogenized capture cross-

section specialized to a two-region unit cell will be:

dE j3 (r,E,T)$(r,E)
c

dE $(r,E)

Further assume that the resonance absorber, j, is present

only in the fuel region; then Eq. (3.22) can be expanded to yield

the following form:

Zcg

I dAEg Ecf(ET) Vf(r,E)dV

dEJ $(rE)dV+ J (r,E)dv
AEg V Vm

(3.23)

Define the spatially averaged fluxes as:

(3.24)m(E) m V $(r,E)dV;
m

If(E) $ f V (r,E)dV;

f
(3.25)

dV J
AEg

cg =

Vcell

Vcell

dV f
AEg

(3.22)
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Using Eq. (3.24) and (3.25) in Eq. (3.23) we get:

Ef(ET)V (E)dE
AEgcf ff (3.26)cg E[Vff(E)+Vm m(E)]dE

AEg

or

cf(ET) (E)dE (3.27)
cg V

[E + -E! R(E)]T (E)dE
f4Eg f-

Our next step is to solve Eq. (3.27), knowing R(E) and

$ (E) from Eqs. (2.81) and (3.20) respectively. As it stands

the problem is essentially intractable unless plausible simpli-

fications are introduced into Eq. (2.81): the following are

to be implemented:

(a) Linearization of the expression for R(E), by using

group-averaged values for the values of T appearing

in cfa ,3, P. Numerical studies confirm that this is

an acceptable device: in the present application one

could even use the weak absorption asymptote without

introducing significant error (see Appendix B). The

numerator of Eq. (2.81) becomes [l+y f6 f(E)], with

Y fa PQm evaluated at group-ateraged values for the

T involved. In like manner the denominator of Eq. (2.81)

will take the similar form [l+y6 (E)].m m
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(b) Etm(E) and E tnf(E) are very weakly dependent on

energy, especially within the range of energy covered

by a typical group width. Hence, we can treat 6 (E)
m

as constants over AEg. This last assumption in

conjunctiQn with the one made in part (a) immediately

implies that the denominator of Eq. (2.81) can be

taken as constant, and it shall henceforth be

denoted by 6.

Based on assumptions (a) and (b) Eq. (2.81) can now be

written in a more manageable form:

R(E,T) [l + Y6f(E,T)] (3.28)

where 0 and y are as previously defined.

Substituting Eqs. (3.20) and (3.28) into Eq. (3.27), the

following is obtained:

(Vm m+V E +V AE ).f(ET) dE

A V f afET)+V AE (ET)+V Etn+V Et [1+- 6 (ET)] E
JAEg_ f ffs nfmt6 Y

cg V 1
(Vm E+V f+V XE )-{l+v m[l+yf6f(ET)]}
m sm fsnf f 1f 1+ YETf dE

Ad E
AEg V f f(EIT)+V fAr s (EIT)+V fE tnf +V m e[l+y 6 f(ET)]

(3.29)
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or more simply:

Ecf (ET) dE

E(T)A tnf Vm Etm IFl6(E\
AEg af (E, T)+a (E,T)+ [ 6 y (ET)]

Vcg (3.30)

aEg af(ET)+Xa f(ET)+ Nf m t[fl+y 6 (E,T)]

where (Vmsm+V E +V XI) has been cancelled-out, because it

it treated as essentially constant over the energy range covered

by AEg.

Using the explicit form of 6f(ET), given by Eq. (2.76)

with v=l, in Eq. (3.30) we get:

Ecf (ET) dE

E afXf tnf V EtM1
_-AEg Naf + + [l+7 (T +XT +Ttnf) E

M 1'cg r l(3.31)
1+V [{l+Yf( Taf+XT f+Ttnf 

dEJ r f+ A C ~tnf + V M Etm 1[+yT+A +. E

AEg af sf Nf V [Nf a+ (Taf+ATsf t.nf

Recalling the definition of optical thickness given in Section 2.2

and that a = +aaf capture of the fuel fission of the fuel

aCf Cff, the terms containing optical thicknesses can be written

in terms of the basic microscopic cross sections. This facilitates

collecting common terms - that is, taking the denominator of

both the top and bottom part of Eq. (3.31) one gets:
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cf+aff +X sf+ N V tm[1+ N P (fa a + )], (3.32)cfs NfV fN f{l f f f acf ff+Xff+ Nf

which upon grouping the common terms becomes:

(1+-)[Ecf ff sf+(+ )tn + (3. 33)

where = N ff tm m tm (3.34)

Based on the assumed constancy of Yf , 0 and Ttm over the

energy range AEg, it follows that the term (1+ ) is also constant

over the same energy range and hence can be factored out of the

integrands of both the numerator and denominator of Eq. (3.31).

After factoring out the term (1+-) from expression (3.33),

one has:

V E
(+9 )[oaf+Xa + tnf + - - ] (3.35)6 af f N f + 0 V f Nf

If we volume-homogenize (Z tnf )/(N ) and (E tm)/(N ) and

note that their sum is the total background cross section per

resonance absorber, then, based on the definitions given in

Sections 3.2.2 and 3.2.3, the above sum is denoted by a0 '

The prime is introduced to indicate the modification made on

the second term - i.e. (Ztm)/(N&) by the multiplicative factor

To put it quantitatively:
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V Vm
V t n Vt

' cel1 tnf'+_1_cell tm tnf 1 - _cel1Ge] + tm (3.36)0 V -_ _ +
f NV N

cell cell

where the bars over Z tnf' , and N denote volume-weighted-

homogenization.

Substituting expression (3.36) into expression (3.35),

there results:

(l+)(f +XA + 00 (3.37)

This factor can now be used as the denominator of -both the top

and bottom parts of Eq. (3.31), to give:

f dE
E

V f *cgcell

I AEg

'f dE

af sf~O

(3.38)
where

F-1? 1 _ VIf fm
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Also note that the constant term (1+-) has been cancelled

out. Upon inversion, Eq. (3.38) becomes:

1

Vcell cg

1 + ?dE

AEg aaf Sf 0 E

Scf dE

f AEg af s+ka Sf ' E

+

V 1  1 dE

V JAEg af. sf ' E
cf dE

fAEg aaf +Xasf +a' E

Sac f d E
G-'Y _______ _ E

AEg af sf 'E0

A cf dE

a af+a +asf 0 E

+

ellI XCYs f d E

+ AEg a f+asf+ 0 E +
cf dE

JAEg CYaf +Xasf, 0 E

E_ __ __ _ dE

-AEg Caf+GSf +0 E

g f dE

AEg af +X sf+ 0

, , nf dE

Nf AEg af s+X f + 0

a cg dE

JAEg aaf sf +a 0 E

(3.39)

Upon comparing each of the different parts of Eq. (3.39) with

Eq. (3.6) the following rigorous result is achieved,

1 f cell m 1 1 fhom
C ghet C ghorn V cel0ac hom± aS g +oa et a hm +cell a ao "+e o
cg cg cg cg

hom

S s + F'' tng 1
a hom N hom
cg f eag

(3.40)

+
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where

hom
= group-averaged homogeneous capture cross-section

hom = group-averaged homogeneous fission cross-section

hom
a = group-averaged homogeneous elastic scattering cross-sg

section

het = group-averaged "homogenized" capture cross-section

= total non-resonance cross section in the fuel region

for group g.

=(Vf/Vcell -

V f

V c
Yf Vm - Yf V N

f cell

With a bit of straightforward algebra Eq. (3.40) can be

further reduced to obtain the following simple form:

het
ac (T O~ =

ahornm~a'
cg*O
C9horn + cg h0OM(Ta 0

+1 m +E:a hom (Ta + hom ,
cell e Vcell fg 0 sg 0

+ Yf Vm
0 Vcell

Ttng

i V 1e"l= Yf Vm N 91
e cellff

ac

a

cg

Etng

where

(3.41)
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It is important to note, as evident from the method of

derivation, that Eq. (3.41) predicts the correct homogenized

cross-section under any condition so long as the homogeneous

part (i.e. acghom (T,a0 ')) is treated, under those same conditions,

correctly elsewhere in the literature.

3.3.3 The Heterogeneous Self-Shielding Factor and a New

Equivalence Theorem

The present aim, as mentioned before, is to devise a method

by which one can obtain accurate heterogeneous self-shielding

factors embodying all the characteristics and properties of the

well-established Bondarenko f-factor formalism, previously

developed for homogeneous systems.

Recalling Eq. (3.7) for the definition of the self-

shielding factor, and applying it to Eq. (3.41), leads to the

following important expression:

fcghet (T 0)
f hom(T,a)

hom
11~?cg0

f m + f hom (T') +
Vcell cell fg

fYf hom OV 
sg 0 sg Vcell tng

00

c g

where

(3.42)
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or

het 1 homfhe (T.1 0 ) 1Y f ho(TV cyt (3.43)
cg 0 j + E cg 0

where = e' (T,c 0 )

which is in the form of a New Equivalence Relationship, whereby

the corresponding f-factor for the heterogeneous cell is

expressed in terms of the f-factor for a homogeneous cell

evaluated at a modified value of the constant background cross-

section - namely a0'. Equation (3.42) was derived assuming a

single resonance is embedded in the energy group of width AEg.

However, as it stands, the applicability of the equation can

easily be extended to coarse groups by simply referring all

the parameters appearing in Eq. (3.142) to their corresponding

coarse group values.

Finally, it is worthwhile to present a brief review of

what we will call the "conventional" methods used hitherto and

compare their results with those of the present method - i.e.

Eq. (3.43) and all of its implications. Conventionally, one

uses the second equivalence theorem to make the heterogeneity

correction. The statement of the theorem is as follows (Hl,L4):

a heterogeneous system will have the same resonance integral

as a homogeneous system evaluated at:
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tnf + 1-c a Etnf + 1 Etm0 - N Yl 1+(a-1)c - 1 _ (3.44)
Nff N 1+-T Nf ±f a tm f

where c is the Dancoff-Ginsberg factor given by:

tm
1-c .= T , in Bell's approximation (Bl) (3.45)

1+ Tta tm

with "al known-as the Levine correction factor (L2), which

typically takes on values lying between 1/a ~ 0.63 and 1/a.~

0.84. It has been found, however - refer to (H2,L2) -

that a value of 1/a ~ 0.79 yields accurate results over the

entire range of practical lump sizes.

Although the theorem is strictly valid for resonance

integrals, it is also utilized to predict group cross sections

via the following equations - consult Refs. (F4,H4,K6):

RI
cg FA (3.46)

where RI = capture resonance integral for group gcg

AU = lethargy width for group g, obtained by

assuming a l/E flux shape

F = flux shape correction factor (corrects for

both the non-l/E shape of the flux envelope,

and for resonance-induced flux dips)

Applying the preceding theorem to either (or both)

Eqs. (3.46) and (3.6) yields the following conventional result

in terms of the f-factors:



91

cg ' 0 )T=10'c 03

Upon comparing Eqs. (3.43) and (3.47) we immediately

note that the factor + has been set equal to 1.0 in the

conventional method.. This factor, as will be .seen in Section

3.5, would induce some difference into the heterogeneous

cross-sections obtained conventionally and those obtained

using the new method. This discrepancy raises questions as.

to the validity of the second equivalence theorem as applied

to cross-sections but not to resonance integrals. The

difficulty stems from the fact that the true integrated

heterogeneous flux, as given by the denominator of Eqs. (3.26)

and (3.27), has in the conventional approach been replaced

by a homogeneous flux evaluated at 0 in the denominator of

Eqs. (3.6) and (3.45), thus leading to the present disparity.

As for the first equivalence theorem, it states:

heterogeneous systems with the same a0' (refer to Eq. (3.44))

have equal resonance integrals. It can easily be shown that

the statement of the theorem is in accordance with the

predictions of Eq. (3.43).

The above conclusions, in conjunction with the result of

Eq. (3.43), constitute the present New Equivalence Theorem.
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3.4 A COMPARISON BETWEEN THE CONVENTIONAL AND THE PRESENT

DANCOFF FACTOR AND ESCAPE PROBABILITY EXPRESSIONS

In this section we will obtain expressions for the Dancoff

factor and the fuel escape probability by comparing the various

results of the present method with the corresponding conventional

results. Before getting into the algebra, some simplifying

assumptions are introduced, which are not to be taken as

limiting approximations, however:

(a) Impose the NR approximation. Therefore, strictly

speaking, all results obtained in this section are

for the NR case. Results for the WR and IR cases

are obtainable by exactly the same methods.

(b) Consider only thermal reactors, where the slowing

down source is in the moderator, hence Qf=O and

0=1.

Using the above assumptions and comparing Eqs. (3.36)

and (3. 44) we get:

1 (3.148)
1 + y T + -Tf tm a tm

which says that y ++ -, thus leading to a similar expression

for the Dancoff factor: given by Eq. (3.44) with the only

1-
change being the replacement of - by y .

Ttm

1 - c = present method (3.49)
1 + y fTtm
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The next task is to find a corresponding expression for

the escape probability, P (E). Utilizing Eqs. (3.15) and (3.16)

in conjunction with the above assumDtions, and going through

some simple algebra the following result is obtained:

T (E) Ttf(E)
1 + (T (E) T Pf(E)

tf tm
R(E) T (E) T (E) (3.50)

1 + ( - 1)(1 - T E)P (E)
Ttf () tf(E

(I) in the asymptotic region T f(E) T f Ttf(E),

which when substituted in Eq. (3.50) results in

R(E) 1, as to be expected.

(II) in the resonance region where Ttf sf (black fuel)

one obtains:

1 Ttf(E)
R(E) = PT(E ~ T (E) (3.51)

f tm

Conventionally, the fully rational approximation for P f(E) is:

P f(E) 11 (3.52)

1+ atm
1 + tm tf (E)

Substituting Eq. (3.52) into Eq. (3.51) gives:

R(E) = 1 + I T (E) (3.53)a tf
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which has exactly the same form as predicted by our results -

namely:

R(E) = 1

Upon comparing Eqs.

+ f Ttf(E)

(3.53) and (3.54) we note:

1 -
a 40Yf

Using the equivalence relation given by Eq. (3.55), and working

backward, we obtain the following expression for P (E):

P f(E)
lyf Ttm

1 +T (E)
Ttm tf

(3-56)

Equation (3.56) is the analog of Eq. (3.52).

The above encouraging results strengthen our confidence in

the present method. We will see in Section 3.4 that the range

of values for y *for cylindrical unit cells is:

0.47 < yf 0.64 (3.57)

which can be compared to the variation of 1/a reported earlier

to be:

0.63 < - < 0.84*
ro a , (3-58)

Figure 3.2 shows a plot of. the Dancoff correction obtained

in Ref. (L3) using the MOCUP Monte Carlo program. The Monte

*Also note that Yt approaches the asymptotic limit of 1.0 as
the moderator optical thickness (Ttm) gets large, See the
footnote on page 96.

(3.54)

(3.55)
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Carlo program computation was performed on a two-region "square

pin cell" of high fuel cross-section and with V /V =1. Asm f

can be seen, the present analytical results are in as good agree-

ment with the Monte Carlo computations as are the results of

the analytical model proposed in Ref. (L3); with the exception

that the present model is considerably simpler than the model

proposed in the reference. Both models, however, are obtained

assuming unit cell cylindricalization; as a result, they do

not distinguish between square and hexagonal cells. Finally,

the results of the two models are about 3% higher than the

corresponding Monte Carlo computations.

3.5 COMPARISON OF MODEL RESULTS WITH LEOPARD CALCULATIONS

In the present section homogeneous-to-heterogeneous correc-

tions are calculated with the new equivalence theorem, and the

results compared to equivalent output from the LEOPARD Code (L5),

a state-of-the-art LWR unit cell program. The base-case unit

cell data used in both calculations is representative of current

commercial PWR reactors (specifically, Maine Yankee); Table

3.7 summarizes pertinent dimensions and compositions.

Yf in the limit of high fuel optical thickness is, (refer to

Chapter 2):

2 1/2
- + 0.2 4 1
3 tm

.Y 1/21 + 0.24T1
tm
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The EPRI version of LEOPARD was employed, together with its

ENDF/B IV derived cross-section library. For the self-shielding-

factor method cross-sections, and f-factors as a function of

a0 ,were taken from the LIB-IV fast-reactor cross-section set'

developed by LASL (also derived from the ENDF/B IV library)(K6).

3.5.1 Energy (Group) Dependence of Essential Parameters

Table 3.1 gives the group values for Qm' Yf, Ti, C,

00, and 0 calculated for the base case PWR unit cell. Appen-

dix E contains a step-by-step procedure for calculating one

of the table values; moreover, a brief discussion of some

aspects of LEOPARD, pertinent to the present problem, will

be given in Appendix C.

There are several important observations to be made in

the above table. First,we note that the value of Q (fractionm

of the neutron source originating in the moderator) is approxi-

mately 1.0; hence, sjustifying the widely used assumption, in

thermal reactors, of considering the epithermal slowing down

density to be zero within the fuel. Another effect of the

above observation would be to make e ~1.0, as indeed is the

case upon referring to the foregoing table; this validates

assumption (b) made in Section 3.4; furthermore, the indicated

slow variation of yf over the groups helps to partially justify

assumption (a) of Section 3.3.2.

Group structures are given in Table 3.8.
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Table 3.1

Group Values of Qm, yf', 0, n, 6, a0, and 0 for the

Base-Case PWR Unit Cell

Group QM e I 0 0
No.* barns barns

26 0.987 0.473 1.008 1.138 0.006 100 61

27 0..482 1.162 0.006 105 63

28 0.481 1.141 0.007 106 64

29 0.478 1.148 0.007 100 60

30 0:988 0.483 1.148 0.008 100 60

31 0.477 1.130 0.007 102 61

32 0.481 1.139 0.009 100 60

33 0.478 1.126 0.011 100 60

34 0.481 1.132 0.012 102 61

35 0.474 1.118 0.011 101 61

36 0.471 1.117 0.010 101 61

37 0.489 1.130 0.010 107 63

38 0.525 1.159 0.013 101 62

39 0.536 1.159 0.020 102 62

40 0.511 1.119 0.022 102 63

41 0.473 1007 1.139 0.007 103 66

42 0.979 0.632 1.019 1.327 0.030 103 59

43 0.988 0.588 1.010 1.134 0.057 103 61

44 0.467 1.007 1.114 0.004 105 68

45 0.607 1.011 1.142 0.160 103 60

See Table 3.8 for group structure.
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In Table 3.2 the analytic and the LJEOPARD results for

the ratio of heterogeneous-to-homogeneous self-shielding factors,

evaluated at the same a0 , are compared. There are two group

number entries in the table, one for LIB-IV and another for

LEOPARD; their energy groups are matched using the corresponding

group structures given in Table 3.8. Note that only the resonance

part of the LEOPARD results for the absorption cross section

is considered - i.e., the smooth or term, which is of

small effect, has been omitted. Hence, the dashed lines shown

in the table imply that there are no resonance contributions

in the corresponding groups. Use of the LIB-IV cross section

set did not permit separation of resonance and smooth effects

in the present model. The important point to note in this

table, however, is the near constancy of the LEOPARD results

for the ratio f het(0 hom(a 0 ) over groups 26-45. This would

suggest that weak resonances undergo as much self-shielding as

strong resonances, counter to both intuitive and analytical

expectations. Our results, on the other hand, indicate less

self-shielding for weak resonances and greater self-shielding

for strong resonances.

3.5.2 Dependence of the Ratio f ( 0 f ho(a ) on Moderator

Optical Thickness

Figure 3.3 is a plot of homogeneous broad group capture

hom
cross-section (ch) as a function of moderator optical thick-

ness (Ttm), with the fuel diameter kept constant. The broad

group cross section is defined by a l/E weighted group collapse:
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Table 3.2

Group Values for the Ratio of Heterogeneous-to-Homogeneous
Self-Shielding Factor

This Model LEOPARD

het het
LIB-IV LEOPARD 0  0

Group No. Group No.f hom hom(a

(resonance (resonance)
+ smooth)

26 & 27 26 0.836 0.596
28 & 29 27 0.822 0.598

30 & 31 28 0.799 0.601

32 & 33 29 0.776 0.601

34 & 35 30 0.749 0.593
36 & 37 31 0.741 0.586

38 32 0.652 0.610

39 33 & 34 0.661 0.611

40 35 & 36 0.679 0.613
41 37 & 38 0.768 -

42 39 & 40 0.556 0.630
43 41 & 42 0.631 0.644

44 43 & 44 0.892 -

45 45 & 46 0.592 0.660

46 47 & 48 0.900 --

47 49 & 50
48 51 & 52

49 53 & 54

*
8 for group structure.See Table 3.
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Table 3.3

Tabulated Results Applicable to Fig. 3.3

Toderator Optical a hom (barns) a hom (barns) A%
Thickness analytical, using f-factor LEOPARD percent

formalism difference

0.361 2.218 2.088 +6.2

0.663 2.591 2.565 +1.0

1.354 3.336 3.410 -2.2

1.965 3.883 3.962 -2.0
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hom GP49 49
achm a. Au / Au

GP26

As is evident from the figure the capture cross sections ob-

tained using self-shielding factors are in good agreement with

the corresponding parameters generated using LEOPARD. Depending

on ones point of view this either validates the f-factor for-

malism, LEOPARD, or both. Table 3.3 contains the tabulated

results of Fig. 3.3 including percentage differences.

In Fig. 3.4 the analytic and the LEOPARD results for the

ratio of heterogeneous-to-homogeneous self-shielding factors

(fhet (a0 )fhom(a 0 )) as a function of moderator optical thickness

(at constant fuel pin diameter) are shown. The agreement

shown between the two results is good (particularly for

Ttm , that of current PWR designs); also note that the

results fall very nearly on a straight line. This observation

can be explained as follows. Considering Eq. (4. 22) (to be

derived in Chapter 4) one gets:

het

ho(a 0  1 Y0fTt fl [fho )]2 } (3.59)
0 1 +yTtm

or in a more condensed form:

het

hom ( ) 1 - tm (3.60)
(a0

where

1- 2

1+y fTtm
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Table 3. 4

Tabulated Results Applicable to Fig. 3.4

fchet (y het (a

Moderator Optical f hom 0  f hom(a0
Thickness c 0 c 0

present model LEOPARD percent
Eq. (3.42) difference

0.361 0.865 0.857 +0.9

0.663 0.784 0.782 +0.3

1.354 0.653 0.653 0.0

1.965 0%551 0.587 -6.5
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Note that as the pitch shrinks, a0 decreases and the parameters

2-
(f , YfTtm' yf) approach the following limiting values quite

rapidly.

2 0 (3.61)

Yf Ttm << (3.62)

Y + constant (3.63)

Hence, $ will approach a constant value; and, in accordance with

Eq. (3.60) fhet 0 f hom(a 0 ) versus Ttm is indeed a linear

function with negative slope. The plotted data of Fig. 3.4

are given in Table 3.4 with the percentage differences included:

the agreement between the present model and LEOPARD is excellent

for all but the thickest moderator case.

3.5.3 Dependence of the Ratio fhet ( 0  hom(o) on Cell

Shrinkage Factor

Figure 3.5 shows the ratio fhet (0 )fhom ( 0 ) as a function

of cell shrinkage factor, which is defined as the factor by

which all radial dimensions in the unit cell are multiplied,

to shrink or dilate the cell in a manner such that the volume

fraction of all constituents is unchanged. The results

agree within +8% (see Table 3.5): however agreement is

exact for the base-case PWR cell typical of current commercial

lattice designs.
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Table 3.5

Tabulated Results Applicable to Fig. 3.5

fchet(a chet 0)

fchom (a) chom (a
Cell Shrinkage Factor A%

present model LEOPARD
Eq. (3.42)

Base-Case PWR Unit Cell
Dimensions 0.653 0.653 0.0

10-3 x the above unit
cell dimension 0.999 0.981 +2.0

1/4 x the above unit
cell dimension 0.917 0.856 +7.1

1/2 x the above unit
cell dimension 0.824 0.762 +8.1

3/4 x the above unit
cell dimension 0.735 0.702 +4.7

3/2 x the above unit
cell dimension 0.538 0.581 -8.0
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3.5.4 Heterogeneous Cross-Section as a Function of Moderator

Opt:ical Thickness

Table 3.6 contains the data for the U-238 broad group

"heterogeneous" capture cross-sections evaluated at various

moderator optical thicknesses and at a fixed fuel pin diameter.

As seen from the table, the two central points agree within 2%,

and the end points within 8%; these data are plotted in Fig.

3.6. The important Doint to note here is the approach of the

curve to an asymptotic limit as the moderator thickness increases,

the reason being that as the moderator optical thickness in-

creases, the results approach the isolated-lump limit.

3.6 DISCUSSION AND CONCLUSIONS

A new approach for obtaining equivalent homogenized cross-

sections has been developed. It has been shown to validate most

prior (conventional) results, with the exception, on theoretical

grounds, of the second equivalence theorem used for generating

homogenized cross-sections. However, heterogeneity corrections

calculated using the present method were generally in good

agreement with the same corrections obtained using LEOPARD;

agreement is particularly good for unit cells typical of current

commercial PWR lattices.

Although the present and the conventional equivalence

relations differ by the factor (see Section 3.3.3), actual

numerical results agree reasonably well. Let us recall some

of the previous expressions:
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Table 3.6

Tabulated Results Applicable to Fig. 3.6

Moderator Optical a het (barns) F het (barns)
Thickness present model LEOPARD percent

Eq. (3.24) difference

0.361 1.919 1.790 +7.2

0.663 2.032 2.005 +1.3

1.354 2.180 2.228 -2.2

1.965 2.141 2.326 -8.6
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Table 3.7

Base-Case PWR Unit Cell Data

Homogenized Atom Densities

Element

Hydrogen

Oxygen

Zircaloy-2

Carbon

Iron

Nickel

Aluminum

Chromium

Manganese

Uranium-235

Uranium-238

Number Density (nuclei/barn cm)

2.6960x10-2

2.7625x10-2

5.1680x10-3

4 .3687xl0 8

1.5179x10-5

3.1127xlo- 5

1. 9762x10 7

1. 01414x10-5

1.7398x10'-
2.0767x10- 4

6.8656xi0 3

rfuel = 0.186 in ; rgap

Cell Dimensions

0.189 in; r ld = 0.220 in; pitch = 0.580 in

Temperature

T 1209.50 OF; T 614.8 OF- T =562.50 OFpellet clad and void ' moderator
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Table 3.8

Energy Group Structure of Cross Section Libraries

LIB IV ENERGY GROUPS LEOPARD ENERGY GROUPS

No. ELower Boundary AU. No. ELower Boundary AU

upper
boundary

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

* 48

49

50

5.530

4. 31

3.35
2.61

2.03

1.58

1.23

961

749

583

454

354

275

167

101

61.4

37.3
22.6

13.7
8.32

5.04

3.06
1.86

1.13
0. 6826

1x10-5

Kev

0.25

ev

0.50

upper
boundary

26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

43
44

45

46

47

48

49

50

51

52

53

54

Kev

0.50

ev

5.530

3.35

2.03

1.23

750

454

275

167

130
101

78.7

61.3

47.8

37.2

29.0

22.6

17.6

13.7

10.7

8.32

6.50

5.10

3.97
3.06

2.38

1.855
1.440

1.1250

0.8350
0.6250

0.25

0.2538
0. 2462

0.3000
0. 2884

Ir
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f het = hom(') new equivalence
cg 0 he+va c 0

relation (3.64)
with

0  tnf + tm (3.65)
N N

0, tnf + 1 tm (3.66)
N f 1+y fTt Nf

and

het hom
fceg y 0 fcg (a0 ) conventional equivalence

relation (3.67)

with

C0 E tnf + tm
0 32N f N

0 Etnf + 1 tm(3.69)0 1 ( . 9
N 1+-T N
f a tm f

If for the moment we assume that the a0 ' values given by

Eqs. (3.66) and (3.69) are equal to each other (note that the

G 0 values are always equal), then the resulting f factors (hence

capture cross sections) predicted by the new equivalence rela-

tion would be 12 to 25 percent less than the results obtained

using the conventional method due to the presence of the factor

see Table 3.1 for typical magnitudes of q and c. The

reason, however, that the observed agreement is better ,is that

the a0' given by Eq. (3.69) is considerably lower than the a0'

given by Eq. (3.66), because the Levine factor 1/a taken here

as 1/a=0.79 (see Section 3.3-3) is considerably higher than
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the corresponding parameter -Yf' which has an average value of

0.50 (see Table 3.1). Hence,the lower a ' used in the present

model provides an offsetting correction.

One major advantage in the new approach comes from the

fact that the flux ratio R(E) appears both in the numerator and

the denominator of Eq. (3.29), which leads to results which are

only weakly dependent on the accuracy of R(E) (see Appendix B

for numerical justification of this observation). This being

the case, it is important to note that the only place at which

the flat-flux assumption was introduced is in Section 2.5 in

conjunction with the source used in the flux ratio R. In this

regard it is shown by Gregory (Gl), that for a general parabolic

2 2
source (S(r)=l+a r ) distribution the mean escape chord length

for a transparent cylindrical rod is:

2 2
3 r (1 - (3.70)

~e 3 1 6

Assuming that the distribution of scattering sources is given

by (Gl):

rsFF * 1 r 2 + ..] (3.71)

where

$FF = first flight flux due to a uniform source. The

source of Eq. (3.71) is a parabolic source with a 2.= -1/4r

2
Substituting this a in Eq. (3.70) we get:

e r (l + 1 (3.72)
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which differs by less than 0.4% from the mean escape chord

length introduced earlier in Section 2.6' derived under the

assumption of a spatially uniform collision source distribution -

i.e., flat-flux. Thus, we conclude that the flat-flux assumption

is not a significant weakness in our methodology, since it

apparently cannot introduce any significant error into the

final results. This assertion is also put. forth by Kirby and

Karam (K2) with regard to the flat-flux assumption as utilized

in the conventional methodology. Note also that the flux ratio

model was force-fit to transport program calculations in which

collision sources were proportional to flux shape. Hence while

its analytic form stems from a flat-flux model, its numerical

validity is not so constrained.

A final point to note is that we have not merely validated

the older conventional approaches to this problem. While the

present results include the earlier work as limiting cases,

several distinctions must be made:

(a) even in the limiting cases the present work leads

to more accurate approximations to "exact" results;

(b) the most general form of the present results

handles cases not easily dealt with conventionally -

e.g. when fuel moderation is not negligible compared

to that of the coolant;

(c) the present result more clearly identifies the

nature of the approximations involved, facilitating

error analysis;
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(d) the present results are a better vehicle for

unifying fast and thermal reactor methodology.

The numerical results already given in the past sections

and those to be given in the next chapter help underscore the

above assertions.
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Chapter 4

THE EFFECTS OF HETEROGENEITY IN FAST REACTORS

4.1 INTRODUCTION

The effects of heterogeneity in fast reactors are far

less prominent than the corresponding effects in thermal reac-

tors. Fast reactors are so nearly homogeneous because fast

neutron mean free paths are for the most part an order of

magnitude larger than any dimensions over which physical pro-

perties change. This being the case, we can, by using Eqs.

(3.9) and (3.43), derive a very simple and practical expression

for the ratio fhet ( 0 f hom(a0), which will predict the hetero-

geneity corrections to within reasonable accuracy.

For detailed discussions of the effects of heterogeneity

in FBR blankets refer to (F2, Gl, K1, Ll): the blanket is of

particular interest here because the diameter of radial blanket

fuel pins may be as much as twice that of the core fuel pins,

and the ambient neutron spectrum is softer than that of the

core - both of which circumstances accentuate the effects of

heterogeneity.

4.2 AN APPROXIMATE EXPRESSION FOR fhet ()/fhom( ) APPLICABLE

TO FAST REACTORS

By referring to Table 4.1 which shows groupwise parameters

for the metal-fueled blanket mockup described later ir this

chapter, we observe that:

n ~ 1.0 and c ~ 0.0 (4.1)
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Table 4.1

Group Values for Qf, Y, n 3, E, 00 and a ' for

Blanket Mockup Unit Cell

a Metal-Fueled

0
f

C
0 0

barns barns

0.001

0.002

0.003

0.002

0.001

0.032

0.022

0.006

0.021

0.037

0.042

0.044

0.045

0.044

0.042

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

59
66

58

107

71

71

31

0.400

0.440

0.7 47
0.450

0.397

0.382

0.392

0.384

0.388
0.383

0.380

0.393
0.439

0.459

0.428

0.380

0.588

0.533

0. 373

0.561

*
For oxide fuel only group 45, which contains the largest (and hence

most heavily shielded)

0.444 0.304

U-238 resonance

1.311

is reported:

0.916 0.034

See Table 3.8 for LIB-IV group structure.

Y r)
0 0

1.013

1.009

1.003

1.009

1.015

1.017

1.018

1.018

1.018

1.017

1.017

1.017

1.020

1.022

1.020

1.017

1.030

1.028

1.016

1.032

0.003

0.004

0.001

0.006

0.010

0.001

0.032

1.014

1.022

1.037

1.023

1.013

1.007

1.009

1.004

1.006

1.004

1.005

1. 006

32

1.009 0.003

52

53
20

91

64

65
68

28

29

30

$
1.009

1.002

1.010

1.002

1.000

1.007

1.000

45 24 19



which, when substituted into Eq. (3.43), will yield:

f het(T, a) = hom (T,a ')
cg 0 cg '0

or

het
cg (a0 )

f hom
cg ( 0)

hom

fcg ho r0homn
cg ( 0)

where the explicit "T" dependence has been suppressed

for convenience.

Equation (4.3) is a simple and accurate expression for most

fast reactor applications, with the proviso that the conditions

of Eq. (4.1) are satisfied.

Equation (4.2) is similar to the expression obtained using

the second equivalence theorem - namely Eq. (3.47).

Additional simplifications are possible, and while not

needed in order to apply the method, will prove useful for the

purpose of justifying the linear functional dependence shown in

Figs. 3.4 and 3.5. Recalling Eq. (3.9) and casting it in terms

of a0 gives:

f hom(a 0 ) = ( a
cg 0 ntf + apf + 0

Let us define the following quantity:

or:

1/2
(4.3)

Aa0 a 0 - 0

a0 0 -A Y00

(4.4)

(4.5)

120

(4.2)

(4-3)



Substituting Eq. (4.5) into Eq. (4.3) yields:

a +±a -Aa0  1/2
hom pf 0 0 )1fcg 0(ao0) ntf + af + a 0 -A 0

or

2 apf + j0

t f + ypf + F0 -Aa0

A a0  
0

nt f + a p.+ a 0-Aa0

hence

2 It f+aPf +a0  Aa - t f+apf+a0 Ay0 1
0 a +a f+a Aa0  0a

0f 0pf 0 0 0

and finally

2 1 - A 0

0 (2 ) ~ 2( af +a 0
1 _ 9f +a0  (4.9)

f 2( 0 ) 0

With a bit of straightforward algebra Eq. (4.9) can be

further reduced to obtain the following form:

fhom(ay0) hm( 0 [
pf +a -Aa0pf 0- 0

CFpf + C f 2 ( a0 )Aa 0

a Aao 1/2
fhom 0(a f hom a) (1 - 0

00 a0 0 a f2 0a 0

(4.11)

Next we have to expand the square root factors in Eq. (4.11)-

using the following expansions:

121

(4.6)

(14.7)

(4.8)

or

11/2 (4.10)



=1+ x - x2 +

(1+x)- 
1 /2

= 1 - 1 32
- 7 +~ - +X <

(4.12)

(4.13)1

Retaining only the

fhom 

first order quantities

fhom0(a)[l + ( f-
0

we obtain:

... (P -
S2 a 0

f2 Aa +
f0 a 0

(4.14)

or

fhom Shom(a 0
1 Au0
2 y 0

- 2 0))]

Substituting Eq.

simple formula:

het
f (a0)
horn
f (a0

(4.15) into Eq. (4.3) leads

1 Aua0
f1 2y a0

to the following

- [fhom( 0 2

which upon using Eq.

fhet(a )

hom =1-
1

(4.4), can be written:

a '
0 2 0

U

Substituting the definitions

into Eq.

of 
00

and a0 from Chapter

(4.17)

3

(4.17) yields:

het (a

fhom( a0
1 1 +2-1

2+0
1

1+ tnf
tm

2
P (a 0 )) (4.18)

122

(4.15)

(4.16)
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Recall that our intention is to derive a simple approximate

expression serving the following purposes:

(1) justifying the linear functional dependence shown

in Figs. 3.4 and 3.5;

(2) obtaining a simple and explicit function dependence

for the effect of moderation in the fuel (Q )

(3) obtaining an expression for fhet (a0 fhom (a)

identical to the one derived by Kadiroglu (Kl)

through different arguments.

To fulfill the above we need to introduce several additional

approximations, such as:

(a) assume that the optical thickness of the moderator

admixed with fuel is much less than that of the

coolant optical thickness: Ttn « tm a reasonable

assumption;

(b) assume that 6 ~ 1.0: this is not always true

especially when Qf is appreciable, nevertheless it

is frequently close to 1.0 - see Table 4.1, for

example;

(c) assume the weak-absorption asymptotic limit, in the

sense of both low fuel and low coolant/moderator

optical thicknesses, hence ~ 1 m

see Section 3.3.2 and Table 4.1.



Using assumptions

fhet

hom
f (00

or

(a) and (b) Eq.

Q(1 f

(4.18) becomes:

(Cy0))

het
f (Go 0
horn
f (a0)

1 f tm (1f 2

2 0))
1+y fT tmr

which is the expression used in Section 3.5.2. Finally,

(4.20)

uDOon

applying assumption (c) to Ea. (4.20) one gets:

het

hom
f (G0)

het 0

fhom ()

1
1 Ttm QM
6 1 +1 Q

1+ tm m

1
6

(1

It (l-Q f)

1 (1
1+3 tm

Equation (4.21). is identical to the expression derived

Kadiroglu (Kl) via basically different arguments. The strong

dependence on Q is evident, as is the linear variation with

Ttm for small

especially goo

Ttm. The absolute accuracy of Eq.

d (it predicts ratios of 0.980 (me

(4.22) is not

tal) and 0.988

(oxide) for group 45, compared to the "exact" values of 0.941

and 0.989 in Table 4.4), however this is not a significant flaw

because heterogeneity is of such small consequence.

124

(4.19)

or

2
0 G)) (4.21)

2
- f (a 0

(4.22)

by
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4.3 SELF-SHIELDING FOR U-METAL-FUELED AND UO -FUELED BLANKET2
UNIT CELLS

As already noted, heterogeneity effects in an LMFBR are

expected to be most noticeable in the radial blanket, and of

particular importance with regard to the spatial dependence of

U-238 capture reaction rates. In order to obtain quantitative

data on these and other blanket related phenomena, a facility -

the Blanket Test Facility (BTF) - was constructed at M.I.T.

to irradiate mock-ups of LMFBR blankets. This facility employs

a converter assembly to transform the highly thermalized

neutrons from the reactor's thermal column into a spectrum

typical of LMFBR core leakage neutrons (F2, Ll).

Two types of pin-cell assemblies have been studied in the

M.I.T. facility: metal-fueled square lattices, and a single

triangular-pitch UO -fueled sodium-cooled assembly which is2

a very realistic simulation of a real LMFBR radial blanket

assembly. Thus heterogeneity calculations are of interest for

both metal and oxide-fueled unit cells. The geometrical details

of the assemblies and the means employed to match their homo-

genized nuclide compositions with those of a realistic blanket

are discussed in Refs. (F2, Ll). Data pertinent to the present

work are summarized in Tables 4.2 and 4.3.

Table 4.4 gives the calculated values of f het( 0 )fhom (a0 )

obtained using Eq. (3.43), for various groups. As seen from

the magnitude of the results, the heterogeneity effects for
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Table 4.2

Data Pertinent to U-Metal-Fueled Blanket Mockup Unit Cell

Homogenized Atom Densities*

Atom Densities (nuclei/barn-cm)

Uranium-28

Uranium-25

Oxygen

Sodium

Chromium

Iron

Hydrogen

Carbon

Cell Dimensions

r = 0.318 (cm); r = 0.351 (cm); re = 0.397 (cm); re=0.732 (cm)fg clad= 0.9 c) coolant=

Temperature

T=300 K

* atom densities are averaged over entire assembly.

Element

8.108

8.8

1.6293

8.128

4.064

1.375

x 10

x 10-5

x 10-2

x 103

x 10-3

x 1o- 2

x 10-5

x 10-5

7.3

9.6
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Table 4.3

Data Pertinent to Oxide-Fueled Blanket Unit Cell

Homogenized Atom Densities*

Element Atom Densities (nuclei/barn-cm)

Uranium-28

Uranium-25

Oxygen

Sodium

Chromium

Iron

Nickel

Manganese

Silicon

Carbon

0.007043

0.000078

0.014242

0.010740

0.001746

0.014639

0.000696

0.000228

0.000180

0.000095

Cell Dimensions

rf=0.546(cm); r =0.564(cm); relad=0.6 35(cm); rcoolant=0. 814(cm)

Temperature

T=300'K

* atom densities are averaged over entire assembly.
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Table 4. 41

het ho c hetueleforBf lanket Mo

Blanket Mockup

het

fhom(0)

(present
model)

(Ea.3.43)

26

27

28

fhet (Y)(present
he model)

fhom (a0 )(Eq.4.22)

0.972

0.948

0.876

0.951

0.965

0.975

0.964

0.967

0.964

0.963

0.963

0.952

0.971

0.962

0.975

0.973

0.965

0.958

0.991

0.9141

a hom (U-238)

(barns)

0.985

0.969

0.961

0.975

0.977

0.980

0.974

0.973

0.970

0.970

0.972

0.968

0.982

0.982

0.982

0.986

0.981

0.981

0.999

0.980

ahet U V238)

(barns)

0.821

0.850

1.103

1.102

1.078

1.052

1.274

1.081

1.125

1.006

0.951

0.664

1.377

1.735

2.120

0.823

2.679

4.923

0.589

14.118

For the oxide fuel only group 45, which contains the largest
most heavily shielded)J-238 resonance is reported:

0.989 0.988 12.887

(and hence

12.742

LIB-IV group structure.

G

0.798

0.806

0. 967

1.048

1.040

1.025

1.228

1.046

1.084

0.968

0.915

0.632

1. 337

1.700

2.067

0.801

2.584

4.718

0.584

13.284

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

See Table B.1 for
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both the metal-fueled and the oxide-fueled cells are very small

indeed: less than the 10% uncertainty currently assigned to

U-238 enpt ure cross-section values in this energy range. For

the oxide fuel only group 45, which contains the largest (and

hence most; heavily shielded) U-238 resonance is reported. As

seen in the table, the heterogeneity correction for this group

(G=45) is only about 1.2% for the oxide case and about 6% for

the metal case; this, coupled with the fact that only about

0.015%ofthe blanket-averaged total neutron flux is in this

group, result in very small heterogeneity effects in this

assembly in particular and in fast reactors in general.

Since the metal and oxide fuel pins were selected to have

comparable optical thicknesses for U-238 capture, the difference

between their calculated heterogeneity effects (see Table 4.4)

can be attributed to the presence of an appreciable slowing down

source in the UO 2 (for which Q =0.444), whereas the source in

uranium metal is negligible. As can be seen in Eq. (4.22), as

Qf is increased fhet 0 hom 0) approaches 1.0.

4.14 DISCUSSION AND CONCLUSIONS

In this chapter heterogeneity effect for typical metal and

oxide-fueled unit cells employed in LMFBR blanket mockups

studied at M.I.T. were calculated using Eq. (3.43). The cells

were part of two distinct assemblies ,each with homogeneous

nuclide compositions representative of a realistic LMFBR blanket,

and also very close to one another. There are several important
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observations which can be made based on the tabulated results:

(a) the approximate equivalence relation of Eq. (4.22)

shows in an explicit way the effect of moderation

in the fuel, through Qf, which acts to decrease

heterogeneous effects. This fact is easily over-

looked if one uses thermal reactor treatments which

often implicitly assume that the source is entirely

in the coolant/moderator region.

(b) the effects of heterogeneity are shown to be small.

(c) the difference in the heterogeneity corrections for

metal and oxide-fueled assemblies is apparent;

however, it is shown in Ref. (Kl) that this dif-

ference leads to no significant breeding gain.

Thus while it is conceptually more correct to use the

methods developed in the present work to correct for hetero-

geneity in LMFBRt s, the consequences of using even much

cruder models are not harmful.
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Chapter 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This chapter is comprised of three parts as follows:

first a summary of the subject research will be given; next

conclusions pertinent to the work will be drawn; and-finally,

suggestions for further work will be presented.

5.1 SUMMARY

5.1.1 Introduction

The purpose of this work is to explore and evaluate a new

approach to the problem of unit cell homogenization. Two

major needs motivated this work:

(a) The results of applying the conventional aoproach

based on equivalence theory to the problem of

cell homogenization are still not satisfactory.

State of the art LWR computer methods, such as

LEOPARD, presently rely upon normalization to an

experimental base (L5).

(b) The common failure to consider the slowing down

source in the fuel in fast reactors is a demonstrably

incorrect oversimplification.

The basis for a new approach has been laid down by the

prior investigations of Gregory (G1) and Kadiroglu (Kl) at

M.I.T. The essential feature is the use of an analytic approxi-

mation for the ratio of spatially-averaged moderator to fuel
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fluxes in the expression for the equivalent homogenized cross-

section. A major contribution of the present work is the

development of a generalized correlation for this flux ratio

(R = m ,by recourse to various methods such as integral

transport and collision probability theory. The derived

relationship is valid over a broad range of fuel and moderator

optical thicknesses. The final prescription for the flux

ratio has been checked against, and normalized to, numerical

calculations using the ANISN program (Al).

A linearized form of the flux ratio prescription is

developed and used in tHe expression for the eauivalent homo-

genized cross-section to yield a new equivalence relation that

casts heterogeneous cross sections (for any physical process

of any isotope) at a given constant background cross-section,

0 0 , in terms of the corresponding homogeneous cross-sections

evaluated at a modified background cross-section a 0. The new

equivalence relation, which is applicable to both fast. and

thermal reactors, is the major achievement of this work.

5.1.2 Flux Ratio Calculations for Unit Cells

As noted in the introduction, the key to the approach

analyzed in the present work i-s the use of simple analytic

expressions for the ratio of coolant/moderator to fuel fluxes

which can accurately describe the region-average fluxes in

a cell. The proposed flux ratio model has the following form:
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(E) 1 + F(T f, ,Tf,TM) afQ m5-1)

(E) 1 + F(T am,TafTSmW sf am f

where

T .(E) = E (E)k., the optical thickness for process x

in region i

i= mean Dirac penetration chord length through

region i

E x E macroscopic cross section summed over all j

isotopes in the region i (fuel, f, or moderator, m)

Q fraction of neutron source originating in them

moderator

Q = fraction of neutron source originating in the

fuel

The next- task is to find an explicit functional form

for F in terms of the parameters shown in Eq. (5.1). It has

been shown (Gl), through the use of collision probability

methods, that, in the limit of weak scattering and low absorp-

tion optical thicknesses for both the fuel and the moderator,

F (for cylindrical unit cells) has the asymptotic value of

1/3. Similarly, it has been found (Kl), through track length

arguments, that in the limit of strong fuel absorption and-

weak moderator absorption (with weak scattering in both fuel

and moderator) F takes the asymptotic value of 2/3. In the

present work it has been shown that for nearly black fuel and

moderator regions (still in the limit of weak scattering in
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both fuel and moderator) F takes the asymptotic value of 1.0.

Finally, we have also shown that for appreciable scattering in

both fuel and moderator, the functional dependence of F on

scattering optical thickness is of the form:

F m (1 + w'Tm )(1 + W'T f) (5.2)

where w' is a fitting parameter chosen to force agreement with

numerical results.

Using the foregoing results as guidelines, an analytical

expression for F has been developed to cover the intermediate

ranges of optical thicknesses. Numerous functions could be

used to smoothly join the various asymptotic limits; we have

chosen one that is both simple in form and which agrees quite

well with numerical results. This function has the following

general form: n
1 LaJf n(1+ n) + W T
(1+T n am

F(Taf' am' sm sf af n, (1+s'T s)(l+f'T
1 + WT

am

(5.3)

Noting the symmetry between the numerator and denominator of

Eq. (5.1) (the necessity of symmetry can be shown quite rigorous-

ly by use of integral transport theory and/or the governing

slowing down equations) the final form of the flux ratio

model will thus be:
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n
1 (+WT f-)+rn

-(1+ af n±am

1+ an -(l1+W'T )(1+'T )-T OQ
sf sm af

m and am (54)
n

1 WT n-(1+ 1+Ta n)±wTra

1+ .1+W afnt .(lW'Tsm )lWTsf )Tam *f

where w and w' are fitting parameters

n and n' are positive powers to which T af and T am

are raised, respectively.

So far no mention has been made of resonance cross

sections, and the way in which the associated WR, IR, and NR

approximations are to be incorporated into the flux ratio

model. Here, we will only discuss, very briefly, the inter-

mediate resonance approximation (IR) since it incorporates the

wide resonance (WR) and narrow resonance (NR) limits. The

basis for the IR approximation (B2, G3, G4, G5, H3, L4, S3,

S4) is that it neither completely denies nor totally admits

the role of scattering for removing neutrons: absorption plus

a fraction of the scattering events remove neutrons from under

a resonance. The IR approximation is implemented through the

introduction of three new parameters X, v, j. For a resonance

absorber with no admixed moderator the rdemoval cross section,

ar(E) becomes:

(5.5)ar(E) Ha f(E) = aaf + Aa



where A determines the fraction of scattering events contri-

buting to removal.

Note that for A = 1:

a f(E) = af (E) + f (E) = atf(E)

which is the NR case; and for A = 0:

a f(E) a (E) (5.6b)

which is the WR case.

Similar arguments hold for moderator admixed with fuel

and for moderator/coolant in the moderator/coolant region.

To implement the above ideas in conjunction with the flux

ratio model, it is convenient to introduce the following

meters, which greatly simplify the subsequent notation:

6 f(E)

6 m(E)

Taf(E) + XTsf(E)

(E) + yTam . . s-m

anf(E)
+ VT

para-

(5.7)

(5.8)

6(E) 1 + w'

p(E) 1 + o'

E[ +

a f(E)

[(1-X)Tsf (E)

(-y)Tsm (E)

n
+w& (E)SI f

1 + w6
m

+ (1-v)T snf (E)]

+ W6 (E)
m

(E)
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(5.6a)

(5.9)

(5.10)

(5.11)

n'I
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(.6 n (E)
1 + m ]+ W6 n' (E)3 +w6 n(E) f

a M(E) m (5.1-2)
S1+ W6 f (E)

where

T and T are the absorption and scattering optical

thicknesses of the non-resonance material in the fuel.

The rest of the parameters are as previously defined.

Substituting Eqs. (5.7) - (5.12) in Eq. (5.4) there

results:

cm (E) 1 + af (E)6(E)p(E)Q m(E)
R(E) f m (5.13)

f (E) 1 + a (E) (E)p(E)Qf (E)

which is the generalized form for the flux ratio taking into

account the (IR) parameters. Note that Eq. (5.13) is a con-

tinuous function of energy; its discretization into energy

groups by defining group-averaged parameters is straightforward:

R 1 + a fg 9gPgg 6 fgQmg (5.14)
if g g +amg gg gg 6mg fg

Cylindrical and spherical unit cells share similar func-

tional forms for the flux ratio model: only the values of

(n,n') and (w,w') are changed. The planar case, however,

required inclusion of an extra term (1+w'9,n 6 ) multiplying
om

S in Eq. (5.14), introduced here without proof (see Ref.(Zl)).gg
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Lastly, parameters (n,n') and (aow') are found to have the

following values for the three unit cell configurations:

(1) cylindrical:

n = 1.0 ; n' 0.5

w = 0.24; w' = 0.06

(2) spherical:

n = 0.5 ; n' = 0.5

W = 0.27; w' = 0.09

(3) planar:

n = 1.0 ; n' = 0.5

w = 0.15; w' = 0.03

5.1.3 Numerical Verification of the Unit Cell Model

In what follows we will be discussing numerical results

developed using the ANISN code, primarily employed in the

S8P 1 option , comparing them with our predicted results. The

calculations are done for two-region unit cells with a white

boundary condition used for the outer region of the cylindrical

and spherical unit cells to minimize the effects of specular

reflections (Nl).

The dependence of the flux ratio on the magnitude of

the scattering and removal cross-sections in cylindrical unit

cells are shown in samples from an extensive series of numerical

computations, summarized in Tables 5.1 and 5.2. As seen, the

results of the analytical model are within a maximum discrepancy



Table 5.1
Numerical and Calculated Flux Ratios as a Function of Fuel

Optical Absorption Thickness

T T T Taf am sm sf 0

0.01181

0. 42251

0.84482

1.26713

1.68944

2.1117

2.53402

2.95619

3.37883

3.80095
4.22324

4.64556

5.06787

5.49017

5.91248
8.02775

8.87278

9 .71781

10.56285
28.16759

45.71309

63.37708

218.29797

373.21802

528.14229

6.33771

0.00006 0.12992 0.60355
1 1

0.24

R
calc.

0.06 1.004

1.161

1.345

1.545

1.760

1.985

2.218

2.459

2.706

2.958
3.214

3.474

3.737

4.003

4.271

5.641

6.198

6.758

7.322

19.367

31.528

43.805

151.698

259.641

367.59 4

4.543

r = = 0.3175 r = 0.6599

139

I

R
ANISN

1.005

1.176

1.360

1.551

1.750

1.954

2.164

2.380
2.600

2.825

3.053

3.286

3.521

3.760
4.002

5.247

5.757

6.271

6.789
17.825

28. 859

39.969

137.360
234.779

332. 206

4.248
f I

v V m = 0 .3012 2
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Table 5.2
Numerical and Calculated Flux Ratios as a Function of Optical

Scattering Thickness

af am Tsm T sf wt R R
calc. ANISN

1.00 1.8002- 0.1000 0.1000 0.24 0.06 1.551 1.463
1.00 1.8002 0.5001 0.1000 1.564 1.473
1.00 1.8002 2.50028 0.100 1.630 1.527
1.00 1.8002 50.0057 0.100 3.191 2.855
1.00 1.8002 0.5001 0.800 1.588 1.523
1.00 1.8002 0.5001 5.000 1.729 1.818
1.00 1.8002 0.5001 50.000 3.244 3.711
1.00 1.8002 0.5001 99.9998 4.926 4.960

rm = 0.4490 Vf/Vmrf = 0.3175 = 1
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Table 5.3

Numerical and Calculated Flux Ratios as a Function of
Source Distribution

Tf am sm sf Q W/W' R R
calc. ANISN

1.20709 1.20709 0.13970 1.0
0.0

0.. 8
0.2

0.6
0.4

0. 14
0.6

0.2
0.8

0.0
1.0

0.24
0.06 2.545

1.946

2.390

1.860

1.484

1.118

0.820

1.109

0.832

0.573 0.599

2.5

II
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of 15%, and an average error of about 5%, of the ANISN results.

As shown in Table 5.3 the flux ratio model correctly predicts

the effects of source distribution; a property which is very

important in fast reactor calculations.

As a final note, it is important to point out that the

agreement between the predicted and the numerical results could

be improved -substantially, if desired, by a different choice

of values for the fitting parameters (n,n') and (o,w') in the

range of maximum interest for a specific application.

5.1.4 Homogeneous Self-Shielding Factors

The discussion which follows immediately is confined to

homogeneous systems where the spatial and angular dependence

of the flux are suppressed, and only the energy variable, E,

is of concern. Homogeneous self-shielding is discussed first

to introduce the basic concepts necessary for the later exten-

sion of the methodology to heterogeneous media.

The fundamental and physically meaningful assumption made

in most reactor physics calculations is conservation of total

reaction rate. In fact, it is through the utilization of the

above assumption that we shall define the group-averaged

homogeneous cross-section as:

cE x (E)$(E)dVdE = E J - $(E)dVdE

(5.15)
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where the quantity on the left of Eq. (5.15) is the true

reaction rate, "E 3 " is the macroscopic group-averaged cross
xg

section for the particular process "x" of isotope "j", and

the double integral multiplying " " is the true total flux
xg

of neutrons in the energy range AEg (AEg is to be interpreted

as a fine-width group containing only one resonance). The

appropriate weighting flux 4(E) in Eq. (5.15) can be found

by solving the slowing down equation for a uniform mixture of

infinite extent:

[aO+atf(ET)1(E,T,oa0 
= 3

F

3.
E

E/a
00 E E' +

(1-a ) E,

asf(E',T) dE'
(1( ') E

where
Ztm

GO N Etm

N 
0

= constant moderator cross section

am of Esmo

= number of resonance absorber nuclei

per unit volume

Gaf' Grf' pf resonance absorption, resonance

scattering, and potential scattering

cross-section, respectively, of the

resonance absorber

a sf(E,T)

atf (E, T)

= Yrf(ET) + Of

= Caf(ET) + a sf (E,T)

(5.16)



A.-l 2
A+1) A. being the ratio of the mass of

isotope j to the mass of the neutron

Note that "moderator" in the above usage refers to all non-

resonance-absorber nuclei present. Using the NR approximation

for the moderator and the IR approximation for the absorber

(G4), leads to:

$(E.,T,a) 0 + X yspf + 00 (5.17)0. a f(MIT) + Aa f (ET) c E

where the source is normalized such that "$= 1/E"' will be

the off-resonance reference value for the flux ner unit energy.

Upon substituting Eq. (5.17) into Eq. (5.15), and specializing

to the U-238 capture cross-section as an important example,

one obtains:

0 + Xapf dE
E af(ET)+Ao (ET)+a0  c(ET)

AEg Efs
Ccg (T, G)0 0 + y dE (5.18)

AEg Dag(E,T)+AXc (E,T)+a E

Because C0 and a are essentially constant within AEg, they

can be cancelled-out from the numerator and denominator of

Eq. (5.18) to give:

c (ET) dE

AEg E,T)+Xa (E,T)+a

acg ,0 1 dE (5.19)

jAEg aaf (ET)+Xas ET)+a0 E
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which is the effective capture cross-section at temperature T

and constant background cross-section a 0 If a0 in Eq. (5.19)

approaches infinity, the following result will be obtained:

dE

o AE c (E,T) (5.20)
cg dE

AEg E

which is the definition of the infinite dilution cross-section.

For convenience one can represent the effective cross-

section given by Eq. (5.19), which is a function of both T and

U0, by an infinite dilution cross-section and a -set of modifying

functions called self-shielding factors; or to put it quanti-

tatively:

a (T,a ) = f (T,a )-a (5.21)
cg 0 cg 0 cg

Thus the complications involved in the integration over resonance

structure, as indicated by Eq. (5.19), are separated from the

calculation of the effective multigroup constants for a

specific material composition. Tables of f-factors are pre-

computed for the elastic, fission, capture, total, and transport

cross sections and for arbitrary sets of T and a0 values (B3,

K6). The f-factors for any given T and a0 can then be obtained

by interpolating in these tables. The f-factor can then be

multiplied by the proper infinite-dilution cross section to get

the required effective cross section, axg (T,a 0 ) as indicated

by Eq. (5.21). The success of the above approach, however,

relies heavily on the availability of accurate schemes for both
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temperature and a interpolation of the self-shielding factor,

f (T,a0 ). One expression used as a fitting function (K4)

for the self-shielding factor as a function of a0, at a fixed

temperature T, is:

fcg (0) = A tanhB(Zna 0 + C) + D (5.22)

where A, B, C, and D are constants determined by four values

of fcg at given a0 values. As for temperature interpolation

at a fixed 00, a Lagrange-three-point interpolation scheme

predicts, very accurately, the shielding factors for any

current temperature, T.

Figures 5.1 and 5.2 (from Ref. (K4)) show the self-

shielding factor for group 14 (86.5-111 Kev) of U-238 as a

function of 00 and T, respectively. As seen, the results

predicted by the aforementioned interpolation schemes (shown

by the solid line) are in excellent agreement with the actual

self-shielding represented by the dark circles. This con-

cludes the discussion of homogeneous self-shielding, hopefully

adequate to lay the groundwork for the introduction of

heterogeneous self-shielding factors. For more complete

expositions on the subject of homogeneous self-shielding the

following references are recommended: B2, G1, K1, K4, K6,

S6, S7.
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5.1.5 Heterogeneous Self-Shielding Factors

At this point almost all the groundwork necessary for

generating "equivalent" group parameters, (vE ,fg E ,cg I gg..

etc.), which are constant over the entire volume occupied by

any given cell in a reactor, has been developed. The group

constants generated should, when used in a group-diffusion-

theory calculation for the whole reactor, reproduce the same

average reaction rates over a given cell as would be determined

if an exact energy dependent transport calculation was per-

formed for a heterogeneous reactor with all geometrical

characteristics of the unit cells treated explicitly.

An appropriate starting point is with the definition of

an equivalent homogenized capture cross-section specialized

to a two-region unit cell:

dV dE E J(r,E,T)4(r,E)
fcell JAEg c

Z g - c(5.23)
dV dE $(r,E)

Vcell AEg

If the resonance absorber, j, is present only in the

fuel region; then Eq. (5.23) can be expanded to yield the

following form:

f cf(ET) f(E)dE
E cg AEg (5.24)

cg E[l+ R(E)] f(E)dE

JAEg V
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where

m(E)= $f(r,E)dV ; (5.25)

f(E) $ V j (r,E)dV (5.26)
f \

To be able to solve Eq. (5.24) both R(E) and (E) must

be known. An expression for the flux ratio R(E) has already

been derived in Section 5.1.2; as for the spatially averaged

fuel flux f(E), one can write down the equivalent of Eq. (5.16)

for each region of the assumed two-region unit cell, and solve

the pair of relations to find:

m sm + V fEsnf + V pf (5.27)
f(E) V f[E f(E)+E f(E)+E tf(E)]+V E (E)R(E) E

Although expressions for R(E) and f(E) have been obtained,

the problem is still intractable unless plausible simplifications

are introduced into Eq. (5.13); the following are to be

implemented:

(a) Linearization of the expression for R(E), by using

group-averaged values for the values of T appearing

in af am,), p. Numerical studies confirm that this

is an acceptable device. Thus the numerator of

Eq. (5.13) becomes [l+y f6 f(E)], with Yf =a SfPQ

evaluated at group-averaged values for the T involved.

In like manner the denominator of Eq. (5.13) will
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take the similar form [l+y 6 (F)]. As will shortlym m

become clear, such linearization is apparently a

sufficient and necessary condition for the existence

of an equivalence theorem.

(b) Etm(E) and Etnf(E) are very weakly dependent on

energy, especially within the range of energy covered

by a typical group width. Hence we can treat 6 m(E)

as constant over AEg. This last assumption in con-

junction with the one made in part (a) immediately

implies that the denominator of Eq. (5.13) can be

taken as constant, and it shall henceforth be

denoted by 0.

Based on assumptions (a) and (b), Eq. (5.13) can now be

written in a more manageable form:

R(ET) = [1 + Yf 6 f(ET)] (5.28)

where 6 and yf are as previously defined.

Substituting Eqs. (5.27) and (5.28) into Eq. (5.24), the

following is obtained:

(Vm sm+V fE snf +Vf pf).Ecf (ET)

AEg V Ea(ET)+V XE (ET)+V E +V E l+Yf 6f(E,T)] Ef af' f sf f tnf m tmO
cg VM 1

(Vm sm+V E +V V f E[+6(ET)]} dE

AEg VEaf (ET)+V AE (ET)+V E tnf+V Zt 1[l+f6 (ET)1 E

(5.29)
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By performing some simple algebra on the above equation, it

follows that:

V f

V cel cg

IAEg

SC f dE

AEg af + sf 0 E
V 1 _

1+ M +6 1 1 I c f ts f F C 6 n
-Vf e f ff sf N fdf dE

0af +Xusf +00

(5.30)

where

tnf+ 1 tm

N O+y 6 Nf .f m f
(5.31)

with the bars denoting volume-weighted homogenization

V
YN - Z
6 ff Vf f

a ff = the resonance absorber fission cross-section

The rest of the parameters are as previously defined.

By inverting Eq. (5-30) and using the definition of the

effective homogeneous cross-section, namely Eq. (5.19), one

can show the following rigorous result:

het
cg ,

ahorn
- cg (T,a00

, horn
t + 1 ?a ( T, F 0)

(5.32)
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where

S= + V + eCg h (m a hom(Tic
cv l I Vcell fg 0 sg 0

Y Vm
6 V 

1cell
T
tng

Scell

hom
ac = group-averaged homogeneous capture

hom
a fg group-averaged homogeneous fission

horn
a = group-averaged homogeneous elastic

section

cross-section

cross-section

scattering cross

cghet= group-averaged "homogenized" capture cross-section

tng= total non-resonance cross-section in the fuel region

for group g

It is important to note that Eq. (5.32) predicts the

correct homogenized cross-section under any condition so long

as the homogeneous part (i.e. ac hom (Ta 0 )) is treated cor-

rectly elsewhere in the literature.

Recalling Eq. (5.21) for the definition of the self-

shielding factor, and applying it to Eq. (5.32), leads to the

following important expression:

f het 1 hom(Ta
cg ' - + e cg '0 (5.33)
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hornwhere E = Ef (Thom).

Equation (5.33) and its accompanying prescriptions

constitute a New Equivalence Relationship, whereby the

corresponding f-factor for the heterogeneous cell is expressed

in terms of the f-factor for a homogeneous cell evaluated at

a modified value of the constant background cross-section -

namely a0

Finally, it is worthwhile to present a brief review of

what we will call the "conventional" methods used hitherto

and compare their results with those of the present method -

i.e. Eq. (5.33). Conventionally, one uses the second equi-

valence theorem to make the heterogeneity correction. The

statement of the theorem is as follows (Hi, L4): a heterogeneous

system will have the same resonance integral as a homogeneous

systems evaluated at:

tnf + 1- c a _tnf + l tm (5.34)0 N 1+(a-l)c - 1 1
N ff N l+-T N
f f a tm f

where c is the Dancoff-Ginsberg factor given by:

1-c t , in Bell's approximation (Bl) (5.35)
1+ 1Tta tm

The parameter "a" is known as the Levine correction factor

(L2). It has been found that a value of 1 - 0.79 yieldsa

accurate results over the entire range of practical lump sizes.

Note that the 00' defined in Eq. (5.34) differs from that in

Eq. (5.31).
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Applying the theorem to Eq. (5.19) yields the following

conventional result in terms of the f-factors:

fcghet (T,a hom(T ') (5.35)

Upon comparing Eqs. (5.33) and (5.36) we immediately note

that the factor +1I has been set equal to 1.0 in the con-fl + E

ventional method. This discrepancy raises questions as to

the validity of the second equivalence theorem as applied to

cross-sections but not to resonance integrals. The difficulty

stems from the fact that the true integrated heterogeneous

flux, as given by the denominator of Eq. (5.23), has in the

conventional approach been replaced by a homogeneous flux

evaluated at a0 in the denominator of Eq. (5.19), thus leading

to the present disparity. The modified total background cross

section, however, is smaller than a0 in Eq. (5.31), which

helps cancel part of this discrepancy.

5.1.6 Numerical Verification of Self-Shielding Factors

In the present section homogeneous-to-heterogeneous

corrections are calculated with the new equivalence theorem,

and the results compared to equivalent output from the LEOPARD

code (L5), a state-of-the-art LWR unit cell program. The

base-case unit cell data used in both calculations is repre-

sentative of current commercial PWR reactors (specifically,

Maine Yankee). The EPRI version of LEOPARD was employed,
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together with its ENDF/B IV derived cross-section library.

For the self-shielding-factor method, cross-sections and

f-factors as a function of a0 were taken from the LIB-IV

fast reactor cross-section set developed by LASL (also derived

from the ENDF/B IV library).

Figure 5. 3 is a plot of homogeneous broad group capture

cross-sections (a chom) for U-238 as a function of moderator

optical thickness (T tm), with the fuel diameter kept constant.

The broad group cross section is defined by a 1/E-weighted

group collapse:

hom GP49 49
c a.Au./ AU. (5.37)

GP26 26 '

where groups 26 through 49 span the energy range from 0.6826 ev

to 5.53 Kev. As is evident from the figure the capture cross-

sections obtained using self-shielding factors are in good

agreement with the corresponding parameters generated using

LEOPARD. Depending on one's point of view this either validates

the f-factor formalism, LEOPARD, or both. Table 5.4 contains

the tabulated results of Fig. 5.3, including percentage

differences.

In Fig. 5.4 the analytic and the LEOPARD results for the

ratio of het.erogeneous-to-homogeneous self-shielding factors

het hon
Ef ( 0 )/f (a 0 )] as a function of moderator optical thick-

ness (at constant fuel pin diameter) are shown. The agreement

shown between the two results is tolerably good (particularly
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Table 5.4

Tabulated Results Applicable to Fig. 5.3

N

oderator Optical a hom(barns) hom
Thickness c ac (barns) A%

analytical, using f-factor LEOPARD percent
formalism difference

0.361 2.218 2.088 +6.2

0.663 2.591 2.565 +1.0

1.354 3.336 3.410 -2.2

1.965 3.883 3.962 -2.0
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Table 5.5

Tabulated Results Applicable to Fig. 5.4

f het () f het (a0
Moderator Optical hom hom A

Thickness fc 0 c (

present model LEOPARD percent

(Eq. 5.33) difference

0.361 0.865 0.857 +0.9

0.663 0.784 0.782 +0.3

1.354 0.653 0.653 0.0

1.965 0.551 0.587 -6.5
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for the point closest to current PWR designs); also note that

the results fall very nearly on a straight line. This observa-

tion can be confirmed analytically by an appropriate simplifi-

cation of Eq. (5.33). The data plotted in Fig. 5.4 are listed

in Table 5.5, again with percentage differences shown: the

agreement between the present model and LEOPARD is excellent

for all but the thickest moderator case.

Table 5.6 contains the data for the IJ-238 broad group

heterogeneous capture cross-sections evaluated at various

moderator optical thicknesses and at a fixed fuel pin diameter.

As seen from the table, the two central points agree within

2%, and the end points within 8%: these data are plotted in

Fig. 5.5. The important point to note here is the approach

of the curve to an asymptotic limit as the moderator thickness

increases, the reason being that as the moderator optical

thickness increases, the results approach the isolated lump

limit.

Finally, Table 5.7 gives the calculated values for

[fhet (00f hom( )] for various groups of two typical fast

reactor pin-cell assemblies (metal-fueled and oxide-fueled)

that have been studied in the M.I.T. Blanket Test Facility (BTF).

(The blanket is of particular interest here because the dia-

meter of radial blanket fuel pins may be as much as twice

that of the core fuel pins, and the ambient neutron spectrum

is softer than that of the core - both of which circumstances

accentuate the effects of heterogeneity). As seen from the
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Table 5.6

Tabulated Results Applicable to Fig. 5.5

Moderator Optical achet (barns) a chet(barns) A
Thicknesscc

present model LEOPARD percent

(Eq. 5.33) difference

0.361 1.919 1.790 +7.2

0.663 2.032 2.005 +1.3

1.354 2.180 2.228 -2.2

1.965 2.141 2.326 -8.6
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Group Values

Table 5.7

het hom hom adnfor f (aY0)/ (a 0) a and a ht

Metal Fueled Blanket Mockup

fhet (a (present

G hor hom( U-238) a het (U-238)
f (a ) (Eq.5.33) (barns) (barns)

26 0.972 0.821 0.798

29 0.951 1.102 1.048

32 0.964 1.274 1.228

35 0.963 1.006 0.968

38 0.971 1.377 1.337

40 0.975 2.120 2.067

43 0.958 4.923 4.718

45 0.941 14.118 13.284

For the oxide fuel only group 45, which contains the largest

(and hence most heavily shielded)

45 0.989

U-238 resonance is reported:

12.887 12.742

for LIB-IV group structure.

-x

See Table 3. 8
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magnitude of the results, the heterogeneity effects for both

the metal-fueled and the oxide-fueled cells are very smal'l

indeed: less than the 10% uncertainty currently assigned to

U-238 capture cross-section values in this energy range.

Nevertheless the effect of internal moderation in the oxide

fuel can be observed in the form of a self-shielding factor,

f, which is much closer to 1.0.

In conclusion, although the present and the conventional

equivalence relations differ by the factor , actual

numerical results agree reasonably well. This is because, as

previously noted, the a0' given by Eq. (5.34) is considerably

lower than the G0' given by Eq. (5.31), because the Levine

factor, 1/a, taken here as 1/a= 0.79 is considerably higher

than the corresponding parameter y in the present model,

which has an average value of 0.50 for the base-case PWR unit

cell studied in this report (note that 0, appearing in Eq.

(5.31), is approximately 1.0 for the case of thermal reactors,

hence it is not responsible for the discrepancy). The lower

G0 ' used in the conventional model results in a smaller value

of f, which helps to partly offset the omission of a (n+e)

term.

5.1.7 A Comparison Between the Conventional and the Present

Dancoff Factor and Escape Probability Expressions

In this section expressions for the Dancoff factor and

the fuel escape probability obtained by comparing the various
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results of the present method with the corresponding conven-

tional results will be reviewed. Before getting into the

algebra, some simplifying assumptions are introduced, which

are not to be taken as limiting approximations, however:

(a) Impose the NR approximation. Therefore, strictly

speaking, all the results obtained in this section

are for the NR case. Results for the WR and IR

cases-are obtainable by exactly the same methods.

(b) Consider only thermal reactors, where the slowing

down source is in the moderator, hence Q =0 and

0=1.

Using the above assumptions and comparing (as before)

Eqs. (5.31) and (5.34) we get:

_ 1 1 (5.38)

1
1+ yfTtm 1 + -Tt

which says that y corresponds to , thus leading to an

expression for the Dancoff correction factor: given by

Eq. (5.35) with the only change being the replacement of 1
a

by y f*

Ttm
1-C present method (5.39)

1+ Y fTtm

The next task is to find a corresponding expression for

the escape probability, P (E). It can be shown, using the

slowing-down equations pertinent to a two-region unit cell that:



m = R(E) =

Tf (E)

Ts (E) T tf(E)

tf tm

s(E) tm(E) (E
1 + (T (E) l)(1 Ttf (E) P(E)

Ttf (T tf(E

(I) in the asymptotic region Tf (E) Tpf Ttf(E),

which when substituted in Eq. (5.40) results in

R(E) = 1, as to be expected.

(II) in the resonance region where Ttf sf (black fuel)

one obtains:

1 T tf(E)
F(E) = P (E) T (E)

f tm
(5.41)

Conventionally, the fully rational approximation for P (E) is:

P (E) = 1

1 +-Ttmf1 + 1 T t1+ atm
T tM tf

(5.42)

Substituting Eq. (5.42) into Eq. (5.41) gives:

R(E) = 1 + 1 T (E)
a tf (5.43)

which has exactly the same form as predicted by our results -

namely:

R(E) = 1 + yf Ttf(E) (5.44)

Upon comparing Eqs. (5.43) and (5.44) we note, once again:

1 - (5.45)
a f

167

(5.40)
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Using the above relation (Eq. (5.45)), and working backward,

the following expression for P (E) is obtained:

P f(E) 1 (5.46)
1+y fTtm

1+ 1+ fTt f(E)Ttm tf

Equation (5.46) is the analog of Eq. (5.42). The above

encouraging results encourage confidence in the present method.

Figure 5. 6 shows a plot of the Dancoff correction obtained

in Ref. (L3) using the MOCUP Monte Carlo program. The Monte

Carlo- program computation was performed on a two-region "scuare

pin cell" of high fuel cross-section and with V /V = 1. As

can be seen, the present analytical results are in as good

agreement with the Monte Carlo computations as are the results

of the analytical model proposed in Ref. (L3); with the excep-

tion that the present model is considerably simpler than the

model proposed in the reference. Both models, however, are

obtained assuming unit cell cylindricalization; as a result,

they do not distinguish between square and hexagonal cells.

Finally, the results of the two models are about 3% higher

than the corresponding Monte Carlo computations.

One should not conclude from the above comparisons that

the present work merely validates prior methodology: the

results include previous work as limiting cases, but are more

general.
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5.2 CONCLUSIONS

Based upon the work reported here the following conclusions

are substantiated:

(1) A new and easily applied equivalence theorem,

applicable to both fast and thermal reactors, has

been developed.

(2) The present method handles cases not easily dealt

with conventionally - e.g. when fuel moderation

is not negligible compared to that of the coolant.

(3) The effects of heterogeneity in fast reactors are

shown to be small: less than the uncertainty

currently assigned to U-238 capture cross-section

values.

5.3 RECOMMENDATIONS FOR FUTURE WORK

The following topics are envisioned as natural extensions

of the present work:

(1) Treating mixtures containing more than one resonance

absorber - i.e. accounting for the effects of

resonance overlap (F4, S9).

(2) Dealing with cases in which cell leakage is per-

mitted (perhaps by inclusion of a DB2 term).

(3) Adapting the flux-ratio methodology to the thermal

and fast energy region: for example as a flux group

module in rapid versions of codes such as THERMOS (H5)

or UNCOL and HEETR (W2).
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(4) Utilizing the method to treat larger cells,

such as (homogenized) core surrounding a control

absorber or a reactivity sample in a critical

facility.

In the above areas some additional theoretical develop-

ments are called for. However, it should be possible to

adapt fast reactor processing codes to utilize the equivalence

theorem proposed here without further ado, and to then use

t ese codes for LWR calculations. This step is recommended

as are further checks against LEOPARD, including eigenvalue

and reaction rate comparisons, as well as comparisons with

experimental benchmark data. All the above activities appear

to be feasible extensions of what has been accomplished so

far.
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Appendix A

MEAN ESCAPE CHORD LENGTH CALCULATIONS

A.1 INTRODUCTION

To be able to solve for the fuel and the moderator fluxes

of a particular unit cell, using either track length arguments

or escape probability methods, one needs to know the appro-

priate escape chord lengths (to be distinguished from the

familiar Dirac penetration chord, kP = 4V/S), Therefore, in

this appendix the escape chord lengths of the spherical and

planar unit cells will be derived. Gregory has previously

derived the cylindrical case (Gl). The fundamental assumptions

used in the calculation are:

(a) both the spherical and the planar cells are to be

treated as transparent media;

(b) the internal source, in both cells, is taken to be

uniform and isotropic.

A.2 SPHERICAL ESCAPE CHORD LENGTH

Figure A.1 pictures the situation for an isotropic' source

at point S inside the shell of a transparent sphere, emitting

neutrons along the escape chord length k described by the

angle of inclination 0. Averaging all possible escape paths

originating at point S over all solid angles gives the mean

"local" escape chord length; integrating over all radii gives

the mean escape chord for the entire population of' neutrons.



I 7t 3

t

A. 1 ESCAPE CHORD LENGTH FROM TRANSPARENT SPHERE

t

FIG. A.2 ESCAPE CHORD LENGTH FROM TRANSPARENT SLAB
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From the law of cosines:

2 2 2 2 1/2
= (r cos 6 + R - r ) - rcos6 (A.1)

The mean chord length is defined as:

e

'7 ke (r,Q)S(r)drdQ

ffS(r)drdQ
(A.2)

jor for the case of uniform source distribution:

6=0

=e
ITr

where

3r()2 r)(-) d-)

R

r
r=0

S' 3 (r) 2 r)dcos6
e R dR~ 2

(normalized) source strength

and

dcose =
2 solid angle

Substituting x and y ER cosO in Eq. (A.3) we get:

+1 1

I R [(x 2 p2 +1 -2 - f
-1 x=0

Integrating Ea.

3R

x2 1/2 2dxdy

(A.4) over p yields:

1

X=20

2
x

+
l-x 2

2
x

n )+x 3Zn(1- )Ixdx

(A.3)

at r

(A.4)

(A.5)
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Next integrating over x gives:

1 1
- 3 3i

e = VR{ 3+ xkn(l+x)dx -f x kn(l+x)dx - xkn(l-x)dx

0 0 0

+ J x3Pn(1-x)dx] I
0

(A.6)

By using tables of integrals, one can easily show that:

e = R (A.7)

A.3 PLANAR ESCAPE CHORD LENGTH

Figure A.2 pictures the situation for an isotropic source

at point S inside a transparent slab. Recognizing that half

of the neutrons go to the right and half to the left and that

each neutron penetrates the slab on its right or left, the.

planar escape chord length is just the weighted sum of pene-

tration chord lengths for escape to the left and to the right:

-1 1
e = 2 + 2(t-E) ,(A.8)

I.S.. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and

Products, Academic Press, New York (1965).

*

1

= E + t - E = t
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Appendix B

TABULATED RESULTS, SUBSIDIARY DERIVIATIONS, DISCUSSIONS,
AND NUMERICAL EXAMPLES

B.1 INTRODUCTION

This appendix is comprised of three main parts: the

first includes extensive tabulated numerical results used to

validate the flux ratio model, for the three different types

of (two-region) unit cells - namely, cylindrical, slab, and

spherical. Note that all calculations, except where noted,

apply to cases in which all of the neutron source is in the

moderator region - i.e., Qf =0 and 0=1. Next a simple pre-

scription for clad /fuel is derived and checked against

numerical calculations. Finally, a brief discussion concerning

the observed discrepancy between the results obtained from

LEOPARD and those obtained with the present method is given.

B.2 VARIOUS TABULATED RESULTS

Tables B. 1 through B. 25 summarize the calculated results

used to test the flux ratio model for slab, cylindrical and

spherical unit cells. The results are reproduced in their

entirety here as they may prove useful for others who may be

motivated to improve upon the functions chosen to represent R

in the present work, or to adjust parameters to obtain better

agreement over a more limited range.
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In the following tables:

(a) Q O except where noted;

(b) "Numerical" results are calculated using the ANISN

program in the S P option and white outer boundary

conditions;

(c) "Calculated" results refer to Eq.(2.90)of Chapter 2;

(d) The fuel and moderator optical thickness are varied

as shown: the nomenclature of Section 2.7.1

of Chapter 2 applies.

B.3 CLAD (INTERFACE) FLUX RATIO PRESCRIPTION

In the present work it was quite acceptable to homogenize

the clad with the coolant. In other applications this may

not be so. We summarize here an approximate method for

treating the clad explicitly (as an infinitesimally thin

region between fuel and coolant).

In this section an approximate expression is derived for

the ratio of the spatially-averaged flux in the clad to that

in the fuel. Note that most of the arguments used in this

section are exactly the same as those used in Chapter 2, hence

the development can be abbreviated.

Consider a three-region cylindrical unit cell with the clad

as the middle region; then if we assume that Taf+o we have:

L L
clad % clad

clad V 2Trr -tclad f
(B.1)



Table B.1

Flux Ratios for a Two-Region Cylindrical Unit Cell

af am sm sf ANISN

0.

0.

0.

0.

0.

0.

0.

0.

1.

1.

1.

1.

1.

1.

1.

1.

2.

2.

2.

00356
12727

25448

38168

50889
63609

7633

8905

01771

14492

27212

39933

52654
65374

7809 5
90904

16358

41811

67265

92719

18173
48462

76966
19.09039
65.75552

112.42040

159.08655

0.00019 0 .43132 0.1818

'I
0.24 0.

I
06 1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

2.

2.

2.

2.

2.

5.

9.

13.

'45.

77.

109 .

001

o46

094

14)4

196

250

306

364
423

483

545
605

672

737
803

871
008

147

290

435

582

913
4314

042

187

469

772

1.001

1.053
1.109

1.168

1. 229

1.292

1.357
1.425

1.493

1.493

1.636

1.710

1.785
1.862

1.941

2.020

2.182

2.349

2.520

2.695

2.872

6.854

10.930

15.044
51.278

87.165
123.9 14

rm = 0.6599

178

= 0.3175= 0.30122 r f
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Table B.2

Flux Ratios for a Two-Region Cylindrical Unit Cell

af am sm T Raf m s Sfcalc. ANISN

0.01181

o.422521
0.84483

3.00132

3.37865

3.80096
4.22327

63.37738

218.29901

373.21979

528.1448

0 .60355 0.28569 0.24 0.03 1.

1.

1.

1.

2.

2.

2.

28.

101.

175.
250.

Vf/Vm = 0.30122

0.

0.

0.

1.

1.

1.

1.

29.

103.

176.

249.

00559

19999

39989

39936

59926

79915

99905

99918

33038
66081

99315

002

092

201

868
014

165

319

556
612

931

786

1.009

1.231

1.372

1.958
2.083

2.213

2.348

29.116

100.889

172.210

244.553

r m 0 .6599= 0 .3175r f



Table B.3

Flux Ratios for a Two-Region Cylindrical Unit Cell

T T T T R R
af am sm sf calc. ANISN

0.08479 0.28569 0.60355 0.28569 0.24 0.06 1.037 1.002

0.19999 0.42252 1.092 1.089

0.39989 0.84483 1.201 1.187

0.59979 1.26713 1.321 1.293

0.79969 1.68944 1.449 1.405

0.99957 2.11171 1.583 1.524

1.79915 3.80096 2.165 2.059

1.99905 4.2236 2.319 2.206

2.19895 4.64558 2.475 2.357
2.39885 5.0679 2.634 2.513

2.59874 5.49019 2.795 2.673

2.79864 5.91251 2.957 2.673

2.99992 6.33774 3.123 3.004

4.99986 10.5629 4.834 4.796

13.3329 28.16772 12.502 12.847

21.63807 45.71331 20.439 20.950

29.99918 63.37738 28.556 29.115

103.33038 218.29901 101.612 101.385

176.66081 373.21979 175.931 172.710



Table B. 4

Flux Ratios for a Two-Region Cylindrical Unit Cell

af Tam sm TsfQ

11214

11214

17493

36511
68204

17621

17621

17621

10571

17619

52864

17621

17621

17621

27489

57374

0.03425

0.07148

0.02195

0.02195

0.02195

0.08838

0.01397

0.04191

0.01397

0.01397

0.01397

0.02179

0.04549

0.20956

0.01397

0.01397

2.

4.

1.

1.

1.

0.

0.

2.

0.

0.

0.

0.

3.

13.

0.

0.

28766

77467
46645

46645

46645

55984

93309

79959

9332

9332

9332

45579

03843

99794

9332
9332

15844

15844
24717

51588

37666
24898

24898

24898

14937

24896

74695
24898

24898

24898

38841
81067

2.64320 0.01397 0.9332 0.39210

o o' R
calc.

0.24 0.06 1.048

1.056

1.071

1.157

1.938
1.067

1.069

1.079

1.0)41

1.069

1.226

1.072

1.080

1.135

1.110

1.248

2.364

0.

0.

0.

0.

1.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

0.

R
ANISN

1.050

1.060

1.088

1.194

2.047

1.069

1.072

1.086

1.046

1.079

1.259

1.076

1.087

1.122

1.126

1.284

2.591
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Table B.5

Flux Ratios for a Two-Region Cylindrical Unit Cell

TT T T R R
af am sm sf calc. ANISN

0.2 0.015 1.5 0.500 0.24 0.06 1.082 1.095

0.2 0.015 1.5 0.005 1.080 1.087

0.2 0.015 l'.5 0.7500 1.084 1.099

0.2 0.015 1.5 2.000 1.090 1.119

0,.2 0.015 1.5 0.3000 1.081 1.091

0.2 0.0015 1.5 0.5000 1.080 1.095

0.2 0.600 1.5 0.5000 1.101 1.097

0.005 0.600 1.5 0.5000 1.002 1.002

rf =0 0.5 rmV/Vm 0.3333
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Table B.6

Flux Ratios as a Function of Source
Two-Region Cylindrial J

Tam T sm Tsf

Distribution
nit Cell

Qmf§

1.20709 1.20709 0.13970 1.
0.

0
0

0
0

0.8
0.2

0.6
0.4

0.4
0.6

0.2
0.8

0.0
1.0

24
06 1.187 1.155

1.021 1.015

0.888 0.900

0.780 0.804

0.690

0.614

0.722

0.652

r. 0.3175Vf /Vm

Taf

for a

0.35

R
calc.

A
ANISNW/W'

rm M 0'4490= 1.0001
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Table B.7

Flux Ratios as a Function of Source Distribution for
Two-Region Cylindrical Unit Cell

a

af am sm sf W/w' R R
calc. ANISN

0.50 1.20709 1.20709 0.13970 0.0 0.06 1.271 1.226

0.8
0.2 1.078 1.065

0.6

0.6 0.924 0.932
0.4

0.6 0.799 0.821

0.2
0.8 0.695 0.727

0.0
1.0 0.608 0.647
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Table B.8

Flux Ratios as a Function of Source Distribution for a
Two-Region Cylindrical Unit Cell

T T T T Qmg0o
af am sm sf QM f ca .R Rcale. ANISN

49.99996 1.20709 1.20709 0.13970 1.0
0.0

0.8
0.2

0.24
o.o6

0.6
0.4t

0.~4
0.6

0.2
0.8

0.0
1.0

39.711 38.805

26.557 26.435

17.211 17.356

10.230 l0.420

4 .816 4.949

0.495 0.521I



Table B.9

Flux Ratios for a Two-Region Planar Unit Cell

af am sm sf Wc R Rcale. ANISN

0.01118 0.00767 0.39212 0.57137 0.15 0.03 1.004 1.000

0.39999 0.2745 0.15 0.03 1.140 1.121

0.79978 0.54887 0.15 0.03 1.311 1.305

1.59937 1.0976 0.15 0.03 1.729 1.764

2.39893 1.64631 0.16 0.03 2.264 2.279

3.18582 2.19504 0.15 0.03 2.776 2.835

3.9981 2.74377 0.15 0.03 3.385 3.429

4.79769 3.29252 0.15 0.03 4.021 4.059

5.59227 3.84125 0.15 0.03 4.680 4.721

6.79981 4.66651 0.15 0.03 5.720 5.763

8.39977 5.76451 0.15 0.03 7.153 7.216

9.99973 6.86252 0.15 0.03 8.629 8.717

43.27614 29.69909 0.15 0.03 41.318 41.325

206.66075 14182482 0.15 0.03 198.647 201.931

499.9863 343.125899 0.19 0.03 488.521 490.321

r 0 0.3175v f/V m = 0.92728 r m - 0.6599
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Table B.10

Flux Ratios for a Two-Region Planar Unit Cell

am sm sf w R R
calc. ANISN

0.37498 0.00008 0.9996 0.12500 0.12 0.03 1.143 1.146

0.99997 0.00008 2.00822 0.99997 0.15 0.03 1.543 1.546

3.5999 0.00008 4.00008 0.39999 0.13 0.03 3.435 3.464

3.5999 0.00008 20.00068 0.39999 0.13 0.03 6.767 6.884

0.99997 0.00008 10.00033 8.99975 0.11 0.02 2.365 2.309

v f/Vm = 0.9273 rm= 0. 6599r f = 0.3175



Table B.11

Flux Ratios for a Two-Region Planar Unit Cell

188

fT T T safam sm sf cal. ANISN

0.62975

1.19958

1.59937

1.99913
2.39893

2.79872

3.19852

3.5983

3.9981
4.3979

4.79769

5.19749

5.59727

5.99984
6.79981

7.59979
8.39977

9.19974

9.99973
26.66581

43.27614

60.0049

206.66075

353.32162
499.9863

0.00008 0.17832

I
0 .57137 0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15
0.20

0.20

0.20

0.20

0.20

0.20

0.15
0.15

0.15

0.15

0.15
0.15

03

03

03

03

03
03

03

03

03

03
03

03

03

03

03
03
03

03
03

03

03

03

03

03

03

1.

1.
1.

2.

2.

2.

2.

3.

3.

3.3.

4.

4.

5.
6.

6.

7.
18.

29.

41.

146.

251.

356.

245

494

683

880

085
297

514

738
966
433

433

673

915
432

967

510

058
612

169
162

882

765
478

328
198

. v /Vm = 0.9273 rm = 0.6599=0.3175

1.231
1.408

1.610

1.831
2.063

2.306

2.555

2.809

3.069

3.332

3.598

3.E67
4.138

4.413

4.963

5.517
6.073

6.632

7.192
18.762

30.546
42.292

145.296

248.346

351.40533

r f
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Table B.12

Flux Ratios for a Two-Region Planar Unit Cell

T am T sm o w I R
calc.

R
ANISN

1.00 0.900 0.5 0.100 0.15 0.03 1.403 1.396

2.5 0.15 0.03 1.515 1.553

49.99998 .0.12 ,0.03 3.468 3.545

0.5 0.8 0.15 0.03 1.444 1.455

5.0 0.15 0.03 1.694 1.711

50.00003 0.12 0.03 3.585 3.474

= 0.4490rf =

T f

V f/V m 2.41445 0.3175= rm
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Table B.13

Flux Ratios for a Two-Region Planar Unit Cell

T fT amT smT R fR
af am sm sf calc. ANISN

0.54887 0.00011 0.25984 0.39212 0.10 0.01 1.168 1.129

1.0976 0.10 0.02 1.380 1.345

1.64631 0.15 0.03 1.691 1.616

2.19504 0.15 0.03 1.959 1.922

2.74377 0.15 0.03 2.241 2.249

3.29252 0.15 0.03 2.534 2.590

3.84125 0.15 0.03 2.837 2.942

4.66651 0.15 0.03 3.307 3.487

5.76451 0.20 0.03 4.197 4.228

6.86252 0.19 0.03 4.858 4.984

= 0.3175 r 0

I

r fVf /V m = 0. 927 = 0.6599
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Table B.14

Flux Ratios for a Two-Region Planar Unit Cell

m.af .am .sm sf ," " R
calc. ANISN

0.43136 0.00007 0.16535 0.61618 0.15 0.03 1.165 1.115

1.29365 0.15 0.03 1.542 1.476

2.15591 0.15 0.03 1.966 1.945

3.01821 0.15 0.03 2.426 2.467

3.8805 0.15 0.03 2.912 3.018

4.74280 0.15 0.03 3.419 3.588

5.6051 0.15 0.03 3.942 4.172

6.47037 0.15 0.03 4.479 4.766

8.19581 0.20 0.03 5.961 5.965

9.92123 0.20 0.03 7.167 7.174

28.75708 0.15 0.03 19.768 20.433

64.70374 0.15 0.03 45.437 45.758

381.03094 0.15 0.03 273.144 268.787

539.19782 0.15 0.03 387.080 380.331

V /Vm = 0.927 rm = 0. 65993175r. = 0.
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Table B. 15

Flux Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

Tsm

1.00

Tsf Qm/f

0.2794 0.623596
0.376410

0.383198
0.616808

0.216373
0.783633

0.0938281
0.906175

0.0
1.0

1.0
0.0

(0/L T

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

R
calc.

1.028

0.886

0.800

0.743

0.702

1.309

R
ANISN

1.023

0.879

0.792

0.735

0.693

1.310

rf 0.3175 rm = 0.449

Tam

0.7 1.00

Vf /V m = 2.41445
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Table B.16

Flux Ratios as a Function of Source Distribution
Two-Region Planar Unit Cell

for a

afTa Tsm/Q W/ R R
af am sm Tsf m fcaic. ANISN

0.2794 0.6235960.29140.3761410

0.383198
0.61 6808

0.216373
0.783633

0.0938281
0.906175

0.0
1.0

1.0
0.0

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.*15
0.03

0.
0.

15
03

1.095 1.097

0.918 0.916

0.811

0.740

0.689

0.808

0.736

0.684

1.451 1.461

1.00 1.00 1.00



Table B.17

Flux Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

T
am sm Sf Qm/Q W/L I t R

caic.

0.27940 0.6235960.29400.376410

0.383198
0.616808

0.216373
0.783633

0.0938281
0.906175

0.0
1.0

1.0
0.0

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

2.112

1.422

1.029

0.775

0.598

2.337

1.567

1.121

0.831

0.626

3.642 3.989

Taf

5.00 1.00 1.00

I

A N I S N
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Table B.18

Flux Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

T
am

Tsm
R .

caic. ANISN

99.99993 1.00

I I

1.00 0.27941 0.6235960.376410

0.383198
0.616808

0.216373
0.783633'

0.0938281
0.906175

0.0'
1 0

1.0
0.0

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

30.787 37.299

16.369 20.352

8.631 10.859

3.803

0.503

44.788

0.571

66.096 76.104

af
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Table B.19

Flux Ratios for a Two-Region Spherical Unit Cell

T af T amT mT Sf WR R

calc. ANISN

0.99999 0.9 0.1 0.1 0.27 0.09 1.48'4 1.503

0.5 0.1 1.501 1.5o6

2.5 0.1 1.588 1.527

49.99983 0.1 0.6 2.913 2.861
0.09 3.638 281

0.80000 0.79999 1.546 1.569

0.80000 4.99995 1.739 1.905

0.80000 49.99951 3.803 3.834

V f/Vm = 0.54699 r m - o' 49o0.3175r f v
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Table B.20

Flux Ratios for a Two-Region Spherical Unit Cell

aT am Tsm T sf c c R R

-1caic. ANISN

0 00373

0.13333
0.26659

0.39986

0.53312
0 66637

0.79964

0.9329
1.06617

1.19943

1.33269
1.46595

1.59922

1.73248
1.86574

1j99993

2.26659

2 53324

27999

3.06656

3.33322
8.88979

14.42527

19.99929

68.88637

117.77295

166.66079

0.

0.

1.

2.

2.

3.

4.

4.

5.

6.

6.

7.

8.

8.

9.

10.

11.

12.

14.

15.
16.

45.

73.
101.

349.

597.
846.

0189.1

67695

35356

03018

70679

38335

05997

7366
4132

08983

76642
44305

11968

79627
4729

15419

50809
86169

21585

56975
92365

12974

24092

54191

75413
9649

18261

0.9670 0.19046 0.27 0.09 1.001

1.064

1.141

1.226

1.315
1.408

1.504

1.602

1.703
1.805

1.909

2.015

2.121

2.229

2.338
2.449

2.672

2.898

3.217

3.359

3.593
8.757

14.173

19. 755

70.564

122.498

174.861

1.001

1.067

1.137
1.211

1.288

1.368
1.452

1.539
1.629

1.722
1.818

1.916

2.017

2.120

2.225

2.333

2.552

2.778

3.010

3.252

3.492
8.826

14 .230

19. 676

67.650

118.988

163.76916
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Table B.21

Flux Ratios for a Two-Region Spherical Unit Cell

Tam T LAw R
cale.

0.02972

2.12702

4.25354
6.37996

8.50648

10.63296

12.75948

14.88596

18.18412

22.33921

24.46675

70.91782

159.56586

939.66024
1329.71553

0.00002 0.05512 1.51957 0.27 0.09 1.

1.

2.

3.
4.

6.

7.
8.

9.
12.

13.

39.
92.

572.
816.

V /V 0.12535f m r 0.3175 rm 0.6599

Taf R
ANISN

010

878 ~

859
886

944

025

123

235

930
219

375
663

023

886

932

1.

2.

3.
4.

5.

6.

7.

8.

10.

13.
14.

40.

91.

538.

761.

014

027

085

175
296

442

608

791

589

007
222

855

633

421

860
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Table B.22

Flux Ratios as a Function of Source Distribution for a
Two-Region Spherical IJnit Cell

af am Tsm TSf m R R
calc. ANISN

0.23333 1.47135 1.47135 0.09313 00 09 1.129 1.1070.00 0.09

0.879703 1.025 1.012
0.12029

0.732784 0.919 0.9140. 26721

0.4 9 0.810 0.812

0.313681

0.313681 0.698 0.7070. 68632

1.00 0.583 0.597

rf = 0.3175 rm = 0.4490V f/Vm = 0.54699
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Table B.23

Flux Ratios as a Function of Source Distribution for
Two-Region Spherical Unit Cell

a

Taf Tam Tsm

0.3333 1.47135 1.47135 0.09313

0 /Qm f

1.00
0.00

0.879703
0.12029

0.732784
0.26721

0.5493
0.45069

0.313681
0.68632

0.00
1.00

W/W'

0,27

0.09

R
calc.

1.185

1 . 068

0.949

0.827

0.703

R
ANISN

1.156

1.050

0.941

0.829

0.713

0.576 0.593f I
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Table Br24

Flux Ratios as a Function of Source Distribution for a
Two-Region Spherical Unit Cell

Taf T T
am

Tf R
cal.

1.6665 1.47135 1.47135 0.09313 0.09

0.879703
0.12029

0.732784
0.26721

0.5493
0.45069

0.313681
0.68632

0.00
1.00

1.977

1.683

1.392

1. 104

0.817

1.935

1.658

1.381

1.103

0.826

0.534 0.548

R
ANISN
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Table B.25

Flux Ratios as a Function of Source Distribution for
Two-Region Spherical Unit Cell

Tsm Tsf Qm/Q

a

R
calc.

R
ANISN

1.47135 1.47135 0.09313 1.00
0.00

0.879703
0.12029

0. 732784
0. 26721

0. 5 493
0.45069

0.313681
0.68632

0.00
1I..00

0.27
0.03 23.368 27.660

17.967 21.422

13.027 15.625

8.489 10.225

4.309 5.181

0-444 0.458

Taf am

33.33305

W/W I

I
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V here

LIad penetration chord length through the clad

t (r clad-r ) = thickness of the (thin) clad region

rf = radius of the fuel region

rclad outer radius of the clad.

Fuprthermore,

V 2~ (B.2)af 1rf Vf 7Trrf 2Eaf(B2

Upon dividing Eq. (B.1) by Eq. (B.2) we get:

clad L clad 2
27r t r af(B3)

f

or

clad L clad T (B.4)
4t af

It is possible to derive an analytical expression for the

penetration chord length through an annular clad (Ml) for

isotropically incident neutrons:

[ r1  r1 2 + r 2 1/2
L - [2sirC (-) - () + 2(-) {I-(- I (B-5)r2 r2 r2  r2 r2

where

r r fuel

r2 r clad



2o4

However, the above is a needlessly sophisticated expression

for L for present purposes and we shall hence use the following

approximate expression:

L = 2(r 2 -r ) = 2t (B.6)

which would be exact for a thin annulus resembling a slab.

Substituting Eq. (B.6) into Eq. (B.4) yields:

clad 1
Taf

(B.7)

Recall that this was derived tnder the assumption of Tar"

(black fuel).

Next, it is shown by Gregory (Gl) that in the limit of

weak fuel abso-rption (small Taf) one gets:

surface of the fuel 'clad + 1
l+ Taf

The function that best (or at least simply and conveniently)

joins the two aysmptotic limits given by Eps. (B.7) and (B.8)

is found to be:

clad 1 1 1)-
R E - - = 1 + ( - - - - )T = 1 + Y 'Tc ± 2 3 1+T af f af

af

where we have defined ' 1 1 1
t 2 3 1+Tat

(B.9)

(B.10)

and where w is a fitting parameter which has a value of %0.12.

(B. 8)
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Equation (B.9) can be cast in ternm of the flux ratio model

developed in the body of this renort, namely:

R(E) + Y T ) (B.11)

Using Eqs. (B.9) and (B.11), the following can be readily

schown:

R (E) - A.R(E) + (1 - l).
Yf

(B.12)

where A =

In Eq. (B.12) y and 6 are obtained using Eq. (3.28) of

Chapter 3 and yff from Eq. (B.10).

Table B.26 gives numerical (ANISN) and calculated (Eq. (B.12))

results: the agreement is excellent.

B. 4 FURTHER REMARKS ABOUT THE DISCREPANCY BETWEEN THE CALCULATED

AND THE LEOPARD RESULTS

The LEOPARD self-shielding factor results presented in

Chapter 3 are consistently lower than the calculated results

using Eq. (3.42) for pitches smaller than the base-case PWR

unit cell and higher for larger pitches. The reason for this

behavior is that as we go to smaller pitches and smaller

cells (in the sense of shrinking the cell) the factor - 1

approaches "1.0" and yf approaches 0.40 (see Table B.27

But since in the conventional case Levine's factor 1 (equivalent)
a

to Y in our model) is taken as 0.79, the result will be that

the a)0 predicted by the conventional case will be much smaller
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Table B.26

Numerical and Calculated Results for the Clad-to-Fuel
Flux Ratio with Q 0 ard _61

T f T amT Tf Yf R Rclad Rclad

a calc. ANISN

0.00356 0.00019 0.43132 0.1818 0.33 0.167 1.001 1.001

0.12727 0.361 0.177 1.022 1.022

0.25448 0.369 0.186 1.047 1.047

1.01771 0.416 0.232 1.236 1.268

1.14492 0.422 0.239 1.273 1.309

1.52654 0.440 0.256 1.391 1.437

1.90904 0.456 0.271 1.518 1.777

2.67265 0.483 0.297 1.794 1.880

2.92719 0.490 0.304 1.890 1.985

3.18173 0.497 0.311 1.990 2.092

8.48462 0.579 0.390 4.311 4.439

13.76966 0.613 0.423 6.814 6.408

19.09039 0.631 0.440 9.Loo 8.429

65.75552 0.672 0.480 32.572 37.853

0.39989 0.84483 0.60355 0.28569 0.503 0-196 1.078 1.126

1.59926 3.37865 0.634 0.259 1.414 1.489

29.99918 63.37738 0.919 0.459 14.780 14.399
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Table B.27

Group 145 Values of +1 and yf for Various

and Cell Shrinkage Factors

Case Pitch

(1) Base-Case PWR Unit Cell 0.768 0.607
P = 0.580 in

(2) 1 x the above cell 0.945 0.413
dimension

(3) x the above cell 0.668 0.7152 dimension

(4) P = 0.448 in 0.869 0.495

(5) P =0.649 in 0.718 0.681

Cases (1), (2), (3); fuel rod shrunk by same factor as pitch.

Cases (4), (5): fuel rod same

Pitches

as base case.
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than the a0' predicted using the present method. Thus

the self-shielding factor, which increases monotonically as

0 increases, will be smaller, and as a result the conventional

results are predicted to be lower. On the other hand, when

larger pitches are used - approaches approximately 0.70

and y approaches 0.70. Thus while the f(a) values are nearly

the same, the present result is reduced by the multiplicative

factor 1 and it is easy to conclude that the present
-n + ~

model's results should now be lower than the conventional

results - as observed. Tables 3.5 through 3.6 illustrate

this behavior of the relevant parameters. Since our results

correspond to use of a variable Levine factor,.they are

potentially more accurate than the conventional approach.

It was pointed out in Chapter 2 that it is possible to

replace a three-region unit cell by an equivalent two-region

unit cell without introducing appreciable error into the

calculated heterogeneous cross-sections. Table B.28 shows

the values of the broad-group (i.e., collapsed over groups

26 to 54, see Table 3.8 for group structure) heterogeneous

cross-sections obtained using LEOPARD for the two cases of

the three-region and the equivalent two-region unit cells.

As seen, the results are essentially the same: the percentage

error is calculated to be about 0.3%. Data pertinent to the

above unit cells are summarized in Table 3.7.
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Table B.28

Heterogeneous Cross-Sections for Two and Three Region
Unit Cells, Obtained Using LEOPARD

het G het
c C

for a two-region for a three-region percent
cylindrical cylindrical difference
unit cell unit cell

2.229119 2.235807

Furthermore, to be able to study the effect of the

assumption of linearization introduced in Section 3.3.2 we

have artifically introduced the following approximations.

Recall Eq . (2.80) - namely:

f =

1 0.246 f 1/2
[1 1+0.24 + 0.2463 026f m

1 + 0.246 1/2
m

(2.80)

First we arbitrarily set the part

1 0.246f
[1l + 1+0.246f

of the above equation to ; the resulting heterogeneous cross-

section obtained this way was 2.282 (as opposed to 2.180

obtained without the above approximation). Next, the same

2
part was put equal to - and the resulting heterogeneous cross-

section obtained was 1.925 (versus 2.180 obtained without

0.3
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the above approximation). Table B.29 summarizes the results.

As seen from the results of the table an 11% difference

in the average values of Yf (corresponding to the exact and

the 1 limits) has introduced a 5% difference in the hetero-
3

geneous cross-section obtained using the "exact" and the "

limits. Furthermore, a difference of 54% in the average values

of the Y has been reflected as a 13% difference in the

corresponding heterogeneous cross-sections. The preceding

results justify the following statements:

(a) the assumption of linearization introduced in

Section 3.3.2 is a valid assumption; since an

artificial change in the value of Yf limit)

did not reflect any significant difference in

the calculated values of the heterogeneous cross-

sections.

(b) heterogeneous cross-sections obtained using the

present model are weakly sensitive to the accuracy

of the flux ratio R.

(c) The limit yields better results (compared to
3

the - limit) because, as in the Doppler effect,

the weakly absorbing wings of the resonance control

the change in absorption.

As a final note, it is worth mentioning that the ad hoc

assumption of linearization introduced in this work was

absolutely essential in deriving the present equivalence
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Table B. 29

Heterogeneous Cross-Sections, Obtained by Introducing
Arbitrary Changes into the Flux Ratio R

achet (barns) ac het (barns,) A

for the 1/3 limit for the ."exact" case percent difference

2.282 2.180 -5.0

het (barns) het
oc c (barns)

for the 2/3 limit for the "exact" case percent difference

1.925 2.180 +13.0

Y f Yf A

for the 1/3 limit for the "exact" case percent difference
averaged over the averaged over the
groups (26-49) groups* (26-49)

0.48 0.52 +11.0

Yf Yf
for the 2/3 limit for the "exact" case percent difference
averagei over the averaged over the
groups (26-49) groups* (26-49)

0.80 0.52 -54.0

Group structure is given in Table 3.8.
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relation. The manner of implementing the assumption, however,

through using infinite dilution cross-sections was quite

arbitrary. As a result, further improvements in the implemen-

tation of the assumption, such as replacing the infinite

dilution cross-section by an alternately defined averaged

cross-section, are possible. A good starting-point for

pursuing this idea would be the work of Amaldi (F5).



213

Appendix C

THE LEOPARD COMPUTER CODE

Normally LEOPARD, a state-of-the-art LWR unit cell

program, prepares a one-group representation of the resonance

cross-section in the entire epithermal region. The epithermal

region spans the energy range from 0.625 ev to 5.53 Kev;

and in terms of group numbers, this corresponds to G=26 to

G=54 (in the EPRI version of LEOPARD using ENDF-IV cross-

sections employed in the present work).

Since we desired to obtain cross section output for a

finer group structure, the following minor changes were made

in the program:

(1) an additional named COMMON block was added in MAIN -

namely the following three statements:

COMMON/A/LIMl , LIM2
READ(5,1 3),LIM1,LTM2

13 FORMAT (215)

(2) a similar COMMON block was added to subroutine ED34,

and a fortran statement was changed - namely:

COMMON/A/LIMVI1 ,LIM2

and

DO 4o N=26,541 was changed to

DO 40 N=LIM1,LIM2

*
The detailed group structure is given in Table 3.8.
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LIM1 and LIM2 are the two group variables controlled by

the user: by running successive problems varying LIM1 from

26 to 53, and with LIM2 = LIMl+1, it was possible to obtain

a fine group breakdown of the LEOPARD-developed results in the

epithermal region. Note that the above modifications apply

only to the recovery of the fine group components of the

resonance part of the absorption cross section, and not to its

smooth part* For a more detailed exposition on the structure

of the code refer to the manual (L5). Furthermore, it is

important to understand that when particular LIMl and LIM2 are

chosen, the resulting cross-sectiorn is to be interpreted as

follows: T G=LIM1
a(E)$(E)dE

G=LIM2
e.g. a G=26

$(E)dE-
G=5

note the limits of integration, especially in the denominator.

* the smooth part, while omitted from the fine group
LEOPXRD results, vas included in all collapsed (26 to 54)
results auoted in i.s Work.
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INTERPOL/TION SCHEMES

D.1 TEMPERATURE INTERPOLATION AT A FIXED a0

A Lagrange-three-point interpolation scheme predicts,

accurately, the shielding factors for any current temperature,

The scheme is as follows:

self-shielding factor at three
tabulated temperature points

the natural log of the three
tabulated

Applying the

temperature points

f(T)

Zn (T)

interpolation scheme to the a

f(300) f(900) f(2100)

9n(300) kn(900) kn(2100)

bove table, there

results:

f(T) =f(300) (knT-kn900)(knT-kn2l00)
(Zn300-Zn900)(Zn300-Zn2l00)

f(900) (nT-n300)(knT-kn2lOO)
(9,n900-9n300) (Zn900-Zn2l00)

f(2100) (nT-kn300)
(kn2100-kn300

kn T kn T
f(T) = f(300) 900 2100 + f(

9.n 1kn37

(knT-kn900)
)(n2100-.n900)

Pn T 9,n T
900) 300 2100

kn3 Pn7

T T

f (2100 ) 9 900

,n7 Zn-
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very

T.

+

+

(D. 1)

+

(D.2)

I
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D.2 a -INTERPOLATION AT A FIXED T.

(a) The empirical a0 -interpolation is:

Constants

magnitude

f (0 ) = AtanhB(kna 0

A and D can be found

of the self-shielding

+ C) + D ()-3)

by jnspection of the

factors - namely:

range and

A + D = f max

A - D = f min

f max = maximum self-shielding

f min = minimum self-shielding

To find B and C we need two tabulated ooints (f(T0 , 0) nearest

the point of interest. Equation (P.3) can be cast

following form:

f(a 0 )-D
ai(a 0) A

t anhx (a 0)

tanhB(kna0+C) tanhx(a0

2x

e + 1

where x(a 0) = B(Pna 0 +C),, see Eq. (D.6)

1 + a(a 0)
= n 1- aa07

1/2
(D. 8)

Now using two values of (f(a ), a00

(f(a2 ') 2) we get:

say (f(a 1 ), a 1 ) and

x(a 1 ) = B~na +(

where

(D.4)

(D.5)

factor

factor

in the

or

(D. 6)

(CD. 7

X(a0)

+ BC ( (D.9)



x(c12 ) = Bkna 2

Solving the simultaneous

x(a 1 ) - x(a 2)

kn -1
a
2

-1 0~)-D
where x(a 0 ) = tanh [ A

x(a 1 ) - Bkna
C = B

(b) Segev's correlation

Eqs. (D.9) and (D.10) yields:

(D.1l)

(D.12)

is:

1 - f A( 0

where A and B can easily be found using two tabulated points

(f(a0)., a 0) nearest the point of interest.

+ BC

217

(D.10)
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Appendix E

SAMPLE PROBLEM

In this Appendix a ;ample calculation is presented using

the new equivalence relation given by Eq. (3.42). The example

we have chosen is for U-238 capture in an oxide-fueled unit

cell. Data pertinent to the present sample problem are

summarized in Table E.1. Note that the calculations are

done for Group 45 of LIB-IV (K6).

Recall the definition of ao, which is:

J=N 0

0 N.

00
where tj is the volume-weighted-homogenized infinite-dilution

total cross section of isotooe j;

N. is the volume-weighted-homogenized concentration of

nuclei of isotope i, here U-238.

Using the data in Table E.1 in Eq. (E.1), in the order shown

in the table (i.e., U-235, oxygen, ..

a 0.0062+0.0683+0.0316+0.0093+0.0863+0.0147+0.0006+0.0005+0.0002
0 0.)09011

(E.2)
from which

0. 2177
S 0.00901 = 24 barns (E.3)

Cross-sections are taken from LIP-TV (K6).



219

Tibl e E.1

Data Pertinent to Oxide-Fueled Blanket Unit Cell

Homogenized Atom Densities

Element

Uranium-28

Uranium-25

Oxygen

Sodium

Chromium

Iron

Nickel

Manganese

Silicon

Carbon

Atom Densities

9. 011

1.00

1. 8222

9.927

2.055

7.462

8.09

2.16

2.11

3.9

(nuclei/barn-cm)

x 10-3

x l0~2

x 10-2

x 10-3

x 10-3

x 10-3

x l04

x 10 ~

x l0~

x 10-5

Cell Dimensions

r =0.546 (cm); r =0.564 (cm); r lad=0.635 (cm);

f . 0.4506
cell

reoolant 0.814 (cm)

Vcoolant 0.5494
cell

Temperature

T=300'K

Mean Lethargy Decrements for Elastic Moderation

28=0.00838; 25=0.00849; (=.11995; a=a 0.0845; CCr=0. 0 37 97 ;

EFe=0. 0 3529 ; ENi= 0 .0 3409 ; C n=0 .0 359 3 ; F 0.0674; EC=0.15777
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The mean energy decrement for the fuel is defined by

28 e25 + E 0
E28Ees 25 es + %ees

28 2F 0
es es es

0.0019+0.00002+0.0179
0.22673+0.00235+0.1496 '4

S198 0.0523
Cf 0.3787 002

where the elastic scattering cross sections are again taken

from LIB-IV.

Similarly for the "coolant" (including the clad) region:

ce0 Na Cr Fe i Mn Si Ce

& O0 + Na + EC + e + ENi + Mn + Esi + EC
es es es es es es es es

(z.6)

and

0.0001+0.0037+0.0014+0.0128+0.0012+0.0001+0.00003+0.00003
c 0.0011+0.0439+0.38+0.3628+0.0343+0.0017+0.0005+0.0002

(2.7)

which yields:

- o .0194(E8
c .4826 = 0.0401 (-.8)

Using Eqs. (E.6) and (E.8) one can find the fraction of the

elastic slowing down source generated in the fuel using tha

following equation:

hence

(E.5)
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f pf Vcell

V
*f

If pf V e p C

(E.9)
V

C
ice]1

where pf EPC are the macroscopic potential scattering cross

sections(IB13-TV) in the fuel and the

regions, respectively.

Hence:

Q = (0.0523)(0.3619)(0.14506)
f (0.0523)(0.3619)(0.11506)

Q 2.85 -444Qf 0.0192 o.4

+ (0.04o1)(0.4826)(0.54914T)

(E.10)

(E.11)

Qc =1 f = 0.556 (E.12)

Next, we have to find various optical thicknesses (here

taken at the infinite dilution

through

limit) and use them

(2.89); they are recalled here to show the

in Eqs. (2.84)

detailed

step-by-step calculations.

6 T + T25 + T
fg r r r

where subscript r stands

detailed explanation.

for removal, see Section 2.7.2 for

= 5.7238 + 0.0073 + ().0396 = 5.7707

Cross-sections are taken rrom LIB-IV.

coolant

and

(E.13)

(E. 14)

Q
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Similarly;

6 0 + Na + Cr
mg r r r + Fe + Ti + 'Mn + S i

rp r, r r

6
mg

= 0.0003+0.0106+0.0062+0.0413+0.0139+0.0012+0.0004+0.0003

= 0.0742

Furthermore:

1 ~ 0.2461/
[1 + 0.2 ] + 0.2461/2

1 + 0 246
mrg

and,

0.246

mg ~ 1 + 0.2461/2
fg

Using Eqs. (E.14) and (E.16) in Eqs. (E.17) and (E.18),,

following results

f g

(E.16)

(E.17)

(E.18)

t he

will be obtained:

= 0.556 (E.19)

and,

cmg = 0.581

Finally:

= 1 + 0.06T
fgg

and,

p 1 + 0.06T
gg rgg

and

+ C
r (E.15)

(E.20)
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where the subscripts fgg ard m- stand for in-group scattering

in fuel and moderator regions, respectively.

.g = 1 + 0.06[128
gg fgg

+ 2 0
fgg fgg

g = 1 + o.06[0.05l9+0.0026+0.1241] = 1.039

Similarly;

p = 1 + 0.06[T Mgg
Na Cr
rigg mgg

Fe + Ni +Mn Si
mgg mgg mgg mgg

+ TC ]I
mFgg

(E.23)

= 1 + 0.06[0.0011+0.0485+0.0468+0.4486+0.0332+0.0021+0,0022

+ 0.0007] = 1.035

Using Eqs. (E.11) through (F.24) we are able to find:

yf = af0 gp Qcg

6 = 1 + a F p 6 Qfg

At this point we have enough information to evaluate the

modified background cross-section a'

- tnf + 1 t
0 N6

- namely:

(E.27)

or

(E..21)

(E.22)

or

p g

(E.24)

and

= 0.332 (E.25)

= 1.021 (E. 26)
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0 4.0 1.021 + (0332)(.072) (20.0) = 23 barns (E.28)

Next, we have to use the empirical a 0-interpolation scheme,

discussed in Appendix D, which is:

(E.29)fcg (a0 ) = AtanhB(Zna0 +C) + D

Using data points at a0 = 10 2 102 10 10~1 barns and T=300'K,

one gets (using the procedure given in Appendix D) the following

values for the constants in Eq. (E.29):

fcg (a 0) = 0 .3402tanh0.3990(Qna 0-7.6715) + 0.3710 (E .30)

which can be used to obtain the self-shielding factors at a0 =24

(barns) and a0 ' 23 (barns).

and

(E.31)f cg(214) 0.0492

f cg(23) 0.0486 (E.32)

Finally, we need to evaluate the following quantities:

y . V
E = f 0 g V 1 N ) (E.33)cg 0 cg 0V celff

rI = . + m + E"f (a I )-V cell + Vcell sg 0 sg ( E. 3 4)
Yf V

6 Vcell ng

fo

T T



where we have neglected the small rission term - namely:

E"fg (a0 ) fg

Utilizing all the results obtained so far in Eqs. (E.33) and

(E.34) yields:

= (0.0486)(261) ' (0.549)(0.0I19)(1.09) = 0.047 (E.35)

r = (0.4506)+- 21(0.5494)+(o.003)(0.360)(23)1..021

0.332
1. 021( .4 4 ( -1 ) a 4

het
f (a 0 )

horn

S thom

= (a0 )
+ - = 0.91000)

Note that the above result is for a hexagonal

unit cell and hence

given in Tables 4.4

oxide-f£ueled

different from the corresponding results

and 5.7 which are obtained using assembly-

based homogenized atom densities.

4
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and

+

(E.36)
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