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Markov dynamics on the Thoma cone: a model of
time-dependent determinantal processes with

infinitely many particles

Alexei Borodin∗ Grigori Olshanski†

Abstract

The Thoma cone is an infinite-dimensional locally compact space, which is closely
related to the space of extremal characters of the infinite symmetric group S∞. In
another context, the Thoma cone appears as the set of parameters for totally positive,
upper triangular Toeplitz matrices of infinite size.

The purpose of the paper is to construct a family {X(z,z′)} of continuous time
Markov processes on the Thoma cone, depending on two continuous parameters z

and z′. Our construction largely exploits specific properties of the Thoma cone re-
lated to its representation-theoretic origin, although we do not use representations
directly. On the other hand, we were inspired by analogies with random matrix the-
ory coming from models of Markov dynamics related to orthogonal polynomial en-
sembles.

We show that processes X(z,z′) possess a number of nice properties, namely: (1)

every X(z,z′) is a Feller process; (2) the infinitesimal generator of X(z,z′), its spec-
trum, and the eigenfunctions admit an explicit description; (3) in the equilibrium

regime, the finite-dimensional distributions of X(z,z′) can be interpreted as (the laws
of) infinite-particle systems with determinantal correlations; (4) the corresponding
time-dependent correlation kernel admits an explicit expression, and its structure
is similar to that of time-dependent correlation kernels appearing in random matrix
theory.
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1 Introduction

The first two subsections of the introduction contain short preliminary remarks and
a few necessary definitions. Next we state the main results of the paper, Theorems
1.2 and 1.3. Then we describe the method of proof and make a comparison with some
related works.
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Markov dynamics on the Thoma cone

1.1 Preliminaries: Markov processes related to orthogonal polynomials

It is well known that for each family of classical orthogonal polynomials p0, p1, p2, . . . ,
there exists a second order differential operator D, which preserves the space of poly-
nomials and is diagonalized in the basis {pn}:

Dpn = mnpn, n = 0, 1, 2, . . . ,

where 0 = m0 > m1 > m2 > . . . are the eigenvalues. Let W (x) be the weight function
of {pn} and suppW be its support. Operator D determines a diffusion Markov pro-
cess X on suppW with W (x)dx being a symmetrizing measure, hence also a stationary
distribution.

All these objects, family {pn}, operator D, and Markov process X, have multidimen-
sional analogs:

Namely, fix N = 2, 3, . . . . From {pn} on can construct a family of symmetric polyno-
mials in N variables indexed by partitions ν of length at most N , as follows:

pν(x1, . . . , xN ) :=
det[pνi+N−i(xj)]

V (x1, . . . , xN )
,

where the determinant in the numerator is of order N and

V (x1, . . . , xN ) :=
∏

1≤i<j≤N

(xi − xj).

These polynomials form a basis in the space of symmetric polynomials. Next, the role
of D is played by the second order partial differential operator

DN :=
1

V (x1, . . . , xN )
(Dx1 + · · ·+DxN

)V (x1, . . . , xN )− constN ,

where Dxi
denotes a copy of D acting on variable xi and

constN = m0 + · · ·+mN−1.

Although the coefficients of DN in front of the first order derivatives have singular-
ities on the diagonals xi = xj , the operator is well defined on the space of symmetric
polynomials and is diagonalized in the basis {pν}:

DNpν = mνpν , mν :=

N∑
i=1

(mνi+N−i −mN−i).

Finally, one can useDN to define a diffusion processXN on the space ofN -point con-
figurations contained in suppW ⊆ R. Again, this process has a symmetrizing measure,
with density

N∏
i=1

W (xi) · V 2(x1, . . . , xN ).

This construction is well known in random matrix literature. The case of Hermite
polynomials arises from Dyson’s Brownian motion model [16]. Some other examples
can be found in König [25]. The construction also works for some families of discrete
orthogonal polynomials, only then XN is a jump process.

In the present paper, we make a further step of generalization leading to a two-
parameter family of infinite-dimensional, continuous time Markov processes X(z,z′),
which are related to the Laguerre polynomials. These words can bring the reader to
believe that the processes X(z,z′) are obtained from the finite-dimensional Laguerre
processes XN by a large-N limit transition, but this is not true. Actually, the connection
between X(z,z′)’s and XN ’s is of a different kind: informally, one can say that the former
are related to the later by analytic continuation in two parameters, dimension N and
the continuous parameter entering the definition of the classical Laguerre polynomials.
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Markov dynamics on the Thoma cone

1.2 The infinite-dimensional Laguerre differential operator and the z-measures

The operator in question, denoted by D(z,z′), serves as the pre-generator of process
X(z,z′). Initially, D(z,z′) is defined in the algebra of symmetric functions, Sym, which
replaces the algebra of N -variate symmetric polynomials. The elementary symmetric
functions e1, e2, . . . are algebraically independent generators of Sym; we use them as
independent variables and define D(z,z′) : Sym → Sym as a second order differential
operator

D(z,z′) =
∑
n≥1

(
n−1∑
k=0

(2n− 1− 2k)e2n−1−kek

)
∂2

∂e2
n

+ 2
∑

n′>n≥1

(
n−1∑
k=0

(n′ + n− 1− 2k)en′+n−1−kek

)
∂2

∂en′∂en

+

∞∑
n=1

(
− nen + (z − n+ 1)(z′ − n+ 1)en−1

) ∂

∂en

(1.1)

depending symmetrically on two complex parameters z and z′. Recall that the classical
Laguerre polynomials depend on a continuous parameter (the “Laguerre parameter”)
and so does the N -variate Laguerre operator DN . The origin of operator D(z,z′) is
explained in Olshanski [32]: it is obtained from DN by formal analytic continuation with
respect to N and the Laguerre parameter.

Operator D(z,z′) is diagonalized in a special basis of Sym formed by the so-called La-

guerre symmetric functions. These functions, denoted by L
(z,z′)
ν , depend on parameters

(z, z′) and are indexed by arbitrary partitions ν = (ν1, ν2, . . . ). One has

D(z,z′)L(z,z′)
ν = −|ν|L(z,z′)

ν , |ν| := ν1 + ν2 + . . . . (1.2)

As shown in [32], the Laguerre symmetric functions form an orthogonal basis in a
Hilbert L2 space. Let us explain briefly this point (for more detail, see [32] and Section
8.4 below).

So far we treated Sym as an abstract commutative algebra, freely generated by
elements e1, e2, . . . , but now we embed it into the algebra of continuous functions on a
topological space, called the Thoma cone and denoted by Ω̃:

Ω̃ :=
{

(α1, α2, . . . ;β1, β2, . . . ; δ) ∈ R∞ ×R∞ ×R :

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∑

αi +
∑

βi ≤ δ
}
.

Note that the space Ω̃ is locally compact and has infinite dimension in the sense that
its points depend on countably many continuous parameters. The way of converting
elements F ∈ Sym into continuous functions F (ω) on Ω̃ is described in Section 7.4.

Next, we impose the following condition on the parameters:

Condition 1.1. Either both parameters z and z′ are complex numbers with nonzero
imaginary part and z′ = z̄, or both parameters are real and contained in an open unit
interval of the form (m,m+ 1) for some m ∈ Z.

This is equivalent to requiring that (z + k)(z′ + k) > 0 for every k ∈ Z. In particular,
Condition 1.1 implies that zz′ and z + z′ are real, so that the coefficients of operator
D(z,z′) are real.

It was shown in [32] that for every (z, z′) satisfying Condition 1.1, there exists a
unique probability distribution M (z,z′) on Ω̃ such that all elements of Sym produce
square integrable functions on Ω̃ with respect to measure M (z,z′), and the Laguerre
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Markov dynamics on the Thoma cone

functions L
(z,z′)
λ are pairwise orthogonal with respect to the inner product of the Hilbert

space L2(Ω̃,M (z,z′)). In other words, M (z,z′) serves as the orthogonality measure for the
Laguerre symmetric functions. The measures M (z,z′) appeared even earlier in connec-
tion with the problem of harmonic analysis on the infinite symmetric group; we call
them the z-measures on the Thoma cone.

A difficulty of working with the Laguerre operator D(z,z′) is that its domain as defined
above consists of unbounded functions (more precisely, all the nonconstant functions
from Sym are unbounded functions on Ω̃). To overcome this difficulty we modify the
domain of definition of the operator in the following way.

For a triple ω = (α, β, δ) ∈ Ω̃, write |ω| := δ. Let F stand for the space of functions
on Ω̃ spanned by the functions of the form

e−r|ω|F (ω), F ∈ Sym, r > 0.

Such functions are bounded; even more, they vanish at infinity. On the other hand,
D(z,z′) operates on F in a natural way: here we use the fact that |ω| = e1(ω), so that
each function from F is expressed through variables e1, e2, . . . .

1.3 Main results

Given a locally compact separable metrizable space E, denote by C0(E) the Banach
space of real continuous functions on E, vanishing at infinity, with the supremum norm.
A Feller semigroup is a strongly continuous operator semigroup T (t) on C0(E) afforded
by a transition function P (t;x, dy) (such that P (t;x, · ) is a probability measure),

(T (t)f)(x) =

∫
y∈E

P (t;x, dy)f(y), x ∈ E, f ∈ C0(E).

A Feller semigroup gives rise to a Markov process on E with càdlàg sample trajectories,
called a Feller process.

Throughout the paper we assume that (z, z′) satisfies Condition 1.1.

Theorem 1.2. (i) The differential operator D(z,z′), viewed as an operator on C0(Ω̃) with
domain F , is dissipative, and its closure serves as the generator of a Feller semigroup
on C0(Ω̃), which we denote by T (z,z′)(t).

(ii) The corresponding Feller Markov process X(z,z′) has a unique stationary distri-
bution, which is the z-measure M (z,z′).

Proof is given in Section 8.
Claim (ii) shows that the z-measures M (z,z′) can be characterized as the stationary

distributions of Markov processes X(z,z′).
Taking as the initial distribution for Markov process X(z,z′) its stationary distribution

we get a stationary in time stochastic process, which we denote by X̃(z,z′). Theorem 1.2
is complemented by the following result, established in Section 9:

Theorem 1.3. X̃(z,z′) can be interpreted as a time-dependent determinantal point pro-
cess whose correlation kernel can be explicitly computed.

Let us explain this claim. Consider the punctured real line R∗ := R \ {0} and the
space Conf(R∗) of locally finite point configurations on R∗. The stationary distribution
M (z,z′) can be interpreted as a probability measure on Conf(R∗). More generally, for
any finite collection t1 < · · · < tn of time moments, the corresponding finite-dimensional
distribution M (z,z′)(t1, . . . , tn) of stochastic process X̃(z,z′) can be interpreted as a prob-
ability measure on the space Conf(R∗ t · · · tR∗︸ ︷︷ ︸

n

). This makes it possible to describe
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Markov dynamics on the Thoma cone

M (z,z′)(t1, . . . , tn) in the language of correlation functions. The determinantal property
claimed in the theorem means that the correlations functions are given by n×n minors
extracted from a certain kernel. The kernel in question, denoted by K(z,z′)(x, s; y, t), has
as arguments two space-time variables, (x, s) and (y, t), where s ∈ R and t ∈ R are time
moments, while x ∈ R∗ and y ∈ R∗ are space positions.

The kernel K(z,z′)(x, s; y, t) appeared first in our paper [11], but there it was derived
as the result of a formal limit transition, without reference to an infinite-dimensional
Markov process. We called K(z,z′)(x, s; y, t) the extended Whittaker kernel to emphasize
a similarity with the well-known dynamical kernels from random matrix theory, the
“extended” versions of the classical sine, Airy, and Bessel kernels (see Tracy-Widom
[40]).

1.4 Method of Markov intertwiners

The results stated above, together with those of [32], were announced without proofs
in the note Olshanski [31]. The scheme of the initial proof of Theorem 1.2 was the
following:

• Start with the semigroup T̃ (z,z′)(t) in the Hilbert space L2(Ω̃,M (z,z′)) generated by
the closure of operator D(z,z′) and show that T̃ (z,z′)(t) is positivity preserving.

• Show that T̃ (z,z′)(t) preserves functions from C0(Ω̃).

• Show that the topological support of M (z,z′) is the whole space Ω̃.

The third claim means that the natural map C0(Ω̃) → L2(Ω̃,M (z,z′)) is injective, so that
restricting T̃ (z,z′)(t) to C0(Ω̃) gives the desired Feller semigroup T (z,z′)(t).

In the present paper, we use a different approach, based on the method of Markov
intertwiners proposed in Borodin–Olshanski [13], combined with the main idea of an-
other recent paper, Borodin–Olshanski [14]. To explain this approach, we have first to
briefly review what we did in [13].

That paper deals with the Gelfand–Tsetlin graph GT describing the branching rule
for the irreducible characters of unitary groups U(N). The graph is graded, and its N th
level GTN is a countable set, identified with the dual object to the unitary group U(N).
The graph structure determines a a sequence of stochastic matrices Λ2

1,Λ
3
2, . . . , where

the N th matrix ΛN+1
N has format GTN+1×GTN and is viewed as a “link” connecting the

(N + 1)th and N th levels of graph GT. The boundary of graph GT is defined as the en-
trance boundary for the inhomogeneous Markov chain with varying state spaces GTN ,
discrete time parameter ranging over {. . . , 3, 2, 1}, and transition function given by the
links. The boundary serves as the space of parameters for the extremal characters of
the infinite-symmetric group U(∞); this space is a connected, infinite-dimensional lo-
cally compact space. Now, the idea is to find a family {TN (t) : N = 1, 2, . . . } of Feller
semigroups, acting on the spaces C0(GTN ) and compatible with the links in the sense
that

TN+1(t)ΛN+1
N = ΛN+1

N TN (t), N = 1, 2, . . . , t ≥ 0

(here the operators TN+1(t) and TN (t) are viewed as matrices of formatGTN+1×GTN+1

and GTN×GTN , respectively). One can say that the links serve as Markov intertwiners
for the semigroups TN (t). Given such a family of semigroups, a simple (essentially
formal) argument shows that it gives rise to a “limit” Feller semigroup T∞(t) generating
a Feller process on the boundary. We showed in [13] that there is quite a natural way to
construct requiring pre-limit semigroups TN (t) depending on four additional continuous
parameters, and so we obtain a four-parameter family of limit Feller processes on the
boundary.
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Markov dynamics on the Thoma cone

In the present paper we show that a similar approach works for the Thoma cone Ω̃.
A nontrivial point is what is a suitable substitute of the Gelfand–Tsetlin graph. As is well
known, a natural analog of the Gelfand–Tsetlin graph is the Young graph, which is the
branching graph of the symmetric group characters. The boundary of the Young graph
is an infinite-dimensional compact space Ω, called the Thoma simplex, and Ω̃ appears
as the cone built over Ω. Although harmonic analysis on the infinite symmetric group
deals with the Thoma simplex and probability measures thereof, things go simpler when
objects living on Ω are “lifted” to Ω̃; this was the main reason for working with the
Thoma cone. However, Ω̃ itself is not a boundary of a branching graph, which was an
evident obstacle for extending the method of [13].

A solution was found due to the results of [14], where we showed that Ω̃ can be
identified with the entrance boundary of a continuous time Markov chain on the setY of
all Young diagrams. This fact enabled us to apply the formalism of Markov intertwiners
with appropriate modifications; in particular, the discrete index N = 1, 2, . . . is replaced
by continuous index r ranging over the half-line R>0.

In one direction, the present work goes further than [13], because for the processes
related to the Gelfand–Tsetlin graph, a result similar to Theorem 1.3 is yet unknown.

1.5 Comments

It is natural to compare the results of the present paper to those of Borodin–Olshanski
[12], [13], and Borodin–Gorin [5]. In all four papers the authors construct a Feller
Markov process on an infinite-dimensional boundary of a “projective system”.

The process of [12] can be obtained by a normalization of the one we construct here,
much similar to the way the Brownian Motion on the sphere can be obtained from that
in the Euclidian space. However, the stationary distribution of the normalized process
does not define a determinantal point process. Also, in that case the state space is
compact, which is much easier to deal with from the analytic viewpoint.

On the other hand, the process of the present paper is a certain scaling limit of that
from [13], but in the case of [13] the situation is more complicated and we were not able
to prove there that the time-dependent correlation functions of the equilibrium process
are determinantal (we prove such a statement in this work). We also do not dispose of
an explicit eigenbasis for the generator there, in contrast to (1.2) above.

The process considered in [5] was proven to have time-dependent determinantal
structure but it does not possess a stationary distribution, unlike the three other ones.
Also, the underlying state space is quite different as its coordinates live on a lattice, not
on the real line.

Overall, the Markov process we consider in the present paper is the only one so
far that is proven to have all the nice properties one would like to carry over from
the well-known finite dimensional analogs, i.e. Feller property, existence of a station-
ary distribution, an explicit description of the (pre)generator and its eigenbasis, and
determinantal formulas for the time-dependent correlations.

To the best of our knowledge, such completeness of the picture was not achieved in
the study of infinite-particle versions of Dyson’s Brownian Motion Model that are also
expected to have determinantal time-dependent correlations, see Jones [20], Katori–
Tanemura [21], [22], [23], Osada [34], [35], Spohn [38].

1.6 Covering Markov process

Informally, both the Markov process X(z,z′) on the Thoma cone and its relative, the
Markov process on the boundary of the Gelfand–Tsetlin graph GT, studied in our paper
[13], may be viewed as interacting particle processes with nonlocal (or long-range)
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Markov dynamics on the Thoma cone

interaction. On the other hand, as shown in [13], the process on the boundary of GT is
“covered” by a certain Markov process with local interaction, living on the path space
of GT. In the companion note [15] we describe a curious model which conjecturally
provides a similar “covering” process for X(z,z′). If the conjectural claims stated in [15]
hold true, this model leads to an alternative approach to our processes X(z,z′), which
looks simple and intuitively appealing.

1.7 Organization of the paper

In Section 2 we recall basic facts about Feller semigroups and their generators, and
state a remarkable general theorem from Ethier–Kurtz [18], which gives a convenient
sufficient condition on a matrix of jump rates ensuring that it generates a Feller Markov
chain.

In Section 3 we review necessary definitions and facts concerning convergence of
Markov semigroups, taken again from Ethier–Kurtz [18].

Sections 4 and 5 are devoted to the formalism of Markov intertwiners (here we
present a minimal necessary material and refer to [13] for more details).

In Section 6 we apply the method of Markov intertwiners to constructing a concrete
one-dimensional diffusion process; our goal here is to present all the steps of the main
construction in a simplified situation.

Short Section 7 introduces the Thoma cone and some related objects.
Long Section 8 is devoted to the proof of Theorem 1.2; the argument is developed in

strict parallelism with that of Section 6.
Section 9 contains the proof of Theorem 1.3.
Finally, in Section 10 we briefly describe a Plancherel-type degeneration of our main

construction.

2 Feller semigroups

Let E be a locally compact, noncompact, metrizable separable space. Denote by
C(E) the Banach space of real-valued continuous functions on E with the uniform norm

‖f‖ = sup
x∈E
|f(x)|.

Let C0(E) ⊂ C(E) denote its closed subspace formed by the functions vanishing at
infinity, and let Cc(E) be the dense subspace of C0(E) consisting of compactly supported
functions.

IfE is a discrete countable space, then the continuity requirement disappears, C0(E)

becomes the space of arbitrary real functions on E vanishing at infinity, and Cc(E)

becomes the subspace of finitely supported functions.

Definition 2.1. A Feller semigroup {T (t) : t ≥ 0} is a strongly continuous, positive,
conservative contraction semigroup on C0(E), see [18, p. 166].

Note that in [18], the conservativeness condition is stated in terms of the semigroup
generator. Here are two equivalent reformulations of this property (see also Liggett
[27, Chapter 3]:

• For any fixed x ∈ E and t ≥ 0, one has

sup{(T (t)f)(x) : f ∈ C0(E), 0 ≤ f ≤ 1} = 1

(if E is compact, then this simply means that T (t) preserves the constant function
1).
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Markov dynamics on the Thoma cone

• The semigroup admits a transition function, where we mean that a transition func-
tion P (t | x, · ) is a probability measure (not a sub-probability one!) for all t ≥ 0

and x ∈ E.

Assume now that E is a countably infinite set and Q = [Q(a, b)] is a matrix of format
E × E such that

Q(a, b) ≥ 0 for all a 6= b and −Q(a, a) =
∑
b: b 6=a

Q(a, b) < +∞ for all a ∈ E. (2.1)

Then there is a constructive way to define a semigroup {Pmin(t) : t ≥ 0} of substochastic
matrices, which provides the minimal solution to Kolmogorov’s backward and forward
equations,

d

dt
P (t) = QP (t),

d

dt
P (t) = P (t)Q,

see Feller [19] and Liggett [27, Chapter 2].

Definition 2.2. One says that Q is regular if the matrices Pmin(t) from the minimal
solution are stochastic.

If the Q-matrix is regular, then Pmin(t) is a unique solution to both the backward and
forward Kolmogorov equations. Qualitatively, regularity of the Q-matrix means that the
Markov chain is non-exploding: one cannot escape to infinity in finite time.

Recall a few general notions (see Ethier–Kurtz [18, Chapter 1, Sections 1–3]). Any
strongly continuous contractive semigroup on a Banach space is uniquely determined
by its generator, which is a densely defined closed dissipative operator. We will denote
generators by symbol A (possibly with additional indices), and DomA will denote the
domain of A. A core of a generator A is a subspace F ⊆ DomA such that the closure of
the operator A|F (the restriction of A to F) coincides with A itself; thus A is uniquely
determined by its restriction to a core. It often happens that an explicit description of
Dom(A) is unavailable but one can write down the action of A on a core F , and then the
pre-generator A|F serves as a substitute of A.

We will need a result from Ethier–Kurtz [18] which provides a convenient sufficient
condition of regularity together with important additional information:

Theorem 2.3. Let E be a countably infinite set and Q = [Q(a, b)] be a matrix of format
E × E satisfying (2.1). Assume additionally that Q has finitely many nonzero entries in
every row and every column, and there exist strictly positive functions γ(a) and η(a) on
E that tend to +∞ at infinity and are such that

−Q(a, a) ≤ Cγ(a), ∀a ∈ E, (2.2)

Q
1

γ
≤ C

γ
pointwise (2.3)

Qη ≤ Cη pointwise (2.4)

where C is a positive constant and, for an arbitrary function f(a) on E, the notation Qf
means the function

(Qf)(a) =
∑
b∈E

Q(a, b)f(b) =
∑

b∈E, b6=a

Q(a, b)(f(b)− f(a)),

the sum being finite because of the row finiteness condition.
Under these hypotheses we have:
(i) Q is regular and so determines a Markov semigroup P (t).
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Markov dynamics on the Thoma cone

(ii) This semigroup induces a Feller semigroup {T (t) : t ≥ 0} on C0(E).
(iii) Let A denote the generator of T (t); its domain Dom(A) consists of those func-

tions f ∈ C0(E) for which Qf ∈ C0(E). Moreover, A = Q on DomA.
(iv) The subspace Cc(E) ⊂ C0(E) of compactly supported functions is a core for A.

Proof. This is an adaptation of Theorem 3.1 in [18, Chapter 8], which actually holds
under less restrictive assumptions.

3 Convergence of semigroups and Markov processes

3.1 Convergence of semigroups

Let I be one of the sets R>0 (strictly positive real numbers) or Z>0 (strictly positive
integers). Assume that {Lr : r ∈ I} is a family of real Banach spaces, L∞ is one
more real Banach space, and for every r ∈ I we are given a contractive linear operator
πr : L∞ → Lr. If f is a vector of one of these spaces, then ‖f‖ denotes its norm.

Definition 3.1. We say that vectors fr ∈ Lr approximate a vector f ∈ L∞ and write
fr → f if

lim
r→∞

‖fr − πrf‖ = 0.

Definition 3.2. Let {T∞(t) : t ≥ 0} and {Tr(t) : t ≥ 0} be strongly continuous con-
traction semigroups on L∞ and Lr. We say that the semigroups Tr(t) approximate the
semigroup T∞(t) and write Tr(t)→ T∞(t) if

lim
r→∞

sup
0≤t≤t0

‖Tr(t)πrf − πrT∞(t)f‖ = 0 for all f ∈ L∞ and any t0 > 0. (3.1)

Our aim is to check this condition using an appropriate convergence of semigroup
generators. So let A∞ and Ar denote the generators of the above semigroups and let
Dom(A∞), Dom(Ar) be the domains of the generators.

Definition 3.3. Fix a core F ⊆ Dom(A). We say that the operator A∞|F is approx-
imated by the operators Ar if for any vector f ∈ F one can find a family of vectors
{fr ∈ Dom(Ar) : r ∈ I} such that fr → f , and Arfr → A∞f as r →∞.

In other words, this kind of operator convergence means that every vector from the
graph of A∞|F can be approximated by vectors from the graphs of the operators Ar.

Theorem 3.4. Let T∞(t), Tr(t), A∞, Ar, and F be as above. If A∞|F is approximated
by the operators Ar, then Tr(t)→ T∞(t) in the sense of Definition 3.2.

Proof. For I = Z>0, this is part of Ethier–Kurtz [18, Chapter 1, Theorem 6.1]. The
case I = R>0 is immediately reduced to the case I = Z>0, because condition (3.1) is
equivalent to saying that the same limit relation holds along any sequence of positive
real numbers tending to +∞.

3.2 Convergence of Markov processes

Below we use the term Markov process as a shorthand for a Markov family which
may start from any given point of the state space or from any given initial probability
distribution. We are dealing exclusively with processes stationary in time and with
infinite life time.

Given an initial distribution M(0) of a Markov process on a space E, one may speak
about its finite-dimensional distributions M(t1, . . . , tk) corresponding to any prescribed
time moments 0 ≤ t1 < · · · < tk, k = 1, 2, . . . . Every such distribution M(t1, . . . , tk) is a
probability measure on the k-fold direct product Ek = E × · · · × E.
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Let E be a locally compact metrizable space and T (t) be a Feller semigroup on
C0(E); then T (t) gives rise to a Markov process X(t) on E with càdlàg sample trajecto-
ries, see Ethier–Kurtz [18, Chapter 4, Section 2]. The finite-dimensional distributions of
X(t) are determined by the semigroup T (t) in the following way: For arbitrary functions
g1, . . . , gk ∈ C0(E), define recursively functions hk, . . . , h0 by

hk = gk, hk−1 = gk−1 · (T (tk − tk−1)hk), . . .

. . . , h1 = g1 · (T (t2 − t1)h2), h0 = T (t1)h1, (3.2)

where dots mean pointwise product, so that hk−1 is obtained by applying operator T (tk−
tk−1) to hk−1 and then multiplying the resulting function by gk−1, etc. Then

〈g1 ⊗ · · · ⊗ gk,M(t1, . . . , tk)〉 = 〈h0,M(0)〉, (3.3)

where the angle brackets denote the canonical pairing between functions and mea-
sures, and (g1 ⊗ · · · ⊗ gk)(x1, . . . , xk) = g1(x1) . . . gk(xk) for (x1, . . . , xk) ∈ Ek (this is a
function from C0(Ek)).

Let Xr(t) and X(t) be Markov processes with state spaces Er and E, respectively (as
before, r ranges over the index set I, which is either R>0 or Z>0). Assume that E is a
locally compact metrizable separable space and each Er is realized as a discrete locally
finite subset of E. Further, assume that as r →∞, Er becomes more and more dense in
E; more precisely, we postulate that any probability measure P on E can be represented
as the weak limit w-limr→∞ Pr, where Pr is a probability measure supported by Er.

Definition 3.5. Under these assumptions we say that the processes Xr(t) approximate
the process X(t) and write Xr(t)→ X(t) if whenever an initial distribution M(0) for the
process X(t) is represented as a weak limit of a family {Mr(0)} of initial distributions
of processes Xr(t), we have

w- lim
r→∞

Mr(t1, . . . , tk) = M(t1, . . . , tk),

meaning weak convergence on Ek of the finite-dimensional distributions corresponding
to any given time moments 0 < t1 < · · · < tk, k = 1, 2, . . . .

Corollary 3.6. Under the above assumptions, assume additionally that the Markov
processes Xr(t) and X(t) come from some Feller semigroups on the Banach spaces
Lr = C0(Er) and L = C0(E), respectively. Further, let the projection πr : L → Lr be
defined as the restriction map from E to Er.

If the hypotheses of Theorem 3.4 are satisfied, then Xr(t) → X(t) in the sense of
Definition 3.5.

Note that πr is well defined as a map from C0(E) to C0(Er) because Er is assumed
to be locally finite, so that if a sequence of points goes to infinity along Er then it also
goes to infinity in E.

Proof. It suffices to prove that

lim
r→∞
〈g1 ⊗ · · · ⊗ gk,Mr(t1, . . . , tk)〉 = 〈g1 ⊗ · · · ⊗ gk,M(t1, . . . , tk)〉 (3.4)

for any collection g1, . . . , gk ∈ C0(E), because the functions of the form g1 ⊗ · · · ⊗ gk are
dense in C0(Ek).

Let hk, . . . , h0 ∈ C0(E) be defined as in (3.2) and, for each r ∈ I, let hk;r, . . . , h0;r ∈
C0(Er) be defined in the same way, starting from the collection

g1;r := πr(g1), g2;r := πr(g2), . . . , gk;r := πr(gk).
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By virtue of (3.3), the desired limit relation (3.4) is equivalent to

lim
r→∞
〈h0;r,Mr(0)〉 = 〈h0,M(0)〉

Since w-limr→∞Mr(0) = M(0) by assumption, it suffices to prove that

lim
r→∞

‖h0;r − πrh0‖ = 0.

To do this, we prove step by step that

lim
r→∞

‖hi;r − πrhi‖ = 0,

for i = k, . . . , 0, where each transition i → i − 1 is justified by making use of Theorem
3.4.

This argument is patterned from the proof of Theorem 2.5 in [18, Chapter 4]. Note
also that another kind of convergence is established in [18, Chapter 4, Theorem 2.11].

4 Feller projective systems

4.1 Links

Let E′ and E be two measurable spaces. Recall that a Markov kernel linking E′ to
E is a function Λ( · , · ) in two variables, one ranging over E′ and the other ranging over
measurable subsets of E, such that Λ is measurable with respect to the first argument
and is a probability measure relative to the second argument. We use the notation
Λ : E′ 99K E and call Λ a link between E′ and E.

If E is a discrete set, then, setting Λ(x, y) := Λ(x, {y}), we may regard Λ as a function
on E′ × E. If both E′ and E are discrete, then Λ is simply a stochastic matrix of format
E′ × E.

The operation of composition of two links E′′ 99K E′ and E′ 99K E is defined in a
natural way: denoting the first link by ΛE

′′

E′ and the second one by ΛE
′

E we have

(ΛE
′′

E′ ΛE
′

E )(x, dz) =

∫
y∈E′

ΛE
′′

E′ (x, dy)ΛE
′

E (y, dz).

In the discrete case this operation reduces to conventional matrix product.
The possibility of composing links makes it possible to regard them as morphisms

in a category whose objects are measurable spaces, see [14]. However, links are not
ordinary maps; this is why we denote them by the dash arrow.

A link Λ : E′ 99K E takes a probability measure M on E′ to a probability measure
MΛ on E:

(MΛ)(dy) =

∫
x∈E′

M ′(dx)Λ(x, dy).

If both spaces are discrete then measures may be viewed as row-vectors and then the
product MΛ becomes the conventional product of a row-vector by a matrix.

Dually, Λ determines a contractive linear map B(E) → B(E′) between the Banach
spaces of bounded measurable functions, denoted as F 7→ ΛF :

(ΛF )(x) =

∫
y∈E

Λ(x, dy)F (y).

In the discrete case, functions may be viewed as column-vectors and then ΛF becomes
the conventional product of a matrix by a column-vector.

We say that a link Λ : E′ → E between two locally compact spaces is a Feller link if
the corresponding linear map B(E)→ B(E′) sends C0(E) ⊂ B(E) to C0(E′) ⊂ B(E′).

If E is discrete, then this condition means that for any fixed y ∈ E, the function
x 7→ Λ(x, y) := Λ(x, {y}) on E′ lies in C0(E′).
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4.2 Projective systems and boundaries

Let, as above, I denote one of the two sets R>0 or Z>0. By a projective system with
index set I we mean a family {Er : r ∈ I} of discrete spaces together with a family of
links {Λr′r : Er′ 99K Er : r′ > r}, where every Er is finite or countably infinite, and for
any triple r′′ > r′ > r of indices one has Λr

′′

r′ Λr
′

r = Λr
′′

r ; see [14]. If I = Z>0, then it
suffices to specify the links Λr

′

r for neighboring indices r′ = r + 1 and then set

Λr
′

r := Λr
′

r′−1 . . .Λ
r+1
r

for arbitrary couples r′ > r.
(The above definition is applicable to more general ordered index sets but we would

like to avoid excessive formalism. For the purpose of the present paper we need the
continuous index set I = R+. Concrete projective systems with discrete index sets
are considered in [13] and [14]. In some general considerations (see below) the case
I = R>0 is readily reduced to that of I = Z>0.)

Following [14], we define the boundary E∞ of a projective system {Er,Λr
′

r } in the
following way. Consider the projective limit space lim←−M(Er), where M(Er) stands
for the set of probability measures on Er and the limit is taken with respect to the
projections M(Er′) → M(Er) induced by the links Λr

′

r . Assuming that the projective
limit space is nonempty, we take as E∞ the set of its extreme points.

We refer to [14] for more details. Note that M(Er) may be viewed as a simplex
with vertex set Er, and every projectionM(Er′)→M(Er) is an affine map of simplices
(that is, it preserves barycenters), so our projective limit space is a projective limit of
simplices.

By the very definition of projective limit, an element of lim←−M(Er) is a family {Mr ∈
M(Er) : r ∈ I} of probability measures satisfying the relation Mr′Λ

r′

r = Mr for every
couple of indices r′ > r. Such a family is called a coherent system of measures.

As explained in [14], there is a canonical bijection

M(E∞) ←→ lim←−M(Er), (4.1)

where M(E∞) denotes the space of probability measures on E∞. This means that for
every r ∈ I there is a link Λ∞r : E∞ → Er such that the correspondence M∞ 7→ {Mr : r ∈
I} given by Mr := M∞Λ∞r establishes a one-to-one correspondence between probability
measures on the boundary and coherent families of probability measures. We say that
M∞ is the boundary measure for the coherent system {Mr}.

Obviously, the links Λ∞r are compatible with the links Λr
′

r in the sense that

Λ∞r′ Λ
r′

r = Λ∞r for any r′ > r.

Observe that in the case of I = R>0 the boundary does not change if in the above
construction we will assume that the indices range along an arbitrary fixed sequence
of strictly increasing real numbers converging to +∞. This enables one to reduce the
case I = R>0 to that of I = Z>0. For further reference, let us call this simple trick
discretization of the index set .

4.3 Running example: The binomial projective system B

In this illustrative example taken from Borodin–Olshanski [14], the index set I is
R>0; for every index r ∈ R>0 the corresponding discrete set Er is a copy of Z+ :=

{0, 1, 2, . . . }; and for every two indices r′ > r the corresponding link Z+ 99K Z+ is given
by

BΛr
′

r (l,m) =
l!

m!(l −m)!

( r
r′

)m (
1− r

r′

)l−m
, l, m ∈ Z+.
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Note that Λr
′

r (l, · ) is a binomial distribution on the set {m : 0 ≤ m ≤ l}. For this reason
we call this system the binomial projective system.

As shown in [14], its boundary E∞ can be identified with the halfline R+ (the set of
nonnegative real numbers) and the links Λ∞r : R+ → Z+ are given by Poisson distribu-
tions:

BΛ∞r (x,m) = e−rx
(rx)m

m!
, x ∈ R+, m ∈ Z+.

4.4 Feller projective systems

Let {Er,Λr
′

r } be a projective system as defined above. Equip the boundary E∞ with
the intrinsic topology — the weakest one in which all functions of the form

x 7→ Λ∞r (x, y), r ∈ I, y ∈ Er,

are continuous. We say that {Er,Λr
′

r } is a Feller system if the following three conditions
are satisfied:

(1) All links Λr
′

r are Feller.

(2) The boundary E∞ is a locally compact Hausdorff space with respect to the in-
trinsic topology.

(3) In this topology, all links Λ∞r are Feller.

Note that under condition (1), the definition of the intrinsic topology is not affected
by discretization of the index set, which entails that the intrinsic topology is automati-
cally metrizable with countable base.

As an illustration, let us check that the binomial projective system from our running
example (see Section 4.3 above) is a Feller system.

Indeed, from the very definition of the “binomial” links Λr
′

r and “Poissonian” links
Λ∞r it is clear that they are Feller links. It remains to check that the intrinsic boundary
topology on R+ is the conventional topology and so is locally compact.

By the very definition, the intrinsic topology is the weakest one in which all the
functions x 7→ Λ∞r (x,m), where parameter r ranges over R+ and parameter m ranges
over Z+, are continuous. We will prove a stronger claim: even if only m varies but
r > 0 is chosen arbitrarily and fixed, then the corresponding topology coincides with
the conventional one.

To do this, consider the map R+ → [0, 1]∞ assigning to x ∈ R+ the sequence

{am(x) : m ∈ Z+}, am(x) := Λ∞r (x,m) = e−rx
(rx)m

m!
.

This map is injective, for x is recovered from {am(x)} from the identity

∞∑
m=0

smam(x) = e(s−1)rx.

By the very definition, the weakest topology on R+ making all the functions am(x) con-
tinuous is exactly the topology induced by the embedding of R+ into the cube [0, 1]∞

equipped with the product topology.

Observe now that the cube [0, 1]∞ is compact and the above map extends by conti-
nuity to the one-point compactification R+ ∪ {+∞} of R+ by setting am(+∞) = 0 for
all m. Obviously, the extended map is injective, too. Therefore, it is a homeomorphism
onto a closed subset of [0, 1]∞. This implies the desired claim.
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4.5 The density lemma

If {Er,Λr
′

r } is a Feller projective system with boundary E∞, then the subspace⋃
r∈I

Λ∞r C0(Er) ⊂ C0(E∞)

is dense in the norm topology; see Borodin–Olshanski [13, Lemma 2.3]. Here Λ∞r C0(Er)

denotes the range of the operator Λ∞r : C0(Er)→ C0(E∞).
For further reference we call this assertion the density lemma. Its proof is simple;

it relies on the fact that for a locally compact space E, the vector space of (signed)
measures on E with finite total variation is the Banach dual to C0(E).

Since Cc(Er) is dense in C0(Er) and the operator Λ∞r : C0(Er)→ C0(E∞) is contrac-
tive, the density lemma is equivalent to the assertion that the set of functions of the
form

x 7→ Λ∞r (x, y), r ∈ I, y ∈ Er,

is total in C0(E∞) meaning that the linear span of these functions is dense.

For our running example, the latter assertion means that the set of functions

e−rxxn, r > 0, n ∈ Z+

is total in C0(R+). But here a stronger claim holds: it is not necessary to take all
r > 0, we may assume that r is fixed . In other words, for any fixed r > 0, the space
of polynomials in x multiplied by the exponential e−rx is dense in C0(R+); see [14,
Corollary 3.1.6] for a simple proof. Thus, in this situation, Λ∞r C0(Er) ⊂ C0(E∞) is
dense for any fixed r. However, this is a special property of the projective system under
consideration; for instance, it does not hold in the context of [13].

4.6 Approximation of boundary measures

Our definition of the boundary measure M∞ as a limit of a coherent system of mea-
suresMr was purely formal. Here we show that, under a suitable additional assumption,
M∞ is a limit of {Mr} in a conventional sense.

Let, as above, {Er,Λr
′

r } be a Feller projective system with boundary E∞, and adopt
the following assumption:

Condition 4.1. For every r ∈ I there exists an embedding ϕr : Er ↪→ E∞ such that:
(i) The image ϕr(Er) is a discrete subset in E∞.
(ii) For any fixed s ∈ I and any fixed y ∈ Es

lim
r→∞

sup
x∈Er

|Λrs(x, y)− Λ∞s (ϕr(x), y)| = 0.

So far our measures lived on varying spaces. Now, using the maps ϕr, we can put
all them on one and the same space, the boundary E∞. Namely, we simply replace Mr

with its pushforward ϕr(Mr), which is a probability measure on E∞. A natural question
is whether the resulting measures converge to M∞, and the next proposition gives an
affirmative answer.

Proposition 4.2. Assume that Condition 4.1 is satisfied. Let {Mr : r ∈ I} be a coherent
system of probability distributions and M∞ be the corresponding boundary measure.
As r →∞, the measures ϕr(Mr) converge to M∞ in the weak topology.

Note that for this proposition, part (i) of the condition is not relevant, but it will be
used in the sequel (see Section 5.2).
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Proof. We have to show that for any bounded continuous function F

〈F,ϕr(Mr)〉 → 〈F,M∞〉.

Since all the measures in question are probability measures, we may replace the weak
convergence by the vague convergence, that is, we may assume that F lies in the space
C0(E∞). Next, we apply the density lemma (see Section 4.5), which enables us to
further assume that F has the form F (x) = Λ∞s (x, y) for some fixed s ∈ I and y ∈ Es.
Then we get

〈F,M∞〉 =

∫
x∈E∞

M∞(dx)Λ∞s (x, y) = Ms(y).

On the other hand,
〈F,ϕr(Mr)〉 = 〈F ◦ ϕr,Mr〉. (4.2)

Here the function F ◦ ϕr lives on Er, and for x ∈ Er one can write

(F ◦ ϕr)(x) = F (ϕr(x)) = Λ∞r (ϕr(x), y) = Λrs(x, y) + ε(r, x),

where, by virtue of Condition 4.1, the remainder term ε(r, x) tends to 0 uniformly on x,
as r →∞. Therefore, (4.2) equals

〈Λrs( · , y),Mr〉+ . . . = Ms(y) + . . . ,

where the dots denote a remainder term converging to 0. This completes the proof.

Example 4.3. Consider the projective system B introduced in Section 4.3. Recall that
then the index set I is R>0, Er = Z+ for all r > 0, and the boundary E+ is R+. Define
the map ϕr : Er → E∞ as

ϕr(l) = r−1l, l ∈ Z+,

and let us check that Condition 4.1 is satisfied.
Indeed, in our situation it means that that for fixed s > 0 and m ∈ Z+

lim
r→∞

sup
l∈Z+

|BΛrs(l,m)− BΛ∞s (r−1l,m)| = 0. (4.3)

The explicit expressions for the links in question are (see Section 4.3):

BΛrs(l,m) =
l!

m!(l −m)!

(s
r

)m (
1− s

r

)l−m
, l, m ∈ Z+,

BΛ∞s (x,m) = e−sx
(sx)m

m!
, x ∈ R+, m ∈ Z+.

In (4.3), set x = r−1l and note that

l!

(l −m)!rm
= xm

(
1 +O(r−1)

)
,
(

1− s

r

)l−m
=
(

1− s

r

)rx (
1 +O(r−1)

)
.

Therefore, (4.3) follows from the fact that (see [14, Lemma 3.1.4])

lim
r→+∞

(
1− s

r

)rx
xm = e−rxxm uniformly on x ∈ R+.

For this example, Proposition 4.2 gives a specific recipe for approximating arbitrary
probability measures on R+ by atomic measures supported by the grids r−1Z+.

5 Boundary Feller semigroups: general formalism

In this section, {Er,Λr
′

r } is a Feller projective system with index set I equal to R>0

or Z>0, and boundary E∞.
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5.1 Intertwining of semigroups

Let E′ and E be two locally compact metrizable spaces, T ′(t) and T (t) be Feller
semigroups on C0(E′) and C0(E), respectively, and Λ : E′ 99K E be a Feller link. Let us
say that Λ intertwines the semigroups T ′(t) and T (t) if

T ′(t)Λ = ΛT (t), t ≥ 0, (5.1)

where both sides are interpreted as operators C0(E)→ C0(E′).

Proposition 5.1. Assume that for every r ∈ I we are given a Feller semigroup {Tr(t) :

t ≥ 0} on C0(Er). Assume further that the links Λr
′

r intertwine the corresponding semi-
groups, that is, for any two indices r′ > r

Tr′(t)Λ
r′

r = Λr
′

r Tr(t). (5.2)

Then the there exists a unique Feller semigroup {T∞(t) : t ≥ 0} on E∞ such that Λ∞r
intertwines T∞(t) and Tr(t) for every r ∈ I,

T∞(t)Λ∞r = Λ∞r Tr(t), t ≥ 0. (5.3)

Proof. In the case I = Z>0 this assertion was established in [13, Proposition 2.4]. The
same argument works in the case I = R>0.

We call the semigroup T∞(t) constructed in the above proposition the boundary
semigroup. Now we are going to describe its generator.

We start with the simple observation that relation (5.1) has an infinitesimal analog:
namely, denoting by A′ and A the generators of the semigroups T ′(t) and T (t) from
(5.1), one has

Λ : Dom(A)→ Dom(A′)

and
A′Λ = ΛA. (5.4)

In words, if a Feller link intertwines two Feller semigroups, then it also intertwines
their generators. Indeed, this is an immediate consequence of the very definition of the
semigroup generator.

Proposition 5.2. Let the semigroups Tr(t) be as in the above proposition, T∞(t) be
the corresponding boundary semigroup, and Ar and A∞ denote the generators of these
semigroups. Take for each r ∈ I an arbitrary core Fr ⊆ Dom(Ar) for the operator Ar;
then the linear span of the vectors of the form Λ∞r f , where r ranges over I and f ranges
over Fr, is a core for A∞.

Note that the action of A∞ on such a core is determined according to (5.4), that is

A∞Λ∞r f = Λ∞r Arf, f ∈ Dom(Ar). (5.5)

Proof. We will apply a well-known characterization of cores based on Hille–Yosida’s
theorem: Let A be the generator of a strongly continuous contraction semigroup on a
Banach space; a subspace F ⊆ Dom(A) is a core for A if and only if, for any constant
c > 0, the subspace (c−A)F is dense. The proof is simple (cf. [18, Chapter 1, Proposition
3.1]). Indeed, fix an arbitrary c > 0. By Hille–Yosida’s theorem, the operator (c − A)−1

is defined on the whole space and bounded. Next, the closure of A|F coincides with A

if and only if the closure of (c − A|F )−1 coincides with (c − A)−1, and this in turn just
means that (c−A)F , which is the domain of (c−A|F )−1, is dense.
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Take now as F the linear span of the union of the subspaces Λ∞r Fr. We already know
that F is contained in Dom(A∞).

By the criterion above, it suffices to prove that (c−A∞)F is dense in C0(E∞) for any
c > 0. We have

(c−A∞)F = span

(⋃
r∈I

(c−A∞)Λ∞r Fr

)
= span

(⋃
r∈I

Λ∞r (c−Ar)Fr

)
,

where the last equality follows from (5.5). On the other hand, we know that for every
r ∈ I, (c−Ar)Fr is dense in C0(Er), because Fr is a core for Ar. Therefore, the closure
of (c−A∞)F coincides with the closure of the subspace

⋃
r∈I Λ∞r C0(Er). But the latter

subspace is dense by Proposition 5.1. Therefore, (c−A∞)F is dense, too.

Let us return to the basic intertwining relation (5.1). Under suitable assumptions,
one can check it on the infinitesimal level, as seen from the next proposition.

Proposition 5.3. Assume that:

• E′ and E are two finite or countably infinite sets;

• Λ : E′ 99K E is a stochastic Feller matrix with finitely many nonzero entries in
every row;

• Q′ and Q are two matrices of format E′ × E′ and E × E, respectively, satisfying
the assumptions of Theorem 2.3;

• {T ′(t)} and {T (t)} are the corresponding Feller semigroups afforded by that theo-
rem.

Then Q′Λ = ΛQ implies that T ′(t)Λ = ΛT (t) for all t ≥ 0.

Note that the assumptions on Λ, Q′, and Q imply that the products Q′Λ and ΛQ are
well defined and, moreover, these two matrices have finitely many nonzero entries in
every row.

Proof. See [13, Section 6.2].

We will use this result to check condition (5.2) from Proposition 5.1.

5.2 Approximation of semigroups

Here we are going to show that, under suitable additional assumptions, the bound-
ary semigroup T∞(t) that is afforded by the construction of Proposition 5.1 is approxi-
mated by semigroups Tr(t) in the sense of Definition 3.2.

We keep to the hypotheses of Proposition 5.1. Next, we assume that Condition 4.1
is satisfied and one more condition holds:

Condition 5.4. For every r ∈ I, the space Cc(Er) of finitely supported functions is
a core for the generator Ar of the semigroup Tr(t). Moreover, this space is invariant
under the action of Ar.

We set Lr = C0(Er), L∞ = C0(E∞). Given a function f on E∞, we define the
function πrf on Er by

(πrf)(x) := f(ϕr(x)), x ∈ Er.

Since ϕr(Er) is assumed to be a locally finite subset of E∞ (see part (i) of Condition
4.1), πr maps L∞ into Lr. Obviously, the norm of πr is less or equal to 1.

Proposition 5.5. Under the above assumptions, Tr(t) → T∞(t) in the sense of Defini-
tion 3.2.
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Proof. Let A∞ be the generator of the boundary semigroup T∞(t). By virtue of Theorem
3.4, it suffices to prove that the restriction of A∞ to some core F is approximated by
the operators Ar. As F we take the linear span of the subspaces Λ∞r Cc(Er) ⊂ C0(E∞),
where r ranges over I. The second condition postulated above says that Cc(Er) is a
core of Ar; consequently, F is a core for A∞, by virtue of Proposition 5.2.

According to Definition 3.3 we have to show that for any vector f ∈ F one can find a
family of vectors fr ∈ Dom(Ar) such that the following two limit relations hold: fr → f

and Arfr → A∞f as r →∞.
Without loss of generality we may assume that f ∈ Λ∞s g with g ∈ Cc(Es) for some

s ∈ I. Next, for r > s we set fr := Λrsg and observe that it suffices to prove the first limit
relation only. Indeed, once we know that fr → f with such a choice of {fr}, the second
limit relation, Arfr → A∞f , follows simply by replacing g with Asg, because the links
intertwine the generators. We also use the fact that g ∈ Cc(Es) implies Asg ∈ Cc(Es)
(see the end of the second condition above).

We proceed to the proof of the convergence fr → f . By Definition 3.1, it means that

lim
r→∞

sup
x∈Er

|fr(x)− f(ϕr(x))| = 0.

Without loss of generality we may assume that g is the delta-function at a point y ∈ Es,
but then the desired limit relation holds by virtue of Condition 4.1.

6 A toy example: the one-dimensional Laguerre diffusion

In this section we apply the abstract formalism described above to a construction of
the Laguerre diffusion process on the halflineR+, generated by the differential operator

x
d2

dx2
+ (c− x)

d

dx

(here c > 0 is a parameter). This process is well known — it is related to the Bessel
process in the same way as the Ornstein-Uhlenbeck process is related to the Wiener
process, see, e.g. Eie [17]. Thus, the final result is by no means new. However, the de-
tailed exposition presented below will serve us as a preparation and a guiding example
for Section 8, where we establish the main results.

6.1 The binomial projective system B

Recall thatBwas introduced in Section 4.3. We will prove two technical propositions
concerning the properties of the links of B.

Observe that every link BΛr
′

r can be applied to an arbitrary function on Z+ (viewed
as a column vector), because each row in BΛr

′

r has finitely many nonzero entries. As
for BΛ∞r , it can be applied to functions on Z+ with moderate (say, at most polynomial)
growth at infinity. In the next two propositions we provide explicit formulas for the
action of the links on functions of some special kind.

Introduce a notation:

y↓m = y(y − 1) . . . (y −m+ 1), m ∈ Z+.

Here y is assumed to range over R+ or Z+, depending on the context. By 1m, where
m ∈ Z+, we denote the function on Z+ equal to 1 at m and to 0 on Z+ \ {m}. The letter
q always denotes a number from the open interval (0, 1). Note that

lim
q→+0

1

m!qm
qyy↓m = 1m on Z+. (6.1)
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Proposition 6.1. Assume r′ > r > 0 and 0 < q < 1, and let l range over Z+. Regard
BΛr

′

r as an operator in the space of functions on Z+ transforming a function F (l) to a
function G(l). Under this transformation

l↓m 7→
( r
r′

)m
l↓m (6.2)

1m 7→
1

m!

(
1− q′

q′

)m
· (q′)ll↓m, q′ := 1− r

r′
(6.3)

qll↓m 7→
(
qr

q′r′

)m
(q′)ll↓m, q′ := 1− (1− q) r

r′
(6.4)

Proof. Let us prove (6.4). The function F (l) = qll↓m vanishes on {0, . . . ,m − 1} and the
same holds for BΛr

′

r F , because the matrix BΛr
′

r is lower triangular. Therefore, it suffices
to compute (BΛr

′

r F )(l) for y ≥ m. We have

(BΛr
′

r F )(l) =

l∑
k=m

(
1− r

r′

)l−k ( r
r′

)k l!

(l − k)! k!
qk

k!

(k −m)!
.

Setting k′ = k −m and l′ = l −m we rewrite the right-hand side as(qr
r′

)m
l↓m

l′∑
k′=0

(
1− r

r′

)l′−k′ (qr
r′

)k′ l′!

(l′ − k′)! k′!
.

The latter sum equals
(q′)l

′
= (q′)−m(q′)l,

which leads to the desired result.
Formula (6.2) can be checked in exactly the same way. Observe also that (6.2) is a

limit case of (6.4) as q → 1.
Formula (6.3) is immediate from the very definition of BΛr

′

r . On the other hand, (6.3)
can also be obtained from (6.4) as a limit case: to see this, divide by m!qm, let q → 0

and use (6.9).

Proposition 6.2. Assume r > 0 and 0 < q < 1, and let l range over Z+ while x ranges
over R+. Regard BΛ∞r as an operator transforming a function F (l) on Z+ to a function
G(x) on R+. Under this transformation

l↓m 7→ rmxm (6.5)

1m 7→
rm

m!
· qx∞xm, q∞ := e−r (6.6)

qll↓m 7→ qmrm · qx∞xm, q∞ := e−(1−q)r. (6.7)

Proof. We may argue exactly as in the proof of Proposition 6.1, replacing the binomial
distribution by the Poisson distribution.

Alternatively, one can use (4.3) and pass to the limit l →∞, r′ →∞, l/r′ → x in the
formulas of Proposition 6.1.

6.2 The Meixner and Laguerre semigroups

Introduce a Q-matrix of format Z+ × Z+, depending on parameters c > 0 and r > 0,
with the entries

Q(c)
r (k, k + 1) = r(c+ k), Q(c)

r (k, k − 1) = (r + 1)k,

Q(c)
r (k, k) = −[r(c+ k) + (r + 1)k] = −[(2r + 1)k + rc],

Q(c)
r (k, k′) = 0, |k − k′| ≥ 2,
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where k ranges over Z+. Let us regard Q(c)
r as a difference operator acting on functions

on Z+, which are interpreted as column vectors:

(Q(c)
r F )(l) = r(c+ l)F (l + 1) + (r + 1)lF (l − 1)− [(2r + 1)l + rc]F (l), (6.8)

where l ∈ Z+. As is seen from the next proposition, this difference operator is re-
lated to the classical Meixner orthogonal polynomials. Recall the definition of the these
polynomials (see, e.g., Koekoek–Lesky–Swarttouw [24] and references therein):

The Meixner polynomials are orthogonal with respect to the negative binomial dis-
tribution on Z+, ∑

l∈Z+

(1 + r)−c
(c)l
l!

(
r

1 + r

)l
δl,

where (c)l := c(c + 1) . . . (c + l − 1) is the Pochhammer symbol and δl denotes the delta
measure at l. The explicit expression for the monic Meixner polynomial of degree n =

0, 1, 2, . . . is

Mn(l; c, r) = (c)n

n∑
m=0

(−r)n−m n↓m

(c)mm!
l↓m. (6.9)

Proposition 6.3. The Meixner difference operator (6.8) preserves the space of poly-
nomials. We have

Q(c)
r : l↓m → −ml↓m + rm(m+ c− 1)l↓(m−1) (6.10)

and
Q(c)
r : Mn(l; c, r)→ −nMn(l; c, r). (6.11)

Thus, the Meixner difference operator is diagonalized in the basis of the Meixner
polynomials.

Proof. All claims can be verified directly. For (6.11), see also [24].

Proposition 6.4. For arbitrary r′ > r > 0, we have

Q
(c)
r′

BΛr
′

r = BΛr
′

r Q
(c)
r .

Proof. Because the Q-matrices in question have a simple tridiagonal form and the en-
tries of BΛr

′

r are given by a simple expression, a direct check is possible. However, we
prefer to give another proof, which has the advantage of being more conceptual and
well suited for the generalization that we need.

Observe that
Q

(c)
r′

BΛr
′

r F = BΛr
′

r Q
(c)
r F

for any polynomial F . Indeed, it suffices to check this for F = Mm( · ; c, r). It follows
from (6.2) and (6.9) that

BΛr
′

r Mm( · ; c, r) =
( r
r′

)m
Mm( · ; c, r′),

and then we use (6.11) to conclude that both Q(c)
r′

BΛr
′

r and BΛr
′

r Q
(c)
r multiply Mm( · ; c, r)

by −m(r/r′)m.

Further, both matrices Q(c)
r′

BΛr
′

r and BΛr
′

r Q
(c)
r have finitely many nonzero entries in

every row. Since the polynomials separate points on Z+, these two matrices coincide.

Proposition 6.5. For any c, r > 0, the matrix Q(c)
r satisfies the assumptions of Theorem

2.3 with functions γ(k) = η(k) = k + 1.
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Proof. Easy direct check.

This proposition makes it possible to apply Theorem 2.3, which in turn entails the
following assertions.

Corollary 6.6. (i) The Q-matrix Q(c)
r gives rise to a Feller semigroup T (c)

r (t) on C0(Z+)

whose generator A(c)
r is implemented by Q(c).

(ii) The subspace C0(Z+) is a core for generator A(c)
r .

We call T (c)
r (t) the Meixner semigroup. It determines a continuous time Markov

chain on Z+ which we call the Meixner chain and denote by X(c)(t).

Proposition 6.7. For every c > 0 there exists a unique Feller Markov process X(c)(t)

on R+ such that the corresponding Feller semigroup, denoted by T (c)(t), is consistent

with the Meixner semigroups T (c)
r (t), r > 0, in the sense that

T (c)(t)BΛ∞r = BΛ∞r T (c)
r (t), t ≥ 0, r > 0.

Proof. We know that the Q-matrices with various values of parameter r are consistent
with the links (Proposition 6.4). It follows, by virtue of Proposition 5.3, that the semi-
groups are also consistent with the links. Therefore, we may apply Proposition 5.1,
which gives the desired result.

We call X(c)(t) and T (c)(t) the Laguerre process and the Laguerre semigroup, re-
spectively; this terminology is justified by the results of Section 6.4.

6.3 A family of cores for Markov semigroup generators

For any fixed q ∈ (0, 1), the functions qxxm, m = 0, 1, 2, . . . , span a dense subspace
in C0(R+), see Borodin–Olshanski [14, Corollary 3.1.6]. This also implies that the func-
tions qllm, wherem = 0, 1, 2, . . . and l ranges over Z+, span a dense subspace in C0(Z+).
These facts are used in the next proposition.

Proposition 6.8. (i) For any r′ > r > 0, the operator BΛr
′

r : C0(Z+) → C0(Z+) has a
dense range.

(ii) Likewise, for any r > 0, the operator BΛ∞r : C0(Z+)→ C0(R+) has a dense range.

Proof. (i) Take an arbitrary q ∈ (0, 1). By (6.4), BΛr
′

r maps the linear span of functions
qllm, m = 0, 1, 2, . . . onto the linear span of functions (q′)llm, with some other q′ ∈ (0, 1),
see (6.4). Since these spans are dense, we get the desired claim.

(ii) The same argument, with reference to (6.7).

Recall that A(c)
r denotes the generator of semigroup T (c)

r (t) (Corollary 6.6). Likewise,
let A(c) denote the generator of semigroup T (c)(t).

Proposition 6.9. Fix an arbitrary number q ∈ (0, 1).
(i) For every r > 0, the linear span of functions qllm, m = 0, 1, 2, . . . , where argument

l ranges over Z+, is a core for A(c)
r .

(ii) Likewise, the linear span of functions qxxm, m = 0, 1, 2, . . . , where argument x
ranges over R+, is a core for A(c).

Proof. (i) Observe that if r2 > r1 > 0 and F1 is a core for A(c)
r1 , then F2 := BΛr2r1F1

is a core for A(c)
r2 . Indeed, by virtue of claim (i) of Proposition 6.8, we may apply the

argument of Proposition 5.2.
Now take r2 = r and r1 = (1 − q)r. Then, as seen from (6.3), the linear span of

functions qyym is just the image under BΛr2r1 of the space Cc(Z+). By virtue of Proposition
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6.5 and claim (iv) of Theorem 2.3, Cc(Z+) is a core for A(c)
r1 . Therefore, its image is a

core for A(c)
r2 .

(ii) We argue as above. First, application of claim (ii) of Proposition 6.8 allows us to
conclude that if F ⊂ C0(Z+) is a core for A(c)

r for some r > 0, then BΛ∞r F is a core for
A(c).

Next, given q ∈ (0, 1) we take r = − log q and F = C0(Z+). As mentioned above, F
is a core for A(c)

r . On the other hand, (6.6) shows that the linear span of functions qxxm

coincides with BΛ∞r F .

6.4 The Laguerre differential operator

Proposition 6.9 implies that the generator A(c) is uniquely determined by its action
on functions of the form qxxm, m = 0, 1, 2, . . . , with an arbitrary fixed q ∈ (0, 1). This

action can be readily computed from the basic relation A(c) BΛ∞r = BΛ∞r Q
(c)
r :

Proposition 6.10. The action of A(c) on functions of the form qxxm, m = 0, 1, 2, . . . is
implemented by the differential operator

D(c) := x
d2

dx2
+ (c− x)

d

dx
. (6.12)

Proof. Let r > 0 be related to q ∈ (0, 1) by r = − log q. Consider the functions

fm(x) :=
rm

m!
qxxm =

rm

m!
e−rxxm, m = 0, 1, 2, . . . , x ∈ R+.

By (6.6),
BΛ∞r 1m = fm, m = 0, 1, 2, . . . .

On the other hand, it is directly verified that the difference operator Q(c)
r defined in

(6.8) acts on the delta functions 1m in the same way as the differential operator D(c)

acts on the functions fm:

Q(c)
r 1m = r(c+m− 1)1m−1 + (r + 1)(m+ 1)1m+1 − [(2r + 1)m+ rc]1m (6.13)

D(c)fm = r(c+m− 1)fm−1 + (r + 1)(m+ 1)fm+1 − [(2r + 1)m+ rc]fm, (6.14)

where
1−1 := 0, f−1 := 0.

This concludes the proof.

Consider the gamma distribution on R+ with parameter c:

1

Γ(c)
xc−1e−xdx, x ∈ R+,

and let Ln(x; c) denote the monic Laguerre polynomials of degree n = 0, 1, 2, . . . , which
are orthogonal with respect to this distribution:

Ln(x; c) = (c)n

n∑
m=0

(−1)n−m
n↓m

(c)mm!
xm. (6.15)

The differential operator D(c) is diagonalized in the basis of the Laguerre polynomi-
als:

D(c)Ln( · ; c) = −nLn( · ; c), n = 0, 1, 2, . . . . (6.16)

Note also that
BΛ∞r Mn( · ; c, r) = rnLn( · ; c). (6.17)

The proof is immediate: we compare the expansions of the Meixner and Laguerre poly-
nomials in the bases {l↓m} and {xm}, respectively (see (6.9) and (6.15)), and then apply
(6.5), which says that BΛ∞r takes the factorial monomial l↓m to rmxm.
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6.5 Approximation

We use the embedding ϕr : Z+ → R+ introduced in Example 4.3 and define the
projection πr : C0(R+)→ C0(Z+) as in Section 5.2.

Proposition 6.11. Let c > 0 be fixed. As r → +∞, the Meixner semigroups T (c)
r (t)

approximate the Laguerre semigroup T (c)(t) in the sense of Definition 3.2.

Proof. Let us check all the hypotheses of Proposition 5.5. Then the desired result will
follow from that proposition.

In fact, the assumptions stated in Section 5.1 are satisfied: we know thatB is a Feller
system, the Meixner semigroups are consistent with the links of B, those are Feller
links, and, by the very definition, the Laguerre semigroup is the boundary semigroup
determined by the Meixner semigroups.

Next, the fulfilment of Condition 4.1 was established in Example 4.3.
It remains to check Condition 5.4. In our situation, it consists in the requirement that

Cc(Z+) is a core for generator A(c)
r and, moreover, is invariant under its action. The fact

that Cc(Z+) is a core follows from Corollary 6.6, item (ii). Its invariance follows from

item (i), because Cc(Z+) is obviously invariant under the action of Q(c)
r .

This completes the proof.

7 A few definitions

Here we collect some basic definitions that will be needed in the next section. For
a more detailed information we refer to Sagan [36] and Stanley [39] (generalities on
Young diagrams, Young tableaux, and symmetric functions); Olshanski–Regev–Vershik
[33] (Frobenius–Schur symmetric functions); Borodin–Olshanski [14], [12] (Thoma’s
simplex and Thoma’s cone).

7.1 Young diagrams

Recall that the Young poset is the set Y of all Young diagrams (including the empty
diagram ∅) with the partial order determined by containment of one Young diagram in
another. For λ ∈ Y we denote by |λ| the number of boxes of λ and we set

Yn = {λ ∈ Y : |λ| = n}, n = 0, 1, 2, . . . .

This makes Y a graded poset . It is actually a lattice, so it is often called the Young
lattice.

The dimension of a diagram λ ∈ Y, denoted by dimλ, is the number of standard
Young tableaux of shape λ, which is the same as the number of saturated chains

∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(n) = λ, n := |λ|,

in the poset Y.
More generally, for arbitrary two diagrams µ, λ ∈ Y we define dim(µ, λ) as the num-

ber of standard Young tableaux of skew shape λ/µ provided that µ ⊆ λ; otherwise
dim(µ, λ) = 0 (let us agree that dim(λ, λ) = 1). Obviously, dimλ = dim(∅, λ). If µ ⊂ λ,
then dim(µ, λ) equals the number of saturated chains with ends µ and λ.

7.2 Symmetric functions

By Sym we denote the graded algebra of symmetric functions over the base field
R. We will need two bases in Sym, both indexed by arbitrary diagrams µ ∈ Y: the
Schur functions Sµ and the Frobenius–Schur functions FSµ. The relationship between
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Sµ’s and FSµ’s is similar to the relationship between the one-variate monomials xm and
their factorial counterparts x↓m. Observe that x↓m can be characterized as a unique
polynomial in x with highest degree term xm and such that it vanishes at the integer
points 0, 1 . . . ,m − 1. Likewise, one can realize Sym as a subalgebra in Fun(Y), the
algebra of real-valued functions on Y with all operations defined pointwise; see the
next two paragraphs. Then FSµ can be characterized as a unique element of Sym that
has top degree term Sµ and vanishes at all diagrams strictly contained in µ.

Let p1, p2, . . . denote the power-sum symmetric functions. We turn them into func-
tions on Y by setting

pk(λ) :=

∞∑
i=1

(
(λr − i+ 1

2 )k − (−i+ 1
2 )k
)

=

d∑
i=1

(
akr + (−1)k−1bkr

)
,

where λ ranges over Y, (λ1, λ2, . . . ) is the partition corresponding to λ, d is the number
of boxes on the main diagonal of λ, and (a1, . . . , ad; b1, . . . , bd) is the collection of the
modified Frobenius coordinates of λ:

ar = λr − i+ 1
2 , br = λ′r − i+ 1

2 , i = 1, . . . , d

(here λ′ is the transposed diagram). One can easily prove that the resulting functions
remain algebraically independent.

Next, every element F ∈ Sym is uniquely written as a polynomial in p1, p2, . . . ; then
we define F (λ) as the same polynomial in numeric variables p1(λ), p2(λ), . . . . In this
way we get the desired embedding of Sym into Fun(Y).

A fundamental property of the Frobenius–Schur functions is the following identity
(see [33, Section 2]) relating them to the dimension function in the poset Y:

l↓m
dim(µ, λ)

dimλ
= FSµ(λ), l := |λ|, m := |µ|. (7.1)

7.3 The Thoma simplex and the Thoma cone

The Thoma simplex is the subspace Ω of the infinite product space R∞+ ×R∞+ formed
by all couples (α, β), where α = (αi) and β = (βi) are two infinite sequences such that

α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0 (7.2)

and
∞∑
i=1

αi +

∞∑
i=1

βi ≤ 1. (7.3)

We equip Ω with the product topology inherited from R∞+ × R∞+ . Note that in this
topology, Ω is a compact metrizable space.

The Thoma cone Ω̃ is the subspace of the infinite product space R∞+ × R∞+ × R+

formed by all triples ω = (α, β, δ), where α = (αi) and β = (βi) are two infinite sequences
and δ is a nonnegative real number, such that the couple (α, β) satisfies (7.2) and the
modification of the inequality (7.3) of the form

∞∑
i=1

αi +

∞∑
i=1

βi ≤ δ.

We set |ω| = δ.
Note that Ω̃ is a locally compact space in the product topology inherited from R∞+ ×

R∞+ × R+. The space Ω̃ is also metrizable and has countable base. Every subset of the
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form {ω ∈ Ω̃ : |ω| ≤ const} is compact. Therefore, a sequence of points ωn goes to
infinity in Ω̃ if and only if |ωn| → ∞.

We will identify Ω with the subset of Ω̃ formed by triples ω = (α, β, δ) with δ = 1. The
name “Thoma cone” given to Ω̃ is justified by the fact that Ω̃ may be viewed as the cone
with the base Ω: the ray of the cone passing through a base point (α, β) ∈ Ω consists of
the triples ω = (rα, rβ, r), r ≥ 0.

More generally, for ω = (α, β, δ) ∈ Ω̃ and r > 0 we set rω = (rα, rβ, rδ).

7.4 Two maps

We embed Sym into the algebra of (non necessarily bounded) continuous functions
on the Thoma cone by setting

pk(ω) =

{∑∞
i=1 α

k
i + (−1)k−1

∑∞
i=1 β

k
i , k = 2, 3, . . .

|ω|, k = 1,

where ω ranges over Ω̃.
We embed the set Y into Ω̃ through the map

λ 7→ ωλ := ((a1, . . . , ad, 0, 0, . . . ), (b1, . . . , bd, 0, 0, . . . ), |λ|),

where, as above, (a1, . . . , ad; b1, . . . , bd) is the collection of the modified Frobenius coor-
dinates of a diagram λ ∈ Y. Note that |ωλ| = |λ|.

For any F ∈ Sym, the restriction of the function F (ω) to the subset Y ⊂ Ω̃ agrees
with the previous definition of the function F (λ):

F (ωλ) = F (λ), λ ∈ Y.

8 Construction of Feller processes on the Thoma cone

8.1 The projective system associated with the Young bouquet

The representation theory of inductive limit groups provides two fundamental ex-
amples of projective systems. One is related to the infinite symmetric group S(∞) and
comes from the Young graph Y, and the other one is related to the infinite-dimensional
unitary group U(∞) and comes from the Gelfand–Tsetlin graph GT. The boundaries
of these two projective systems can be viewed as dual objects to S(∞) and U(∞), re-
spectively. In attempt to explain a surprising similarity between the two boundaries, we
introduced in [14] a new object which serves as a “mediator” between Y and GT. We
called it the Young bouquet ; it is a close relative of Y and at the same time it can be ob-
tained as a degeneration of GT. Associated with the Young bouquet is a new projective
system denoted by YB. Because GT is graded by discrete set Z+, the associated pro-
jective system has Z+ as its index set, but under degeneration the index set becomes
continuous. Here is a formal definition of YB:

The index set of the projective system YB is the set R>0 and each set Er is a copy
of the set Y. For every couple r′ > r of positive real numbers, the corresponding link
Y 99K Y is the following stochastic matrix of format Y ×Y:

YBΛr
′

r (λ, µ) =
(

1− r

r′

)l−m ( r
r′

)m l!

(l −m)!m!

dimµ dim(µ, λ)

dimλ
, (8.1)

where l := |λ| and m := |µ|.
Note that (8.1) factorizes into a product of two links, which refer to two projective

systems, the binomial system B and the Young graph Y:

YBΛr
′

r (λ, µ) = BΛr
′

r (l,m)YΛlm(λ, µ), (8.2)
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where
YΛlm(λ, µ) :=

dimµ dim(µ, λ)

dimλ
. (8.3)

The links (8.1) satisfy the relation

YBΛr
′′

r′
YBΛr

′

r = YBΛr
′′

r , r′′ > r′ > r,

so that they do determine a projective system. We refer to [14] for more details.
By [14, Theorem 3.4.7], the boundary of YB is the Thoma cone Ω̃ together with a

family of links Ω̃ 99K Z+ indexed by positive real numbers r and given by

YBΛ∞r (ω, µ) = e−r|ω|
rm

m!
dimµ · Sµ(ω), ω ∈ Ω̃, µ ∈ Y. (8.4)

Recall that Sµ is the Schur symmetric function and its value at ω ∈ Ω̃ is understood in
accordance with the definition given in Section 7.4.

Proposition 8.1. The projective systemYB is Feller in the sense of the definition given
in Section 4.3.

Proof. The links YBΛr
′

r and YBΛ∞r are Feller: this immediately follows from the Feller
property of the links BΛr

′

r and BΛ∞r . It remains to show that the product topology of the
space Ω̃ coincides with that defined by all the maps ω 7→ Λ∞r (ω, µ), where r ranges over
R>0 and µ ranges over Y. Actually, this holds even if r is any fixed number > 0, and the
argument is similar to that given in Section 4.3.

Namely, we extend the above maps to the one-point compactification Ω̃ ∪∞ of Ω̃ in
a natural way: the value at infinity is equal to 0 for any µ, which agrees with the Feller
property of the links. Then we only have to check that any point of Ω̃ ∪ ∞ is uniquely
determined by its images under the (extended) maps YBΛ∞r ( · , µ), where µ ranges over
Y.

To do this, assume first that ω ∈ Ω̃ and recall (8.4). Keeping m fixed and summing
the quantity in the right-hand side over µ ∈ Ym we get

e−rx
(rx)m

m!
, x := |ω|,

because ∑
µ∈Ym

dimµSµ = (p1)m

and p1(ω) = |ω| = x.
Observe that for r > 0 fixed, the quantities e−rx (rx)m

m! , where m ranges over Z+,
determine x uniquely. It follows, in particular, that we can recognize whether we are
dealing with an element of the Thoma cone Ω̃ or the added point∞, because the latter
case corresponds to x = +∞.

Therefore, it suffices to check that an element ω ∈ Ω̃ is uniquely determined by
the quantities Sµ(ω), where µ ranges over Y. But this follows from the fact that the
functions p1(ω), p2(ω), . . . separate the points of the Thoma cone.

Note that YBΛr
′

r (ν, µ) vanishes unless m ≤ n and µ ⊆ λ. This implies that each row
of the matrix YBΛr

′

r has finitely many nonzero entries, so that the link can be applied to
an arbitrary function on Y.

Below we denote by 1µ the delta function on Y concentrated at the point µ, that is,

1µ(λ) =

{
1, λ = µ,

0, λ 6= µ.
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Proposition 8.2 (cf. Proposition 6.1). Assume that:

• r′ > r > 0 and 0 < q < 1;

• λ range over Y and l := |λ|;
• µ ∈ Y is fixed and m = |µ|.

Regard YBΛr
′

r as linear map F 7→ G transforming a function F (λ) on Y to another
function G(λ). Under this transformation

FSµ(λ) 7→
( r
r′

)m
FSµ(λ), (8.5)

(dimµ)−11µ 7→
1

m!

(
1− q′

q′

)m
· (q′)lFSµ(λ), q′ := 1− r

r′
, (8.6)

qlFSµ(λ) 7→
(
qr

q′r′

)m
(q′)lFSµ(λ), q′ := 1− (1− q) r

r′
. (8.7)

Proof. Let us prove (8.7). The function F (λ) := qlFSµ(λ) vanishes unless λ ⊇ µ, and
the same holds for YBΛr

′

r F , because the matrix YBΛr
′

r is lower triangular with respect
to the partial order on Y determined by the inclusion relation. Therefore, it suffices to
compute (YBΛr

′

r F )(λ) for λ ⊇ µ; in particular, l ≥ m. We have

(YBΛr
′

r F )(λ) =

l∑
k=m

BΛr
′

r (l, k)
∑

κ∈Yk

YΛlk(λ,κ)qkFSµ(κ).

For fixed k,

YΛlk(λ,κ)qkFSµ(κ) = qk
dimκ dim(κ, λ)

dimλ
k↓m

dim(µ,κ)

dimκ
by virtue of (7.1)

= qkk↓m
dim(µ,κ) dim(κ, λ)

dimλ
,

and summing the latter quantity over κ ∈ Yk gives

qkk↓m
dim(µ, λ)

dimλ
.

Therefore,

(YBΛr
′

r F )(λ) = k↓m
dim(µ, λ)

dimλ
·

l∑
k=m

BΛr
′

r (l, k)qk

= k↓m
dim(µ, λ)

dimλ
·
(
qr

q′r′

)m
(q′)ll↓m by (6.4)

=

(
qr

q′r′

)m
(q′)lFSµ(λ),

as desired.
Formula (8.5) can be checked in exactly the same way. Alternatively, it can be ob-

tained a limit case of (8.7) as q → 1.
Formula (8.6) is immediate from the very definition of YBΛr

′

r and FSµ. Alternatively,
(8.6) can also be obtained from (8.7) by a degeneration, like the derivation of (6.3) from
(6.4), see the proof of Proposition 6.1.

Proposition 8.3 (cf. Proposition 6.2). Assume r > 0 and 0 < q < 1; let λ range over
Y and l = |λ|; let ω range over Ω̃ and x = |ω|; let µ ∈ Y be fixed and m = |µ|. Regard

EJP 18 (2013), paper 75.
Page 27/43

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2729
http://ejp.ejpecp.org/


Markov dynamics on the Thoma cone

YBΛ∞r as an operator transforming a function F (λ) on Y to a function G(ω) on Ω̃. Under
this transformation

FSµ(λ) 7→ rmSµ(ω), (8.8)

(dimµ)−11µ 7→
rm

m!
· qx∞Sµ(ω), q∞ := e−r, (8.9)

qlFSµ(λ) 7→ qmrm · qx∞Sµ(ω), q∞ := e−(1−q)r. (8.10)

Proof. We may argue exactly as in the proof of the previous proposition.

8.2 Markov semigroups on Y and Ω̃

We are going to introduce aQ-matrix of formatY×Y depending on the triple (z, z′, r)

of parameters, where r > 0 and (z, z′), as usual, is subject to Condition 1.1. For this
we need some notation. Given λ ∈ Y, let λ+ and λ− stand for the collections of boxes
that can appended to, respectively, removed from λ. For a box 2, its content is defined
as the difference c(2) := j − i, where i and j are the row and column numbers of 2.

The Q-matrix in question is denoted by Q(z,z′)
r and its non-diagonal entries Q(z,z′)

r (λ,κ),
κ 6= λ, vanish unless either κ = λ+ 2 or κ = λ− 2, meaning that κ is obtained from λ

by appending a box 2 ∈ λ+ or by removing a box 2 ∈ λ−. In this notation, the entries
are given by

Q(z,z′)
r (λ, λ+�) = r(z + c(�))(z′ + c(�))

dim(λ+�)

(|λ|+ 1) dimλ
, � ∈ λ+,

Q(z,z′)
r (λ, λ−�) = (r + 1)

|λ|dim(λ−�)

dimλ
, � ∈ λ−,

−Q(z,z′)
r (λ, λ) = (2r + 1)|λ|+ rzz′.

(8.11)

Note that each row of Q(z,z′)
r has finitely many nonzero entries which sum to 0, and

the constraints on the parameters imply that all off-diagonal entries are nonnegative (in

particular, Q(z,z′)
r (λ, λ+ 2) > 0 because of Condition 1.1).

(For more detail about the definition of Q(z,z′)
r , we refer to Borodin–Olshanski [11]

and Olshanski [32]. Formula (8.11) coincides with that of [32, Proposition 4.25] and is
a particular case of [11, (2.19)]. Note that parameter ξ ∈ (0, 1) from those two papers is
related to our parameter r > 0 by ξ = r(r + 1)−1. In [11, (2.19)], parameter ξ may vary
with time; our setup corresponds to the particular case when ξ is fixed, so that the time
derivative ξ̇ equals 0. Then formula [11, (2.19)] simplifies and reduces to (8.11).)

We can interpret Q(z,z′)
r as an operator in the vector space Fun(Y) formed by arbi-

trary real-valued functions on Y:

(Q(z,z′)
r F )(λ) =

∑
κ∈Y

Q(z,z′)
r (λ,κ)F (κ), F ∈ Fun(Y). (8.12)

As explained in [32], this operator should be viewed as a counterpart of the Meixner
difference operator on Z+. The next step is to introduce counterparts of the Meixner
polynomials. According to [32, Definition 4.21], these are elements of Sym called the
Meixner symmetric functions and denoted by Mν , where the index ν ranges over Y.
They depend on the triple (z, z′, r) and are given by the following expansion in the basis
of the Frobenius–Schur symmetric functions (cf. (6.9)):

M(z,z′,r)
ν =

∑
µ:µ⊆ν

(−1)|ν|−|µ|r|ν|−|µ|
dim ν/µ

(|ν| − |µ|)!

×
∏

�∈ν/µ

(z + c(�))(z′ + c(�)) · FSµ.
(8.13)
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Proposition 8.4 (cf. Proposition 6.3). Under the action of Q(z,z′)
r in Fun(Y),

FSµ → −|µ|FSµ + r
∑

2∈µ−
(z + c(2))(z′ + c(2))FSµ\2, (8.14)

M(z,z′,r)
µ → −|µ|Mµ. (8.15)

Proof. See [32, Section 4.8].

Proposition 8.5 (cf. Proposition 6.4). For arbitrary r′ > r > 0, we have

Qz,z
′

r′
YBΛr

′

r = YBΛr
′

r Q
z,z′

r .

Proof. We literally follow the argument in the proof of Proposition 6.4. From the defini-
tion of the Meixner symmetric functions and (8.5) it is readily seen that

YBΛr
′

r M(z,z′,r)
ν =

( r
r′

)|ν|
M(z,z′,r′)
ν

and then (8.15) implies that the both sides of the operator equality in question give the

same result when applied to M
(z,z′,r)
ν . Therefore, the equality holds on all elements of

Sym. As these elements separate points of Y, this concludes the proof.

Proposition 8.6 (cf. Proposition 6.5). The matrix Q(z,z′)
r satisfies the assumptions of

Theorem 2.3 with functions γ(λ) = η(λ) = |λ|+ 1, λ ∈ Y.

Proof. As seen from the description of the Q-matrix given in [11, Section 2.5] (see the
sentence just before [11, Proposition 2.11]), for any λ ∈ Y one has∑

2∈λ±
Q(z,z′)
r (λ, λ±2) = Q(c)

r (|λ|, |λ| ± 1), c := zz′

(note that c > 0 because of Condition 1.1). This implies that the action of Q(z,z′)
r pre-

serves the subspace in Fun(Y) formed by those functions in variable λ ∈ Y that depend
only on |λ|, and in that subspace, the action reduces to that of the difference operator

Q
(c)
r with c = zz′.

Therefore, the claim of the proposition reduces to that of Proposition 6.5.

Combining this proposition with Theorem 2.3 we get

Corollary 8.7 (cf. Corollary 6.6). (i) The Q-matrix Q(z,z′)
r gives rise to a Feller semi-

group T (z,z′)
r (t) on C0(Y) whose generator A(z,z′)

r is implemented by Q(z,z′)
r .

(ii) The subspace C0(Y) is a core for generator A(z,z′)
r .

Proposition 8.8 (cf. Proposition 6.7). For every couple (z, z′) of parameters subject to
Condition 1.1 there exists a unique Feller semigroup T (z,z′)(t) such that for every r > 0,

T (z,z′)(t) is consistent with the T (z,z′)
r (t), r > 0, in the sense that

T (z,z′)(t)YBΛ∞r = YBΛ∞r T (z,z′)
r (t), t ≥ 0, r > 0.

Proof. The argument is exactly the same as in Proposition 6.7: We know that the Q-
matrices with various values of parameter r are consistent with the links (Proposition
8.5). It follows, by virtue of Proposition 5.3, that the semigroups are consistent with the
links, too. Therefore, we may apply Proposition 5.1, which gives the desired result.

Definition 8.9. For r > 0, we denote by X
(z,z′)
r the Feller Markov process on Y de-

termined by the semigroup T (z,z′)
r (t). Likewise, we denote by X(z,z′) the Feller Markov

process on Ω̃ determined by the semigroup T (z,z′)(t).
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8.3 A family of cores for Markov semigroup generators

The following two claims are used in the proposition below.

First, let ω range over the Thoma cone Ω̃ and µ range over Y. For any fixed q ∈ (0, 1),
the functions q|ω|Sµ(ω) span a dense subspace in C0(Ω̃), see [14, Corollary 3.4.6].

Second, let λ range over Y. Recall that in Section 7.4 we defined an embedding
Y ↪→ Ω̃ via the map λ 7→ ωλ. Observe that |λ| = |ωλ|; this implies that a sequence {λ}
of diagrams goes to infinity in the discrete set Y if and only if its image {ωλ} goes to
infinity in the locally compact space Ω̃. Combining this with the first claim we conclude
that for any fixed q ∈ (0, 1), the functions q|λ|Fµ(λ) span a dense subspace in C0(Y).

Proposition 8.10 (cf. Proposition 6.8). (i) For any r′ > r > 0, the operator YBΛr
′

r :

C0(Y)→ C0(Y) has a dense range.

(ii) Likewise, for any r > 0, the operator YBΛ∞r : C0(Y)→ C0(Ω̃) has a dense range.

Proof. (i) Fix an arbitrary q ∈ (0, 1) and let µ range over Y. By (8.7), YBΛr
′

r maps the
linear span of functions q|λ|Sµ(λ) onto the linear span of functions (q′)|λ|Sµ(λ) with some
other q′ ∈ (0, 1). Since these spans are dense, we get the desired claim.

(ii) The same argument, with reference to (8.10).

Denote by A(z,z′)
r and A(z,z′) the generators of the semigroups T (z,z′)

r (t) and T (z,z′)(t),
respectively.

Proposition 8.11 (cf. Proposition 6.9). Fix an arbitrary number q ∈ (0, 1) and let µ
range over Y.

(i) For every r > 0, the linear span of functions q|λ|Sµ(λ), where argument λ ranges

over Y, is a core for A(z,z′)
r .

(ii) Likewise, the linear span of functions q|ω|Sµ(ω), where argument ω ranges over

Ω̃, is a core for A(z,z′).

Proof. (i) Observe that if r2 > r1 > 0 and F1 is a core for A(z,z′)
r1 , then F2 := YBΛr2r1F1 is

a core for A(z,z′)
r2 . Indeed, by virtue of claim (i) of Proposition 8.10, we may apply the

argument of Proposition 5.2.

Now take r2 = r and r1 = (1 − q)r. Then, as is seen from (8.6), the linear span
of functions q|λ|Sµ(λ) is just the image under YBΛr2r1 of the space Cc(Y). By virtue of

Proposition 8.6 and claim (iv) of Theorem 2.3, Cc(Y) is a core for A(z,z′)
r1 . Therefore, its

image is a core for A(z,z′)
r2 .

(ii) We argue as above. First, application of claim (ii) of Proposition 8.10 allows us

to conclude that if F ⊂ C0(Y) is a core for A(z,z′)
r for some r > 0, then YBΛ∞r F is a core

for A(z,z′).

Next, given q ∈ (0, 1) we take r = − log q and F = C0(Y). As pointed above, F
is a core for A(z,z′)

r . On the other hand, (8.9) shows that the linear span of functions
q|ω|Sµ(ω) coincides with YBΛ∞r F .
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8.4 The infinite-variate Laguerre differential operator

Following [32, Theorem 4.10], we introduce the following partial differential opera-
tor in countably many formal variables e1, e2, . . . :

D(z,z′) =
∑
n≥1

(
n−1∑
k=0

(2n− 1− 2k)e2n−1−kek

)
∂2

∂e2
n

+ 2
∑

n′>n≥1

(
n−1∑
k=0

(n′ + n− 1− 2k)en′+n−1−kek

)
∂2

∂en′∂en

+

∞∑
n=1

(
− nen + (z − n+ 1)(z′ − n+ 1)en−1

) ∂

∂en

(8.16)

with the agreement that e0 = 1. We call it the infinite-variate Laguerre differential
operator.

Since all coefficients of D(z,z′) are given by finite sums, D(z,z′) is applicable to any
polynomial in e1, e2, . . . . This means that it is well defined on Sym provided that we
interpret our formal variables as the elementary symmetric functions (here we use the
fact that {e1, e2, . . . } is a system of algebraically independent generators of Sym). But
D(z,z′) is also applicable to more general cylinder functions, in particular, to the func-
tions of the form qe1F , where q ∈ (0, 1) and F ∈ Sym. Note that e1(ω) = |ω|, so that
these are just the functions considered in claim (ii) of Proposition 8.11. By virtue of this
claim, for any fixed q = e−r ∈ (0, 1), the functions of the form qe1F with F ∈ Sym enter
the domain of the generator A(z,z′), and A(z,z′) is uniquely determined by its action on
these functions.

Proposition 8.12 (cf. Proposition 6.10). For any r > 0, the action of the generator
A(z,z′) on the functions of the form exp(−re1)F with F ranging over the algebra Sym =

R[e1, e2, . . . ] is implemented by the infinite-variate Laguerre differential operator D(z,z′)

defined by (8.16).

Proof. Let µ range over Y and m := |µ|. Recall that 1µ denotes the delta function on Y
concentrated at the point µ. We also set

1̃µ = (dimµ)−11µ

and

fµ =
rm

m!
exp(−re1)Sµ.

By virtue of (8.9),
YBΛ∞r 1̃µ = fµ.

Recall also that µ+ and µ− denote the sets of boxes that can be appended to or removed
from µ, respectively.

We are going to prove the following analogs of formulas (6.13) and (6.14):

Q(c)
r 1̃µ = −[(2r + 1)m+ rzz′]1̃µ + (r + 1)(m+ 1)

∑
2∈µ+

1̃µ+2

+
r

m

∑
2∈µ−

(z + c(2))(z′ + c(2))1̃µ−2 (8.17)
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and

D(z,z′)fµ = −[(2r + 1)m+ rzz′]fµ + (r + 1)(m+ 1)
∑

2∈µ+

fµ+2

+
r

m

∑
2∈µ−

(z + c(2))(z′ + c(2))fµ−2 (8.18)

(for the empty diagram µ, the set µ− is empty and the corresponding sum disappears).

These formulas show that the operator Q(z,z′)
r acts on the functions 1̃µ in exactly the

same way as the operator D(z,z′) acts on the functions fµ, which implies the claim of the
proposition.

The proof of (8.17) is trivial: this formula directly follows from the very definition of

Q
(z,z′)
r , see (8.11).

The proof of (8.18) is a bit more complicated. Observe that if a second order partial
differential operator D, symbolically written as

D =
∑
i,i

cij∂i∂j + first order terms,

is applied to a product of two functions, GF , then the result can be written as the sum
of three expressions:

D(GF ) = (DF )G︸ ︷︷ ︸
1

+G(DF )︸ ︷︷ ︸
2

+
∑
i,j

cij [(∂iG)(∂jF ) + (∂jG)(∂iF )]︸ ︷︷ ︸
3

. (8.19)

Let us apply this general formula to

D := D(z,z′), G :=
rm

m!
e−re1 , F := Sµ

and examine the corresponding three expressions arising from (8.19).
1. The first expression is equal to

rm

m!

(
D(z,z′)e−re1

)
Sµ =

rm

m!

{[
e1
d2

de2
1

+ (−e1 + zz′)
d

de1

]
e−re1

}
Sµ

=
rm

m!
(r2 + r)e−re1e1Sµ −

rm

m!
rzz′e−re1Sµ.

It is well known that

e1Sµ =
∑

2∈µ+

Sµ+2.

It follows that the first expression in question is equal to

(r + 1)(m+ 1)
rm+1

(m+ 1)!
e−re1

∑
2∈µ+

Sµ+2 − rzz′
rm

m!
e−re1Sµ

= (r + 1)(m+ 1)
∑

2∈µ+

fµ+2 − rzz′fµ. (8.20)

2. The second expression in (8.19) takes the form

rm

m!
e−re1(D(z,z′)Sµ).
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It follows from [32, Theorem 4.1 and Definition 4.7] that

D(z,z′)Sµ = −mSµ +
∑

2∈µ−
(z + c(2))(z′ + c(2))Sµ−2, m = |µ|.

This implies that the second expression is equal to

−mfµ +
r

m

∑
2∈µ−

(z + c(2))(z′ + c(2))fµ−2. (8.21)

3. The only relevant part of our differential operator D = D(z,z′) that contributes to
the third expression in (8.19) is

e1
∂2

∂e2
1

+ 2
∑
n′>1

n′en′
∂2

∂en′∂e1
,

because the remaining terms in D(z,z′) are either of the first order or do not contain the
partial derivative in variable e1 while our function G depends on e1 only. It follows that
the third expression has the form

2
rm

m!

(
d

de1
e−re1

)
e1

∂

∂e1
Sµ + 2

rm

m!

(
d

de1
e−re1

) ∑
n′>1

n′en′
∂

∂en′
Sµ

= −2r
rm

m!
e−re1

∑
n≥1

nen
∂

∂en
Sµ.

Observe that the operator ∑
n≥1

nen
∂

∂en

is the “Euler operator”; its action on the homogeneous function Sµ amounts to mul-
tiplication by its degree m. Using this fact we see that the third expression is equal
to

− 2rmfµ. (8.22)

Finally, summing up (8.20), (8.21), and (8.22) we get the desired formula (8.18)

The Laguerre symmetric functions, introduced in Olshanski [32], are elements of
Sym depending on parameters z and z′, and indexed by Young diagrams ν ∈ Y:

L(z,z′)
ν =

∑
µ:µ⊆ν

(−1)|ν|−|µ|
dim ν/µ

(|ν| − |µ|)!
(z)ν/µ(z′)ν/µSµ. (8.23)

As shown in [32], they form a basis in Sym diagonalizing operator D(z,z′):

D(z,z′)L(z,z′)
ν = −|ν|L(z,z′)

ν , ν ∈ Y. (8.24)

The above formula is similar to (6.16), and the next formula is an analog of (6.17):

YBΛ∞r M(z,z′,r)
ν = r|ν|L(z,z′)

ν , r > 0, ν ∈ Y. (8.25)

The proof of (8.25) is easy and analogous to that of (6.17). Namely, we compare the
expansions of the Meixner and Laguerre symmetric functions in the bases {FSµ} and
{Sµ}, respectively (see (8.13) and (8.23)), and then apply (8.8), which says that YBΛ∞r
takes FSµ to r|µ|Sµ.
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8.5 Approximation

Recall that in Section 7.4 we introduced an embedding λ 7→ ωλ of the set Y into the
Thoma cone Ω̃. Now let us introduce a family of embeddings ϕr : Y ↪→ Ω̃ depending on
parameter r > 0:

ϕr(λ) = r−1ωλ, λ ∈ Y,
where multiplication by constant factor r−1 in the right-hand side means that all co-
ordinates of ωλ are multiplied by that constant — a natural homothety on the cone.
Obviously, ϕ1 is the map λ 7→ ωλ.

The latter map should be viewed as a counterpart of the inclusion map Z+ ↪→ R+,
while ϕr is a counterpart of the scaled embedding Z+ 3 l 7→ r−1l ∈ R+.

Note that ϕr(Y) is a discrete, locally finite subset of Ω̃. Therefore, we may define
the projection πr : C0(Ω̃)→ C0(Y) as in Section 5.2:

(πrf)(λ) = f(ϕr(λ)), λ ∈ Y.

It is used in the proposition below to define the approximation procedure.

Recall that in Corollary 8.7 and Proposition 8.8 we defined Feller semigroups T (z,z′)
r (t)

and T (z,z′)(t) acting on the Banach spaces C0(Y) and C0(Ω̃), respectively.

Proposition 8.13 (cf. Proposition 6.11). Let (z, z′) be fixed. As r → +∞, the semi-

groups T (z,z′)
r (t) approximate the semigroup T (z,z′)(t) in the sense of Definition 3.2.

Proof. As in the proof of Proposition 6.11, we only need to check all the hypotheses of
Proposition 5.5.

Again, the assumptions stated in Section 5.1 are satisfied: we know that YB is a

Feller system, the semigroups T (z,z′)
r (t) with varying parameter r > 0 are consistent

with the links of YB, they are Feller links, and, by the very definition, the semigroup

T (z,z′)(t) is the boundary semigroup determined by the pre-limit semigroups T (z,z′)
r (t).

Next, we have to check Conditions 4.1 and 5.4.
The second condition consists in the requirement that Cc(Y) is a core for generator

A
(z,z′)
r and, moreover, is invariant under its action. The fact that Cc(Y) is a core follows

from Corollary 8.7, item (ii). Its invariance follows from item (i), because Cc(Y) is

obviously invariant under the action of Q(z,z′)
r .

Finally, the first condition means that that for fixed s > 0 and µ ∈ Y

lim
r→∞

sup
λ∈Y

∣∣YBΛrs(λ, µ)− YBΛ∞s (ϕr(λ), µ)
∣∣ = 0, (8.26)

and this was established in the proof of [14, Theorem 3.4.7] (note only a slight diver-
gence of notation: in [14], we wrote r′ and r instead of r and s, respectively).

8.6 The stationary distribution

The so-called mixed z-measure on Y with parameters (z, z′) and r is defined by

M (z,z′)
r (λ) = (r + 1)−zz

′
(

r

r + 1

)|λ|
·
∏
2∈λ

(z + c(2))(z′ + c(2)) ·
(

dimλ

|λ|!

)2

, (8.27)

where λ ranges over Y. As before, we assume that r > 0 and (z, z′) satisfies Condition

1.1. Then the weights M (z,z′)
r (λ) are strictly positive and sum to 1, so that M (z,z′)

r is a

probability measure on Y whose support is the whole set Y. Measures M (z,z′)
r first ap-

peared in Borodin–Olshanski [7]; additional information can be found in Okounkov [29],
Borodin–Olshanski [9], and Olshanski [32]. These measures are a particular case of
Okounkov’s Schur measures introduced in [28]. (As mentioned above, in those papers,
the third parameter, denoted by ξ, is related to our parameter r by ξ = r(1 + r)−1.)
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Proposition 8.14. M (z,z′)
r serves as a unique stationary distribution for the Markov

process X(z,z′)
r determined by the Feller semigroup T (z,z′)

r (t).

Proof. The fact that M (z,z′)
r is a stationary measure is a particular case of [11, Proposi-

tion 2.12].
Next, from the structure of matrix Q(z,z′)

r and the construction of X(z,z′)
r it follows

that X(z,z′)
r is an irreducible Markov chain: all states λ ∈ Y are communicating. Ac-

cording to a general theorem (see Anderson [1, Chapter 5, Theorem 1.6]) this implies
the uniqueness claim.

As shown in [14, Proposition 3.5.3], the measures M (z,z′)
r with varying parameter

r are compatible with the links YBΛr
′

r , that is, they form a coherent family. Therefore,
they give rise to a boundary measure on Ω̃, which we denote by M (z,z′) and call the
z-measure on the Thoma cone.

Proposition 8.15. M (z,z′) serves as a unique stationary distribution for the Markov
process X(z,z′) determined by the Feller semigroup T (z,z′)(t).

Proof. We have to prove that M (z,z′) satisfies the relation M (z,z′)T (z,z′)(t) = M (z,z′) and
is a unique probability measure on Ω̃ with this property. By Proposition 8.14, a similar

claim holds for measures M (z,z′)
r . Because {M (z,z′)

r : r > 0} is a coherent family, this
immediately implies the desired claim: an easy formal argument can be found in [13,
Section 2.8].

Proposition 8.16. M (z,z′) is the weak limit of measures ϕr(M
(z,z′)
r ) as r → +∞.

Proof. Indeed, as mentioned above (see the proof of Proposition 8.13), in our situation
Condition 4.1 is satisfied. Therefore, we may apply Proposition 4.2 which gives the
desired result.

Remark 8.17. In Olshanski [32], the z-measures on the Thoma cone were defined in a
different way, see [32, Theorem 5.18]. However, the two definitions are equivalent, as
can be seen from the comparison of Proposition 8.16 with [32, Theorem 5.28].

9 Determinantal structure

9.1 Generalities on correlation functions

Let X be a locally compact metrizable separable space (we will actually take for
X the punctured real line R∗ := R \ {0} or the one-dimensional lattice). A finite or
countably infinite collection of points in X without accumulation points is called a con-
figuration. We say “collection” and not “subset” because, in principle, multiple points
are permitted; one could also use the term “multiset”. To a configuration ω we assign
the Radon measure

∆(ω) :=
∑
x∈ω

∆x,

where ∆x denotes the delta-measure at x. This assignment establishes a one-to-one
correspondence between all possible configurations in X and all sigma-finite Radon
measures on X with the property that the mass of any compact subset is a nonnegative
integer. The space of configurations will be denoted by Conf(X). We equip it with
the topology inherited from the vague topology on the space of Radon measures. In
particular, Conf(X) has a natural Borel structure. This structure is generated by the
integer-valued functions NB, where B ⊂ X is an arbitrary relatively compact Borel
subset and

NB(ω) := |ω ∩B|, ω ∈ Conf(X).
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Let M be a probability Borel measure on Conf(X). Then the functions NB become
random variables. We will assume that every such function has finite moments of any
order,

EM ((NB)k) < +∞, ∀k = 1, 2, . . . , ∀B,
where EM means expectation relative to M . Under this assumption one assigns to M
an infinite collection {ρk : k = 1, 2, . . . } of measures, where ρk is a (usually infinite)
measure on the k-fold product space Xk, defined as follows.

First, given ω ∈ Conf(X), we form a purely atomic measure ∆k(ω) on Xk by setting

∆k(ω) :=
∑

x1,...,xk

∆x1
⊗ · · · ⊗∆xk

,

where the sum is taken on arbitrary ordered k-tuples of distinct points extracted from
ω.

Second, we interpret ∆k(ω) as a random measure driven by the probability distribu-
tion M and average over M ,

ρk = ρMk := EM (∆k( · )).

The measure ρMk is called the kth correlation measure of M , and the first corre-
lation measure ρM1 is also called the density measure. Under mild hypotheses on the
correlation measures, they determine the initial measure M uniquely, see Lenard [26].

M is said to be a determinantal measure if the following condition holds. Choose
a “reference” measure σ on X, equivalent to the density measure (the condition stated
below does not depend on the choice of σ). There should exist a function K(x, y) on
X×X such that, for every k ≥ 1, the kth correlation measure ρMk is absolutely continuous
with respect to σ⊗k, and the corresponding Radon-Nikodým density is given by a k × k
principal minor extracted from kernel K:

ρMk
σ⊗k

(x1, . . . , xk) = det[K(xi, xj)].

The quantity in the left-hand side is called the kth correlation function, andK(x, y) is
called the correlation kernel of M . In contrast to correlation functions, the correlation
kernel, if it exists, is not a canonical object: there are ways to modify it without affecting
the correlation functions. On the other hand, any determinantal measure is uniquely
determined by its correlation functions and hence by the correlation kernel.

“Determinantal measure” is another name for “determinantal point process” (more
precisely, for the law of such a point process). A standard reference is Soshnikov’s
expository paper [37]. See also the more recent survey Borodin [4] and references
therein.

9.2 Determinantal structure of the stationary distributions

Set X = R∗ and define a map Ω̃→ Conf(R∗) as follows:

Ω̃ 3 ω 7→ ω̄ := {αi : αi 6= 0} ∪ {−βi : βi 6= 0} ∈ Conf(R∗).

Because of the constraint
∑
αi +

∑
βi ≤ δ < +∞, ω̄ is indeed a configuration on R∗.

Clearly, the map is continuous and hence Borel. So it converts every probability Borel
measure M on Ω̃ to a probability Borel measure M̄ on Conf(R∗). This makes it possible
to speak about the correlation functions of M , referring to those of M̄ .

We fix a pair of parameters (z, z′) satisfying Condition 1.1 and denote by M̄ (z,z′)

the measure on Conf(R∗) coming from the z-measure M (z,z′). In the next theorem,
K(z,z′)(x, y) denotes the Whittaker kernel onR∗×R∗ studied in Borodin [3] and Borodin–
Olshanski [7], [11]. We will not use its exact form here.
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Theorem 9.1. M̄ (z,z′) is a determinantal measure whose correlation kernel is the Whit-
taker kernel K(z,z′)(x, y).

This result was first proved in [3]. Below we give in detail a different derivation,
because it is well suited for the extension to the case of finite-dimensional distributions
of processes X(z,z′). Note that a similar argument is contained in [8, Proposition 4.2].

Proof. Step 1. Let M be a probability measure on Ω̃ and M̄ be the corresponding
measure on Conf(R∗). We will establish a simple estimate which, in particular, provides
a convenient sufficient condition for the existence of the correlation measures.

For ε > 0, set

Bε := R \ (−ε, ε) ⊂ R∗.

Recall the notation |ω| = |(α, β, δ)| = δ. The basic constraint
∑

(αi + βi) ≤ |ω| implies
the inequality

|ω̄ ∩Bε| ≤ ε−1|ω|, (9.1)

which in turn implies that

EM̄ ((NBε
)k) ≤ ε−k

∫
Ω̃

|ω|kM(dω), k = 1, 2, . . . .

Denote by |M | the measure on R+ that is the pushfoward of M under the projection
ω 7→ |ω|. The above inequality can be rewritten as

EM̄ ((NBε
)k) ≤ ε−k

∫
R+

sk|M |(ds) k = 1, 2, . . . .

This shows that if |M | has finite moments of all orders, then the left-hand side is finite
for all k and hence the correlation measures of M̄ are well defined. (Here we tacitly
used the evident fact that any compact subset of R∗ is contained in subset Bε with ε

small enough.)
Step 2. For r > 0, set Mr := MΛ∞r . It is initially defined as a probability distribution

on Y, but it is convenient to transfer it to Ω̃ using the embedding ϕr : Y → Ω̃. So, we
will regard each Mr as a probability distribution on Ω̃.

By Proposition 4.2, Mr converges to M in the weak topology as r → +∞, meaning
that

lim
r→+∞

〈Ψ,Mr〉 = 〈Ψ,M〉 (9.2)

for any continuous bounded function Ψ on Ω̃.
Assume now that we dispose of the following uniform bound on the tails of measures

|Mr|:

For every k = 1, 2, . . . , one has

∫
R+

sk|Mr|(ds) ≤ Ck

with a constant Ck independent on r.

(9.3)

Then, evidently, (9.2) holds under weaker assumptions on Ψ: it suffices to require that Ψ

is continuous and has moderate growth at infinity, meaning that |Ψ(ω)| ≤ const(1+ |ω|)k
for some k.

Step 3. Assume that condition (9.3) is satisfied. We claim that then the correlation
measures of Mr vaguely converge to the respective correlation measures of M .

Indeed, first of all, by virtue of step 1, our assumption guarantees the very exis-
tence of the correlation measures for measures Mr. Moreover, the inequalities (9.3)
are inherited by the limit measure M , so that its correlation measures exist, too.
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Fix k = 1, 2, . . . . By definition, the vague convergence of the kth correlation mea-
sures, ρMr

k → ρMk , means that

lim
r→+∞

〈F, ρMr

k 〉 = 〈F, ρMk 〉

for any continuous, compactly supported function F on (R∗)k. By the very definition of
the correlation measures, the latter relation is equivalent to fulfillment of relation (9.2),
where Ψ = ΨF has the following form

ΨF (ω) = 〈F,∆k(ω̄)〉 =
∑

x1,...,xk

F (x1, . . . , xk), (9.4)

where the sum is taken over ordered k-tuples of distinct points extracted from configu-
ration ω̄.

Now, by virtue of step 2, it suffices to check that ΨF is continuous and has moderate
growth at infinity.

Choose ε so small that the support of F is contained in Bkε . By virtue of bound (9.1),

|ΨF (ω)| ≤ ε−k‖F‖ |ω|k.

Therefore, ΨF has moderate growth at infinity.
To see that ΨF is continuous look at the right-hand side of (9.4) and observe that

F (x1, . . . , xk) vanishes unless all quantities |x1|, . . . , |xk| are bounded from below by ε,
which in turn entails that the k-tuple {x1, . . . , xk} is contained in the subset

{α1, . . . , αm,−β1, . . . ,−βm}, m := [ε−1|ω|].

That is, only coordinates of ω with a few first indices really contribute, and this finite
set of possible indices depends only on |ω|. Together with the continuity of F this gives
the desired claim.

Step 4. Now we apply the above general arguments to M := M (z,z′) and the corre-

sponding pre-limit measures Mr := M
(z,z′)
r . Recall that, according to our convention,

M
(z,z′)
r lives on ϕr(Yr) ⊂ Ω̃. Then we know exactly what is |M (z,z′)

r |: it is a scaled
negative binomial distribution living on the subset r−1Z+ ⊂ R+:

|M (z,z′)
r |(r−1l) = (r + 1)−zz

′ (zz′)↓l

l!

(
r

r + 1

)l
, l ∈ Z+.

Condition (9.3) on the tails is readily checked (note that the limiting measure |M (z,z′)|
is the Γ-distribution with parameter zz′). Therefore, all correlation functions exist, and
we have the limit relation

lim
r→+∞

〈F, ρMr

k 〉 = 〈F, ρMk 〉, Mr := M (z,z′)
r , M := M (z,z′)

for any continuous compactly supported function F on (R∗)k.
Step 5. Finally, we apply the results of our papers [7] and [11]. As shown in those

papers, the pre-limit measures Mr = M
(z,z′)
r are determinantal, with some correlation

kernels K(z,z′)
r (x, y), called discrete hypergeometric kernels, for which an explicit ex-

pression is known.

In accordance with our definition of measure M (z,z′)
r , it lives on the lattice r−1Z′ ⊂

R∗, where Z′ := Z + 1
2 . As the reference measure σ, we take the counting measure on

the lattice. Then one can write

〈F, ρMr

k 〉 =
∑

(x1,...,xk)∈(r−1Z′)k

F (x1, . . . , xk) det[K(z,z′)
r (xi, xj)].
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On the other hand, the limiting behavior of kernels K(z,z′)
r (x, y) was studied in [7,

Theorem 5.4]. It follows that, as r → +∞, the right-hand side of the above relation
converges to ∫

(x1,...,xk)∈(R∗)k
F (x1, . . . , xk) det[K(z,z′)(xi, xj)]dx1 . . . dxk,

where K(z,z′)(x, y) is the Whittaker kernel. This completes the proof.

Remark 9.2. The map M 7→ M̄ converting a measure on Ω̃ to that on Conf(R∗) is
not injective, because the map ω 7→ ω̄ ignores parameter δ. However, M is uniquely
determined by its pushforward M̄ if it is known a priori that M is supported by the
subset

Ω̃0 := {ω :
∑

αi +
∑

βi = δ} ⊂ Ω̃.

(Note that Ω̃0 is a dense Borel subset of type Gδ.)
This is just the case for M = M (z,z′), as can be proved using Olshanski [30, Theorem

6.1]. Therefore, M (z,z′) is completely specified by the correlation kernel K(z,z′)(x, y) of
the measure M̄ (z,z′).

9.3 Determinantal structure of equilibrium finite-dimensional distributions

Starting Markov process X(z,z′) at time t = 0 from the stationary distribution we
get a stationary in time stochastic process X̃(z,z′). Given time moments 0 ≤ t1 < · · · <
tn, let M (z,z′)(t1, . . . , tn) stand for the corresponding finite-dimensional distribution of
X̃(z,z′). The distributions M (z,z′)(t1, . . . , tn) are invariant under simultaneous shift of
all time moments by a constant; they can be called the equilibrium finite-dimensional
distributions. For n = 1, we have M (z,z′)(t) ≡M (z,z′).

Initially M (z,z′)(t1, . . . , tn) is defined as a probability measure on the n-fold prod-
uct space Ω̃n, but then we convert it to a probability measure M̄ (z,z′)(t1, . . . , tn) on
(Conf(R∗))n, just as we did above for the case n = 1. Observe that (Conf(R∗))n can
be identified, in a natural way, with Conf( R∗ t · · · tR∗︸ ︷︷ ︸

n

). This shows that we can in-

terpret M̄ (z,z′)(t1, . . . , tn) as a probability distribution on configurations, and the next
theorem says that it is again in the determinantal class. This means that the correlation
functions of M̄ (z,z′)(t1, . . . , tn) are described by a “dynamical” (or “space-time”) kernel
K(z,z′)(x, s; y, t) on (R∗ ×R) × (R∗ ×R) whose two arguments, couples (x, s) and (y, t),
should be viewed as space-time variables ranging over space-time R∗ × R. Given an
arbitrary finite collection (x1, t1), . . . , (xk, tk), the k × k determinant

det
[
K(z,z′)(xi, ti;xj , tj)

]
multiplied by dx1 . . . dxk gives the probability of the event that at each prescribed
moment ti (where i = 1, . . . , k), the configuration ω̄ ∈ Conf(R∗) corresponding to
ω := X(z,z′)(ti) contains a point in the infinitesimal neighborhood dxi about position
xi, for every i = 1, . . . , k.

The kernel K(z,z′)(x, s; y, t) in question is the extended Whittaker kernel ; we refer to
Borodin–Olshanski [11] for its description.

Theorem 9.3. The pushforwards M̄ (z,z′)(t1, . . . , tn) of the equilibrium finite-dimensional
distributions M (z,z′)(t1, . . . , tn) are determinantal measures described by the extended
Whittaker kernel K(z,z′)(x, s; y, t).
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This is a generalization of Theorem 9.1, which is a particular case of Theorem 9.3
for n = 1, because M (z,z′)(t) ≡ M (z,z′), and K(z,z′)(x, s; y, t) reduces to the Whittaker
kernel K(z,z′)(x, y) for s = t.

Remark 9.4 (cf. Remark 9.2). Note that measure M (z,z′)(t1, . . . , tn) is supported by
the subset Ω̃n0 , because every its one-dimensional marginal coincides with M (z,z′) and
the latter measure is supported by Ω̃0. As in the case n = 1, this implies that the
equilibrium finite-dimensional distributions are uniquely determined by the extended
Whittaker kernel.

Proof of Theorem 9.3. The argument for Theorem 9.1 extends smoothly, with a few mi-

nor evident modifications only. Let M (z,z′)
r (t1, . . . , tn) stand for the pre-limit equilibrium

finite-dimensional distributions. Corollary 3.6 tells us that they approximate the distri-
butions M (z,z′)(t1, . . . , tn). To bound the tails we use the fact, mentioned above, that
the one-dimensional marginals coincide with the stationary distribution. The correla-
tion functions of the pre-limit distributions are described by the extended version of the
discrete hypergeometric kernel, which converges to the extended Whittaker kernel as
r → +∞: this is established in [11].

10 Remarks on the Plancherel limit

Let us return to the context of Section 8.2. So far the basic parameters z and z′ were
fixed, but here we take a limit transition in formulas (8.11) assuming that z and z′ go to
infinity while the third parameter r goes to 0 in such a way that the product rzz′ tends
to a fixed real number θ > 0. One may simply assume that r is related to the couple
(z, z′) by r = θ(zz′)−1; recall that because of Condition 1.1, zz′ is strictly positive, so
that the above relation is compatible with the fact that r should be a positive number.
The quantity θ becomes our new parameter.

It is not difficult to verify that in this limit transition, all results of Section 8.2 survive.

Namely, the Q-matrix Q(z,z′)
r turns into the following matrix:

Qθ(λ, λ+�) = θ
dim(λ+�)

(|λ|+ 1) dimλ
, � ∈ λ+,

Qθ(λ, λ−�) =
|λ|dim(λ−�)

dimλ
, � ∈ λ−,

−Qθ(λ, λ) = |λ|+ θ.

(10.1)

An analog of Proposition 8.4 holds, with the Meixner symmetric functions being re-
placed by the so-called Charlier symmetric functions, introduced in [32] (these are
obtained from the Meixner functions via the same limit transition). A key observation
is that the links YBΛr

′

r depend on parameters r and r′ through their ratio r/r′, which
remains intact under the limit (it translates into the ratio θ/θ′). Because of this fact,
all other results of Section 8.2 are smoothly extended, too. We only have to change the
notation r → θ. Finally, we get a family {Xθ : θ > 0} of continuous time Feller Markov
chains on Y.

Further, one can prove that Xθ has a unique stationary distribution, which is nothing
else than the the well-known Poissonized Plancherel measure, first introduced in Baik–
Deift–Johansson [2]:

Mθ(λ) = e−θθ|λ|
(

dimλ

|λ|!

)2

.

It is a degeneration of the mixed z-measure (8.27), which played an important role in
Borodin–Okounkov–Olshanski [6].
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The Markov chains Xθ were studied in our paper [10]. As shown in that paper, Xθ

admits a nice description in terms of the Poisson process in the quarter-plane and the
Robinson–Schensted algorithm.

The formalism of the present paper says that the family {Xθ : θ > 0} gives rise to a
Feller Markov process X on the boundary Ω̃, and X has a unique stationary distribution
M := lim←−Mθ, the boundary measure corresponding to the family of the Poissonized
Plancherel measures. On the other hand, it is readily seen that this boundary measure
is simply the Dirac measure at the point

ω1 := (α = 0, β = 0, δ = 1) ∈ Ω̃,

where 0 := (0, 0, . . . ) is the null sequence.
At first glance, this looks strange, but the key is that X is not a genuine Markov

process, but a deterministic process. Its transition function P (t) degenerates to a semi-
group of continuous maps Ω̃→ Ω̃ which have the following form:

P (t) : (α, β, δ) 7→ (e−tα, e−tβ, e−tδ + (1− e−t)), t ≥ 0.

From this formula it is seen that, as t → +∞, P (t) contracts the whole space Ω̃ to the
point ω1. There is no contradiction, because such a deterministic process is formally a
Markov process.

On the algebraic level, this phenomenon is clearly seen when we compute the gen-
erator of X as an operator in the algebra of symmetric functions: In contrast to the
Laguerre operator (8.16) we get a first order differential operator. This operator is best
written in terms of the generators p1, p2, . . . (the power-sum symmetric functions, see
Section 7.4), it has the form

(1− p1)
∂

∂p1
+
∑
n≥2

npn
∂

∂pn
.

The above discussion shows that our abstract formalism of constructing boundary
Markov processes via Markov intertwiners conceals a potential danger, as it may hap-
pen that the boundary process degenerates to a deterministic process. Therefore, if one
is interested in constructing interesting infinite-dimensional Markov processes (as we
do), one needs additional arguments guaranteeing that such a degeneration does not
occur. We were fortunate that we were able to explicitly compute the generator of our
process X(z,z′): from the fact that the generator is a second order operator it is easy to
conclude that X(z,z′) cannot be a deterministic process.

Finally, note that the existence of a nontrivial stationary distribution, M (z,z′), makes
it possible to prove the non-determinism of the boundary process in a different way.
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