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We propose an experiment to use the magneto-optical Faraday effect to probe the dynamic Hall conductivity of
spin-liquid candidates. Theory predicts that an external magnetic field will generate an internal gauge field. If the
source of conductivity is in spinons with a Fermi surface, a finite Faraday rotation angle is expected. We predict
the angle to scale as the square of the frequency rather than display the standard cyclotron resonance pattern.
Furthermore, the Faraday effect should be able to distinguish the ground state of the spin liquid, as we predict
no rotation for massless Dirac spinons. We give a semiquantitative estimate for the magnitude of the effect and
find that it should be experimentally feasible to detect in both κ-(ET)2Cu2(CN)3 and, if the spinons form a Fermi
surface, herbertsmithite. We also comment on the magneto-optical Kerr effect and show that the imaginary part
of the Kerr angle (circular dichroism) may be measurable.
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I. INTRODUCTION

Recent experiments in the spin-liquid candidates her-
bertsmithite and κ-(ET)2Cu2(CN)3 have observed a power
law in the conductivity below the Mott gap [1,2]. One
of the potential explanations of this conductivity is optical
excitations of spinons in a spin-liquid state [3,4]. In the
experiments on herbertsmithite, the measured conductivity
amplitude and exponent are slightly smaller but comparable
to the theoretical predictions for the spinon contribution to
the conductivity. Here we propose an experiment using the
magneto-optical rotation of light as a further probe of possible
contributions of spinons to the finite frequency conductivity
tensor.

The quasi-two-dimensional materials κ-(ET)2Cu2(CN)3

and herbertsmithite are both well described by half-filled
Hubbard models. In the organic κ-(ET)2Cu2(CN)3 the spins
form a nearly isotropic triangle lattice and it is just on the
insulating side of the Mott transition [5]. It is believed to have a
spin-liquid phase with spinon excitations forming a Fermi sur-
face [6,7]. On the other hand, in the material herbertsmithite,
the spins form a kagome lattice, and the system is deeper
into the insulating phase. While it is commonly believed that
herbertsmithite has a spin-liquid phase, it is unclear what the
ground state is. Projected wave function studies predict a spin-
liquid state with massless Dirac fermions [8], while density
matrix renormalization group calculations find a gapped
Z2 spin liquid [9]. Neutron scattering and thermodynamic
measurements show evidence of gapless excitations [10,11].
The neutron scattering pattern shows gapless spin excitations
across a wide range of momentum transfer Q, potentially
suggesting that the spinons form a Fermi surface rather than
there only being two Dirac nodes where the excitations are
gapless. In addition, the heat capacity showed a linear T term
in high magnetic field [11]. We show below that massless
Dirac spinons should show no linear magneto-optical Faraday
effect, while the Faraday rotation should be experimentally
observable for spinons with a Fermi surface, allowing an
experimental probe to distinguish between the two gapless
ground states.

As was shown by Motrunich and others, in the presence of
the magnetic field the spinons will see an internal magnetic
field due to a linear coupling between the physical magnetic
field and the gauge magnetic field [12]. This breaking of
time reversal symmetry for the spinons should be observable
through the measurement of the rotation of the polarization of
the transmitted light. The Faraday rotation at normal incidence
is given, for small rotations, by

θF = �

nc
2πσ ′

xy(3D), (1)

where � is the thickness in the direction of propagation of the
light, n is the index of refraction, and σ ′

xy(3D) is the real part of
the off-diagonal in-plane three-dimensional (3D) conductivity.

II. THEORETICAL BACKGROUND

Herbertsmithite is a Mott insulator and can be well
described by taking a strong coupling t/U expansion of the
half-filled Hubbard model. While κ-(ET)2Cu2(CN)3 is just on
the insulating side of the Mott transition, we assume that a
similar expansion is still an appropriate starting point. In the
limit where the electron hopping term vanishes, t = 0, the
ground state is given by single occupation of each lattice site
and has a 2N -fold degeneracy. As we increase the hopping
relative to the Coulomb energy U , the degeneracy is broken
and the ground state is lowered by mixing of the different
singly occupied states through virtual hopping. We can project
the Hamiltonian onto the low energy manifold, to get an
effective spin Hamiltonian for the system. To lowest order
in t/U we get a Heisenberg antiferromagnetic interaction
with J = 4t2/U . Higher order terms will introduce further
spin-spin interactions, as well as loop interactions that will be
important when we compute the coupling between the physical
and emergent magnetic fields.

The spin model can be solved approximately by introducing
fermions to carry the spin in an enlarged Hilbert space replac-
ing each spin with Si = f

†
i,aσ abfb. The physical Hilbert space

is the subspace with each state singly occupied. After making
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this substitution into the spin Hamiltonian and introducing
an integration over an auxiliary scalar field to enforce the
constraint [13], we apply a mean field treatment of the resulting
four-Fermi term to get the mean field Hamiltonian

Hmf = J
∑
〈ij〉

(χijf
†
i,σ fj,σ + c.c.) − λ

∑
i,σ

f
†
i,σ fi,σ , (2)

with χij = 〈f †
i fj 〉 and λ enforcing the constraint of one

fermion per site on average. We can interpret f † as the creation
operator of fermionic spinons. To get back to a physical spin
wave function, the solution of this mean field Hamiltonian can
be projected onto the physical single occupancy subspace.
Allowing fluctuations of λ and the phase of the hopping
term χij corresponds to introducing a dynamical electric and
magnetic vector potential. This is the source of the emergent
electric and magnetic fields, e and b, that the spinons feel.

A. Mechanism for optical conductivity from spinons

In order to compute the conductivity we follow the
framework given by Potter et al. [3]. The physical conductivity
is proportional to the correlation function of the emergent
gauge electric field

σij ≈ 72π (n	a2)
e2

h
iω

t2

U 4

〈
ei
ωe

j
−ω

〉
, (3)

where n	 is the density of triangles in the lattice, a is the
lattice constant, and e = ∇λ + ȧ is the gauge electric field
with a the continuum vector potential corresponding to the
phase of χij . They compute this correlation function within
the random-phase approximation and find that

〈
ei
ωe

j
−ω

〉 = − iω

2

[
σ−1

s

]
ij

= − iω

2
[ρs]ij , (4)

where ρs is the spinon resistivity in response to the internal
gauge electric field. Substituting this into Eq. (3) we get

σij ≈ 36π (n	a2)
e2

h
iω

t2

U 4
[ρs]ij . (5)

This equation is valid only for frequencies less than the spinon
bandwidth, which is estimated to be on the order of J . For the
materials discussed here, J ≈ 250–350 K, corresponding to
frequencies of about 5–7 THz.

B. Coupling between the physical and emergent magnetic fields

We must first calculate the magnitude of the induced
internal flux that the spinons feel. This was done already for
the organic material κ-(ET)2Cu2(CN)3 by Motrunich using
a strong coupling expansion. A perturbative t/U expansion
of the Hubbard model leads to a linear coupling of the
applied magnetic field to the scalar spin chirality, S1 × S2 · S3.
Bulaevskii et al. showed that virtual charge fluctuations lead
to a current (and orbital magnetic moment) proportional to
the spin chirality [14]. The coupling shown by Motrunich can
be more physically interpreted as the coupling of the external
magnetic field and this orbital magnetic moment. This spin
chirality can be interpreted additionally as a Berry’s flux or
the emergent magnetic field that the charge neutral spinons
feel [15,16].

In order to estimate the magnitude of the internal field
produced, Motrunich minimized the energy as a function of the
applied field. In the organic, the linear coupling found at third
order by hopping an electron around a triangle is supplemented
by a fourth order term that is quadratic in the internal flux �int

that stabilizes the field. Motrunich found a mean field energy
per site in the uniform flux state of

Emf = α�ext
t3

U 2
sin(�int) + β

t4

U 3
cos(2�int), (6)

keeping only the most relevant terms [12]. α and β contain
numerical coefficients and material dependent parameters and
�ext and �int the dimensionless fluxes per triangle. The factor
of 2 on the flux in the second term comes from the fact that
the fourth order loop encloses two triangles. Balancing these
terms, along with other corrections, he found that the emergent
flux was related to the external flux by �int = ��ext, with
� ∼ 1–2 [12]. We will use a value of � = 1.5 for the rest of
the Rapid Communication.

Extending Motrunich’s work, we expect the kagome lattice
of Herbertsmithite to give a similar result. The argument is
similar, but one needs to go to a higher order in t/U to get a
restoring term quadratic in b. It is not until order t6/U 5 that a
term that is even in the emergent flux arises, given by hopping
around two corner sharing triangles (see Fig. 1), i.e., the mean
field energy per site is given instead by

Emf = α�ext
t3

U 2
sin(�int) + β

t6

U 5
cos(2�int). (7)

This effect would tend to make the emergent field stronger, as
it decreases the effective gauge stiffness. This is counteracted,
however, by a larger combinatorial prefactor for the term β.

The fact that as one goes further into the insulating phase,
with t/U getting smaller, the emergent magnetic field grows
is counterintuitive and points to a potential limitation of the
theory. As t/U shrinks, the effective gauge stiffness does as
well, meaning that the system will be more prone to gauge

1

2

FIG. 1. Illustration of the virtual hopping needed to give the
restoring force to the gauge field on the kagome lattice.
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fluctuations. This calls into question the accuracy of our
expansion, as we neglect screening affects. However, since
even for herbertsmithite we are only in the intermediate regime,
we expect that this treatment will suffice to get an estimate of
the effect, and we use � = 1.5 for herbertsmithite as well.

III. SEMIQUANTITATIVE ESTIMATES OF THE FARADAY
EFFECT

We can now calculate the spinon conductivity within each
of the possible ground states. For a massless Dirac spin liquid
in the presence of a static gauge magnetic field, we expect the
spinon bands to be Zeeman split, creating a hole pocket of spin-
down spinons and a spinon pocket of spin-up spinons. Since
there are equal concentration of spinons and holes which are
oppositely charged with respect to the emergent gauge field,
the Hall effect due to the particle pocket will be canceled by
that due to the hole pocket, and we expect no Hall conductivity
and thus no Faraday rotation that is linear in H . This is in
contrast to the case of a spinon Fermi surface which, as we
now show, should have an experimentally detectable Faraday
effect, allowing experiments to distinguish between these two
gapless spin-liquid phases.

For a spinon Fermi surface we expect to see an effect.
Within experimentally realizable fields, the Landau level
filling factor should be very large, and we model the spinon
conductivity with the Drude model. Within the Drude model,
we get that the spinon resistivity is given by

ρs = ms

n

(
γ − iω ωc

−ωc γ − iω

)
, (8)

where ms is the spinon mass, n is the spinon density, γ is
the spinon scattering rate, and ωc is the spinon cyclotron
frequency. The spinon bandwidth is estimated to be a fraction
of J , which corresponds to a spinon mass ms ∼ 1/(Ja2). The
spinon cyclotron frequency is given by ωc = b/ms = �B/ms .

Putting all this together we get

σxy ∼ 36π (n	a2)

(
t

U

)2(
ω

U

)2

�
B

n

e2

h
(9)

= 72π2 n	

n

(
t

U

)2(
ω

U

)2

�
Ba2

φ0

e2

h
, (10)

where φ0 is the magnetic flux quantum.
We can now estimate the magnitude of this conductivity

and of the Faraday rotation in both κ-(ET)2Cu2(CN)3 and
herbertsmithite. In the organic, we use t = 55 meV and
t/U = 0.12 [12]. We use a lattice constant of a = 10 Å and an
interlayer spacing of d = 16 Å [17]. There are two triangles per
spinon, so n	/n = 2. We calculate the Hall conductivity of one
layer σ ′

xy ∼ 4 × 10−6 e2

h
at ω = 2π × 1 THz and 7 T. This in

turn gives a 3D conductivity σxy(3D) ∼ 1 × 10−3 �−1 cm−1.
Using Eq. (1), we find an estimate of the Faraday rotation
to be about 0.2 mrad for a 30 μm sample using a dielectric
constant of ∼ 4 [18]. Extrapolating from IR data, we estimate
that there should be reasonable transmission through this
thickness at 1 THz [2]. Recent experiments have resolutions of
down to 30 μrad, so this effect should be within experimental
limitations [19]. The rotation angle, as the Hall conductivity,

should be quadratic in the frequency and linear in the magnetic
field.

In herbertsmithite, assuming a spinon Fermi liquid ground
state, we use t = 100 meV and t/U ∼ 0.1, a lattice constant
a ∼ 10 Å, and an interlayer spacing of d ∼ 10 Å [3].
On the kagome lattice, n	/n = 2/3. The single layer Hall
conductivity is smaller by an order of magnitude, resulting
in a single layer conductivity of σxy ∼ 2 × 10−7 e2

h
, a 3D

conductivity of σxy(3D) ∼ 4 × 10−5 �−1 cm−1, and a Faraday
rotation of 0.2 mrad at ω = 2π × 1 THz and 7 T in a 0.3 mm
thick sample. This rotation should again still be observable
with the current resolution of experimental setups.

We note that the predicted frequency dependence of the
Faraday rotation due to spinons is distinct from that due to
conductivity from electronic sources. Typically, in low carrier
density metals, when the Hall conductivity is from electronic
sources, the Faraday rotation angle shows a resonance structure
around the electron cyclotron frequency with an (ω2 − ω2

c )−1

tail for frequencies away from the resonance. On the other
hand, the resistivity tensor does not show a resonance, as
seen in Eq. (8). In particular, ρxx does not depend on the
magnetic field. However, in our case, for conductivity due
to spinons, there is no resonance peak in the conductivity
or Faraday angle because the physical conductivity is pro-
portional to the spinon resistivity tensor. Instead, we expect
the Hall conductivity to scale as ω2 and for there to be no
magnetoconductance.

If spinons are the dominant source of conductivity, it is the
physical resistivity that shows a resonance. If an experiment
could accurately measure both σxx and σxy , then, by inverting
the conductivity tensor to get the resistivity tensor, we expect
to see a resonance at the spinon cyclotron frequency. This
would give direct evidence of the presence of both spinons and
the emergent gauge field. We expect the cyclotron frequency
to be about ωc ∼ 2π × 50 GHz. However, the expected
Faraday rotation at this frequency is less than 5 × 10−6 rad,
in both materials, which is below the resolution of current
experiments.

We can also take a look at the longitudinal conductivity
contribution from spinons using the Drude model. Using
Eq. (5) we get

σxx ∼ 36π (n	a2)

(
t

U

)2(
ω

U

)2
ms(γ − iω)

n

e2

h
(11)

∼ 36π
n	

n

(
t

U

)2(
ω

U

)2
γ − iω

J

e2

h
. (12)

Assuming that the scattering rate is dominated by inelastic
scattering in our temperature range, we take the factor γ ∼
kBT ∼ J/10. We also estimate ms ∼ 1/(Ja2). This leads to
a quadratic power law for the real part of the conductivity.
For herbertsmithite, our crude estimate predicts a value σxx ∼
1 × 10−6 e2

h
at ω = 2π × 1 THz, which is a couple of orders

of magnitude smaller than the conductivity observed by Pilon
et al. [1]. On the other hand, the Dirac spin-liquid model gave
a reasonable estimate [3]. In both models, we expect that the
longitudinal conductivity should show no field dependence, as
observed in herbertsmithite [1].

121105-3



RAPID COMMUNICATIONS

JACOB R. COLBERT, H. DENNIS DREW, AND PATRICK A. LEE PHYSICAL REVIEW B 90, 121105(R) (2014)

We comment also on the magneto-optical Kerr effect, the
rotation of the polarization of the reflected light. For normal
incidence the complex Kerr angle is given by

θK = i

(
n+ − n−
n+n− − 1

)
, (13)

where n± are the indices of refraction for right and left
circularly polarized light [20]. The imaginary part of the Kerr
angle θ ′′

K gives the ellipticity of the polarization of the light
reflected from incident linearly polarized light, measured as
the ratio of the major to minor axes. The real part θ ′

K gives
the rotation angle between the initial polarization and the
major axis of the final polarization. Because our predicted
Hall conductivity is real, we have to expand this expression
to second order in the conductivity to get a nonvanishing
contribution to the rotation angle. We find that

θ ′
K ≈

(
32

(ε − 1)2
− 8

(ε − 1)ε

)
π2

ω2
√

ε
σ ′

xxσ
′
xy, (14)

with ε the dielectric constant and σ ′ the real part of the
conductivity. For these materials at realizable fields the rotation
is beyond the resolution of current instruments. For the organic,
we predict θ ′

K ∼ 10−8 rad. One potential way to boost this
value is to tune the frequency to a phonon resonance in order
to boost the value of the diagonal conductivity, while the

off-diagonal part should be unaffected and still due only to
the spinon contribution.

However, the ellipticity of the reflected light should be
observable. The imaginary part of the Kerr angle only requires
approximating to first order in conductivity,

θ ′′
K ≈ 4π

n(n2 − 1)ω
σ ′

xy. (15)

Within the spinon Fermi surface model, we predict that the
organic will have an ellipticity θ ′′

K ≈ 2 mrad and herbert-
smithite will have θ ′′

K ≈ 0.1 mrad. This ellipticity is directly
measurable and is within experimental limitations. We expect
the ellipticity to be linear in both magnetic field and frequency.
This effect is unexpected in an insulator. In addition, the
frequency dependence is quite different from that of electrons
where the ellipticity is resonant at the cyclotron frequency
and falls as [ω(ω2 − ω2

c )]−1 above the resonance. Thus its
observation should be a clear signature of spinon conductivity.
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