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ABSTRACT

A method has been developed for generating resonance-self-
shielded cross sections based upon an improved equivalence
theorem, which appears to allow extension of the self-shielding-
factor (Bondarenko f-factor) method, now mainly applied to fast
reactors, to thermal reactors as well.

The method is based on the use of simple prescriptions
for the ratio of coolant-to-fuel region-averaged fluxes, in the
equations defining cell averaged cross sections. Linearization
of the dependence of these functions on absorber optical thick-
ness is found to be a necessary and sufficient condition for
the existence of an equivalence theorem. Results are given for
cylindrical, spherical and slab geometries. The functional form
of the flux ratio relations is developed from theoretical con-
~slderations, but some of the parameters are adjusted to force-fit
numerical results. Good agreement over the .entire range of fuel
and coolant optical thicknesses is demonstrated with numerical
results calculated using the ANISN program in the SgP; option.
Wider application of these prescriptions, to fast and thermal
group applications, is suggested.

The present results are shown to include the Dancoff
approximation and Levine factor results, developed previously
for thermal reactors, as limiting cases. The theoretical
desirability of correcting for the effects of neutron moderation
in the fuel region of fast reactor unit cells is demonstrated:

a refinement not required in thermal reactors.

The method is applied to U~238 self-shielding in thermal
and fast reactor applications. Heterogeneity corrections in
fast reactors are so small that the method 1s not severely tested.
"Calculations of PWR unit cells are compared with LEOPARD program
calculations. Epithermal group cross sections for U-238 calcu-
lated from the LIB-IV fast reactor cross section set using the
present method agree with the LEOPARD results within about +1%
for typical PWR lattices; and while disagreement is larger for
larger and smaller unit cells, all of the qualitative features
of group cross section dependence are in agreement.
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Chapter 1

INTRODUCTION

1.1 FOREWORD

An essential step in most reactor physics éalculations
is the replacement of heterogeneous regions by equivalent
homogeneous regions, one of the more ihportant»ekampleé beiﬁg
unit»cell homogenization. The method most widely applied for
use in the homogenization.pfocess is the well-known
"equivalence theory" approach in which presériptions for
obtaining heterogeneous results from the corresponding homo-
geneous resonance integrals are defined (D2, H1, L4, M2). Thé
results of applying this technique to the strong resonance
absorption in fertile species aré, however, still hot satis-
factory, and state of the art LWR computer methods, such as

LEOPARD, presently rely upon normalization ﬁq an expérimental

o~

’base (L5). Past work at MIT on convehtional and modérated
LMFBR blanket designs motivated concern over the adequacy of
both fast and thermal reactor based methods to deal with this
problem. Recently initiated work on tight-pitch PWRilattices
has increased the priority assigned to resolution of this
uncertainty. Very little work has been done on strongly
epithermal systems of the above types since the Naval Reactors
efforts éf the eafly 1950's (S8). Furthermore, in the work
completed by Kadiroglu (K1) (and prior to him by Gregory (Gl))

~at MIT, the general groundwork for a new approach has been
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laid dowh. The purpose dethe research reported herein is,
‘therefore, to extend, to evaluate and to fully exploit this
new methodology. A sécondary objective will be to unify the
hitherto separate approaches developed for fast and thermal

reactor applications.

1.2 BACKGROUND AND PREVIOUS WORK

'Development of the method of equivalence thedry was a
major step fowards facilitating the process of unit cell
homogenization. The method is based on the following two

theorems (D1, D2, F6, to cite a few):

(i) Heterogeneous systems with the same 00' have

equal resonance integrals.

(IT) A hetérogeneous system will have the same resonance

integral és a homogeneous system evaluated at oO'.

where _ -
°E =Z§w4-hi; ‘Z?I, ‘ | (1.1)
b a tm f
is the modified constant "background" crossvsection
| per target nucleus f |

ftnf = volume-homogenized total cross section of the non-
| resonance elements admixed with the fuel

Viftm = volume-homogenized total cross section of the

nuclides in the moderator/coolant region
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ﬁf = volume-homogenized number density of the resonance
absdrber nuclei
a = is the Levine correction factor (L2)
Tem =’tota1 optical thickness of the queratqr»—'see

Egq. (1.7)

The key to this method is the use of the concept of
collision or escape probabilities‘—_that is;‘the probability
that a neutron originating in one region will make its next
collision in another region; this, in effect, allows one‘to
separatefthevtreatmént of the spatial and energy variabies in
the study of neutron slowing down in the cell@ Furthefmore,
to correct for the effect of absorber lump interferences, it
is necessary to use the concept of rod shadbwing (D1, D2) -
that 1is, fewer neutrons are incident on the'part’of the lump
that faces another lump than on the part that faces only
moderator. . To account for this fact an effective sﬁrface:area

Seff is introduced and defined as (F6):
Sepp = S(1-€) . @)

where
(1-¢) is the "Dancoff-correction"
©¢  1s the Dancoff-Ginsberg facfork

S 1s the lump surface area.
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The inability of the method, however, ﬁo predict suffi-
ciently accurate equivalent homogenized cross‘sections was
immediately apparent. As a result, there has been a continuing
‘effort aimed at improvement (Bl, c2, F3, G3, G4, K2, K3, L3,
S1, S2, S3; Tl), concentrating mainly on developing more
accurate expressions for the required escape probabilities
and the asSociated Dancoff factor. Although substantial im-
proVements have been incorporated into the method, the desired
accuracy has yet to be achieved (F3, K3, L2, L3, S2). Among
recent in&estigations, the work of Kirby and Karam (K2) is
of interest here, as they have shown that the long-standing
and controversial flat-flux assumption is not the source of
the discrepahcy between the conventionally-predicted and
éxperimeﬁtally—obtained results. This in turn emphasizes the
needbfor a somewhat different and more fundamental approach.

In what follows, we will have to preview certain exprss—
sions and some results developed in more detail in later
chapters, for the purpose of explaining the features of the new
approach, and oontrasting them to the corresponding features
of the'conVéntional approach. Let us, therefore, start with
the hopefully familiar, . and rigorous, definition of the

equivalent homogenized cross section (H1l).

J' _—
| jAEgox (B,T)F4(E,T,0,)dE
¢.(E;T,0,)+—— ¢ _(E,T,0 J]AE
ce1l £ TTONTV 4y Tm Y0
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“or 3 ' _
| o d@mE,e.T,00am
3 AEg: - .
OXS - Vf Vm' _ : . (1.4)
[ gt ¢ ¢t RI(E,T,04)a
- : AEg "cell cell
’ where
X = particular process (e.g. capture, fission,
scattering);
j = 1sotope index;
g = energy group index;
T = temperature;
AEg = energy group width; here chosen so as to contain
. but a single resonance
) z . ‘ .
7 0,(-)‘ - Enf + En'll . (1.5)
: N N, : .
L d J J .

is the constant "background" cross section per

target nucleus J

ftﬁf’ ftm’ Nj are as previously defined
¢, (E,T,00)
R = — » 1s what we have defined as the flux
¢f(E’T’OO) ‘

ratio

To be able to evaluate Eq. (1.3) rigorously one would

need to have the correct expressions for $f and 6&. Although

. approximate forms for the abdve fluxes are avalilable in terms
of escape probabilities (H1l), ﬁheir direct use in Eq. (1.3)

is an extraordinarily complicatéd prospect. Instead, what
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is conventionally done for the purpose of obtaining‘”equivalent
homogenized" cross-sections is as follows:

(1) first a homogeneous version of Eq. (1.3) is

- considered:
J hom
o, (E,T)¢ (E,T,oo)dE Ve

- J AEg | '

oxg - hom - (1.6)
J ¢ (E,T,oo)dE
AEg

(2) next the "second equivalence theorem" - which basically

involves replacing o, by a properly modified value,
oo', is applied to Eq. (1.6) to obtain the required
"equivalent homogenized" cross section. .
The practice of replacing the true integraﬁea hetero-
geneous flux, as given by the denominator of Egs. (1.3) and/
or (1.4), by é(homogeneOus flux evaluated at o,.' is at~best

0
a very crude and approximate approach. AN Lo

3

In the present work a different approach, aimed at

evaluating Eq._(ls2) as it stands, is proposed.  The key to
practical exploitation of thié approach is developmént of a
simple prescription for the flux ratio, R(E); this task will
constitute a major portion of the present study.

As will be shown later, the above fiux ratio has the
following form:

R = $h(E) - 1+F(Taf??am’Tsf’Tsm)°Taf<E) Qm

| $f(E) | lfF(Tam’Taf’Tsm’Tsf).Tam(E) U

.\‘
Y

!

\

(1.7)
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where

~
|

L (E)<2y, the optical thickness for process x in
region i |

21 = meah Dirac penetration:chord'length through region 1
I = Z ij macroscopi§ cross section summed oVer all Ji

J. : v
isotopes in the region i (fuel, f, or moderator, m)

Qm(E) = fraction of neutron source originating in the
moderator
Qf(E) = fraction of neutron source ériginatihg in the fuel

Analytic expressions for R have been derived for cylindrical
unit cells for small t_. and T_ by Gregory (G1); and for

large Taf
F lower and upper asymptotic values of 1/3 and 2/3, respectively.

by Kadiroglu (K1): they obtained for the function

A major contribution of the present work Will be development
of an expression for F which accurately joins the two asymp-
totic values [1/3,2/3]. Similar analyses will also be carried
out for other ﬁnit cell geometries of interest: the sphere
and the slab. |

A key feature of the present methodology is that it
handles cases not easily déalt with cohventionally - e.g.
when fuel moderation is not negligible compared td.that of
the coolant and/or moderator (i.e. Qf#o), as 1s true in fast
réactor applications. This permits satisfaction of one goal
of the present work, which is the developmént of a unified
- method, both simple and accurate, for tfeating the heterogeneity

correctlions pertaining to both fast and thermal reactors.
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1.3 OUTLINE

The body of the report which follows parallels in its
organization the sequence suggeSted by the preceding discussion.
In Chapter 2 simple analytic expressions for R, the ratio of
the spatially—averagedlcoolant—to—fuel fluxes, suitable for
future applicatioﬁs, are developed. Next in Chapter 3, so-
called homogeneous sélf—shielding is reviewed fo develop the
basic concepts necessary for subsequent extension of the
methodology to heterogeneous media to obtain a new equivalence
relation (see Sections 3.3.2 and 3.3.3). Finally, results
obtained using the new methodology are checked against the
results of the LEOPARD Code (L5) when applied to U-238 capture
in a typical PWR unit cell. 1In Chapter 4 the far less pro-
minent effectsvof heterogeneity in fast reactors are investi-
gated. An approximate equivalence relation is'derived which
éxplicitly_accounts for the effect of moderation in the fuel;
this expression is essentially identical to the one derived
by Kadiroglu (K1) via basically different arguments. The
concluding chapter, 5, summarizes the work and'proposes
follow-on research. Finally, there are appendices which
contain tabulated results, subsidiary derivations, discussions,

and numerical examples.




21

Chapter 2

FLUX RATIOS IN UNIT CELLS

2.1 INTRODUCTION

As neted in Chapter 1, the key to the approachbanalyzed ih
the present wOrk is the use of simple analytic expressions for
the ratio of coolant/moderator to fuel fluxes suitable for our
future applications. 1In this chapter we will develop Flux Ratio
Models for three different types of unit cells cylindrical,
slab, and spherical. 1In developing the models various tech-~
niques such as Escepe Probability and Integral Transport methods
will be used in conjunction with approximations such as those
suggested by consideration of high and\low pptical,thickness
limits. Finally, the above models will be checked using numerical
methods. K : ) v

2.2 THE UNIT CELL

| This section will deal, very briefly, with the:definition
and description of the three classes of unit cells mentioned above.
Almost all reactor cores héve a periodic structure in which one
particular subelement, namely a fuel element with its adjacent
coolant/moderator, is repeated throughout the core. This sub-
element 1is chmonly called the unit cell. Most reacters, (LWR,
LMFBR), have cylindfical fuel elements, hence cylindrical unit
cells, but there are other reactors, (Pebble Bed, HTGR), with
spherical unit cells. Finally, there are also reacﬁors with

thin slab-type fuel elements such as the familiar "Swimming Pool"
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and related designs. Although actual cores are not brecisely
regular, but contain ndnuniformities due to the presence of
control rods, instrumentation devices, nonuniform fuel loadings
and coolant/moderator densities, core boundaries and.so on,
for the pufpose.of'the present work the core will be represented
as an infinite array of identical lattice cells. The ultimate
goal here is to obtain "cell—homogenized" equivalent group
parameters such as zaf’ zsf, ... etec., which may be assumed
constant over the volume occupied by any given unit cell. To
achieve this goal a detailed calculation of the flux distribu-
tion in a given unit cell of the lattice is needed.

Since all unit cells are identical and the lattice infinite,
there can be no net flow of neutrons from one cell to another,
i.e., the net current vecth J(r,E) perpendicular to the outer

surface of the cell vanishes (Hl1). Mathematically:
n.J(Z,E) = 0 o (2.1)

for all points Eon the surface of the cell, where n is a unit
vector normal to the surfacé of the cell.

vTo facilitate the flux calculation within a unit cell it is
also necesséry to replace the actual lattice cell by a simpler
geometry ~ for example by cylindricalizing or sphericalizing
the unit cells. The assumption of the zero-net éurfent boundary
condition together with the simplification of the cell geometry

is known as the Wigner-Seitz method. Figures 2.1 and 2.2
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illustrate several unit cell configurations (in two dimensions
sphericalized and cylindricalized unit cells look alike).

A square lattice with a‘given pitch, Ps,'has its equivalent
outer cell radius given by: |
Ry = = (2.2)
m e v

For a hexagonal lattice the equivalent outer cell radius is

given by:
S @

Throughout our work We will be working with two-region,
heterogeneous, unit cells. The three regions, gap, clad, and
coolant/moderator are homogenized into one region called the
"moderator" region, producing a two-region unit cell with the
fuel comprising the interior region and the moderator the outer
region. It will be shown later that the above homogenization
can be done without introducing appreciable error, as also
reported in Ref. (H2). Appendix B, however, will discuss an-intef—
face flux prescription which would allow approximate‘incluSion
of the clad as a separate region for situations in which it
is deemed necessary.

At this point some unit cell related parameters needed in

" the succeeding sections will be introduced - the fuel and

moderator penetration chord lengths, (M2), defined as:

e = 5t (2.4)
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Cylindricalvunit cell:

Spherical unit cell:

h(v

Vee11 ~ V¢!
Sf
Applying the above definitions we
zf =
Qf =
zf =

Slab unit cell:

2.3 PROPOSED FLUX-RATIO MODEL

get:
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(2.5)

As already noted, a model describing the detailed flux

distribution in the unit cell is essential.

of the cell is homogeneous, a simple model will suffice: one

(2.6)

(2.7)

(2.8)

Since each region

which expresses the ratio of the average moderator flux to that

in the fuel as a functlon of various parameters, the most im-

portant of which are the fuel optical absorption thickness, the

moderator optical absorption thickness, and the fractional

neutron source in both the moderator and the fuel regions.

will be shown, the proposed model has the following form

¢, (E)
3, (E)

where:

.Txi(E)

L4FET, o (B), 7, (B), 7 o (E), T  (B)] 1, (E)+Q (E)

1+FL T, (B),1, o (B), 7, (), 1, (E)]+7, (E)+Q,(E)

in region 1

= ZX(E)zi, the optical thickness for process x

%, = mean Dirac penetration chord length through

- region i

As

2.9)
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I =) ZXJ macroscopic cross section summed over all J

J ,

isotopes in the region 1 (fuel, f, or moderator, m)
Qm = fraction of neutron source originating in the

moderator

Qf = fraction of neutron source originating in the

fuel

Analytic expressions have in the past been derived for the

cylindrical case of low ¢t and Tom by Gregory (Gl); and for

af

large Tof by Kadiroglu (K1): they obtained for F(rt T

af?'am’ 'sf’
Tsm) values of 1/3 and 2/3, respectively. A major contribution
of the present work will be development of an expression for
F(Taf’Tam’Tsf’Tsm)’ and its symmetrical counterpart in the
denominator of Egq. (2.9), which accurately joins the two asymp-
totic values [1/3,2/3]. We have also carried out an»analysis
paralleling that of Gregory and Kadiroglu for the other common
geometries - spherical and slab - and determined their asymptotic
values: [9/32,9/16], and [1/4,1/2] respectively.

In the next several sections several methods will be analyzed
tobdevelop a rationale for specifying the functiénal’fbrm of the

smoothing function, F(rt - Since sufficiently

af’Tam’Tsf’Tsm)'
simple exact solutions are not obtainable, approximate methods
will be adopted and their adequacy evaluated by subjecting the

final form of the model to numerical verification.
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2.4 ESCAPE PROBABILITY MODEL

The method of escape probabilities is frequently employed
in problems of this'type: Here we follow an illustrative example -
tested by Gregory (Gl) - his report may be referred to for a more
detailed exposition. Let us assume a two-region cylindrical
unit cell as shown in Fig. 2.3.

The objective is to derive an expression for the ratio of
the average fluxes intheicylindrical unit cell; the following

parameters are defined:

S,
i

isotropic, uniformly distributed, source in
région i (neutrons/cm3)
p. = escape probability: fraction of source neutrons
escaping region i
Pi = escape probability for neutron entering region i
In what follows the key assumption is made that Pi applies

to neutrons of all generations. Consider successive events for

r

a neutron born in the fuel, region 1: Slp1 §l neutrons per cm2
r

of surface per second escape the fuel initially, (Slp1 51)(P2P1)

r
escape the fuel after returning, (Slpl —é-l)(PgPl)2 do so after a

second return to the fuel, and so on. Summing all the escapes

from the fuel one gets:
r
1
S1Py 3
(1—P1P2)
which is the current leaving the fuel. 1In the same manner one

can obtain a similar expression for the moderator, region 2:
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fuel J+: partiai current entering the
moderator " fuel rod
J-: partiél current leaving the
fuel rod

FIG. 2.3 STANDARD, TWO-REGION CYLINDRICAL
UNIT CELL
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2 2
r, -ry

2.
S2p2 ?rl

current leaving the moderator
(1 - Png)

r
Consider neutrons returning to each region: Slpl 2; P2
r

neutrons escape the fuel and return, (Slpl §l P2)(P1P2) re-escape

and return a second time, and so on. Summing up, one gets

r

1
S1Py 3 Py
(1 - PP

neutrons per cm2 per second entering the fuel due to the source
Sl within the fuel. Again, similarly, the current entering the

moderator due to sources within the moderator is

r 2 r 2
o 1
SoPy —og Py
e 1
(1 - P,P,)

The partial current entering the fuel rod is the sum of L

entries due to neutrons of both internal and external origin:

r 2-r °
rq S.p 2 1
Slpl 5 P2 272 21‘1
J, = + : (2.10)
(1 - P1P2) (1 - P1P2)
the partial current leaving is:
2 2
r]_ S P i.?__:l:]:._ P
Slpl 5 2 2 2]?1 1 _
J = = % ) (2.11)
(1—P1P2) (1 - P1P5)
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and the net current into the rod is:

r
- 1
SoPo —gpy — (I7Fp) = §;py 537 (1-Fp)
J=J,-3 = (2.12)
(1 - P,P,)

A neutron balance on the fuel rod, (region 1), in terms of

the average neutron flux is:

— 2 | > | |
z =
al¢lﬂr1 2WrIIGﬂrl Sl . , (2.13)
_— 2J + Slrl (2.14)
or ¢l e e—
aq 1

For the moderator region, (region 2), one similarly obtains:

- 2 2. _ 2 _ 2
Zaz¢2n(?2 -r ) = —2nrlJ+n(r2 -ry )82 (2.15)
r 2 r 2
-2J + S 2 1
or ¢2 = - —— ; ‘ (2.16)
r, 2 R
2 rl

Using Egs. (2.12), (2.14), and (2.16), we get:

¢2 Slrlpl(l—Pz) - S2z2p2(1-P1) + Szz2(l—P1P2) .Zalrl

_2 (2.17)
$1 SZZ2p2(1-Pl) - Slrlpl(l-PZ) + Slrl(l—Ple) Za222

where: ZA =
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First and second order approximations are available for the

escape probabilities in Eq. (2.17) for the case of uniformly

distributed, isotropically oriented sources:

_ 4 : ' :
P, = 1 5A3 ;alrl (2.18)
p. = 1 - 4 Tz ' (2.19)
2 3 a2 2 :
vy
_ 8 2
P, = 1 - 22a ry + §(za rl) (2.20)
o 1 1
o i 5
Py =1 - gzaéz2 + 3_(28.2Z2) (2.21)

v

See references (M2,G1l) for further explanation. .
Substituting the above expressions for the probabilities

into Eq. (2.17) we get:

2 2
3.3 1+ 3%, vy 5557 |
2 - 'm 1 1 72 A
¢ [ 2 1
1 f 1l + =% =z
: 3 a2 2 Sl+S2

Using the expressions obtained for the penetration chord-lengths
of cylindrical unit cells obtained at the end of Section 2.2,

and also defining:

U T 37FS fraction of the source originating in the

moderator
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s | » |
Qp = g“¢%~ fraction of the source originating in

1 72
the fuel

one can now write Eq. (2.22) in a more. compact form, as follows:

1 + lT Q

- 3af m (2.23)
Op 3Tam®f

Upon comparing Eq. (2.23) with Eq. (2.9) we find that
- = 1
F(Taf,Tam,TSf,Tsm) = F(Tam,Taf,Tsm,Tsf) 3 which, as mentioned
earlier, is the result obtained by Gregory (Gl), for the limits

of low Tyf and low Tam®

2.5 INTEGRAL TRANSPORT METHOD

In this section we will, very briefly, state and employ the
Integral Transport Method to determine the unit cell Flux Ratio
Model. More importantly, the final result will be used to
investigate the effects of fuel and moderator scattering on the
Flux Ratio Model; and to obtain the functional dependence on
these parameters. Towards the end of the section the results of
various other arguments pertaining to scattering effects will be
presented. Iﬁ what follows we will rely upon the treatment used
by Kadiroglu, and his report (K1) should‘be referred to for
additional explicatory material.

The transport equétion for the neutron flux anywhere in the
cell represented by Fig. 2.3 is given by the Pelerls' Equation
(C1,G2):
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o(x) = | o(z/z)laen) + 5 0(xt)lar! (228
v
where ¢(r) are the fluxes at vector points r and r'
¢(r")

a(r') is the source at r'
v i1s the volume of the cell
G(r/r') is the first flight kernel giving the uncollided
flux at r due to a unit isotropic source at r'.
Under the flat-flux assumption, one can manipulate Eg. (2.24)
to obtain the following set of equations for the moderator and

fuel average fluxes in terms of volume-average kernels and

sources:

¢m = Kmm[Qm'i-zsmvm(‘)m:| * Kmf[Qf+zstf¢f] (2.25)

bp = KenlQutZen Vbl + KpplQpt2 o Vede] (2.26)
where:

7/ al@ar |
Q = . Vi ‘ fraction of neutron source originating
N : A .
QT in region 1
Qp = total neutron source

Note: under the flat-flux assumption a(r) = q which is constant.
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13 = [ dzj G(r/r')de’

.

V. V.
i

' 3 ,
is the flux produced in region 1 per unit source in region J
and from the reciprocity theorem: |

f1 7 %a

The above approach has been used by a nuﬁber of investigators
(C2,F1,T1) to study planar and cylindrical geometries for:small
optical thicknesses.

Solving for the flux ratio, Eﬁ/$f, from Egs. (2.25) and

(2.26) and rearranging the coefficients one obtains:

K K K

+ mm _ + _ mm"ff
3 L K . Kne K . ZseVe | O
m
—_ = - - (2'27)
0 K ' K..K
f ff _ _ ff mm
1+ Kmf 1+ Kfm Kfm Zsme Qf

The similarity of Eq. (2.27) to Eq. (2.23) is evident; note
that in both equations the denominator can be obtained by cyclic
permutation of the subscripts in the numerator. Hence in what
follows the algebra éan be considerably simplified by considering
the caseQf = 0 since the.general case can be readily recovered.

The effect of moderator and fuel scattering on the flux
ratio is to be examined. Certain simplifying assumptions will
prove useful for this purpose:

(1) assume: low T,¢ @nd t__ (near transparent case)

(2) assume: Tar > L
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: L
(3) observe: zsfvf o Zsf e = T

-T (T, T, )

(4) assume: Kmm =~ e tm g Kmf noe tf tm

K T
(5) assume: ‘Egm'— 1) = (e tr 1)

mf

K T
(6) assume: ‘Kig - 1) = (e tm 1)

m

Using the above we can obtain the following:

- + +
KeoKom, (Te e Tem) (topt2ry ) .
(1) (K - -2 = [e - e ] =
mf
L= Top = Ty = (Mbrget2r, O o= =(r o7 )

(8) assume: Qf = 03 therefore Q, = 1
(9) assume: Tam <€ Tgp

The multitude of assumptions will not prove limiting because

we are not interested in an exact answer; but, rather, in deter-

mining how the effects of scattering can be taken into consideration.

Accuracy will be recovered by later resorting to force-fitting

numerical results.

Using the listed assumptions in Eq. (2.27)

= 1 4+ [th - Tsf(th+Ttm)] (2.28)

Dl g
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and factoring out Taf

E_m . 1 4 [1 + Tsp _ _Ts_f(f +T_+1_ )]t . (2 29)
= ’ T T af 'sf "sm af -
¢f af af
Simplifying further
% T T ,
m st ) sf
— = 1 + (1l + — =71 _ = — T )e1 . (2.30)
Ef | Taf st ?af sm ‘af -
[ T :
mo, - sf._ . :
— 1+ [(1-1gp) + 7(1-1 )] Top (2.31)
¢f af
or:
?ﬁ ~ 1 + [ 1 + _8f 1 Jet (é-32)
$f : (1+Tsf) Ty p (l+TSm7 af
further:
$m' : 1
— = 1+ (I ) (A4r_ I > +
¢f (1+Tsf) (1+Tsm)
T ,
S : 1ot , (2.33)
af (1+Tsm) (1+Tsf)

At this point we choose to replace_the term 1n brackets
\
by a single lumped parameter:

QSWQGI

= 1 + Q-(1+Ts'f)(l+rsm)'“raf o (2.34)
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Furthermore, for later convenience, we will want to implement
the correction by multlplying both Typ and Tom by a parameter,

w'. Hence, © will in turn be replaced by w' so as to yield an

equivalent effect. Therefore:

= 1 + %(1 + w'TSf)(l + w'Tém).Taf (2.35)

155

f

The factor of 1/3 has been introduced to make Egq. (2.35)
compatible with Eq. (2.23) in the no—scattefing limit.

As pointed out in the beginning of the section, there are
other methods, such as diffusion theory and/or track length
arguments, that can be utilized for studying scattering effects.
Let us consider an "inside-out"* cell, a cell similar to that of
Fig. 2.3 but with the fuel and the moderator regions interchanged.

Assuming that diffusion theory applies, then:

DV (r) = q''" (2.36)

Im _ _m

B 2
1

“where: q''!' =

m Tr

Equation (2.36) has a solution of the form:

2 .
¢(r) = A - m5(==) | (2.37)
r
1 .

We also have the boundary condition of zero return current if

the fuel region is black, hence:

The use of the extended reciprocity theorem (Gl) permits us to
do this. . .
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J_=0-= % + g %g Catr = ry (2.38)
q q
Tus : m _ —m_ ’
Thus: A - gpp5 = 2D Twry 7 : (2.39)
or A f qm(a%— + E%B) v | ' _ (2.40)

The average moderator flux 1is:

r _
1
- 1 ‘ _ qm
¢m = — ¢(r)e2m dr = A - 8D (2.41)
™y 0
Using Eq. (2.40) we get:
Em 1 1
[.q_r;l] = ﬁl + B__ﬁ'ﬂ' : (2.”2)

Since flux 1s track length per unit volume, we can define an

effective penetration chord length as:
¢
leff = TTI’12 [—m) . (2.‘43)

In

Substituting Eq. (2,42) into Eq. (2.43) we get:

rl2 AS»
Lerp = r, + Ty 3 and since D = =5
Therefore:
= .3 = 1, 3 .
zeff r + r 77 Tem 2rl(2 + 32Tsm) (2.44)

But:

2p = 2rl for a cylindrical unit cell (Section 2.2)

Co
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Therefore:

= i, 3 « '
geff = zp(z + 3ZTsm) , lp(l + w Tsm) (2.45)

The result in Eq. (2.45) suggests a multiplicative moderator
scattering correction $0 T_. of the form (1 + w'Tsm) in the
formula for the Flux Ratio Model, Eq. (2.9). It is encouraging
to see that two different methods, namely the Integral Transport
Method and the diffusion theory method, yield the same functional
form.

Finally consider a track length argument. Let us, again,
assume an "inside-out" unit cell.

Define the following parameters;

lp = 2r1 penetration chord length (Section 2.1)
ze = %Tl escape chord length for isotropic uniform

internal source. This quantity 1s derived
by Gregory in (Gl).
Assumptions are: weak absorption & scattering
A neutron entering the inner region of the unit cell will
benétrate an average distance proportional to the penetration

chord length of the region prior to scattering, hence
ds = m"'-zp ; (2.46)

where: ds 1is the average dilstance moved by the neutron,
on its first flight, prior to scattering
W' is a proportionality factor, and is less than

unity (w''' < 1).
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The scattered neutron, once in the rod region, will now trace out

on the average a distance equal to the escape chord length, 1l.e.,

le = %Tl‘ The total distance traveled by the neutron will then
be: _ | | ;
dt = w"v'-lp + 'Q'e = ui'f'-ll,p + %ﬁp . (2-47) :
or
at = (o %)-zp = wrten ’ (2.48)

If the neutron had not been scattered it would have travéled an

average distance lp through the rod, thus the extra distance

traveled is:

Q,
|
2
]
o

extra P
or

= te, - = LI . = LIS
Ay itpy = Y zp zp (w 1) zp = w zp (2.49)

Therefore to include the effect of the scattering on the pene-
tration chord length, we will have to define a new effectlve

penetration chord 1éngth as follows:

= e T -
Ropp = 8y * 'R eT o | (2.50)

or

©
|

err = Rl ¥ @t ) (2.51)
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where: - kp 1s the penetration chord length without scattering
w'-Rb i1s the extra chord length due to scattering

and Tsm = probability of being scattered

Compare Egs. (2.35), (2.45), and (2.51): having three
different approaches yield the same result strengthens our
confidence in the choice of the functional form used to correct

for moderator (and fuel) scattering.

2.6 ADDITIONAL RESULTS OF THE TRACK LENGTH METHOD

2.6.1 Near-Black Fuel and Near-Transparent Moderator

In the last two sections we were dealing with low optical
absorption thicknesses for both the fuel and the moderator regions.
The value obtained for the F(Taf,Tam,TSf,Tsm) of Eq.v(2.9)
without taking the effects of scattering into consideration
was 1/3. We shall now obtain another asymptotic value of F for
the 1limits of high optical absorption thicknesses. Furthermore,
we will display parallel results for all unit cell geometries
mentioned in Section 2.2.
| Consider anb"inside-out" cylindrical unit cell wioh the fuel
surrounding a rod of moderator. As already stated the reciprooity
principle (Gl) permits us to do this without loss of generality.
The following assumptions are made:

(a) the moderator contaiﬁs a spatially uniform source of

’neutrons and is optically transparent - i.e. has a small

optical thickness for both scattering and absorption.
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(b) the fuel is very black - i.e. a strong absorbér and a
. weak scatterer.

A neutron born in the moderator will trace out a distance

given by the mean escape chord length'le = %ri.
definition of flux as track length per unit volume, the moderator

Then from the

flux is:‘

= ELN (2.52)

In the fuel each entering neutron completes a track length

only one mean free path long - i,e. 2f = Af = 1/(Zaf). Thus the

fuel flux is:

$=2f=—v—l (2.53)
£ Ve I

Employing the definition of the pénetration chord‘length,

for the fuel region we get:

or

Tr
= 1, fuel
Ve —-= lp (2.54)

Substituting Eq. (2.54) into'Eq. (2.53)

- 2 _ 2 B :
op = . & fuel.z T mr ' (2.55)
1 p af :




by

Upon dividing Eq. (2.52) by Eq. (2.55)
) , . _
m_ 2
23

Therefore, the other asymptotic value for F(Taf’Tam’TSf’Tsm)
is 2/3, which is the value obtained by Kadiroglu (K1) using
essentially the same treatment.

As for the spherical and the planar'unit cells, the same
steps can be repeated, replacing the cylindrical escape and pene-
tration chord lengths by the associated spherical and planar
escape and penetration chord lengths. The spherical and planar
escape chord lengths are derived in Appendix A.

Using the spherical escape chord length of Ze = %T and

l,
fuel 2

fuel penetration chord length of lp = (LlVf)/(lHrrl ), we get

for the ratio of average fluxes:

- 2 fuel
¢ 91|'rs Ly oy
m _ N p af
%—  16mr, 2 (2.57)
£ ’ 1
or
)
= 5" Tar (2.58)
f .
by
For the slab: & = 2d ; g ‘uel. __f
' e p 2
Hence:
- fuel
¢ L (X
= — 2 (2.59)
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or

af | S (2.60)

Equations (2.58) and (2.60) indicate that for the spherical

unit eell F(Taf’ram’Tsf’Tsm) = 9/16, and for the planar unit cell

F(Taf,Tam,TSf,Tsm) = 1/2, as mentioned in Section 2.3.

2.6.2 Near-Black Fuel and Near-Black Moderator

As a final case, we shall investigate the effect of two
strongly absorbing media adjacent to oﬁe another. - The followihg
assumptions are made: |

(a) "inside-out" unit cell with the source in the

interior region (moderator).
(b) no scattering in either medium.

,(C) Aam << rl

Due to the third assumption, which indicates that the moderator
mean free path is much less than the radius of»curvature of the
rod, the three different geometries - 1.e. sphere, cylinder and
plane - will look the same te the neutren. ’Hence, the following

analysis and the results will be exactly the same for the three

different unit cells.

A q
— - track length _ "am ™m ;
m  unit volume v | (2.61)

=
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where: g is the total source in the moderator.
m .

Escapes into the fuel are ignored.

It can be shown for an infinite slab containing a uniformly

distributed source, that particles within one fourth of the
A
medium's mean free path, (TF), can escape the surface of the

slab uncoilided. Utilizing this result to obtain the fuel flux:

- | Aam qm Aaf

where: S = surface area of the interior rod.

Dividing Eq. (2.61) by Egq. (2.62) gives:

bex

m _ am.qm.vm.vf
oo ; (2.63)
— So)\ oq o)\ .
$p am “m af
or:
9,
m
— = 2.
3 Tor (2.64)
f
Hence, for the two adjacent highly absorbing media
Taf,ram,Tsm;TSf) = 1, for the three different unit cells.

F(
In the next section results obtained in the.Sections 2.4

thfough 2.6 will be used to formulate a complete Flux Ratio Model.

2.7 FINAL FORM OF THE FLUX RATIO MODEL
So far we have discussed the general form of the Flux Ratio

Mddel and the functional form of F(t m) under the

T T
af’ am’ sf?Ts

two asymptotic limits of high and low optical thicknesses. Our
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task now is to use the results obtalned in the preceding sections
as guildelines for suggesting an analytic function for

F(T,psTams Tgp> Tam) » SO @8 to be able to cover the intermediate

ranges of optical thicknesses.

Recall Egs. (2.23) and (2.56), namely:
Eﬁ 1
— =1+ 3 T (2.23)
op »

which was derived under the assumption of weak absorption and

scattering for both the fuel and the moderator region. Note also

that we have set Qf = 0,

= 2

2
3 Taf ~ 1 + § Taf (2.56)

1o

f

Sinqe: Tap > 1 |
which was derived under the assumption of strong fuel absorption,
weak moderator absorption, and, finally; weak scattering for

both regions. v

There are numerous functions that could smoothly Jjoin the
lower asymptotic slope 6f 1/3, (Eq. 2.23), ﬁo the upper.asymptotic
slope of 2/3, (Eq. 2.56). Among them we have chosen the one
that 1s both the simplest in form and best agrees with the

numerical results (to be discussed later). This function has

the following form:

n
wT
“af 3 1 + @t D | » (2.65)
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Note that for Taf -0 »F(raf) +1/3

and w@en e > Flr ) »2/3

The constant "w" is a fitting parameter which we have selected
to force agreement with numerical results, and "n" is a positive
power to which T,p 18 raised.

So far weak moderator absorption has been assumed in conjunc-
tion with the two cases of weak and strong fuel absorption.
Recall that weak scattering has also been assumed for both the
fuel and the moderator. Let us now consider thevproblem of two

adjacent black media with weak scattering in both regions. 1In

Eq. (2.64) we have obtained the following result:

o o |

= = 1T . =1+ 1°7T (2.64)
or

Since: 1t . >> 1

By comparing Egqs. (2.65) and (2.64) the following function

i1s suggested:

n
wT ,
, l+w1‘af
FltapsTam) = T o (2.66)

: am

- where "n'" is a positive power to which 1 = is raised.

' am
1 wT;}
Note that for Tar ™ 0 F(Taf’ram) > F(Taf) = §(I+I:—_?r)
‘ : wraf

and when 1 . » @ and 1__ » o F(7 ) > 1.

af am af’'am
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As for the effects of scattering, Egs. (2;51), (2.45), and

(2.35) suggested a functional dependence of the following forn:

Flr e Tsm) = 1+ o't )+ w'tg) (2.67)

- Combining Egs. (2.66) and (2.67) we get the following final

form: n
wTt '
Loge—2f y 4 @
3 1+ n am
wTaf ' ] )
F(Taf’Tam’Tsf’Tsm) = T o (1+w Tsf)(l+w Tem
| am (2.68)
.And using the fact of symmetry, as mentioned in Section 2.5:
wth '
%(1+ ag ) + mrgf
l+wram ,
= ° 1 !
F(Tam’Taf’Tsm’Tsf) n' (1+w Tsm)(1+w Tsf)
~ 1 + wTaf

© (2.69)

Substituting Egs. (2.68) and (2.69) into Eq. (2.9) there results:

n
wT '
%(1+ ag )+w12m
l+w‘raf
. ? ! . .
Iy 1+ 1 +an' (14w Tsf)(l+m Tsm) Tar Qm
m _ am
$ an '
£ %(l+ am )+w12f
l+w12f
. ] 1 . .
1+ Y (1+w rsm)(1+w Tsf) Tom Qf
af

(2.70)

»
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which is the final form of the Flux Ratio Model for the cylin-
drical unit cell. As for the planar and the spherical unit
cells, similar models can be generated by the same treatment.
Therefore 1t is sufficient here to note that for the slab case
the factor 1/3 in Eq. (2.70) should be replaced by 1/4, and
for the spherical case it should be replaced by 9/32 ., The

rest of‘the~equation'will look essentially the same as Eq. (2.70);

(but see page 62 regarding the slab case).

2.7.1 Flux Ratio Model Cast in Terms of IR Parameters

Up till now no mention has been made of resonance cross-
sedtions, aﬁd the way in which the associated WR,'IR, and NR
approximétions’are to be incorporated into the Flux Ratio
Model. 1In what follows we shall be assuming resolved (and non
sélf-overlap) resonances of a single resonance absorber - i.e.,
we assume no other resonance absorber present in appreciable
amount. - Some of the above assumptions, however, will be relaxed
in later chapters.

Consider a flux of neutrons in Energy-space heading towards
a single‘resonance, as‘shown in Fig. 2.4. The condition for
application of the narrow resonance (NR) approximation is that

the maximum energy loss in an elastic scattering collision of

‘a neutron with an absorber nucleus, i.e., (1-ay)E;, in the

vicinity of a resonance should be much greater than the practical

width, Pp, of the resonance. Under this condition both scattering

A A s
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and absorption processés willl remove neutrons from under the

resonance. There are instances, however, when the maximum

energy loss is much less than the Practical Width, TI'., of the

p’
resonance; this condition requires use of the so-called Wide

Resonance (WR) approximation. In this case, it is only the

absorption process that removes neutrons from under the resonance.
Lastly, there is a third approximation intermediate between the
two aforementioned, which neither completely denies nor totally

admits the role of scattering for removing neutrons. This

approximation is called the Intermediate Resonance (IR) approxi-
mation and it is implemented through the introduction of three

new parameters X, v, and u. We shall discuss the IR approximation
and its associated parameters further in Section 3.3.1. However,
for a more detailed explanation of the above ideas refer fo
(B2,63,G4,65,H3,L4,S3,34). Therefore, in the IR approximation

it is 'the absorption process plus a fraction of the scattering

process which removes neutrons from under the resonance. For a

resonance absorber with no admixed moderator the above will mean:

0removal of resonance(E) = Of(E) = oaf(E)+Aosf(E) (2.71)
absorber in fuel

where A determines the fraction of the scattering present in
the removal cross-section.

Note that for x=1l:

0p(E) = 0gp(E) + 05p(E) = 0, (E) (2.72)

which is the NR case

R e i
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and for A=0:

op(E) = o,p(E) | (2.73)
which is the WR case.
Similarly, when moderator is admixed with the resonance

absorber:

(E)thf(E)=o (E)+v§ (E) (2

o]
removal of non-resonance anf snf

element in fuel

a@d for the moderator/coolant in the moderator/coolant region:

o
removal of moderator

To implement the above ideas in conjunction with the
Flux Ratio Model, i1t is convenient to introduce the following

parameters, which greatly simplify the subsequent notation:

(E) (2.76)

Gf(E) =Taf(E) + Arsf(E) + Tanf(E) + VT e

6 (E) = Tam(E) + Tsm(E) o (2.77)

B(E) = 1 + wf[(l-x)rsf(E) + (-1 o (E)] (2.78)

(E) = o (E) = o_ (E)+uo, (E) (2.75)

LTH)
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p(E) = 1 + w' (14t (E) (2.79)

: mdn(E)
!'_[1 + ._..__f.____
3 14067 (E)
— (2.80)

1+ me (E)

] + w6;'(E)

af(E)

. §2(E)
1 Won
3t + n

1+ ws? (E)
3 1+w87 (E) T

am(E) (2.81)

1]
1 + wG? (E)

Using Egs. (2.76)-(2.81) in Eq. (2.70) we get:

5, (E) 1+ o (E)B(E)p(B)6,(E)Q (B)
= R(E) = m (2.82)
9p(E) 1+ am(E)B(E)p(E)Gm(E)Qf(E)

which is the generalized form for the Flux Ratio taking into
account the IR parameters. Note that Eg. (2.82) is a continuous
function of energy; its discretization into energy groups will

be discussed in the next section.
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2.7.2 The Flux Ratio in an Energy Group Sense

Although Egs. (2.70) and (2.82) are exhibited as continuous
functions of energy, their mode of derivation did not suggest
this fact explicitly. In all the various steps that led to
Eq. (2.70) we were, invariably and implicitly, assuming a
"one-group'" model: that is a neutron balance was performed for
a fine energy group of width dE about E. The energy discretiza-
tion, howéver,’in the sense of going from the fine group to a
coarser group structure in Egs. (2.70) and/or (2.82) is straight-
forward; and one may refer to any of several references for
further details, e.g. (Hl, 01); basically it just involves
proper definition of the cross sections.

Recall that»removal applies to the combination of all
processes that remove neutrons from the group.intO‘one sum called
the total removal cross-section for group g:

I =%, -3 =3 _+3 -3 =73

+ 2.8
g tg e ag sg 88 ag g,;g gy (2:93)

and that group scattering is that portion of the scattering cross-

section which leaves the neutron within the group - i.e., ng'

Using the above definitions, and folldwing the format of

Eqs. (2.76) through (2.81):

8 (2.84)

fg = Targ t Tanrg t ) Tsrgte ¥ Tsnre'g

g'#g

(g'g includes down-scattering and upscattering if any).

§ ., = T + ) o 2.85)



gg

e

feg

O(.mg

Using Egs.

Eﬁ
5f

g

L+ o' (Topge * Tonrgg)
1 + w'Tsmgg
w6n
1[1 + —~—£5—] + wsP
3 n
3 1+w6fg
n'
1+ wdmg
W '
l[l + ___E%_] + wé?g
3 1+w6mg
n'
1 + wéfg
(2.84)-(2.89) in Eq.

1

1+

5
%rgPeoPeelro

Q

(2.70) we get:

mg

g 1 + amgB

gz Peedmgre
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(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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The discrete energy form of the Flux Ratio Model will
prove useful in subsequent chapters. 1In the following sections
numerical results verifying Eq. (2.90) will be presented, and

as a result its validity will be established on even firmer

grounds.

2.8 COMPARISON OF MODEL RESULTS WITH ANISN CALCULATIONS

In what follows we will be discussing numerical results
developed using the ANISN code (Al),* comparing them with our
predicted results. The calculations are done for two-region
unit cells with the white boundary condition used for the outer
region_of cylindrical and spherical unit cells to minimize the

effects of specular reflections (N1).

2.8.1 Effects of Scattering and Removal

The dependence of the flux ratio on the magnitude of scat-
tering and removal cross-sections in cylindrical unit cells
is shown in Figs. 2.5 and 2.6. The numerical values plotted in
the figures are tabulated in Appendix B. Similar results for
spherical and slab unit cells will be presented in Appendix B.
As seen, the predicted results are within a maximum'discrepanéy

of 15% and an average error of about 5%,0f the ANISN results.

\

Most of the calculations were carried out in the Sg§ and Pq-

approximations, higher order quadrature sets, i.e. S16, were
also used for the slab case. ' \ ’ ’

'
4
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The agreement could be improved substantially, if desired, by

a different choilce of values for the fitting parameters (n,n')
and (w,w') in the range of maximum interest. The important
thing to note, however, is the correct dependence of the Flux
Ratio Model on the Vérious optical thicknesses. The above point
will be discussed further in Appendix B, and more tabulated
results will be given. Moreover, it is important to note that
our model was derived on the basis of the flat-source (birth and
scattering) approximation while ANISN distributes scattering
events according to the local flux shape. Hence thé good agree-
ment validates our claim that the flat-source restriction has

in fact been partially relaxed.

2.8.2 Effects of Source Distribution

An important and, perhaps, the most unique aspect of the
Flux Ratio Model lies 1n its ability to predict correctly the
effects of source distribution; a property which is very impor-
tant in Fast Reactor calculations. In some literature on fast
reactor calculations, it is implicitly assumed that the slowing-down
source is entirely in the coolant, an erroneocus assumption.
Figure 2.7 shows the flux ratlio as a function of the source
fraction in the fuel, Qf, for various §f. As seen, the predicted

" and the numerical results are in excellent agreement.
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2.8.3 Further Remarks about the Flux Ratio Model

In Sections 2.6 and 2.7 parameters such as (n;n') and
(w,w') were introduced, which are found to have the following
values for the three different unit cells:

(1) Cylindrical:
n=1.0 ; n'=0.5
w=0.24 ; w'=0.06
(2) Spherical?,
n=0.5 ; n'=0.5
w=0.27 ; w'=0.09
(3) Planar:
Q : n=1.0 ; n'=0.5
w=0.15 ; w'=0.03
Cylindrical and spherical unit cells share similar func-
tional forms for the Flux Ratio Model: only the values of (n,n')
and (w,w') are changed. The planar case, however, required

inclusion of an extra term of the form (1+w'£n% ), introduced

m
here without proof; interested readers may refer to Ref. (Z1)
for justification. Also mentioned in Section 2.7 was the choice
of a simple functional form for F(t,p), given by Eq. (2.65),

from among many candidate functions that are equally attractive,

such as:

F(t,p) = 3(1 + Tanhut,p) (2.91)

-u)'raf)

F(r,p) = 3(2 - e

(2.92)




63

and, no doubt, many others, Others may select a candidate of
their own choosing.

Finally, many other tests of the Flux Ratio Model have
been carried out, such as the functional dependence on coolant
optical thickness, the effect of lump size at constant optical
thickness and the applicability of the extended reciprocity

theorem,as documented in Refs. (G1,K1).

2.9 CONCLUSION

In this chapter simple analytic expressions were derived
for the ratio of moderator fc fuel fluxes.in unit cells. Pre-
dicted results were shown to be in good agreement with numerical
results. A literature search failed to uncover more complete
expressions for the disadvantage factor that could reproduce,as
accurately ,results over the wide range of optical thicknesses
and source distributions covered by the present model. As
noted in Section 2.8.3 there is still>some room left for fine
tuning which could further narrow the gap between the pfedicted
- and numerical results. However, the results will be shown to
be more than adequatekfor present purposes: a 6% error in the
flux ratio will typically affect homogenized group cross sectilons
in the resonance region by less than 2%, a value which is
tolerable in view of the often only modest precision of input
data in this region and the consequences of other simplifying
assumptions which must be introduced to make the larger problem

tractable.
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Chapter 3

ENERGY SELF-SHIELDING OF RESONANCES

3.1 INTRODUCTION :

In this chapter an expression will be derived for the
heterogeneous capture cross-section of a given isotope in the
- fuel region of a unit cell in an infinite lattice. The key
to the above derivation will be the use of the simple flux ratio
model developed in Chapter 2. Also, for the sake of generality,
the intermediate resonance parameters are introduced to make
the above approach applicable to any resonance of any 1isotope
for all energies in the slowing down region. The final expreS—
sion for the homogenized cross-section is given in terms of
homogeneous parameters, hence leading to a new equivalence
theorem. Finally, results obtained using the above method will
be checked against the results of the LEOPARD code (L5) when

applied to U-238 capture in a typical PWR unit cell.

3.2 HOMOGENEOUS SELF-SHIELDING

The discussion which follows is confined to homogeneous
systems where the spatial and angular dependence of the flux
are suppressed, and only the energy variable, E, is of concern.
The reason for starting with homogeneous self-shielding is to
introduce the basic concepts necessary for the extension of
the methodology'to héterogeneous media in later sections. As

the name implies, resonance self-shielding occurs as the result
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of flux depression under reéonance peaks. Since resonance
cross-sections are strongly temperature dependent, it therefore
follows that selféshielding is a temperature-dependent phenomenon
as well. Self-shielding also depends on cell composition and

oﬁ the geometry of the problem in a complex way. However, all
composition and geometry effects can be embodied in one para-
meter, the total cross-section of non-resonance-absorber-nuclei
per absorber nucleus, 04+ In the subsequent sections we will,

briefly, treat some of the above ideas in more detall.

3.2.1 Low Material Concentrations

| The fundamental and physically meaniﬁgful assumption made
in most reactor physics calculations is conservation of total
reaction rete. In fact, it is through the utilization of the
above assumption that we shall define group-averaged homogeneous

cross-sections as:

s £J (B) ¢(E)AVAE = 53 ./ ¢(E)AVAE © (3.1)

i) i)
cell AEg X8 Vcell AEg

v
where the quantity on the left of Eq. (2.?2).is the true reac-
tion rate, "Zig" is the macroscopic gﬁouﬁ—averaged cross-section
for the particular process "x" of isotope "j", and the double
integral multiplying "Zig" is the true tetal flux of neutrons

In the energy range AEg. If we now assume that an element 1s
present in a.medium in low concentration, then its particular

resonance structure will not induce any significant effect on

the neutron spectrum. As a result, a smooth weighting function
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C(E) can be used 1n the group-averaging process. Hence,

Eg. (3.1) in the low concentration limit will be given as:

o J o
. - _AEg "x

xg fAEg C(E)dE

(E)C(E)QE

(3.2)

where,typically;C(E) is taken to be a Maxwellian spectrum at

low energies, a 1/E spectrum in the mid-range, and a fission

spectrum at high energiés;ﬁand O;g is the "infinitely diiute"
isotope cross-section f?rvgroup "g" and process '"x".

Here AEg 1s to be interpreted as a fine-width group

containing only one resonance.

3.2.2 Higher Material Concentrations

Although the method deécribed in this work can be extended
to low and high energy limits as well as to most physical pro-
cesses such as scattering, fission..., etc., the analysis here
will be restricted to the slowing-down range and to the finding
of group-averaged homogeneous capture cross-sections for a
single dominant resonant isotope. Let us, now, treat the case
where the materialiconcentrationfisnot negligible, so that
ité resonance structure will affect the neutron spectrum in the
mixture. Because of this, a proper weighting function (flux)
is needed for the purposevof cross-section averaging. The
appropriate weighting flux can be found by solving the slowing

down equation for a uniform mixture of infinite extent:
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| Bl g 1 dE'
= ') —~
[00+0tf(EsT)]¢(E,Tsco) é Tl_-&;)- ¢(E ) E' +
E/a, o_.(E',T) , I
+ J f _—(——)_Sfl_a $(E" dgt (3.3)
E } f : .
where
Ztm ,
’ 00 = N Ztm_= constant moderator cross-section
.0 .

(zam << Zsm),
NO = number of resonance absorber nuclei per
unit volume
oaf’crf’opf = resonance absorption, resonance scattering,

potential scattering, cross-sections, respec-

tively, of the resonance absorber

osf(E,T) orf(E,T)+cp

f
otf(E,T) = caf(E,T)+osf(E,T)

)2 ; Aj being the ratio of the mass of isotope j
to the mass of the neutron

Note that "moderator™ in the above usage refers to all non-

resonance-absorber nuclei present. If we use the NR approximation

for the moderator and the IR approximation for the absorber (G4),

we get:

o~+Ao

0 pf 1 |
¢(E,T,0,) = = (3.4)
270 oaf(E,T)+Aosf(E,T)+oo E




where the source is normalized such that "¢=
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%" will be the

off-resonance reference value for the flux per unit energy.

Upon substituting Eq. (3.4) into Eq. (3.1) one obtains:

00 + Acpf 5 (E T)QE
AEg O (E T)+Ao (E,T)+oO c' "’ E

J 0 pf ~ dE
AEg oaf(E,T)+AoSf(E,T)+co E

Because % and opf are .essentlally constant within AEg, they
v
can be cancelled-out from the numerator and denominator of

Eq. (3.5) to give:

T (E,T) 4E
J (E T)+A0 (E,T)+o, "R
_ |AEg Tap'™n

AEg af(E T)+Ao (E, T)+0 E

which is the effective capture cross-section at temperature T

and with the constant background cross-section OO'

3.2.3 Definition of Homogeneous Self-Shielding Factor and its
Parametrized Forms

The idea and method of self-shielding factors was first
popularized in the widely used publication of the so-called
"Bondarenkd" cross sections in 1964 (B3). Since then, the
self-shielding factor approach has become common practice in
the fast reactor field, due primarily to its ease of application;

there are, however,vminor disadvantages in the method, as

described in Ref. (KX5).
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The self-shielding factor, fxg(T,oo), is defined by the

equation:

»

0rg(T200) = f‘xg(T,oo)o:g - (3.7
Qhere the complications involved in the integration over
resonance structure, as indicated by Eq. (3.5), are separated
from the calculation of the effective multigroup constants for

a specific mixture/composition; Tables of f-factors are pre-
computed for the elastic, fission, capture; total, and transpoft

cross sections and for arbitrary sets of T and'c values. The

0
f-factors for any given T and 0, can then be obtained by inter-
polating in these tables. Having obtained thé f-factor we

can then multibly it by the proper infinite-dilution cross
section to get the required effective cross section, oxg(T,oo),
represented by Egs. (3.5) and (3.7). The success of the above
approach relies heavlily on the avallability of accurate schemes
for both temperature and oq interpolation of the self-shielding
factor, fxg(T,oo). One expression for the self-shielding factor

as a function of 9 at a fixed temperature T, which is used

as a fitting function, is:

fcg(oo) = AtanhB(2n00+C)+D | (3.8)

where A, B, C, and D are constants determined by four values

of fc at given 9 values.

g
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An alternative expression is:

N}

£, (00) = 0§£+020 )
& Nt e 97 9%

(3.9)

where N p is‘the total cross section at the resonance peak, and
opf and 0y are as previously defined.

Equation (3.9) is an accurate representation of the self-
shielding factor provided the group contains more than a few
resonances -~ il.e. is applicable to coarse grbups (S7). With a

little algebra, Eq. (3.9) can be transformed into a more useful

form, as follows:

1

2
1 - fcg(oo)

= AGO + B (3.10)

where A, B are constants determined by two values of fcg at
given % values.

Note that the parameters N e and pr appearing in Eq. (3.9)
are contained in the constants A and B of Eg. (3.10), which are
easily determined from the f-factor tables. Expression (3.8)
is an empirical relation suggested by Kidman (K4); while
Eq. (3.9) is an analytical expression obtained by Segev (S7).
As for temperature interpolation at a fixed Oy, a Lagrange-
three-point interpolation scheme predicts, very accurately, the
shielding factors for any current temperature, T. |

Finally, let us very briefly discuss one last important

item - namely the oo—ambiguity. As already defined, o, is given

0
by:
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gg°°+gg°°+fg g°°+
N 123 Nj(fcj 93 £y "9y eJ %eJ

f%n’j‘go;nhj) | (3.11)

where ¢ = capture; f = fission; e = elastic—scatterihg; in

inelastic-scattering. If at least one of the other elements
i.e. an element other than iéotope i, in the mixture has a

resonant cross section, then % will be ambiguous., A common
remedy for this ambiguity is an iteration scheme, as follows:

(O)fg

x,1 =1

(n) g _1 (n-1) g g,
901 N, igj N, %3 x3

(n=1,2,...) (3.12)
where the superscript n denotes the order of iteration and x
refers to the various processes, as explicitly defined in
Eq. (3.11).

It suffices to say that the above iteration scheme converges;
however, the question as to whether or not it converges to.
the correct value remains open. Since in the present work we
are treating the case of a single dominant resonant isotope,
the question of co—ambiguity will not be crucial to our work.

\ ‘
Interested readers may refer to Refs. (S6,S7) for a thorough

investigation of the above problem.

-



This concludes the discussion of homogeneous self-shielding,
hopefully adequatebto lay the groundwork for the Introduction
of heterogeneous self-shielding factors. For more complete
expositions on the subject of homogeneous self-shielding the
following references are recommended: B3,G1,K1,K4,K6,36,S7.
Appendix D contains a more detailed discussion of the intérpolation
schemes introduced in this section, and the method of their

application.

3.3 HETEROGENEOUS SELF-SHIELDING .
vConcentrating the fuel in a region separate from that of

the moderator leads to a number of advantages, and a few dis-

advantages, from the reactor physics viewpoint. The benefits of

having a heterogeneous system, however, generally outweigh the

principal disadvantage, namely, the reduction in thermal utiliza-

tion. The most important advantage associated with heterogeneity

is the decrease of the resonance region absorption of neutrons

undergoing slowing down, due to the self-shielding effect in

the fuel lumps, see Fig. 3.1, i.e., the neutron flux is enhanced
in the moderator and depressed in the fuel, which increases
the resonance escape probability. ’The heterogéneous'arrangement
also results in an increase in the fast effect. All of these
phenomena have been recognized from the earliest days of reactor
design.

In what follows only the resonance self-shielding is to

be analyzed.



73

FUEL'MODERATQj .

¢(XSE1)

¢(x,E2)

¢(x,E3)

¢(X,Eu)

¢ (x,E5) = 'f/

(F)
za (E)

FIG. 3.1 FLUX DEPRESSION AS FUNCTION OF NEUTRON
ENERGY
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3.3.1 Volume-Averaged Fuel Flux in the WR, NR, and IR

Approximations

In this section an exbression wiil be derived from the
basic slowing-doWn equatigps for the spatially-averaged fuel
flux in terms of the moderétor-to-fuel flux ratio "R" for a
two-region unit cell. It is at this point that we depart from

conventional methods, where both the fuel and‘the moderator

fluxes (the two essential quantities needed for cell-homogenization

purposes) are found in terms of escape probabilitiés; in the
present work the corresponding two quantities are the fuel flux
"Ef(E)" and the flux ratio "R(E)", and no escape probabilities
are directly involved in the final results.

Ideally one would seek an exact analytical solution to
the slowing-ddwn equations; unfortunately such is not available.
As a result, the narrow-resonance (NR) and wide-resonance (WR)
approximations were introduced as initial attempts to obtain
approximate analytical solutions. Improveﬁenés in these first
approximations were subsequently made by iteration on the basic
integral equation (B2). However there are instances when a
choice between the two limiting approximatiohs, NR and WR, is
difficult to make. To overcome this difficulty a third approxi-
mation, nameiy, the intermediate resonance (IR) approximation
was introduced (refer to Secton 2.7.1) which 1is designed to
characterize all‘intermediate situations, including the limiting

NR and WR extremes.
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The slowing-down equations, subject to the following
conditions:
(a) H-E(E,E) = 0 (no leakage)
(b) X(Ej = 0 (no fiésion source in the slowing-down range)
(c) elastia scattering is i1sotropic in the center of mass
system,

are:

o EE (e
z Et_ ¢ E' .
- _ sm m dE'
Xtm(E)d)m(E) = [l—Pm(E)] l Tl’am) E' +
_ L _
B (BT
v T (E")P.(E'
£ st £ dE’
P (E)z N (3.13)
f .Vm[ (l-af) E
A f
/s (E")F.(E")
L (E')$.(E .
— _ sf £ dE
E
O EnE e
v z E')¢ (E' '
p (E)—m sm m d% , (3.14)
m IV J (j-am) E
E

where Pf(E) is the probability that a neutron of energy E

born in the fuel will eScape from the lump without

é collision ‘
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Pm(E) is the probability that a neutron of energy E
born in the moderator has its next collision in
the fuel. '

Pf(E) and Pm(E) are thus escape-probabilities for average
neutrons in the fuel and moderator. Moreover, it is important
to note that, in general, the sum of Pf(E) and Pm(E) is not
unity; the two probabillities belong to different initial sources
of'heutrons.

Considering the general case, in which some moderator is
admixed with the fuel, and utiiizing the (IR) parameters as
introduced in Section 2.7.1, one can then solve Egs. (3.13) and

(3.14) to obtain the following results:

= - c
[z, (E)+I_ (E)]F (E) = [1-P_(E)Jur_ (E)S +

\
[1-P_(E)I[1-1Z  (E)F (E) + Pf<E>vi[xzpf+vzsnf<E>J§ +
Pe(B)FEL (1N T (B)+(1-9)8y  (B) 18, (). (3.15)

— C
(2, (B2 o (BT, oD+, p(E)I9o(E) = [1-Po(E)IIAZ o+vI () ]g
+ [1-PL(B)IL(1-M) 2 p(E)+(1=v)3_ (E)I§L(E) +

\'% \Y
) m— C m - e
Pm(E)V;“zsm(E)E + Pm(E)v;<1‘P)Esm(E)¢m(E) (3.16)
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Parameter C:is a nOrmalization‘constant given by

q Vcell

— —_— 3

VnbmZsmtVet zpf‘

where q is the slowihg-down density. Strictly spéaking, C is
an energy-dependent quantity which should reflect the decreaée
in q when moving down the resonance ladder from one resonance
to the next. However, if the group width is such'thatiit contains
Just a few resonances, then assuming a single mean value for q,
and hence for C, leads to vefy little error.
Upon adding Egs. (3.15) and (3.16), the terms multiplying
the escape probabilities cancel out, and the folloWing simpler

expression remains:

Vi [Zam (B4 (E) IO (E)HV LT ((E)4E o (E)4I, o (E)+E

(E)]$f(E)

snf

= vmizsm(E)% +V_(1-DI_(E)F _(E) + vf(xzpf+vzsnf(E)]%
+ Vel (1-0)2 o (E)+(1-v)I_ . (E) 19, (E) (3.17)

which is further reduced to:
Vm[Zam(E)+qum(E)]¢m(E) + Vf[zaf(E)+AZsf(E)+Zanf(E)+

VI (B)]9.(E) = th‘zsm(E)_g

snf E tvi

C .
+ Vf[xzpf snf(E)]E

(3.18)
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Equation (3.18) can now be used to obtain the spatially-averaged

¢ (E)
fuel flux in terms of the flux ratio R(E) = - as follows:
¢ (E)
5 (5 = Vmuzsm(E)+Vf>\pr+Vf\)Z #(E) c
f —
VLI ((E)4AZ (E)+Z (B)+vI  (E)I+V [ (E)+ul_ (E)JIR(E) E

(3.19)

As it stands, Eq. (3.19) is a quite general expression for
the spatially-averaged fuel flux in terms of the flux ratio R(E);
and it could thﬁs serve as a weighting function. }There are,
however, a number of simplifying éssumptions that can be intro-
duced into Eq. (3.19) at this stage without significant loss of
generality,'and which greatly simplify some of the subsequent
analysis: these assumptions are the following:

(a) I (E), za'm(E), L ,p(E)sand I (E) are all weakly
dependent on energy, especlally within a given energy
group; hence they will be replaced by group-averaged
parameters.

(b) All moderator elements will be treated as NR scatterers.
The error of the NR approximati?n as applied to the
moderator is of the order of —_T____T where lr =
practical half-width of the resonance, Er(l—am) =
‘maximum energy loss in a moderator collision. For

light moderators Ef(l'“m) is usually much greater than
rp’ (Gl).
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(c) Setting the normalization constant, C, arbitrarilly

equal to 1.0; this will lead to ¢(E) = % as the off-

resonance reference value for the flux per unit
energy. A

<<z .

(a). =z << X and zan snf

am sm f
Introducing the above assumptions into Eq. (3.19) the following

simpler expression is obtained:

3.(E) = sz%m+vfzsnf+vflzpf
f

Vf[zaf(E)+Azsf(E)+2tnf]+vmztmR(E)

1
" (3.20)

Equation (3.20) reduces to the WR limit when A=0, and to the NR
limit when A=1. |

3.3.2 Effective Group Capture Cross-Section for a Resonance
Absorber :

We are now at a stage where almost all the groundwérk
necessary for generating "equivalent" group parameters , (;ffg’
ch, Zgg',. etc.), which are constant over the entire volume
occuplied by any given cell in a reactor, has been developéd.

The group constants generated should, when used in a group-
diffusion-theory calculation for the whole reactor, reproduce

the same average reaction rates over a given cell as would be
determined 1f an exact energy dependent transport calcﬁlation was

performed for a heterogeneous reactor with all the geometrical

characteristics of the unit cells treated explicitly.
\ _
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1

To start with a rigorously accurate definition of equivalent

' \
homogenized cross-section, recall the explanation given in

.
Y

Section 2.1 and especiélly the constraint set by Eq. (2.1) -
namely:

A3 (r,E) = 0 | (3.21)

Then, the definition of an equivalent homogenized capture cross-

section specialized to a two-region unit cell will be:

av j AaE JI(r,E,T)¢(r,E)
AEg ¢

ZJA - Veell

ce (3.22)

av J dE  ¢(r,E)
AEg

Vcell

Further assume that the resonance absorber, j, is present
only in the fuel region; then Eq. (3.22) can be expanded to yield

the following form:

J dElZCf(E,T)J ¢(£,E)dv'
AEg Vf
ch B (3.23)
'J dE}J ¢(P,E)dV+J ¢(£,E)dv'
AEg Vf Vm
Define the Spatially averaged fluxes as:
T® =5 [ e (3.24)
o m i ‘
m
o(E) = & J> ¢(r,E)av; (3.25)
, - f

Ve

'
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Using Eq. (3.24) and (3.25) in Eq. (3.23) we get:

. Z (E,T)V_.¢.(E)dE
Log ® e S (3.26)
[V.$.(E)+V_¢_(E)]dE.
JAEg e m'm
or ‘
J z (E,T)¢.(E)AE
cf f
L = — (3.27)
J [1 + = R(E)I$,(E)AE
AEg f

Our next step is to solve Eq. (3.27), knowing R(E) and
$f(E) from Egs. (2.81) and (3.20) respectively. As it stands
- the problem is essentially intractable unless plausible simpli-
fications are introduced into Eq. (2.81): the following are
to be implemented:

(a) Liﬁearization of the expreésion for R(E), by uéing
group-averaged vélues for the values of T appearing
in Ops am,B,p. Numerical studies confirm that this is
an acceptable device: 1in the present<application one
could even use the weak absSrpgion asymptote withbut
introducing significant errq£ (see Appendix B). The .
numerator of Eq. (2.81) becomeS‘[1+?f6f(E)],_with

szaprQm evaluated at group-averaged values for the

g ' ‘ T involved. In like manner the denominator of Eq. (2.81)

will take the similar form [1+§66m(E)].
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(b) ztm(E) and ztnf(E) are very weakly dependent on
energy, especilally within the range of energy covered
by a typical group width. Hence, we can treat Sm(E)
as constang oyer AEg. This last assumption in
conjunction with the one made in part (a) immediately
implies that the denominator of Eq. (2.81) can be
taken as coﬁ%tant, and 1t shall henceforth be
denoted by\e.

Based on assump%ions (a) and (b) Eg. (2.81) can now be

written in a more manégeable form:

R(E,T) = %[1 + Y8 (E,T)] (3.28)

where 6 and ?r are as previously defined.
Substituting Egs. (3.20) and (3.28) into Eq. (3.27), the

following is obtained:

A (V. _+V_Z +V _AZ

m sm f snf f pf>.z f(E’T)

dE
P E
o = Jamg Ve e (E,T)+V AT (B, TH+V. 2, PV T 14y 8 (B, T) ]
cg Vv
4 f m 1 =
[ (szsm+vfzsnf+vfxzpf) {1+v; Fl1+Y 6. (E,T) 1} .
i} E
) AEg szaf(E,T)+VfAZ (E, T)+szt etV I tme[1+yf6f(E )]

(3.29)
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or more simply:

5
Lop(E,T) dE
r, V. Z . E
_ ~ : tnf 'm "tm 1 = A
) AEg oaf(E,T)+Aosf(E,T)+ Nf 'Vf Nf 6[1+yf6f(E,T)]
ch = ] (3.30)
r m 1 = : : '
1+7— Z[1+Y.6.(E,T)]
Vf 0 £ f dE
z V I E
tnf, ' m "tm 1 -
. o . (E,T)+Xo__(E,T)+ +— Z[1+v.6.(E,T)]
| Agg of sf N, V., N, 8 £or

where (Vmism+szsnf+Vlepf) has been cancelled-out, because it
it treated as essentially constant over the energy range covered
by AEg.

Using the explicit form of Gf(E,T),‘giVen by Eq. (2.76)

with v=1, in Eq. (3.30) we get:

[ ch(E’T) dE
, z V T E

5 _ JAEg Oatf*h)\cy f+ E;f V; _%§ %[1+?f(Taf+ATsf+Ttnf)]  (3.31)
°8 [ l+¥? é[1+Yf(Taf+AT f+Ttnf)] a5
JAEg ° f+>\osf‘+ E?f * ;? E%? %[1+7f(Taf+ATsf+rtnf)J ’

Recalling the definition of optical thickness given in Section 2.2

and that 0af - 0capture.of’the fue1+°fission of the fuel ~
ch+°ff’ the terms containing optical thicknesses can be written

in terms of the basic microscopic cross sections. This facilitates
collecting common terms - that is, taking the denominator of

both the top and bottom part of Eq. (3.31) one gets:
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z V I ‘ z
‘ tnf, 'm “tm 1., = tnf
OertOrst Aot N, T, W, B eNe e (Ceptoppt Aoty T, (3.32)
which upon grouping the common terms becomes:
' I \Y% T
Q2 Q,“tnf m 1l “tm
(1+§)[ocf+°f‘_f+>‘°sf]+(l+e) Tt 5 v (3.33)
f . f f
= ztm Vm = =
where Q = Yfo_N; Le V; = Y % T YptTin (3.34)

Based on the assumed constancy of ?f, 6, and Tem over the

energy range AEg, it follows that the term (l+%) is also constant

over the same energy range and hence can be factored out of the

integrands of both the numerator and denominator of Eq. (3.31).
After factoring out the term (1+%) from expression (3.33),

one has:

(1+%)[oaf+xo + + . B, tm ] ' (3.35)

If we volume-homogenize (Etnf)/(Nf) and (Ztm)/(Nf) and
nofe that their sum is the total béckground cross section per
resonance absorber, then, based on the definitions given in
Sections 3.2.2%and 3.2.3, the above sum is denotéd by 00'.

The prime is introduced to indicate the modification made on
the second term - i.e. (Ztm)/(Nf), by the multiplicative factor

T ’ : . .
Bra” To put it quantitatively:
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v v
v - “tne - Lem T I ’
gt = _cell + 2 cell - tnf 1 tm (3.36)
0 Ve 0+ v, S 0+Q 7 '
Teer1 f Vce11_Nf ' '

where the bars over Ztnf’ Ztm’ and Nf denote volume—weightedf

homogenization.
Substituting expression (3.36) into expression (3.35),

there results:

0 , | | |
(1f§)(oaf+kcsf+00 ) | (3.37)

This factor can now be used as the denominator of both the top

and bottom parts of Eq. (3.31), to give:

[ er dE
1
Ve .y - AEg %artrIsptdp’
cg v T
Vce]_l l+\7@ %4.6'"ch+8”'cff+€'"Aosf+€"' ;nf
£ ‘ | £ dE
E
]
AEg Uaf+xosf+°0 _
(3.38)
where
e' [ ] -— l - N Vﬂ 2’
8 Yr'r V. *r
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Also note that the constant term (1+%) has been cancelled

out. Upon inversion, Eq. (3.38) becomes:

1 & 'm1 1 dE
1 ) JAEgoaf+Aosf+Oo' P TS [Aggcaffxosf+“o' B
Ve o | Or dE %r dE
Vee1l CE JAEg Oapthosptoy" B JAEg Taptrogetog’ E
e"'J Per dE E'..J 9r dE
N AEg %ar™%set%" B pEg TartrOsptoy’ B
| Or dE Ior dE
]AEg OaptAOsptoy’ E. JAEg CapthOsptoy’ E
8,,,J | AOgsp dE .y, Ztan 1 dE
. |aEg %art?Osptoy’ E . Ne JaEg %artrogetoy" E
Ocr ) daE cg dE
JAEg Oapthoge*0g" E [AEg OarthOgp 05" E
(3.39)

Upon comparing each of the different parts of Eq. (3.39) with

Eq. (3.6) the following rigorous result is achieved,

hom
1 - Vf/vcell + Vm 1 1 + e 4 ogn Ofg +
het hom i ) hom & € hom
o cell o ]
cg cg cg cg
o "hom Z.
en SE__ yoen tng 1 | (3.40)

hom N " hom
ocg b ocg
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where
ocghom= group-averaged homogeneous capture cross—section‘
ofghom= group-averaged homogeneous fission cross-section
Osghom= group—averaged homqgenedus eléstic scattering cross-
section
chhetz group-averaged "homogenized" capture cross-section
ztng = total non-resonance cross section in the fuel region
for group g.
e" f(Vf/Vcell)e""=
s iﬁw 'ny Tt 'm N2
Veern ® T Vp Veer1 TF

With a bit of straightforward algebra Eq. (3.40) can be

further reduced to obtain the following simple form:

' hom
o T (T,0,")
O (Ty0g) = —SE 0 (3.41)
]
n + € ch (T,OO )
where
Vf 1 Vm hom hom
n = + = +€"0 (T,’U ') + E"U, ) (T o ')
Vcell 0 VCell fg 0 sg 70
Y \%
* Tf T T
cell ng
Y v
ne _I m
e'= F F Nelp
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It is important to note, as evident from the method of
derivation, that Eq. (3.41) predicts the correct homogenized

cross-section under any condition so long as the homogeneous
hom

Gcg

correctly elsewhere in the literature.

part (i.e. (T,oo')) is treated, under those same conditions,

3.3.3 The Heterogeneous Self-Shielding Factor and a New

Equivalence Theorem

The present aim, as mentioned before, is to devise a method
by which one can obtain accurate heterogeneous self-shielding
factors embodying all the characteristics and properties of the
well-established Bondarenko f—factor formalism, previously
developed for homogeneous systems.

Recalling Eq. (3.7) for the definition of the self-
shielding factor, and applying it to Eq. (3.41), leads to the

following important expression:

hom
(T,o,")
fcghet(T’dO) - =& hom 2 (3.42)
. [} 1
n+ e fcg (T,0,")
where
A% \Y
n =g f 4 % 7 LU €"ff hOm(T,oo')-cf°° +
cell cell g
Y v
hom © Te m
e"f (T,o.")*0 + = T
" Tsg 0 sg 0 VOell tng
g'= €0
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or
het __1 . hom, . | -
fcg (T,OO) - f‘cg (T,oo) | (3.43)
where g = e‘fhom(Tg co')

which is in the form of a New Equivalence Relationship, whereby

the corresponding f-factor for the heterogeneous cell is
expressed in terms of the f-factor for a homogeéeneous cell
evaluated at a modified value of the constant background cross-
section - namely co'.. Equation (3.42) was derived assuming a
single resonance 1s embedded in the energy group of width AEg.
However, as it stands, the applicability of the equation can
easily be extended to coarse groups by simply referring all

the pérameters appearing in Eq. (3.42) to their corresponding
coarse group values.

Finally, it is worthwhile to present a brief review of
what we will call the "conventional" methods used hitherto and
compare their results with those of the present method - i.e.
Eq. (3.43) and all of its implicatiéns. Convehtionally, one

uses the second equivalence theorem to make the heterogeneity

correction. The statement of the theorem is as follows (H1,L4):

a heterogeneous system will have the same resonance integral

as a homogenequs system evaluated at:



v - _tnf 1-c ‘a - _tnf 1 tm
"0 w,  Nerp @D Ty T I 34
f f a tm f

where ¢ is the DancofféGinsberg factor given by:
Ttm

l-c = —3—— , in Bell's approximation (B1) (3.45)
1+=1
a

\

tm

with "a" known as the Levine correction féctor (L2), which
typicaily takes on values lying between 1/a = 0.63 and 1/a =
0.84. It has been found, however - refer to (H2,L2) -
that a value of 1/a = 0.79 yields accurate results over the
entire range of practical lump sizes.

Although the theorem is strictly valid for resonance
integrals, it 1s also utilized to predict group cross sections

via the following equations - consult Refs. (F4,HU,K6):

RIC
Ocg = FAU (3.46)
where RIcg = capture resonance integral for group g
AU =‘1ethargy width for group g, obtained by

assuming a 1/E flux shape
F = flux shape correction factor (corre;ts for
both the non-1/E shape of the flux ehvelope,
and for resonance-induced flux dips)
Applying the preceding theorem to either (or both)
Egqs. (3.46) and (3.6) yields the following conventional result

in terms of the f-factors:
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Fread,

= | hom(
cg

(T,UO) 'CF T,OO') (3.47)

Upon comparing Eqs. (3.43) and (3.47) we immediately

note that the factor

= i = has been set equal to 1.0 in the
conventional method. This factor, as will be seen in Section
3.5, would induce some difference into ﬁhe heterogeneous
cross-sections obtained conventionally and those obtained
using the new method. This discrepancy raises questions as.

to the validity of the second equivalence theorem as applied

to cross-sections but not to resonance integrals. The

difficulty stems from the fact that the true integratéd'

heterogeneous flux, as given by the denominator of Egs. (3.26)

and (3.27), has in the conventional approach been replaced

by a homogeneous flux evaluated at oo‘ in the denominator of

Egs. (3.6) and (3.45), thus leading to the present disparity.
As for thé first equivalence theorem, it states: »

heterogeneous systems with the same o.' (refer to Eq. (3.44))

0
have equal resonance integrals. It can easily be shown that

the statement of the theorem is in accordance with the
predictions of Eq. (3.43).
The above conclusions, in conjunction with the result of

Eq. (3.43), constitute the present New Equivalence Theorem.
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3.4 A COMPARISON BETWEEN THE CONVENTIONAL AND THE PRESENT
DANCOFF FACTOR AND ESCAPE PROBABILITY EXPRESSIONS

In this section we will obtain expressions for the Dancoff
factor and the fuel escape probability by comparing the various
results of the present method with the corresponding conventional
results. Before getting into the algebra, some simplifying
assumptions are introduced, which are not to be taken as
limiting approximations, however:

(a) Impose the NR approximation. Therefore, strictly
speaking, all results obtained in this section are
for the NR case. Results for the WR and IR cases
are obtalnable by exactly the same methods.

(b) Conéider only thermal reactors, where the slowing
down source 1s in the moderaﬁor, hence Qf=o and
6=1.

Using the above assumptions and comparing Egs. (3.36)

and (3.44) we get:

— Lot | (3.148)
L YeTon 14 3T

which Says that ?fiﬂ %, thus leading to a similar expression

for the Dancoff factor: given by Eq. (3.44) with the only

change being the replacement of % by Yp-

: T
1 -2¢ = L km present method (3.49)

1+ ?thm
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The next task is to find a corresponding expression for
the escape probability, Pf(E). Utilizing Egs. (3.15) and (3.16)
in conjunction with the above assumotions, and going through

some simple algebra the following result is obtained:

Tse(E) | ToplE)
R(E) L T R e (3.50)
1+ (TSf(ETr- Q- Ttm(E))P (E) |
_ th E th E m

(I) 1in the asymptotic region Tsf(E) * Top g'th(E),

which when substituted in Eq. (3.50) results ih
R(E) = 1, as to be expected.

(II) in the resonance region where Tt >> Toe (black fuel)

tf
one obtains:

1 th(E)

R(E) = PL(E) ~ T, (B)

(3.51)

Conventionally, the fully rational approximation for Pf(E) is:

P.(E) = — (3.52)
HiTm
1+ —— th(E)
tm

Substituting Eq. (3.52) into Eq. (3.51) gives:

Q R(E) = 1 + % T, o (E) (3.53)
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which has exactly the same form as predicted by our results -

namely:

R(E) = 1 + ?frtf(E) (3.54)

Upon comparing Egs. (3.53) and (3.54) we note:

@7, | (3.55)

OB

Using the equivalence relation given by Eg. (3.55), and working

backward, we obtain the following expression for Pf(E):

1
Pf(E) = (3.56)

1+y .1
f.tm (E)

1+ : T
Tem tf
Equation (3.56) is the analog of Eg. (3.52).
The above encouréging results strengthen our confidence in

the present methbd. We will see in Section 3.4 that the range

of values for ?;’for cylindrical unit cells is:
0.47 < Vf < 0.64 (3.57)

which can be compared to the variation of 1/a feported earlier

to be:

0.63 < L _o.84- (3.58)

<
v

W

Figure 3.2 shows a plot of the Dancoff correction obtained

in Ref. (L3) using the MOCUP Monte Carlo program. The Monte

*AlSo note that Y. approaches the asymptotic limit of 1.0 as
the moderator optical thickness (rt ) gets large, sce the

. . . . m

footnote on page 96.
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Carlo program computation was performed on a two-region "sqguare

pin cell" of high fuel cross—section*and with Vm/Vf=1. As

can be seen, the present analytical results are in as good agree-
ment with the Monte Carlo computations as are the results of

the analytical model proposed in Ref. (L3); with the exception
that the present model is considerably simpler than the model
proposed in the reference. Both models, however, are obtained
assuming unit cell cylindricalization; as a result, they do

not distinguish between square and hexagonal cells. Finally,

the results of the two models are about 3% higher than the

corresponding Monte Carlo computations.

3.5 COMPARISON OF MODEL RESULTS WITH LEOPARD CALCULATIONS

In the present section homogeneous-to-heterogeneous correc-
tions are calculated with the new equivalence theorem, and the
results compared to equivalent output from the LEOPARD Code (L5),
a state-of-the-art LWR unit cell program. The base-case unit
cell data used in both calculations is representative of current
commercial PWR reactors (specifically, Maine Yankee); Table

3.7 summarizes pertinent dimensions and compositions.

?f in the limit of high fuel optical thickness is, (refer to

Chaptef 2):
2 1/2
_ .z ? + O.24Ttm
Yr 1/2

1 + O.2uTtm
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The EPRI version of LEOPARD was employed, togéther with its
ENDF/B»IV derived cross-section library. For the self-shielding-
factor method cross-sections, and f-factors as a function of
0qowere taken from the LIB-IV fast-reactor cross—section set’

developéd by LASL (also derived from the ENDF/B IV‘library)(K6).

3.5.1 Energy (Group) Dependence of Essential Parameters

Table 3.1 gives the group* values for Q_, Vf, 8, N, €,
0gs and 00' calculated for the base case.PWR unit cell.v Appen-
dix E contains a step-by-step procedure for calculating one
of the table valuesj moreover, a brief discussion of some
aspects of LEOPARD, pertinent to the present pfoblem, will
be given in Appendix C. :

There are several important observations to be made in
the above tablé. First, we note that the value of Qm (fraction
of the neutron source originating in the moderator) is approxi-
mately 1.0; hence, -justifying the widely used assumption, in
thermal reactors,yof‘considering the epithermal slowing down
density to be zero within the fuel. Another effect of the
above observation would be to make 8 1.0, as indeed is the
case upon referring to the foregoing table;‘this validates
assumption (b) made in Section 3.4; furthermore, the indicated
slow variation of 7f over the groups helps to partially jﬁstify
assumption (a) of Section 3.3.2. ‘ |

*
Group structures are given in Table 3.8.



Group Values of Q. Yf, 6, n, e, 0y, and o ' for the

Table 3.1
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Base-Case PWR Unit Cell

Group Q Y ¢} n 5 % 9"
No. ¥ m £ barns barns
26 0.987 0.473 1.008 1.138 0.006 100 61
27 0.482 1.162 0.006 105 63
28 0.481 1.141 0.007 106 64
29 4 0.478 1.148 0.007 100 60
30 0:988 0.483 1.148 0.008 100 60
31 0.477 1.130 0.007 102 61
32 0.481 1.139  0.009 100 60
33 0.478 1.126 0.011 100 60
34 0.481 1.132 0.012 102 61
35 0.474 1.118 0.011 101 61
36 0.471 1.117 0.010 101 61
37 0.489 - 1.130  0.010 107 63
38 0.525 1.159 0.013 101 62
39 0.536 1.159 0.020 102 62
Lo 0.511 1.119 0.022 102 63

4 { 0.473 1:007 1.139 0.007 103 66
42 0.979 0.632 1.019 1.327 0.030 103 59
43 0.988  0.588 1.010 1.134 0.057 103 61
Iy 0.467 1.007 1.114 0.004 105 68
45 0.607 1.011 1.142 0.160 103 60

See Table 3.8 for group structure.
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Tn Table 3.7 the analytic and the T,KOPARD results for
the ratio of heterogeneous—to—hombgeneous self-shielding factors,
evaluated at the same o,, are compared. There are two group
number entries in the table, one for LIB-IV and athher'for
LEOPARD; their energy‘groups are matched using the corresponding
group structures given in Table 3.8. Note that only the resonance -
part of the LEOPARD results for the absorption cross section
is considered - i.e., the smooth or "%" term, which is of
small effect, hés been omitted. Hence, the dashed lines shown
in the table imply that there are no resonance contributions
in the corresponding groups. Use of the LIB-IV cross section
set did not permit separation of resonaﬁce and smooth effects
in the present model. The important point to note in this
table, however, 1s the near constancy of the LEOPARD results

for the ratio fhet

(oo)/fhom(oo) over groups 26-45. This would
suggest that weak resonances undergo as much self-shielding as
strong resonances, counter to both intulitive and analytical
expectations. Our results, on the othér hand, indicate less
self-shielding for weak resonances and greater selfQShielding
for strong fesonances.

3.5.2 Dependence of the Ratio fhet(o

O)/fhom(cq) on Moderator

Optical Thickness

Figure 3.3 is a plot of homogeneous broad group capture
cross-section (Ochom) as a function of moderator optical thick-
ness (Ttm), with. the fuel diameteb kept constant. The broad

group cross sectionvis defined by a 1/E weighted group collapse:
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Table 3.2

Group Values for the Ratio of Heterogeneous to-Homogeneous
Self-Shielding Factor

This Model " LEOPARD
. LIB-&V . | 'GLEOPARD i fzet(Oo) fiet("o)|
roup No. roup No. £ om(co) £ om(co)
(resonance (resonance)
+ smooth)
26 & 27 26 0.836 0.596
28 & 29 27 0.822 0.598
30 & 31 28 0.799 0.601
32 & 33 | 29 0.776 0.601
34 & 35 , 30 0.749 0.593
36 & 37 o 31 0.741 0.586
38 32 0.652 0.610
39 33 & 34 0.661 0.611
4o 35 & 36 0.679 0.613
41 37 & 38 0.768 -
42 | 39 & 40 0.556 0.630
43 - b1 & 42 0.631 0.6U44
uy 43 & 44 0.892 -
45 45 & L6 0.592 0.660
46 : b7 & 48 0.900 , --
47 . 49 & 50 ) -
48 51 & 52 | -
&

L9 ' 53 54 ; . -

See Table 3.8 for group structure.
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Table 3.3

Tabulated Results Applicable to Fig. 3.3

hom hom

oderator Optical o, (barns) g, (barns) A%
Thickness analytical, using f-factor LEOPARD percent
formalism difference
0.361 | 2.218 2.088 +6.2
0.663 2.591 2.565 +1.0
1.354 3.336 V 3.410 -2.2

1.965 3.883 3.962 2.0
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‘GPU9 49
g hom ) o.Au./ % Au,
(¢} = 1 1 1
GP26 2

As is evident from the figure the capture cross sections ob-
"tained using self-shielding factors are in good agreement with
the corresponding parameters generated using LEOPARD. Depending
on ones point of view this either validates.the f-factor for-
malism, LEOPARD, or both. Table 3.3 contains the tabulated.
results of Fig. 3.3 including percentage differences.

In Fig. 3.4 the analytic and the LEOPARD results for the
ratio of heterogeneous-to-homogeneous self-shielding factors

»(Phet

(00)/fhom(oo)) as a function df moderator optical.thickneés.
(at constant fuel pin diameter) are shown. The agreement

shown between the two results is good (particﬁlarly for

Tem that of current PWR designs); also note that the

results fall very nearly on a straight 1}ne. This obServatién
can be explained as follows. Considering Eq. (4. 22) (to be

derived in Chapter U4) one gets:

\

2
———0 . L _Ltm o pehom 332y (3.50)
fhom(o ) 2 147 1 0
0 Yf tm :
or in a more condensed form: A
fhet(oo) , _ \ . ( 50)
—_—— = 1 - YT 3.60
f.hom(oo) | tm
where
w =

1+?thm
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Table 3.4

Tabulated Results Applicable to Fig. 3.4

het het
f. (o) . £, (04)
: hom hom
Moderator Optical f (o.) f (o.)
Thickness ¢ 0 ¢ 0 A%
present model LEOPARD percent
Eq. (3.42) ' difference
0.361 0.865 0.857 +0.9
0.663 0.784 0.782 +0.3
1.354 0.653 - 0.653 - 0.0

1.965 0.551 0.587 -6.5
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Note that as the pitch shrinks, 9 decreases and the parameters

(fg, ;thm’ Vf) approach‘the following limiting values quite

rapidly.
fz(oo) << 1 (3.61)
YeTep << 1 (3.62)
Vf - constant (3.63)

Hence, ¢ will approach a constant value; and, in accordance with

het

Eq. (3.60) f (00)/fhom(oo) versus T is indeed a linear

tm
function with negative slope. The plotted data of Fig. 3.4

. L
are given in Table 3.4 with the percentage differences included:

the agreement between the present model and LEOPARD is excellent
for all but the thickest moderator case.

het(0

3.5.3 Dependence of the Ratio f )/fhom(oo) on Cell

0
Shrinkage Factor

Figure 3.5 shows the ratio fhet

(00)/fhom(00) as a function
of cell shrinkage factor, which is defined as the factor by
which all radial dimensions in the unit cell are multiplied,

to shrink or dilate the cell in a manner such that the volume
fraction of all constituents is unchanged. The reéults

agree within +8% (see Table 3.5): however agreement is

exact for the base-case PWR cell typical of current commercial

lattice designs.
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Table 3.5

Tabulated Results Applicable to Fig. 3.5

108

het het
fc (OO) fc (GO)
\ | fchom(oo) f.Chom(oo)
Cell Shrinkage Factor A%
_ present model LEOPARD
Eq. (3.42)
Base-Case PWR Unit Cell '
Dimensions 0.653 0.653 0.
1073 x the above unit
cell dimension 0.999 0.981 +2.
1/4 x the above unit
cell dimension 0.917 0.856 +7.
1/2 x the above unit
cell dimension 0.824 0.762 +8.
3/4 x the above unit
cell dimension 0.735 0.702 +4,
3/2 x the above unit
cell dimension 0.538 0.581 -8.
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3.5.4 Heterogenecous Cross-Section as a Function of Moderator

Optical Thickness

Table 3.6 contains the data for the U-238 broad group
"heterogeneous" capture cross-sections evaluated at various
moderator optical thicknesses and at a fixed fuel pin diameter.

As seen from the table, the two central points agfee within 2%,
and the end points within 8%; these data are plotted in Fig.

3.6. The important point to note here 1s the approach of the
curve to an asymptotic limit as the moderator thickness increases,
the reason being that as the moderator optical thickness in-

creases, the results approach the isolated-lump 1limit.

3.6 DISCUSSION AND CONCLUSIONS

A new approach for obtaining equivalent homogenized cross-
sections has been developed. It has been shown to validate most
prior (conventional) results, with the exception, on theoretical
grounds, of the second equivalence theorem used for generating
homogenized cross-sections. However, heterogeneity corrections
calculated using the present method were generally in good
agreement with the same corrections obtained using LEOPARD;
agreement 1s particularly good for unit cells typical of current
commercial PWR lattices.

Although the present and the conventional equivalence
relations differ by the factor H%E (see Section 3.3.3), actual
numerical results agree reasonably well. Let us recall some

of the previous expressions:
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‘Table 3.6

to Fig. 3.6

Tabulated Results Applicable

111

het

Moderator Optical o] (barns) o het (barns) A%
Thickness ¢ c .
present model LEOPARD percent
Eq. (3.24) difference
0.361 1.919 1.790 +7.2
0.663 2.032 2.005 +1.3
1.354 v 2.180 2.228. -2.2
1.965 2.141 2.326 -8.6




Table 3.7

Base~Case PWR Unit Cell Data

A\

Homdgenized Atom Densities

Element Number Density (nuclei/barn cm)

Hydrogen 2.6960x10°°

Oxygen ‘ 2.7625){10_2

Zircaloy-2 5.1680){10"3

Carbon 4.3687x10_8

Tron 1.5179x107°

Nickel 3.1127x107°

Aluminum 1.9762x1077

Chromium 1.01414x107°

Manganese 1.7398){10_7

Uranium-235 2.0767x10—u

Uranium-238 6.8656){10_3

Cell Dimensions
T ) - i . - C . - .
fuel = 0.186 in ; rgap 0.189 in; .1ad 0.220 in; pitch 0.580 in
Temperature
= om. = ¢ om. = o

Toeltet = 1209:50 °F3 Tq.4 and voia™ 634:80 °F5 T\ qerator™ 562-50 °F




Energy Group Structure of Cross Section Libraries

Table 3.8
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LIB IV ENERGY GROUPS

LEOPARD ENERGY GROUPS

No. ELower Boundary AUi No. ELower' Boundary AUi
upper upper
boundary 5.530 Kev boundary 5.530 Kev

26 4,31 0.25 26 3.35 0.50

27 3.35 27 2.03

28 2.61 28 1.23

29 2.03 29 750 ev

30 1.58 30 L5y

31 1.23 31 275

32 961 ev 32 167 ]

33 Th9 33 130 0.25

34 583 34 101

35 b5y 35 78.7

36 354 36 61.3

37 275 37 7.8

38 167 ' 38 37.2

39 101 0.50 39 29.0

Lo 61.4 40 22.6

43 37.3 41 17.6

42 22.6 e 13.7

43 13.7 43 10.7

Ly 8.32 by 8.32

45 5.04 45 6.50

46 3.06 b6 5.10

ur 1.86 y7 3.97

48 1.13 48 3.06

4g 0.6826 L 49 2.38

50 1x107° 50 1.855 v
51 1.440 0.2538
52 1.1250 0.2462
53 0.8350 0.3000
54 0.6250 0.2884
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het 1 hom ' ; .
fcg (GO) e fc ( 0 ) new equivalence
relation (3.64)
with
T I
G. = tnf + tm (3.65)
S N
f f :
T I
o ' = Ly 1 _tm (3.66)
Ne o I*veTyen Ne
and
het hom . s .
fcg (00) fCg ‘(GO’) conventional equivalence
relation (3.67)
with
T T
00 - tnf + tm (3.68)
N N.
i f
T T
00' = :C—nf + ll _tm | (3.69)
Nf : 1+—Ttm £

If for the moment we assume that the 00' values given by

Egs. (3.66) and (3.69) are equal to each other (note that the
9 values are aiways equal), then the resulting f factors (hence
capture cross sections) predicted by the new equivalence rela-
tion would be 12 to 25 percent less than the results obtained
using the conventional method due to the presence of the factor
R%E: see Table 3.1 for typical magnitudes of n and . The
reason, however, that the observed agreement is better is that
the 00' given by Eq. (3.69) is considerably lower than the OO'
given by Eg. (3.66), because the Levine factor 1/a taken here

as 1/a=0.79 (see Section 3.3.3) is considerably higher than
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the corresponding parameter §f, which has an average value of
0.50 (see Table 3.1). Hence,the lower oo‘ used in the present
model provides an offsetting correction.

One majof advantage in the new approach comes from the
fact that the flux ratio R(E) appears both in the numerator and
the denominator of Eq. (3.29), which leads to results which are
only weakly dependent on the accuracy of R(E) (see Appendix B
for numerical justification of this observation). This being
the case, it is important to note that thé only place at which
the flat-flux assumption was introduced is in Section 2.5 in
conjunction with the source used in‘the flux ratio R. In this
regard it is shown by Gregory (Gl), that for a general parabolic
source (S(r)zl}agrz) distribution the mean escape chord length

for a transparent cylindrical rod is:

L agr%
Re = §P1(1 - -—gg-) . (3.70)

Assuming that the distribution of scattering sources is given
by (G1):

i

= 2 1, r2 [
Lsbpp T OIg v g ri7l1 - H(;I) + ... (3.71)

\

\ \
where

dpp = First flight flux due to a uniform source. The

source of Eq. (3.71) is a parabolic source with a2

—l/ﬂrlz.

Substituting this a2 in Eq. (3.70) we get:

_ b 1
Ze = §Pl(l + §Eﬂ) (3.72)
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which differs by less than 0.4% from the mean escape chord

length introduced earlier in Section 2.6, derived under the
assumption of a spatially uniform collision source distribution -
i.e., flat-flux. Thps, we conclude that the flat-flux assumption
is not a significant weakness in our methodology, since it
apparently cannot introduce any significant error into the

final results. This assertion is also put. forth by Kirby and
Karam (K2) with regard to the flat-flux assumption as utilized

in the conventional methodology. Note also that the flux ratio
model was force-fit to transport program calculations in which
collision sources were proportional to flux shape. Hence while
its analytic form stems from a flat-flux model, its numerical
validity is not so constrained.

A final point to note is that we have not merely validated
the older conventional approaches to this problem. While the
present results include the earlier work as limiting cases,
several distinctions must be made:

(a) even in the limiting cases the present work leads

to more accurate apprdximations to "exact" results;
(b) the most general form of the present results

handles cases not easily dealt with conventionally -

e.g. when fuel moderation is not negligible compared

to that of the coolant;

(¢) the present result more clearly identifies the

nature of the approximations involved, facilitating

error analysis;
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(d) the present results are a better vehicle for

unifying fast and thermal reactor methodology.

The numerical results already given in the past sections

and those to be given in the next chapter help underscore the

above assertions.
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Chapter Ui

THE EFFECTS OF HETEROGENEITY IN FAST REACTORS:

4.1 INTRODUCTION

The effects of heterogeneity in fast reactors are far
less prominent than the corresponding effects in thermal reac-
tors. Fast reactors are so nearly homogeneous because fast
neutron mean free paths are for the most part an order of
magnitude larger than any dimensions over which physical pro-
perties change. This being the case, we can, by using Egs.
(3.9) and (3.43), derive a very simple and practical expression

for the ratio '€t

(00)/fhom(00), which will predict the hetero-
geneity corrections.to within reasonable accuracy.

For detailed discussions of the effects of heterogeneity
in FBR blankets refer to (F2, Gl1, K1, L1): the blanket is of
particular interest here because the diameter of radial blanket
fuel pins may be as much as twice that of the core fuel pins,
and the ambient neutron spectrum is softer than that of the
core - both of which circumstances accentuate the effects of
heterogeneity.

4.2 AN APPROXIMATE EXPRESSION FOR €% (¢ )/fhom(co) APPLICABLE

TO FAST REACTORS

0

By referring to Table 4.1 which shows groupwise rarameters
for the metal-fueled blanket mockup described later ir. this
chapter, we observe that:

n=1.0 and € = 0.0 (4.1)

. '.‘;
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Table 4.1

— : *
Group Values for Qf,*lf, n, €, OO’ and oo' for a Metal-Fueled

Blanket Mockup Unit Cell

G Qf Ye 3] n £ oy o,

barns bagns
26 0.032 0.400 1.013 1.014 0.001 59 52
27 0.022 0.440 ©1.009 1.022 0.002 66 53
28 0.006 0.747 '1.003 1.037 0.003 58 20
29 0.021 0.450 1.009 1.023 0.002 107 91
30 0.037 0.397 1.015 1.013 71 64
31 0.042 0.382 1.017 1.007 71 - 65
32 0.044 0.392 1.018 1.009 | 76 68
33 0.045 0.384 1.018 1.004 31 28
34 0.0L4 0.388 1.018 1.006 ‘
35 0.042 0.383 1.017 1.004
36 0.380 ©1.017 1.005 '
37 0.393 1.017 1.006 0.001 v
38 0.439 1.020 1.009 0.003 29
39 0.459 1.022 1.009 0.003
40 0.428 1.020 1.002 0.004 v |
41 0.380 1.017 1.010 0.001 32 30
L2 0.588 1.030 1.002 0.006
L3 0.533 1.028 1.000 0.010
Ly 0.373 1.016 1.007 0.001
5 Y 0.561 1.032 1.000 0.032 . é

* .
For oxide fuel only group 45, which contains the largest (and hence

most heavily shielded) U-238 resonance is reported:

45 0.u4LY 0.304 1.311 . 0.916 ' 0.034 2l 19

See Table 3.8 for LIB-1IV group structure. \
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which, when substituted into Eg. (3.43), will yield:

het _ hom
f‘cg (T,04) = fcg (T,05") (4.2)
or
het . hom '
fcgh (9) = f,Cgh (9p") (4.3)
om om
fcg (oo) fcg (00)

where the explicit "T" dependence has been suppressed

for convenience.

Equation (4.3) is a éimple and accurate expression for most
fast reactor applications, with the proviso that the conditions
of Eq. (4.1) are satisfied.

Equation (4.2) is similar to the expression obtained using
the second equivalence theorem - namely Eqg. (3.47).

Additional simplifications are possible, and while not
ﬁeeded in order to apply the method, will prove useful for the
purpose of justifying the linear functional dependence shown in
Figs. 3.4 and 3.5. Recalling Eq. (3.9) and casting it in terms

of oo' gives:

hom(
cg

0,0) = (—BL 0 ) (4.3)

Ao, = 0. - ag," | (h. )

or:
o.' = 0o, - Ao (4.5)
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Substituting Eq. (4.5) into Eq. (4.3) yields:

" hom ' Ope + g, —Aoo 1/2 )
£, (05') = (n o v o = i) (4.6)
& tf pr © % T-°%
or
Ner ¥ % ¥ 9% T 8% Mgr of T %0 0
hence
2, Nerto,pt 9 Aoy -1 mgptopto, Aoy -l
£ (OO ) =0 o_.t0o T o, _.+0 ] [ Ao " Ao ]
pf 0 pf 0 0 0
(4.8)
and finally:
> : _ 1 AUO -1 1 Opf.'*'()'o -1 (4.9)
f‘(OO) pf 0 r (OO) 0

With a bit of stralghtforward algebra Eq. (4.9) can be

further reduced to obtain the following form:

‘ 0 _.to,~-Ac
oMoy =t M) [ —BL D

0.0 __4l/2 (4.10)
opf+oo—f (oO)AoO ;
or
~ o Ao, 1/2 o Ao, _
fhom(oo,) - fhom(oo) (l+—E£ _ __Q)’ (1+~E£,_ f2(o )__g)l/Z
00 OO 00 0 UO
' (4.11)

Next we have to expand the square root factors in Eqg. (4.11):

using the following expansions:
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02 =14 o BP0 x < (4.12)
(l+x)_'1/2 =1 - %x + %X2 + ..., x <1 (4.13)

Retaining only the first order quantities we obtain:

Ao o Ao
hom hom 1 pr 0 1, pf 2 0
b (00') = f (00)[14'5(‘6“‘“ - -’c;‘—' - E('—g‘— - f (OO)T)+...]

‘ 0 0 0 0

(4.14)
or
ehom (g 1y« ghomeg ypy o1 2% Ve2 (o)) (1.15)
o’ ° 0 2 "o, - % . y

Substituting Eq. (4.15) into Eg. (4.3) leads to the following

simple formula:

het
f (o.) Ao
0 1 0 hom 2
—_— =1 - = —{1 - [Ff (o.)3°Y (4.16)
fhom(oo) 2 9 0

which upon using Eq. (4.4), can be written:

het ot

(o 1 0 .\, 2
=1 - 5(1 - 36 )(1 - f (00)) (h.17)

£ o)

A hom
f (00)

Substituting the definitions of 9 and oo' from Chapter 3

into Eq. (4.17) yields:

het

4 (o.)
"Haa*‘g“ =1 - 1.940-1 f— (1 - f2(ao)) (4.18)
f (UO) 0+ 1+‘:nf

tm

>



123

Recall that our intention is to derive a simple approximate

expression serving the followlng purposes:

(1)

(2)

(3)

justifying thé linear functional dependence shown
in Figs. 3.4 and 3.5;

obtaining a simple and explicit function dependence
for the effect of moderation in the fuel (Qp);

obtaining an expression for fhet(co)/fhom(o

0)
identical to the one derived by Kadiroglu (K1)

through different arguments.

To fulfill the above we need to introduce several additional

approximations, such as:

(a)

(b)

(c)

assume that the optical thickness of the moderator
admixed with fuel is much less than that of the
a reasonable

coolant optical thickness: =« p << T

tn tm?

assumption;

assume that 6 = 1.0: this is not always true
especially when Qf is appreciable, nevertheless it
is frequently close to 1.0 - see Table 4.1, for
example;

assume the weak-absorption asymptotic 1limit, in the
sense of both low fuel and low coolant/moderator
optical thicknesses, hence Vf'z %Qm = %(I-Qf):

see Section 3.3.2 and Table 4.1.
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Using assumptions (a) and (b) Eg. (4.18) becomes:

fhet("o) 1 0 2
f (oo)
or
het -
£ (o,) Yo
00 oL LM 26 (4.20)
f,hom(O ) 2 147 T 0
0 YeTem

which is the expression used in Section 3.5.2. Finally, upon

applying assumption (c) to Ea. (4.20) one gets:

het

f (o.) Q
0y oL Emhmog | p204 ) (4.21)
fhom(0 ) 6 l+lr Q 0

0 3°tmm
or

het

f (o,) T, (1-Q,) :
'Tiii‘ll‘ =1 - % 1tm " - fz(oo)) (4.22)
f (00) l+§Ttm(1—Qf)

Equation (4.21) is identical to the expression derived by
Kadiroglu (K1) via basically different arguments. The strong
dependence on Qf is evident, as is the linear variation with
Tim for small Tem The absolute accufacy of Eg. (4.22) is not
especially good (it predicts ratios of 0.980 (metal) and 0.988
(oxide) for group 45, compared to the "exact" values of 0.941

and 0.989 in Table 4.4), however this is not a significant flaw

because heterogeneity i1s of such small consequence.
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4.3 SELF-SHIELDING FOR U;METAL—FUELED AND UO,-FUELED BLANKET

UNIT CELLS

2

As already noted, heterogeneity effects in an LMFBR are
expected to be most noticeable in the radial blanket, and of
particular impoftance with regard fo the spatial dependence of
U-238 capture reaction rates. In order to obtain quantitative
data on these and other'blanket related phenomena, a facility -
the Blanket Test Facility (BTF) - was constructed at M.I.T.
to irradiate mock—ubs of LMFBR blankets. This facility employs
a converter assembly to transform the highly thermalized |
neutrons from the reactor's thermal column into a spectrum
typical of LMFBR core leakage neutrons (F2, L1).

Two types of pin-cell assemblies have been studied in the
M.I.T. facility: metal-fueled square lattices, and a single
triangular-pitch UOZ-fueled sodium-cooled assembly which is
a very realistic simulation of a real LMFBR radial blanket
assembly. Thus heterogeneity calculations are of interest for
both metal and oxide-fueled unit cells. The geometrical details
of the assemblies and the means employed to match their homo-
genized nuclide compositions with those-of a realistic blanket
are discussed in Refs. (F2, L1). Data pertinent to the present
work are summarized in Tables 4.2 and L4.3.

Table 4.4 gives the calculated values of fhet(oo)/fhom(co),
obtained using Eg. (3.43), for various groups. As seen from

the magnitude of the results, the heterogeneity effects for



Table 4.2

Data Pertinent to U-Metal-Fueled Blanket Mockup Unit Cell
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Homogenized Atom Densities®*

Element , Atom Densities (nuclei/barn-cm)
Uranium-28 8.108 x 107°
Uranium-25 8.8 x 107°
Oxygen 1.6293 x 1077
Sodium ' 8.128 x 1073
Chromium ‘ b.064  x 1073
Iron , 1.375 x 107°
Hydrogen 7.3 x 1072
Carbon 9.6 x 1077

Cell Dimensions

e

= 0.318 (cm); rg= 0.351 (cm); r.1aq= 0-397 (cm);

I7coolant

=0.732 (cm)

Temperature

. DP=300°K

* atom densities are averaged over entire assembly.
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Table 4.3

Data Pertinent to Oxide-Fueled Blanket Unit Cell

Homogenized Atom Densities*

Element Atom Densities (nuclei/barn-cm)
Uranium-28 © 0.007043
Uraniuﬁ—25 ’ 0.000078
Oxygen ' é 6.0142U2
Sodium . “0.010740
Chromium . 0.001746
Iron 0.014639
Nickel 0.000696
Manganese 0.000228
Silicon 0.000180
Carbon | 0.000095

!

Cell Dimensions

rf=0.5u6(cm); rp=0.56ﬂ(cm); r =0.635(cm); =0.814(cm)

clad rcoolant

Temperature

T=300°K

i e - e 6t s o o

* 2 43 .
atom densities are averaged over entire assembly.
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Table 4.4 8

(o )/fhom(OO), Onhom het

het . , and g "°": Metal Fueled

*
Group Values for f

Blanket Mockup

fhet(oo) (present fhet(g )(present

G — model) - 0’ model) Ochom(U—238) ohet(U?238)
£ (OO) (Ea.3.43) f (OO)(EQ'M'22) ~ (barns) i,’,i(,barns)
26 0.972 0.985 0.821 0.798
27 0.948 ' 0.969 0.850 0.806
28 0.876 0.961 1.103 0.967
29 0.951 0.975 1.102 1.048
30 0.965 0.977 1.078 1.040
31 0.975 0.980 1.052 1.025
32 0.964 0.974 1.274 1.228
33 0.967 0.973 1.081 1.0L6
34 0.964 0.970 ‘ 1.125 1.084
35 0.963 0.970 1.006 0.968
36 0.963 0.972 0.951 . 0.915
37 | 0.952 0.968 0.664 - 0.632
38 ' 0.971 0.982 1.377 1.337
39 0.962 0.982 1.735 1.700
40 0.975 0.982 2.120 2.067
TSR 0.973 0.986 0.823 0.801
42 0.965 0.981 2.679 2.584
43 : 0.958 0.981 - h.923 4.718
Ny 0.991 0.999 | 0.589 0.584
W5 ©0.941 | 0.980 14.118 | 13.784

*
For the oxide fuel only group 45, which contains the largest (and hence
most heavily shielded)U-238 resonance is reported:

U5 0.989 | 0.988 12.887 12,742

See Table B.1 for LIB-TV group structure.



129

both the metal-fueled and the oxide-fueled cells are very small
indeed: 1less than the 10% uncertainty currently assigned to
UI-238 capture cross-section values in this enerpy range. Tor
the oxide fuel only group 45, which contains the largest (and
hence most: heavily shielded) U-238 resonance is reported. As
seen in the table, the heterogeneity correction for this group
(G=45) is only about 1.2% for the oxide case and about 6% for
the metal case; this, coupled with the fact that only about
0.015% of the blanket-averaged total neutron flux is in this
group, result in very small heterogeneity effects in this‘
assembly in pafticuiar and in fast reactors in general.

Since the metal and oxide fuel pins were selected to have
comparable optical thicknesses for U-238 capture, the difference
between their calculated heterogeneity effects (see Table L4.b4)
can be attributed to the presence of an appreciable slowing down

source in the UO, (for which Q_=0.444), whereas the source in

2 f
uranium metal is negligible. As can be seen in Eq. (4.22), as
Qp 1s increased fhet(oo)/fhom(oo) approaches 1.0.

4.4 DISCUSSION AND CONCLUSIONS

In this chapter heterogeneity effect for typical metal and
oxide-fueled unit cells employed in LMFBR blanket hockups
studied at M.I.T. were calculated using Eq. (3.43). The cells
were part of two distinct assemblies,each with homogeneous
nuclide compositions representative of a realistic LMFBR blanket,

3

and also very close to one another. There are several important
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‘observations which can be made based on the tabulated results:

(a) the approximate equivalence relation of Eg. (4.22)
shows in‘an explicit way the effect of moderation
in the fuel, through Qf, which acts to decrease
heterogeneous effects. This fact 1s easily over-
looked if one uses thermal reactor treatments which S
often implicitly assume that the source 1is entirely
in the coolant/moderator region.

(b) ‘the effects of heterogeneity are shown to be small.

(e¢) the difference in the heterogeneity correcticns for
metal and oxide-fueled assemblies is apparent;
however, it is shown in Ref. (K1) that this dif-
ference leads to no significant breeding gain.

Thus while it is conceptually more correct to use the

methods developed in the present work to correct for hetero- :
geneity in LMFBR's, the consequences of using even much

cruder models are not harmful.
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Chapter 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

This chapter is comprised of three parts as follows:
first a summary of the subject research will be given; next
conclusions pertinent to the work will be drawn; and finally,

suggestions for further work will be presentéd.

5.1 SUMMARY

5.1.1 Introduction

The purpose of this work is to explore and evaluate a new
approach to the problem of unit cell homogenization. Two
major needs motivated this work:

(a) The results of applying the conventional approach
, based on equivalence theory to the problem of

cell homogenization are still not satisfactory.
State of the art LWR computer methods, such as
LEOPARD, presently rely upon normalization to an
experimental base (L5).

(b) The common failure to consider the slowing down
source in the fuel in fast reactors is a demonstrably
incorreqt oversimplification.

The tasis for a new approach has been laid down by the

prior investigations of Gregory (Gl) and Kadiroglu (K1) at
M.I.T. The essential feature is the use of an analytic approxi-

mation for the ratio of spatially-averaged moderator to fuel
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fluxes in the expression for the equivalent homogenized cross-

section. A major contribution of the present work is the

devélopment of a generalized correlation for this flux ratio
(R = $m/$f),,by recourse to various methods such as integral
transport and collision probability theory. .The derived
relationship is valid over a broad range of fuel and moderafor
optical thicknesses. The final prescription for the flux
ratio has been checked against, and normalized to, numerical
calculations using the ANISN program (Al).

A linearized form of the flux ratio prescription is
developed and used in tHe expression for the eguivalent homo-
genized cross-section to yleld a new equivalence relation that
casts heterogeneous cross sections (fofvany physical process
of any isotope) at a given constant background cross-section,
9y in terms of the corresponding homogeneous cross-sections
evaluated at a modified: background cross-sectionyoo'. The new

equivalence relation, which is applicable to both fast and

thermal reactors, is the major achievement of this work.

5.1.2 Flux Ratio Calculations for Unit Cells

As noted in the introduction, the key to the approach
analyzed in the present work is the use of simple analytic
expressions for the ratio of coolant/moderator to fuel fluxes
which can accurately describeAthe region-average fluxes 1in

a cell. The proposed flux ratio model has the following form:
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o (E) - 1+ F(Taf’Tam’Tsf’Tsm)'Taf"Qm (5.1)
¢p(E) 1+ Pty TarsTomsTse) “Tam " Op
where
rx1(E) = ZX(E)Qi, the optical thickness for process Xx

in region 1
2. = mean Dirac penetration chord length through
region 1
L= Z ij macroscopic cross section summed over all j
%sotopes in the region i (fuel, f, or moderator, m)
Q_ = fraction of neutron source originating in the
moderator |
Qf = fraction of neutron source originating in the
fuel
The next task is to find an explicit functional form
for F in terms of the parameters shown in Eg. (5.1). It has
been shown (G1l), through the use of collision probability
methods, that, in the limit of weak scattering and 1ow‘absorp-
tion optical thicknesses for both the fuel and the moderator,
F (for cylihdrical unit cells) has the asymptotic value of
1/3. Similarly, it has been found (K1), through track length
arguments, that in the limit of strong fuel absorptioﬁ and -
weak moderator absorption (with weak scattering in both fuel
and moderator) F takes thé asymptotic value of 2/3. In the
present work it has been shown that for nearly black fuél and

moderator regions (still in the 1imit of weak scattering in
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both fuel and moderator) F takes the asymptotic value of 1.0.
Finally, we have also shown that for appreciable scattering in
both fuel and moderator, the functional dependence of F on

scattering optical thickness is of the form:

F e« (1 + w'Tsm)(l + w'TSf) (5.2)

where w' is a fitting ﬁarametef choseh to force agreement with
numerical results.

Using the foregoing results as guidelines, an analytical
expression for F has been developed to cover the intermediate
ranges of optical thicknesses. Numerous functions could be
used to smoothly join the various asymptotic limits; we have
chosen one that is both simple in form and which agrees quite
well With numerical results. This function has the following

general form:

n
Wt
l(1+ af ) + Wt n'
3 1471 am
= af , .
F(T psToms Toms Tor) T, = (Ttow't ) (1te't o)
wT
am
(5.3)

Noting the symmetry between the numerator and denominator of

Eq. (5.1) (the necessity of symmetry can be shown quite rigorous-
ly by use of integral transport theory and/or the governing
slowing down equations) the final form of the flux ratio

model will thus be:
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n
wT i
%(l+———§£—ﬁ)+wTamn
1+wTaf
L] ' ' L] L]
. 1+ o (I+e' 1 p) (1+ Tsm) Tar
= = (5.4)
¢ wT '
f %(1+-—§E—H)+wTafn
. 1+m‘raf . ‘
L] ! ' L] ®
1+ " 7 (l+w Tsm)(l+w Tsf) Tom® 9
WT,p
where w and w' are fitting parameters
S -
n and n' are positive powers to which Tar and Tam

are raised, respectively.

So far no mention has been made of resonance cross
sections, and the way in which the associated WR, IR, and NR
approximations are to be incorporated into the flux ratio
model. Here, we will only discuss, very briefly, the inter-
mediate resonance approximation (IR) since it incorporates the
wide resonance (WR) and narrow resonance (NR) limits. The
basis for the IR approximation (B2, G3, G4, G5, H3, L4, S3,
S4) is that it neither completely denies nor totally admits
the role of scattering for removing neutrons: absorption plus

a fraction of the scattering events remove neutrons from under

a resonance. The IR approximation is implemented through the
introduction of three new parameters A, Vv, p. For a resonance
absorber with no admixed moderator the removal cross section,

OP(E) becomes:

0.(E) 2 0.(E) = o, + Ao, - (5.5)



where )X determines the fraction of scattering events contri-
buting to removal.

Note that for X = 1:

of(E) = oaf(E) + asf(E) = otf(E) (5.6a)

which is the NR case; and for A = 0:

of(E) = caf(E) : (5.6Db)

which is the WR case.

Similar arguments hold for moderator admixed with fuel
and for moderator/coolant in the moderator/coolant region.

To implement the above ideas in conjunction with the flux
ratio model, it is convenient to introduce the following para-

meters, which greatly simplify the subsequent notation:

§p(B) = T p(E) + AT (B) + 1 (E) + vr__(E) (5.7)

anf

§,(E) = 1 (E) + ut__ | (5.8)
B(E) = 1+ w [(1-M)1 p(B) + (1-v)1_ .(E)] (5.9
p(E) =1+ w'(l-w)t (E) | (5.10)

ws " (E) .
Iy — L 7 94w ™ (E)
3 1+08 " (E) m

(E)

1 + wé
m
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ws_"(E) .
1+ D7+ ws " (E)
3 1+08_"(E) |
1 + mdf (E)
where

Tanf and Tonp 2re the absorption and scattering optical
thicknesses of the non-resonance material in the fuel.
The rest of the parameters are as previously defined.

Substituting Egs. (5.7) - (5.12),in'Eq. (5.4) there

results:
¢ (E) 1+ a.(E)B(E)p(E)Q_(E) ,
M~ = R(E) = £ o (5.13)
¢f(E) 1+ am(E)B(E)D(E)Qf(E)‘ '

which is the generalized form for the flux ratio taking into

account the (IR) parameters. Note that Eqg. (5.13) 1s a con-

\

tinuous function of energy; its discretization into energy

groups by defining group-averaged parameters is straightforward:

AU
1l + o $ )
m' "R - ngggpgg rgme

B Qp

(5.14)

: + §
g “ng”eeleemetre

Cylindrical and spherical unit cells share similar fuﬁc—
tional forms for the flux ratio model: only the values of
(n,n') and (w,w') are changed. The planar case, howevér,
required inélusion of an extra term (l+w'fn éL) multiplying

m

ng in Eq. (5.14), introduced here without proof (see Ref.(Z1)).
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Lastly, parameters (n,n') and (w,w') are found to have the
following values for the three Qnit cell configurations:
(1) cylindrical:
n=1.0 ; n' = 0.5

w = 0.24; w .06

]
o

(2) spherical:

n=0.53; n'" = 0.5

w 0.27; w' = 0.09

(3) planar:

n=1.0 ; n' = 0.5

w 0.15; w' = 0.03

5.1.3 Numerical Verification of the Unit Cell Model

In what follows we will be discussing numerical results

developed using the ANISN code, primarily employed in tﬁe
S8Pl option , comparing them with our predicted results. The
calculations are done for two-region unit cells with a white
boundary condition used for the outer region of the cylindrical
and spherical unit cells to minimize the effects of specular
reflections (N1).

| The dependence of the flux ratio on the magnitude of
the scattering and removal cross-sections in cylindrical unit
cells are shown in samples from an exténsive series of humerical
computations, summarized in Tables 5.1 and 5.2. As seen, the

results of the analytical model are within a maXimum discrepancy



Table 5.1

Numerical and Calculated Flux Ratios as a Function of Fuel
Optical Absorption Thickness
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“ar “am “sm Tt ; © éa?c. AN?SN
0.01181  0.00006 0.12992 0.60355 0.24 .06  1.004 1.005
0.42251 1.161 1.176
0.84482 1.345 1.360
1.26713 1.545 1.551
1.68944 1.760  1.750
2.1117 '1.985  1.954
2.53402 2.218 2.164
2.95619 2.459 2.380
3.37883 2.706 2.600
3.80095 2.958 2.825
b.22324 3.214 3.053
4.64556" 3.474 3.286
5.06787 3.737  3.521
5.49017 4.003 3.760
5.91248 4.271  4.002
8.02775 5.641 5.247
8.87278 6.198 5.757
9.71781 6.758 6.271

10.56285 7.322 6.789

28.16759 19.367 17.825

45.71309 31.528  28.859

63.37708 43.805 39.969
218.29797 151.698 137.360
373.21802 , 259.641 234.7T79
528.14229 367.9 4 332,206

6337711V ' v % | | s

Ve/V_ = 0.30122 r. = 0.3175 r = 0.6599
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Table 5.2

Numerical and Calculated Flux Ratios as a Function of Optlcal
Scattering Thlckness

‘af “am tsm - Ter ; “ cale.  awisN
1.00 1.8002°  0.1000 0.1000 0.24 0.06 1.551 1.463
1.00 1.8002 0.5001 0.1000 1.564 1.473
1.00 1.8002 2.50028  0.100 1.630 1.527
1.00 1.8002  50.0057 0.100 3.191 2.855
1.00 1.8002 0.5001 0.800 1.588 1.523
1.00 1.8002 0.5001 5.000 1.729 1.818
1.00 1.8002 0.5001  50.000 3.24L 3.711
1.00 1.8002 0.5001  99.9998 | & 4.926 L. 960

re = 0.3175 r. = 0.4490 \ /Vm =1



Numerical and Calculated Flux Ratios as a Function of
Source Distribution

Table 5.3
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far “am tsm Tsr /0 W ;aﬁc. AN?SN
2.5 1.20709  1.20709  0.13970 oo 8:32‘ 2.545  2.390
g:g 1.94  1.860

0-9 1.484  1.445

8:2 1118 1.109

0 0.820  0.832

{ ! ' ‘ g:g ! o573 0.59
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of 15%, and an average error of about 5%, of the ANISN results.
As shown in Table 5.3 the flux ratio model correctly predicts
the effects of source distribution; a property which 1is very
important in fast reactor calculations.

As a final note, it is important to point out that the
agreement betyeen the predicted and the numerical results could
be improved substantially, if desired, by a different choice
> of values for the fitting parameters (n,n') and (w,w') in the

range of maximum interest for a specific application.

5.1.4 Homogeneous Self-Shielding Factors

The discussion which follows immediately is confined to
homogeneous systems where the spatial and angular dependence
of the flux are suppreséed, and only the energy variable, E

s
is of concern. Homqgeneous self-shielding is discussed first
to introduce the basic éon;epts necessary for the later exten-
sion of the methodology to heterogeneous media.

The fundamental and physically meaningful assumption made
in most reactor physics calculations is conservation of total
reaction rate. 1In fact, it is through the utilization of the

above assumption that we shall define the group-averaged

homogeneous cross-section as:

J -3z J.
J, I (E)O(E)AVAE = = Jv ¢ (E)dVAE

v AEg ce11 AFE

cell

(5.15)
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where the quantity on the left of Eq. (5.15) is the true
reaction rate, "ngj" is the macroscoplic group-averaged cross
section for the particular process "x" of isotope "Jj", and
the double integral multiplying "ngj" is the true total flux
of neutrons in the energy range AEg (AEg is to be interpretéd
as a fine-width group containing only one resonance). The
appropriate weighting flux ¢(E) in Eg. (5.15) can be found
by solVing the slowing down equation for a uniform mixture of
infinite extent: |
o % dE'
[oo+otf(E,T)]¢(E,T,oo) = I TT:EET ¢(E')~ET +

E/af E :
Usf(E'aT) dEY .
fl—afi o(E") E! (5.16)

i ]

= — 5 I = constant moderator cross section
<<
(Zam Zsm) ,
N. = number of resonance absorber nuclei
per unit volume
- R
Ogqfs Oppo Opf resonance absorption, resonance
scattering, and potential scattering

cross-section, respectively, of the

resonance absorber

o p(E,T) opf(E,T) + 0

pf

otf(E,T) = oaf(E,T) + osf(E,T)
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:) 3 Aj being the ratio of the mass of

| isotope j to the mass of the neutron
Note that "moderator" in the above usage refers to all non-
resonance-absorber nucleil present. Using the NR approximation
for the mecderator and the IR approximation for the absorber
(GL4), leads to:

00 + Ao

, __pf
oaf(E,T) + Aosf(E,T) + 0

¢(E,T,0,) = (5.17)

|

0

where the source is normalized such that "¢= 1/E" will be

the off-resonance reference value for the flux per unit energy.
Upon substituting Eqg. (5.17) into Eq. (5.15), and specializing
to the U—238 capture cross-section as an important example,

one obtains:

o. + Ao

v 0 pf diE
o (E,T)+r0__(E,T)+0 Oc(E’T)TT
AEe %ar Sf 0
0, (T,00) Y - (5.18)
g J 90 * Mpp aE
AEg oaf(E,T)+AoSf(E,T)+00 E

Because 9, and o are essentially constant within AEg, they

pf

can be cancelled-out from the numerator and denominator of

Eq. (5.18) to give:

:‘oq(E?T) dE
Y (7o) - JbEe o, (E,T)+xoS(E,T)+oO E 5 10)
cg 07 [ﬁ ' 1 ~ dE ’
) A oaf(E,T)+AoS(E,T)+00 E
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which 1s the effective capture cross-section at temperature T

and constant background cross-section o If 9 in Eq. (5.19)

0"
approaches infinity, the following result will be obtained:

dE
© _ JAEg OC(E,T)i?
cg dE

AEg E

(5.20)

(0]

which is the definition of the infinite dilution cross-section.

For convénience one can represent the effective cross-
section given by Eq. (5.19), which is a function of both T and
Oy by an infiﬁite dilution cross-section and a-set of modifying
functions called self-shielding factors; or to put it quanti--
tatively:

00 (T500) = £ (T,00) 0 - (5.21)

Thus the complications involved in the integration over resonance
structure, as indicated by Eq. (5.19), are separated from the
calculation of the effective multigroup constants for a

specific material composition. Tables of f-factors are pre-
computed for the elastic, fission, capture, total, and transport

cross sections and for arbitrary sets of T and o, values (B3,

0

K6). The f-factors for any given T and o, can then be obtained

0
by interpolating in these tables. The f-factor can then be
multiplied by the proper infinite-dilution cross section to get
the required effective cross section, cxg(T,cO) as indicated

by Eq. (5.21). The success of the above approach, hbwever,

relies heavily on the availability of accurate schemes for both



146

temperature and 9, interpolation of the self-shielding factor,
fxg(T,oO). One expression used as a fitting function (XK4)
for the self-shielding factor as a function of T4 at a fixed

temperature T, is:
fcg(oo) = A tanhB(lnoO + C) +D (5.22)

where A, B, C, and D are constants determined bv four values
of fCg at given 9 values. As for temperature interpolation
at a fixed Oy @ Lagrange-three-point interpolation scheme
predicts, very accurately, the shielding factors for any
current temperature, T.

Figures 5.1 and 5.2 (from Ref. (KU4)) show the self-
shielding factor for group 14 (86.5-111 Kev) of U-238 as a
function of 9, and T, respectively. As seen, the results
predicted by the aforementioned interpolation schemes (shown
by the solid line) are in excellent agreement with the actual
self-shielding represented by the dark circles. This con-
cludes the discussion of homogeneous self-shielding, hopefully
adequate to lay the groundwork for the introduction of
heterogeneous self-shielding factors. For more complete
expositions on the subject of homogeneous self-shielding the
following references are recommended: B2, Gl, K1, K4, K6,

S6, S7.
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5.1.5 Heterogéneous Self-Shielding Factors

At this point almost all the groundwork necessary for

re Zog Pggrite

etc.), which are constant over the entire volume occupied by

generating "equivalent" group parameters, (V&

any given cell in a reactor, has been developed. The group
cbnstants generated should, when used in a group-diffusion-
theory calculation for the whole reactor, reproduce the same
average reaction rates over a given cell as would be determined
if an exact energy dependent transport calculation was per-
formed for a heterogeneous reactor with all geometrical
characteristics of the unit cells treated explicitly.

An appropriate starting point is with fhe definition of
an equilvalent homogenized capture cross-section specialized
to a two-region unit cell:

J de dE £ J(r,E,T)¢(r,E)
i AEg ¢ '

cell '
s av aE ¢(r,E) = |

Vcell AEg

Ce

If the resonance absorber, j, is present only in the

fuel region; then Eg. (5.23) can be expanded to yield the

following form:

% (E,T)¢.(E)AE
) JAEg cf f
cg \Y -

fAEg (1438 R(E) 3, (E)aE

(5.2M)l
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where

<+

¢, (E) o e(zL,ENav (5.25)

</

$.(E) “¢(3,E)dv (5.26)

v
To be able to solve Eg. (5.24) both R(E) and $f(E) must

be knqwn. An expression for the flux ratio R(E) hes already

been derived in Sectiﬁn 5.1.2; as for the spatially averaged

fuel flux Ef(E), one can write down the equivalent of Eq. (5.16)

for each region of the assumed two-region unit cell, and solve

the pair of relations to find:

5 (5) = VmZsm * Velsne * Verioe
£

V[ (E)tar_.(E)+r, (BE)J+V z. (E)R(E) L (5.o7)
£f-"af*” sf tnf " m*tm E

Although expressions for R(E) and Ef(E) have been obtained,
the problem is still intractable unless plausible simplifications
are introduced into Eq. (5.13); the following are to be

implemented:
(a) Linearization of the expression for R(E), by using

group-averaged values for the values of 1 appearing

in a a_,B, p. Numerical studies confirm that this

f,

is an acceptable device. Thus the numerator of

m’

Eq. (5.13) becomes [1+yf6f(E)], with Yf=uprQm
evaluated at group-averaged values for the t involved.

In like manner the denominator of Eag. (5.13) will
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take the similar form [1+7&6m(E)]. As will shortly
become cleaf, such linearization is apparently a
sufficient and»necessary condition for the existence
of an equivalence theorem.

(b) Ztm(E) and I (E) are very weakly dependent on

tnf
energy, especlally within the range of energy covered
by a typical group width. Hence we caﬁ treat 6m(E)
as constant over AEg. This last assumption in con-
Junction with the one made in part (a) immediately
implies that the denominator of Eq. (5.13) can be
taken as constant, and it shall henceforth be

denoted by 6.

Based on assumptions (a) and (b), Egq. (5.13) can now be

written in a more manageable form:
! 7 |

where 06 and Vf are as previously defined.

Substituting Eqs. (5.27) and (5.28) into Eq. (5.24), the

following is obtained:

f .
(V2 Vel et VeAZ o) <L o (E,T) dE

J Iy E
AEg szaf(E’T)+VfAZSf(E’T)+sztnf+vm2tm9[1+Yf6f(E’T)]

z
cg

r

i
m 1 —
VZsmtVeZgnet VAl p) {1+V; glltypdp(E,T) 1}

, 1. .=
AEg VfZaf(E,T)+VfAZSf(E,T)+Vf2tnf+vm2tm§[1+Yf5f(E,T)]
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By performing'some simple algebra on the above eqguation, it

follows that:

I Gcf dE
+ 0
Ve . - AEg Car t A9gp * 0" E
cg \Y %
cell m 1 tnf
1+___ _+€"'O— +€'|'0 +€"V)\O- +€'Y'
V. ® cf £r sf Ne ag
E
\i
AEg 9ar T A0gp t 9
(5.30)
where
T, T
o, = Ly 1 tm | (5.31)
Ne O+ypd, Np

with the bars denoting volume-weighted homogenization

YeNp . Le

D+

8"'

. off = the resonance absorber fission cross-section

The rest of the parameters are as previously defined.
By inverting Eq. (5.30) and using the definition of the
effective homogeneous cross-section, namely Eg. (5.19), one

can show the following rigorous result:

hom
) = ——=<E
n

n + ¢ ch

%) (5.32)
.3
hom(T,od)

G het(

og T,0

0
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where
v \) _
n = o f + %V m + E"Of hom(T,GO')"" encs hom(T,UO')
cell cell =
+ £ Vm T
6 VCell tng
\Y
e" = f g
Vcell
hom_ i
ch = group-averaged homogeneous capture cross-section
ofghom= group-averaged homogeneous fission cross-section
Osgh0m= group-averaged homogeneous elastic scattering cross
section
chhet= group-averaged "homogenized" capture cross-section
Ztng= total non-resonance cross-section in the fuel region

for group g

It is important to note that Eq. (5.32) predicts the

correct homogenized cross-section under any condition so long

as the homogeneous part (i.e. o hOm(T,oo')) is treated cor-

cg
rectly elsewhere in the literature.
Recalling Eq. (5.21) for the definition of the self-
shielding factor, and applying it to Eq. (5.32), leads to the
following important expréssion: |
) 1 £ hom

£

het ' .
cg (T,04) = nr € feg (T,oo) (5-33)
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' fhom

where £ = ¢ (T,0").

0

Equation (5.33) and its accompanying prescriptions
constitute a ﬁew Equivalence Relationship, whereby the
corresponding f-factor for the heterogeneous cell is expressed
in terms of the f-factor for a homogeneous cell evaluated at
a modified value of the constant background cross-section -
namely oo'.

Finally, it is worthwhile to present a brief review of
what we will call the "conventional" methods used hitherto
and compare their results with those of the present method -
i.e. Eq. (5.33). Conventionally, one uses the second egui-
valence theorem to make the heterogeneity correction. The
statement of the theorem is as follows (H1l, L4): a heterogeneous

system will have the same resonance integral as a homogeneous

systems evaluated at:

z z
0" = =t i SaTs T =t T — (5.34)
N, £le N, 1+t W,

where ¢ is the Dancoff-Ginsberg factor given by:

T
l-c = — M , in Bell's approximation (B1) (5.35)

1
1+§Ttm

The parameter "a" is known as the Levine correction factor
(L2). It has been found that a value of % =~ 0.79 yields
~accurate results over the entire range of practical lump sizes.
Note that the 00' defined in Eg. (5.34) differs from that in

Eq. (5.31).
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Applying the theorem to Eq. (5.19) yields the following

conventional result in terms of the f-factors:

£ het(T,o

_ f.hom
cg

o) = OM(T,0,") (5.35)

Upon comparing Egs. (5.33) and (5.36) we immediately note

that the factor has been set equal to 1.0 in the con-

1
n + ¢
ventional method. This discrepancy raises questions as to
the validity of the second equivalence theorem as applied to

cross-sections but not to resonance integrals. The difficulty

stems from the fact that the true integrated heterogeneous
flux, as given by the denominator of Eq. (5.23), has in the
conventional approach been replaced by a homogeneous flux
evaluated at OO' in the denominator of Eq. (5.19), thus leading
to the present disparity. The modified total background cross
section, however, is smaller than 00' in Eq. (5.31), which
helps cancel part of this discrepancy.

5.1.6 Numerical Verification of Self-Shielding Factors

In the present section homogeneous-to-heterogeneous
corrections are calculated with the new equivalence theorem,
- and the results compared to equivalent output from the LEOPARD
code (L5), a state-of-the-art LWR unit cell program. The
base-case unit cell data used in both calculations is repre-
sentative of current commercial PWR reactors (speéifically,

Maine Yankee). The EPRI version of LEOPARD was employed,
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together with its ENDF/B IV derived cross-section library.
For the self—shielding—féctor method, cross-sections and

f-factors as a function of o, were taken from the LIB-IV

0
fast reactor cross-section sét developed by LASL (also derived
from the ENDF/B IV iibrary).

Figure 5.3 is a plot of homogenéous broad group capture
cross—-sections bchom) for U-238 as a function of moderator
optical thickness (Ttm), with the fuel diameter kept constant.

The broad group cross section 1s defined by a 1/E—Weighted

group collapse:

GPU4Q 49
o, = 1 o,/ av, (5.37)
GP26 26

where groups 26 through L9 épan the energy range from 0.6826 ev
to 5.53 Kev; As 1s evident from the figure the capture cross-
sections obtained using self-shielding factors are in good
agreement with the corresponding parameters generated using
LEOPARD. Depending on one's point of view this either validates
the f-factor formalism, LEOPARD, or both. Table 5.4 contains
the tabulated reéults of Fig. 5.3, including percentace
differences. |

In Fig. 5.4 the analytic and the LEOPARD results for the
ratio of heterogeneous—to—homogeneous self-shielding factors

[fhet

(00)/fhom(00)] as a function of moderator optical thick-
ness (at constant fuel pin diameter) are shown. The agreement

shown between the two results is tolerably good (particularly
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Table 5.4

Tabulated Results Applicable to Fig. 5.3
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A}

hom

loderator Optical c (barns) hom
Thickness ¢ : 9 (barns) A%
analytical, using f-factor LEOPARD percent
formalism difference
0.361 2.218 2.088 +€.2
0.663 2.591 2.565 +1.0
1.354 3.336 - 3.410 -2.2
1.965 3.883 3.962 -2.0
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Table 5.5

Tabulated Results Applicable to Fig. 5.4

het het

L (OO) f, (GO)
Moderator Optical TN — e A%
Thickness £, (GO) o om(oo)
present model LEOPARD percent
(Eq. 5.33) difference
0.361 0.865 0.857 +0.9
0.663 0.784 0.782 ' +0.3
1.354 0.653 0.653 0.0
1.965 0.551 0.587 -6.5
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for the point closest to current PWR designs); also note that
the results fall very nearly on a straight 1line. This observa-
tion can be confirmed analytically by an appropriate simplifi-
cation of Eq. (5.33). The data plotted in Fig. 5.4 are listed
in Table 5.5, again with percentage differences shown: the
agreement between the present model and LEOPARD 1s excellent
for all but the thickest moderator case.

Table 5.6 contains the data for the U-238 broad group
heterogeneous capture cross-sections evaluated at various
moderator optical thicknesses and at a fixed fuel pih diameter.
As seeh from the table, the two central points agree within
2%, and the end points within 8%: these data are plotted in
Fig. 5.5. The important point to note here is the approach
of the curve to an asymptotic limit as the moderator thickness
increases, the reason being that as the moderator optical
thickness increases, the results approach the isolated lump
limit.

Finally, Table 5.7 gives the calculated values for

het hom

(r (00)/f (oo)] for various groupns of two typical fast
reactor pin-cell assemblies (metal-fueled and oxide-fueled)
that have been studied in the M.I.T. Blanket Test Facility (BTF).
(The blanket is of particular interest here because the dla-
meter of radial blanket fuel pins may be as much as twice

that of the core fuel pins, and the ambient neutron spectrum

is softer than that of the core - both of which circumstances

accentuate the effects of heterogeneity). As seen from the
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Table 5.6

Tabulated Results Applicable to Fig. 5.5

Moderator Optical o] het {(barns) o het(barns) A%
Thickness ¢ ¢
present model LEOPARD _percent
(Eq. 5.33) difference

0.361 1.919 1.790 +7.2
0.663 2.032 2.005 ' +1.3
1.354 2.180 2.228 -2.2
1.965 2.141 ' 2.326 -8.6




3
Group Values for fhet

Table 5.7
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(00)/fhom(00), Ochom, and ochet:

Metal Fueled Blanket Mockup

fhet(oo) (present

G — model) 5 hom(U_238) ochet(U—238)

' f (og) (Eq.5.33) (barns) (barns)
26 0.972 0.821 0.798
29 - 0.951 1.102 1.048
32 | 0.964 1.274 1.228
35 0.963 1.006 0.968
38 0.971 1.377 1.337
Lo : 0.975 2.120 2.067
43 © 0.958 4,923 4,718
h5 0.941 14.118 13.284

For the oxide fuel only group 45, which contains the largest

(and hence most heavily shielded) U-238

45 0.989

12.

887

resonance 1is reported:

12.742

See Table 3.8 for LIB-IV group structure.
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magnitude of the results, the heterogeneity effects for both

the metal-fueled and the oxide-fueled cells are very small
indeed: 1less than the 10% uncerfainty currently assigned to
U-238 capture cross-section values in this energy range.
Nevertheless the effect of internal moderation in the oxide
fuel can be observed in the form of a self-shielding factor,
'y which is much cldser to 1.0.

In conclusion, although the present and the conventional

equivalence relations differ by the factor actual

1
n+e’
numerical results agree reasonably well. This is because, as
previously noted, the oo' given by Eq. (5.34) is considerably
lower than the gO' given by Eg. (5.31), because the Levine
factor, 1/a, taken here as 1/a= 0.79 is considerably higher
than the corresponding parameter §f in the present model,
which has an average value of 0.50 for the base-case PWR unit
cell studied in this report (note that 6, appearing in Eq.
(5.31), is approximately 1.0 for the case of thermal reactors,
hence it is not responsible for the discrepancy). The lower

'

9, used in the conventional model results in a smaller value

of f, which heips to partly offset the omission of a (nte)

term.

5.1.7 A Comparison Between the Conventional and the Present

Dancoff Factor and Escape Probability Expressions

In this section expressions for the Dancoff factor and

the fuel escape probability obtained by comparing the various
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results of the present method with the corresponding conven-
tional results will be reviewed. Before getting into the
algebra, some simplifying assumptions are introduced, which
are not to be taken as limiting approximations, however:

(a) Impose the NR approximation. Therefore, strictly
speaking, all the results obtained in this section
are for the NR case. Results for the WR and IR
cases-~are obtainable by exactly the same methods.

(b) Consider only thermal reactors, where the slowing
down source 1is 1in the moderator, hence Qf=0 and

=1,

Using the above assumptions and comparing (as before)

Egs. (5.31) and (5.34) we get:

- @————11 | (5.38)

1 + ?thm 1+ =1

which says that ;f corresponds to %, thus leading to an

expression for the Dancoff correction factor: given by
Eq. (5.35) with the only change being the replacement of %
by ?f'
; Tem ,
1-¢ = ————— present method (5.39)
Lt YeTey

The next task 1s to find a corresponding expression for
the escape probability, Pf(E). It can be shown, using the

slowing-down equations pertinent to a two-region unit cell that:
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(E) (E)

sf tf

— — p
3 (E) Gy Y ey PR
- = R(E) = (E) T (E) (5.40)
¢f(E) 1+ (___.(___y -1)(1- ——————Z—-T) P (E)
(I) 1in the asymptotic regiog Tsf(E) * Tor 2 th(E)’
which when substituted in Eq. (5.40) results in
R(E) = 1, as to be expected.
(II) 1in the resonance region where Tep > Tgop (black fuel)
one obtains:
E)
1 Tepl
R(E) = - ' (5.41)
Pf(E) Ttm(E) .

Conventionally, the fully rational approximation for Pf(E) is:

P.(E) = i (5.42)
1+=1

a tm -

Ttm tf

1 +
Substituting Eq. (5.42) into Eq. (5.41) gives:
- 1 "
R(E) = 1 + % 1 (E) (5.43)

which has exactly the same form as predicted by our results -

namely:

Upon comparing Egs. (5.43) and (5.44) wé note, once again:

1 = . (5.45)
a © Yf
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Using the above relation (Eq. (5.45)), and working backward,

the following expression for Pf(E) is obtained:

I
P.(E) = — ’ (5.46)
1+y.1
Ttm

Equation (5.46) is the analog of Eq. (5.42). The above
encouraging results encburage confidence in the present method.

Figure 5. 6 shows a plot of the Dancoff correction obtained
in Ref. (L3) using the.MOCUP Monte Carlo program. The Monte
Carlo program computation was performed on a two-region "sauare
pin cell" of high fuel cross-section and with Vm/Vf = 1. As
can be seen, the present analytical results are in as good
agreement with the Monte Carlo computations as are the results
of the analytical model proposed in Ref. (L3); with the excep-
tion that the present model is considerably simpler than the
model proposed in the reference. Both models, however, are
obtained assuming unit cell cylindricalization; as a result,
they do not distinguish between square and hexagonal cells.
Finally, the results of the two models are about 3% higher
than the corresponding Monte Carlo computations.

One should not conclude from the above comparisons that
the present work merely validates prior methodology: the
results include previous work as limiting cases, but are more

general.
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5.2 CONCLUSIONS

Based upon the work reported here the following conclusions

are substantiated:

(1) A new and easily applied equivalence theorem,
applicable to both fast and thermal reactors, has
been developed.

(2) The present method handles cases not easily dealt
with conventionally - e.g. when fuel moderation
is not negligiblevcompared to that of the coolant.

(3) The effects of heterogeneity in fast reactors are
shown to be small: 1less than the uncertainty
currently assigned to U-238 capture cross-section

values.

5.3 RECOMMENDATIONS FOR FUTURE WORK

The following topics are envisioned as natural extensions

of the present work:

(1) Treating mixtures containing more than one resonance
absorber - i.e. accounting for the effects of
resonance overlap (FL, S9).

(2) Dealing with cases in which cell leakage is per-
mitted (perhaps by inclusion of a DB2 term).

(3) Adapting the flux-ratio methodology to the thermal
and fast energy region: for example as a flux group
module in rapid versions of codes such as THERMOS (H5)

or UNCOL and HEETR (W2).
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(4) Utilizing the method to treat larger cells,
such as (homogénized) core surrounding a control
absorber or a reactivity sample in a critical
facility.

" In the above areas some additional theoretical develop-
ments are called for. However, it should be possible to
adapt fast reactor processing codes to utilize thé equivalence
theorem proposed here without further ado, and to then use
dhese codes for LWR calculations. Thisvstep is recommended
as are further checks against LEOPARD, including eigenvalue
and reaction rate comparisons, as well as comparisons Qith
egperimental benchmark data. All the above activities appear

to be feasible extensions of what has been accomplished so

far.
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Appendix A

MEAN ESCAPE CHORD LENGTH CALCULATIONS

A.1 INTRODUCTION

To be able to solve for the fuel and the moderator fluxes
of a particular unit cell, using either track length arguments
or escape probability methods, one needs to know the appro-
priate escape chord lengths (to be distinguished from the
familiar Dirac penetration chord, £, = 4V/S). Therefore, in

P
this appendix the escape chord lengths of the spherical and

planar unit cells will be derived. Gregory has previously
derived the cylindrical case (Gl). The fundamental assumptions
used in the calculation are:
(a) Dboth the spherical and the planar cells are to be
treated as transparent media;
(b) the internal source, in both cells, is taken to be

uniform and isotropic.

A.2 SPHERICAL ESCAPE CHORD LENGTH

Figure A.1l pictufés the situation for aﬁ isotropic source
at point S inside the shell of a transparent sphere, emitting
neutrons along the escape chord length £ described by the
angle of inclination 6, Averaging all possible escape paths
originating at point S over all solid angles gives the mean
"local" escape chord length; integrating over all radii gives

the mean escape chord for the entire population of neutrons.
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A.2 ESCAPE CHORD LENGTH FROM TRANSPARENT SLAB

1'r3



174

From the law of cosines:
) 1/2
g = (rzcos26 + R2 - r2)

- - rcosh (A.1)

The mean chord length is defined as:

ffle(r,Q)S(r)drdQ

L = S (A.2)
€ /38 (r)drdQ

jor for the case of uniform source distribution:

7 = .a(Py2.,r dcosb

A [ERELRIeOR (A.3)
6=m r=

where

3(%)2d(§) a (normalized) source strength at r

and

dcgse = so0lid angle

Substituting x = % and p = cos8 in Eq. (A.3) we get:

[ [(x2u2+l - x2)1/2 - xu]xgdxdu (A. 1)

T, = 38 [< + 25 () 1x3ax (A.5)



175
Next integrating over x gives:

1 1 1
Ee = %R{% + [J xan(1l+x)dx -~ J x32n(1+x)dx - I x2n(1l-x)dx
0 . 0 . 0 :
1 ‘ ‘
+ J x3en(1-x)ax7 } (A.6)
0

¥
By using tables of integrals, one can easily show that:

R ' o (A.7)

=l

le =

A.3 PLANAR ESCAPE CHORD LENGTH

Figure A.2 pictures the situation'for an isotropic source
at point S inside a transparent slab. Recognizing that half
of the neutrons go to the right and half to the left ahd that
each neutron penetrates the slab on its right or left, the
planar escape chord length is just the weighted sum of pene-

tration chord lengths for escape to the left and to the right:

— 1 1 _ -
L, =5 28 + 5 2(t=§) = &£+t - £ = ¢  (A.8)

I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and

Products, Academic Press, New York (1965).
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Appendix B

TABULATED RESULTS, SUBSIDIARY DERIVIATIONS, DISCUSSIONS,
AND NUMERICAL EXAMPLES

B.1 INTRODUCTION

This appendix 1is comprised of three main parts: the

first includes extensive tabulated numerical results used to

¥ validate the flux ratio model, for the three different types

of (two-region) unit celis - namely, cylindrical, slab, and
spherical. Note that all calculations, except where noted,
apply to cases in which all of the neutron source is in the
moderator region - i.e., Qf=0 and 6=1. Next a simple pre-
scription for aclad/gfuel is derived and checked against
numerical calculations. Finally, a brief discussion concerning
the observed discrepanéy between the results obtained from

LEOPARD and those obtained with the present method is given.

B.2 VARIOUS TABULATED RESULTS

Tables B. 1 throughiB.éS summarize the calculated results
used to‘test the flux ratio model for slab, cylindrical and
spherical unit cells. The results are reproduced in their
entirety here as they may prove useful for others who may be
motivated to'improve upon the functions chosen to represent R
in the present work, or to adjust parameters to obtain better

agreement over a more limited range.
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In the follow&ng tables:

(a) Qf=0 except where noted;

(b) "Numerical" results are calculated using the ANISN
program in the 88P1 option and white outer boundary
conditions;

(c) "Calculated" results refer to Eq.(2.90)of Chapter 2;

(d) The fuel and moderator optical thickness are varied
as shown: the nomenclature of Section 2.7.1

of Chapter 2 applies.

B.3 CLAD (INTERFACE) FLUX RATTIO PRESCRIPTION

In the present work it was quite acceptable to homogenize
the clad with the coolant. In other applications this may
not be so. We summarize here an approximate method for
treating the clad explicitly (as an infinitesimally thin
region between fuel and coolant).

In this section an approximate expression is derived for
the ratio of the spatially-averaged flux in the clad to that
in the fuel. Note that most of the arguments used in this
section are exactly the same as those used in Chapter 2, hence
the development can be abbreviated.

Consider a three-region cylindrical unit cell with the clad

as the middle region; then if we assume that Taf+w we have:
3 . Fe1aa o Peiag (B.1)
clad VClad 2nrf't
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Flux Ratios for a TwO—f‘{egion Cylindrical Unit Cell

‘af Tam Tsm st N W ca?c. AN?SN
0.00356 0.00019 0.43132 0.1818  0.24  0.06 1.001 1.001
0.12727 | | 1.046  1.053
0.25448 1.094  1.109
0.38168 1.144 dl'l68
0.50889 1.196 *1.229
0.63609 1.250 1.292
0.7633 1.306  1.357
0.8905 1.364  1.425

1.01771 1.423  1.493
1.14492 1.483  1.493
1.27212 1.545  1.636
1.39933 1.605 1.710
1.52654 1.672  1.785
1.65374 1.737  1.862
1.78095 1.803  1.941
1.90904 1.871 2.020
2.16358 2.008 2.182
2. 41811 2.147  2.349
2.67265 2.290  2.520
2.92719 2.435  2.695
3.18173 2.582  2.872
8.u48462 5.913 6.854

13.76966 9.434 10.930

19.09039 13.042 15.044

65.75552 45.187 51.278

112.42040 l 77.469 87.165
159.08655 1 Rl Y Y 109.772 123.9 14
JV_ = 0.30122 r. = 0.3175 r_ = 0.6599



Table B.?2

Flux Ratios for a Two-Region Cylindrical Unit Cell
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Taf Tam sm st ' came.  ANISN
0.00559  0.01181  0.60355 0.28569 0.2k 0.03 1.002  1.009
0.19999  0.422521 1.092  1.231
0.39989  0.84483 1.201 1.372
1.39936  3.00132 1.868  1.958
1.59926  3.37865 2.014  2.083
1.79915 3.80096 2.165 2.213
1.99905  4.22327 2.319  2.348

29.99918 63.37738 28.556  29.116
103.33038 218.29901 101.612 100.889
176.66081 373.21979 175.931 172.210
249.99315 528.1448 \ ] \j i 250.786 244.553

Vo/V = 0.30122 = 0.3175 r 0.6599



Table B.3

Flux Ratios for a Two-Region Cylindrical Unit Cell

100U

R R
Tar Tam calc. ANISN
0.08479 0.28569 0.60355 0.28569 0.24 1.037 1.002
0.19999  0.42252 ‘ 1.092 1.089
0.39989 0.84483 1.201 1.187
0.59979  1.26713 1.321 1.293
0.79969 1.689.44 1.4L49 1.405
0.99957 2.11171 1.583 1.524
1.79915  3.80096 2.165 2.059
1.99905  4.2236 2.319 2.206
12.19895  4.64558 2.475 2.357
2.39885  5.0679 2.634 2.513
2.59874  5.49019 2.795 2.673
2.79864  5.91251 2.957 2.673
2.99992  6.33774 3.123 3.004
4.99986 10.5629 4,834 4,796
13.3329  28.16772 12.502  12.847
21.63807 45.71331 20.439  20.950
29.99918 63.37738 28.556  29.115
103.33038 218.29901 101.612 101.385
176.66081 373.21979 175.931 172.710




Flux Ratios for

Table B.U
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a Two-Region Cylindrical Unit Cell

‘ar tam Fsm ‘st o ca?c. AN?SN
0.11214  0.03425  2.28766  0.15844 .24 .06 1.048 1.050
0.11214  0.07148  4.77467  0.15844 1.056 1.060
0.17493  0.02195 1.46645  0.24717 1.071 1.088
0.36511  0.02195 1.46645 0.51588 1.157 1.194
1.6820L  0.02195  1.46645  2.37666 1.938 2.047
0.17621  0.08838  0.55984  0.24898 1.067 1.069
0.17621  0.01397 0.93309  0.24898 1.069 1.072
0.17621  0.04191  2.79959  0.24898 1.079 1.086
0.10571  0.01397  0.9332 0.14937 1.041 1.046
0.17619  0.01397  0.9332 0.24896 1.069 1.079
0.52864  0.01397 0.9332 0.74695 1.226 1.259
0.17621  0.02179 0.45579  0.24898 1.072 1.076
0.17621 0.04549 3.03843 0.24898 1.080 1.087
0.17621  0.20956 13.99794  0.24898 1.135 1.122
0.27489  0.01397  0.9332 0.38841 1.110 1.126
0.57374  0.01397  0.9332 0.81067 1.248 1.284
2.64320  0.01397  0.9332 0.39210 v 2.364 2.591




Table

B.5

1oz

Flux Ratios for a Two-Region Cylindrical Unit Cell

‘ar Tam Tsm st . W' ca?c. AN?SN
0.2 0.015 1.5 0.500 0.24 .06 1.082 1.095
0.2 0.015 1.5 0.005 1.080 1.087
0.2 0.015 1.5 0.7500 1.084 1.099
0.2 0.015 1.5 2.000 1.090 1.110
0.2 0.015 1.5 0.3000 1.081 1.091
0.2 0.0015 1.5 0.5000 1.080 1.095
_ 0.2 0.600 1.5 0.5000 1.101 1.097
0.005 0.600 1.5 0.5000 | 4 1.002 1.002
- V/V = 0.3333 = 0.5 r 1

|
|




Table

B.6
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Flux Ratios as a Function of Source Distribution for a

Two-Repgion Cylindrical Unit Cell

Tar am Tsm Tsr Qm/Qf w/w! ca};c. AN?SN
0.35 1.20709  1.20709  0.13970 "¢ 8:32 1.187  1.155
8:2 1.021  1.015

8:? 0.888  0.900

8:2 0.780  0.804

J-2 0.690  0.722

' ‘ ‘ 218 ] 0.614 0.652

V/V = 1.0001 r, = 0.3175 r = 0.4490



Table B.T7
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Flux Ratios as a Function of Source Distribution for a

Two-Region Cylindrical Unit Cell

af Tam Tsm Tsr Qm/Q w/w! ca?c. AN?SN
0.50 1.20709  1.20709  0.13970 -0 gg 1.271 1.226
°-9 1.078  1.065

8:§ 0.924  0.932

g:g 0.799  0.821

0 0.695  0.727

) 0.9 ' 0.608  0.647




Table R.8

Flux Ratios as a Function of Source Distribution for a
Two-Region Cylindrical Unit Cell

T T T T Q./Q w/w' R R
af am sm sf m’ ~f calc. ANTISN
1.0 2l
49.99996 1.20709  1.20709  0.13970 g 06 39.711  38.805

0.8
0o »26.557 267“35
0.6
0l 17.211 17.356
0.4
o ¢ 10.230  10.420
0.2
0.8 L,816 4,949
0.0

) \ ] J 10 0.495 0.521
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Table B.9

Flux Ratios for a Two-Region Planar Unit Cell

‘af fam Tsm Tt ° o ca?c. AN?SN
0.01118  0.00767  0.39212 . 0.57137  0.15 0.03 1.004 1.000
0.39999  0.2745 0.15 0.03 1.140 1.121
0.79978  0.54887 \ 0.15 0.03 1.311 1.305
1.59937  1.0976 0.15 0.03 1.729 1.764
2.39893  1.64631 0.16 0.03  2.261 2.279
3.18582  2.19504 0.15 0.03 2.776 2.835
3.9981 2.74377 0.15 0.03 3.385 3.429
4.79769  3.29252 ‘ 0.15 0.03  4.o021 4.059
5.59227  3.84125 0.15 0.03  L.680 y.721
6.79981  L.66651 0.15 0.03 5.720 5.763
8.39977  5.76451 0.15 0.03  7.153 7.216
9.99973 6.86252 0.15 0.03 8.629 8.717

43.27614 29.69909 0.15 0.03 41.318  41.325
206.66075 14182482 0.15 0.03 198.647 201.931
499.9863 1343.125899 V¥ ] 0.19 0.03 488.521 490.321

Vf/Vm 2 0.92728 ro = 0.3175 rn 0.6599



Flux Ratios for a Two-Region Planar Unit Cell

Table B.10
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T T T T w' R R
£

a am sm sf calc. ANISN
0.37498 0.00008  0.9996 0.12500  0.12 0.03 1.143 1.146
0.99997  0.00008  2.00822  0.99997  0.15 0.03 1.543 1.546
3.5999 0.00008  4.00008 0.39999 0.13 0.03 3..435 3.464
3.5999 0.00008 20.00068 0.39999 0.13 0.03 6.767 6.884
0.99997 0.00008 10.00033 8.99975  0.11 0.02 2.365 2.309

V./V_ = 0.9273 = 0.3175 r = 0.6599



Table B.11
\

Flux Ratios for a Two-Region Planar Unit Cell
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‘af Tam Tsm . st v w' canc.  ANISH
0.62975 0.00008 0.17832  0.57137 0.15 0.03 1.245 1.231
1.19958 0.15 0.03 1.494 1.408
1.59937 0.15 0.03 1.683 1.610
1.99913 0.15 0.03 1.880 1.831
2.39893 0.15 0.03 2.085 2.063
2.79872 0.15 0.03 2.297 2.306
3.19852 0.15 0.03 2.514 2.555
3.5983 0.15 0.03 2.738 2.809
3.9981 0.15 0.03 2.966 3.069
4.3979 0.15 0.03 3.433 3.332
4.79769 0.15 0.03  3.433 3.598
5.19749 0.15 0.03 3.673 3.£67
5.59727 0.15 0.03 3.915 4,138
5.99984 0.20 0.03  4.432 4,413
6.79981 0.20 0.03  4.967 4.963
7.59979 0.20 0.03 5.510 5.517
8.39977 0.20 0.03  6.058 6.073
9.19974 0.20 0.03 6.612 6.632
9.99973 0.20 0.03 7.169 7.192

26.66581 0.15 0.03 18.162 18.762
43.27614 0.15 0.03 29.882  30.5L46
60.0049 0.15 0.03 L41.765 42,292
206.66075 0.15 0.03 146.478 145.296
' 353.32162 0.15 0.03 251.328 248.3L46
499.9863 | B R ] 0.15 0.03 356.198 351.40533
Vf/Vm 2 0.9273 . re = 0.3175 r. = 0.6599



Flux Ratlos for a Two-Region Planar Unit Cell

Table B.12
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Tar Tam Tsm Tsr w' ca?c. AN?SN

1.00 0.900 0.5 0.100 0.15 0.03 1.403 1.396

2.5 ‘ 0.15 0.03 1.515 1.553

49,99998 0.12 0.03 3.468 3.545

0.5 0.8 0.15 0.03  1.444 1.455

l 5.0 0.15 0.03  1.694 1.711

’ 50.00003 0.12  0.03  3.585 3.474
Ve/V = 2.41445 r. = 0.3175 r = 0.4490
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Table B.13

Flux Ratios for a Two-Region Planar Unit Cell

Taf ’Tam .Tsm TSf Y © Ca?c. AN?SN
0.54887 0.00011 0.25984 0.39212 0.10 0.01 1.168 1.129
1.0976 0.10 0.02 1.380 1.345
1.64631 0.15 0.03 1.691 1.616
2.19504 0.15 0.03 1.959 1.922
2.74377 0.15 0.03 2.211 2.249
3.29252 0.15 0.03 2.534 2.590
3.84125 0.15 0.03 2.837 2.942
4.66651 0.15 0.03 3.307 3.487
5.76451 0.20 0.03  4.197 4. 228
6.86252 ] ' r 0.19 0.03 4.858 I, 984

Vf/Vm = 0.927 r. = 0.3175 r, 0.6599
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Table B.1A4

Flux Ratios for a Two-Region Planar Unit Cell

fTaf “am “sm ‘st } ) ca?c.; AN?SN |
0.43136 0.00007 0.16535 0.61618 0.15  0.03 1.165  1.115
1.29365 ©.15  0.03 1.542  1.476
2.15591 0.15  0.03 1.966  1.945
3.01821 0.15  0.03 2.426  2.467
3.8805 0.15  0.03 2.912  3.018
4. 74280 0.15  0.03 3.419  3.588
5.6051 0.15  0.03  3.942 4,172
6.47037 0.15 0.03 4,479 4,766
8.19581 0.20  0.03 5.961  5.965
9.92123 0.20  0.03 T7.167  T.17l
28.75708 0.15 0.03 19.768  20.433
64.70374 0.15  0.03 U5.437  U45.758
381.0309L 0.15 0.03 273.144 268.787
539.19782 ] ' ] 0.15  0.03 387.080 380.331
Vf/Vm = 0.927 r. = 0.3175 r. = 0.6599



Table B. 15
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Flux Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

Tp Tom Tem T gr U/ w/w! ca?c. AN§SN
0.1 100 100 o.o7ey 0:623896 0154 o0 g5
SHHE B o oo
SR B oo e
SRS BH oma o
g:g 8:32 0.702 0.693
Voo 8GRy e a

Ve/V = 2.41445

r

p = 0.3175

= 0.449



Flux

Table B.16
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Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

Tar Tam Tsm Tgp Qm/Qf w/w' ca?c. AN?SN
1.00 1.00 1.00 0.2794 8:2;2323 8:%2 1.095  1.097
0. 11 s o

0235313 033 0.811  0.808

8:882??21 8:%2 0.740 0.736

2:8_ 0 03 0.689  0.68k
- S R




Table B.17
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Flux Ratios as a Function of Source Distribution for a
Two-Region Planar Unit Cell

af am Tsm’ sf s W cal;c . ANPI{SN
.00 .00 1.00 0.27940 8:2?22%8 8:%% 2.112  2.337
0816808 0.03 N2z 1.567
SBER 0 1w
U R e o
(1):8 8:%2 0.598 0.626
v ' ) %:8 8:(1)2 3.642 3.989




Table B.18

Flux Ratios as a Function of Source'Distribuﬁion for

Two-Reglon Planar Unit Cell

195

¥
B

gTaf | an fem ‘st n/9e w! ca?c. AN?SN
99.99993 1.00 1.00 0.2794 ¢ g?gﬁ?g 0703 30.787  37.299
| 0. 115 ssse 203
; 0-216373 015 5631 10.859
i .
0:0932 035 50 a.qos
g%g‘ﬁ 5763  0-503  0.571
g# ' . v L0 0-15 66.006  76.104
£



Flux Ratilos for a Two-Region Spherical Unit Cell

Table B.19
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T T T T w w' R R
af am sm sf calc. ANTISN
0.99999 0.9 0.1 0.1 0.27 0.09 1.48Y 1.503
0.5 0.1 1.501 1.506
2.5 0.1 1.588 1.527

' 0.06 2.913
49.99983 0.1 005 3.¢3R 2.861
0.80000  0.79999 1.546 1.569
0.80000  4.99995 1.739 1.905
] \J 0.80000 49.99951 ¥ ' 3.803 3.834
Vo/V_ = 0.54699 r. = 0.3175 r = 0.4490
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Table B.20

Flux Ratios for a Two-Region Spherical Unit Cell

1
T T T TSP w w R R

_;% af anm sm - cale. ANISN

0.00373  0.01891  0.9670 0.19046  0.27 0.09 1.001 1.001
0.13333  0.67695 | 1.064 1.067
0.26659 1.35356 1.141 1.137
0.39986  2.03018 1.226 1.211
0.53312  2.70679 1.315 1.288
0.66637  3.38335 1.408 1.368
0.79964  4.05997 1.504 1.452
0.9329 4. 7366 1.602 1.539
1.06617  5.4132 1.703 1.629
1.19943  6.08983 1.805 1.722
1.33269  6.76642 1.909 1.818
1.46595  7.44305 2.015 1.916
1.59922  8.11968 2.121 2.017
1.73248  8.79627 2.229 2.120
1.86574  9.4729 2.338 2.225
1,99993 10.15419 2.449  2.333
2126659 11.50809 2.672  2.552
2'5332u 12.86169 2.898 2.778
287999  14.21585 3.217 3.010
3.06656 15.56975 3.359 3.252
3.33322 16.92365 3.593 3.492
8.88979 U45.12974 8.757 8.826
14.42527  73.24092 14.173 14.230
19.99929 101.54191 19.755 19.676
68.88637 349.75413 70.564 67.650
117.77295 597.9649 122.498 118.988

166.66079 846.18261 ¥ ' Y 174.861 163.76916




Table B.?21

Flux Ratios for a Two-Region Spherical Unit Cell

198

‘af Tam “sm ‘st ? © ca?c. AN?SN
0.02972  0.00002 0.05512  1.51957  0.27 0.09 1.010  1.014
2.12702 : © 1.878  2.027
4.25354 2.859’ 3.085
6.37996 3.886 4.175
8.50648 4.9y 5.296

10.63296 6.025 6.442
12.75948 7.123 7.608
14.88596 8.235 8.791
18.18412 9.930 10.589
22.33921 12.219  13.007
21, 46675 13.375  14.222
70.91782 39.663 40.855
159.56586 92.023  91.633
 939.66024 572.886 538.421
1329.71553 ' K ' ' v 816.932 761.860

Vf/Vm =2 0.12535

r. = 0.3175 r. = 0.6599



Table B.22
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Flux Ratios as a Function of Source Distribution for a

Two-Region Spherical Unit Cell

Taf Tam Tsm o Tgrp QU w/w' Ca?C.: AN§SN
0.23333  1.47135 1.47135  0.09313 ;00 3T 1.129  1.107
8 §;8;83 1.025 1.012

8 gg;ggu 0.919 0.914

8:22829 0.810  0.812

8 gééggl 0.698 0.707

‘ ' ‘ ' 2:00 } 0.583  0.597

Vf/Vm = 0.54699 e = 0.3175 r. = 0.4490



Table B.23

Flux Ratios as a Function of Source Distribution for a
Two-Region Spherical Unit Cell

200

T T T T Q_/Q w/w! R R
af am sm sf m f v cale. ANTISN
- 1.00 0.27
0.3333 1fu7135 1.47135 0.09313 5 00 0. 09 1.185 1.156
0.879703
0.12029 1.068 1.050
0.732784 . A
0.26721 0.949 0.941
0.5493 .
0. 15069 0.827 0.829
0.313681
0.68632 0.703 0.713
| $ ‘ 0.00 )
, 1.00 Q.576 0.593
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Table Be?2l

Flux Ratios as a Function of Source Distribution for a
Two-Region Spherical Unit Cell

T T T T Q_/Q w/w" R R

af am sm sf -om °f _calec. ANISN
1.6665 1.47135 1.47135 0.09313 o'08  gcol 1.977  1.935
8:?;8;83 1.683 1.658
;
8:;2?;?” 1.392 1.381
\ 8:22829 ©1.104 1.103
‘ gfgégggl 0.817 0.826
", v

l ' ' ' 099 v 0.53% 0.548

.00
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Table B.25

Flux Ratios as a Function of Source Distribution for a
Two-Region Spherical Unit Cell

Tar Tam Tsm Typ Q,/9p w/w' Acaic. AN§SN
33.33305  1.47135  1.47135  0.09313 3288 8:3% 23.368  27.660
8:?28;83 17.967  21.422

8:525;2“ 13.027  15.625

8:2;829 8.489  10.225

82%2231 4.309  5.181

* 4 ] ) Q.OO ‘ 0. hbu 0.458
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where
fclad = penetration chord length through the clad
t = (rclad—rf) = thickness of the (thin) clad region
re = radius of the fuel region
Pclad = outer rad;us of the clad.
Furthermore,
_ Ay .
P e (B.2)
iy mr, X

Upon dividing Eq. (B.1) by Eq. (B.2) we get:

S (B.3)

or

ry T,
clad _ “clad .
6 LHJ af
f

(B.4)

It is possible to derive an analytical expression for the
penetration chord length through an annular clad (M1l) for

isotropically incident neutrons:

r

r 2

r. 2 r r :
F o il [osint(ily o p(k 1 T1,%1/2
L m [2sin (r2) ﬂ(rg) + 2(r2) {1—(r2) } ] (B.5)
where
Ty = Tryel
r = r

clad
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However, the above is a needlessly sophisticated expression
for L for present purposes and we shall hence use the followling

approximate expression:
L = 2(r2—r1) = 2t (B.6)

which would be exact for a thin annulus resembling a slab.

Substituting Eq. (B.6) into Eq. (B.4) yields:

¢c1ad -
bp

1
5 (B.7)

Tar
Recall that this was derived under the assumption of T, g
(black fuel).

Next, it is shown by Gregory (Gl) that in the limit of

weak fuel absorption (small Taf) one gets:

) ¢ |
surface of the fuel = Yclad _ 1 4 % T (B.8)

bp b
The function that best (or at least simply and conveniently)
Joins the two aysmptotic limits given by Egs. (B.7) and (B.8)

is found to be:

¢
B = L G- g ) Tar T LY Y T (B.9)
¢f af
where we have defined y.'= L_ i(—~j;——) (B.19)
- f 2 3 1+wTaf

and where w is a fitting parameter which has a value of ~0.12.
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Equation (R.9) can be cast in terms of the flux ratio model

developed in the body of this reovort, namely:

R(E) = 5(1 + ¥p1,p) (B.11)

Using Egs. (B.g9) and (B.11), the following can be readily

shown:

R, (E) = A-R(E) + (1 - =) Y}e (B.12)

Y  where A =

Yo
1
In Eq. (B.12) §f and 6 are obtained using Eq. (3.28) of
Chapter 3 and §f' from Eg. (B.10).
Table B.26 gives numerical (ANISN) and calculated (Eq. (B.12))

results: the agreement 1s excellent.

B. 4 FURTHER REMARKS ABOUT THE DISCREPANCY BETWEEN THE CALCULATED
AND THE LEOPARD RESULTS

The LEOPARD self—shielding factor results presented in
Chapter 3 are consistently lower than thé calculated results
Qsing Eq. (3.42) for pitches smaller than the base-case PWR
unit cell and higher for larger pitches. The reason for this
behavior is that as we go to smaller pitches and smaller
cells (in the sense of shrinking the cell) the factor ﬁ“%*E
approaches "1.0" and Vf approaches 0.40 (see Table B.27
But since in the conventional case Levine's factor % (equivalent)

to 7f in our model) is taken as 0.79, the result will be that

the oo' predicted by the conventional case will be much smaller



Table B.26
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Numerical and Calculated Results for the Clad-to-Fuel

Flux Ratio, withm@f=0 and 0=1 .
0.00356 0.00019 0.43132 0.1818 0.33 0.167 1.001 1.001
0.12727 0.361  0.177 1.022 1.022
0.25448 0.369 0.186 1.047 1.047
1.01771 0.416 0.232 1.236 1.268
1.14492 0.422  0.239 1.273 1.306
' 1.52654 0.440 0.256 1.391 1.437
1.90904 0.456 0.271 1.518 1.777
2.67265 0.483  0.297 1.794 1.880
2.92719 0.490  0.304 1.890 1.985
3.18173 0.497 0.311 1.990 2.092
8.48462 0.579 0.390 4.311 4.h39
13.76966 0.613 0.423 6.814 6.408
19.09039 0.631  0.440 9.L00 8.420
65.75552 4 ' ¢ 0.672 0.480 32.572  37.85:
0.39989 0.84483 0.60355 0.28569 0.503 0.196 1.078 1.12¢
1.59926  3.37865 0.634 0.259 1.414 1.489
29.99918 6£3.37738 l 1 0.919  0.459 14.780  14.399
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Table B.27

Group 45 Values of ﬁ~%~; _and ;r for Various Pitches

and Cell Shrinkage Factors

f ) 1 —

Case Pitch —— Ye

(1) Base-Case PWR Unit Cell 0.768 0.607

P = 0.580 in

(2) % X the above cell 0.945 0.413
dimension

(3) % x the above cell 0.668 0.715
dimension

(4) P = 0.448 in 0.869 0.495

(5) P = 0.649 in 0.718 0.681

Cases (1), (2), (3); fuel rod shrunk by same factor as pitch.

Cases (4), (5): fuel rod same as base case.
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than the oO' predicted using the present method. Thus
the self-shielding factor, which increases monotonically as

0, ilncreases, will be smaller

0 , and as a result the conventional

results are predicted to be lower. On the other hand, when "

larger pitches are used ﬁ—%hg approaches approximately 0.70

and Vf approaches 0.70. Thus while the f(o0) values are nearly
the same, the present result 1s reduced by the multiplicative
factor ﬁ—%—g, and it is easy to conclude that the present

model's results should now be lower than the conventional

results - as observed. Tables 3.5 through 3.6 illustrate
this behavior of the relevant parameters. Since 5ur results
correspond to use of a variable Levine factor, . they are
potentially more accufggé than the conventional approach.

It was pointed out in Chapter 2 that it is possible to
replace a three-region unit cell by an equivalent two-region
unit cell without introducing appreciable error into the
calculated heterogeneous cross—séctions. Téble B.28 shows
the values of the broad-group (i.e., colig;sed over groups
26 to 54, see Table 3.8 for group structure) heterogeneous
cross-sections obtained using LEOPARD for the two cases of
the three-region and the equivalent two-region unit cells.
As seen, the results are essentially the same: the vercentage

error is calculated to he about 0.3%. Data pertinent to the

above unit cells are summarized in Table 3.7.
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Table B.28

Heterogeneous Cross-Sections for Two and Three Region
Unit Cells, Obtained Using LEOPARD

het ’ het

o o A%
C c .
for a two-region for a three-region percent
cylindrical cylindrical difference
unit cell unit cell
2.229119 2.235807 0.3

Furthermore, to be able to study the effect'of the
assumption of linearization introduced in Section 3.3.2 we
have artifically introduced the following approximations.

Recall Eq . (2.80) - namely:

0.248
1 f 1/2
3U* Trozms ) 024y
o, = b (2.80)
1+ O.ZUGm

First we arbitrarily set the part

1 o.euaf
=[1 + ]
3 IIGT?EBf

of the above equation to %; the resulting heterogeneous cross-
section obtained this way was 2.282 (as opposed to 2.180
obtained without the above approximation). Next, the same
part was put equal to g—and the resulting heterogeneous cross-

3
section obtained was 1.925 (versus 2.180 obtained without
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the above approximation). Table B.29 summarizes the results.
As seen from the results of the table. an 11% difference
in the average values of Vf (corresponding to the exact and

the % limits) has introduced a 5% difference in the hetero-

nln
3

geneous cross-section obtained using the "exact" and the

limits. Furthermore, a difference of 5U4% in the average values

of the 7f has been reflected as a 13% difference in the
corresponding heterogeneous cross-sections. The preceding
results justify the following statements:

(a) the assumption of lineafization introduced in
Section 3.3.2 is a valid assumption; since an
artificial change in the value of 7y, (% 1imit)

did not reflect any significant difference in
the calculated values of the heterogeneous cross-
sections.

(b) heterogeneous cross-sections obtained using the
present modelxafe weakly sensitive to the accuracy
of the flux ratio R.

(¢c) The limit yields better results (compared to

the

WM W=

1limit) because, as in the Doppler effect,
the weakly absorbing wings of the resonance control

the change in absorption.

As a final note, it is worth mentioning that the ad hoc
assumption of linearization introduced in this work was

absolutely essential in deriving the present equivalence



Heterogeneous Cross-=Sections,

Table B.29

211

Obtained by Introducing

Arbitrary Changes into tthe Flux Ratio R

het

het

9, (barns) o, (barns) A%
for the 1/3 1limit for the "exact" case percent difference

2.282 2.180 -5.0

Ochet (barns) Ochet (barns) A%
for the 2/3 1limit for the "exact" case percent difference

1.925 2.180 +13.0

5 Yo A%

for the 1/3 1limit
averaged over the

for the "exact" case
averaged over the

percent difference

groups® (26-49) groups® (26-49)
0.48 0.52 +11.0
Ye Ye A% -
for the 2/3 1limit for the "exact" case percent difference
averagedg over the averaged over the

groups (26-49)

groups® (26-149)

0.80

0.52

_54.0

Group structure is

given in Table 3.8.
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relation. The manner of implementing the assumption, however,
through using infinite dilution cross-sections was quite
arbitrary. As a result, further improvements in the implemen-
tation of the assumption, such as replacing the infinite
dilution cross-section by an alternately defined averaged
cross-section, are possible. A good starting-point for

pursuing this idea would be the work of Amaldi (F5).
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Appendix C

THE LEOPARD COMPUTER CODE

Normally LEOPARD, a state-of-the-art LWR-unit cell
program, prepares a one-group representation of the résonance
cross-section in the entire epilthermal region. The epithermal
region spans the energy range from 0.625 ev to 5.53 Kev;
and in terms of group numbers, this corresponds to G=26 to
G=54 (in the EPRI version of LEOPARD using ENDF-IV cross-
sections employed in the present work).* |

Since we desired to obtain cross section output for a
finer group structure, the following minor changes were made
in the program:

(1) an additional named COMMON block was added in MAIN -

namely the following three statements:
COMMON/A/LIM1,LIM2

READ(5,13),LIM1,LIM?
13 FORMAT (2I5)

nD

() a similar COMMON block was added to subroutine ED34,

and a fortran statement was changed - namely:

COMMON/A/LIMI1 ,LIM?

and
DO 40 N=26,5! was changed to

DO 40 N=LIM1,LIM?

The detalled group structure is given in Table 3.8.
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LIM1 and LIM2 are the two group variables controlled by
the user: by running successive problems varying LIM1 from
26 to 53, and with LIM2 = LIM1+1l, it was possible to obtain
a fine group breakdown of the LEOPARD-developed results in the
eplthermal region. Note that the above modifications apply
only to the récovery of the fine group components of the
resonance part of the absorption cross section, and not to its
smooth part¥ For a more detailed exposition on the structure
of the code refer to the manual (L5). Furthermore, it is
important to understand that when particular LIM1 and LIM2 are

chosen, the resulting cross-sectior. is to be interpreted as

follows:
G=LIM1
I o(E)¢(E)dE
e 5 = G=LIM?2
& g G=26 »
J ¢ (E)AE
G=5

note the limits of integration, especially in the denominator.

* the ﬁmooth pért, while comitted from the fine group
LEOPARD results, was irclnded in all collapsed (26 to 5>4)
results cuoted in this vork.
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Appendix D

INTERPCLATION SCHEMES

D.1 TEMPERATURE INTERPOLATION AT A FIXED Op -

Lagrange-three-point interpolation scheme predicts, very
accurately, the shielding factors for any‘current temperature, T.
The scheme is as follows:

self-shielding factor at three
tabulated temperature points | £(T) £(300) f£(900) f(2100)

the natural log of the three

i tabulated temperature points en(T) 22n(300) 2n(900) &n(2100)

Applying the interpolation scheme to the above table, there

results:

(4nT=-41n9%00) (ANnT-2n2100)
n300-4n900) (4n300-2n2100)

£(T) = £(300)

(AnT-2n300) (AnT-2n2100)

n900-2n300) (2n900-Ln2100y

f(900)(R

(4nT-2n300) (AnT-21n900)

F(2100) 315160~ tn300) ( En2100-£n900)

(D.1)

T T T T
, ASRI LY R U onT gn
LR = £(300) 28200 4 r(g00)—300 2100
Inzin= 2n3en=

i 377 7

T T
2”§Tﬁ51n§fﬂj

QHYRn%

£(2100)

(D.2)
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D.2 OO—INTERPOLATION AT A FIXED T.
(a) The empirical 0y-interpolation is:

f(oo) = AtanhB(%no. + C) + D (D.3)

0

Constants A and D can be found by inspcection of the range and

magnitude of the self-shielding factors - namely:
A+ D = f max (D.4)
A - D= f min _ (D.5)
where

f max = maximum self-shielding factor

f min = minimum self-shielding factor

To find B and C we need two tabulated noints (f(oo), 00) nearest
the point of interest. Egquation (D.3) can be cast in the

following form:

f(OO)—D
a(oo) = — = tanhB(znoO+C) = tanhx(co) (D.6)
(6) = e =] (D.7)
tanhx(o = e D.7
0 eQx + 1

Hi

where x(o B(ano+c), see Eq. (D.6)

o)

or

1 + a(o.)1/2

— Q (D.8)
- OLE005

x(oo) = n
Now using two values of (f(oﬂ), 00), say (f(Ol), 01) and
(f(02), 02) we get:

X(Ol) = BZnGJ + RBC : (D.9)



x(og) = B!Lno2 + BC : : (D.10)

Solving the simultaneous Egs. (D.9) and (D.10) yields:

x(ol) - X(O2)

B = 01 (D.11)
n 6_
2
_1.Floy)-D
where x(o,.) = tanh ~[————]
0 A
- x(0,) - Bfno
C = 1 . 1 (D.12)
(b) Segev's correlation is:
12 = AOO + B
1 - fA(oo>

where A and B can easily be found using two tabulated points

(f(OO)’ 00) nearest the point of interest.



218

Appendix E

SAMPLE PROBLEM

In this Appendix a bsample calculation is presented using
the new equivalence relation given by Eq. (3.42). The example
we have chosen is for U—é38‘capture in an oxide-fueled unit
cell. Data pertinent to ﬁhe present sample problem are
summarized in Table E.1. Note that the calculations are

‘done for Group U5 of LIB-IV (K6).

Recall the definition of T which 1is:
J=N e
jzi S
O = —— (E.1)
N
i

where'th is the volume-weighted-hcmogenized infinite-dilution

total cross section of isotope j;

=

is the volume-weighted-homogenized concentration of

nuclei of isotope i, here U-238,

: %
Using the data in Table E.1 in Egq. (E.1), in the order shown

ih=the table (i.e., U-235, oxygen, ...):

_ o.oo62+o.o683+o.0316+0.0093+0.0863+o.01u7+o.0006+040005+O.ooo2

9g ~ 0.009011
(E.2)
from which
_0.2177 .
0y = 0.0090T - 24 barns (E.3)

Cross-sections are taken from LIB-TV (K6).
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Table .1

Data Pertinent to Oxide-~Fueled Blanket Unit Cell

Homogenized Atom Densities

Element Atom Densities (nuclei/barn-cm)
Uranium-28 9.011  x 1073
Uranium-25 1.00 x 107"

Oxygen | 1.8222 x 1072

Sodium 9.927 x 1073
Chromium 2.055 x 1073

Iron 7.462 x 1073

Nickel 8.09 x 107"
Manganese 2.16 x 107" .
Silicon 2.11 x 107"

Carbon 3.9 x 1072

Cell Dimensions

rf=0.5u6 (cm); rg=0.56u (em); r =0.635 &cm); r =0.814 (cm)

clad coolant
v \Y
7 f = 0.4506 _%Qgiﬁﬂﬁ = 0.5494
cell cell
Temperature
T=300°K

Mean Lethargy Decrements for Elastic Moderation

£,70.00838; £,.=0.00849; £,=0.11995; £y =0.08U5; &, =0.03797;
Epe=0.03529; £y 4=0.03409; £, =0.03593; £,,=0.0674; £,=0.15777
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The mean energy decrement for the fuel is defined by

28 25

o
C8ogZes t Bo5Zos t E0las  0.0019+0.00002+0.0179 (B.1)
bp = 8 o o = 0.22673+0.00235+0.1096 ‘B- .
£ 4 592 + 3
es es es
hence .
—~  _ 0.0198 _ , 4

where the elastic scattering cross sections are again taken

from LIB-IV.

Similarly for the '"coolant" (including the clad) region:

0 Na Cr, - Fe Ni Mn Si -C
E~ = gOzes+€Nazes+ECr‘zes+‘EFeZes+5NiZes+€MnZes+£SiZes+gc"es -
c . .
ZO + ZNa + ZCr + ZFe " ZNl + ZMn N ZSl 4 ZC
es es es es es es es es
(%.6)
and
E - 0.000l+0.0037+0.00lM+0.0128+0.Q912+0.000l+0.00003+0.00003
c 0.0011+0.0439+0.0381+0.3628+0.0304340.0017+0.0005+0.0002
(2.7)
which yields:
= _ 0.0194 _ -
tc = 0.4825 - 0-0401 (=.8)

Using Egs. (E.6) and (E.8) one can find the fraction of the
elastic slowing down source generated in the fuel using th= B

following equation:
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E X _.Y_f,-_
£pf Vieqy |
Qf’ = B Vf - Vc - (E-g)
£ - + £ % ————
> EeY 1
£pf Vcell ¢ pe ]ce]L

where pr, ch are the macroscopilc potential scattering cross
sections(1.IB-IV) in the fuel and the coolant

regions, respectively.

Hence:

Q (0.0523)(0.3619)(0.4506)

f (0.0523)(0.3619)(0.4506) + (0.0L401)(0.4826)(0.549L)
(E.10)
_0.0085 _

A = 50195 - 0.4uy (E.11)
and

QC =1 - Qf = 0.556 (E.12)

*

Next, we have to find various optical thicknesses (here
taken at the infinite dilution limit) and use them in Egs. (2.84)
through (2.89); they are recalled here to show the detailed

step~by-step calculations.

§. = 129 4 155 F o1 (E.13)

i)

where subscript r stands for removal, see Section 2.7.2 for

detailed explanation.

ng = 5.7238 + 0.0073 + 0.0396 = 5.7707 (E.14)

¥
Cross-sections are taken from LIB-IV.
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Similarly;

_ .0 Na Cr Fe Ni Mn Si C
me = Tr + Tr + TP + TP + Tr + T, + T, + Tp (E.15)
and
Gmg = 0.0003+0.0106+40.0062+0.0L413+0.01394+0.0012+0.0004+0.0003

0.0742 (E.16)

Furthermore:
0.246

1 fg 1/2
§[1 + TT5 305 ?] + 0. 2&6 :
0, = > 5 — (E.17)
fe L+ 0.208177
and, ;
1. 0.2b6, 1/2
3L+ 1300 “Hg ] t0.2hep
a = —_— (E.18)
me 1+ 0. 2u51/?

Using Egs. (E.14) and (E.16) in Egs. (F.17) and (E.18), tte

following results will be obtained:

OUpo = 0.556 (E.19)
and,

g = 0.581
Finally:

=1+ 0.

Peg 06T pe (E.20)
and,

P = 1 + 0.0671

gg ngg
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where the subscripts fgg and mzg stand for in-group scattering

in fue® and moderator regions, respectively.

: 28 25 0o .
= 1 + 0.06 + R, (E.21)
ng 1 0.0 [ngg Trpg nggJ
or
ng =1+ 0.06[0.0519+0.0026+0.1241] = 1.039 : (E.22)

Similarly;

. 0 tla Cr Fe Ni Mn Si
=1+ 0. + + + + + +.
bgg = 1+ 0-00Ltppe * thgs trige * Tngg * Tmee T Tmege ¥ Tmee
C .
nggl (E.23)
or
Peg = 1 + 0.06[0.0011+0.04854+0.0468+0.4486+0.0332+0.0021+0,0022
+ 0.0007] = 1.035 (E.24)
Using Egs. (E.11) through (E.?4) we are able to find:
Yo = OppBggPuglny = 0332 (E.25)
and
6 =1 + S = 1.02 '
“mgBggPer mere 021 (E.26)
At this point we have enough information to evaluate the
modified background cross-section oo' -~ namely:
I T
tnf
o' = = 4 ———. (E.27)
Nf 6+yf6 ) :

[
mg 'f
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_ 1
oy' = M0+ 55T 53357 (0 h7l

) (20.0) = 23 barns (E.28)

Next, we have to use the empirical o,-interpoclation scheme,

0

discussed in Appendix D, which is:

fcg(OO) = AtanhB(£n00+C) + D (E.29)

J 2 1

Using data points at o,= 10 , 107, 107, lO—1 barns and T=300°K,

0

one gets (using the procedure given in Appendix D) the following

values for the constants in Eq. (E.29):

fcg(oo) = O,3M02tanho.3990(2noo—7.6715)\+ 0.3710 (E.30)
which can be used to obtain the self-shielding factors at oo=2a
(barns) and oo' = 23 (barns).

fcg(au) = 0.0492 (E.31)
and

fcg(23) =~ 0.0486 (E.32)

FPinally, we need to evaluate the following quantities:

Y \
LS f m
e =f (o,")o - N_.2 (E.33)
cg 0 cg 6 Véell o
\ v Yo V
i 1 m oo f m
n = + = e €"f (O ')'O' + - T (E-Bh)
Vcell 0 Vcell sg 0 S€ Vcell ng



where we have neglected the small fission term - namely:

(o o]

1)
e"f . (o f

fg "o

O')

Utilizing all the results obtained so far in Eqs. (E.33) and

(E.SM)Ayields:

(0. 0486)(?61) g§§(o.5u9)<o.019)(1.09) = 0.047 (E.35)

E:
and
n = (0. u506)+1 (21(0 54945+(0.003)(0.360)(23) +
0.332 _
T5235(0.5494) (0.17) = 1.044 (E.36)
ehet oy PPOR
— 0~ - 1 - O~ - 0.910
£ (o) nToE el m(oo )

Note that the above result is for a hexagonal oxide-~fueled
unit cell and hence different from the corresponding results

given in Tables 4.4 and 5.7 which are obtained using assembly-

based homogenized atom densities
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