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I. ABSTRACT

FUEL CYCLES IN NUCLEAR REACTORS

by
Raymond T. Shanstrom, Manson Benedict, and Charles T. MoDanIl

A new IBM 704 computer code, FUELCYC, has been developed for
studying the effect on the fuel cycle of different methods of scheduling'
replacement of fuel and movement of control poisions. Four alternate
fuel scheduling methods have been built into the current code and provision
is made for the addition of other methods. The fueling techniques avail-
able in the current code are: 1) "Batch," the replacement of the entire
fuel charge at one time, with uniform control poisoning during the irra.
diation; 2) "Inout," the progressive shifting of fuel rods from inner posl.
tions to outer positions; 3) "Outin," the progressive shifting of fuel rods
from outer positions to inner positions; and 4) "Graded,, the periodic
replacement of the most irradiated fuel rod among different local groups
of rods.

FUELCYC is designed for the study of fuel cycles in large power r0o~o
tors with azimuthal symmetry, which are fueled with U235, U238 and
the higher nuclides in their irradiation chains. It is a two-dtmensional
code in which neutron leakage occurs from two energy groups and
neutron absorptions are allowed in the thermal group and also in one of
four resonance groups for each fuel nuclide. Local properties are
homogenized into cells.

FUELCYC calculates the criticality factor, the flux distribution, the
power density distribution, the burnup, the fuel cycle cost, and other
properties during the life history of the fuel, taking into account the ,
buildup and decay of nuclides in the fuel irradiation chains. An iterative
method for solution of the flux distribution has been developed which
converges even for very coarse mesh spacings, and allows a typical
fuel cycle problem to be solved, with good accuracy, in from three to five
minutes.

The code has been compared with experimental data for the irradi-
ation of natural uranium metal in the NRX reactor. Excellent agreement
was obtained with a plutonium isotopic analysis when the base value for
the Pu240 disadvantage factor, in the FUELCYC input data, was normale
ized to experimental data. Fair agreement was obtained with the experi.
mental measurements of reactivity, within 0. 61/ Sk/k, for irradiations ip
to 3000 MWD/ton. The comparison of the FUELCYC calculations with the
experimental data suggested several changes to improve the agreemnot.
These are:

1) a reduction in the value for the Sm 149 yield from U235 fission
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from the conventional value of 1. 15% to 0.8%, The proposed value is in
agreement with a measurement by Littler, L23, of 0. 9 *0. 2%.

2) a few percent increase in the value of the ratio og9(n1 -

s5n 5- 1) over that of the "World Consistent Values"

3) a few percent reduction in the cross section of Pu239 as
calculated by FUELCYC at high flux-times due to self shielding in the
0. 3 ev resonance.

The effect of the above changes was calculated for the longer irra-
diations of interest for power reactors. It was found that the effect was
small and therefore, (on the basis of this experimental check) that the
FUELCYC calculations can be relied on for prediction of the composition
changes and reactivity changes for fuel cycle studies in power reactors,

It was found that the flux and power density distributions in an irra-
diated reactor core are grossly different from that of the uniformly
loaded core, and that this has an important effect on the calculation of
burnup and costs. A simpler code which assumed a time -invariant
chopped-cos, chopped-J 0 thermal flux distribution gave values for

average burnup which were approximately 25% lower than those of
FUELCYC.

FUELCYC was used for a study of the effect of different methods
of fuel scheduling for variations irg the initial U235 enrichment in a
pressurized light-water reactor similar to the one being developed
by Westinghouse Electric Corporation for Yankee Electric Company.
It was found that Outin fuel movemen was particularly attractive
economically. This is because "Outih" gives a high ratio of average
to maximum burnup, which is desirable in increasing the total power
output of a given charge of fuel, and it also gives a low ratio of maximun
to average power density, which would enable the core to be operated
at high power. High power operation reduces both the fuel cycle cost
and the capital charges. Graded fuel scheduling is also attractive, but
Inout produces prohibitively high flux peaking.

The trend of the fuel cycle cost with variations in burnup gives
incentive for the development of fuel elements which can withstand
average burnups of from 20-25,000 MWD/ton and maximum burnups
from 30-40,000 MWD/ton. If burnups of this order could be obtained
the fuel-cycle cost in the pressurized light-water reactor could be
reduced to 3.5 mills/kwh for simple Batch irradiation and 2.5 mills/kwh
for the Graded or Outin fuel scheduling methods.
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II INTRODUCTION

Fuel cycle analysis is concerned with the changes that occur in the

properties of nuclear fuels and nuclear reactors during long term irra-

diation. The properties that are of greatest interest are: the burnup

attainable from a given charge of fuel, the excess reactivity produced,

and the power density distribution. Fuel cycle analysis is also concerned

with the cost of fuel and of the processes to which fuel is subjected before

and after irradiation in the reactor. A typical fuel cycle! study inVolves

the following steps: 1) the choice of fuel material, where fuel is used to

mean both fissionable and fertile materials; 2) evaluation of the costs

involved in the "purchase" of the fuel and in the fabrication of the fuel

elements (or for a homogeneous reactor, the preparation of the fuel

slurries or solutions); 3) selection of the method of fuel scheduling,

i. e., whether to replace the entire charge fuel as a single batch or to

replace a portion of the fuel at more frequent intervals, and whether to

leave the fuel in one place in the reactor or periodically to ishift the posi-

tion of partially irradiated fuel elements; 4) calculation of the changes in

composition of the fuel during irradiation; 5) calculation of the criticality

factor without control poison, the flux distribution, and the power density

distribution periodically as the irradiation progresses; 6) choice of the

method of control of the reactor so as to maintain criticality during the

irradiation; and 7) evaluation of the costs involved in the reprocessing or

in the disposal of the spent fuel and in the "sale" or recycling of the

fissile material.

It can be seen that in principle the part of fuel cycle analysis dealing
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with changes taking place in the reactor involves nearly all of nuclear

reactor statics theory. In practice, simplifications are made by limiting

consideration to certain reactor types and, by assuming that certain

properties of the reactor remain constant during irradiation of the fuel.

In reality, a measure of the refinement of a fuel cycle calculation method

is its lack of assumptions of time-invariant properties.

Many of the fundamental characteristics of fuel cycles can be deter-

mined by calculation of the composition changes that occur in a local

section of fuel as it is irradiated. If neutron leakage is assumed to be

constant, reactivity changes can be obtained from the calculation of cross

section changes. This method is usually referred to as the constant-flux,

or zero-dimensional, approximation, and was used in basic papers by

Dunworth, D1O; Lewis, LZO; Spinrad, Carter, and Eggler, S6; and

Weinburg, W7. Benedict and Pigford, B4, have published a very

comprehensive discussion of fuel cycles using this model, and consider

not only batch-irradiated, uranium-fueled reactors but also plutonium

recycle, methods of fuel scheduling, and thorium breeders.

This zero-dimensional model was still used for most of the fuel

cycles papers presented at the Second Geneva Conference on the Peaceful

Uses of Atomic Energy, although considerable refinements had been made

in other aspects. Greebler, Harker, Harriman, and Zebroski, G11, took

into account the energy spectrum of the flux and depression of the flux in

cylindrical fuel elements. (The energy model proposed by Greebler et al

was adopted in part for this work.) Pigford, Benedict, Shanstrom, Loomis,

and Van Ommeslaghe, P3, treated spatial non-uniformity of the flux by

perturbation methods, assuming a time-independent chopped-cos,
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chopped-J 0 flux.distribution for various fuel scheduling methods in both

uranium and thorium reactors, and considered the recycle of plutonium

and of U233. Feinberg, Antsiferov, Katkov, Komissarov, Levina,

Nicolsky, Novikov, Osmachkin, Stolarov, and Shevelev, F2., also

considered various fuel scheduling methods and applied the heterogeneous

method to the calculation of fuel burnup.

Spatial variations in the flux distribution during the irradiation

history are important in fuel cycle calculations; however, there has

been little work published in which these variations were considered.

One-dimensional fuel cycle calculations have been made for different

fuel scheduling methods by Minton, M7, and for initially non-uniformly

loaded cores and for different control rod programming techniques by

Graves, Arnold, Eich, Minton, and Wolf, G15, using various Westing-

house IBM 704 computer codes, namely: the zero-dimensional burnup

code CAP-1; the one-dimensional, few-group, diffusion-theory, criti-

cality code WANDA; the one-dimensional fuel-cycle code MERLIN, which

is a combination of CAP-1 and WANDA; the one-dimensional, few-group,

diffusion-theory, criticality and burnup code CANDLE; and the two.

dimensional, few -group, diffusion -theory, criticality code PDQ. Mention

should be madeiof a British two-dimensional fuel cycle study for Batch

irradiation; that of Hitchcock, Price, and Shenton, H 11, performed on

the Eliott 402 digital computer. The operable two-dimensional computer

codes in the U.S., except for FUELCYC, are primarily designed to

calculate criticality. The KAPL IBM 704 code cystem CUREBO, A16,

however, has an additional option allowing depletion of a single fission-

able nuclide in each core region, but no buildup of higher isotopes

5



is accounted for. More elaborate codes are under development at various

laboratories; the most elegant of these is the three-dimensional

Monte Carlo and diffusion theory, criticality and burnup code RBU for

the IBM 709 computer, which is being d-eveloped by Leshan, Burr,

Morrison, Temme, and Thompson of American-Standard and by Triplett

of Hanford Laboratories, L26.

As the interest of different power reactor design groups has settled

on particular reactor types, more emphasis has been placed on fuel

cycle variations in order to optimize the operation of these reactors.

The FUELCYC computer code has been developed specifically as a tool

for the solution'of these fuel cycle problems. The attempt has been made

to develop a code which will be of general applicability to many reactor

types with the emphasis on large power reactors.

Implicit in the effort that has gone into the code is the faith that these

power reactors have a future in the competitive power market. This

economic breakthrough seems certain eventually due to the abundance

of potential nuclear fuel and to the rapidity of the dissipation of fossil

fuels. The question of how soon the breakthrough can be made is up to

the ingenuity of the reactor designers. Since reactors can be expected to

cost more than fossil-fueled boilers for some time, a requirement for

economic nuclear power is a reduction in the cost of the nuclear fuel

cycle. It is hoped that FUELCYC will be of some use in the development

*Baumeister, B3, estimates the total world energy reserves of
uranium and thorium assuming full utilization of fertile as well as
fissionable material to be twenty-five times that of fossile fuels. Davis,
D2, estimates that the usable U. S. fossil fuel reserves will be exhausted
within fifty years.

6
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of a nuclear fuel cycle that will do this.

This work has been carried out under the M. I. T. Fuel Cycles Project,

AEC Contract No. AT(30-1)-2073 which was initiated at M. I. T. in

September 1957.



III SUMMARY

A. SUMMARY OF THE CALCULATIONAL PROCEDURE

1. FUELCYC Code

A new fuel-cycle code, FUELCYC, has been written for the IBM 704

computer. This code computes the distribution of neiitronflux with re-

spect to energy and position in the reactor, derives effective cross sec-

tions for each nuclide at each point in the reactor, uses the flux and

effective cross sections to project the change of nuclide concentration

at each point with time, determines the conditions under which the reac-

tor is just critical, and evaluates fuel-cycle costs.

The physical model for FUELCYC is two-dimensional diffusion theory

in an axially- symmetric cylinder. Four major energy groups are treated:

fast fission, fast, resonance, and thermal, with the resonance group

further divided into four sub-groups. Leakage is assumed to occur in

the fast and in the thermal group, and each fuel nuclide is assumed to

absorb neutrons in one of the resonance sub-groups as well as in the

thermal group.

2. Fuel Scheduling Methods

Four methods of charging and discharging fuel have been written into

the code:

(1) "Batch" irradiation of fuel fixed in place in the reactor, with

control poison distributed uniformly throughout the reactor.

(2) "Inout" irradiation, in which fuel rods are moved from the

center of the reactor to the periphery, with no control poison and with

the reactor just critical.
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(3) "Outin" irradiation, in which fuel rods are moved from the

periphery of the reactor to the center, with no control poison and with

the reactor just critical.

(4) "Graded" irradiation, in which fuel rods, fixed in place in

the reactor, are discharged individually and replaced by fresh rods on

such a schedule that the average composition of fuel in each region of

the reactor remains time-independent and the reactor, with no control

poison, remains just critical.

Provision is made for writing into the code other methods of charging

and discharging fuel and managing control poison.

3. Nuclear Data

Nuclear data presently written into the code comes principally from

the following sources:

(1) The dependence of cross sections of non 1/v absorbers on

energy is represented by a series of equations of the Breit-Wigner form,

with parameters recommended by Westcott, W11. Cross sections at

2200 m/sec from these equations are consistent with BNL-325, 2nd edition,

H29.

(2) Cross sections of other nuclides and neutron yield data have

been taken from BNL-325, 2nd edition.

(3) Yields and cross sections of fission products are calculated

from Walker's report, W4.

4. Limitations of Code

The code is limited in applicability to:

(1) Reactors sufficiently well moderated to have the majority of

fissions caused by thermal neutrons.

9



(2) Large reactors, in which thermal leakage is small compared

to thermal absorption.

(3) Reactors with azimuthal symmetry.

(4) Reactors in which the spatial variation of flux and nuclide

concentrations may be adequately approximated by specification of

values in 200 regions, 10 radial by 20 axial.

(5) Homogeneous reactors or heterogeneous reactors whose

lattice properties may be represented by an equivalent homogeneous

reactor.

(6) Reactor fuel consisting of any mixture of U235,, U238 and

their irradiation products.

All of the large, uranium-fueled power reactors under development

in the United States at the present time, except the fast Enrico Fermi

reactor, meet these conditions and may be handled by this code.

5. Objectives of Code

Development of this code has had as its objectives the reliable pre-

diction of fuel composition, reactivity changes, flux and power-density

distributions, reactivity lifetimes, and fuel cycle costs without calling

for excessive amounts of computer input data or computer time.

FUELCYC requires an IBM 704 computer with a 32, 768-word fast

memory and two magnetic tape units. Calculation of the above fuel

cycle properties for fuel of a specified initial enrichment in a fifty

region reactor uses about three minutes of computer time.

6. Outline of Steps in Code

The computation sequence followed by the code is as follows:

10



(1) For a fuel of specified composition, the energy distribution

of neutrons below 0.45 ev is computed by a fifth order difference solu-

tion of the Wilkins equation, H24.

(2) From this energy distribution, and the dependence of cross

sections on energy which has been written into the code, effective thermal

cross sections are computed.

(3) Absorptions at resonance energies are computed by the stand-

ard resonance escape probability formulation, using experimentally

determined effective resonance integrals for U238 and PuZ40 and infinite-

dilution resonance integrals for U235, U236, Pu239, Pu241 and PuZ42.

(4) The change of nuclide concentrations over the first flux-time

interval is computed by solving the differential equations expressing '

nuclide material balances by a fourth-order Runge-Kutta-Gill technique.

(5) The neutron energy spectrum and effective cross sections of

fuel at the end of the first flux-time interval is computed by a repetition

of steps (1), (2) and (3).

(6) The change of nuclide concentrations over the second flux-

time interval is computed by a repetition of step (4). This process is

repeated until the entire flux-time interval of interest is covered.

(7) The concentration of each nuclide and certain functions of

these concentrations which appear in the neutron balance equation are

represented by polynomials in flux-time.

(8) The neutron balance equation in each region of the reactor is

expressed as a linear difference equation in the flux in the region in ques-

tion and the four adjacent regions. Parameters in the equation are

functions of the nuclide concentrations and effective cross sections, both

11



of which depend on the flux-time to which the fuel has been exposed,

which depend in turn on the flux distribution in the reactor and the pre-

vious history of the fuel.

(9) The procedure for solving this set of neutron-balance differ-

ence equations will be outlined for the batch irradiation case. At time

zero in this case the reactor is assumed to be charged with fuel of spec-

ified uniform composition. A value for the uniform concentration of

control poison which makes the reactor critical is computed. The set

of linear, second-order difference equations for all regions of the reac-

tor is solved for the relative thermal-neutron flux distribution by an

iterative technique employing the Crout reduction procedure.

(10) A criticality factor for the entire reactor, defined as the

ratio of the over-all production rate of neutrons to the over-all consump-

tion rate excluding control poisons, is computed.

(11) A time step is then taken, the new flux-time in each region

of the reactor is determined, functions of the nuclide concentrations at

this flux-time are evaluated from the polynomials (7), and a new set of

neutron balance difference equations for each region of the reactor is

written.

(12) A new control poison concentration is computed and the set

of difference equations is solved by iteration as in step; (9) ,to find the

new relative flux distribution.

(13) Steps (10), (11), and (12) are repeated until the reactor is

just critical without control poison.

(14) The average composition of spent fuel is determined by

averaging local concentrations, using the polynomials (7).

12



(15) The cost of the fuel cycle is determined from the weight and

composition of a charge of fuel, the time it spends in the reactor, and

the composition of spent fuel (14).

For the other methods of charging and discharging fuel a repeated

iterative solution of the neutron-balance difference equations somewhat

similar to steps (9)-(13) is carried out, to find the rate at which fuel of

a specified initial composition may be moved through a reactor just

critical without control poison.
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B. SUMMARY OF IMPORTANT RESULTS

1. Comparison with Experimental Data

FUELCYC results were compared with experimental data for natural

uranium samples irradiated in the NRX reactor. Comparison was pos-

sible for build-up of plutonium isotopes and for reactivity changes of the

samples with irradiation. The available experimental measurements

were for irradiations of less than 3000 MWD/ton. (Reference C11)

1. 1. Comparison of the Plutonium Content in the NRX Samples with

FUELCYC Calculations. Results of one isotopic analysis were available

for the relative amounts of plutonium nuclides in an NRX sample, which

had been irradiated to a flux-time (for 2200 m/s flux) of 0. 63 n/kb. This

is equivalent to about 2500 MWD/ton. The experimental results are

compared with those those of FUELCYC in Table 3,. 1.

Table 3. 1 Isotopic Composition of Plutonium in an NRX Sample
Irradiated to 0. 433 n/kb, Comparison of Experimental
and FUELCYC Values.

Isotopic Composition, To

Measured

(Mass Spectrometer)

87. 117 ± 0.052

11.244 ± 0.051

1. 521 * 0.010

0.118 ± 0.005

Run NRX1*

87.22,

11.19

1.47

0. 12

Run NRX2d

87.30

10.72

1.84

0.14

E 230. bifa

s, fU 1160, bifa
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The macroscopic scattering cross section of the fuel, Z , is

used in computing the PuZ40 disadvantage factor as recommended in

Reference C13. When the true value of 1160 bifa (Run NRX2) is used,

the agreement between the experimental results and the FUELCYC cal-

culations is fair. If the reduced value of 230. bifa is used (which in"

creases the Pu240 resonance disadvantage factor from 1. 2 to 2. 0 at a

flux-time of 0. 6) the agreement is excellent for all nuclides. These

results are further discussed and compared with "blackness" theory

calculations in Section VI. B. 1.

1. 2. Comparison of the Experimental Measurements of the Reac-

tivity of NRX Samples with FUELCYC Calculations. The reactivity of

NRX samples,. irradiated from 0.05 to 0. 6 n/kb, was determined by

oscillator measurements in the Harwell GLEEP.

In these experiments the signal produced due to Variations in the

neutron density by the alternate oscillation of irradiated and unirradiated

uranium fuel was compared to that of a standard boron absorber. This

gives a "reactivity change term," R, which is proportional to the change

in reactivity of the irradiated sample from that of the unirradiated

sample. (The true reactivity change is related to changes in R by,

6p ~ 6R/1600 if the units of R are bifa. )

The results for the comparison of these experimental measurements

with the FUELCYC calculations are -given in Table. 3. 2. Xenon..135.has

The Canadian system has been adopted in which the units of rmicro4
scopic cross sections are barns and in which nuclide concentrations are
normalized to the initial concentration of U235. This gives macroscopic
cross sections in barns per initial fissile atom, abbreviated as bifa.
Zs, f, N a- fj/NO)
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Table 3. 2 Comparison of the Measured Reactivity of NRX Samples with
That Calculated in FUELCYC

Reactivity change term, R Flux-time (n/kb)

(bifa) 0.0 0.0822 0. 164 0.246 0.411 0. 575

Observed in GLEEP 0.0 0.0 3:..1 2.6 -4.3 .15.4

Calculated by FUELCYC

1. 15% yield of Sm 149 0.0 -5.5 -4.7 -5.2 -13.5 -21.7

0. 80% yield of Sm 149 0.0 -3.5 -2.7 -3.2 -11.5 -19.7

Above case plus in- 0.0 0.0 3.1 2.6 -4.3 -15.4
crease in R. c.r. of 6%
initially reducing to 2%
increase at a flux-time
of 0. 575

decayed to a negligible amount by the time the measurements were

made, however, the measurements do include the Samarium group

transients. This causes an initial reduction in reactivity but saturates

at about 0. 05 n/kb. Table 3.2 shows that values from the FUELCYC

calculations using the normal built-in data, which includes a 1. 15%

U235 fission yield for Sm 149, are from zero to nine bifa below the

experimental values for R. (The yield value of 1. 15% was recommended

in Reference C 11.) This represents a reactivity difference of from zero

to 0. 6%. The behavior of the measured and calculated results at low

flux.times indicates that the yield value for Sm 149 should be reduced to

0.8%. The latter value is in agreement with a measurement by Littler,

L23. Using the value of 0. 8% improves the agreement by 2 bifa.

The curve is very sensitive to the following ratio of Pu239 and U235

parameters. This ratio has been called the R. c. r., for reactivity

change ratio,
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6N -n
R.c.r = - (3.1)6N5 05 (,n5  1)

where -6N/6N 5 is the initial conversion ratio (at zero flux-time). The

FUELCYC results can be forced to fit the experimental curve within the

standard deviations of measurements for the 2200 m/s values of the r's

and q's in Eq. (3.1). The change required to fit the experimental data is a

6% increase in R.c.r. initially reducing to a 2% increase at a flux-time of

0.575 n/kb.

The most likely changes to bring the FUELCYC calculations into

agreement with the NRX experimental data appear to be:

1) Adoption of a U235 fission yield value for Sm 149 of 0. 8%.

2) An increase in the value of the ratioia 9 (19 - 1)/T 5 (7 5 -l)
over that of the "World Consistent Values" for fission parameters.

3) A reduction in the value calculated by FUELCYC for the Pu239

cross section as flux"time increases due to progressive spatial selfa

shielding in its 0.29 ev resonance.

2. Comparison with Results of a Simpler Code

FUELCYC calculations were compared with those of a simpler code

for Batch and Graded fuel scheduling. The simpler code was that used

in a former fuel-cycle.paper by Pigford et al, P3. The spatial model for

this "simpler" code assumed a time-independent -chopped-cos, chopped-

J flux distribution, where reactor avet-age properties were calculated

from the constant-flux properties by perturbation methods. Average burn-

ups calculated by FUELCYC differed in some cases by as much as 25%

from those calculated by the simpler code. This difference is due to the

marked departure of the spatial distribution of neutron flux from a chopped-

cos, chopped-JO distribution when the fuel composition becomes non,.

uniform.
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3. Fuel Cycle Study of Pressurized Light.-Water Reactor

This fuel,.cycle code has been applied to a pressurized light-water

reactor similar to one being developed by Westinghouse Electrfc Corpo-

ration for Yankee Atomic Electric Company (Reference Y1). Fuel for

this reactor consists of slightly enriched UO2 rbds 0. 3 inches in dia.%.

meter and eight feet, long clad in stainless steel. The total uranium

inventory of the reactor is 21, 000 kgm. Its rated heat output is 480 Mw,

and the net electric output of the power plant is 134 Mw.

3. 1 Operating.Variables Considered. The principal operating

variables considered were:

(1) The UZ35 enrichment of feed to the reactor, and

(2) The procedure for scheduling and recharging of reactor fuel.

The fuel scheduling procedures, (1) Batchi (2) Inout, (3) Graded., and

(4) Outin, described in Section III.A.2. above were the four procedures

studied.

3.2 Performance Characteristics. For each of these fuel scheduling

procedures it was assumed that the reactor would be so operated as to

obtain the maximum amount of heat allowed by the initial excess re.

activity of the fuel. The principal performance characteristics of the

reactor under these conditions evaluated with the aid of the fuel cycle

code were:

1) The maximum local burnup experienced by fuel.

2) The average burnup experienced by a complete charge of fuel,

and

3) The ratio of maximum to average power density in the reactor.

The maximum local burnup is important because radiation-damage

18
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considerations usually set an upper limit to the local burnup which can

be taken without distortion or rupture of fuel cladding serious enough to

interfere with safe operation of the reactor.

The average burnup is important because it sets the amount of heat

and power which can be produced from a given quantity of fuel. It and

the feed enrichment are the two factors with principal effect on fuel-

cycle costs.

The ratio of maximum to average power density is important because

of the critical effect of this variable on temperatures in the reactor and on

the maximum thermal power at which it may be operated safely. The

higher this ratio, the lower the safe power level.

Table 3. 3 summarizes the interrelationships found between these

operating variables and performance characteristics of the pressurized-

water reactor. Results have been tabulated as functions of the fuel-

scheduling method and the maximum local burnup. because these are

the two factors on which the reactor designer or operator is most apt

to wish to exercise choice,

The first part of this table shows the feed enrichment needed to

permit attainment of the specified maximum local burnup for each of

the four fuel-scheduling methods, The enrichment increases nearly

linearly with burnup. Batch fueling requires the highest enrichment for

a given burnup because of the use of neutron-absorbing control poisons

during the early part of the batch cycle. None of the other three fueling

methods need controlpoisons, because thbir fuel composition remains

steady during irradiation. The small differences in enrichment needed

for the three steady-state methoos are due to differences in fuel
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Table 3. 3 Performance Characteristics of Pressurized Light-Water
Reactor for Various Fuel Scheduling Methods.

Fuel Sch'd. Method:

Max. Local Burnup,

(MWD/ton)

Batch Graded

Atom %U235,in FeeI'

10,

zo,

30,

40,

50,

60,

10,

20,

30,

40,

50,

60,

000

000

000

000

000

000

000

000

000

000

000

000

3.14

3.58

4.10

4.71

5.34

6.09

4, 200

10, 000

16, 800

24, 200

32, 200

41, 200

Ra

1.90*
*

1. 49*
*

1.37
*

1. 29

1. 25
*

1. 23

10, 000

20, 000

30, 000

40, 000

50, 000

60, 000

At end of batch cycle

2. 93

3.17

3. 42

3.70

4.06

Aver age,. Burnup,

7,900

16, 300

25, 100

34, 400

44, 000

tio of Max. to Avg.

3.28

4. 20

5.16

6. 17

7. 20

2. 95

3.20

3.53

3.88

4.24

MWD/ton

7,900

16, 300 1

25, 100 2

34, 400 3

44, 000

...

Power Density

2.54

2.39

2. 30

2.23

2.18

3.02

3.39

3.79

4.20

7, 900

6, 300

5, 100

4,400

1.80

1, 47

1.38

1.35
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composition distributions.

The second part of the table shows the average bu'rnup attainabletfrom

a complete charge of fuel initially of such an enrichment as to permit

attainment of the specified maximum local burnup. The average burnup

attainable in the last three, steady-state fuel scheduling procedures at

a given maximum local burnup are equal and are much greater than the

average burnup attainable in batch irradiation. For a given maximum

local burnup important advantages for the steady-state fueling methods

compared with batch irradiation are:the higher average burnup attainable,

the lower feed enrichment needed, and elimination of control poison.

The ratio of average to maximum burnup increases as burnup increases,

because of flattening of reactor flux in regions of high burnup.

The third part of this table lists the ratio of maximum to average

power density. In the case of batch irradiation the values are for the end

of the cycle; at the beginning of the cycle the ratio has the value 2. 70

independent of burnup. The Outin method of fueling has a great advantage

over the other steady-state fueling methods in having the lowest maximum-

to-average power density ratio.

3. 3 Flux and Power .Density Distributions. Fig. 3. 1 shows a two.

dimensional. contour plot of the initial thermal flux or power density

distribution for Batch fuel scheduling. The power density distribution is

initially the same as that of the flux since the fuel is loaded uniformly.

The initial distribution is slightly more flattened than that of the familiar

chopped cos-J 0 distribution due to the uneven distribution of equilibrium

Xi.35.

Fig. 3. 2 shows the flux and the power -density that would exist at the
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end of a Batch irradiation if the average burnup had been 23i 000 MWD/ton,

The point of maximum flux has shifted off the center line both axially and

radially. It is apparent that the final flux shape has little resemblance

to a chopped cos-J distribution. The final power density distribution jk,

even more distorted with the maximum shifted further outwards radially

than for the flux.

Fig. 3. 3 shows the steady-state thermal flux and power.-density dis-

tributions for. Outin fuel scheduling for the same average burnup (23,000

MWD/ton) as the previous Batch case. The distributions peak on the

axial center line but far out radially. The Outin method of fueling, how-

ever, gives considerably flatter distributions than those of the uniformly

loaded reactor (Fig. 3. 1).

Similar plots are given for Graded and Inout fuel scheduling in

Chapter VI, Figs. 6. 18 and 6.19.

It is seen that the heat transfer characteristics of the core will be

strongly dependent on the fuel scheduling method used and that this should

be taken into consideration in the initial core design.

3.4 Fuel Cycle Costs, Fuel cycle costs evaluated from the data of

Table 3. 3 are listed in Table 3.4, for two operating conditions. In the

top half of the table, it has been assumed that the power level of the

reactor can be kept constant at the design value of 480 thermal Mw, no

matter how the power density distribution changes. In the bottom half of

the table it is assumed that the maximum power density remains constant

at the value of 190 kw/P occuring at the beginning of the cycle in Batch

irradiation. In actual operation of the reactor, conditions (and fuel

cycle costs) will probably fall between these two cases as extremes.
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Table 3.4 Fuel Cycle Costs for Various Fuel Scheduling Methods in
Pressurized Light-Water Reactor.

Fuel Scheduling Method:

Max. Local Burnup, MWD/ton

10, 000

20, 000

30, 000

40, 000

50, 000

60, 000

Fuel Cycle Costs, mills/kwhe

Batch Inout Grmzd Outia

Constant Power Output of 480 tMw

8.90 5.48 5.48 5.48

4.95 3.52 3.52 3.58

4.00 2.90 2.94 3.08

3. 62 2.62 2.68 2.86

3.48 2.50 2.58

3.48 '

Constant Max. Power

8.88 5.70

4.88 3.81

3.87 3. 41

3.44 3.36

3.24 3.48

Density

5.50

3.49

2.88

2,59

2.48

of 190kw/A

5.25

3, 34

2,i 78

24 51
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Nothing more precise can be stated without detailed knowledge of the

reactor -cooling, steam .producing and power -generating systems. For

instance, if the output of the power-generating system is limited to 134

ekw, it will not be useful to operate the reactor at more than 480 tkw

even in the Outin case with its low maximum-to-average ratio, and costs

for this case wigl not be lower than in the top half of the table. On the

other hand if maximum heat flux rather than maximum heat production

rate limits reactor operation, the costs of the bottom half of the table

are appropriate.

Both parts of the table show the striking cost advantage gained in

having fuel elements which will permit local burnups of 30.40, 000

MWD/ton, no matter which fueling method is used. Beyond this burnup,

the apparent cost advantages are too small to offset possible operating

interruptions due to increased frequency of fuel failure, The cost

advantage of the Graded and Outin fueling methods compared with Batch

irradiation are large. Although the Inout method appears to have

important cost advantages for operation at constant power output, this

method is not practical because of the extreme non-uniformities in

power density cited earlier.

Table 3.5 show the contribution to overall fuel-cycle costs of each of

the principal components of the fuel cycle for batch fueling with four dif.

ferent feed enrichments and burnups. The initial decrease in overall.

cost with increasing burnup is due to reduction in fabrication and re.

processing charges, which are rmrly inversely proportional to average

burnup. The leveling off of overall cost and its ultimate slight increase

is due to the reduction in the plutonium credit and the increase in the
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Principal Components of Fuel Cycle Costs in Pressurized
Light-Water Reactor, Batch
Heat Production.

Fuel Scheduling, 480 Mw

% U235 in Feed

Avg. Burnup, MWD/ton

Max. Burnup, MWD/ton

Mills/kwhe

Uranium feed

Credit for U in spent fuel

Credit for Pu in spent fuel

Net material cost

Fabrication

Fuel reprocessing

UF 6 lease charge

Working Capital charges

Overall fuel cycle cost

3.

8;,

17,

44

650

900

4.

20,

35,

38

500

000

7.71 4.36

-5.23 -2.17

-0.91 -0.70

1.57 1.49

1.94 0.87

0.73 0.35

0.96 0.89

0.21 0.17

5.41 3.77
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5.

35,

53,

59

400

300

6.

45,

64,

45

400

500

3.37

-1.28

-0. 57

1.52

0.54

0.21

1.04

0. 17

3.48

3.09

-1.02

-0.51

1.-56

0.44

0. 18

1. 17

0. 17

3.52

Table 3. 5



UF 6 lease charge at the higher enrichments.

3. 5 Cost Bases and their Consequences. The principal cost bases

used for the above fuel cycle costs are

(1) Uranium price as a function of enrichment from the AEC's

current schedule of UF 6 prices (Reference US), tied to $39.27/kgmU for

natural UF 6 .

(2) Credit for plutonium in spent fuel, $12/gm.

(3) Costs for mechanical fabrication of fuel, $90/kgmU.

(4) Cost for producing UF 6 from the spent fuel from AEC's present

charges for this service (Reference U6), approximating $25/kgmU for

this reactor.

(5) UF 6 inventory lease charge, 4%of value per year, in ac,

cordance with present AEC charges.

(6) Interest charges on working capital tied up in initial fuel-

fabrication expenses, 919/year.

To illustrate the effect of changes in these bases, fuel-cycle costs

have been computed on the three different bases listed in the key of

Fig. 3.4 This figure shows the variation of overall fuelcycle cost

with maximum local burnup for batch irradiation at a constant thermal

power of 480 Mw. Although the level of fuel cycle costs are quite dif-

ferent for the three bases, their trends with burnup are similar; the

optimum maximum local burnup is in the range of 30-40,000 MWD/ton

for every basis.
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IV. CALCULATIONAL PROCEDURE

A. PHYSICAL MODEL

1. Energy Considerations

The nuclear events have been divided into four major energy groups:

thermal, resonance, fast, and fast fission; with the resonance group

further subdivided as explained in Section 1. 2.

1. 1 The Thermal Cutoff Energy. The thermal group is character-

ized by the occurrence of collisions which increase the energy of the

neutrons as well as those which decrease their energy, so the upper

bound on this group should equal or exceed the cutoff energy for pure

slowing down. This cutoff energy depends on the hardening parameter

A, see Eq. (4. 5), as well as the moderator temperature, as shown by

Hurwitz, Nelkin, and Habetler, H24. On the basis of typical core

average values of A for different thermal reactors, the cutoff will fall
*

in the range of from 5 to 10 kT.

For many thermal reactors a cutoff energy of . 45 ev is sufficiently

high, since this is approximately 10 kT for 500* K and 5 kT for 1000* K,

and is also a convenient break point for the following three reasons:

1) This is within the energy region in which molecular binding

effects become important, C7, so as a first approximation it

can be considered that the scattering unit in the thermal region

is a chemically bound molecule and above thermal is a free atom.

*
For a more exact value for a specific reactor, the reader is

referred to Fig. 11. 6 given by Weinberg and Wigner in Reference W8.
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2) It is a convenient energy for separating thermal and fast effects

from an experimental standpoint since 0. 45 ev is approximately

the cadmium cutoff energy and is specifically the cutoff used by

Westcott, W11, in normalizing his resonance integrals.

3) This is near the low spot between the important Pu239, PuZ41,

and Pu240 resonances, and as such is a natural division line, as

can be seen by referring to Fig. 4. 1, a superimposed plot of

microscopic cross sections of the fuel nuclides as functions of

energy.

For reactors in which the thermal cutoff falls above 0. 45 ev, the ther-

mal region should be extended as necessary, and resonance integrals

reduced accordingly.

1. 2 The Thermal Spectrum. The energy distribution of the thermal

flux is dependent upon the degree of moderation, becoming progressively

more distorted from that of a Maxwell-Boltzmann as the ratio of ab.

sorber to moderator increases. Because of these flux shape changes,

it is difficult to prescribe a consistent method of hardening a Maxwell-

Boltzmann spectrum and blending in a l/E epithermal tail so as. to yield

correct average cross sections. This has been discussed by Cohen,

C6, for various mixtures of moderator plus 1/v absorber. The diffi-

cul,ty is increased in the case of non 1/v absorbers such as are present

in the fuel of a reactor, mainly due to flux perturbations introduced by

the resonances in the vicinity of 0. 3 ev.

The results of several workers in the thermalization field point

towards the Wilkins distribution, in which the moderator is assumed

to behave as heavy monatomic gas, as an attractive model for the

32



0

(n

U)

4-

(0

.001

FIG. 4.1 VARIATION
NUCL IDES

.01 0.1 1.0 10
Energy , E, ev

OF THE MICROSCOPIC TOTAL CROSS SECTIONS OF THE FUEL
W ITH ENERGY. (EXCEPT a-f IS GIVEN FOR Pu 241 ABOVE 0.55 ev)

I



moderators of most interest, e. g. , light and heavy water, graphite and

beryllium. This model is, of course, better for some of these modera-

tors than for others, but in any case should give better results than a

modified Maxwellian. The original derivation, of the Wilkins equation,

by Wilkins, is unpublished; however, it has been rederived in published

work by Hurwitz, Nelkin, and Habetler, H24. In terms of Y, the flux

per unit velocity, and x, the normalized velocity of the neutrons, this

equation is as follows:

x2 d + (x - 3 x) d + [Zx2 4x2A(x) + 3] Y(x)= 0 (4.1)
dx

where,

E1/2
x ( (4.2)

kWTmd)

Y _ d (4.3)
dx

A(x) = E(x)/(tYs eff (4.4)

A(x) = 4x, A(x) (4. 5)

The single term A(x), the inverse moderating ratio of the lattice,

determines the flux spectrum. The term A is often used rather than

A in the thermalization literature dealing with 1/v absorbers since, in

this case, A is a constant. For high energies, i. e. , large x, the

solution reduces to a 1/E flux per unit energy and for low energies, as

A(x) goes to zero, the solution reduces to a Maxwell--Boltzmann flux.

A description of the numerical method used for solution of Eq. (4. 1)

is given in Appendix A.

Criteria for the use of the Wilkins equation are that the atoms or
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molecules of the moderator which act as the scattering units have neg-

ligible binding to each other and that the square of the mass of these

units be large compared to one. For crystalline moderators the former

requirement restricts the use of the Wilkins equation to lattices with

small intra-crystalline binding. For light and heavy water moderators

the latter requirement restricts use to that energy region in which the

chemically bound molecule is the scattering unit.

Cohen and Nelkin, C7, state that chemical binding is important

below 1 ev and that below 0. 2 ev light water scatters with the effective

mass of 18, i. e. , the mass of the water molecule. The mass of 18

for light water is recommended also by Brockhouse, B16. This would

indicate that the previously mentioned energy of . 45 ev is a reasonable

one for a step change in scattering properties from that of the unbound

atom to that of the chemical molecule. H. D. Brown's Monte Carlo

thermalization studies for light water compare favorably with Cohen's

heavy moderator work and the similarity in behavior between his light

and heavy water results indicate that this would also be a reasonable

cutoff for heavy water, B20.

For light water it appears that the thermal spectrum is fairly in-

sensitive to the thermalization model, due mainly to the opposing vari-

ations of t and o which leaves the product, (t- )eff' relatively con-

stant. The Wigner-Wilkins model for a moderator with a mass of one

is a possible alternate for light water, W13; however, Amster, A5,

and Poole, P4, have shown that the Wigner-Wilkins equation gives

fluxes which are lower than experimental in the 0. 1 to 0. 3 ev region.

This is an important region because of the large resonances in Pu239,
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Pu241, and U235, and as such presents another argument for the use of

the Wilkins equation, since Greebler, G 13 and G11, has shown that the

Wilkins equation gives a better fit to Poole's experimental data than does

the Wigner -Wilkins, and particularly so in this 0.1 to 0. 3 ev region.

Support for the use of the heavy-moderator model with crystalline

moderators is given by Nelkin, N1; however, in later work, C7, he points

out that the spectrum in graphite will be somewhat more hardened than

that of a heavy gas. In addition, de Sobrino's work, D1Z,leads one to expect

that Be should moderate similarly to a gas. It is thought, therefore, that

the Wilkins model will give satisfactory results for these two crystalline

moderators, but may require a reduction in the effective 6Zs term for

carbon to give increased hardening.

The values of A(x) obtained by homogenizing each fuel element with the

moderator region are used in Eq. (4.1) for an approximation to the average

energy spectrum in the fuel. This average energy spectrum is calculated

periodically throughout the life history of the fuel element, and the thermal

cross sections for the fuel are obtained as averages over these spectra.

Resonance absorption by materials in the moderator region are taken

into account by using an effective cross section for these materials in the

thermal group. This cross section is assumed to be constant throughout

the life of the reactor. This effective thermal cross section is calculated

for the fresh fuel as the average over a hardened Maxwell-Boltzmann

thermal flux plus a resonance contribution. The thermal flux hardening is

estimated by the relationship,

*U

A more detailed description of the variation of energy spectrum

with position in the cell is given in Honeck's thesis, H-26.
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T = Td (1 + .46&)

due to Coveyou, Bate, and Osborn, C10. In Eq. (4.6) A is calculated

as the homogenized cell value which gives the initial neutron tempera4.

ture in the fuel. The moderator cross section is then given by

irT
= (4. 6A)Imd md, o 4 Tn(4.r6A
aoit -onf

In calculating the neutron absorption rate in moderator materials, the

neutron temperature of the fuel region is used rather than that of the

rdoderator region, because the neutron flux used throughout the code is

that of the fuel region, *t m n , VfI .rather than that of the moderator

region, + md = 4nffVmd. i4 is the thermal disadvantage factor, defined

as = n md/nf. Neutron absorption by moderator materials is not

dependent on the choice of neutron temperature because of the assumed

1/v dependence of moderator cross section on velocity.

1. 3 The Resonance Group. The resonance group accounts for all

absorption in the fuel other than that of the thermal group and, in the

case of U238, the fast fission group. This group is divided into sub-

groups in which absorptions occur in one or more of the fuel nuclides

and the slowing down density, q, is depleted by these resonance ab.

sorptions according to the energy sequence of the subgroups. Fig. 4. 1

shows clearly the order of the main resonances in PuZ40, Pu242,

and U236. The first and largest U238 resonance is seen at 6. 7 ev,

but above this is a region not shown by Fig. 4. 1 in which there are

multiple inseparable resonances in U235, U238, Pu239, and Pu241.
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For this reason (and recalling that the resonances in the vicinity of 0. 3

ev have been included in the thermal group), four resonance subgroups

have been defined as follows, in order of decreasing energy: (1) con-

current absorptions in U235, U238, Pu239, and Pu241; (2) absorptions

in U236; (3) absorptions in PuZ42; (4) absorptions in Pu240. A hand

calculation was made to check this assumption for a fuel mixture of

Pu239, U235, and U238 typical of discharge compositions in a light

water reactor irradiated to about 6000 MWD/tonne. Resonance absorp-

tions calculated by the above prescription were essentially identical

with results of a twenty-five group calculation using the Eyewash,
*

OCOSOL.-A, group cross sections. Fig. 4. 2 is a schematic diagram

of this energy model showing the neutron balance.

In calculating fast leakage the age to thermal is used but it is

assumed that all this leakage, i. e. , from birth to thermal, occurs prior

to the resonance region. The arguments for this assumption follow:

1) The main resonance absorptions are at relatively low energies.

Taking 2 Mev for birth, 10 ev for the mid resonance energy,

and . 45 ev for the thermal cutoff,. one finds that 80 per cent of

the leakage occurs prior to 10 ev if leakage is assumed propor-

2
tional to the lethargy span (i. e. , leakage proportional to DB :*

where *(u) and DB are constant).

2) The leakage prior to resonance is greater than that indicated by

the previous argument due to the decrease in scattering cross

sections at high energies.

See Reference A13 for a tabulation of the Eyewash group constants.
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3) We are concerned with the error involved in calculating the

resonance absorptions. The absorptions are proportional to q,

but for large power reactors the fast leakage causes only a few

per cent reduction in q from its initial value, so small errors

in leakage cause negligible errors in values for resonance

absorptions.

The flux is taken to be 1/E immediately above each resonance sub.

group and resonance escape probabilities are of the standard form:

P ex - Nm m(47

where

Vf I
C- Vs (4.8)

1 ( Vmd

I is the infinite dilution resonance integral and $1, m is the epithermal

disadvantage factor for nuclide m. The disadvantage factors for the

calculations of this thesis have been taken as unity, except for U238 and

PuZ40, for which shielding is important. + 1 , 8 is assumed constant

throughout the life of the fuel and has been given a value such that the

resulting p8 agrees with experimental data for the fresh fuel. +1, 10 is

dependent on the concentration of PuZ40 and is re-evaluated periodically

throughout the fuel's history using a simple approximation by Crowther

and Weil, C13, namely

m N 1 0 10

+1 10~ 1 + (4. 8A)

leffm
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which they have shown to compare favorably with experimental data.

Resonance absorption probabilities, denoted by (1 - PM , are of

the standard form for U236, PuZ40, andPu242, namely:

1 - pm = (1 - pm) for m = 6, 10, 12 (4.9)

Because of the concurrence of their absorptions, the resonance absorp-

tion probabilities for U235, U238, Pu239, and Pu241 are of the following

form:

N I
m m

(1 -pm = ' m o ( p 5 P8 p9 P 1 1) (4. 10)

m m

m=5, 8, 9, 11 1,m

1. 4 Miscellany. The fast leakage region, as mentioned previously,

occurs above the resonance groups and is a domain of leakage and

slowing down only. The choice of one fast group for the slowing down

model is discussed in Sub-Section 2. 2 of Spatial Considerations. The

fast fission group is the normal one in which fast captures and fissions

occur in U238.

The standard form for the disadvantage factor for nuclide m, L m'

is,

1 +XC N I f
,m eff 1 mm

m

In cases where the flux has negligible buildup in the moderator over that

of the fuel surface flux, the excess absorption, X, is zero and $( m
reduces. to,

100
m

m = m eff
m
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2. Spatial Considerations

2. 1 Homogenization. The model for the transport of neutrons

throughout the core is that of two-group diffusion theory. Fuel, mod-

erator, and other core materials are homogenized into cells according

to their relative volumes, with the thermal cross sections for materials

in the moderator region weighted by a disadvantage factor appropriate

for the fresh core. This is a simplifying assumption to avoid the

additional complexities and\ specificities involved in considering flux

changes within the fuel element. The change is not merely one of the

gross average cross section change during the fuel's history but also

involves such things as change in the energy dependence of the total

cross section and preferential building up of Pu239 towards the edge of

the fuel element. Consideration of these effects would in general re-

quire considerably more computer time, since a method more elab.

orate than diffusion theory is required for these local effects, and

would require consideration of specific shapes of fuel elements, both

of which are antagonistic to the purpose of FUELCYC. The most

elaborate treatment of these local effects is by the Monte Carlo

method in the L B. M. 709 computer code RBU, L26. Another approach

that has been used primarily for cylindrical fuel elements is that of

blackness theory; see S1O, T2, GI1, K11.

2. 2 The Number of Groups. One fast group is provided to allow

transport of the neutrons in slowing down. The relationship of this

distribution to that of other slowing down models can be illustrated by

calculation of Pr' the probability that a neutron born at the origin will

be thermalized within a radius r. Given the slowing down kernel, K(r), or

the probability per unit volume that a neutron born at the origin will
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be thermalized at r, we can obtain Pr as the volume integral of K(r).

P = 4w r 2 K(r) dr (4. 14)
rr

The one group diffusion kernel, which is the model used in this

study, is,

2 -Kr
K(r) = Ke (4. 15)

4r r

which, replacing K2 by T , its age equivalent, and substituting in

Eq. (4. 14) gives,

P = e-u (1+u) (4. 16)
u

where,

r - (4. 17)

In the limit of an infinite number of groups one obtains the Fermi

Age, or Gaussian, kernel, applicable to a heavy moderator:

2
-
4,.

K(r) = e (4. 18)

(4'-r) 3/2

which gives the non escape probability,

2u

P = erf (4. 19)

with u defined as before.

Weinberg and Wigner suggest the single collision kernel as a rough

approximation for the slowing down kernel in water, W8, p. 402. This

is given by,
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K(r) = 2 4'19)
41rr

The customary definition of the Fermi Age as one-sixth of the mean

displacement yields the relationship,

T-r 12(4.20)
3 2

which then gives for Pu

u

P = 1 - e- (4. 21)

These three non-escape probabilities are plotted in Fig. 4. 3, which

shows that the single collision kernel tends to concentrate the thermalized

neutrons more at short radii than does the Fermi Age kernel. The one-

group kernel gives an intermediate distribution which lends support to

its use as a general model for different moderators. It should be noted,

however, that a three-group model fits some experimental data for water

better than the single collision results, W8, p. 373, and the distribution

characteristic of this model would be between that of the one-group curve

and the Fermi Age curve in Fig. 4. 3. In any case, the simplicity of

the one fast-group model is a strong argument for its use.

2. 3 Development of the Condensed Two-Group Diffusion Equation.

Using the subscript 1 for the fast group and no subscript for the thermal

group we have the fast diffusion equation,

q + D1 12 ' - EV 0 = 0 (4. 22)

q/E equals the combination of thermal and resonance production terms,

see Fig. 4. 2,
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1= vp + (q + D 2 (4.23)

where a is an average for the resonance group as defined by Eq. (4. 101).

When solved for q this gives,

C [vz # + (1-p) - D 1V2

q (4.24)

1 - E(1-p) ii

Substitution of (4. 24)7 for q into Eq. (4. 22) yields the fast group equation,

C2 (EvEf + DIV 2 ) - T = 0 (4. 25)

where,

C2  (4.26)
1 - E(1-p) 11

C2 is unity in the absence of resonance fissions.

The thermal diffusion equation is,

DV 2  -( + ) w + pE 1r = 0 (4. 27)

where the portion of the thermal macroscopic absorption cross section

due to removable poisons, as control rods, is called w'

For large power reactors the thermal leakage is very small compared

to thermal absorptions which permits a convenient reduction of the two

diffusion equations to one. This is done as follows. Eliminate M 0

between Eqs. (4. 25) and (4. 27) giving

DV2 4 - (M + E )+ + PC2 (Ev1fO + DI 2 * ) = 0 (4. 28)

Solve Eq. (4. 27) for 4 assuming that DV 2 4 is negligible in magnitude

compared to (M + E ) which gives,

(E + )4*
W~ (4. 29)

P prI
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Assuming M 1 to be constant and replacing D 1/21 by the Fermi Age,

T, we obtain the following equation in only the one unknown j by sub-

stituting (4. 29) for j in Eq. (4. Z8). The result of this is the condensed

two group equation,

DV2 -(E + Mw) + C2P E + = 2 [ = 0 (4. 30)
C 1 p

which contains terms for both fast and thermal leakage within the single

equation. Finally it is useful to derive an expression for the fast non-

leakage probability, PI, which is defined by,

q + D I2
P1 - (4.31)

1 q

Substituting (4. 24) for q gives,

I= EVEf 4) + DV 2(
p = (4. 32)

1 E[Vzf4) + (1-p) n DjV 211

or solving for the fast leakage term, -DIV 2

2 (1 - P)v
-D 92 =. (4. 33)

1 - P E(1-p) '1

finally, substitution of (4. 33) in Eq. (4. 24) gives the useful expression

for q in terms of P .

qf= )EvEf (4. 34)
1 - EP 10-p) 1

2. 4 The Difference Form of the Diffusion Equation. We wish to

consider reactor cores in which properties change from cell to cell in

a manner which is always complicated and often impossible to express
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analytically, such as the changes involved in the life history of the fuel

with the initial charging not necessarily uniform, so we cannot solve

Eq. (4. 30) in its exact form. The approximation made is to assume

symmetry in the azimuthal direction and to replace Eq. (4. 30) by the

two-dimensional five-point difference equation for cylindrical geometry.

The core is divided by a mesh of grid lines running radially and axially,

and the difference equation approximation for the differential equation

(4. 30) is written for the flux, 4 r, z, at each point where these lines

intersect, commonly referred to as a mesh point. This gives a set of

n linear homogeneous equations for the n unknown fluxes where n is

the number of mesh points. This points.out the advantage of the single

"condensed two group equation", Eq. (4. 30), since solving the normal

two equations, Eqs. (4. 25) and (4. 27), would have resulted in a set of

2 n difference equations for the n thermal and n fast fluxes. This is

an important simplification since the spatial solution part of the code

is the most time -consuming, the time required being roughly propor-

tional to the number of mesh points. Fig. 4. 4 shows the system of

mesh point spacing and numbering for a typical (r, z) section through

the reactor. Each mesh point is at the approximate center of the material

region that it represents. The point (r' = 0, z' = 0) is at the radial center

of the reactor, and also at the axial center if there is axial symmetry,

but at the end of the axis in the absence of axial symmetry (here lengths

are distinguished from the radial, r, and axial, z, indices by prime

marks).

In order to develop the difference approximation to Eq. (4. 30) con.

sider first the exact expression for 72 (r, z):
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2 _ 82 0(r, z) 1 8 (r, z)

zr 2 r r
+ a2 4(r, z)

a2J
(4. 35)

The five point difference approximation to Eq. (4. 35) with constant

radial spacing, g, and constant axial spacing, h, is:

= 
4 r+1, z - 2 4 r. + z+r-1, z

2
g

Or, z+1 - r, z

h

+ 4 r+1, z - r-1, z
+1 2(2r - 1) g

+ I 2 zr,z-1 + 0(g2) + 0(h2)

or combining terms

= -2 11 + 1 r, z

2(r - 1)

g 2(2r - 1) r-1, z
+ 2r

+ 2(2r - r+1, zg (2r - 1)

+ 4 r, z- + tr z+1 + 0(g ) + 0(h2
h h

(4. 37)

Applying this rule to Eq. (4. 30) we obtain the difference form of the

condensed two-group diffusion equation, at the mesh point (r, z), as,

dr, z, I r+ dr, z, 2 'r-1, z r, z, 3 r+1, z + dr z, 4 4 ) r, z-1

+d + =e r + 0(g2) + 0(h )
IrIz, 5 r,z+1 r,z r,z

(4. 38)

or to condense the nomenclature, and dropping the error terms,

5
Zd 4)= e *)

u=1 r,z,u u r,z r,z
(4. 39)

where u replaces the mesh point indices in the + terms with the under-

standing,

when, u is

1
2
3
4
5

then, the radial index is and, the axial index is

r
r- I
r+1
r
r

z
z
z
z-1
z+1
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Eq. (4. 39), or (4. 38), is the basic equation for the numerical solution

for the spatial flux-shape in which terms of second degree and higher

in g or h are neglected, and where each mesh point "feels" the flux

at its own mesh point and at the four neighboring mesh points. The

terms in Eq. (4. 39) are defined below:

er,z = E(C2Pv2f)r z - (E +E ) z(4.40)

i =-C c C (4. 41)
r,z,u 3, r, z, u 4,r,z,u

where,

C4.rz.u = D + T(C 2 P)r ( ,w) u= 1, 2, 3, 4, 5 (4.42)

C3,r,z,u = , u =4, 5 (4. 43)
h

C- 2r (4, 44)3, r, z, 3 2(r - 1)

C 2(r- 1) (4. 45)
3, r, z, 2 2(2r - 1)

C3, r, z, 1 2(C7, r -2) + (C8 2) (4.46)

Terms of Eq. (4. 39) are omitted when their mesh points fall outside

of the material region being calculated, i. e., the core or reflector.

The boundary conditions are accounted for by the terms C7 r and C8, h

in Eq, (4. 46). These terms are zero within the mesh and take values

at the border mesh points so that a straight line interpolation between

the flux value just within the material region edge and that at a pseudo

mesh point just outside the region gives the proper boundary condition

on the flux or current. In the radial direction the boundary conditions

are that the current equals zero at the center and that the flux goes
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to zero at a radial distance 6 R beyond the edge of the material region.

This gives for C7, r

C r 2R 2r (4 47)
7, rL 2R + g) r - 1

C7,r =0 1 r 4 (rL1) (4;48)

In the axial direction the fiux goes to zero at an axial distance SH

beyond the material boundary. This gives,

26 h
C H (4.49)

8, z L 25 H +h

C8, z = 0 2 z 4 (zL ) (4.50)

If there is symmetry in the axial direction, then we have a zero

current at the center of the reactor for the second boundary condition,

giving

C8,1 = i (4.51)

For no symmetry in the axial direction the second boundary con-

dition is again one of zero flux and we have instead of Eq. (4. 51),

26 -h
C8  (4. 52)

8 1 2 6 H + h

2. 5 Method of Solving the Set of Difference Equations. The set of

linear homogeneous equations generated by Eq. (4. 39) can be written in

matrix form as

G* = 0 (4.53)
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where, if the number of mesh points is n, G is the n x n coefficient matrix

of the dr, z, u and er, z terms, and 4* represents the unknown column matrix

of the n unknown fluxes. The problem is to solve for the n - 1 flux ratios,

say r, z 9 arbitrarily normalizing to .

The requirement that Eq. (4. 53) have a solution is that the deter-

minant of G, | G|, equals zero, or physically, given a super-critical

system with known material properties, at each point in the reactor, that

we adjust the values of control poison, Mw, r, z, so that the reactor is

just critical. Let us assume that the ratios of control poison, w, r, z have
w, 1, 1

been previously specified, so that the standard method of solution would

be to solve for the value of w W, so that

G| = 0 (4.54)

Then having satisfied this condition, any one of the n sets of n -1

independent equations from (4. 53) could be solved for the n - 1 flux

ratios, r, z This standard method of solution is too time-consuming
1, 1

for large matrices. This fact can be appreciated by considering that the

formation of a determinant of a n x n matrix requires on the order of ii! l

arithmetic operations and the subsequent matrix inversion of an (n-1) x

(n-1) matrix requires on the order of (n-1) (n- 1) ! operations.

An alternate technique is the so called iterative method in which

guesses are made for a convenient group of the terms in (4. 53), henceforth

referred to as the source terms, and the resulting linear inhomogeneous

set of equations is solved for an approximation to the fluxes. The new

fluxes are used to adjust the values of the original source terms and the

procedure is repeated until the flux ratios converge. To illustrate this
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method let us choose the removable poison terms as source terms

and rewrite (4. 53) as

G2 (i+1) W 1, 1QO (4.55)

where G2 and Q are known matrices, the Q matrix being composed of

the terms , and W 1, 1 is the unknown eigenvalue. The proce-
w, 1, 1

dure then is to guess initial values for the 0 vector on the right hand

side of (4. 55), say 0(0). Eq. (4. 55) can then be solved by a Crout reduc-

(1)
tion for the new solution vectors *I, and this procedure iterated until

the * vectors converge. Due to the arrangement of Eq. (4. 55) the flux

ratios ' are independent of the magnitude of Ei 1, 1, so one doesn't

have to solve for this value.

The complete Crout reduction takes on the order of 2n 3 arithmetic

operations for a n x n matrix so presents a considerable advantage

over the matrix inversion technique, provided the convergence rate

of the fluxes is sufficiently fast. An abridged Crout reduction applicable

to reactor matrices is described in Appendix B and it further reduces

the solution time required.

In other popular iteration methods source terms are taken in groups

which involve only a portion of the fluxes. In these techniques, the

complete Crout reduction is not used to generate new fluxes but instead

a technique of mesh sweeping is used which generates new fluxes inonly

a portion of the mesh at one time. These methods converge more slowly

than the Crout reduction techniques since repeated mesh sweepings are

required to propagate the effect of revisions in flux shape from one part

of the mesh to another, while in the Crout reduction each mesh point
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feelsLthe new flux at every other mesh point for each revision. The

disadvantage of the Crout reduction method is that it requres more

computer space than the "mesh sweeping" techniques. The set of equa-

tions in Appendix B for an abridged Crout reduction considerably

reduces the storage requirement and permits the use of the Crout

technique for mesh sizes up to several hundred mesh points, which

is adequate for this work.

Even though the arrangement of Eq. (4. 55) eliminates the need

for calculating w, , 1' a more advantageous method, due to the

reasons of convergence mentioned in the next section, is to keep the

terms derived from the V2 terms in Eq. (4. 35) on the left side and

the other terms on the right hand side as source terms. Calling the

matrix for the first group, d, and the second, e, we have instead of

Eq. (4. 53),

d,(i+l) = OW)(4.56)

which is the matrix form of the set of equations given by Eq. (4. 39).

(d will be used throughout this section as a matrix symbol, not the

differential symbol.) The E term can't be separated out of the

e matrix, see Eq. (4. 40), so the iteration is not independent of its

magnitude, as was Eq. (4. 55).

While it is time -consuming to calculate Zw, 1, 1 exactly, a close

The main storage requirement is that of the auxiliary matrix which

requires approximately 2n3/2 spaces, when the method of Appendix B is

used, where n is the number of mesh points. (Fast memory of the MIT

I. B. M 704 is approximately 32000 words.)
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estimate can easily be made from the results of the solution at the

preceding time step. Since the resulting reactor will be slightly off

critical, the flux will rise or fall, eventually with a constant flux

shape. The estimate of w , can be made well enough so that this

persisting time-dependent flux distribution is sufficiently close to the

steady-state flux. So, accepting this distribution we have, instead

of Eq. (4. 56),

d+ - e+ = X+ (4.57)

where X is a constant proportional to the inverse period of the reactor,

or in terms of differential operator,

X = - - (4.58)

Due again to convergence reasons, it is preferable not to solve

Eq. (4. 57) but rather the following approximation to it,

d+ (1+1) , ye(i) (4. 59)

where y is now the eigenvalue such that Eq. (4. 59) has a solution.

If we use Eq. (4. 59) for iteration with the right hand side as the

source term, the flux ratios, r z , are independent of the magnitude
*1, 1

of y. The question then arises: what is the relationship of y to the

true physical eigenvalue X and under what conditions is it a constant,

(or at least nearly constant)? Considering Eqs. (4. 57) and (4. 59) as

single equations rather than matrices, for simplicity, we can solve

for y as,
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1 -A -A

d*

which reduces to the constant, unity, as X4 becomes small relative to dt.

Now X+ represents the excess neutrons (or deficiency, if negative) and,

in the absence of resonance fissions, d+ represents the leakage terms,

so the requirement that y be a constant is met as the excess neutrons

available become small compared to the leakage. In the limit, using the

correct value of Ew , 1' this results in X4 = 0 and y=1 for which case,

Eqs. (4. 57) and (4. 59) reduce to the steady state relationship Eq. (4. 56).

The advartage of using Eq. (4. 59) for iteration instead of Eq. (4. 55) is

discussed in the following sub.section and the error involved is further

discussed in Appendix E. 3. 2. It should be noted that for the steady-state

types of fuel movements discussed in IV. C. 2, the exact value for M

is known, namely, zero, and the solution gives the true steady-state flux.

2. 6 Convergence Considerations. It is a characteristic of iterative

solutions that the convergence is very sensitive to the arrangement of

the equation. The arrangement (4. 59) of the set of equations (4. 39) is

chosen so that the iteration will converge rapidly even with large mesh

spacing. This occurs because the terms obtained from V 2 terms are

separated from the others. The value of this method can be illustrated

simply for the case of a 1 group, 1 dimension, 2 mesh point case.

Here the critical condition,

V 24 + k- = 0 (4.61)
M

57

I (4 60)



has the difference form,

$r+1 2 +'r + tr-1 + (k-i)

taking,

(k- ) = const.

with the boundary condition,

*0 1

*3 =.")2

equivalent to zero ceptral current and 6 R = 0. For arrangement 1,

equivalent to (4. 59), we have

(1+ 1) (i+ 1) = (k-1) (h)+ 0 M

(1+1) + 3+2i+1) = (k-1)*1 2*11 =(.1
(2 (i)

Defining,

S /i) - i

solving Eqs. (4. 66) and (4. 67) for *i and *2, and taking the ratio yields:

S(i+1) = S I + 1 (4.69)
SN + 3
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(h\2 +r = 0 (4.62)

(4.63)

(4.64))

(4.65)

(4.66)

(4.67)

(4.68)



now the true value of S must satisfy,

S = (4.70)

From (4. 69) and (4. 70) we can derive the convergence factor for the first

arrangement, pl,, which is defined as the ratio of the error in S(i+1) to

that in S , as S approaches S,

P S- S+ 2 2(4471
S- S (S+3)(S + 3) (S+32

Now for this simple problem it is easy to calculate S, from Eq. (4. 70),

as 0. 414 which gives,

p = .17 (4.72)

It is, of course, desired that p be small for fast convergence.

For an alternate arrangement of Eq. (4. 62), in which the V 2 terms

aren't isolated, consider,

1 + 2 i+1) (+1) = k )+ (4.73)

(1+1) 3 + 2 = k (4.74)
1 2M j

By the preceding method the convergence factor for this second

arrangement is found to be,
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[3+ (h)21 + (h)21

P2 z 2 2 _ (4. 75)

S + 3 + ]

It is seen that p2 depends on the dimensionless ratio- of mesh spacing

to migration length, p2 has been calculated below for S = 0.414:

0 0.17

1 0.36

3 0.77

5 0.89

10 0.97

00 1.

It is seen that p2 is higher than p 1 , the amount depending on the ratio

of spacing to migration length. It should be noted that not only does

Arrangement 1 always give faster convergence than Arrangement 2 but

also that its convergence rate is independent of the spacing. In the two

h
dimensional case, the ratio of - appears but this causes no trouble so

long as h is reasonably near unity.
g

Because the errors eventually tend to reduce exponentiallfy the

Aiken 82 process, (see p.445 of H27)# is used to estimate the true

fluxes for the source terms, after the initial adjustment period, rather

than the direct substitution of the last calculated flux values. This

technique further reduces the number of iterations required. Instead of

substituting *i, t'() would be substituted where,
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,(i (i) . M z (-1 z(4. 75A)
~ ( + $(i ))

2. 7 Core Average Properties. After the flux distribution has been

obtained, region values and core average values are calculated for the

fast and thermal leakage terms, thermal production and absorption terms,

and the criticality factor with and without control poison. The core

averages are defined as flux volume averages of the cell properties where

the region properties undergo step changes at the boundaries. In

particular, the criticality factor without control poison, C, is defined as

C= total thermal production rate (4. 76)
total thermal absorption rate less control absorption

+ total thermal leakage rate

which gives,

r L z L'

r l (qPIP r,( r,z
C r=1 z=1 $ 1,IT (4. 77)

rL z[L 1,1 D
EV r E r, z r, - DV2 r

r=l z=1 1, ) 1, 1

where Vr is the volume of a region with the radial position r.

The flux level is determined by the specified value for the average

power density, Pd, in terms of kw/liter of core. This gives the value

of the central flux in n/cm2 sec,
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PdzL Vr

*d -qP rr dN (4 78)
3.14 X 101 'ZVr (d*r, zr z r, z 1,

where the fission energy release is assumed constant and equal to

196 Mev/fission, or in the units of Eq. (4. 78), 3.14 X 10 watt

sec/fission. dNF) /r, z is the fissions per unit volume per unit of flux
d -d

time given by Eq. (4.89) and has units of cm .

The average burnup is given by:

E =0.917 X10 6  FP MWD (.912 ton of fuel fed
E N

M=5m

where ton means metric ton and the fission energy constant is

.917 fue ssioned which is strictly consistent with

196 Mev/fission if the fissioned material has an average atomic weight

of 238. NFP is the volume-average for the discharged fuel. The on-.

stream reactor time, tR* or the average time that the fuel would spend

in the reactor if operated at full power is then,

tR 0.993 X 106 RFP Vd years (4.80)

where N has thetunits atoms fissioned *
FP barn cm of fuel

ff fisin (1024 3 3
* - fssions b cm fuel 103 cm 3 corel

tR = bcm of fuel cm 2  fVcm 3 core k-watts

3.14 X 10-14 k-watt sec 1 y ear = 0.993 X 106 F
3.4 0 fission ) 3.154 X 107 sc/R d
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3. Solution of the Nuclide Concentration Equations

The effective composition changes for fuel of U235, U238 and daughter

nuclides are considered in this work. These changes are schematically

given by the chains:

n-y
N 5  . N 6
nf

N -N-.-N10 amN11 N1

where, subscript 5 designates U235; 9, Pu239; etc. U239 has been con-

sidered to decay instantaneously. This results in the below listed set of

first order differential equations which are nonlinear since all the terms

except for am, E, 78, and Xli are functions of the Nm The most con-

venient independent variable is flux time, 0, where

t
9 = * dt (4.81)

The resonance terms pm and 1 - p are defined in Section IV. A. 1. 3.

Also, Fig. 4. 2 is useful for a diagram of the neutron balance. . The am

and -m are averages for nuclide m in the resonance group, or fast

fission group for U238; they m refer to thermal group fission and are

considered constant. The differential equations are:

U235: =-N 55 1 (I i 5 ) (4.82)
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= N5 (cr5  O*f, 5) - N 6 6

p 5p 8p9 p 1 1 1 6)

dN 
8U238: =-N 8 a'8

Pu239: dN 9

( .~. P8

= 8 8 - N9 o'9 + (P (

a8 (E-1)
+ (1 + E 8

+ P 5l 5L1 1 +a 5

+ E -1)

+ P8

Pu240: dN 10
dO

S( - 79) - N1 0 T1 0 + 'P 1 + a

'P5P8P9PllP6P12
( 10)]

dN1  =
PuZ4l: d N 1 0 1 0 -0 N 1T

P5(8P9I116 1 'P 10) ' (i (4.87)
- p 1 >]

dN
Pu242: d912 = N (o - )

1 a

-N 1 2 1 2 +, 1

(4.88)

NFP represents the number of fission product pairs produced or, equi-

valently, the total number of fissions, and in differential form is given

by,
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(4, 83)

(4; 84)

P9 >)

(4.85)
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(4.$86)
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I

dNFP 1 (E-1)
=O N m 'f + (

dO m=5, 9, 11 m ,m * ( 8) E18

+ P m 1 +-m (4.89)
M=5, 9, 11 m

SFP is defined as the average microscopic cross section per fission,

due to fission products with cross section less than 10, 000 barns, so

that the macroscopic poisoning cross section of this group is simply,

IFP = NFP FP (4.90)

The value of cFP is given in Reference S3 for different fissionable

materials, flux-times, fluxes, and methods of irradiation.

The macroscopic Xenon cross section is:

Xe Xemax (4.91)
Xe eXe 4 + mXe

where,

_q 
Xe 8 (E-1)

Xe, max m=5,9, 11 YXe,m m f, m + a8 8

yXe, m lp MY+ P 1~, (4. 92)
1 m=5, 9, 11 (1+ aM)

The remaining fission products with cross sections greater than

10, 000 barns have relatively long P decay half life and can be grouped

together in what is called here the Samarium group, designated by the sub-

script Sm. The macroscopic absorption cross section for this group is,
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~~Sm~~ - 'S.tr n ~ ) [i~ m (C-1)
m=5,9, 11 + am8 ) ,+(m 8

+ P YSm, m Pm (4.93)
m=5, 9, 11 (1+ aM

Values for yXe, m and ySm, m are also given in Table 4. 1

In simplified form the eight nuclide concentrations related by

Eqs. (4.82) to (4. 89) can be written as a function of the following

variables,

Nm = f [Nr. o, p, (, O, Pi, (4. 94)

where N, T, and p represent the sets of these terms. Now p and

depend only upon N and a, and (- in turn depends only upon N,

see Subsections 1. 2 and 1. 3, so the dependence can be condensed to,

Nm = f2 (N, 4, P, 6) (4.95)

The dependence on * is weak since 4 occurs only in Eq. (4, 87) for

Pu241 and there in the term which is small compared to * , so

a constant value for $ is used here as a representative core and life-

history average for Pu241. The true value of the flux at each mesh

point is used, however, in evaluating EXe' Eq. (4, 91).

The only spatial dependence now remaining in the nuclide concentra-

tion equations is in the epithermal nonleakage proability, P, which

enters as a multiple of the slowing-down..density term in the resonance-

capture part of the equations. However, the variation of P from point
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to point in the core is small for the loadings considered, so for this

reason, and because of the considerable simplification it affords, an

average value is also used for P in the solution of the nuclide con-

centration equations. The true variation of P1 is considered, however,

in the calculation of flux shape and criticality.

With these assumptions, the nuclide concentrations are dependent

only upon flux time. The equations are nonlinear, however, due to

the N dependence of a-, p, and . Therefore, the eight equations

are numerically solved, using a fourth-order Runge -Kutta-Gill method,

The variation of and p with N is considered in the first derivative

evaluation part of this method, which results in their being recalculated

four times for each flux time step. The average microscopic cross

sections, oa, vary more slowly so are reevaluated between flux time

steps only.

The concentrations are then fitted versus flux time as power series

in e and in addition the following seven properties of the fuel, which

are required for the spatial flux shape and criticality calculation, are

computed and fitted:

1) ;Xe, max =Eq. (4. 92) (4.96)

12

m#7

3) ME Z (4. 98)
m=5, 9, 11 f,n

67



4) vi;f Z vmf'm (4. 99)
m=5, 9, 11

5) (1 a)2m=5z I 1 P (4.100)
+)m=5, 9, 11 (1+ a M

6) (-p)il = -Ipm (4. 101)

P5P8911P6P12P1 (. 02

The power-series fit is by the Lagrange collocation method, H27, p. 62.

Truncation errors in this fit and recommendations for the nuber of fit points

are discussed in Appendix E.

Thus the numerical solution of the concentration equations need be

carried out only once for a given intial fuel composition. Thereafter,

the properties at different points in the reactor can be obtained from

the above fitted properties knowing only the cumulative flux time of the

fuel at each mesh point. For the Xenon poisoning the magnitude of the

flux is also needed, and given this, ZXe can be calculated at each mesh

point from ZXe, max according to Eq. (4. 91), where EXe, max has only

flux-time dependence.
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4. Nuclear Data

Table 4. 1 lists the principal nuclear data that is built into the code

and is intended for use for any uranium-fueled thermal reactor. The

source of these data unless specified otherwise was C. H. Westcott's

report, AECL 670, Reference WI1. Westcott's report gives equations,,

for the calculation of thermal cross sections as functions of energy for

all the non - 1/v nuclides required for this study. These equations are

composed of a series of terms of the Breit-Wigner form,

S nc.
a-(E ) = E 2a + Z 2(4. 102A)

. b. +(E - e.)3 =1 J J

The parameters a, b., c., and e., are tabulated in AECL 670. They

are the resolved resonance parameters for the term in the series (4. 102A)

which dominates in the energy range of a large resonance, and are

otherwise empirically chosen so that the sum of the. terms in (4. 102A)

fits the BNL-325 curves in regions away from the resonances. . These

calculated curves give the a-2200 values of Table 4. 1 for non - 1/v nuclides.

The absorption cross sections for U238 and U236 are assumed to be

I/v in the thermal region and are normalized to the 2200 m/s a-abs values

given in BNL-325. Values of v5 and v are from the World Consistent Set

of BNL-325. Also values for v and the beta decay half lives of Xenon

and Pu241 are taken from BNL-325. a and v for fast fission and capture

in U238 are from ANL -5800, Reference A 13. The fission yields of Xenon

and the "Samarium group" of fission products (with cross section greater

than 10, 000 b) are calculated from Walker's report, W4, and are itemized

in S3 and in C11.
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Table 4. 1 Nuclear Data

Nuclide a-2200, b Inf. Dilution a v Fission Yields
Res. Integral, yXe YSm

I"", b

U235(abs) 693.52 370.

U235(f) 582.78 271. 0. 365(res.) 2. 47 0.064 0.01649

U236(abs) 7. 257.

U238(abs) 2.71 289.

U238(fast f) --- _--- _ 0. 0687(fast) 2.60 0.06 0.03154

Pu239(abs) 1031.1 478.5

Pu239(f) 747.73 319. 0. 5(res.) 2.90 0.053 0.03315

PuZ40(abs) 300.0 8850.

Pu241(abs) (1.37 6 5af 11) 781.

PuZ41(f) 1015.2 567.5 0. 3765(res.) 3.06 0.06 0.035

Pu242(abs) 30.09 1015.

Xe
= 9.13 h T

is I1
= 13.2 y

-J
0



B: BASES FOR THE COST CALCULATIONS

1. Background and Assumptions

The procedure used to calculate costs is essentially that used by

Pigford, Benedict, Shanstrom, Loomis, and Van Ommeslaghe, P3,

Section 8. Since this paper, however, the Technical Appraisal Task

Force on Nuclear Power of the Edison Electrical Institute has published

a report E8, which should help in standardizing the method of fuel cycle

cost calculations. For this reason the method of Pigford, et. al., has

been slightly modified so that the cost breakdown is directly comparable

with the Edison Electrical Institute method. The main modification is

the adoption of the "fixed charge on working capital" technique of roughly

approximating the cost due to interest considerations. This method is

a simplified substitUe for the accurate accounting technique involving

the calculation of the interest debit or credit due to each step in the

fuel cycle, depending on the time difference between the-payment for that

step and receipt of revenue when the fuel is utilized in the reactor. The

other modifications are essentially ones of nomenclature and of the grouping

of the items in the fuel-cycle pipe line. A constant cost item has been

provided which can be used for the cost of replaceable core structures or

items not covered by the other terms; however, it has been taken as zero

for the calculations of this work.

The processes in the fuel cycle have been divided into the steps shown

in Fig. 4. 5. Each step is given a number which is used as an index for the

costs, recovery terms, and weight ratios in the cost equations. These

equations are written in general form for the processes of Fig. 4. 5. If a
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step is not required in the chosen fuel cycle, the cost of that step can be

eliminated by setting its material adjustment factor, f, or unit cost equal

to zero. Steps 1, 3, 4, 5, 7, and 15, were not needed for the calculations

of this work.

The parameters used in the cost equations are listed in Table 4. 2.

The current prices were taken from published sources or producers esti.

mates and the references for these values are also listed in Table 4. 2.

In addition to the current prices, alternative cases of interest have been

calculated for each fuel cycle system to indicate the effect of variations

in certain of the unit prices. When no value is given for an alternate

unit price, the current price is used. The alternate costs that produce

the highest total fuel-cycle cost have been grouped together and, likewise

those that produce the lowest cost have been grouped together.
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TABLE 4.2 PARAMETERS FOR COSI CALCULATION I

UNIT PRICES, (C) M
_____________________________MATERIAL

3TPaI-, 4* IN L ADJUST.
NUMIER .1 HimH LOW'I7 ATR

( ) ITEM )CURRENT" ALTERNATE ALTERNATE OTHER or (10 REFERENCES

1 U02 (NOS),, recycled Eqs. (4.124) and (4.125) U

2 UF 6 from A.E.C. Eq. (4.121) and (4.122) U 1.02 U5, U15, 54

for 1, 2, Separative Work, (C) 37.286 * 24,857 * U B4

"t Optimum Waste Comp.,x*) .0022138 .0022138 .00267 U23ct B4

3 Natural U U 4

4 Pu (NO 3) , recycled Pu

5 U0 2 (NO3) 2 - U02  
U235

6 UF6 .. U0 2 powder 660. 1320. * * U235 1.01 W3, Zi

7 Pu (NO 3)4 - PuO2  Pu

8 Physical Fabrication 90. * 30. 45. fuel 1.00 W3, Z1, R7,
E5, U14

9 Shipping 9. * 5. * fuQl 1.00 C14, N5

10 Solvent Extraction _ _ Eq. (4.129) fuel .99 U6,.U9, ES

for 10 Daily Rate for Solv. 15,300. ($/day) U6, U9, E8
Ext., (d 0)

U02 (N03)2 s%, (d 11,) 5.60 U 0.99 U10

UF6  >5%, (d 1,2) 32.

12 Pu (NO3)4 4 Pu 1,500. * * Pu 0.99 U10

13 UF6 to A.E.C. Eqs (4.138)- and (4.139) U 0.99 U5,'B4

14 Pu to A.E.C. 12,000 * 30,000. * Pu 0.99 U7

15 Constant Charge fuel

16 UF6 Lease Charge, (Fd .04 .12 * * (fract./yr.) U5

17 Working Cap. Charge, (F,) .09 * * (fract./yr.) E8

Load Factor, L 0.8

Fraction of newfeed U235 from Nat. U, fnat. 0.

Net thermal efficiency, y 0.2791

Non -reactor lease charge time, tL, years 1.67

Non-reactor working cap. charge time, t years 0.458

Weight of fuel charged to reactor, Wf, kg 24;395.

% Blanks mean step not used.

Cost of U6 feed corresponding to optimum waste composition is $39.27/Kg.U.

Cost of UF feed corresponding to optimum waste composition is $26.18/Kg.U.

* An asterisk means same value as " curent" price.
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2. The Partial Fuel Cost Equations

It is useful in condensing the cost equations to define an energy

yield term, G, as the grams of fuel fed fo the reactor per Awh of

electricity produced. G is related to E, the average burnup in Mwd

per ton, of fuel fed to the reactor, by the equation,

13
G 10 (4. 103)

24 ly

where y is the net thermal efficiency.
th

. is defined as the cost for the it step in the fuel cycle for

input cost set j;(see Fig. 4. 5 and Table 4, 2). For a given set of

input data the j index can be dropped and these costs can be expressed

in the general form,

C.= fWCiG Km( 4 104)

where Ci is the unit price for process i, in kg of "materiaT i", r

W is the weight ratio of "material i", the material on which the price

C1 is based, to the fuel fed to the reactor for no process losses; and f

is a dimensionless material adjustmentfactor, to account for process

losses. f is the ratio of "material i" leaving the step to "material i"

entering the 'reactor.for steps preceding the reactor, and is the tatio of

material "i" leaving the step to "material i" leaving the reactor for steps

following the reactor, It is seen that the product of the four terms on the

right side of Eq. (4. 104) gives the partial fuel cycle cost, in mills

per elect'ical kwh .
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We can now proceed to write the equations for the individual terms

required by Eq. (4. 104). In the following equations No refers to the

concentration of nuclide m in the fuel fed to the reactor; NR, m' to that

part of N0 which was obtained from recycled fuel; and N to the discharge
m

fuel concentration. A term proportional to the weight of the fuel fed to

the reactor, Wd, is given by:

12

Wd= (230 + m) No (4.105)

m=5
m*7

With this common term the weight ratios can be written, referring to

Table 4. 1 for the materials on which the unit prices are based,

235 N R,+ 2316 N R6+ 238 N A
W -"R 5 + R6 NR8 (4.106)

W

gnat is defined as the fraction of the fresh (non.recycled) U235 required

that is obtained from natural uranium. Then,

235 f (No - N)2 nat 5 R,5) (4. 107)
3 .007115 W d

W2 = 0, for fnat = 1 (4,108)

235 N0 + 236 N + 238 N
WWd 1 W 3 , for nat # 1 (4.109)

12
E (230 + m) NR

=m=7 Wd (4.110)
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W 235 NRs5 (4.111)
5 Wd

W6 .007115 W2 (4q I)

W = W4  (4. 113)

W 8W 9 = W1 0 = W 1 5  1 (4.114)

235 N 5 + 236 N 6 + 238 N 8
5 W (4. 115)

11 Wd

12
Z (230 + m) N m

M=9 ( (4.116)
12 Wd

W 3 = W1  (4-.117)W13 W11

W = W 2  (4.118)

The following equations for the product cost, CP, from an ideal

separation cascade, see.B4, Eq. (10. 119), fits the A.E.C. price

schedule for UF 6 and is used to calculate C1 , C2 , C1 3

S( - x) + p - x )(1 - 2x ) '
C(xp) = CE (2x, x-1) P) + x 0 (1 -x 0 ) (4.19)

Where the unit cost of separative work, CE, and the optimum waste

composition, x 0 , are specified as input data. x is obtained from CE

and the unit cost of feed, CF, of weight fraction xF of U235, according

to a similar equation, B4, Eq, (10, 118), namely,
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xF o ( F xo x0
C =C (x 1)lfl + (4. 120)F E (2F - (1 - xF ( o

For this work x is calculated taking CF as the unit price of natural UF 6

feed, $ 39. 27/kg for "current" prices, This is somewhat less than the

$40/kg price for natural uranium since the cost for the metal prepara-

tion is slightly more than for the heXafluoride, The xF for natural

uranium of .007115 is used.

Equations for the unit prices not provided as input data can now be

developed.

C =0 f =1. (4.121)
2 nat

C2  CiP(x~,) fnt (4.122)
C2 B Pnat

where,

235 (1 -f )(Nu - N )
nat 5 R 5 4. 123)Wd Wz

and, Cp(xy) is given by Eq. (4.119).

CW = 0 , W 1 = 0 (4.124)

C I = C (xp) - d (4.125)

where,

x = R,5 (4. 126)
P Wd W

d = d 4.(4127)
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=P > ,05

Values for d,,, and d 1 1, 2 are listed in Table 4.1. The solvent extraction

cost, C 1 0 , is calculated according to the prescription of Reference E8

for the A.E. C. price data of References U6 and U9,

(W
d 10 --- + t)

C10 - W (4.129)

where,

40 W W
b (4.130)235 N5

and the reprocessing rate, r, in kg/day is given by

r = b ,

r = 1000

b < 1000

b > 1000

(4. 131)

(4.132)

b = 1000 kfor an enrichment of 41

and, the "turnaround" time, t, in days is,

t = 3 ,

W f

t =8 ,

Wf
I< 3

Wf
3 4 -f-I < 8

r
Wff > 8

r

(4. 133)

(4. 134)

(4, 135)

Wf 2 is the weight of the fuel in kg and d 1 0 is the daily reprocessing

charge, $ 15, 300/day for "current" prices. The uranyl nitrate con-

version unit price is,
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C d x .05 (4.136)

C1 1  11,2 XP > .05 (4.137)

where x is defined by Eq. (4. 140). For return of the UF 6 to the A. E. C.

C 1 3 = 0 , f 1 3 = 0 (4.138)

(Separate criteria are specified if zero unit prices are desired for

C1 , C2 , or C 1 3 to avoid the computer's attempting to calculate the in

of zero in the C calculation.)

C 1 3 =C(xy) f 1 3  0 (4. 139)

where

W W
Wd 11  (4.140)

P 235 N5

The partial fuel cycle costs, Ci for i from 1 to 17, can now be

calculated. As given previously,

C=fWiC iG , for 14 i 4 15 (4.141)

The lease charge on UF 6 is given by

16 =FN (L+L) 2 (4. 142)

f raction R
where: FN is the lease charge rate on UF6 year i; m is the reactor

holdup time in years, L being the load factor and tR the time at full

power; and tL is the non-reactor lease charge time in years. The working

capital charge, essentially as recommended in E8, is calculated from
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t 8
C1 - = FW tW + )( Oy (4. 143)

f1actioi#2

where, F is charge rate on working capital, arn , and t is the

non-reactor working capital charge time, years, taken here as one.-

half of the reactor lead time. In Ref. E8, $1i used for the time

instead of t +

Finally, some of the partial unit costs are then combined in groups

according to the Edison Electric system, E8.

The net fuel material cost, Cmt, is,

4
Cit=Z i 3 C1  (4.144)mt C C13 -C14

where C 1 3 and C 1 4 are subtracted since they represent credits for

returned fissionable material. The fabrication cost, C , is defined by,

8
Cfb = Ci (4.145)

1=5

and the spent fuel reprocessing cost, Crp' i

12
Crp = C (4. 146)

The latter two combinations are in accord with the current trend to

include the related conversion and shipping costs with the cost of physical

fabrication and with that of solvent extraction when reporting "fabrication"

costs.

Thus we have two sets of partial fuel cycle costs that add up to the net
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cost: 1) the set of seventeen partial costs, C. for i = 1 to 17, (only

eleven of these are used for in this work), and 2) the set of six costs:

mt , U , rp' C15' C16, and C 1 7 . Cost results will be presented

in both forms in this study.
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C. DESCRIPTION OF FUELCYC

1. General Description

FUELCYC is an IBM 704 computer code which will simulate the life

history of a reactor for various ways of moving the fuel. It will calcu-

late the criticality, the material composition changes, and the cost of

the fuel cycle for most of the reactors that are of current interest. More

specifically, FUELCYC will perform the above fuel cycle calculations

for the following conditions:

1. Cylindrical reactors with azimuthal symmetry, see IV. A. 2.

2. Fuels of U235, U238 and daughter nuclides, see IV. A. 3.

3. Moderators of water, heavy water, graphite, or beryllium, see-

IV. A.l. 2.

4. Specification of different nublear compositions and properties in

a maximum of 200 regions, 10 radial by 20 axial, IV. A. 2.

5. Arbitrary concentration of control poison within the different

regions, IV. A. 2.

6. Arbitrary axial symmetry, IV. A. 2.

These conditions are general bounds on the range of fuel cycles and

reactor systems that can be calculated due to the basic assumptions of

the physical model which was developed in Part A. of this chapter.

W~tin these general bounds of reactor design one, can, of course, pro-

pose many different ways of operating the reactor, involving variations

in the regional properties, in the charging of the fuel, and in the pro-

gramming of the control poison. For this reason, FUELCYC has been

written so as to minimize the coding effort required for the addition of

83



new reactor operational methods as they come of interest. The opera-

tional methods now available in FUELCYC are discussed in the next

section.

There are many different numerical methods employed in the code,

all of which, of course, introduce truncation errors. The magnitudes

of these errors are estimated and discussed in Appendix E.
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2. Fuel Scheduling Procedures Handled by Present FUELCYC Code

For the purpose of this study control subroutines have been added

to the basic code to permit treatment of four different methods of

scheduling fuel movement which are of interest in the large power

reactors being developed in the United States. The four methods treated

are:

(1) Batch irradiation, in which a complete fresh load of fuel is

charged to the reactor, irradiated without movement, and dis-

charged completely when the reactor ceases to be critical.

(2) Inout irradiation, in which fresh fuel elements are charged cont-

inuously to the axis of the reactor, moved steadily radially

outward, and discharged continuously from the periphery of the

reactor core, with all elements having been irradiated to the

same degree.

(3) OutiA irradiation, in which fresh fuel elements are charged cont-

inuously to the periphery of the reactor core, moved steadily

radially inward, and discharged continuously from the axis of

reactor, with all elements at discharge having been irradiated

to the same degree.

(4). Graded-irradiation,in which individual fuel elements are irra-

diated while fixed in place in the reactor and are removed after

exposure to a specified degree, and charging and discharging of

fuel is scheduled that each region of the reactor contains some

fresh fuel, some partially irradiated fuel, and some fully irra-

diated fuel.

Assumptions made in all of these four fuel scheduling methods, are:
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the fresh fuel fed to the reactor has uniform concentration; the reactor

has axial, symmetry; and the reflector's effect can be adequately

approximated by axial and radial reflector savings which are then in-

cluded in the zero flux extrapolation distances of the problem input data.

The latter assumption is good for the large power reactors studies and

permits all the cell mock-ups to be core regions.

One of the fuel-scheduling methods, Batch, gives a core with time-

dependent properties; the other three are steady-state methods of fuel

movement. These methods are discussed in the following subsection.

Z. 1 Batch Irradiation. This is the normal technique of starting up

the reactor with a uniformly loaded core, and with all the fuel elements

remaining fixed in position during the life of the core. It is assumed

that the excess reactivity in the core is controlled by a uniform-distri.

bution of control poison, the quantity of which, of course, varies during

the lifetime in order to make the poisoned core criticality factor, C

equal to one, or at least sufficiently close to one so that the resulting

flux shape is essentially that of the steady-state flux, see IV. A. 2. 5.

This model of the poisoning would be strictly true for control with

soluble poison in the moderator, but is an approximation also to one

reasonable method of programming control rods so as to reduce flux

distortions. This occurs when the reactor has a large number of con-

trol rods, so that the rods can be divided into local groups and criti-

cality can be maintained by the complete withdrawal or insertion of

combinations of rods in each group with the required reactivity worth.

The reactivity, flux shape, and composition changes that occur

during the core life are calculated stepwise from the uniform loaded
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condition. Flux-time steps are specified for that portion of the fuel

which is in the central core region. These steps are uniform until the

overall criticality factor, C, becomes less than unity, after which

appropriate sized steps are calculated to converge to the condition C=l.

The flux-time steps for the fuel in other regions are calculated-fron the

central step and the latest flux distribution assuming no change in flux

shape during a step. The nuclear properties required for the criticality

calculation can then be obtained at each step for each region since they

depend only on the cumulative flux-time experienced by the fuel, see

IV. A. 3.

The batch method of irradiation is generally very wasteful of neu-

trons, and so results in a lower fuel burnup than is necessary. An

additional disadvantage of the batch method results from the large var-

iation in power density throughout the core and, even more important,

the change in shape of the power density distribution during the life

history of the core. These characteristics make the heat transfer

design difficult and inefficient for the batch-operated reactor. Methods

of fuel movement which improve over Batch in neutron economy and/or

heat transfer properties are considered in the next three subsections.

The main advantage of Batch irradiation as compared to these other

methods is that it involves either fewer reactor shutdowns for recharging

the fuel, or less elaborate fuel handling equipment.

In considering the reactor power output, it is assumed in this study

that the heat transfer characteristics of the core, as characterized by

the power density distribution, are not the limiting characteristic, but

rather that the limitation is on the total power output. The latter would
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be the case if the generating equipment or heat transfer equipment ex-

ternal to the core were the limiting factor. However, regional power

densities and the ratio of maximum to average power densities, i. e.,

the hot-spot factor, are calculated and can be used to adjust the results

for different limitations, for instance for constant maximum power

density. Fuel cycle costs for low burnups are primarily flux-time

dependent so there will be little change for operation at different flux

levels. The only variables affected by the magnitude of the flux are the

"on stream" time that the fuel spends in the reactor, tR, and the Xenon

poisoning. The flux level is of considerable importance, however, for

fuel cycle costs at high burnups and for the "capital charge" part of the

power cost, which is inversely proportional to the power level.

2. 2 Progressive Radial Fuel Movement from Inside to Outside.

To avoid wasting neutrons in control poisons fuel elements can be charged

to, and discharged from, the core periodically during the life of any one

fuel element. The reactivity of the discharged fuel is then allowed

to become sufficiently negative before discharge to just balance the

positive reactivity of the fresh fuel. The "Inout" fuel movement method

increases the efficiency of the neutron usage even further by charging

the fresh fuel elements, which act as a neutron source for the rest of

the core, near the radial center of the reactor where the probability

of leakage is low, and therefore the importance high. The fuel is

then moved stepwise to outer positions as new fuel is charged and

fuel elements are discharged from the radial edge of the core. As the

number of fuel element positions and the frequency of charging increases,

the fuel spends less time at any given point in the core so the nuclear
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properties at any point tend to become nearly constant with time. In the

limit this approaches the steady-state model of continuous fuel feed and

discharge with the reactor always just ciitical. This idealized steady-

state condition is used here for the Inout movement as well as for Outin

and Graded, which are to be discussed in Section 2. 3 and 2. 4.

For fuel elements of a specified composition, the steady-state con-

dition that just maintains criticality must be calculated by a double

iteration involving initial guesses both for the flux distribution and for

the irradiation level of the discharged fuel that will just make the

reactor critical.

The double-iteration procedure for Inout will now be described.

An initial estimate is made of the flux-time, ec, received by the

central portion of each fuel element at the time of discharge. An initial

estimate is made of the spatial flux distribution. From these initial

estimates, the spatial distributions of nuclear properties is computed.

From this spatial distribution, the overall criticality factor and a new

flux distribution are computed. With this new flux distribution and the

original estimate of 0 c' a second calculation is made of the spatial disk

tribution of flux-time, and nuclear properties, and from them of the

overall criticality factor and flux distribution. The procedure is re-

peated until the criticality factor and flux distribution converge to

limiting values for the initial estimate of ec'
This procedure has been called the "criticality iteration", since its

purpose is to generate the criticality factor for a given ec. The crit-

icality iteration is then carried out again for a second estimate of Ge'

After this, new estimates of 0 are generated by a linear interpolation
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between criticality factors for the last two 0c values until the criticality

factor converges to unity. The converged flux-time distribution is then

used to calculate the final nuclide concentrations.

The procedure for computing the flux-time which a fuel element

leaving a particular (r, z) region of the reactor has received will now be

described. It is assumed that azimuthal symmetry is maintained

during fuel movement.

The flux in region (r, z) is to be denoted by +r, z and the volume of

the region by Vr. With steady movement of fuel, the time tr that a fuel

element spends in region (r, z) is proportional to its volume Vr

tr =t vV (4. 146A)

The constant of proportionality tv may be evaluated from the axial cen-

tral flux-time, 0c, received by fuel at time of discharge and the flux

distribution r and region volume distribution V at the value of z forr~l r

the axial central flux distribution, (z=l):

r.

0 = + t V (4. 146B)
c r,. v r

r=l

from which,

9
t c (4.147)

v r-

E +r, 1 Vrr=l

The flux-time of the fuel leaving region (r, z), Or, z, Lis obtained

from the flux-time of fuel leaving the next inner region 0r-l, , L and
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the increment of flux-time t , Vr received in the region (r, z);

erz - 1z +t 4 r~Vr r*1 (4.148)
r, z, L = r-1, z, L + v r,. z r, r1(.18

when r=1, the flux-time of fuel entering the region is zero so that

91, z, L = +1, z 1,

The average flux-time within the region (r, z), 9r, z, needed to

obtain the nuclear properties of the region, is obtained as the arithmetic

average of the flux-time of fuel entering and leaving the region:

Or, z r, z, L r-1, z, L r1 (4. 150)
r~z 2

When r=l, r is zero, so thatr-1, z, L

e
0 1, z 1 z,L (4. 150A)

2

In some cases during criticality iterations successive values for

estimates that are generated from Eq (4. 150) and (4. 150A) tend to

oscillate about the true value instead of converging. To eliminate this

these equations are modified as follows, introducing a damping factor,

id'

(, z .d rz] + (1 - fd) rz](.1 )

where 9 refers to the initial estimrate from Eq. (4. 150) or (4. 150A)r,. zI
and the index i is the loop count for passes through the criticality

iteration. For the first time through the iteration, (i=l), fd is set equal

to one which gives no damping; since in this case there are no values
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for 0 1) corresponding to the new e . For remaining iterations, (1>1),

fd is empirically set to a value -which giveps-good convergence. It has

been found that 1d = .5is usually a good choice.

Because of its efficient use of neutrons, the Inout method gives the

highest burnup of the four rmethods studied. The power density distri-

bution, however, is the rmost non-uniforn of the four methods due to

providing more excess reactivity towards the center. Although the non-

uniform Inout power density distribution would not vary with time, it is

still disadvantageous since the rate of power generation from a given size

of core would be less for this method of feeding than for any other method

studied.

In light of this, the fuel scheduling method discussed in the next sub-

section is of interest in attaining a more nearly constant power density

distribution, and thus permitting a higher total power output for a given

maximum power density.

2. 3 Progressive Radial Fuel Movement from Outside to Inside.

This scheme is the same as the previous one except that the fuel moves

in the opposite direction, being charged near the radial edge of the core

and discharged near the radial center. Considerably better burnup than

for Batch irradiation can be expected due to no control poison wastage

but less than for Inout since the fuel is charged in regions of low impor-

tance and its reactivity becomes negative in regions of high importance.

Due to this reactivity distribution, however, the flux is considerably

flattened, producing less vAriation in power densities for the Outin

method than for any of the other four.

The solution procedure for Outin is analogous to that for Inout. The
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time constant, tv, is calculated from Eq. (4. 147). For the flux-time

estimates for the fuel leaving. region r, z we have

r, z, L r+l, z, L + tv r, z Vrz L (4. 152)

and

rzL = t V (4. 153)

The regional flux times for estimating nuclear properties are given by:

+ Oi 44) (4.154)
9(i) r+l, z, L r, z, L + - ) r#rr, z d d r, z L

and

e(j) =fK rL*J + z- LL
r rL , L + (1 - fd) 9 (4, 155)

A fuel scheduling method that is intermediate between Inout and Out-

in, both with regards to burnup and to power density distribution, is

presented in the next subsection.

2. 4 Graded Irradiation . As for Inout and Outin, fuel elements

for Graded are assumed to extend the full length of the core and are

charged and discharged periodically. However, in this method the fuel

elements are divided into a number of local groups. The most irra-

diated fuel element in each local group is periodically replaced by a

fresh fuel element. The rate of replacement is varied from group to

group so that the central part of every discharged fuel element has

received the same irradiation. It is assumed that a local group is
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radially small enough so that its effect in the core at any axial point is

given by averaging the nuclear properties of the different elements within

the group at that axial point. In addition it is assumed that there are

sufficient elements within the group so that ihe repficement rate is rapid

and, therefore, the average properties of the group at any axial point

are essentially constant with time. Thus the average nuclear properties

representative of the group of elements, F(O), are given by,

eff(8') dO'

f(O) 0 (4. 156)
0

where 0 is the flux time of the most exposed fuel element of the group

at the specified axial position, and f(S) represents one of the seven nu-

clear properties required for the spatial solution, as listed in IV. A. 3;

(Ef(0), for example). Having calculated the flux-time of the average

properties, from Eq. (4. 156), a double iteration procedure similar to

that of Inout and Outin is used to converge to the correct steady-state

condition with a criticality factor of unity. Taking 0 c as the flux-time

at the axial center of the discharged fuel elements, which is the same

value for all the discharged fuel, the regional flux times for evaluating

the nuclear properties are given by,

0 ( = f (+ -r r z 14rer (4.157)
r, z d c d) r, z L

r,1 140z4L

where fd is the damping factor, as before, and is set equal to unity the

first time through each criticality iteration.
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Graded irradiation would be expected to give burnups and maximum

to average power density ratios intermediate between Inout and Outin

since positive reactivity is added and negative reactivity removed

throughout the core rather than at specific radial locations as in the

other two methods.
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3. Solution Procedure

An understanding of how the previously developed theory is put to-

gether to form the code FUELCYC is best obtained by reference to flow

charts, or computer logic diagrams. Fig. 4.7 is such a diagram for

the main control program, called MAIN, for the four fuel movement

methods discussed in Section IV. C. 2. Fig. 4. 6 explains the sytnbols

used in this and subsequent flow charts. This MAIN flow chart essen.

tially gives the order of entry to the various subprograms that are

required. In turn some of the subprograms indicated require additional

subprograms not shown in Fig. 4. 7.

However, the overall logic of FUELCYC can be gleaned from this

single simplified flow chart since comments are included to explain the

purpose of the various subroutines entered. Flow charts and descriptions

for the 32 subroutines of FUELCYC, plus a few other clerical subroutines,

are provided in Appendix C. Note that in the triangles of Fig. 4. 7

denoting transfer to a subroutine, the number of the section of Appendix C

which describes the subroutine is given. The steps on the flow charts

are numbered for easy reference. The source language was Fortran II

in all cases, so the corresponding Fortran statement numbers are tabu-

lated for the benefit of those readers who have a listing of the source

program. The manner!of presentation generally follows that approved

by the American Institute of Chemical Engineers, A16.

To condense the basic logic flow even further, the following overall

purposes of the indicated groups of steps irn Fig. 4.7 can be stated:

1. Steps 1P17, initialization.
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2. Steps 18-31, calculation of the -initial criticality of the uniform

loaded reactor: a) with no Xe and "Sm group" poisoning; and

b) with saturated amounts of this poison. The average fast to

thermal non-leakage probability, Pi. calculated in b) is used in

the solution for the nuclide concentrations as functions of flux

time.

3. Steps 32-41, calculation of nuclide concentrations and required

space properties as functions of flux time.

4. Steps 42-47, calculation of criticality, nuclide concentrations

present, maximum to average power density, and other fuel

cycle parameters throughout the life history of the fuel. This is

a stepwise calculation for Batch irradiation, and an iteration to

converge to the steady-state condition for Inout, Outin and Graded.

These subroutines contain the bulk of the calculations of FUELCYC

and are described in Appendices C. 30. -C. 33.

5. Steps 48-49, calculation of burnup and time spent in the reactor,

using the final average concentrations from 4.

6. Steps 50-51, calculation of the fuel cycle costs.

7. Steps 52-73, looping and initialization for the next problem, if

any.

Information on input data preparation and other operational details

is given in Appendix D.
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0

A
Fig. 4.6 -Symbol key for FUELCYC flow charts.
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Input (read), output (write), calcula-
tions.

Decisions and branches.

Stops: L gives the absoluie octal
location of the stop, T gives the
type of stop.

Identifying decisions where D is the
designator: Y means yes; N, no;
1, branch 1, etc.

Transfer and return from oubpro-
gram L, which is described, with
flow chart, in Appendix C. N.

Connector for sections of logic:
transfer is from or to Step N.



Flow Chart Comments

Fortran
Statement

Number

10-20

50

Entry for subsequent
problem if it requires
all new input data.

53,40

Entry for subsequent
problem, if new enrich-
ment or Pu recycle in
same reactor.

Write date and time.

46

60-70

Fig. 4.7 Flow chart for the MAIN control program .in U'FELCYC.
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Step

1.

2.

3.

4.

5.

6.

7.

8.



Flow Chart Comments

Fortran
Statement
Number

Calculate microscopic
cross sections vs.
velocity.

100

Tabulate constant
nuclear data, vs,
etc.

Calculate spatial con-
stants, h, g, etc.

This print-out is usually 120-125
bypassed.

4'1 m = 1. 130-150

m # 8, 10.

nance Alternate if factors
S. other than the above

are desired, usually
bypassed.

INIT is branching vari-
able in later logic.

Calculate resonance
escape probabilities.

Fig. 4.7 (cont.)

127

100

Step

9.

10.

11.

12.

13.

14.

15.

16.



Flow Chart CommentsStep

17.

17.5

18.

19.

20.

Fortran
Statement

Number

128

21. Calculate and write space
properties (Batch 5 out-
put).

4
TIMECK (3)

The purpose of Steps
18-31 is to calculate
initial criticality with
and without Xe and Sm
group poisoning.

Write tho time.

Calculate criticality
flux shape, leakage,
power density, etc.

Fig. 4.7 (cont.)

101

Calculate average ther-
mal microscopic cross
sections. No hardening
due to moderator.

Cross sections with
moderator hardening
included.

Initially INIT = 1 .

22.

23.

215-225

230



Flow Chart

4
TIMECK (4)

Comments

Fortran
Statement
Number

25.

26. INIT? 2

32

27.

28. Calculate Xe and "Smn
group" poisoning cross
section.

29. INIT? 2

Stop for no reactivity.

Fig. 4.7 (cont.)
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Step

24.

235

240

245-250



Flow Chart Comments

Fortran
Statement

Number

26"

Calculation of initial
criticality completed.

For use in (36.) Fast
nonleakage probability
from (23.) used in (36.).

These are the space
properties discussed
in IV.A. 3.

Calculate fuel nuclide
concentrations at new
flux time step.

See IV. A. 3.

Fig. 4.7 (cont.)
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Step

30.

31.

32.

33.

34.

35.

36.

300-310

320-330

37. 335.360



Step Flow Chart Comments

Fortran
Statement

Number

Calculate new micro-
scopic cross sections.

38.

39.

40.

41.

42.

Calculate Lagrangian
coefficients.

For polynomial fit of
nuclide concentrations
and space properties.

Fig. 4.7

Entry for next problem
if new fuel movement.

(cOnt,)

104

Write NuclIde concentra-
tions versua flux-time.

370

380

385-400



Flow ChartStep Comments

Selection of fuel
scheduling proce-
dure from input
index IMOVE.

Material fuel cycle cal-
culations such as criti-
cality factors, flux
shapes, au power den-
sities, made during life
history of fuel with
Batch fuel scheduling.
See Appendix C. 30.

Inout fuel scheduling.
See Appendix C. 31.

Outin fuel scheduling.
See Appendix C. 32

44.

45.

46.

47.

Fig. 4,7 (cont.)
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Fortran
Statement

Number

410

420

430

440

43.

Graded fuel scheduling. 450
See Appendix C. 33.

Space for new fuel 460,490
movements.

500-540

47.5

48.



Flow Chart Comments

Fortran
Statement

Number

Write final concentrations,
Nm, final central concen-

trationse m, average
burnup, R, central burnup,
EP and reactor time, tR'

0R

510-550

COSTT = 0: Y

COSTT # 0: N

49.

50.

51.

52.

53.

560

Normal stop in read
routine for no input
cards in hopper.

I
Any more N
Iput data ?

PRO,-

Read the index for the
next run, INXRUN.

To control the initiaU
zation and reentry for
the next run.

580

Fig. 4.7 (cont.)

106

Step

Calculate costs.



Flow Chart Comments

Fortran
Statement

Number

54.

55.

56.

57.

58.

59.

Set values for recycled
nuclide concentrations,

NMR, equal to zero.

3

Fig. 4.7 (cont.)
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Step

For future modifica -
tions.

When the next run
requires reading all
new input data.

60.

680

61.

62.

590-600



Flow Chart Comments

Fortran
Statement

Number

For a new set of initial
fuel concentrations in
same reactor.

As before..

For Pu recycle.

68. Read fractional recovery
factor, £ and NO,recy 5

Recycle plutonium.

5

N0 =_f Nm = recy m
m = 9-12

For a new fuel move-
ment method in the
same reactor.

Read the new value
for IMOVE.

The code stops when
there are no more
input data cards,
see (52.).

Fig. 4.7 (cont.)
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Step

64.

65.

66.

67.

610-620

630

6406,50

69.

70.

71.

72.

73.

660

670



4. Machine and Time Requirements

The code requires a 32, 768 word IBM 704 computer and one or two

tape units. The space actually used in octal units is: (064011)8 and

(65032-77777)8. Output is on Tape 2 and the binary information can be

read in from the card reader or can be loaded on to Tape 4 and subse-

quently read in from there. Problem input data is provided via the card

reader. If the "real time" prints are used, a clock must be connected

to the computer.

The following equation gives an estimate of the computer time required

for one problem, SPACE 2 SPPROP

t(minutes) = snL {[0016 + .004 4 + [001 62 + .001 1.3

NUCON AVGCS2
+ m{.01 + iL [.001 63 + .0004]} + .3 + r (4.158))

where,

s = number of passes through the spatial subroutines.

nL = number of mesh points, nL = rLz L
j = loop count of the average number of iterations for flux con-

vergence in the SPACFX subroutine (for spatial flux shape).

f = number of fit points used for the polynomial fit of space

properties versus flux time, f (1 +n

m = number of passes through NUCON (for a flux time step in the

nuclide concentration equation solution or through AVCGS2

(calculation of average cross sections), m - n -

iL = nurnber of velocity points for calculation of the thermal flux

energy distribution (and for averaging the thermal cross sections).
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r = "read in" time for the binary information.

6i, i=l, 2, 3 are print options, 6 = 1 for print, 6 = 0 for no print.

The values of the above variables depend on the problem being solved

and upon the accuracy desired; however, for simplification Eq. (4. 158)

will be reduced to the more approximate Eq. (4. 159) using average values

for the parameters used in past runs. r is approximately 4 minutes if

the binary information is on cards, but is negligible if it is on tape and

is zero for problems after the first. Tape input was used for essentially

all of the runs of this work, so r will be taken as zero. The three values

of .001 in Eq (4.-152)are for: secondary printouts: the first two are for

space functions at each mesh point and are generally bypassed; the third

is for the thermal energy spectrum of the flux, and is often used. There-

fore, 6i and og will be taken as zero and 63 = 1. Average values for

other terns are: s = 10, j=3, f=5, iL = 25. An average value of mis 10

for the first fuel movement of a given reactor but for subsequent fuel

movements m=0. In the simplified equationm is taken as 5. These

substitutions give the considerably simplified equation:

t ~ .5 + .05 nL, min. (4. 159)

The smallest value for the number of mesh points, nL, that has been

used is 9 and the largest 100, which would give a time range of from

1 to 6 minutes per problem.

Due to the large number of assumptions made in Eq. (4. 159), the time

estimate might be appreciably in error for a specific problem; however,

if control variables are chosen carefully, it should give a reasonable

estimate of the average behavior. Since the solution converges for a
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mesh as coarse as 3 X 3 and the answers are good enough for first

approximations (costs might be expected to be 101 off), it is usually

conservative of time to make an initial survey series of runs at-this

mesh spacing, and later a more accurate set at a finer mesh for increased

accuracy. The first set serves to eliminate unnecessary runs, to give

good estimates for parameters that have a strong effect on the time

required such as final steady-state flux4lme guesses, and in general

to allow desired changes to be made with a minimum of computer time.
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V. REACTOR DESIGN DATA

A. PRESSURIZED LIGHT WATER REACTOR

1. General Description

Most of the calculations for this study have been made for a pres-

surized light-water reactor that is structurally similar to the Yankee

Atomic Electric Company reactor designed by Westinghouse Electric

Corporation. An early version of this design is described in Reference Yl

and later design data were obtained from Dr. W. H. Arnold of Westinghouse.

The reference design for the reactor of this report is fueled with

51420 lbs. of UO 2 of 3.4 w/o U235 and is cooled and moderated by light

water at a pressure of 2000psi and a tepnperature of 516*F. The reflector

consists of a one-half inch steel baffle with an effective infinite amount of

water beyond. The reactor produces 480 Mev of heat and generates 134 Mev

of electric power. The load factor has been taken as 0.8.

The fuel elements consist of UO 2 pellets, 0.29 inches in diameter

loaded into 20 mil thick stainless steel tubes. The tubes are placed on a

0.42 in. square pitch in a cylindrical core 3.1 ft. in radius and 7.7 ft. in

height. More exact values for some of these dimensions and additional

design data are listed in Table 5.1.

Fuel cycle calculations, i. e. fuel cycle costs, nuclide inventories,

burnups, flux and power density distribution, etc., have been made for

this reference design and for variations to it with different U235 enrich-

ments. For these enrichment variations all the input data parameters, of

Table Dl., were assumed to have the same value as for 'the reference
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design reactor except for the initial inventory of U235. The fuel cycle

calculations have been made for the four fuel scheduling methods de.-

scribed in Section IV. C. 2. These results are presented in Section VI.
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Table 5. 1 Reference Design Data for Pressurized Light Water Reactor.

Inventories

Volume Weight

(ir.43

References

(lbs. )

UO 2 (w/o U235 = 3.4)

Stainless Steel (Type 348)

H 2 0

Zirconium

Void

Total

141,091. 51,420.

48,025. 13,520.

208,330. 5,881.

12, 137. 2,850.

5,421.

415, 004. 73, 671.

Core Dimensions (in

Equivalent Diameter

Total Active Length

Temperature, mean, Tmd, (*F)

Power, (Mw)

Thermal

Net Electric

Nuclear Properties

Initial resonance escape
for U238, p8 .

Initial resonance escape
structural materials

probability

probability for
and coolant, pc

*All values are for the mean temperature of 516*F.
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Item

A10

A10

A10

A10

A10

75. 68

92. 257

A10

A10

A10

Y1

Y1

516.

480.

134.

0. 738

0. 942

A10

A10



Table 5, 1 (Cont.)
Nuclear Properties

Fast fission factor, e

Fermi age, -r, (cm

Thermal disadvantage factor, *

Reflector savings, 6 R H, (cM)

Microscopic 2200 m/s absorption cross
section for H 2O, (b)

Microscopic transport cross section for
H 2 O, (b)

Microscopic slowing down power for H2 0,

(g s)H2, (b)

Microscopic 2200 m/s absorption cross
section for Type 348 stainless
steel, (b)

Atomic weight of Type 348 stainless
steel

1.0584

51.5

1.141

7. 5

0. 575

70.

41.2

3. 206

55. 63

Reference

A1O

A10

AlO

A10

W8

W8

W8

H29
(calnUtated)

H29
(calculated)
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2. Calculation of FUELCYC Nuclear Input Data for the Pressurized

Light-Water Reactor

Values of the required nuclear input data for FUELCYC, as specified

in Table Dl., can be calculated for the pressurized light-water reactor

from the basic reference design data of Table 5. 1. These calculated

values are listed in Table 5. 2. The calculation procedure is straight-

forward for most of the nuclear parameters but will be described below

when it differs from standard techniques. Recommended settings for

the spacing parameters of the various numerical methods, ' 1L' '

n,, n , rL, ZL' 2 l are listed and discussed in Appendix E.

Since we have an experimental value for P8 ' 41, 8 was calculated

from,

C N8 I '

1, In p8  (5. 1)

The initial estimate for the fast non-leakage probability, P1 , was

calculated from the relatiorship for the one fast group diffusion model,

see Section IV, A. 2. 2, for a uniformly loaded core,

P = 12 (5.2)

where B is the geometric buckling and T is given by Table 5.1

Correspondingly, the initial estimate for (-DV ) was DB .

For the calculation of M'md and crXe, the initial energy spectrum 6f

the flux in the fuel was required. This is because the fuel flux increased

116



Table 5. 2 FUELCYC Nuclear Input Data for the Pressurized

Light.Water Reactor.

Item Value Units

atomsN.0.0008785atmN50._0008785 b cm (of fuel)

0.02465

N 0 NoP, N0 - 0 0.
6' FP 9 N1 2  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0,8181 cm (of mod.)

(To /Tmd) 1/2 0.7359

1, 8 14.76

C 1  0.6297 cm (of fuel)

E 1.0584 -
P0
~1 0.9654

(IPDV ) 0.000192 cm

R 96.11 cm

H 234.33 cm

6R 7.5 cm

H 5_cm
D 0.2755 cm

- 51.5 cm

Mmd 0.0542 cm (of mod,)

w Xe 1.35 E6 b

OFP 31.9 b

41 1.141 -

Pd 70.57 kw/liter

V f 1 0.3400

0.4271 cm (of fuel)

For definitions and further description see Table D1. For the
spacing parameters for the numerical solution methods see Appendix E.
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by the disadvantage factor is used in calculating the moderator reaction

rate rather than the moderator flux. To be compatible with this procedure

the moderator cross section, Zmd, must have been evaluated for the

fuel flux."energy distribution. * As discussed in Section IV. A. 1. Z, the

assumption was made that the distribution of fuel flux with respect to

energy was equivalent to that of a hardened Maxwell-Boltzmann distri-

bution in which the neutron temperature was given by,

T = T (1 + 0.46 A), (*K) (5.3)
neutron md

where A is evaluated at Tmd from,

(5.4)
$ md

and the initial macroscopic absorption cross section at kTmd, EI was

given by the homogenized average for the initial loading,

M (cm) = (N5 r 5 + N8 8 Vf + (Nas + NH2OH2O

+ Nzrzr) Vmd ('5.5

where the cr's are values at Tmdo and Vmd (1. -

The core average reaction rate density is calculated by FUELCYC
for fuel materials as NfLVfu nfjv f; for the slowing down power, as

(m) Vmd nf (vf; for the moderator (plus other materials with constant

microscopic cross sections) by, EmdV mdqonfjvff In these expressions

vt is the average velocity for the neutron distribution in the fuel, and

the moderator volume fraction, Vmd, is taken as 1 V f.
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For the reference design reactor this calculation gave A = 1.45 and..

therefore from (5.3), Tneutron = 908'K.

Using this value of Tneutron, the microscopic absorption cross

section of Xenon, wXe, was calculated from,

IgW0w (5.6)
Xe Xe Xe 4Tneutror

where 0"Xe and g were taken from the Berstein, g 5/8, values listed

in Reference Wl1.

An effective thermal value of Zmd was calculated as the sum of the

real thermal contribution plus a resonance contribution. The thermal

part was calculated as a Maxwellian average at Tneutron. This gave

for 2indo

wT P
+md = d 4 V e (5.7)md 4 T neutron + V md

where it was assumed that the structural and coolant resonance occured

prior to those of the fuel materials Initially is given by

q _ 55 f v5' ff (5.8)
~I - C Pi (1-pY

i5, f was calculated from W11 (analogous to TXe) using the relationship,

0 ~ wT0
15, f = 1T, f g5, f 4Tn (5.9)

n;reutron
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The initial resonance production term in Eq. (5. 8) is given by,

N5I-r 15  - 1  55
(1-p),j = (1 -pe(5, 10)

N I + 8N5 5.

This calculation gave.S 0.288 ~ resulting in a resonance contri-

bution to Emd that was nearly as large as the thermal contribution

(0.0244 for resonance versus 0.0298 for thermal).

rFP was taken from Reference S3, with the assumption that: (1) 75%

of the fissions were from U235, which burns out exponentially, (2) 25% of

the fissions were from Pu239, which builds up exponentially, (3) the thermal

flux was 1013 n/cm2 sec, (4) the final flux-time was 1 n/kb, (5) that

fission products with unknown cross sections have the same average

cross section as the known low-cross-section group. w FP was then

calculated from

wT

O FP =FP 4Tt
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B. NRX REACTOR AND THE GLEEP

1. Long Term Irradiations in the NRX Reactor

In general there is little experimental information for checking long

term irradiation calculations, and the available information is difficult

to interpret analytically due to the large number of variables present.

In the case of the NRX reactor, however, a-substantial experimental

program in long-term changes in composition and reactivity has been

carried out and significant results have been published. * These data

have been used for comparison with the FUELCYC analytical calculations.

NRX is a natural-uranium-fueled, heavy-water -moderated, light-

water-cooled, graphite-reflected, research reactor at Chalk River,

Ontario, Canada. It produces 40 Mw of heat, while operating at a mean

temperature of 38*C and at atmospheric pressure. There are 175 fuel

rods, 3.45 cm. in diameter on a 6 in. triangular pitch. The active

dimensions of the core are 8.75 ft. in diameter and 10.5 ft. in height.

The principle core structural material is aluminum.

Natural uranium has been irradiated in the NRX reactor to beyond

6000 MWD/ton. Chemical and isotopic analyses have been performed

at Chalk River and at Argonne National Laboratory for samples of

various degrees of irradiation, mostly taken from NRX rod No. 683,

see Reference H20. Reactivity measurements were made for additional

NRX samples. As explained in Reference C11, the "reactivity samples"

The best summary of the results is given in Reference C11, and
additional information is in H15, H20, H28, K11, L5, L23, and L24.

**See Reference H15 for further description of the NRX reactor.
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were cut from standard NRX metal rods and were 15.2 cm in length,

3.45 cm in diameter, and were clad with aluminum tubing. Sixteen of

these samples were placed in an aluminum tube to form an assembly

geometrically similar to an NRX rod and were irradiated near the center

of the NRX lattice. Following irradiation the reactivity of these samples

was measured by the pile oscillator method in the GLEEP at A. E. R. E.,

Harwell, England.

The GLEEP is a natural-uranium and UO 2 -fueled, (U metal to a

radius of 1.75 m, UO 2 in outer region), graphite-moderated and reflected,

and airq.cooled research reactor, which has been in operation since

August, 1947. The fuel elements consist of U rods 0.9 in. in diameter

or UO 2 pellets 1.62 in. in diameter and 2 in. in length. In both cases

the cladding is aluminum and the fuel element is 12 in. in height (6 U0 2

pellets per fuel element). The active core dimensions are 5.72 meters

in diameter and 5.2 meters in length with the fuel elements set in a 7 in.

square lattice. The GLEEP produces a thermal neutron flux between

6 8 2
10 - 10 n/cm sec, C18.

For the FUELCYC analytical calculations to compare with these

experimental results, design data was required for both the NRX reactor,

to calculate composition changes with irradiation, and for the GLEEP,

to calculate the reactivity of the irradiated samples in the GLEEP. The

input data for NRX calculations will be considered in the next section,

and the GLEEP calculational information in the section following that.
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2. Calculation of FUELCYC Nuclear Input Data for the NRX Reactor.

The purpose of the NRX calculation is to compute the isotopic com-

position and cross sections of the fuel nuclides at different degrees of

irradiation. These results can then be compared with the experimentally

determined values and can also be used as a basis for the reactivity

calculations (as measured in the GLEEP) described in the next section.

These experimental cross sections and compositions are for small

samples and not reactor averages. For this reason, and because local

values of these parameters are essentially only flux-time dependent, see

Section IV. A. 3, the spatial computation parts of FTELCYC were not

required (i. e., calculation of flux distribution, reactor criticality, etc.).

Therefore, these parts of the code were bypassed for the NRX calculations

(by octal correction cards) and the abridged input data as listed in Table5..4

was used. The basic design data used to derive these input values are

listed in Table 5.3 along with their source.

To facilitate the comparison with experimental data the Canadian

system of normalization to the initial amount of fissile material pas been

adopted. In this system, cell average nuclide concentrations are divided

by the initial concentration of U235 giving them units of "atoms per initial

fissile atom," or aifa. If microscopic cross sections are in barns then

macroscopic cross sections have the units of "barns per initial fissile

atom" or bifa.
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Table 5. 3 Reference Design Data for NRX

Item Value Units Reference

Volume ratio of moderator to
fuel, Vmd/V ff 27 C11, p. 18

Natural uranium fuel C1, 1

Density of uranium fuel 18.9 g/cm H28, p. 16

Slowing down power for H2 0,

D2 0 mixture 0.195 cm K11, p. 18

Moderator temperature 38 *C C11, p.30

-'ast fission factor 1.036 . C11, p.30

2200 m/ flux, * = nv 0  x 10 n/cm sec p.30

Inverse of fast non-leakage

probability, (1. + B 2-r) 1.05 - L5, p.6

Initial conversion ratio, icr 0.77 - C11, p. 20

Table 5.4 FUELCYC Nuclear Input Data for NRX

Item Values Units

N1 aifa

8 139.06 aifa

s 15400. bifa

(T /Tmd)1/2 0.971 -

*'1,8 21.5

C 6.49 E-5 (bifa)"

1.036

P .9542

0. bifa.md
2.39 E6 barns

"FP 51.6 ' barns

pseudo) 0.5-V'ff (value 0

f1160. or .230 bifa

In addition to this normal FUELCYC input data, C5 was taken as 0.727.
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For the volume fraction of fuel, V fl and moderator, Vmd =( ' -

equal pseudo values of 0.5 have been used, because cross sections for.:

fuel and moderator are on the same basis of one atom of initial fissile

material.

The value of (ges listed in Table 5. 3 represents the average re-

commended by Kushneriuk, K 1, for the proportions of H20 and D20 in

the NRX reactor. The magnitude of Emd is not needed for the reactivity

calculations of the next section assuming it is a constant since reactivity

changes from that of the initial fuel are reported and as a result it drops

out. It only appears in the calculations of the macroscopic cell absorption

cross section for the thermal energy spectrum of the flux. Since the

moderator is composed mainly of D2 0 and aluminum, its cross section.

is very small compared to the fuel cross section, so was taken here

as zero.

The spectrum parameter, A, was then calculated as in Section IV. A. 2.

Its value was. 0.256 which gave a neutron temperature of 348*K. WXe and

IFP were then calculated by the method explained in Section IV. A, 2.

The proper resonance escape probability, for U238 was calculated

from the measured initial conversion ratio, and then 41 8 (the required
*

input data item) was calculated from it.

The value for p8 of P-91 listed in Reference C11 was not used since

this accounts for only those resonance absorptions in excess of the 1/v

contributions whereas FUELCYC uses the total resonance absorption.

To clarify this, in the Westcott expression for the effective 2200 m/s

cross section, r p wo (g + rs), p8 of 0.91 would account for the rors

contribution. The total resonance contribution is eguivalent to (rone/n)

(g + s/b), or wo(brg + rs), or approximately w0r(g+s) (since b~1 for a
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The expression for the initial conversion ratio is:

N 8 8+ P -p8X +
icr - (5. 1z)-

N 5 r 5 + 1q P I 5>

where,

N 5 5f 5  (5.13)I .. C P (1 .- p5 P5

Inp
(1-p=) 5 + n p p5 p8 ), for m=5 or 8 (5. 14)

If Eqs. (5. 13) and (5. 14) are substituted in Eq. (5. 12), the only

unknown is p8 . The r's for Eqs. (5. 12) and (5. 13) were calculated as

Maxwell-Boltzmann averages at Tneutron. The proper value of p8 was

determined by a trial and error solution of Eq. (5. 12) to give icr 0.77.

The value obtained was p8 = 0.886, which was then used to calculate the

input disadvantage factor $1, 8'

For the NRX reactor an extra input parameter was required, namely

C5 = 'Xe 'Xe Xe), which is normally evaluated by FUELCYC as the

core average. In this case a mean value of C5 for the NRX samples was

D 2 0 lattice). The total Westcott cross section separated into the sum of

thermal and resonance parts, then has the form: 0 = J(nlth/n) g + (ne/n)

(g + s/b)] or W [(1 - br)g + (brg +:rs)].
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desired. This was derived from the 2200 m/s flux given in Reference C1I,

0 = Z X 1013 n/cm2 sec. The relationship between the FUELCYC thermal

flux, *, and * is

n 4 v(5 . 15 )o n v

The mean velocity of the thermal group is taken, as before, as the mean

Maxwell-Boltzmann velocity at Tneutron giving,

th neutron (5. 16)
w T

The assumption of a l/E epithermal flux (defined here as including

all energies above the thermal cutoff) for a mean slowing down density

of qP1 gives the relationship for the ratio of epithermal to thermal

neutron densities as,

q Vth (5. 17)

nth Io S+

where E1 represents the thermal cutoff energy, which was 0.45 ev in all

cases. This calculation gave n /nth = 0.044 initially, and the resulting

value for 4 of 2.35 X 10 3, from Eq. (5. 15).

The calculated value for s was 1160 bifa. Runs were made using

this value and also with a value of 230, wrhich g'ave better agreement for

the PuZ40 disadvantage factor. This is discussed in Section VI.
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3. Calculation of the Reactivity of the NRX Samples as Measured in

the GLEEP.

The macroscopic neutron absorption cross sections of the NRX

samples were determined by pile oscillator measurements in GLEEP

calibrated by "standard boron" . In this method the amplitude of the

relative change in neutron density, due to the periodic insertion of the

sample in the reactor, is taken to be proportional to the macroscopic

absorption cross section of the sample. The proportionality constant is

determined by oscillation tests with a boron sample, for which it is

assumed that the macroscopic cross section is accurately known (from

velocity-selector measurements). The cross section value so obtained

is an apparent value, being the true cross section for 1/v absorbers,

an effective or pile cross section for non-1/v absorbers and the pile

absorption cross section less the "neutron production" cross section

for fissionable materials. This technique is described by Littler in

Reference L23.

The apparent cross section of the unirradiated sample, 3 0 isapp, s

related to the equivalent cross section of the standard boron, Zapp, B'

by,

o F o app, B
app, s F

where,

For convenience the nomenclature used by Craig et. al., C11,

will be adopted for this section and for Section VL B. 2, which is in

general different from that used in the rest of this text. Therefore,

these symbols will be defined in this section only (and not in Appendix G

on Nomenclature).
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F = the average neutron flux in the boron sample (equivalent to the
flux at the empty sample position).

F = the average neutron flux in the unirradiated sample

The experimental value reported for the GLEEP measurements is

the change in the apparent cross section for the irradiated sample from

that of the unirradiated sample, based on the flux, F, in the unirradiated

sample. The negative of this value is the change in the production of

excess neutrons. This term will be called R,

R 0 F(5.19)F

where

X a B
app, B

For the unirradiated NRX samples in GLEEP F /F was experi-

mentally found to have the value 2. 13 which was used in equation (5. 19)

along with the measured value X for different samples to give the

experimental values for R.

For the calculation of R from basic atomic compositions knowledge

of the macroscopic cross sections of the sample, the flux in the sample,

and (on a two group basis) the importance of a fast neutron at the sample

position is required. This involves, of course, consideration of the

neutron physics of the GLEEP as well as the properties of the sample.

Craig et al., C 11, have given a relationship for R based on a series

of experimental measurements on various samples with known compo-

sitions. This expression for R, in units of bifa, is,
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R =(1+ )(0.878 Lfv - I)

(5. 20)
+ 0.159 A (

A is the cross section of the unirradiated uranium, excluding resonance

captures in U238 in excess of I/v captures, and is given by,

NN 8A 5+N58 (5.z 1)

Craig et al. also state that the relative change in flux is given by

=0.66 1 + 0.13 1V + 0.04 L 9 + 0.22 10 .2)

A A AA
The symbols Z, Zry, 1a, and t represent the change in the indicated

cross section for the irradiated sample from the unirradiated sample,

for 2200 m/sec neutrons. There are macroscopic cross sections with

units of bifa.

The flux change for different NR samples is so small that negligible

error is introduced in £q. (5.20) by considering the term (1 + E) to

be constant. A value of 0. 97 is representative for the samples consid-

ered and permits the rewriting of Eq. (5. 20) as follows.

A A

R = 0.872 e - 1.075 A

A A (5.23)
+ 0.006 E; + 0.035

Therefore R can be calculated from Eq. (5. 23) for the NR= samples

if the macroscopic cross sections for the samples are known. The

nuclide compositionafor a sample of a specified irradiation were given

by the NRX calculation and the macroscopic cross sections must

be calculated for the GLEEP spectrum. This calculation is discussed

in Section VI. B.
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C. THE SIMPLER MODEL

Additional calculations were made for the 3.44 a/o U235, pressurized

light-water reactor for Batch and Graded fuel scheduling by a simpler

method than that employed in FUELCYC. The result of these calculations

as compared to those of FUELCYC are discussed in Section VI.C. in

light of the differences in the theoretical models.

The "simpler" method used was that described by Pigford et .al.

in Reference P3. This model assumes that the energy and spatial

distribution of the flux is constant and employs effective thermal absorp-

tion cross sections for all nuclides except for U238)for which a reson-

ance capture term is provided. Spatial non-uniformity of flux is consid-

ered by perturbation methods, taking the statistical weight at any point

as the square of the thermal flux. Nuclide, concentrations and the "excess

reactivity cross section" are fitted versus flux-time and the fit coeffi-

cients are weighted by appropriate factors (generated using chopped-

cos and chopped-J 0 flux distributions in the perturbation calculation)

to convert central properties to reactor average properties for the

fuel scheduling method specified. This latter method is explained, and

additional details on the general calculation procedure are given, in

Reference P3.

The initial effective -thermal cross sections were calculated by

Westcott's method, W 11, at a neutron temperature of 908*K, except

for PuZ40 for which the effective average cross section in the FUELCYC

calculation was used, and for U236 for which only a rough approximation

to the effective cross section was made since this nuclide has essentially
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no effect on the reactivity. The same cross section was used for the

low cross-section fission products as in FUELCYC.

The resonance escape probability for U238 was then chosen to give

the same initial conversion ratio as in the FUELCYC calculation. The

value specified for the concentration of U235 to make the reactor just

critical, N., was chosen to give the same initial criticality factor as

for the corresponding FUELCYC calculation, using the FUELCYC fast

fission factor and fast non-leakage probability. This N factor accounts

for the consumption terms which are assumed constant in the "simplified"

model: namely, the thermal absorptions in UZ38, those of the moderator

and structural materials, the xenon and Samarium group absorptions,

and the thermal leakage. Finally, appropriate averages of nuclide

concentrations and reactivity were taken over the core of the reactor

with its assumed flux distribution by the procedure described in

Reference P3. The calculation was performed on an I. B. M. 704

computer and the nuclear parameters that were used are listed in

Table 5. 5.
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Nuclide

U235

U236

NFP

U238

Pu239

Pu240

PuZ41

PuZ4Z

Table 5. 5 Nuclear Parameters for the Simpler Model

Initial Effective values for,
Conc. (a/b cm) a a -b

8. 785E-4

2. 465E-2

0. 253

0. 0687

0.600

0. 3765

Neutron temperature, *K

Westcott r factor

Just critical concentration of U235, a/b cm

Resonance escape probability for U238

Fast fission factor

Fast non-leakage probability

1.97

2.44

1.81

2, 225

515.

100.

31.9

1. 365t

169 0.

1870.

1590.

570.

908.

0.34

7. 15E.4.

0. 758

1.0584

0. 9654

* Fast fission value,

t Thermal contributions only
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VI. DISCUSSION OF RESULTS

A. PRESSURIZED-LIGHT WATER REACTOR

Results are presented for the study of different methods of fuel

scheduling along with variations in the initial U235 enrichment in the

pressurized light-water reactor. Results are presented first for those

material properties which are only functions of initial enrichment and

flux-time; next, for the material properties that depend on the fuel-

scheduling method, and finally, for the fuel-cycle cost results.

1. Material Properties of the Fuel Depending on Initial Enrichment and

Flux -Time.

The variation in the energy distribution of the thermal flux in the

fuel during its life history is shown in Fig. 6. 1, for an initial enrichment

of 3.44 a/o U235 (which will be henceforth referred to as the reference-

design enrichment). The property that is plotted is the flux per unit

velocity times velocity, which was chosen since on this basis a 1/E flux

per unit energy appears as a horizontal line. The final curve is for a

flux-time of 2. 2 n/kb which would be attained in Inout fuel scheduling.

Besides the hardening effect there is a pronounced flux depression in the

vicinity of 0. 29 ev (or approximately at velocity step 19) for the final

curve, which is due primarily to the build-up of Pu239 with its large

absorption resonance at this energy. For comparison, a Maxwell-

Boltzmann distribution is shown at the moderator temperature and a 1/E

flux per unit energy is shown as the epithermal flux which appears as a

horizontal line in the units of Fig. 6. 1 (velocity times the flux per unit

velocity).
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The effect of these changes on the calculation of the average thermal

absorption cross sections is shown in Fig. 6. 2 for the reference-design

case. The initial values are calculated with an equilibrium amount of

xenon and Samarium group poisoning. The maximum change for any of

the cross sections for this case was approximately 2%. This may at

first seem to be an insignificant variation, but is actually quite significant

in the prediction of reactivity changes for low flux-times as will be shown

in Section VI.B. 2. In particular, the ratio of cross sections of Pu239

to U235 is important, and this varies by as much as 4% for the typical

case shown in Fig. 6. 2. A major factor in the behavior of the curves

of Fig. 6. 2 is the progressive increase in the gross absorption cross

section with flux-time for the left hand side of the graph followed by a

progressive decrease for the right hand side, which: tends to harden or

soften the spectrum, respectively. The asymmetry of the curves, about

the vertical line through the maximum and minimum points or as com-

pared to the 1/v behavior of the U238 curve, is due to the progressive

flattening of the spectrum which tends to raise the Pu239 and Pu240

cross sections as flux-time progresses, and to the deepening of the 0. 29 ev

flux dip with increased flux-time which dominates in the case of Pu241 and

continues to drive its cross section downward. (Were the base neutron

temperature lower, the Pu240 curve would fall below the Pu241 curve.)

Fission cross sections are not shown in Fig. 6. 2 but the relative changes

in these values fall within 0. 002 of the absorption cross sections. The

fission cross sections are listed in Table 6. 1, for the reference-design

reactor.

136



0.03

Pu 239

.0 0.02

0.O\1-
00

Pu 240

Pu 241
-0.01-

> Pu 242

U 235
tr -0.02- U 236, U238

-0.03|
0 o.5 1.0 1.5 2.0 2.5

F lux - Time, (n /kb)

FIG. 6.2 RELATIVE CHANGE IN THE AVERAGE
THE RMA L MIC ROS COPIC ABSORPTION
CROSS SECTIONS FOR'FUEL NUCLIDES,
INITIAL ENRICHMENT OF 3'.44 a/o
U235

137



These results show that at any specified time the correct thermal

cross sections depend on the relative amounts of the different fuel

nuclides present, and, therefore, that the concept of a single effective

neutron temperature for a Maxwell Boltzmann distribution is not appli-

cable. The effective neutron temperature can, of course, be specified

for a 1/v absorber in a particular combination of fuel nuclides. The

temperature is derived from the U238 cross section from,

2
/0
Cr8

I )ntro S i T0  (6. 1)

where o 0 = 2. 71 barns and T= 293,6*K. For the pressurized water
8

reactor where Tmod /TO = 1.82, the ratio of neutron temperature to

moderator temperature is given by,

Tneutron 3. 17 (6.2)
T 2mod 8

From Table 6. 1 for the initial fuel of the reference-design enrichment

018 is seen to be 1. 342 barns which gives T neutron/Tmod = 1.75

(Tneutron = 935*K). The value of A at a particular velocity can be

calculated as 4x times the values of the inverse moderating ratio

(A = :Di/grs) which are tabulated for five different velocities in Table 6. 1.

The value for x is given by 0. 129 i where i is the step number, so

A = 0. 516iA.. The value of A varies so greatly over the spectrum after

Pu239 builds up that it is impossible to relate Tneutron(for 1/v absorbers)

to this quantity as has been done by Cohen, C6, and others for 1/v absorbers.

For example, for the reference design reactor A varies from 1.6 to 6. 5
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Table 6. 1 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 3.441 a/o U235

Flux-Time (n/kb)

Property 0 0 0.6 1.2 1.8 2.4

Cross Sections (b)

5f 261.1 257.9 253.9 253.0 254.0 255.9

9f 901.2 911.2 925.6 929.7 927.9 922.7

1 ,f 839.9 840.3 834.8 832.2 831.2 831.2

05 313..2 309.4 304. 7 303.7 304.8 307.1

6 3; 467 3.427 3.376 3.365 3.1376 3.399

8 1.342 1. 327 1.307 1.303 1.307 1.316

09 1461. 1480. 1507. 1514. 1510. 1500.

188.5 187.6 187. 2 187.2 187.6 188.2
011 1156. 1157. 1149. 1146. 1144. 1144.

15.69 15.54 15.34 15.30 15,35 15. 44~

Atoms/b cm (of fuel)

N5 8.785E-4 8, 785 E -4 6. 613 E-4 4.937E-4 3.686E-4 2. 765 E -4

N 6  0 0 4.258E-5 7.326E-5 9.366E-5 1. 064E-4

NFP 0 0 2,.294E-4 4. 713 E -.4 7.056E-4 9. 222 E-4

N 8  2.465 E-2 2.465E-2 2;448 E -2 2.430E-2 2.411 E .2 2.394E-2

Ne 0 0 9.486E-5 1.340E-4 1.464E-4 1.464E-4

*With equilibrium Xenon and "Samarium Group" poison.

Runs No. 1

,'



Table 6. 1 (Cont.)

Flux-Time (n/kb)

Property 0 0* 06 1.2 1.8 2.4

N 0 0 1.245 E-5 2.874E-5 4.176E-5 5.124 E-5
10,

N 0 0 6. 609 E-6 2.297 E-5 3.713E-5 4.590E-5

N 0 4.738E-7 3.714E-6 9.773 X-6 1.707 E-5
12

Space Properties

ci 1m (fuel) 0 0.02244 0.2433 0.02379 0.02211 0.01995

m (fuel) 0.3082 0.3108 0.4030 0.4414 0.4485 0.4381

L cm-W 0.07799 0.07702 0.08890 0. 09131 0.08851 0. 08298

v V2 ,cm 0.1926 0.1902 0.2335 0.2476 0.2447 0.2324

(1-p)/(1+4) 0*1175 0.1175 0.1063 0.09542 0.0852* 0.07571

( 1 ..p)h 0.2902 0.2902 0.2700 0.2487 0. 2269 0.2051

p 0.6013 0.6013 0.5769 0.5594 0.5534 0.5527

Inverse Mod. Ratio,

Velocity Step,** 4 0.8327 0.8817 0.8636 0.8320 0.7946 0.7556

.9 0.3371 0.3589 0.3659 0.3621 0.352.1 0.3390

14 0.2033 0.2173 0.2521 0.2667 02689 0.2640

19 0,1887 0.1990 0.4843 0.6113 0.6552 0.6556

24 0,1010 0.1092 0.1298 0.1374 0-.1382 0.1357

With equilibrium Xenon and Samanrium Group" poison.

"The step number is proportional to velocity where step 24 corresponds to an energy of 0.45 ev.

11111110 IIE1
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at a flux-time of 2. 4 n/kb.

Fig. 6. 3 illustrates the variation in the concentration of the fuel

nuclides with flux-time, and Fig. 6.4 shows the variation in the "space

properties" with flux-time, The buildup of Pu239 causes an initial

increase in the thermal fission, Ef, and thermal production, EfV, cross

sections; however, the burnout of U235 dominates in the resonance region

and causes a decrease in the corresponding resonance terms, (1-p)/(1+a)

and (1-p)n.

These flux-time-dependent properties, cross sections, nuclide

concentrations, "space properties", and inverse moderating ratios,

are listed in Table 6. 1 for the reference design case. The same flux-

time-dependent properties are tabulated in Appendix F for the six other

enrichments studied, which varied from Z, 876 to 6.452 a/o U235.

2. Material Properties of the Fuel for Different Fuel Scheduling

Methods.

In this section various properties of interest are presented and

discussed in comparison between the different fuel scheduling methods

which were described in Section IV..C..Z.

Fig. 6. 5 shows the variation with enrichment of the average burnup

which is one of the most important variables in fuel cycle calculations.

For any given enrichment the average burnup increases going from Batch

to Outin, to Graded, to Inout Fuel Scheduling. The greatest increase

is found in the step from Batch to Outin, which is the first of the three

steady-state methods of fuel movement. This behavior is as would be

expected and is due to the increased efficiency of neutron utilization as
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one moves from left to right in the fuel scheduling methods of Fig. 6. 5.

An additional benefit of the steady-state methods of fuel movement

is illustrated by Fig. 6.6,, which shows the relation between maximum

local burqup and average burnup. Thi*s Figure shows that if'radiation

damage limited the burnup which could be accepted in any local spot in

the fuel, then the average burnup attainable would be considerably higher

for the steady-state methods of fuel scheduling than for Batch, which, of

course, means that more power can be obtained from a given charge of

fuel in the steady-state methods. This desirable trend is being carried

even further by Dr. W. B. Lewis's group at Chalk River, L19, who

propose to move short fuel slugs steadily through the reactor in such

a manner that the maximum and average burnup would be essentially

the same. It is interesting to note from Fig. 6. 6 that the maximum

versus average burnup curve is substantially the same for all the steady

state fuel methods. This results from the fact that the axial spatial

flux-distribution is essentially identical for these cases.

Fig. 6. 7 is presented for convenience in determining the "on-stream"

time that the reactor would operate if run at a constant thermal power of

480 MW until the specified average burnup had been obtained. It is

merely the graphical plot of the linear relationship obtained by combining

Eqs. (4. 79) and (4. 80).

Inout fuel scheduling achieved the highest average burnup for a given

enrichment only at the expense of an extremely disadvaittageous power

density distribution as is illustrated by Fig. 6. 8. This figure shows

the ratio of peak to average power density, as a function of flux-time.
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The power-density distribution associated with Inout fuel movement

probably would not permit operation of the reactor at rated power, owing

to heat-transfer and control difficulties. The ratio of peak-to-average

power density in the graded case is only slightly lower than that of the

initial ratio in the Batch case but is considerably more favorable than

that of the Batch case, since the Graded distribution is time-invariant

whereas that of Batch varies during the fuel lifetime, as shown in

Fig. 6.9. It is seen that the Outin method of fuel scheduling has a very

favorable power-density ratio.

Fig. 6. 10 is presented to indicate the variation in the average value

of the fast non-leakage probability as compared to that of the initial

uniformly-loaded reactor with equilibrium xenon and Samarium poisoning.

The latter value was used as the non-leakage probability estimate in the

solution of the nuclide concentration equations versus flux-time. The

greatest deviation is seen to occur for Outin fuel scheduling but the

resulting error in the average burnup is small even here, being over-

estimated by an amount varying from zero at low burnups to less than

two percent at high values,

The ihitial criticality factor for Batch irradiation increases

linearly with average burnup as shown in Fig. 6. 11. This linearity

is due in part to the "amplification term", C 2 = 1/[ 1-E(l-p)9], in the

This was checked using a slightly reduced value of C 1 . in Outin

Run 5. 3 so as to give the correct average resonance absorption rate

in U238.
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criticality equation (see Eq. 4. 30) which results when resonance fissions

are considered. The variation of the criticality factor during a Batch

irradiation is indicated in Fig. 6. 12, for different initial enrichments.

Fig. 6. 13, gives the final central flux-time plotted as a function of

the initial concentrations of U235.

The remaining illustrations, Figs. 6. 14 to 6. 20, show the variation

in the thermal flux and in the local power density throughout the core

for the different fuel-scheduling methods. The lines plotted are from

Runs: No. 9. 1, for Batch; No. 1. 2, for Inout; No. 6. 3, for Outin;

and No. 1. 4, for Graded. These runs were chosen to give final burnups

that were approximately the same. The burnup value of approximately

23, 000 MWD/TON was taken because this is large enough to give fuel

cycle costs near the minimum values (see Fig. 6. 21) and yet is attain

able for UO 2 fuel without excessive radiation damage.

Fig. 6. 14 shows the magnitude of the thermal flux (for a total ther-

mal power output of 480 Mw), proceeding radially outward from the core

axis along a plane perpendicular to the axis at the core center. The

flux curves of this figure clearly explain the maximum to average power

density behavior, as plotted in Fig. 6. 8. The Inout fueling has the

effect of compacting the effective critical part of the core into a tight

region along the axis while the outer core regions are being used only

as a sort of reflector. The Graded radial flux distribution is the same

as that of the initial distribution in Batch irradiation since in both cases

the fuel composition is uniform radially (except for the Xe-135 concentration).
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In the Graded case the uniformity is the result of averaging the properties

of a local group of fuel rod sections which individually have different

compositions; the average, however, is kept the same on the central

plane by appropriately varying the recharging rate for the different local

rod groupings. The average concentration of fissionable nuclides is

lower in the Graded case than in Batch irradiation so the flux magnitude

must be higher than that of Batch to achieve the same power output.

Both the final Batch flux distribution and the steady-state Outin distribu-

tion are considerably flattened over the other methods and in both cases

the flux shape is grossly different from that of the uniformly loaded,

chopped-J 0 distribution.

Fig. 6. 15 shows the relative thermal flux magnitude along an axial

cut in the vicinity of the most exposed fuel element at the time of dis-

charge. Since the fuel was not shuffled in the axial direction there is

less variation among the curves of this plot than among those of Fig. 6. 14.

The axial flux distribution is identical in the vicinity of the discharged

fuel for Inout and Outin fuel scheduling. During its life-time this

radially-shuffled fuel is exposed to axial flux-shapes that progressively

change from that of Curve A to that of the discharge curve for Inout and

Outin. The average is approximately the same as that for the Graded

curve in Fig. 6. 15 and therefore gives essentially the same ratio of

maximum to average burnup for these three cases, as was shown in

Fig. 6.6.

The complete picture of the flux-distribution and, what is more

important, the power density distribution is presented in Figs. 6. 16 to

6.20. These are two-dimensioned (z, z) plots of .the relative magnitudes of
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these quantities normalized to unity near the maximum points. Since

the core is symmetric about the axial and radial center lines only one

quadrant need be shown. In these plots the axial direction is taken as

the vertical axis and the radial direction as the horizontal axis.

The power density distribution is the same as the flux distributions

for the initial distributions for Batch fuel scheduling because the fuel

composition is uniform for this case. The two-dimensional variation

of both these properties is shown in the single plot, Fig. 6. 16. This

distribution is slightly more flattened than that of a chopped-cos,

chopped-J flux due to the higher concentration of Xe- 135 towards the

center of the core.

Fig. 6. 17 shows the radical change that has occurred to these

distributions by the end of the irradiation. The maximum flux point

has shifted off the center both radially and axially and the maximum

power density, or hot-spot, has shifted even further in the radial

direction. This small hot-spot area that appears as a circle in Fig. 6..17

is actually, of course, a "doughnut" shape about the core axis, and,

due to axial symmetry, there would be an identical hot-spot "doughnut"

on the other side of the central plane.

Fig. 6. 18 is a similar plot for the Graded case. Distributions of

flux and power density are similar to the initial Batch distributions

except they are more flattened axially. The Inout distributions, given

in Fig. 6. 19, are similar to Graded axially but undergo a much steeper

drop radially. The Outin distributions are plotted in Fig. 6. 20 and

show the hot-spot remaining on the axial central plane but shifted far
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but radially. However, the changes in the magnitude of the flux or

power density are small across the core for Outin fuel scheduling.

Results of runs useful in computing material properties and fuel

cycle costs have been recorded for the four different fuel scheduling

methods in Tables 6. 2 to 6. 5. These listings include final nuclide

inventories, burnups, flux-times, and maximum to average power

density ratios The results are given for five different enrichments

for each fuel scheduling method.
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T Results of Runs Dependent on Initial Enrichment for Batch Fuel Scheduling Method.

Feed: a/o, U235 2.876 3.441 4.383 5.592 6.452

Atomic Conc.* a/bcm , U235 7.300 E-4 8.785E-4 1.1301E-3 1.460E-3 1.700 E-3

a/bem , UZ38 2.465 E-2 2. 465 E-2 2. 465 E-2 2. 465 E-2 2.465 E-2

Run No. 4.1 1.1 9.1 8.1 3.1

Maximum Flux-time (n/kb) 0.4143 1.268 1.889 2.200 2.250

Burnup (MWD/TON), Maximum 4.507 EC3 1. 791 E4 3. 504 E4 5. 331 E4 6. 445 E4

Average 1. 654 E3 8.648 E3 2. 051 Z4 3.538E4 4. 542 E4

kwhe/kg of total fuel charge 1. 108 R4 5.793 E4 1. 374 E5 2. 370 E5 3.042 E5

Fuel on-stream time (years) 0.2188 1.151 2.757 4. 817 6.240

Spent Fuel: a/o, U235 2.641 2.622 2,625 2. 704 2.786

Atomic Conc.* a/bcm. , U235 6. 682 E-4 6.600 E-4 6. 560 E-4 6.701,E-4 6.867 E;-4

, U236 9. 310 E-6 4. 249Z-5 9.187 E-5 1. 514 E-4 1. 927 E-4

FP 4.576 E-5 2. 407 E-4 5.765 E-4 1. 007' E-3 1. 305 E-3

U238 2. 462 E-Z 2.447 E-2 2.4Z4E-2 2. 396 E42 2.377 E.-2

Pu239 2.646 E-5 9. 044 E45 1.467-4 1. 907 E-4 2. 146 E-.4

Pu240 1. 470 E-6 1.330 E"5 2. 971 E-.5 4. 457 E-5 5.280E-.5

Pu241 3.096 E-7 8.383E-6 2.667E-5 4.603E-5 5.660E-5

PuZ4Z 9. 334 EZ49 9.571VE4 5.376ZE6 1. 245 E-5 1.701 E-5

Max. to Avg. Power Density Ratio, Initial7 2.703 2. 694 2.683 2. 710 2.732

Final 2. 420 1.561 1.331 1. 237 1.207

To obtain inventories in kgram atoms, multiply these concentrations, in atoms/barn mm (of fuel),
by 3385.

tWith equilibrium Xe and Sni Group poisoning, Initial maximum to average power density without
these poisons is 2. 932 for all enrichments.

0."
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Results of Runs Dependent on Initial Enrichment for Inout Fuel Scheduling Method.

Feed: a/o, U235 2.876 3.105 3.441 3.711 4.272

Atomic Cone,* a/bcm , U235 7. 300 E-4 7, 900 E-4 8. 785 E-4 9. 500 Z-4 1. 100 E-3

a/bem , U238 2.465 e -2 2. 465 E-2 2. 465 E-2 2.4651E-2 2. 465 E2

Run No. 4.2 7.2 L 2 6.2 5,2

Maximum Flux-time (n/kb) 0.6490 1.411 2.200 2.710 3.450

Burnup (MWD/TON), MaxImum 7.224 £3 1.773 E4 3. 062 E4 3. 986 E4 5. 550 E4

Average 5. 326 Z3 1. 409 Z4 2. 558 E4 3.442BE4 4.932E4

jkwhe/kg of total fuel charge 3.568 E4 9. 438 E4 1 713 E5 2.306E5 3. 304 E5

Fuel on-stream time (years) 0.7048 1,869 3,405 4.595 6.662

Spent Fuelt a/o, U235 2.342 1.899 1516 1. 295 1.053

Atomic Conc.* a/bom 4 U235 5. 891 E-4 4.7241E-4 3.7261E-4 3. 152 E-4 2. 528 E-4

U236 2.706 E-5 5. 986 F-5 9. 228 E-5 1. 126ER-4 1. 431 E-4

FP 1. 474 E-4 3. 908 E-4 7. 122 E-4 9. 610 Vr4 1. 385 E-3

U238 2.454 E-2 2. 435 X-2 2.411 E-2 2. 392 E1 2. 361 E-2

PuZ39 6.825 Er5 1, 174 E-4 1.4281 F4 1. 501 E-4 1. 532 E-4

PuZ40 -8.096 .;6 2.485 E-5 4.13519-5 5. 074 1-5 6.197 E-,5

PuZ41 3 .451 E-6 1. 838 Ed5 3. 633 Z-5 4.596 -5 5.5591E-5

Pu242 2. 228 E47 3. 032-6 L 052 E 5 1. 750F-5 2.897 E-5

Max, to Avg. Power Density Ratio 3*014 3970 5A156 6.195 7.762

To obtain inventories in kgram atoms, multiply these concentrations, in atoms/barn cm (of fuel),
by 3385.
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Results of Runs Dependent on Initial Enrichment for Outin Fuel Scheduling Method.

Feed: a/o, U235 2.876 3.105 3.441 3.711 4. 272

Atomic Conc.* a/bcm , U235 7. 300 E-4 7. 900 E-4 8.785 E-4 9. 500 E-4 1. 100 E-3

a/bcm , U238 2.465 E-2 2. 465 E-2 2. 465 E-2 2. 465 E-2 2. 465 E-2

Run No. 4.3 7.3 1.3 6.3 5.3

Maximum Flux-time (n/kb) 0.4771 1.016 1.521 1.854 2.355

Burnup (MWD/TON), Maximum 5. 226 E3 1. 265 E4 2. 149 E4 2. 839 E4 4. 124 E4

Average 3. 817 E3 1. 001 E4 1. 780 E4 2. 412 E4 3. 618 E4

kwhe/kg of total fuel charge 2. 557 E4 6.705 F4 1. 192 E5 1. 616 E5 2. 423 E5

Fuel on.stream time (years) 0.5051 1.328 2.369 3.219 4.857

Spent Fuel- a/o, t1Z35 2.477 Z. 181 1.950 1.800 1.602

Atomic Conc.* a/bem , U235 6.247 E-4 5.459 B-4 4.843 E-4 4.445 E-4 3. 911 E-4

U236 2.029 E-5 4.673 E-5 7.449E-5 9.424E-5 1. 285 E-4

FP 1.057 E-4 2.778E-4 4.956E-4 6.732 E-4 1.016E-3

U1238 2.457 E-2 2.444 E-Z Z. 428 E-Z 2. 415 E-2 2. 390 E-2

Pu239 5.390 E-5 1.011,E-4 1. 327 E-4 1.479E-4 1. 651 E-4

Pu240 5.020 E-6 1.706E-5 2. 985 E-5 3.827 E-5 5.078 E-5

PuZ41 14650 Z-6 1.075E-5 2.443E-5 3. 429 E-5 4.884E-5

Pu24Z 7*549 F-8 i213 N-6 4,619 E-6 8. 438 E-6 1. 668 E-5

Max. to Avg* Power Density Ratio Z. 320 1.662 1442 1. 397 1.367

To obtain inventories in kgram atoms, multiply these concentrations, in atoms/barn em (of fuel),
by 3385.

00
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Results of Runs Dependent on Initial Enrichment for Graded Fuel Scheduling Method.

Feed: a/o, U235 2.876 3.105 3.441 3.711 4. 272

Atomic Conc.* a/bcm , U235 7.300 E-4 7. 900 B-4 8. 785 E-4 9. 500 E-4 1. 100E-3

a/bcm , U238 2.465 E-2 2.456E-2 2. 465 E-2 2.465 E-2 2. 465 E--2

Run No. 4.4 7.4 1.4 6.4 5.4

Maximum Flux-time (n/kb) 0.5459 1.262 1.953 2.379 3.029

Burnup (MWD/TON), Maximum 6.021 E3 1.583 E4 2. 739 E4 3. 564 E4 5.044 E4

Average 4.420 E3 1.256E4 2. 282 E4 3. 045 E4 4.472 E4

kwhe/kg of total fuel charge 2.961 E4 8.413E4 1.529 E5 2.040 E5 2.996E5

Fuel on-stream time (years) 0.5850 1.667 3.038 4.065 6.004

Spent Fuel: a/o, U235 2.422 2.000 1.660 1.476 1.227

Atomic Conc.* a/bcm , U235 6.101 E-4 4. 986 E-4 4. 094 E-4 3. 613 E-4 2. 965 E-4

, U236 2.307 E-5 5.526 E-5 8. 670 E-5 1. 065 E-4 1. 393 E-4

FP 1. 223 E-4 3.486E-4 6.353E-4 8. 501 E-4 1. 256 E-3

U238 2. 456 E-2 2.438E-2 2.417E-2 2. 401 E-2 2. 372E-2

Pu239 6.000 E-5 1. 123E-4 1. 407 E-4 1. 508 E-4 -1. 588 E..4

Pu240 6.2Z4 E-6 2.02E-5 3.756E-5 4.635E-5 5.863E-5

PuZ41 2. 300 E-6 1.553 E-5 3.254 E-5 4. 226 E-5 5.434E-5

Pu242 1.223 E-7 225 E-6 8.219 E-6 1. 381 E-5 2.460 E-5

Max. to Avg, Power Density Ratio 2 .636 2.441 2, 313 2.248 2.163

To obtain inventories in kgram atoms, multiply these concentrations, in atoms/barn em (of fuel),
by 3385.

0~'
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3. Cost Results

Cost results have been tabulated for each run for the four different

sets of cost input data given in Table 4. 2. Table 6. 6 is a typical cost

tabulation for Batch fuel scheduling with an initial enrichment of 3.44

a/o U235. Cost results for other enrichments and other fuel scheduling

methods are located in Appendix F, Tables F8 through F25. The unit

prices and other cost parameters were listed in Table 4. 2.

In addition to these tabulations a few graphs have been provided to

indicate the important trends in the cost behavior. Fig. 6. 21 shows

the net fuel cycle cost for the current, the highest, and the lowest price

sets as a function of average burnup and for the four different fuel

scheduling methods that were studied The main trend in all cases is

the initial sharp decrease in fuel cycle costs as the average burnup

increases (the cost is approximately inversely proportional to burnup

in the region of very low burnups), followed by a minimum point

(although this is beyond the range of the abscissa in some cases), and

an increase in the net cost as average burnup increases for high burnups.

170



Table 6.6 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3.441 a/o U235

Average Burnup: 8648. (MWD/ton)

Fuel Scheduling

Run No. 1. 1

Method: Batch

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. C. , mills/kwhe 7.71 * 5. 15 6.11

6 UF 6 - UO 2  0.39 0.78 * *

8 Physical Fabrication 1.55 * 0.52 0.78

9 Shipping 0.16 * 0.09 *

10 Solvent Extraction 0. 37 * * *

11 UO 2(NO3)2  UF 6  0 09 * * *

12 Pu(NO3 )4 -. Pu 0.11 * *

13 _UF 6 to. A. EI C. 5,23 * .- 3. 49 -4.08

14 Pu to A. E. C. -0.91 * -2.28 *

16 UF 6 Lease Charge 0.96 2.88 0.64 0. 76

17 Working Capital Charge 0.21 0,25 0.10 0.12

Net Fuel Cycle Cost 5439 7v74 1. 66 3.87

*
An asterisk means same value as given for Cost Set No. 1

-J
-a



10
Average

20 30
Burnup (o03

40
MWD / TON)

NET FUEL-CYCLE COST AS
OF THE AVERAGE BURNUP
DISCHARGED FUEL

172

A
0

FUNCTION
F THE

20.

I0.

(n

4-

(n
0
0

a)

cm)

0

a)

U-

4-
a)z

I .

0.6
0

FIG. 6.21

50



For any chosen price set and any specified average burnup it is seen that

Inout fuel scheduling produces the lowest fuelacycle costs followed by

Graded, Outin, and Batch, although there is less difference between the

steady-state fuel scheduling methods than between Batch and Outin. The

main cause of the increase of the "highest price" set of curves over that

of the current set is the assumption of a UF 6 lease charge of 12% rather

than 4%. The major causes of the difference between the lowest and the

current curves is a reduction in the price of UF 6 and an increase in Pu

credit value (from $ 12/gm for current to $30/gm for lowest). The UF 6

charge and the Pu credit value are the two factors which tend to raise

the costs curve for high burnups. The former is the dominant factor for

Price Set A where the value of UF 6 is the highest, and the latter is the

dominant factor for Price Set B where the credit for Pu is high. Here

the reduction in the average production rate of Pu as burnup increases

tends to lower the credit per unit power. The cost curves for current

prices, having a lower lease charge rate and a lower Pu credit value,

tend to reach the minimum point at higher burnups than the curves for

either the lower or higher price basis. For Batch fuel scheduling the

minimum cost occurs at an average burnup of approximately 35, 000

MWD/TON. The minima for the steady state methods with current

prices are beyond the burnup range shown,

Since radiation damage rather than loss of reactivity often limits the

maximum attainable burnup it is of interest to plot the net fuel cycle

cost versus the maximum local burnup in the discharged fuel. This has

been done in Fig. 6. 22 which generally shows a greater cost reduction
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in going from Batch to a steady-state type of fuel movement, for a spec-

ified maximum local burnup, than did Fig. 6. 21.

In Figs. 6. 23 to 6. 25 the net fuel cycle cost for current prices is

broken down into the partial costs: material, fabrication, reprocessing,

UF 6 lease charge, and the working capital charge, as described in

Section IV: B. and illustrated in Fig. 4, 5. The fabrication and repro-o

cessing costs are essentially straight lines on a log-log plot for all of

the fuel scheduling methods. The decrease of these costs with increasing

burnup is slightly less than that of a cost inversely proportional to burnup

(which would have a -45* slope) due to the enrichment dependence of the

conversion cost for UF 6 and to the dependence of the Pu(N0 3 )4 conver-

sion cost on the quantity of Pu produced.

The material cost charge decreases initially due to the increase in

the amount of energy obtained from Pu239 and finally increases due to

the increased price for the more highly enriched UF 6 that is required.

The UF 6 lease charge follows the same trend as the UF 6 part of the

material charge. In addition, this charge tends to drop initially, as

does the working capital charge, as the ratio of non-productive holdup

time to reactor time decreases.

Finally, a bar graph, Fig. 6. 26, is presented to show the combined

effects of the partial fuel cycle costs as burnup increases. The last

bar on this graph shows that the minimum fuel cost is due essentially

to the material cost and the UF 6 lease charge and, therefore, primarily

due to the price of the feed UF 6 '

The fuel cycle costs are further broken down in Table 6. 6 of this

chapter and Tables F8 through F25 of Appendix F for all the pressurized

light-water reactor runs. 174
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For the previous results it was assumed that the reactor was capable

of operation on an 80% load factor at design power regardless of the ratio

of maximum to average power density. Actually, if the ratio of maxi-

mum to average power density for one method of fuel scheduling differs

from that for which the reactor has been designed, the power level in

this method of fuel scheduling may differ from the design level. The

maximum power at which a reactor can he operated may be set by a

maximum temperature allowable in some material, by a maximum per -

missible thermal stress in some part or by a maximum permissible

heat flux or maximum permissible power density. No matter which of

these conditions determines the maximum permissible power, if a par-

ticular method of fuel scheduling produces a ratio of maximum to average

power density less than at design conditions it should be possible to oper-

ate the reactor at a power level above the design value without exceeding

the maximum allowable temperature, thermal stress, heat flux, or power

density. If, at the same time, there is spare capacity in the steam boiler

and turbogenerator, it should be possible to increase the electric power

output when the ratio of maximum to average power density is less than

design. On the other hand, if a method of fuel scheduling produces a

ratio of maximum to average power density greater than design, and if

the power level is limited by some maximum allowable reactor temper-

ature, thermal stress, heat flux, or power density (rather than by the

capacity of the steam boiler or turbogenerator) the electric power output

will be less than the design value.

The greatest possible effect of a change in the ratio of maximum to

average power density would be to change the electric power output in
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inverse proportion to the ratio of maximum to average power density, as

would be the case if the maximum power density could be kept constant.

Figure 6.27 shows how fuel-cycle costs would vary with maximum burnup

if the maximum local power density were kept constant rather than the

electric power output. Current prices have been used in computing these

costs, and it has been assumed that the reactor has been designed for a

ratio of maximum to average power of 2. 7, the value for Batch fuel ached4

uling at the beginning of the cycle when xenon and the Samarium group of

fission products have reached equilibrium. Comparison of Fig. 6. 27 with

Fig. 6.22 shows that the Outin method of fuel scheduling now produces the

lowest fuel-cycle costs rather than Inout, and that at high burnup, the

Inout method has the highest fuel-cycle cost of all methods. This is

because the high ratio of maximum to average power density in Inout

scheduling greatly reduces the reactor power level under the present

assumption, stretches out the time the fuel is left in the reactor, and

increases the charges for working capital and UF 6 rental.

In the Batch curve of Fig. 6.27 the time-average ratio of maximum to

average power density has been taken as the arithmetic mean of the values

of this ratio at the beginning and end of the batch cycle.

The overall cost of nuclear power is the sum of fuel-cycle costs,

capital charges and operating costs. Changes in the power level at which

a reactor may be operated occasioned by changes in the ratio of maximum

to average power density from the design value will affect the capital and

operating components of nuclear power cost as well as the fuel-cycle

component discussed above. In an extreme case in which the electric

power output is inversely proportional to the ratio of maximum to average
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power density, and total reactor capital charges and operating costs are

independent of power level, the capital component, due to the reactor and

the operating component of nuclear power cost would be directly propor-

tional to the ratio of maximum to average power density. Thus, the Outin

and Graded methods of fuel scheduling have cost advantages in addition

to the reduction in fuelcycle costs shown in Fig. 6.27.

An upper bound for the effect of the maximum to average power-density

ratio on the capital component of power cost may be obtained as follows.

The component Ccp of power cost due to capital investment in the reactor

is given by

C (6.3)cp 8160LE Ji

where,

I = unit capital investment in reactor, $ /installed ekw

FI = fractional yearly charge on capital investment

L = load actor

In the extreme case, by decreasing the maximum to average power-density

ratio from the design value of M to M, it would be possible to increase

the power output by a factor of M,/M, and to reduce the capital component

of power cost by the factor M/M . With representative values for a UO 2

light-water reactor of 1 = 250$/ekw (for reactor exclusive of steam boiler

and turbogenerator) F1 = 0. 14/yr and L = 0.8, the extreme effect on the

component of power cost due to capital investment in the reactor would

be given by

Ccp = 5. QM/Mo mills/kwhe (6.4)
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The maximum savings in the capital component of power cost that

might be realized with various fuel scheduling methods may be estimated

with the aid of Eq. (6.4) and Fig. 6.8. For example, if the reactor had

been designed for a maximum to average power-density ratio of M = 2.7,

as at the beginning of a batch irradiation cycle and it was later decided

to operate with Outin fuel movement at an average burnup of 20, 000 MWD/ton,

with M = 1.4, the capital component of power cost due to investment in the

reactor would be decreased from 5.0 mills/kwhe to 5. 0 X 1. 4/2.7 =

2. 6 mills/kwhe. This assumes that the capacity of the steam boiler and

turbogenerator would be increased to permit production of 2.7/1.4 times

as much electric power and that the unit capital cost of these items, in

terms of $,/installed ekw would not change. Additions to operating costs

associated with radial movement of fuel are neglected. Correspondingly,

the capital component of the power cost due to investment in the reactor,

in mills/kwhe, would be decreased to 4.4 for Graded, and increased to

8.5 for Inout for average burnups of 20, 000 MWD/ton.

The above estimates are upper bounds for the effect; more accurate

estimates would call for detailed thermal analysis of the reactor, which

is beyond the scope of this report.
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B. COMPARISON WITH XPFRIMENTAL DATA

Results are presented in this section to compare the FUELCYC calcu-

lations with experimental data for the NRX reactor. The NRX reactor,

the GLLEP, and the FUELCYC input data for these reactors were dis-

cussed in Section V. B. and the special nomenclature was there defined.

1. Buildup of Plutonium Nuclides

Craig et-al., Cil, report measured values for the isotopic composi-

tion of the plutonium in one NRX sample which was irradiated to a

2200 m/s flux-time of 0.633 n/kb. The 2200 m/s flux-time will be denoted

by 00 and is related to the true thermal flux-time, 0, by

0 th th,5)

For the NRX irradiations nth/rno was essentially constant, having

the value 1. 217, so the corresponding FUELCYC flux-time for this irra-

diation was 0.770 n/kb. The experimental values, values calculated

by FUELCYC, and values calculated by Kushneriuk, CI1, KI1, are

presented in Table 6.7. Kushneriuk's cross sections were calculated

using a "Blackness" method for a Maxwellian (38* C) incurrent plus a

1/Z. component, which enabled calculation of the variation in the effective

cross sections as a function of position in the fuel rod. The average

value over the fuel rod for each nuclide was used in Kushneriuk's cal-

culations of nuclide concentrations. These results are labeled under

"Blackness Calculations" in Table 6.7. The FUELCYC cross sections

are homogenized values, and are therefore less refined than those of
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Kushneriuk with regards to local spatial considerations, but are more

refined with regard to the average energy distribution of the thermal flux.

Table 6. 7 Isotopic Composition of Plutonium in an Irradiated

NRX Sample (e0 = 0. 633 n/kb)

Isotopic Composition, %

Isotope Measured Calculated
(Mass Spectrometer) FUE LCYC Blackness

Run NRX1 Run NRX2 Calculations

Pu 239 87. 117 *0. 052 87.22 87.30 87.281

Pu 240 11. 244 *0. 051 11.19 10.72 11.083

Pu 241 1, 521 *0. 010 1.47 1.84 1.518

Pu 242 0. 118* 0. 005 0.12 0.14 (0. 118)

Two values were used for in the FUELCYC runs to give

different magnitudes for the disadvantage factor for Pu240, which is

calculated from Z according to Eq. (4. 13). When the true scattering

cross section of the fuel was used, 1160 bifa, the disadvantage factor for

Pu240 was 1. 2 at the final flux time. As shown in Table 6. 7, Run NRX2,

the resulting Pu240 concentration was lower, and that of Pu241 was

higher, than those measured. Both the experimental data and Kusherniuk's

theoretical calculations, K11, indicated that the disadvantage factor should

have a value of approximately 2. 0 at this flux time. The correct Pu240

disadvantage factor for a particular flux-time, 1, 10, can be reproduced

by FUELCYC since the input data parameter E is only used in computing

= 230. bifa

= 1160. bifa
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this factor. (For a given concentration of PuZ40, (* -1) is inversely

proportional to Z ). Therefore in the other run E was set at

230. bifa which gave *1, 10 the value 2.0 at a flux-time of 0.633 n/kb.

This calculation, Run NRX1, gave excellent agreement with experimental

data for the composition of all plutonium isotopes, which is an indication

that the Crowther and Weil relationship, Eq. (4. 8A), gives reasonably

accurate results for the time dependence of the change in the PuZ40

resonance absorptions for uranium metal fuel elements if noinalized to

the correct value near the end of the irradiation (by an appropriate pseudo

value for E sfj). Despite the better agreement with experimental results

for uranium metal obtained by using a pseudo value for I , it is felt

that the true value of Z should still be used for UO2 fuel elements

(until experimental long term irradiation data is available for UO2 ) since

Crowther and Weil, C13, checked this relationship for UO2 fuel elements

and found it compared well with calculations by the more accurate method

of G. M. Roe, R9.

The calculated nuclide concentrations for Runs NRXI and NRX2 are

listed in Table 6.8 for different flux times. Except for Pu240, PuZ41,

and PuZ4Z the concentrations were the same for Run NRX2 as for NRXI.

2. The Reactivity of the NRX Samples

In this section a comparison is made between experimental and cal-

culated values for the reactivity change of a uranium metal rod which

had been irradiated in the NRX reactor and tested for reactivity in the

GLEEP. R has been defined in Section V. B. 3. In order to calculate

values for R from Eq. (5. 23) the macroscopic cross sections must be
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Table 6. 8A Nuclide Concentrations in Units of Atoms per Initial
FiAile-Atom for an NRX Sample Depending on the
Flux-Time, Values the Same for Runs NRX1 and NRX2

rue Flux-Time Fission Products

(n/kb) U235 U236 U238 Pu239

0 1. 0. 0. 1. 391E+2 0.

0.1 9.465E- 1 8. 820E-3 4. 893E-2 1. 390E+2 4. 042E-2

0.2 8.958E-1 1.715E-2 9.835E-2 1.390E+2 7.692E-2

0.3 8. 478E-1 2. 502E-2 1.481E-1 1. 389E+2 1. 098E -1

0.4 8. 024E -1 3. 245E-2 1. 981E-1 1. 389E+2 1. 395E-1

0.5 7. 595E-1 3. 947E-2 2.483E-1 1. 388E+2 1. 662E-1

0.6 7. 189E -1 4. 609E-2 2. 984E -1 1. 388E+2 1. 902E-1

0.7 6. 804E - 1 5. 233E-2 3.486E-1 1. 387E+2 2. 118E-1

0.8 6.440E-1 5.822E-2 3.986E-1 1.387E+Z 2.311E-1

0.9 6.096E-1 6.377E-2 4.485E-1 1.387E.+2 2.485E-1

'1.0 5. 770E -1 6.901E-2 4. 981E-1 1. 386E+Z 2. 640E-1

CO
I3n
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Table 6. 8B Nuclide Concentrations in units of Atoms per Initial
Fissile Atom for an NRX Sample Depending on the
Flux-time, values different for Runs NRX1 and NRX2

~flhIIIII

True Flux-time

(n/kb) Pu 240 Pu 241 Pu 242

NRX1 NRX2 NRX1 NRX2 NRX1 NRX2

0. 0 0 0 0 0. 0

0.1 6.816E-4 6.814E-4 1.792E-5 1.808E-5 1.720E-7 1,728E-7

0.2 Z.575E-3 2.571E-3 1.305E-4 1.347E-4 2.409E-6 2.461E-6

0.3 5.484E-3 5.-456E-3 3. 944E -4 4.202E-4 1. 114E-5 1. 163E-5

0.4 9.251E-3 9. 155E-3 8.304E-4 9. 171E-4 3. 207E-5 3.440E-5

0.5 1. 375E-2 1. 35ZE-2 1.435E-3 1. 645E-3 7. 115E-5 7. 846E -5

0.6 1.889E-2 1.841E-2 2.194E-3 2.605E-3 1.339E-4 1.518E-4

0.7 2.456E-2 2. 372E-2 3.088E-3 3. 787E-3 2. 252E-4 2.622E-4

0. 8 3. 071E-2 2. 937E-2 4. 096E-3 5. 171E-3 3.492E-4 4. 169E-4

0.9 3. 725E-2 3. 528E-2 5. 200E-3 6. 735E-3 5. 093E-4 6.220E-4

1.0 4.413E-2 4.139E-2 6.385E-3 8.452E-3 7.081E-4 8.830E-4



calculated for the sample in the GLEEP spectrum. It is instructive

to first calculate these cross sections and the corresponding R values

assuming the spectrum to be that of the sample surrounded by natural

uranium in the NRX reactor. The results are then in a tractable form

which clearly shows the individual effect of the different terms and

which can easily be modified to give the R values for the true GLEEP

spectrum. In addition the effect of spectrUm changes between the

NRX reactor and the GLEEP is obtained.

The effective change in the cross section of nuclide m at a flux

time, 0, was calculated from,

Em,e 2(Nm-M) -- (Nmam-o + P (6. 6)

whe re qPI/<p was taken as 1119.5 bifa which was the value obtained

in the NRX calculations, for natural-uranium, with equilibrium xenon

and Samarium group poison. The values for Nm' m, and <1 - Pm>

were obtained from Run NRXI for the specified flux-times since this

run gave the better agreement with measured isotopic compositions.

The resluting values of E are listed in Table 6. 9; their thermal com-m

ponents, Eth = 6No, in Table 6. 10; and their resonance components,
,= 6 q P 1- in Tablebiusf o

Sp 1 <1- p>, in Table 6. 11. It is obvious from these tabulated

values that the reactivity changes for the NRX fuel are primarily due to the

thermal energy region (zero to 0. 45 ev). Values of the 2200 m/s

macroscopic cross section changes for use in Eq. (5. 23) were calculated

from

I = 1, 217 Zm (6.7)
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Table 6. 9 Effective Macroscopic Cross Section Changes for the NRX

Reactor, in bifa

True Thermal Flux-time (n/kb)

Cross Section
Change 0.1 0. 2 0.3 0.5 0.7

z5 .30.0 -58.3 -84.9 -133.9 -177.5

26 0.2 0.4 0.5 0.9 1. 1

Z8 -0.4 -0.8 -1.2 -1.8 -2.2

E; 43.5 82.9 118.5 179.5 229.1

.10 .5 1.9 3.9 8.4 13.1

0.0 0.2 0.5 1.9 4.0

2.7 5.0 7.0 12. 9 16.3
F P

9.0 9.5 10. 0 10.7 11.3
Sm

25.5 40.8 54.3 78.6 95.2

"5,f v5 -61. 9 -120.2 -175.2 -276.3 -366.2

"of 9 86.3 164.2 234.7 355.4 453.3

11f v11 0.0 0.4 1.1 4.1 8.8

ZfV 24.4 44.4 60.6 83.2 95.9

z12 =0. O for all flux times; = 8.4 at = 0
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Table 6. 10 Effective Thermal Macroscopic Cross, Section Changes for

the NRX Reactor, in bifa

True Thermal Flux-time (n/kb)

Cross Section
Change 0.1 0.2 0.3 0.5 0.7

2th 28.7 .55.7 -81.1 -127.9 169.5

2 h0.0 0.1 0.1 0.6 0.3

th -0.4 -0.7 -1.1 -1.6 -2.0

th 42.2 80.4 115.0 174.1 222. 3

t 0.2 0.6 1.4 3.4 6.1
th

0.0 0.2 0. 5 1.8 3.8
i I
FP t2.7 5.0 7.0 12.9 16.3

Sin 9.0 9.5 10.0 10.7 11.3

25.0 39:4 5 1.8 74:0 88 6

Sth V -59.5 -115.5 -168.4 -26543 -351.8

9f 9h 83.7 159.4 227.8 345.0 . 440.0

11f 11 040 0.4 1.1 3.9 8.5'

1 hV24.2 44.3 60.5 83.6 96.7fIIIII

th = 0. 0 for all flux times; Zth = 8.4 at 9 = 012 sin
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Table 6. 11 Effective Resonance Macroscopic Cross Section Changes for

the NRX Reactor, in bifa*

True Thermal Flux-time (n/kb)

Cross Section
Change 0.1 0.2 0.3 0.5 0.7

Ir -1. 3 -z.,6 -3.8 -6. 0 -8.0
5

0.1 0.3 0.4 0.2 0.8

Er 1.3 2. 5 3.6 5.4 6.9
9

2r 0.4 1.3 2.5 5.0 7.0
10

1r 0.0 -0.1 -.0.1 -0.2 -0.2
8

2; r 0.0 0.0 0.0 0.1 0.2

0.5 1.4 2.6 4.5 6.7

2r v -2. 4 -4.7 -6.9 -11.0 -14.4
5, f 5

2.5 4.8 6.9 10.4 13. 3'
9.,f 9

rfv 0.0 0.0 0.0 0,2 0.4
1.,0f 11

Er v 0. 1 0. 1 0.0 --0. 4 ..0.7

1 0. O for all flux times
12
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and the 2200 m/s flux-time from,

00 (6.8)94-1.217(68

The microscopic gross cross section of the fission products with cross

sections less than 10, 000 barns was evaluated by the method of Reference

S3 for each flux-time step, taking into consideration the nimber of

fissions from Pu239 relative to those from U235, considering that

Pu239 was building up exponentially as it produced the fission products

and that U235 was decaying exponentially, and increasing the resulting

cross-sections by the ratio of the total yield of known plus unknown

fission products to the known products. The resulting o-FP varied from

55. 8 b at 0. 1 n/kb to 47 b at 0. 7 n/kb. This calculation indicates that

the input data value of 51. 6 was a reasonable one. (This value was

used in the NRX calculation only in computing the effect of fission

product absorptions on the flux spectrum.)

Values of R were calculated for the NRX spectrum using Eq. (5.23)

and Table 6. 8. For small modifications to this spectrum or to basic

physics parameters the changes in these base values of R werezcal-

culated from the following simplification of Eq. (5. 23),

SR = 0. 872 6(E fv) - 1. 075 6E (6.9)

or for the true-flux cross sections,

SR = 1. 06 6(Efv) - 1. 31 6E (6.10)

Changes involved in the last two terms of Eq. (5. 23) are negligible.

Results of these calculations are listed in Table 6. 12.

Craig et. al., Cll, p. 23, have used the same moderator temperature
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(38 0 C) for the GLEEP spectrum as for the NRX reactor but assume

that the epithermal proportion of neutrons to be 11/7 times that of

the NRX reactor. The changes in the R values for the GLEEP from

that of the NRX reactor were calculated using this information. The

changes were only significant for U235,Pu239,, and Pu240. The change

in Z10 was taken as

$10 0 (6. 11)

where E r is given in Table 6. 11. A different method was used for

Pu239 and U235 since the Q. 3 ev resonance absorptions in these

nuclides are included in E th. For well moderated reactors such as

GLEEP the relative change in cross section can be derived from the

Westcott factors, W11,, where o = o"(g + rs)

6r
6E 6o Srs r (6.12)

E g + rs 1 +9
rs

Evaluating these terms at T neutron= 60*C and for r = 0. 042 gives

a) 9 = 0. 0 8 2 -E (6. 13)

r

9r
b) 6Ef9-0. 066 -6r (6. 14)

r

1f,9

C) 6E5= 2, 8 X 10-3 6r(6. 15)

E5 r

d)Sf5=1. 2 x 10- (6. 16)
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The combination of changes c) and d) for U235 was found to give a negli-

gible change in R values from those of the NRX reactor. The changes

to R due to Pu240 and Pu239 were calculated from Eqs. (6. 10), (6. 11),

(6. 13) and (6. 14) taking 6r/r = 4/7.

Table 6. 12 and Figure 6. 28 provide a comparison between values

of R determined experimentally in the GLEEP with those computed in

different ways. Results computed as described in the previous paragraph

are listed as Case 2) in Table 6. 12 and are plotted as Curve B in

Fig. 6. 28. The experimental curve for the reactivity term R, from

Reference C11, is shown as Curve A. Craig et al, C11, have corrected

the experimental results for flux-dependent effects (mainly due to Pm149

and Np239 holdup) so that Curve A effectively gives the R values for

NRX samples irradiated in a very low flux. The curves apparently

extrapolate to points below zero because measurements were not given,

nor calculations made, for flux-times Ielow 0. 05 n/kb where the

Samarium group of fission products undergoes rapid buildup. Curve B,

as calculated by FUELCYC intersects the ordinate at -11 bifa which

is the value of R due to a saturated amount of the Samarium group.

Curve C in Fig. 6. 28 or Case 3) in Table 6. 12 was calculated from

Curve B taking into account the buildup of each member of this group

according to,

r(e) = max(1i-e"~) (6. 17)Z(O) max0

where the microscopic cross sections and the U235 fission yields

recommended by Craig, C11, p. 22, were used. These values are
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Table 6. 12 Reactivity Change Term, R, for the NRX Samples for Different Assumptions
for Basic Parameters. (R in units of bifa for a 2200 m/s flux.)

Source of Data Curve in 2200 m/s Flux-Time (n/kb)

Fig. 6.28 0 0.0822 0.164 O.246 0.411 0.575

Experimental A 0 0.0 3. 1 2. 6 - 4. 3 -15. 4

Calculated

1) NRX Spectrum -11.0 -7. 2 -5.6 -5.6 -13.0 -20.6

2) GLEEP Spectrum B -11.0 -6.8 -5.1 -5. 4 -13. 5 -21. 7

3) GLEEP Spectrumocorrected for C 0 -5.5 -4.7 -5.2 -13.5 -21.7
delayed buildup of Sm group

4) Case 3), with "World Average D 0 -4.1 -2.0 -1.3 -7.4 -13.7
Values"

5) Case 3), with correction for E 0 -3.5 -2.7 -3. 2 -11.5 -19.7
Sm- 149 yield

6) Case 5), plus an increase in R. c. r. of
6% at low flux times, decreasing to 2% A 0 0.0 3.1 2.6 -4.3 -15.4

at 0 = 0.575

.
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Table 6. 13 The Samarium Group of Fission Products (with cross
sections > 10, 000 b)

Nuclide Cross Section U235 Fission Yield
(barns)

Sm149 75,500 1.15

Sm151 12, 000 0.45

Cd113 25,000 0.011

Eu155 14,000 0.031

Gd157 160,000 0.0074

given in Table 6. 13. Curve C should agree with Curve A but is lower

by 5 to 10 bifa, or roughly 0.003 to 0.006 in reactivity.

It is interesting to note the sensitivity of this curve to smnall changes

in the basic physics constants, a fact which has been pointed out both

by Littler, L23, and by Craig, C1l. For example, Curve D would

have been generated by FUELCYC rather than Curve C had the "World

Average Values" been used for a-5' 9 ' f,9, v5 ' and v rather than the

"World Consistent Values" which are now used in FUELCYC. Curve D

gives fair agreement with the experimental data. Curve F is that

calculated by Craig et al., C11, using Kushneriuk's cross sections and

the "World Average Values" for nuclear parameters. Eq. (6. 10) shows

that a change in production cross section, Efv has an effect on R that

is roughly the same in magnitude but opposite in sign to that of an

absorption cross section. Table 6. 9 shows that the effect of U235 on

The reactivity can be estimated from R using the expression
R

1600'
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R is approximately equal but opposite' to-thet of PuZ39,, -and thAt

these two nuclides have the greatest effect on R. For these reasons

the following ratio is useful in the prediction of reactivity changes,

and will be designated R. c. r. for "Reactivity change ratio,"

R. c. r. = - - (6.18)
SN 5 a- 5(n5

For the FUELCYC calculations the R. c. r. varied from 1. 34 at

a flux-time (e) of 0. 1 to 1. 18 at a flux-time of 0. 7.

The 2200 m/s values for the o's and the T's in Eq. (6. 18) have

standard deviations of approximately 11%, aem ding to BNL-325,

which gives at 2% deviation in (n-i) terms, and a total standard

deviation in the R. c. r. of 6% if only these microscopic terms are

considered. ((fv has been replaced by on in Eq. (6. 18) however

it should be noted that in the case of "World Average Values" it makes

considerable difference which term is actually used.) This would

allow an additional change to curve D of three times that change made

in going from C to D, which is easily sufficient to force a considerably

better fit to Curve A.

On the one hand this indicates that better values are needed for

these constants before accurate long term reactivity calculations can

be made, when starting with basic data. On the other hand, the com-

bination of the theoretical calculations that have been made plus the

experimental isotopic analysis and reactivity measurements for the

NRX samples permit the recommendation of particular values for some

of these parameters, within the standard deviations of the more basic
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measurements. Let us proceed along the latter tack accepting Curve A

as the true behavior. (The standard deviations of the experimental values

for R were not indicated.)

Sm- 149, has, effectively reached its saturation value at a flux-time

(80) of 0. 05 n/kb so the "R" curves of Fig. 6. 27 are smooth above this

value. The intercept on the R axis should be the same for these curves

if they are extrapolated back to zero flux-time from the point 0 = 0. 05.

The initial value of R so obtained is essentially due to Sm-149. It is seen

that the FUELCYC Curves C and D as well as the Canadian Curve F,

intersect the axis at approximately. -7 bifa. This is as it should be since

the Samarium group of fission products, including yield values, was the

same for both calculation (ysm, 5 = 0. 01649, ysm, 8 = 0. 03154). The

experimental curve, however, has a higher intercept at a value of R nf -

approximately -5. This suggests a value of 0. 008 for the yield of Sm-149

rather than the value of 0. 0115 which was used both in this paper and in

the Canadian paper, C11. This reduction would give a Samarium group

yield of ySm, 5 = 0. 0130. It is recognized that the curve extrapolation is

only rough; however, support for this Sm-149 yield value is given by the

measurement of Littler, L23, of 0. 009-:-k 0.002. Normalizing to the same

extrapolated value of initial poisoning changes Curve C to Curve E as

shown in Fig. 6. 28. This curve is still considerably lower than the

measured curve.

In the initial portion of the curve higher plutonium isotopes than Pu239

and the low cross section fission products have negligible effect, and the

discrepancy must be due to a wrong value for the R. c. r. of Eq. (6. 18)

Since the calculational value used for the i. c. r. (- 6N 9 /6N 5 ) agreed with
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experimental data, C11, p. 20, it appears that the ratio of

(- 1)/o 5 ( 5 - 1) is in error. The error here could be due either

to the basic point cross section data or to an error in the neutron

temperature. The magnitude of the latter effect can be estimated by

again referring to the Westcott paramters, W11, at approximately 601C

(and taking rev 0. 07). A 20* C increase in temperature would produce:

a 2%o increase in O,9, a 1% decrease in (1I9 - 1), a 0.5% decrease in a5

and no change in (5 - 1). The combined change in the R. c. r. would be

a 1.5% increase for each ZO* C increase in the neutron temperature,

which would give an increase in R of approximately 0.7 bifa at a flux-

time (0) of 0. 1 n/kb; and 3. 9 bifa, at 0. 7 n/kb. To fit the initial part of

the curve would require an increase in the R. c. r. of approximately 6%,

or a 80* C neutron temperature rise, if due to this factor alone. As

pointed out in the Canadian report, C11, p. 28, later measurements by

Tattersall et al, T8, indicate an additional 30* C temperature rise

(Tmod for GLEEP of 70* C rather than 38 C). The additional increase

in the R. c. r. required to match experimental data then appears to

require changes to the 2200 m/s values for a-'s and i's. The Canadian

paper, C11, p. 26, suggests a 3% increase in the ratio af /f, 5 over

that of the "World Average Values" (which would be a 3. 5% increase over

the "World Consistent Values," and between a 3. 5 to 7% increase in the

R. c. r. ) based on the recent measurements of Bigham et al, B24. This

increase is sufficient to bring the FUELCYC results into agreement with

the experimental results in the range from zero to 0. 2 n/kb.

199

......... ..... - - ... .......



However, the above increase in the R. c. r. of 6Ioto fit the initial part

of the curve results in an excess of about 10 bifa over the experimental

curve at a flux-time (0) of 0.7 n/kb (0 =0.575). Therefore consider the

factors which would leave the intial part of the R curve unchanged but

which would lower the curve at higher flux-times. These factors are:

1.) A decrease in the Pu239 cross section with flux-time. Such

a decrease is indicated by the "blackness" calculations of Kushneriuk,

C 11, K11, due to self shielding in the 0. 3 ev resonance. Kushneriuk's

value for the average Pu239 cross section in the fuel rod decreases by

5% from zero to 0. 6 n/kb (0:*) while the FUELCYC cross section is

approximately constant. A decrease in r9 of 4% at a flux-time (6) of

0. 7 n/kb gives a decrease in R of approximately 11 bifa.

2) An initial increase in the Pu239 cross section relative to that

of U235, due to spectral hardening of the thermal flux, followed by a

softening at higher flux-times, similar to the behavior of the pressurized

light-water reactor. Thiswould have been observed had the moderating

ratio been lower, but would tend to peak the Pu239 cross section at a

higher flux-time than indicated for the NRX results.

3) A decrease in the Pu240 disadvantage factor or an increase

in the epithernal to thermal flux ratio. Run NRX2 would have given a

decrease in R of approximately 12 bifa at a flux-time (6) of 0.7 n/kb.

This is the net change due in part to different concentrations of Pu240

and Pu241 but mainly reflects the change in disadvantage factors between

these two runs: 1. Z for NRX2 versus 2. 0 for NRX1 at a flux-time (6)

of 0.7 n/kb. (Errors in the Pu240 cross section produce their greatest

effect in this flux-time range.)
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4.). An increase in the cross section assumed for the unknown fisK

sion products. Doubling their cross section would decrease R by approx-

imately 5 bifa at a flux-time (0) of 0. 7 n/kb.

It is thought that of the above possibilities the most probable is that

the Pu239 cross section, and therefore the R.c.r., did indeed decrease

a few percent during the irradiation, which is sufficient to bring the

right hand side of the curve into agreement with the experimental results.

It should be noted however that the cross sections calculated for PuZ39 in

FUELCYC gave excellent agreement with the isotopic analysis which

indicates that the average absorption cross section for Pu239, as calcu-

lated by FUELCYC, was correct.

In summary, the most reasonable variations to bring the FUELCYC

calculations into agreement with the experimental data for the NRX

samples are:

1. ) A change in the U235 fission yield of Sm 149 from 1. 15%to

0. 8%.

2.) An increase in the ratio a-9 - 1)/0-5 (n 5 - 1) of 6% at low

flux-times, mainly due to changes in the point values of these terms

versus energy. (This would increase the R. c. r. to 1. 4Z.from 1. 34.)

3.) A progressive reduction of the increase in the above ratio

until the increase is only 2% at a flux-time (0) of 0.7 n/kb, where this

reduction is primarily due to a drop in the value of a9 because of self-

shielding. (This would give an R. c. r. of 1. 20instead of 1. 18. )

3. Effect of Changes on Pressurized Light-Water Reactor Results

The question arises: what effect would the changes discussed in

201



Section VI. B. 1 and VI. B. 2 have on the results for the pressurized-light

water reactor. The answer is that the effect would be small, due pri-

marily to the longer irradiations considered for the latter cases. The

effect of using different values for the Sm 149 yield, for the Pu240

disadvantage factor, and for the R. c. r. will be discussed in the following

paragraphs.

A few approximate relationships have been derived from the NRX

results and the pressurized light-water reactor results which will be

useful in making the comparison. Eq. (6. 19) relates changes in the true

reactivity, p = 6k/k, to changes in the reactivity change term R and in

the cross sections for the NRX samples,

6R 6(2fv -
.)

P " 1 6 00 ~ 1200 (6. 9)

where R and L's are in units of bifa. Table 6.14 gives values of dif-

ferent dimensionless ratios for the end of batch irradiations in the

pressurized light-water reactor.

Table 6.14 Approximate Values of Different Scaling Ratios for
the Pressurized Light-Water Reactor; Final Values
for Batch Irradiation.

Average Burnup (MWD/ton)

Ratio 10,000 20,000 40,000

Fractional change in burnup
per unit change in reactivity 7.8 4.5 2.9
(6E/E6p)

Atoms of Pu239 per atom of
of fission product pairs 0.25 0,18 0.12
(N 9 /NFP)

Fraction of production cross
section due to Pu239 0.55 0.62 0.70
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A change in Sm 149 yield of U235 from the value 0.0115 to 0.008

would initially represent a cross section change of approximately

-. 8 bifa in the NRX samples or, from Eq. (6.19), a reactivity change

of 0. 0015. (This would become less as U235 burned out. ) From the

ratio of 6E/E6 p in Table 6. 14 it can be seen that a reactivity change

of 0.0015 in the pressurized light-water runs would give an error in

average burnup (or in costs) of 1% or less.

As mentioned before it is thought that the method used by FUELCYC

for the calculation of the Pu240 disadvantage factor is satisfactory for

UO 2 fuel (due to the theoretical comparison made in Reference C13),

even though it needed adjustment for uranium metal. Also, errors in

the PuZ40 cross section become of less importance at higher irradiations

(I n/kb and up) due to the compensating effect of PuZ41. Both Refer-

ence C11 and Reference C13 show that the effect of errors in the PuZ40

cross section reduces to zero within the burnup range of 10, 000 to

15, 000 MWD/ton. For these reasons it is estimated that errors in the

PuZ40 disadvantage factor for the pressurized light-water runs caused

negligible error in the average burnup, and in cost values, for burnups

of 10, 000 MWD/ton or greater. (Had the error been as large (12 bifa

in R) as that for run NRXZ, the reactivity change would have been

-0. 007 and the relative burnup or cost change would have been a maxi-

mum of 5%.)

Consider R. c. r. changes as caused by a change in a-9. The required

2% increase in the R. c. r. for the most highly irradiated samples, would

require a 2% increase in O9. For the burnups of Table 6. 14, Pu239 is

near its saturated value. Also, small changes in the amounts of the
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higher plutonium isotopes have little effect on the neutron balance due

to the cancelling effect of PuZ40 and PuZ41 in this burnup range. For

these reasons the only effect of a change in the PuZ39 cross section (at

a given flux-time after Pu239 has saturated) is an equal but opposite

change in the number of atoms of Pu239. The neutron balance is

unchanged. Therefore a 2%increase in 09 would cause a 2%decrease

in N Since approximately two-thirds of Pu239 is destroyed by fission

this represents an increase in the number of fissions, SNFP, of.013N .

Using the maximum value (0.25) of the ratio . of N 9 /NFP from Table 6.14,

the maximum relative change in the number of fissions, 6NFP/NFP' is

found to have the value 0.003. Therefore the change in average burnup

and in costs would be less than 0. 3% due to this effect.

Were the indicated 2% R. c. r. change due to a change in qg a 1%

increase would be required. From Table 6.14 it is seen that a 1%

increase in '19 would give a 0.55% change in ETj at 10,000 MWD/ton

which would also produce an increase in reactivity of 0.0055. This would

produce a 4%increase in the average burnup at 10,000 MWD/ton but

less at higher burnups.

This analysis has shown, that results presented for the pressurized

water-reactor arevalidif the errors in the input data parameters are no

larger than those indicated by the NRX experinents.
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C. COMPARISON OF THE FUELCYC CALCULATIONS WITH

THOSE OF A SIMPLER CODE

The results of calculations for the simpler model, as described in

Section V. C., are presented here. A Batch fuel scheduling run and a

Graded run were made with this model; both for the 3.44 a/o U235

enriched, pressurized-water reactor. The variations in the nuclide

concentrations with irradiation are compared with those calculated by

FUELCYC in Fig. 6.29. The good agreement is due to the choice of the

resonance escape probability for U238 so that the initial conversion ratio

would agree with that of FUELCYC and 2), the choice of the Pu240 cross

section to agree with the average effective cross section in FUELCYC.

Minor differences between the two codes are due to: 1) the more refined

treatment of resonance captures in FUELCYC; and 2), the recalculation

of thermal cross sections in FUELCYC as opposed to the assumption of

constant values in the simpler method.

Table 6. 15 compares the maximum and average burnups calculated

by the present code for the above two runs with those calculated by the

simpler code for a chopped cos-J 0 flux and a spatially uniform flux.

The simpler code applied to the chopped cos-J 0 flux does remarkably

well in predicting the maximum burnup but the agreement is much poorer

for the average burnup. The main error is introduced in the averaging

of the properties over a chopped cos-J flux rather than over the true

flux distribution, which is considerably more flattened. This error in

the average burnup is on the order of 25M2 for the two cases studied.

Results for spatially uniform flux are worse than for the cos-J 0 results
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for Batch Irradiation, as would be expected, but are actually better than

the cos-J 0 results for the average burnup in Graded fuel scheduling.

Table 6.15 Values for the Maximum and Average Burnup, in MWD/ton,
Predicted by Different Physical Models.

"Simpler" Code

Chopped-Cos,
Fuel Type of Chopped-J Rel. Constant Rel.
Sch'd. Burnup FUELCYC Flux 0 Error Flux Error

Batch Maximum 17900. 18400. -3% 11600. 35%

Batch Average 8650. 6110. 29% 11600. -34%

Graded Maximum 27400. 26200. 4% 22500. 18%

Graded Average 22800. 17700. 22% 22500. -1%
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VII. CONCLUSIONS

A. COMPARISON OF FUELCYC CALCULATIONS WITH EXPERIMENT

The only experimental results available for this work which could

be compared with the predictions of FUELCYC are on the irradiation

of uranium metal rods in the NRX reactor at relatively low flux-times

(up to 0. 63 n/kb) (Reference C11). The isotopic content of plutonium

observed in this irradiated metal is in fair agreement (0. 5%) with the

prediction of FUELCYC; excellent agreement (0. 1%) can be secured by

adjusting 7 , the input parameter of the code used to compute the

PuZ40 resonance disadvantage factor. For UO 2 fuel, however, it is

believed that no adjustment is needed, since good agreement was obtained

with a more refined theoretical model (Reference C 13) for this fuel

material.

The reactivity of fuel irradiated in the NRX reactor has been meas-

ured in the GLEEP. The reactivity predicted by FUELCYC is in fair

agreement with that observed in GLEEP, falling within 9 barns per

initial fissile atom, or 0.6% of the observed reactivity. The discrepancy

can be eliminated by:(1) decreasing the yield of Sm149 in the fission of

UZ35 from 1. 15% to 0.8%, (2) adjusting the parameter a- 9 (1 9 -1)/G_ 5 (115 -1)

for 2ZOO m/s properties of Pu239 (subscript 9) and U235 (subscript 5)

by amounts which fall within the standard deviations assigned to meas-

ured values of cross sections (a) and neutron yields (,n). An increase

of 6% in this parameter is needed at low flux-times and 2% at a flux-

time of 0. 7 n/kb. At the higher flux-times of interest for power-reactor

irradiations, the reactivity is less sensitive to changes in these
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parameters, and FUELCYC with its present input properties is deemed

capable of giving results of sufficient precision for practical fuel cycle

analysis.

B. PERFORMANCE OF CODE

A thorough set of debugging runs have been made for the FUELCYC

code. The results of these runs and the runs made for this study indicate

that the code is performing correctly. The convergence methods used

have been found to be reliable and rapid.

The entire set of twenty runs (each using fifty mesh points) for the

pressurized light-water reactor required a total computer time of only

70 minutes. This performance shows that FUELCYC can be used for

extensive fuel.cycle studies without excessive use of computer time.

Since FUELCYC generates most of the parameters required for its

calculation(such as values for cross sections, a 's, and -'s) the input

data preparation is minimal, The code is divided into many subroutines

and as a result is particularly easy to modify for the addition of new

methods of fuel scheduling or for new techniques of programming con-

trol rods.

It is intended to make FUELCYC binary decks available for distri-

bution. Further information may be obtained from R. T. Shanstrom.

C. STUDY OF ALTERNATE FUELING METHODS

Of the four fueling methods studied, batch irradiation leads to

highest fuel costs for a specified burnup. The three other methods

lead to costs that are lower by from 0 to 1 mill/kwh, depending on the
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burnup. Movement of fuel from outside to inside leads to the flattest

distribution of flux and power density, and is the most advantageous

fueling method for this reason and because of its lower fuel cost.

D. FUEL CYCLE COSTS IN PRESSURIZED WATER REACTOR

Because of the marked decrease in fuel-cycle costs as the average

burnup is increased there is a strong economic incentive in this

pressurized-water reactor to develop fuel elements capable of with-

standing average burnups of 20-25,000 MWD/ton and maximum burnups

of 30-40, 000 MWD/ton and to use a fueling method and feed enrichments

which give enough excess reactivity to permit attainment of these average

burnups in reactor operation. If burnups of this order of magnitude

can be obtained, fuel-cycle costs in this pressurized light-water reactor

can be reduced to 3. 5 mills/kwh for simple Batch irradiation and

2. 5 mills/kwh for the Graded or Outin fuel scheduling methods, based

on present AEC prices.

At these high burnups, rental and burnup charges for U235 and the

fuel fabrication costs are the most important components in the fuel

cycle cost. The most important single factor is the initial price of

the enriched UF 6 . The charge for the production of UF 6 from the

spent fuel that is now made by the AEC, approximately $ 25/kgm U

for this reactor adds only 0. 2 mills/kwh to the fuel cycle cost at a

maximum burnup of 30, 000 MWD/ton, and is not important even at

lower burnups.

Changes in the rental charge for UF 6, the price scale for UF 6

and the credit for plutonium would have a pronounced effect on the
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fuel-cycle cost. For example, an increase in the UF 6 rental charge

from 416 to 12%o per year would add about 2 mills/kwh to the overall

cost. A reduction of 3316 in UF 6 price scale would reduce fuel cycle

costs by about 1 mill/kwh. Increase in plutonium credit from $ 12 to

$30 per gm would decrease fuel cycle costs by 1. 5 mills/kwh at low

burnup and about half this at high burnup.
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VIII. RECOMMENDATIONS FOR FUTURE WORK

A. USE OF FUELCYC

It is recommended that the current version of the FUELCYC code be

used for fuel-cycle analyses in large uranium-fueled' power reactors,

which have a zimuthal symnmetry, and in which most of the reactions occur -At

thermal energies. S. L. Amberg of M. I. T. is currently using FUELCYC

for the analysis of a 150 eMw organic-moderated reactor and N.B. McLeod

is undertaking the study of a 200 eMw heavy-water-moderated, natural.

uranium-fueled reactor.

B. EXTENSION OF FUELCYC

The library of FUELCYC fuel-scheduling and control-rod program-

ming subroutines should be extended. A fuel-scheduling method of

particular interest is the bi-directed axial flow (of short fuel slugs)

method proposed by Dr. Lewis, L19, since essentially uniform fuel

burnup is achieved. This technique has already been coded by P. Steranka

of M. I. T. and is now being debugged. Another fuel scheduling method of

interest is the axial inversion technique. In this method fuel rods of

half (or less) the core length are periodically inverted to give a more

uniform burnup. This inversion technique could perhaps be combined

with Outin radial motion to give flux-flattening along with more uniform

burnup.

Non-uniform initial loadings could be studied These cases are of

interest in breeder reactors, in flux-flattening, and in the approach to

steady state operation.
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For non-steady state operation the method in which control poison

is inserted has a strong effect on the flux shape. For example, there

will be some program of control rod motion, which gives preference to

the removal of outer control rods with respect to inner rods as irradia-

tion progresses, that will flatten the flux radially without causing severe

peaks where the rods are removed. P. Steranka also has a control.-

rod programming subroutine in the debugging stage as a first step in

this investigation. Studies of burnable poisons are of interest; either

homogeneous poisons or heterogeneous poisons, shaped in a manner to

give the desired changes in reactivity worth as irradiation progresses.

Studies of recycling and of other fuel mixtures are also of interest4

In this area another M. I. T. student, J. M. Neill, is currently under-

taking a modification of FUELCYC to allow study of thorium fuel.

C. OPERATIONS ANALYSIS STUDY

A complete analysis of the effects of the fuel cycle on power production

cost for a specific reactor would be of considerable interest. Items not in.

cluded in the present study which should be considered are:

1) the effect of a finite number of fuel elements on the degree to

which steady-state fueling could be approached

2) the effect of a finite number of control rods on techniques for

programming control of the reactor

3) the reactor start-up period and approach to the final-state of

fuel scheduling

4) the effect of different fuel scheduling methods on the operating

costs of the reactor and on the fraction of the time it is in operation,

5) the effect of variations in the maximum to average power
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density ratio on the capital charges, taking into consideration all of the

equipment required for power production (i. e., turbines, generators,

and heat exchangers, as well as the reactor).

The ultimate purpose of this study would be to determine the op-

timum methods of fueling and controlling the chosen reactor.

D. COMPARISON WITH EXPERIMENTAL DATA

Additional comparision of the calculations of FUELCYC with experi-

mental data is recommended as these data become available.. Parts B

and C of Reference W17, when issued, will give additional information

on the NRX irradiations of natural uranium metal.

There is an obvious need, however, for experimental data on the

behavior of UO 2 fuel during irradiation. Measurements of interest

which should be taken at intervals as the irradiation progresses are:

nuclide compositions, both average values and values as a function of

position in the fuel element; reactivity measurements; and the flux

history of the irradiation, with values for the flux (and flux-time) as a

function of position in the fuel element.

E. EXPERIMENTAL WORK IN THE M. I. T. REACTOR

As pointed out in Section VI. B. , the reactivity of the fuel for all

degrees of irradiation are of interest. The very low region, 0. 05 n/kb

and less, is of interest in studying the buildup of the Samarium group

of high cross section fission products. The range from 0. 05 to approx-

imately 2 n/kb is of interest in tying down values for the initial conver-

sion ratio and the reactivity change ratio. Longer irradiations give

information on the effect of higher plutonium isotopes. The feasibility

of initiating an experimental program of irradiation and reactivity
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measurement in the M. I. T. reactor should be investigated, to study the

low irradiation range. (0.05 n/kb could be achieved in approximately

100 days of operation at a flux of 5 X 1012 n/cm2 sec.)

F. FURTHER THEORETICAL INVESTIGATION

If further theoretical refinements are undertaken for the FUELCYC

calculational method, it is suggested that the local spatial properties of

the fuel be investigated. This could be directed towards more exact

techniques for the calculation of disadvantage factors and for consider-

ation of the uneven buildup of higher isotopes in the fuel element as

irradiation progresses.
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IX. APPENDIX

A. NUMERICAL SOLUTION OF THE WILKINS EQUATION

The Wilkins Equation is the second order differential equation

d 2 .Y dY
x 2 - + (2x3 -3x)-+ (2x2 - 4x 2 A(x) + 3) Y = 0 (1)

dx

where,

Y = -(2)

and x is the dimensionless velocity variable normalized to the velocity

corresponding to kTmd, (see H 21). Since (1) is a linear equation, Y

can be replaced by a new function, y, ,which will eliminate the first

derivative. This is convenient since we aren't concerned with the

values of Y'. The proper function is,

y = yx-/2 ex 2 /Z (3)

which, when substituted for Y in Eq. (1), gives the working form of

the Wilkins Eqnation,

4x2  - [4x 4 - 16x 2 + 16x2 AC) + 3] y-= 0 (4)
dx

Equation (4) is then solved numerically by a fifth-order Milne method,

H27, p. 223, where the relationship,

2
(0)

Y ) yj y 1 2  ~ - 3 + (5y+ 2y . -I y - 2( 5)

is used for prediction, in which p is the constant spacing in

normalized velocity, IL = 6x, and the relationship,
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2
L 6

yi+ 1 = 2y - y + (y!'+ 1 + 10y + y_ + Q(4) (6)

is used for revision of the initial estimate for yi+ 1 given by (5). The

y are-then generated step by step from Eqs. (5) and (6) using Eq. (4)

to calculate the required values of Yj. It is seen that information is

required four velocity steps back or, in particular, to calculate y4 from

Eqs. (5) and (6) we need previous values for: y0 ' y1 ' Y2 ' y3 y y i

and y. The method used is to start at x = 0 and obtain the required

terms by a series solution of Eq. (4) assuming 1/v cross sectional

behavior in this iritial region. With this assumption Eq. (4) can be

rewritten for startup in terms of A = 4xA(x) which is a constant. The

variable s where,

S x(6)

is substituted for x to eliminate the exponents of order 1/2 which are

required. This requirement can be anticipated by the form of y for a

Maxwell-Boltzmann flux, namely

yM. B = (const.) x e -x/ (6.4)

since,

YMB= (const. ) e,' (6.6)

This changes Eq. (4) to,

2
2 d y dy 8 4 2

s .--- sTg- (4s - 16s 4+ 4s 2A +3), y =0(7
ds

A solution is assumed in the form,
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00 ky=k aksk=O

which yields the requirement,

k0 a { [-3+k(k.2)] sk _ k +2 + 1 6 sk+4 ks+8). 8 0

Or, equivalently,

{[ -.3+k(k-2)]ak - 4Aak - 2 + 16ak --- 4a - 8 k S 0
k=0

if the a's with negative subscripts are understood to be zero.

the successive coefficients equal to zero gives,

ak a 0 , for k negative or even

a =0

can be chosen arbitrarily

1 A+2

a7 - + T

1A A3

a 9 = --- +--9 90 360

or in general,

4[ak -8 - 4 ak - 4+Aak - 2
k k(k--2) -3

The value of A at x = Zs is used for the

A = 4x2 A2 n 8-AA 2

Eq. (8) can now be written in terms of x

(16)

for odd k (17)

startup constant.

(18)

and a more convenient set
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(12)

a 3 = '

a5 3 =

(13)
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of coefficients, b.:

y = xI/2 E b x3  (19)
j=1

where,

b. a (20)

and in general,

4[b 4 -4b 2 +Ab. ]

(Zj+1) (2j-1) - 3

Startup values of yi are calculated from Eq. (18), truncating when

the magnitude of the last calculated term becomes less than 10-6 times

the sum of the preceding terms. After the first four points, Eqs. (5)

and (6) are used to generate the y1 . Values for Y. are obtained from

the yi by applying Eq. (3). An estimate of the truncation error in the

th
i step after startup is given by,

"Yi
F . - 2(2T, i 18 (22)

where

Y.= y - y (23)

The cumulative truncation error for the Milne solution up to step i

is then roughly estimated from,

F . = FTk (24)
k= 5
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B. A CONDENSED CROUT REDUCTION THAT MINIMIZED THE

STORAGE AND TIME REQUIREMENTS

The Gauss reduction is a well known method of solving sets of linear

algebraic equations, and the Crout reduction is a modification of this

technique which reduces the storage of intermediate data, see H.27,

Chap. 10. Nevertheless, for the solution of a set of nL equations in

nL unknowns, the complete Crout reduction requires the calculation and

storage of a nL x n L auxiliary matrix. For nL equal to approximately

180 this equals the entire fast memory capacity of the full IBM-704

computer. (Core memory is 32, 768 words.) In many cases, however,

sugh as the reactor problems of this work, advantage can be taken of

the many zero elements in the matrix to effect a considerable reduc-

tion in the storage requirement, as well as in the computer time

requirement.

The equations of this appendix illustrate the method for the two,'

dimensional, five -point -difference, spatial flux-shape problem described

in IV. A. 2. The subscript notation is in general different from the

normal matrix notation so that the equations can be coded directly, in

a system such as Fortan for the IBM-704, without wasting storage space.

The method described here requires less than (2rL+ 1) nL storage

spaces for the auxiliary matrix, where n L = r LzL For rL = zL this

gives a reduction in storage space by a factor of a"prowimately 1 from

that required by the standard Crout reduction.

Consider the set of linear equations of Chap. IV, Eq. (4. 59),

d<= c (1)
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where d is the coefficient matrix, c is the constant column matrix,

corresponding tq the assumed source term ye $ in Eq. (4. 59), and * , in

Eq. (1), is the column matrix of the unknown fluxes, r; z'

The radial index, r, and axial index, z, can be replaced by the

single row index, n, which is defined by,

n = r + (z.1) r L (2)

where,

n <nL

and,

nL rLzL (3)

So here the * of IV. A. 2 will be written 4 ; thekdz, as d etc.
r, z n r, z, u. n, u,

The coefficient matrix d has the form illustrated in Fig. B1. , where

the non zero elements fall on five diagonals: the principal diagonal,

those on each side of it, and the diagonals rL units away from the prineipal

diagonal. This causes the Crout coefficient auxiliary matrix to have

only zero terms outside of the diagonals r L units away from the princi.

pal diagonal, so there is no need to include these terms in the calcula-

tional procedure or to save computer core space for them. The nomen-

clature for the terms in this auxiliary matrix is illustrated in Fig. BZ.

The purpose of the indexing system is merely to give consecutive numbers

to the non-zero terms so as to exclude the storage of zero terms. It is

seen from Figs. BL. and B2. that the first index is the row index and the

second is a diagonal index.

The following equations define the method of calculation of this

reduced Crout coefficient auxiliary matrix.
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h d (4)

S = d2 , 2 (5)
d (6)

1 , r 1 r + 1, (7)

b =s dI 3/h 17

b Ir = d 1 5 /h 1  (8)

g1, k b l1,k = 0 ' 2. 4 k -r L r (9)

The remainder of the auxiliary matrix is obtained by repeating the

sequential calculations of Eq. (10) through Eq. (14), starting with n = 2

and increasing n by I each loop until n = n . When n > (nL - r L) Eqs.

(13) and (14) are omitted and when n = nL only Eq. (10) is calculated.

n.1
h = dn, I -L i,n-i bin-i (10)i=m

where

m=1 , n 4 rL

m n-rL ' n>rL

Equation (11) and Eq, (12) are repeated for the same value of n, starting

with k = 1 and increasing by one until k = k L where,

k L = r L ' n 4 n.L_ L

kL =rL , n >nL rL

n.. 1
k i b + 6(k)d (11)

where,
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m 2 = 1 n 4 r L - k

m2 = n + k - r L n > r L - k

6(k) = k = 1

8(k)= 0 k# 1

n-1
bn k . L bin+ k. i i + 6(k) dn 3  (12)

n i=m 2  n

g = d (13)
L n ,

d
bn, r (14)

Having calculated the coefficient auxiliary matrix one now procedes to

calculate the constant auxiliary matrix. The terms of the c matrix of

Eq. (1) are known. These values would have been calculated from the

last estimate for the fluxes, Eq. (4. 59),

c - yelb (15)

The constant auxiliary column matrix composed of fn terms, is then

formed according to Eqs. (16) and (17).

f c = (16)

Equation (17) is repeated starting with n = 2 and increasing by one

until n =nL

I [ n-

n e rnn i~m3

where,
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In1 n rm 3 i rL

m 3 =n - rL n> rL

The solution matrix, containing the new values for the fluxes, n' is

then obtained according to Eqs. (18) and (19),

4) = f (18)
L nL

Equation (19) is the repeated starting with n = nL - 1 and decreasing

by one each time until n = 1.

mn
4

n fn n,i n+ (19)
i=1 l~

where,

m = n - nL - rL

m4 =rL n 4-nL - rL

The new flux values are then normalized if desired (to cI = 1 in this

work), and the procedure of Eq. (15) to Eq. (19) is repeated until suc-

cessive values of 4n converge. (The criterion used here for conver-

gence is that

(i+1) (i)

n n + n .01 for all values of n)
(i + 1)

(n

The iterations are rapid since they do not require recalculation of the

auxiliary coefficient matrix.
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C. FUELCYC SUBPROGRAMS

Each section of this appendix describes one of the subprograms which

were developed for FUELCYC. The standard Fortran II subprograms

that are required are listed but not described. A discussion of the MAIN

program has been given in Section IV. C. 3., and Fig. 4. 6 explains the

flow chart symbols that are used. The current absolute locations are

indicated under "Space required.", however, these are not fixed posi-

tions since all subprograms are relocatable. The symbolic meaning of

the subprogram's name is given in parenthesis in the Purpose statement

when not obvious. Many of the indicated print steps were primarily for

debugging purposes and have now been bypassed by octal correction cards,

as indicated on the flow charts. If desired, these print outs can be

reactivated merely by the removal of the appropriate correction card.

"Input, arguments" and "Output parameters" are listed to show the

required flow of information between subprograms. Additional informa-

tion for running FUELCYC is given in Appendix D.
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1. LOADER

Purpose: to load and relocate binary cards, BCD identification cards,

and octal correction cards.

Subprograms called: The MIT subprograms WOT, NOLOAD, OCTOFF,

STPRNT, WOTF (these subprograms will not be discussed here).

Space required: 641, (30-1230)8

Discussion: The symbol table is written off-line by STPRNT and octal

correction cards are written off-line by OCTOFF, NOLOAD gives an on-

line diagnostic print if the cards fail to load. Octal correction cards are

discussed in Appendix D. 2.

2. MAIN

Space required: 8000, (1231-20730)8

Discussion: The flow chart and discussion of MAIN is given in Section

IV. C.3.

3. READ-PRINT

Purpose: to read cards, read or write tapes, and to print on line.

Subprograms called: The standard Fortran II read-print subroutines:

DBC, CSH, SPH, FIL, BDC, STH, RTN, and LEV.

Space required: 2427, (20731-23357)8
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4. TIMECK

Purpose: to write the time and identify the location in the program (for

timing different parts of the code).

Input arguments: NUMBER

Output parameters: none

Subprograms called:

(Time check)

TIME, PRINT

Space required: 42, (23360-23431)8

Discussion: A "real time" clock must be connected.

Flow Chart Comments

Fortran
Statement
Number

Write the time.

Step

1.

2.

3.

4.

10
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5. TIME - CLOCK

Purpose: to write the time and/or date.

Input arguments: i

Space required: 148, (23432-23655)8

Discussion: This is an MIT subprogram. Transfer to TIME causes the

time to be written on tape i; transfer to CLOCK causes the date and time

to be written on tape i. A clock must be connected.
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6. CONST

Purpose; to tabulate the nuclear constants which are invariant for all

cases. (Constants)

Input arguments: none

Output parameters: vm' a m' 'm' YXe, m' YSm, m,

A ,e m

for m = 5,8,9, 11

for m = 5, 6, 8-12

Subprograms called:

Space required: 290, (23656-24317)8

Discussion: The value of X is tabulated in NUCON. ,.'s and a's are

averages for the resonance region, except for U238 for which they are

fast fission terms. The values used for these parameters have been

listed in Table 4. 1.

Flow Chart Comments

Fortran
Statement
Number

10-30

40-90

231

PRINT

Step

1.

2.

3.

4.

i



7. PTCS

Purpose: toccalculate and tabulate the microscopic cross sections of the

fuel nuclides at different velocities in the thermal range. ()?oint cross

sections)

Input arguments: iL, v

Output parameters: o iM for 1 < i L

m = 5;6;8 to 12; f, 5; f, 9; f, 11

Subprograms called: PRINT

Space required: 634+530 common, (24320-25511) 8, (76441-77462)8

Discussion: The cross sections are calculated at the velocities ipvo'

where pv is the spacing normalized to v0 , and i takes values from unity

to iL. (k must be odd and less than 100.)

The method used is to calculate the cross sections at each velocity

point using the equations given by Westcott, W1. The fit equation is:

a+ n 
C .

j:1 b + (E - e(

The parameters a, b., c., and e. are tabulated in Wl for the nuclides
3 3 31

required. These terms are the resolved resonance parameters for ener-

gies near resonances and are chosen so that the sum of "resonance type"'

terms fits the BNL-325 curves in regions away from the resonances.

Normalization values for the cross sections have been listed in Table 4. 1.

232



Flow Chart Comments

Fortran
Statement

NumberStep

1.

2.

Taking velocity steps
of y4v,.

Normally bypassed.
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10-160

3.

4.

5.

170-300

310-320



8. AVGCS2

Purpose: to calculate average thermal cross sections for the fuel nuclides

(Average cross sections, 2nd revision).

Input arguments: T, im' S , Nm, N8p' md' ' ff' v 'L

Output parameters: a m for m = 5;6;8 to 12; f, 5; f, 9; f, 11

Subprograms called: WILKZ, FLF2, CSF2, PRINT

Space required: 450, (25512-26413)8

Discussion: N8p is a term proportional to the concentration of fission

products which when multiplied by the microscopic cross section of U238

will give the proper effect of fission products in hardening the thermal

neutron spectrum. The reason for treating fission products in this way

is that the cross sections of fission products, like U238, are assumed to

be inversely proportional to velocity, and the 1/v dependence of the U238

cross section is available to this subprogram.

Fortran
Statement

Step Flow Chart Comments Number

1.8
AVGCSZ

2. Calculate the equivalent Requires an estimate of 10-30
additional pseudo amount a8'
of U-238 to give Emd a1/v 8
behavior (energy wise).
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Comments

Fortran
Statement
Number

3. Calculate the cell average
absorption cross section
versus velocity, 2; .

4.

5.

i is the velocity step
index.

Calculate the energy
spectrum.

Calculate
flux, *.

Calculate
sections,

the integrated

the cross
0 '*

Normally bypassed.

10. Write the thermal cross
sections, a-

11. Return

235

Step

10-30

10-30

6.

7.

8.

9.

46

50

60

70

Flow Chart



9. WILK2

Purpose: to solve for the energy distribution of the thermal flux according

to Wilkins equation.

Input arguments: T,

Output parameters:

Subprograms called:

(Wilkins)

iL' v' A

Yi = d

PRINT, EXP, SQRT

Space required: 517 + 519 common, (26414-27420)8,8

Discussion:

(76454-77462)8

The equations used to generate the Wilkins spectrum are

given in Appendix A.

Flow Chart

9
WILK2

Calculate the flux per unit
velocity, Yi, for i = 1, 4

by the Wilkins startup
series. Also, calculate

Yj and y ". 4,0

Comments

Eqs. (3), (4) and (19)
from Appendix A.

Fortran
Statement

Number

10-50

series
onverge?

236

Step

1.

2.

3.

4.

A 8-

i



Flow Chart Comments

Fortran
Statement
Number

5. Write "no convergence in
Wilkins. startup," list the
last term in the series
and the sum of terms.

2667 ,
PR

4

Have we com-
pleted the four
startup calcu-
lations?

Calculate Y for i =5 to iL
by the Milne method: also
calculate g1, yf, the trun-

cation error estimate, and
the cumulative truncation
error estimate.

Write the flux per unit
velocity, Yi, the trunca-

tion error, FT, and the

cumulative truncation
error, F cum, versus

energy.

Return

Eqs. (3), (4), (5), (6),
and (22) from Appen-
dix A.

237

Step

35

6.

7.

8.

60-809.

10.

11.

90-100



10. FLF2

Purpose: to integrate the flux per unit velocity, Y , giving the magnitude

of the flux (i. e., the integrated weighting function for averaging thermal

cross sections). (Flux function, 2nd revision)

Input arguments: iL' v'Y i' o 0 md)1/2

Output parameters: +

Space required: 97, (27421-27561)8

Discussion: The parabolic rule is used for integration of Y.

LY
YW 3 1x=T(

+4Y2+ZY
3 +4Y 4

+... +4Y

where p± is the spacing in x, given by,

pv (T /Tmd) 1/2

Since the parabolic rule is used, iL must be odd (and < 100).

Flow Chart Comments

Fortran
Statement

Number

10-30

238

Xmax

0
L 1+Y L +

0)(4L5 )

(1)

(2)

Step

1.

2.

3.



11. CSFZ

Purpose: to calculate the average thermal cross section for nuclide m,

given Y and 4. (Cross section function, 2nd revision)

Input arguments: m, +, (T0/Tmd 1/2

Output parameters: om, for given input value of m

Space required: 175, (27562-30040) 8

Discussion: The parabolic rule is used for the integration,

1 Xmax

0

+ ' 0( 57

-m (x)Y(x)dxr +i 
Y LI

(1)

Flow Chart Comments

Fortran
Statement

Number

Calculate

max
C4 = fYx)o m(x)dx

0

Calculate the average
cross thermal section
for nuclide m,
am = C4 /+.

10-30

* comes from FLFZ.

Return

239

Step

1.

2.

3.

4.

. i L' tiv' yip' fi, m,

1, 1 + 4(r M 2 +...a



12. SQRT

Purpose: to calculate the square root of a given floating point number;

a standard Fortran II subprogram.

Space required: 45, (30041-30115)8

13. EXP

Purpose: to calculate ex, given the floating point number x; a standard

Fortran II subprogram.

Space required: 62, (30116-30214)8
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14. NUCON

Purpose: to solve for the nuclide concentrations one flux time step, C,

advanced from the known values, to calculate resonance escape probabi-

lities, macroscopic Sm group cross section and the average macroscopic

Xe cross section. (Nuclide concentrations)

Nm, 0' ., Pm, C5 =

am' 0m' Xe,m' m Sm,m'

L41, m, C = Vf0
S md

Output parameters: Nm'06' Sm' Pm

Subprograms called: RKY3, DERIV, RESPRB, PRINT, (RETRKY)

Space required: 507 + 32 common, (30215-31207)8, (77423-77462)8

Discussion: NUCON is coded in a manner to preserve the relocable

features of its subprograms, while allowing a SAP subprogram, RKY3,

to be used for the numerical integrations. The numerical integration is

by a fourth order Runge.-Kutta method, as modified by Gill. The entry

to DERIV for the derivative calculation is via the entry point called

DRIV1 in NUCON. Return after the derivative calculation is to the

entry point in RKY3 called RETRKY.

241

Input arguments:

S =64), I m G

m'



Flow Chart Comments

Fortran
Statement

Number

N e -XRKY3

Nm, G YRKY3

0 - QRKY3

(am), (e m)

2 nd entry
RKY3.

30-35

point for

Numerical solution of
the nuclide concentra-
tion differential equa-
tions.

There are four deriva-
tive exits for each final
exit.

2 nd entry point of
Nucon, provides input
data for DERIV.

Calculate derivatives.

242

Step

1.

2.

3.

10-20

4.

5.

6.

7.

8. 40



Flow Chart Comments

Fortran
Statement
Number

. Store new concentrations.

17
RESPRB

Calculate the average Xe
macroscopic cross sec-
tion, Zi, and the Sm

group macroscopic cross
section, Z .

XRKY3 - Nm, e+

Calculate resonance
escape probabilities
using the new concen-
trations.

80-100

12. Write the parameters cal- Normally bypassed.
culated in NUCON.

Return

Z43

Step

10.

11.

13.

............ ......



15. RKY3

Purpose: to solve numerically the set of first order differential equations

for the nuclide concentrations one flux time advanced from the last values.

(Runge.Kutta)

Input parameters: , (flux time step) (also needs initial values of XRKY3,
dN

YRKY3, and QRKY3 which were stored in common by NUCON and ,

or YRKY3, stored in common by DERIV)

Output parameters: N (XRKY3 in SAP)

Subprograms called: DERIV (via DERIVI in NUCON)

Space required: 151 + 32 common (31210-31436)8, (77423.77462)8

Discussion: This is a standard SAP subprogram only modified to make

it compatible with the connected relocatable Fortran programs. The

method used is a fourth order Runge-Kutta process as modified by Gill,

see G2.
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16. DERIV

Purpose:

trations.

to calculate the flux time derivatives of the nuclide concen-

(Derivatives)

Input arguments: m 1,0 m' U S, am' em' Vm 1m '

N m(XRKY3)

dN
Output parameters: ,(VRKY3) ("pseudo" values at partial flux time

de
steps are also stored for Nm' m, <1 - pm>, and p for the RKY3 Runge-

Kutta solution)

Subroutines called: RESPRB, PRINT

Space required: 318 + 16 common, (31437-32134)8, (77443-77462)8

Discussion. Equations for the derivatives have been given in Section

IV. A. 3. Combinations of terms in these equations that are considered

constant for a flux time step are combined in NUCON, into the term a

em, and ( f-)m, prior to entry into RKY3 and DERIV.

Flow Chart Comments

XRKY3 - Nm

Fortran
Statement
Number

10-20

Calculate the real or
pseudo pm for use in

the derivative equations.

245

Step

1.

2.;

3.



Flow Chart Comments

Fortran
Statement

Number

4. Calculate the derivatives
and store for RKY3.

5. Write values of param.
eters calculated in DERIV
(DERIV OUTPUT).

6.

dN
-- V R K Y 3 .

Normally bypassed.

eturn
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Ste

30.90

95



.17. RESPRB

Purpose: to calculate resonance escape probabilities for the fuel nuclides.

Input arguments: N '1 0 m ' ,

Output parameters: pm, <1 . m?

m = 5 to 12 except 7

Subprograms called: EXP, PRINT

Space required: 319, (32135.32634)8

Discussion: Equations for the resonance escape probabilities are given

in Section IV. A. 1. 3.

Flow Chart Comments

Fortran
Statement
Number

17
.RSRB

2 Calculate and.write the
resonance disadvantage
factor for PU241, $1, 10'

Calculate the resonance
escape probabilities, pm
and p,and the resonance
absorption probabilities,
<1 - p

Write pm, (I . p p

Return

See Section IV. A. 1. 3.

10--40

50-60

247

Step

1.

3.

4.



18. SPACON

Purpose: to calculate the parameters for the spatial subprogram

(SPACE 2), which are constant for a given problem. (Space constants)

Input arguments: R, H, 6 R' 6 H, D, -r, Z m rL(IFIN), zL(JFIN)

Output parameters: Vr = C13; the constants for the thermal diffusion

terms, C151s; the constants for fast diffusion terms, C171s.

Space required: 621, (32634-34010)8

Discussion: The terms calculated here are merely combinations of the

time-invariant terms in Eq. (4. 39). For example, C7 -

h

Fortran
Statement

Step Flow Chart Comments Number

1. 18
SPACON

2. r ? 90

33225
PR2

3. Calculate constant terms 10..140

4.
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19. SPACE 2

Purpose: to calculate the criticality factor, C, the spatial flux distri-.

bution, the power densities, and other spatial parameters.

Input arguments: EXe, max, r, z' ( L :Xe)r, z

(vTf)r, z
C10, (I+a r

PHIS, r, z = PHISN,

1, 1

= C54, [(1-p)dr, z

r r, z
= C28, (-DV2) r z

r1 , = PL.r, z

= C36, P (the

preceding five terms provide initial estimates for the iteration),

Z;
w r,z md X e

Ew, 1, md Xe .' Xe' ff a 1, o1' Vr = C13, C15's, C17's, Pd'

rL' ZL

Output parameters: T r, z
1, r r, z (DV 2)r, z

values of these preceding five terms replace those of the input data),

- K~XeIC, P e
Xe* + %

Subprograms called:

Space required:

SPFUN, SPACFX, SPFUN2, PRINT

2593, (34011-41621)8

Discussion: This is a control program to connect the spatial

subprograms.
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= C53,

1, r, z (the new



Flow Chart Comments

Fortran
Statement
Number

19
SPACE2

20
SPFUN

Write coeffictent, d, and
source, e, rratrices.

Write >Dz and other

terms calculated by
SPFUN.

21
ZSPACF~X

Calculate d and e
matrices of Eq. (4.59).

1.

2.

3.

4.

5. Calculate spatial
flux distribution.

6. Write loop count for flux
shape iterations in
SPACFX.

22
SPFUN2

Return

Calculate criticality and
other spatial param-
eters at each mesh
point, and core aver-
age values.

250

Step

Normally bypassed.

Normally bypassed.

10

20

30

7.

8.



20. SPFUN

Purpose: to calculate the coefficient matrix, d, and the source matrix,

e, for SPACFX.

Input arguments:

(Space functions)

-- EXe) ' Vfi' * md' Xe; max, rx' 'Xe' XXe'r,

(vzg)r, Er , ' z r, z' 1, r, z, (-DV 2) , (v r r,), C15's,

C17's, w. r, z
w , 1l E, rL' ZL

Output parameters: dr, z, u' er, z' r, z + Ew, r, z = C20r, z'

"CU I20
=(17 ( P/rzi

Space required: 476 + 8 0 0 common, (4162242555)8

Discussion: The 0 r, z, u and er, z are as defined in Eq. (4. 39). (The

C2, r, z in Fortran differs from the C2, r, z

Flow Chart

of this text by the

Comments

factorp .)

Fortran
Statement
Number

20
SPFUN

Calculate the- macro-
scopic Xe cross sec-
tion at each mesh point.

C2 3 , r, z

Step

1.

2. 10-20

251



Step Flow Chart Comments

Fortran
Statement

Number

3.

4.

5.

6.

252

10-202;r z =2;ff., r , z )vff +

4ad (Vff

See Eq. (4. 39).7.

28

22..25

29-200



21. SPACFX

Purpose: to calculate the spatial flux distribution. (Space flux)

Input arguments: d r z, u' e r, z rL (iL).

Output parameters: 2r, COUNT (loop count of the number of iterations

1, 1
required for the flux convergence)

Subprograms called: PRINT

Space required: 999 + 5400 common, (42556-44524)8, (5033-77462)8

Discussion: The iteration method has been discussed in Section IV. A. 2.5-

2. 6. Equations for the modified Crout reduction method used for the

generation of new flux values has been discussed in Appendix B.

Flow Chart Comments

Fortran
Statement
Number

Z"SPACFX

Calculate the Crout auxil-
iary coefficient matrix.

Calculate the constant, or
source term, column ma-
trix using the last esti-
mate for the relative

fluxes
4 1

Entry for iteration loop.

C(N)

253

zL( L)

Step

1.

2.

3.

4.

10-211

215

215-220I



Step Flow Chart

5. Calculate the constant
auxiliary column matrix.

6. Calculate the solution
matrix for the new fluxes

*r, z'

Comments

F(N)

Fortran
Statement

Number

230-270

280-320

Normalize the new fluxes:

r, z

1,l 1

8. Are Lsuccessive estimates

of rzapproaching the

true value exponentially ?

7. 330

340-3609. Reestimate r, z using the

1, 1

the Aiken 52 process.

254



Flow ChartStep

10.

11.

12.

Comments

Convergence assumed
wheni successive flux
values change less than
1/o at every mesh point.

Fortran
Statement

Number

370-390

400

13. 44170 N
HPR7 1

14. Write the constant matrix,
the constant auxiliary
matrix, and the fluxes.

15.

16.

17.

18.

Unconditional stop for
no convergence.

Normally bypassed.

Loop for new flux cal.
culation.

Converged values of

r, z

1, 1

440

255

410

405 -406

420-430



Purpose: to calculate the following properties at each mesh point and

also the core average values: the criticality factor, C; the fast non-

leakage probability, P 1 ; the thermal production term, (q/)Pip; the

thermal macroscopic cross section, 2; the thermal leakage term

(-DV and the power densities. In addition the reactor criticality

factor with control poison, CW is calculated, the Xe poisoning factor,

C5, the flux magnitudes, $r, z, and the maximum to average power

density ratio. (Space functions 2)

Input arguments: - ' 15Is 2 z

1 r ' '15 , r, z' ' f'r, z

Output param t: 4, V 4

output Parameters: Or, z' -ror, z

P ,C , P , C -211*e
zr, z 5rz

GXe$ + XXe

[(1-p)]r, z'

XXe' 'Xe .rL'

= C2 8, r, z(DV 2 r, z C 36, r, z

Subprograms called: PRINT

Space required: 854 + 2260 common, (44525-46252)8, (75203-77462)8

Discussion: The core averaging method has been discussed in

Section IV.A. 2.7. The value of C5 calculated here, with the core

average flux, is used only in the average cross section calculation for

estimating Xenon's effect on the energy spectrum of the flux. The true

256

zL

22. SPFUN2



values of the flux at each mesh point are used for calculating the Xenon

poisoning for the spatial flux shape calculations.

Flow Chart- Comments

Fortran
Statement
Number

22
SPFUN2

Calculate thermal and fast
leakage terms at each
mesh point.

Calculate the other prop-
Perties discussed in
"Purpose" at each mesh
point and core averages.

Write core average values

of:P ,diWJ p, (-DV2),
C, C , C5

Write values of fluxes,
z at each mesh point.r, z

IlIZEZZI
Write values of the rela.
tive power density at each
mesh point.

4/

Often bypassed when
only interested in core
average values.

Calculated so as to give
the specified power
output.

[
257

Step

1.

2.

3.

625-710

10-50

Write values of the fol.-
lowing properties at each
mesh point: q/ , P ,
(q/4P 1p, (-DV2), C.

4.

5.

6.

7.

70

80

90-110

120-140



Flow Chart Comments

Fortran
Statement

Number

1508.

9.

258

Step

.. ...........................

Write the maximum to
average power density
ratio.

Retur



23. SPPROP

Purpose: to calculate the seven space properties required by SPACFX

at each mesh point: EXe, max' (2ft ~ Xe ' f, 2;f v ( ,) (1-p), p.

(Space properties)

Input arguments: rL' z L, nV n , aLag (Denominator terms in the

Lagrangian coefficients), the values of flux-time at which the fit was

made (TH), the values of the seven space properties at these flux times,

and the value of flux-time at each mesh point., r z (THETA).

Output parameters: a Lag (the set of Lagrangian fit coefficients), and

the values for the seven space properties at each mesh point.

Subprograms called: PRINT

Space required: 311, (46253-46741)8

Discussion: The fit is made by the Lagrangian method of polynomial

approximation. Up to 20 Lagrangian coefficients can be used in the fit,

which is equivalent to a 1 9 th degree polynomial fit at maximum. Only

enough points to give the required accuracy should be used, however,

to conserve computer time (see Appendix E. for recommendation$).

Fortran
Statement

Step Flow Chart Comments Number

1.23
SPPRP

259



Flow Chart

2. Calculate the Lagrangian
coefficients.

Calculate the space
properties.

4. Write the space proper.
ties at each mesh point.

Comments

The denominators for
these terms were cal-
culated in MAIN.

Normally bypassed.

Fortran
Statement

Number

420-440

440-450

460

Return

260

Step

3.

5.

I



24. NCGTHV

Purpose: to calculate the nuclide concentrations at a specified flux time.

(Nuclide concentrations given a theta value)

Input arguments: n, nsp' 0v (the value of flux time), TH values (see.

SPPROP), aLag' Nm, e (values of the nuclide concentrations at the flux

times TH)

Output parameters: aLag2' Nm, ev (the values at ev) for m = 5 to 12

Subprograms called: PRINT

Space required: 210, (46742-47263)8

Discussion: This subroutine is analagous to SPPROP

Flow Chart Comments

Fortran
Statement

Number

24
NCGTHV

2. Calculate the Lagrangian
coefficients.

3. Calculate the nuclide con-
centration for the speci-
fied value for flux time.

4. Write the nuclide concen-
trations.

5,

Normally bypassed.

Return

261

Step

1.

10-40

50-60

70



25. NEWIMV

Purpose: to read a new value for IMOVE, the index governing the type

of fuel movement.

Input arguments: none

Output parameters: IMOVE

Subprograms called: PRINT

Space required: 56, (47264-47353) 8

Flow Chart Comments

Fortran
Statement

Number

10-302.

3.

262

Step

1.



26. AVGFTH

Purpose: to calculate integral flux time averages of the seven space

properties discussed in SPPROP. (Average functions of theta)

Input arguments: fitted flux value (TH), the seven nuclear properties

at the TH points (see SPPROP), aLag-' nt nsp

Output parameters: the seven average properties at fit flux time points,

TH, for the most irradiated fuel

Subprograms called: PRINT

Space required: 846, (47354-51071) 8

Discussion: Let f(9) represent one of the seven properties at the flux

time 8, and f(G) the average value of that property when the maximum

flux time is 8. Then

fi. (1)

when

I(6) f(G') dO4 (2)
0

and Simpson's rule is used for the numerical integration of (2), giving

f(o)={I(e 1 2 )+ [f(e 2 )+4f(e._ 1 )+f(O )] + 0(h5)} (3)

where

h= 6e

The T(o6) are calculated for even values of i and these T(O.) are then used

263



rather than the f(0 1) in calculating the spatial properties for GRADED.

Flow Chart Comments

Fortran
Statement

Number

26
AVGFTH

Tabulate the f( 8) for
even, i.

Calculate the f(G.) for
odd i.

These are the values
that were calculated in
the NUCON loop of
MAIN.

By the Lagrangian
method.

The even 0 values are

the original fit points
for f(0).

Calculate the f(9 and

tabulate for even i.

Write the seven average
space properties, f, at
the flux titne ,fit points.

6. Retur

264

Step

1.

2.

3.

4.

5.

10--20

20-60

60-79

70-80

........... .. . ........ .........



27. COST

Purpose:; to calculate the fuel cycle costs using up to eight different

sets of cost parameters.

Input arguments: values of the nuclide con centrationsLfor'theffuel

entering the reactor, N ; values for the discharged fuel, Nm; the

contribution to N m from recycled fuel, NR m; the "on-stream" reactor

time, tR; and the average burnup, E.

Output parameters: none (all the costs are printed out, not transferred)

Subprograms oalled: READ-PRINT; CPF

Space required: 1772, (51072-54445)8

Discussion: The equations given in IV. B. 2 are evaluated by this sub -

program. The external cost input data listed in Table D3. is read in

via the card reader (see. Appendix D. 1).

Flow Chart

27
COST

Comments

Fortran
Statement

Number

2. . Read cost control indices. INPCST and JCOSTL,
see Table D3.

265

Step

1.

10



Step Flow Chart Comments

Fortran
Statement

Number

JCOSTL> 8

Stop for too many cost
sets specified.

INPCST = 0: - Y
INPCST # 0: N

Cost input data is pre-
served from the
preceding run.

See Appendix D. 1 and
Table D3.

4.

5.

6.

7.

8.

9.

10.

266

3.

Entry point for new
set of cost input data.

10

19-20

22-27

35-50

60-18



Flow Chart Comments

Fortran
Statement
Number

11. Calculate the unit prices
for cost steps 10, and
11: C 1 0 , C 1 1 .

12. 2z0

13. Calculate the fractional
U235 enrichment, xp
for cost steps 1, 2, or 13.

See Fig. 4.5.

s xp less than the opti-

mum waste composition,

x , in cost step i?

2

52022
PR1

13

52217
PR15

267

Step

I 210-310

14.

150,
210

100,

16015.

16.

17.

110

350

.............



Step Comments

Fortran
Statement
Number

Calculate the unit price
of enriched uranium.

Flow Chart

28
C PF

Store appropriate unit
price: C1 , C2 ' C13

Done? N 12

Y

120,

370-39021. Calculate the partial fuel
cycle costs in mills/kwhr:
C , i=1I to 17.

390-400Calculate the subtotals
of the costs as in
Reference P3.

400-40523. Calculate the subtotal of
the costs as in Reference
E8 (called Edison sums).

410Calculate the net fuel
cycle costs.

ny more sets
of cost input

cdata ?

N

410

268

200,
360

18.

19.

20.

22.

24.

25.



Flow Chart Comments

Fortran
Statement
Number

26. Write identification infor-
mation for the partial
fuel costs.

27. Write the partial fuel costs,
C j, (21).

28. Write the net fuel cycle
costs, (24).

29. Write the subtotal costs
las calculated in (22).

Normally bypassed.

30. Write the subtotal costs
according to the Edison
grouping (23).

31. Return

269

Step

415-417

430

440

445-450

|I



28. CPF

Purpose: to calculate the unit price of UF 6 (Cp function).

Input arguments: fractional enrichment, xP; optimum waste composi-

tion, x 0 ; and the unit price of natural UF 6, CE'

Output parameters: the unit price of UF 6, C P

Space required: 91, (54446-54600)8

Flow Chart Comments

Fortran
Statement

Number

Equations given in
Section IV. B. 2.

29. LOG

Purpose: to calculate the natural logarithm of a given floating point

number; a standard Fortran II subprogram.

Space required: 154, (54601-55032)8

270

Step

1.

2.

3.



30. BATCH

Purpose: to make the material fuel cycle calculations: flux shape,

criticality factor, power density, etc., stepwise through the life

history of the fuel when the core is irradiated batchwise.

Input arguments: Vr r, z = 2 8, r, z, rL, zL, r, Tr, z, n, nsp aLag,

aLagZ TH, Nm, EXe, max, 0' fC Xe f, ' (vf) 1+a

(DV 2)r, Pw 0ra' J[(1..p) +,pr, z'r D r, z 1, r, z' 2w r, z md' Xe

es XXe' *' VfI a1 , ' 1' Vr = C13, C15' s, C17' s'P d

Output parameters: C, P1, C5 , m, Nc, m

Subprograms called: READ-PRINT, TIMECK' SPPROP; SPACEZ,

NCGTHV

Space required: 571, (55033-56125)8

Discussion: This is a control program for ordering the entry and

directing the flow of information to the major subprogram groups of

FUELCYC for batch irradiation fuel movement. This fuel movement

method has been discussed in Section IV. C. 2. 1. The external input

card " B" of Table D2. is read from the card reader.

271
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Flow Chart Comments

Fortran
Statenent

Number

30
BATCH

Write Batch movement
identification.

3. Read and write the flux time
step for the central fuel
region, 2'

Initialize.

14, 17

Have n flux time Y
steps beenq taken?

N 55423
PR71

4
TIMECK(6)

Advance central flux time
by 2 and calculate the flux
time at each mesh point,
Or using the last flux
distz bution 4)r, z

4'

Card "B" in Table D2.

Loop entry point for
new flux time step

n now set at 30

Unconditional stop for
reactivity too high

Write the time at
location No. 6

50

272

Step

1.

2. 5

4.

5.

6.

7.

8.

9.

6-7

10-15

20

3Q

40

B
I



Step Flow Chart

10.

Comments

Fortran
Statement
Number

25

Calculate "Space
Properties" .

Calculate flux shape
criticality, etc.

C = 1 M?
m now set at . 001.

by linear interpolation
in flux time.

17.

273

11.

12.

13.

14.

15.

60-70

16.

80

90



Flow Chart Comments

Fortran
Statement

Number

100

19. IWrite the number of flux-
time steps taken.

23/

21. Take the final flux time for
region r, z as the argument.

Calculate the final
nuclide concentra-
tions, Nm' in region
r, z.

24
ENCGTHV

Any more '-Y
r egions ?

20

N

Calculate the core average
nuclide concentrations, N
and central concentrations,

N c, M'

TIMECK(8)

274

Step

18.

20.

100-110

120-13022.

23.

24.

25.

26.

140

.................... I'I-_ I_.-_- -___ ___ ............. -..............



31. INOUT or 32.

Purpose: to make the material fuel cycle calculations for Inout or

Outin fuel scheduling.

Input arguments: Same as BATCH.

Output parameters: same as BATCH.

Subprograms called:

Space required:

same as BATCH.

820, (56126-57611)8, INOUT

850, (5761Z-61333)8, OUTIN

Discussion: See Sections IV. C. 2. Z and IV. C. 2. 3. The logical flow

and Fortran statement numbers are the same for these two subprograms,

so only one flow diagram is required.

IOG is read from the card reader.

The external input data card

Flow Chart Comments

Fortran
Statement

Number

31~ 32
-INOUT o OUTIN

2. Write identification for the
type of fuel movement.

Read and write the first two
estimates, 01, 02, for the

final central flux time of the
discharged fuel elements, 0c

Card "IOG" of
Table D2.

275

Step

1.

3.

5

6-7

...........................

OUTIN



Flow Chart Comments

Fortran
Statement
Number

4. Initialize: set 0 = 0
C 1.

5. 3, 27

6. Write the number of flux-
time iterations and the
last estimate for c

C

10Initial flux-time
estimate.

Flux-time iteration
entry point.

21

7.

8.

A

Have n flux tim
iterations been

made ?

N1

\Y

n now set at 15.

11

INOUT OR OUTIN
unconditional stop for
for no convergence.

Criticality iteration
entry point.

Calculate flux time of fuel
when leaving each region,
Br, z, L, using latest 6c'

'I,

276

Step

22

9.

10.

11.

23-50

Calculate average flux
time of the fuel in each
region, Orz

23-50

96." _ _ ...... .....



Flow Chart Comments

Fortran
Statement

Number

Calculate "Space Prop-
erties. "1

Calculate flux shape
criticality, etc.

Convergence if frac-
tional change in last
iteration was less than
m. f now set at

0.001.

277

13.

14.

15.

16.

17.

Step

12.



Flow Chart Comments

Fortran
Statement
Number

18.

19.

20,

21,

22.

23.

24.

278

Step

54

55

2 nd flux..ime estimate.

59

+

For no convergence in
criticality iteration;
m 2 now set at 10.

Loop for new criticality
calculation.



Comments

Fortran
Statement
Number

25.

26.

279

Step

C = *m 3 ?

m3 now .001.

Linear interpolation..

Calculate final nuclide
concentrations in each
portion of the discharged
fuel element.

27.

28.

29.

30.

31.

32.

80

90-140

Flow Chart



Comments

Fortran
Statement

Number

140

/

280

Step-

33

34.

Calculate the average
nuclide concentration
for the discharged fuel,
N m, and the axial

central concentration,
Nc, m'

Flow Chart



33. GRADED

Purpose: to make the fuel cycle calculations for "Graded" fuel

movement.

Input arguments: same as BATCH.

Output parameters: same as BATCH.

Subprograms called: those of BATCH plus AVGFTH.

Space required: 1209, (61334-63624)8

Discussion: See Section IV. C. 2. 4. The flow diagram is the same as in

Appendix C. 31 and C. 32 for INOUT and OUTIN (including statement

numbers) except for the below listed changes. The actual calculation

procedure represented by Steps 10, 11, 30, and 33 are, of course,

different for these three fuel movements. The external input data card

IOG is read from the card reader.

Changes to the Flow Chart of Appendix C. 31 and 32

Fortran
Statement

Change Step Flow Chart Comments Number

Insert 4.5 26 Calculate the aver- 10
AVGFTH age "space proper-

ties. "

Change 61761
stop to 8. HPR555

Omit 10.

Insert The average 'Space
comment 13. Properties" are used

as arguments for
SPPROP.

281



34. (WTPE)

Purposee to load the contents of the core on Tape 4

Space required: 34

Discussion: When the WTPE subprogram is encountered during the

loading of the object program, it is loaded into memory, logical tape 4

is rewound, the entire core memory is written onto tape 4, tape 4 is

rewound, and control is passed to the BSS loader so that the loading of

cards may continue.

Subsequently if the original tape is mounted as logical tape 4, a

single card, GETTPE 04, is used to replace all the original deck that

preceded the WTPE program, including the BSS loader.

A check sum is made on the record read from tape 4 and if there is

disagreement the error stop HTR 178 occurs in location 168'

This is an M.I. T. subprogram and is further described in M.I. T.

Computation Center Memo 127.

282



35. MI CPM2

Purpose,: to print identification data on the on-line printer.

Discussion: This is a one card self loading program that:

a) restores the printer

b) prints columns 1-72 of Hollerith cards with a 9 punch in

column 2 (i. e. 9, 1, R. Z)

c) executes a "load card" sequence after the last Hollerith card

has been printed

See M.I. T. Computation Center Memo 63 for further information.

The only on-line print out in FUELCYC is by the NOLOAD

diagnostic routine (see 1. LOADER) if the problem fails to load, so

normally the on-line identification as provided by this subroutine is

not needed.

36. MI CTH2

Purpose: to write identification information on tape.

Discussion: Writes Hollerith information in BCD on the logical tape

specified by the punch in column 1 of the Hollerith card. In addition

a 9 punch must appear in column 2. Information written in columns

3-72 is written on the specified tape and a "load cards" sequence is

executed after the last Hollerith card is written. See M. I.T. CC-63

for further information. This routine is used if more identification is

required than the 72 Hollerith characters allowed in the MAIN identifi-

cation card, see Appendix D. 1, and for identification of octal correc-

tion cards and the symbol table which are written on tape 2 prior to

the MAIN identification card.

283
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D. OPERATIONAL INFORMATION FOR FUELCYC

1. Input Data Preparation

Input data for FUELCYC is written in one of three conversion forms:

1, Hollerith, H; 2, floating point, E; 3, integer,' I.

Tables Dl., D2. and D3. list the input data required with the card

number and column field assignment indicated for each item, No decimal

points should appear in integer data and, since blanks are equivalent to

zero, all numbers should be moved to the right hand side of the field.

There are several ways that the floating point numbers can be punched

in the E-conversion and these are listed in the Fortran II manual. The

method usually used by the author is to punch the decimal point in floating

point numbers so they can appear anywhere in the assigned field and to

use the E designation if exponents are necessary. The exponent field

must be moved to the far right when used. For example, the following

forms give the value 1.2, assuming a field width of 8:

1~~~ . 2
1 2

1 2 E l

.1 2 E + 0 1

12 .E -1

Hollerith data consists of English letters, Arabic numerals, and other

characters that appear on the keypunch machine.

284



Table Dl. lists the 9 cards of input data required for MAIN. Following

these cards and depending upon the fuel scheduling method either the card

B (for Batch) or IOG (for Inout, Outin, or Graded) must appear. The

content of these cards is given in Table D2.

Next comes the set of Cost input cards if the cost calculation is desired,,

i. e. if COSTT = 0. For COSTT 0 the cost input cards are omitted.

The cost input cards are designated by the letter C and are listed in

Table D3. The eight cards C2 through C9 constitute a cost set. If more

than one cost calculation is desired the cost sets are stacked consecutively.

For problems after the first, considerable reduction in the subsequent

input data is usually possible. The identification card is first read, Card 1,

in Table Dl. Following this, the problem index card is read, designated

by R (for rerun), see Table D2. If the rerun index is given the value

unity, irun 1, then new values for all of the MAIN input data of Table 1

are read except for Card 1 (which was already read in). If irun = 2, for

an enrichment change in the same reactor, the single "2R" card of

Table D2. is required instead of the cards of Table Dl. For Pu recycle

in the same reactor, irun = 3, the single "3R" card replaces those of

Table Dl. Finally, for a new method of fuel movement, irun = 4, the

Table Dl. data is again not needed and Card "4R" is read.

Following this, input cards are stacked in the normal logical order

of the program. For example, after one of the "iR" cards should appear

either a B or an IOG card. Note that the reading of the cost input sets

CZ-C9 can be bypassed on runs after the first, if there is no change in

the cost input data. This is effected by setting icst to a value other than

zero on Card Cl.

285



Table D4. is a print out of the input data for a sample set of two runs

to further illustrate the input data order and form. The order of the cards

in Table D4. is:

Run 1 1 , identification run 1, (a Batch run)

2-9 , initial MAIN input

B , BATCH input

C1 , COST input designator

C2-C9 , 1-set COST input

C2-C9 ,2 set COST input

Run 2 1 , identification run 2, an Inout run for the
same reactor

R , index for second run, irun

4R , new value for imove

IOG , INOUT input

Cl , COST input designator, (for same cost
input data as before)

The last input data card should be the last card in the deck, since the

normal program stop occurs for no cards in the card reader hopper.

286

............................... . - 11111- 11- 1 ---- I



Table D1. Input Data Required by MAIN.

Symbol

Card Column Input FUELCYC Compatible

No. No. Form Item Text Printout Units

1 1-72 H Identification data.

2 1-14 E Initial concentration, N N(5) atoms
U235. barn cm (of fuel)

2 15-28 E Initial concentration, N0 N(6) atoms
U236. 6 barn cm (of fuel)

2 29-42 E Initial concentration, N 0 N(7) atoms
low cross section FP barn cm (of fuel)
fission products.

2 43-56 E Initial concentration, N0 N(8) atoms
U238. 8barn cm (of fuel)

2 57-70 E Initial concentration, N N(9) atoms
Pu239. barn cm (of fuel

3 1-14 E Initial concentration, N 0 N(10) atoms
Pu240. 10 barn cm (of fel

3 15-28 E Initial concentration, N0 N( 11) atoms
Pu241. 11 barn cm (of fuel)

3 29-42 E Initial concentration, N 0 N(12) atoms
Pu242. barn cm (of fuel)

3 43-56 E Normalized velocity v AMUV
spacing for Wilkins 6v

Sv
equation solution, 220m s;

N
00
-4



Table Dl. (Con't)

Symbol

Card Column Input FUELCYC Compatible
No. No. Form Item Text Printout Units

3 57-70 E Slowing down power. SDP cm (of moderator)

4 1-14 E Normalized moderator 1/2 T
temperature variable, _

293. 6*K /md( md

4 15-28 E Resonance disadvantage $ 8 PSIl (8)
factor for U238. 1' 8

4 29-42 E Constant terms in reson- C1  C1 cm (of fuel)
Vf

ance integral, fl
___ s md

4 43-56 E Fast fission factor. E EPSI

4 57-70 E Initial Estimate of non- g o P IIN
leakage probability. 1

5 1-14 E Initial Estimate of 0 1
2 ) C36IN cm

5 15-28 E Radius of core. R R cm

5 29-42 E Height of core. H H cm

Ij~I~I

N
00
00



TableD1. (Con't.)

Symbol

Card Column Input FUELCYC Compatible
No. No. Form Item Text Printout Units

5 43-56 E Radial extrapolation 6R DELR cm
distance to zero flux
(reflector savings).

5 57-70 E Axial extrapolation dis - 6H DELH cm
tance to zero flux (reflec-
tor savings).

6 1-14 E Thermal diffusion D D cm
coefficient.

26 15-28 E Fermi age. _ TAU cm

6 29-42 E Macroscopic absorption Emd SIGMOD cm (of moderator)
cross section for the
moderation region.

6 43-56 E Microscopic Xe cross eXe SIGXE barns
section.

6 57-70 E Microscopic cross sec- T FP SIG (7) barns
tion per fission product
pair, (or per fission),
for the low cross section
fission products.

7 1-14 E Flux time spacing for ZETA (barns)~1

solution of nuclide concen-
tration equations, 60.

q --l -. -M

N
00



Table D1. (Con't.)

Symbol

Card Column Input FUELCYC Compatible
No. No. Form Item Text Printout Units

7 15-28 E Thermal disadvantage * PSI
factor (only used as
multiple of Emd

Kilowatts7 29-42 E Power density. Pd POWERD liter

7 43-56 E Designator for axial Z sym ZSYM
symmetry:

2. .= 0, axial symmetry
2,sym= non-zero, no axial

sym symmetry.

7 57-70 E Volume fraction of fuel V VFL
in core.

8 1-14 E Macroscopic scattering s SGMSFL cm~ (of fuel)
cross section of the fuel.

8 15-28 E Designator for calcula- COSTT COSTT
tion of costs:
COSTT=O, do cost calcu-

lation
COSTT=non-zero, omit

cost calculation.

miuu.

N
%0



Symbol

Card Column Input FUELCYC Compatible
No. No. Form Item Text Printout Units

9 1-10 I Number of velocity iL IL
points for Wilkins
equation solution (or
one plus number of
steps) (must be odd
and < 100).

9 11-20 I Number of flux-time n NUMPOZ
points for solution of
nuclide concentration..
equations (one plus
number of steps).

9 21-30 I Number of nuclide con- n NUMSPA
centration solution
points (n, points) in-

cluded in spacing for
flux time fit. Degree
of fit polynomial=

n -n (the degree
sp

must be an integer 419).

9 31-40 I Number of radial mesh rL RL
points.

~IIiIII!I~

N

I-.

INN

(Con't . )Table D 1.



Symbol

Card Column Input FUELCYC Compatible
No. No". Form Item Text Printout Units

9 41-50 I Number of axial mesh zL ZL
points.

9 51-60 1 Designator for type of imove IMOVE
fuel movement.
IMOVE = 1 = Batch
IMOVE = 2 = Inout
IMOVE = 3 = Outin
IMOVE = 4 = Graded.

N

N

III

(Con't. )T able D 1.



Table DZ. Input Data Required by Fuel Movement Subprograms

and for Initialization for a New Run.

Item

Central flux time step
for Batch fuel scheduling.

1st estimate, final cen-
tral flux time, for Inout,
Outin or Graded fuel
scheduling.

Symbol

Text

0 1

FUELCYC
Printout

ZETZ

THETA 1

Compatible
Units

(barns)-

(barns)-

IOG 15-28 E 2nd estimate, final cen- 02 THETA2 (barns)
tral flux time.

R 14 I Index for the next run irun INXRUN
irun=1: complete new

input.
ir=2: enrichment
run change (follow

by ZR card).

irun=3: Pu recycle
(follow by 3R
card).

i =4: new fuel move-
run ment method

(follow by 4R
card).

ZR 1-14 E New U235 concentration. N0  N(5) atoms
5 barn cm (Of fuel)

Card
Desig-
nation

B

IOG

Column
No.

1-14

1-14

Input
Form

E

E

N
NO3



Table D2. (con't.)

Symbol

Desig- Column Input FUELCYC Compatible
nation No. Form Item Text Printout Units

3R 1-14 E Fractional recovery f FRECY
of Pu. recy

N0  N(5) atoms
3R 15-Z8 E New U235 concentration. N5 barn m (of fuel)

4R 2 I New value for IMOVE i IMOVE
(See Table 1, Card 9, move
Column 51-60).

N
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Table D3. Cost Input Data.

Card Symbol
Desig- Column Input FUELCYC Compatible
nation No. Form Item Text Printout Units

C1 14 1 Designator for reading icst INPCST
cost input; i cst

read cost input; icst* 0,
don't read input (in this
case the input data from
the last run is used).

Cl 28 I Number of cost sets to jcst, L JCOSTL
be calculated, and, for
i cst=0, number of sets

to be read. (Each cost
set consists of the cards

C 2-C9) (jcest, L <8).

C2 1-14 E Material adjustment f F(1)
factor, Cost Step 1
(see Fig. 4.5).

C2 15-Z8 E Material adjustment f 2 F(2)
factor, Cost Step 2.

C2 29-42 E Material adjustment f3 F(3)
factor, Cost Step 3.

C2 43-56 E Material adjustment f4  F(4)
factor, Cost Step 4.

N
"10
Ln



Table D3. (Con't.)

Symbol
Card

Desig- Column Input FUELCYC Compatible

nation No. Form Item Text Printout Units

C2 57-70 E Material adjustment f5 F(5)
factor, Cost Step 5.

C3 1-14 E Material adjustment f6 F(6)
factor, Cost Step 6.

C3 15-28 E Material adjustment f 7  F(7)
factor, Cost Step 7.

C3 29-42 E Material adjustment f8 F(8)
factor, Cost Step 8.

C3 43-56 E Material adjustment f F(9)
factor, Cost Step 9.

C3 57-70 E Material adjustment f 1 0  F(10)
factor, Cost Step 10.

C4 1-14 E Material adjustment f F(11)
factor, Cost Step 11.

C4 15-28 E Material adjustment fl2 F(12)
factor, Cost Step 12.

C4 29-42 E Material adjustment fl3 F(13)
factor, Cost Step 13.

C4 43-66 E Material adjustment f14 F(14)
factor, Cost Step 14.

N



Table D3. (Con't.)

Card Symbol
Desig- Column Input FUELCYC Compatible
nation No. Form Item Text Printout Units

C4 57-70 E Material adjustment fl5 F(15)
factor, Cost Step 15.

C5 1-14 E Fraction of non-recycled f FNAT
U235 from natural U. nat

C5 15-28 E Unit price for Cost Step 3 C3 C(3) $/kg U
(for price basis see
Fig. 4. 5).l

C5 29-42 E Unit price for Cost Step 4. C4  C(4) $/kg Pu

C5 43-56 E Unit price for Cost Step 5. C5 C(5) $/kg U235

C5 57-70 E Unit price for Cost Step 6. C6  C(6) $/kg U235

C6 1-14 E Unit price for Cost Step 7. C7 C(7) $/kg Pu

C6 15-28 E Unit price for Cost Step 8. C8  C(8) $/kg fuel

C6 29-42 E Unit price for Cost Step 9. C C(9) $/kg fuel

C6 43-56 E Unit price for Cost Step 12 C12 C(12) $/kg Pu

C6 57-70 E Unit price for Cost Step 14 C C(14) $/kgPu

N
-10
-4



Table D3. (Con't.)

Card
Desig-
nation

Column
No.

Input
Form

__ '
Item

Symbol

Text
FUELCYC

Printout
Compatible

Units

C7 1-14 E Unt price forCostStep15. C C(15) $/kg fuel
15 ___

C7 15-28 E Daily reprocessing d10 D10 $/day
charge.

C7 29-42 E Unit price Cost Step 11, d D111 $/kg U
Alternate 1.

C7 43-56 E Unit price Cost Step 11, d11, 2 D112 $/kg U
Alternate 2.

C7 57-70 E Unit price of separative CE CE $/kg U
work.

C8 1-14 E Optimum weight fraction x XO
U235 for diffusion cascade
waste.

C8 15-28 E Net thermal efficiency y GAMMA

C8 29-42 E UF 6 fractional yearly FN FN fraction of initial cost

lease charge. year

C8 43-56 E Working Capital FW FW fraction of-working capital
fractional yearly year
charge.

Ca 57-70 E Lease charge time ex- tL TL years
cluding reactor time. L

00



Table D3. (Con't.)

Card
Desig-
nation

Column
No.

Input
Form Item

Symbol

Text
FUELCYC

Printout
Compatible

Units

C9 1-14 E Working Capital charge t1 TW years
time excluding reactor
time.

C9 15-28 E Load factor. L FLOAD

C9 29-42 E Weight of fuel charged W WTF kg.
to the reactor.

N

I



SAMPLE INPUT DATA FOR FUELCYC

0 SAMPLE RUN NO. 1,9
.0008785 0
0 0
.7359 1476
6000192 96.11
.2755 515
.0002 1.141
*4271

25 13
.0001

0
1.02

1.01
'99

0.
,0022118
.458

1401
.699

699
40.
90.
15300.
.2791
.8
1.02

.699
40.6
90.6

0, 15300.
a0022138 .2791
1458 .8
0 SAMPLE RUN NO. 2, WITH

4
2
.002

1
.0022

WITH BATCH FUEL SCHEDULING
0 *02465

s .17573
66297 100584
234.33 7.5
60542 1.35
70.57 0.

1 7 7

0
*8181
.9654
7.5

E+0631.9
53400

1

2

1.
.99

9.
5.6
.04
24395.

l.
o 99

*991*
*99

1500.
32.
.09

660o
12000.
37.286
1.67

* 91*
.99

9, 1500.
5,6 32*
.12 609
24395.
INOUT FUEL SCHEDULING

1320.
12 000
37286
1.67

2

300
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2. Octal Correction Cards

For changes to the program other than in the input data, such as

bypassing printouts or resetting convergence parameters, use can be

made of octal correction cards. These cards will be read by the loader

and listed onTape 2. The preparation of these cards is described fully

in the M.I. T. Computation Center Memo CC- 119, but for convenience

this information will be summarized here.

An octal correction card is needed for each word and a blank or a

zero have equivalent values. The format of the correction card is as

follows:

Columns Contents

1-2 both must contain 9 punches

3 blank

4-8 nominal octal address-if relocatable card,

true octal address if absolute card

9 blank

10-11 a) if even, the relocation number which

corresponds to the first two octal digits

of the 8L word of an equivalent one-word

relocatable binary card. For example:

00 would mean decrement absolute,

address absolute; 20 would mean decre-

ment absolute, address relative (to be

relocated in lower memory or stored in

upper memory, common, depending upon

the magnitude of the address relative to

the program break.)
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10-11 b) if odd, it is an absolute card (usually
77 is used.)

12 blank

13-24 nominal octal word if relocatable card, true

octal word if absolute card.

25-72 arbitrary comment field, ignored by loader

(but will be listed on'ape 2).
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3. Program Stops in FUELCYC

Table D5. lists program stops for FUELCYC. Except for the

normal stop, HPR 0, 1 in 212308, program stops are not given for the

standard Fortran II Subprograms. Such stops can be identified from

local write-ups of these subprograms, where the relative stop location

can be obtained from the absolute location by referring to the subpro-

gram entry points given in Appendix C.
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.Program Stops in FUELCYC.

Fortran Relative Absolute Octal
Statement Location Location Address

Program Number (Octal) (Octal) Display Reason for Stop

GETTPY 16 17 Check sum error
4 in reading Tape 4.

MAIN 235 1132 2363 373 Initial Criticality
Factor less than
unity.

MAIN 460 2331 3162 6 IMOVE = 5
MAIN 470 2333 - 3564 7 IMOVE = 6

MAIN 48-0 2335 3566 11 IMOVE = 7

MAIN 490 2337 3570 12 IMOVE = 8

MAIN 680 2655 4106 2 INXRUN = 5
READ.-
PRINT 277 21230 0; 1 Normal, no cards

in hopper.
WILK2 253 26667 7 No convergence

of Wilkins Equa-
tion in startup.

SPACON 90 371 33225 21 rL

SPACFX 410 1412 44170 71 No convergence
in spatial flux-

._ shape iteration.

COST 15 134 51226 111 More than 8 cost
sets.

COST 110 730 52022 14 x <x., Cost Step 2.

COST 160 773 52065 15 xP <xo, Cost Step 1.

COST 350 1125 52217 15 x, <x0 , Cost Step 13.

BATCH 30 370 55423 717 C didn't go to 1
in 30 steps.

INOUT 22 366 56514 151 No convergence
in flux-time iter-

ation.

OUTIN 22 365 60177 151 No convergence
in flux-time iter-

ation.

GRADED 22 425 61761 555 No convergence
in flux-time iter-

-__ation.
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E. ERROR ESTIMATION FOR THE NUMERICAL METHODS

This section considers the magnitude of the errors involved in

various mathematical approximations employed in FUELCYC. The

relationship of different truncation errors to various input data spacing

parameters is also discussed. In all cases the price of an increase in

the accuracy of the results is a corresponding increase in the computer

time required for the solution. Methods for estimating the errors are

given and, in addition, values for the spacing parameters are listed

which were used for the pressurized light-water reactor calculations

of this study.

Settings for the normalized velocity spacing (pv) and for the number

of points for calculation of the velocity distribution of the thermal flux

(iL) are considered in Section 1 of this Appendix; the flux-time spacing

for the step-wise solution of the nuclide concentration equations (c) is

considered in Section 2. 1; the total number of these solution points (n;)

and the number of T steps per flux-time fit point (n ) are considered

in Section 2. 1; the number of radial and axial mesh points (rL and zL)

is discussed in Sections 3. 3 and 3.4; the flux-time step for Batch irra-

diation (2) and initial estimates for the final flux time for steady-state

fuel scheduling (0 and 02) are considered in Section 3. 5. Eq. (4. 158)

gives an estimate of the time requirement, as a function of these param-

eters, Which can be used along with the discussion of this section to

pick efficient settings.
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1. Truncation Errors in Computing Average Cross Sections.

There are two sources of error in the numerical methods used for

averaging microscopic cross sections over a Wilkins spectrum, assuming

the microscopic point cross sections to be correct. * These occur in

the numerical solution of Wilkins equation for the flux per unit energy,

Y (x), and in the numerical integration of the point cross sections

weighted by Y.

The startup of the Wilkins equation solution is by a truncated

Taylor series. Here the values for Y are small and enough terms are

retained in the series to reduce the relative truncation error to negli-

gible size (1 X 10-6). The majority of the solution values are then gen-

erated by 2nd difference, 5th order Milne formulas, see Appendix A.

The error term in the prediction forinula for each step is,

y. (0) _=17 6 I R(0)1

where t is some value of x within the range of the x values being

used for the step, y is the true value, and p is the spacing in x. The

error term in the revision formula is approximately,

y1 6 VI ()] (2)

The equations used to generate point cross sections are discussed

in Section IV.A. 4. and in Appendix C. 7. Westcott, .W11, states that

in the cases when these equations were designed to fit the BNL-325

curves the accuracy was 1/4% or better below 0. 2 ev, 1% or better

between 0. 2 and 0.4 ev, and with less accuracy above 0.4 ev. BNL-325

reports standard deviations for 2200 m/s values of a-abs' for the nuclides

used in this study, of approximately 1% for U235, U238, and Pu239;

7% for PuZ40, Pu241, and Pu242; and 30% for U236.
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Assuming y [(0) y VI (1 )], Eqs. (1) and (2) give the truncation

error estimate of

F,, = y - y ~(Y(l) - (0) (3)

The summation of the truncation error estimates for past steps

gives some indication of the cumulative truncation error to that point,

Both the step and the cumulative error values are printed out by the

WILKZ subroutine, see Appendix C. 9., so this information can be used

to control the accuracy in this part of the code. A reduction in the

magnitude of the WILK2 spacing parameter, p, should produce a cor-

responding reduction in this truncation error. If no reduction occurs

it is an indication that the accuracy is as good as can be obtained and

that the errors are not due to the spacing (but rather to "noise" in the

input parameter A (x)).

The average cross sections are then calculated by integrating the

point values over x with the weighting function Y(x). This integration

is achieved with the parabolic rule, where the truncation error is pro-

portional to np 5 n being the number of steps. No error estimate is

available for a single calculation but if a second calculation, 0 (2), is

made with half the spacing (therefore requiring 2n steps), the ratio of

truncation errors can be estimated as,

(1) 5
(2) jO (4)

Zn (s/2)

This can be solved for the estimate for the true cross isection value as,

() + q 15(
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This is a standard technique, H27, p. 238, for error estimates in

initial-value problems and will also be referred to in other sections of

this Appendix. The general form of Eq. (5) for the true value of a

parameter, z, given by an equation of order r (i. e., the error term

is of degree r + 1 in the spacing) is seen to be,

(Z) _ z) - (6)
2  -1

where z(z) is calculated at half the spacing used for z ).

The Wilkins equation spacing parameter, s, is related to the input

parameter, py, according to,

T
0 (7)
Tmd

so higher values of s can be specified as Tmd increases.

The energy distribution of the flux is more severe (i. e., there is

greater variation in the higher order derivatives) in well-moderated

lattices than for poorly moderated ones, so the well-moderated cases

require a smaller value of p.

is related to the number of steps, iL-1, by

s (8)

where the thermal cutoff energy is kT1 , and'T is 293. 6*K.

For the pressurized-light water reactor, with kT = 0. 45 ev and

(T /Tmd )1/2 = 0. 7359, a value of 25 was used for iL (the fractional

differences between calculated cross sections for this value and for

iL = 49 were less than . 02%). For the NRX heavy water moderated
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cases, with kT' = 0. 45 ev and (To/Tmd )1/2 = 0.971, a value for i of

49 was used. In testing the WILK2 subroutine a Maxwell -Boltzamnn

flux was reproduced, with kT1 = 0. 2488 and Tmd = To, and here iL

was taken as 99.. In this calculation the estimated cumulative trunca-

tion error in the flux was quite conservative for high velocities, being

too large by a factor of approximately 10 for the final point. (Since

this estimate is a cumulative sum of successive step error estimates

starting from zero velocity, it would not be expected to be accurate

after a large number of steps.)

Normally the value of 25 should be sufficient for iL for power reactor

calculations.

2. Truncation Errors in Computing Nuclide Concentrations as
Functions of Flux-Time

2. 1 Solution of the Nuclide Concentration Equations. Since a

Runge-Kutta method is used for solution of the first order differential

equations for the nuclide concentrations, no error estimate is available

for a single calculation. The halved spacing method described in the

previous section, Eq. (6), was used for error estimation. The method

is fourth order which gives the estimate for the fractional error in the

value for a nuclide concentration of,

N-N(2) - - N(l)

N( 15 N(2)

This test was made for the concentration equation solution using

initial values typical of the pressurized light-water reactor. In Eq. (9),

iL must be odd and less than 100.
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N(2) was calculated for a constant flux time spacing, C, of 0. 1 n/kb and

N(1) for a constant spacing of 0.2 n/kb. This gave values for the frac-

tional difference, [N(2) - N(1)]/N(2), which were 0. 003 or less at 0. 5

n/kb and were 0. 001 or less at I n/kb. From Eq. (9) it is seen that

N(2) ~ N so the above values can be taken as the relative truncation

errors in the nuclide concentrations using a flux time spacing of 0. 2

n/kb. Fractional errors of approximately 15 times this would be

anticipated for a spacing of 0. 4 n/kb.

For these reasons the value 0. 2 n/kb (0. 0002 n/b using input data

units) was normally used for t. The parameter n is the number plus

one of steps and should be chosen so that the product (n -1) is larger

than the maximum expected flux-time.

2. 2 Polynomial Fit of the Nuclide Concentrations and the "Space

Properties" Versus Flux-Time. For low enrichments in the uranium

fueled, batch irradiated, pressurized-water reactor studied here the

criticality factor usually had a peak in the vicinity of 0. 1 n/kb. From

this it might be expected that the spacing for the fit of the spatial prop-

erties would have to be no greater than this value. Fortunately this is

not true since the peak is produced by a combination of 6pace proper-

ties which individually are much smoother functions.

The Lagragian interpolation polynomial, H27, p. 62, is used to

calculate the value of the various functions. This is a convenient way

to calculate these values but has the disadvantage that it is difficult to

It is generally true, due to the exponential nature of the solution,

that the accuracy improves as flux-time increases.
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estimate the truncation error.

A comparison was made, however, for a typical pressurized light-

water reactor enrichment using spacings of 0. 2 n/kb and 0. 1 n/kb

between flux-time fit points. The relative difference between values

for the criticality factor at 0. 1 n/kb was less than 0. 05% and became

better at higher flux-times. In an analogous manner the spacing of

0. 2 n/kb was also found to be adequate for the calculation of the final

average nuclide concentrations, so was generally used for the flux-

time spacing. For long irradiations a close fit to the properties at low

flux-times is less important and a larger value can be used for the

spacing. The rule used for the pressurized water reactor was to take

a spacing of 0. 2 n/kb unless the degree of the flux-time fit polynomial

became greater than ten; for which case a spacing of 0.4 n/kb was used.

The fractional changes in corcentrations and space properties, for

a flux-time spacing, 60, are related to the product a-(60) or to

irT
(60) o 4 T0 for 1/v cross sectional behavior. This rellation-

o4Tneutron

ship can be used to revise the above estimates for the flux-time spacing,

for reactors with different values of Tneutron, so as to give approxi-

neutron?
mately the same value for w (60) (T neutron ~* 900* K for the pressurized

water reactor).

The parameter n is the number of steps used for a flux-time
sp

fit step, where T was the spacing for the solution of the differential

nuclide concentration equations:

(60)fit = nspt (10)
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The degree of the fit polynornial is then given by,

n -1
degree = (11)

sp

which must be an integer.

3. Errors in the Spatial Calculation

3. 1 The Condensed Two Group Equation. In the condensed two

group equation, Eq. (4. 30), the assumption is made that the fast flux

is given by,

(E +E)*

rather than the true value, from Eq. (4. 27), of,

(rE + +-DV2
(1 prD ~(13)

*1=1

The error occurs in the fast leakage term, -D 1V 4. An expression

for the relative error (defined as ("true" - "approximate")/ ".true")

in this fast leakage term, F 1 , can be obtained from Eqs. (12) and (13),

- D 2

2 w V2 2P~+Ew Tf2D_ 2)

For simplification, consider the case where - and

are constant. In this case Eq. (14) for the relative error in the fast

leakage reduces to,

F = L2 4 2 4 (15)
1 -2 L 2 V4 V..
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which is very small for a power reactor. In particular, F B L 2 for
g

a bare uniformly loaded reactor and F= 0 for a flat thermal flux

r egion.

3. 2 The Estimate-for-the Control Poison, In -Batch irradiation an

-estimate is made for the amount of control poison required to just keep

the reactor critical. The deviation7 of-this estimate, E from thq true
w

value, T is also a soure -of error in the fast group leakage term,w

-D -v(In addition to its effect on the thermal flux,

which was discussed in Section IV.A. 2.5). The expression for the

relative error, due to the -control poison, in the faet leakage term is

seen to be,

F 1-' (16)

2 w

2 2
where prime denotes the true value. For the case where - V =B

and also pM 1 is constant, Eq. (16) reduced to,

F = 1- W (17)w
w

The criticality factor with control poison, C w, is printed out by the

code and for the uniform loaded case, with no resonance fissions, is

defined by,

EVE P p EVEf P 1 p
W M+ M +DB 

1) ww g
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where for the correct value of control poison the criticality factor would

be unity,

EvEf P' p
1 (1 . 9)

w

For power reactors the non-leakage probably, Pi, is large compared

to (1 - Pi) so small changes in the fast leakage produce negligible

changes in the non-leakage probability and we can set P'1 in Eq. (19)

equal to P . Eqs. (18) and (19) can then be combined to give,

Cw + Ew (20)
ww

Inserting this result into Eq. (17) gives the following convenient

estimate for the relative elror in fast leakage, due to errors in the

control poisoning,

C-1

ww

This error is negligible.

3. 3 The Spatial Flux-Distribution. The error involved in approx-

imating the second-order differential diffusion equation, Eq. (4. 30), by

a difference equation can be estimated as follows. Consider the axial

direction, where the differential term a2 z2 will be abbreviated as

The symbol 62 will be used to represent the central difference

operator, where

62 z z+1 - 2+ +z-1 (2)

6 is related to g H27, p.'146, by,
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6 2z = h2 (1 + 1 2 - 64 + 2 1 4) *" (23)
=h (lTE 240 +.. z

where, h is the spacing in the axial direction. The approximation used

here was to retain only the first term in Eq. (23) giving the familiar

relationship,

62
" 2 + FT (24)

where the truncation error FT is given by,

FT = 1-2+ , (z - 1) < 9 <(z+1) (25)

the relative error in , Fi' Is then

FT h IV 2  IV

F = = -- ~- (26)z 12 " 12 * "6zz z

For the bare uniformly loaded case

Cz = Zco (27)

+"= - (o)2 co (28)zcs

and

= ( )4 cos (29)

where, 2Z = (H + 26H). Taking h as Z/ZL, where zL is the number of

axial regions, and inserting Eqs. (29) and (28) into Eq. (26), gives, for

the relative truncation error in the leakage,

W2 0.2 F ~ ,2(30)
z 48z zL L*
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The total relative error for radial leakage would be expected to be

of the same order of magnitude. For rL = ZL this gives the general

estimate for the relative errors in the leakage terms,

F (31)nn

where n is the number of mesh points (n = rLzL0.

The validity of Eq. (31) was verified for FUELCYC calculations

of the relative errors in DB 4 (and +) for mesh spacings of 3 X 3,

5 X 5, and 10 X 10.

The relative error in the initial criticality factor, Fe , is roughly

that due to the fast nonleakage probability and therefore estimated by,

(1-P) (32)
Fc P Fn

since Fn gives the relative error in (1-P I)

3.4 Spatial Averaging. In averaging the reactor properties it is

assumed that the flux is constant in each region. This assumption

introduces the largest errors of the numerical methods since it

effectively flattens the flux as the number of regions is decreased and

affects the values for maximum to average power density, the average

burnup, the final nuclide concentrations, and the fuel cycle cost. The

error introduced depends upon the irradiation history but, for the

pressurized water reactor the magnitude of the relative error in the

above values was approximately 12% for a 3 X 3 mesh, 3% for a 5 X 5

mesh and 1% for a 7 X 7 mesh.
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Since the parameters considered in the previous section can be

calculated so accurately with coarse meshes; the trend-of the spatial

average parameters, as changes are made in physical parameters

(enrichment, for instance), is correct even for coarse meshes. For

this reason, if computer time is an important consideration, the bulk

of the calculations can be run using a 3 X 3 mesh followed by normali-

zation to correct values by a few runs at a 7 X 7 mesh.

3. 5 Flux-time Settings for Fuel Scheduling Methods. The flux-

time step for Batch fuel scheduling, C2, should be such that the flux

shape changes only slightly during a step. However, the error in the

criticality factor becomes less as flux-time progresses. A reasonable

rule has been found to take t2= 0. 1 n/kb unless the final flux time

exceeds 1 n/kb, for which cases = 0. 2 n/kb was used.

For the steady state fuel scheduling methods, where no control

poison is added, the flux iteration will not converge if the criticality

factor for the estimated flux-time distribution is too much less than
1 + P1

unity (roughly it must be greater than 2 for convergence). For

this reason it is good to choose the initial central flux-time estimates

1 1 and 02 so that the resulting criticality factor is greater than or

approximately equal to, unity. 02 is reused for the second interpolation

so should be the better estimate.
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F. TABULATED RESULTS FOR THE PRESSURIZED LIGHT-

WATER REACTOR

Tables Fl through F7 list local properties of the fuel which are

dependent on the flux-time for enrichments from 2. 876 a/o U235 to

6.452 a/o U235. These tables are analogous to Table 6. 1 which was

presented in Section VI. A. 1 for the 3.441 a/o U235 case.

Tables F8 through F25 are cost results for different enrichments,

fuel scheduling methods and price bases. These tables are analogous

to Table 6.6 of Section VI. A. 3, which was for Batch fuel scheduling in

the 3.441 a/o U235 variation. (All values were rounded from more

accurate data, so the net fuel cycle cost will not necessarily agree exactly

with the sum of the component costs.)

Tabulated results for final nuclide concentrations and other results

of runs were listed in Tables 6.2 to 6. 5 of Section VI. A. 2.
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Table Fl Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time.

Initial Enrichment: 2.876 a/o U235 Runs No. 4

Flux-Tine (n/kb)

Property 0 0* 0.2 0.4 0.6 0.8

Cross Sections (b) I
25f 267.6 264.5 Z62.7 261.5 260. 6 260.0

T 9f 882.3 891.7 898.0 902.4 .6 0

839.3 839.7 838.0 836.6 835.5 834.6

5 320.8 317.1 315.0 313.6 312.6 311.8

3.546 3.508 3.485 3.469 3. 458 3.451

(8 1. 373 1. 358 1.349 1.343 1.339 1.336

1425. 14432. 1455. 1463. 1469. 1473.

190.4 189.5 189.2 189.0 188.9 188.9

1155. 1156. 1154. 1152. 1150. 1149.

16.01 15.86 15.77 15.71 15.67 15.64

Atoms/b cm (of fuel)

N 7.3001E-4 7. 300E-4 6.681-4 6.105 E-4 5.573 E-4 5. 083 E-4

N 6  0 0 1. 198 K-5 2. 303 E-5 3. 311 E-5 4.221 E-5

NFP 0 0 5.852 .. 5 1. ZO2 E-4 1.841 E-4 2.493 E-4

N 8  2.465_42 2.465 E-2 2.461E.2 2. 456 E-2 2. 451X-2 Z.446 E-2

N 0 0 3.423E.&5 6.088 E-5 8. 136E-5 9. 692 E-5

With equilibrium Xenon and "Samarium Groups poison.
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Table F1 (Cont.)

Flux-Time (n/kb)

Property 0 0* 0.2 0.4 0.6 0.8

N 1 0  0 0 1.838 E-6 5.882 E-6 1. 078 E-5 1. 588 E-5

N 0 0 3.059 E-7 L. 904 E-6 4. 930 E-6 8. 972 E-6

Niz 01. 0 60 261I-9 8. 137 E- 3. 326 E-7 8.458 E-7

Space Properties.

Scm" (fuel) 0 0.91795 0.01884 0.01934 0.01963 0.01974
mX. 2ax

(zf - ). cm (fuel) 0. Z680 0.2700 0. 3024 0.3276 0.3475 0.3631

Y cm 0.06643 0.06565 0.07035 0.07357 0.07586 0.07741

zY ,cm 0.1641 0.1622 0.1783 0.1900 0.1990 0.2056

(..p)/(1+a) 0.09923 0.09923 0.09658 0.09369 0.09080 0.08798

(1..p___ 0.2450 0.Z450 0.2409 0.2359 0.2307 0.2255
p 0.6Z25 ' 6225 -. 6190 0.608- 0.5981 0.5901

Inverse Mod. Ratio,

Velocity Step,** 4 0.7117 0.7744 0.7758 0.7715 0.7664 0.7604

9 0.2978 0.3167 0.3197 0.,3242 0.3256 0.3261

14 0.1802 041924 01997 0.2159 0.2238 0-2301

9_ 0.1652 0.1742 0Z285 0.3567 0.4198 0.469Z

24 0.09054 0.09768 041019 0ils 0.1161 0.1195

With equilibrium Xenon and Mam. iuin Group" poison.

The step number is proportional to velocity where step Z4 corresponds to an energy of 0.45 ev.

N
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Table FZ Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 3. 105 a/o U235 Runs. No. 7

._ _ Flux-Time (n/kb)

Property 0 0* 0.4 0.8 1.2 1. 6

Cross Sections (b)

5f 264.9 261,7 258.7 257.2 256.8 257.0
0 9f 890.1 899.8 910.6 916.2 918.5 918.5

839. 6 839.9 836; 5 834.3 832.9 832.1

317.6 313.9 310.3 308.6 308.1 308.4

6 3.513 3.474 3.436 3.417 3.410 3. 413

8 1.360 1.345 1.330 1.323 1.320 1.321

T09 1440. 1459. 1478. 1488. 1493. 1492.

10 189. 6 188. 7 188. 3 188. 1 188.2 188. 3

1156., 1156. 1152. 1148. 1147. 1145.

12 15.88 15.72 15.57 15;50 15.48 15.49

Atoms/b cm (of Fuel)

N5  7. 9000 E,-4 7.900E-4 6. 583 E -4 5. 459 E -4 4. 512 E -4 3. 736 E -4

N6  0 0 2. 565 E -5 4. 688 E-5 6.380E-5 7. 689E-5

NFP 0 0 1.321E-4 2.733E-4 4.169E-4 5.585E-4

N8  2. 465 E-2 2. 465 E -2 2. 455 E -2 2. 444 E -2 2.433 E-2 2. 422 E -2

N 0 0 6.516E-5 1.032E-4 1.241E-4 1.345E-4

*With equilibrium Xenon and "Samariumn Group" poison.
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Table F2 (Cont.)

Flux - Time (n/kb)

Property 0 0* 0.4 0.8 1.2 1. 6

N 0 0 6.296E-6 1.678E-5 2.691E-5 3.568E-5

N 1 1  0 0 2. 169 E-6 1.005 E-5 2.013E-5 2.944E%-5

N 1 2  0 0 9.687 E.8 9.709E-7 3. 149 E-6 6.522 E-6

Space Properties

Xemax , cm- (fuel) 0 0.01971 0.02124 0.02156 0.02124 0.02049

(P), cm (fuel) 0.2845 0.2866 0.3492 0.3864 0.4071 0.4157

, cm 0.07116 0.07030 0.07887 0.08275 0.08386 0.08295

Y2fVff , cm 1  0.1758 0.1736 0.2038 0.2199 0.2271 0.2279

(1-pW/(1+a) 0.1067 0.1067 0,1004 0.09397 0.08784 0.08193

(1.p11 0.2635 O.Z635 0.2528 0.2409 0.2289 0.2167

p 0.6139 0.6139 0.5993 0.5815 0.5706 0.5647

Inverse Mod. Ratio,

Velocity Stepj** 4 0.7726 0.8178 0.8118 0.7982 0.7810 0.7614

9 0.3137 0. 3338 0.3406 0.3420 0.3401 0.3358

14 0. 1896 0.2025 0.2269 0.2416 0.2499 0.2533

19 0.1749 0.1842 0.3791 0,4976 0.569 0.6036

24 0.09479 ,1023 0.1168 g.1251 0.1293 0.1308

With equilibrium Xenon and lSamarium Group" poison.

The step number is proportional to velocity where step 24-corresponds to an energy of 0.45 ev.
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Table F3 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 3. 711 a/o: U235 Runs No. 6

Flux-Time (n/kb)
Property 0 0 0,8 1,6 2.4 3 2

Cross Sections (b)

5, 258.2 254.9 250.4 250.9 253.7 257.4

909.9 920.2 936j8 936.9 929.4 919.1

840.1 840.5 833,*2 830.8 830.7 831.4

5 309.8 305.9 300,6 301.2 304.5 308.8

6 3.431 3.391 3.333 3.338 3.372 3.417

8 1.328 1.313 1.290 1.292 1.306 1.323

1478. 1497. 1527. 1527. 1513. 1493.

10 187.7 186.8 18 186..8 187.6 188.6

Cr 111156. 1157. 1147, 1144. 1143. 1144.

e12 15, 55 15.39 15,17 15.20 15.33 15.51

Atoms/b cm (of fuel)

N5 9. 500 E -4 9. 500 E-4 6. 427 E -4 4. 308 E -4 2. 911 E-4 1. 995 E -4

N 6  0 0 6. 026E-5 9. 703 E.5 1. 166 E .4 1. 259 E -4

NFP 0 0 3 409E-4 6.883E.4 IS002E-3 1.273E-3

N 8  2.465M,42 2. 465 E -2 2, 440 E -2 2. 413 E -2 2. 389 E .2 2. 367 E -2

N 0 0 1197E-4 1. 519 E-4 1. 525 E-4 1. 427 E-4

*With equilibrium Xenon and "Samarium Group" poison.
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Table F3 (Cont.)

Flux-Time (n/kb)

Property 0 0* 0.8 1.6 2.4 3. 2

N 0 0 1. 919 E-5 3.956B.5 5.316E.-S 6.138 E-5

N 0 1.319E-5 3.587E-5 4.887E-5 5.327 E-5

N 0 1. 35519-6 8,394E-6 1.854X-5 2. 8419 E -5

Space Properties _____ __________

, cm'. (fuel) 0 0.02475 l.0Z665 0.02458 0.02125 0.01793

(Z . cm," (fuel) 0.3270 0.3299 0.4477 0.4748 0.4597 0.4295

LfVfl cm 0.08340 0.08233 0.09661 0.09525 0.08715 0.07716

Vcm"I' 0.2060 0.2034 0.2572 0.2621 0.2442 0.2187

(l-p)/(1+d) 0.1261 0.1261 0.1093 0.19361 0.07940 0.06714

(1-p)h 0.3115 0.3115 0.2803 0.2477 0.2151 0.1852

p 0.5914 0.5914 0.5598 0.5469 0.5466 0.5507

Inverse Mod. Ratio, s

Velocity Step,* 4 0.8813 0.9334 0.8985 0.8435 0.7839 0.7292

9 0.3560 0,3791 0.3843 0.3718 0.3517 0.3306

14 0.2143 0.2292 0.2725 0.2818 0.2743 0. 2606

19 0.2000 0.2118 0.5735 0.6814 0.6837 0.6464

24 0. 1060 0.1147 0.1400 0.1444 0.1405 0.1342

With equilibrium Xenon and *Samarium Group* poison.

*The step number is proportional to velocity where step 24 corresponds to an energy

N
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Table F4 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 4.272 a/o U235 Runs No. 5

Flux-Time (n/kb)

Property 0 0 1.0 2.0 3..0 4.0

Cross Sections (b) _

252.5 249;2 244.5 247.5 252;9 258.2
5,ff

927.0 937.9 955.3 947.8 932.5 917.0

1f 840.6 841.0 830.9 829.3 830.4 831.8

303.2 299.2 293.7 297.2 303.5 309.8

3.362 3.321 3.260 3. 296 3.361 3.427
6

1.302 1.286 1.262 1.276 1.301 1.327
8

1489O151U.

0 186. 2 185. 3 185. 1 186. 1 187.5 188.8

1157. 1158. 1144. 1142., 1143. 1145.

15.28 15. 12 14.89 15. 03 15.29 15. 55
12

Atoms/b cm (of fuel)

N 5  1. 100E-3 1. 100E-3 6. 547 E -4 3. 888 E-4 2. 373 E -4 1. 491 E-4

N 0 0 8. 7657E -5 1. 299 E -4 1. 460 E -4 1. 502 E-4

NFP 0 0 5.155E-4 1.005E-3 1.406E-3 1.724E-3

N8  2.465E-2 Z. 465 E -2 2. 428*E-2 2. 391 E -2 2. 360E-2 2 .334 E -2

N 0 0 1. 496 E -4 1. 685 E -4 1. 547 E-4 1. 357E-4

*With equilibrium Xenon and "Samarium Group" poison.
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Table F4 (Cont.)

Flux-Time (n/kb)

Property 0 0* 1.0 2.0 3.0 4.0

N 0 0 2.766E-5 5. 107 E-5 6. 355 E-5 6.924E-5
10 -__ _ _ _ _ _ _ __ _ _ _ _ _ _

Nil 0 0 2. 364E-5 4. 993 E-5 5.781 E-5 5. 642 E-5

N 1  0 0 3.338E-6 1.594E-5 2.959E-5 4.039E-5

Space Properties

Xemax cm (fuel) 0 0.02997 0.03123 0.02615 0.02058 0.01616

(1ff - 2Xe)' cm)' (fuel) 0. 3656 0.3692 0.5183 0.5185 0. 4723 0.4219

2 Vf, cm~ 0.09445 0.09319 0.1097 0.1011 0.08586 0.07142

WE fV cm 1  0.2333 0.2302 0.2958 0.2814 0.2429 0.2041

(l-p)/(I+) 0.1438 0.1438 0.1178 0.09458 0.07528 0.06030

(1-p) 0.3550 0.3550 0.3049 0.2537 0.2067 0.1685

p 0.5711 0.5711 0.5364 0.5325 0.5397 0.5490

E
Inverse Mod. Ratio,

Velocity Step,** 4 0.9830 1.042 0.9727 0.8770 0.7876 0.7170

9 0.3955 0.4217 0. 4196 0.3905 0.3563 0.3269

14 0.2374 0.2542 0.3055 0.3022 0.2809 0.2580

19 0.2237 0.2361 0.6910 0.7536 0.7006 0.6258

24 0.1165 0. 1263 0.1560 0.1539 0. 1439 0.1337

With equilibrium Xenon and "Samarium Group" poison.

The step number is proportional to velocity where step 24 corresponds to an energy of 0. 45 ev.
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Table F5 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Runs No. 9Initial Enrichment: 4.383 a/o U235

Flux-Time (n/kb)

Property 0 0* 0.6 1.2 1. 8 2.4

Cross Sections (b)

- 251.5 240.1 243.9 243.7 245.7 248.8
5,f

OT9f 930. 3 941.3 956. 2958,.2 953.0 944.3

1 840.6 841.0 833.2 829.9 829.1 829.4

5 301.9 298.0 293.1 292.8 295.1 298.7

3.349 3.308 3.254 3.250 3.274 3.312

6 81.297 1.281 1.260 1.258 1.268 1.28Z

0-9 -1-- - -15 37 - -1564 . 1567 . 1557 . 154 1.

9 185.9 1847 85.0 185.6 186.4

O ' 1157. 1158. 1147. 1142. 1141. 1142.

1z 15.23 15.06 14.86 14.85 14.95 15.09

Atoms/b cm (of fuel)

N 5  1. 130E-3 1. 130E-3 8.277E-4 6.009E-4 4.381E-4 3.227E-4

N 0 0 6.121E-5 1.029E-4 1.285E-4 1.429E-4
6

N 0 0 3. 158 E-4 6. 403 E -.4 9.430E-4 1.212E-3
FP

N8  2. 465 E -2 2. 465 E-2 2. 443 E -2 2. 419 E -2 2. 396 E -2 2. 376 E -2

N 0 0 1. 188 E -4 1. 622 E-4 1. 718 E -4 1. 668 E -4

With equilibrium Xenon and "Samarium Group" poison.
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Table F5 (Cont.)

Flux-Time (n/kb)

Property 0 0* 0.6 1.2 1.8 2.4

N 1 0  0 0 1. 538 E.-5 3.399E-5 4.815E-5 5.793E-5

N 1 1  0 0 1.004 E-5 3.152 E-5 4.757 E-5 5. 590 E-5

N 1 2  0 0 7. 917 E-7 5.575E-6 1. 354 E-5 2. 224 E-5

Space Properties

, cm (fuel) 0 0.03111 0.03316 0.03137 0.0280 0.02431
Xe, max__ _ _ _ _ _ _ _ _ _ _ ______ __ _ _ _ _

(2ff - Z;Xe)' cmn (fuel) 0.3731 0.3770 0.4963 0.5370 0.5341 0.5102

lfVft , 0.09661 0.09531 Q.1102 0.1115 0.1057 0.09668

V fVf , cm 0.2386 0.2354 0.2904 0.3034 0.2929 0.2712

(1-p)/(1+a) 0.1472 0,1472 0.1307 0.1151 0.1006 0.08759

(1..p11 0.3635 0.3635 0.3323 0,3004 0.2683 0.2374

p 0.5671 0.5671 0.5433 0.5305 0.5292 0.5326

Inverse Mod. Ratio,

Velocity Step,** 4 1.003 1.064 1. 025 0.9702 0.9092 0.8497

9 0.4034 0.4302 0.4333 0.4220 0.4030 0.3812

14 0.2420 0,2593 0.3001 0.3131 0.3098 0.2983

19 0.2284 0.2411 0.5964 0.7365 0.7682 0.7488

24 0. 1186 0 1287 0.1530 0,1596 041576 0.1520

With equilibriumXenon and "Samarium Group* poison.

The step number is proportional to velocity where step 24 corresponds to an energy of 0. 45 ev.
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Table F6 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 5.,592 a/o U235 Runs No. 8

____________Flux-Tie (nb) _____

Property 0 0* 0.6 1.2 1.8 2.4

Cross Sections (b)

T 5f 241.0 237.4 232.9 233.7 237.3 241.8

9.f 963.7 975.8 989.2 979.1

841.3 841,7 830.1 826.1 826.0 827.3

5 289, 6 Z 28. Z81. Z2z. 3 29.

6 3. 220 3.176 3.119 3.128 3. 170 3. 225

1.247 1.230 1.207 1.211 1.227 1.249

T 1579. 1602. 1625. 1606. 1581.

183.1 182.2 182.1 182.7 183.7 184.8

1158. 1159, 113 7. 1137. 1139.

12 14. 72 14. 55 14. 33 14. 37 14. 54 14. 76

Atoms/b cm (of fuel)

N 5  1. 460E -3 1.,460E-3 1. 022 E -3 7. 113 E -4 5.O00E-4 3,6t7E-4

N 6  0 0 9. 160E-5 1. 482 E -4 1. 784 E -4 1. 928 E -4

N FP 0 0 4.532E-4 8.990E-4 1.291E-3 1.621E-3

N 2. 465 E -2 2. 465 E -2 2. 435.E -2 2. 404E -2 2. 375E--Z 2. 351 E -,2
8

N 90 0 1. 533 E-4 1. 993 E-4 2 .018E-4 1. 887 E-4

With equilibrium Xenon and "Samarium Group" poison.
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Table F6 (Cont.)

Flux-Time (n/kb)

Property 0 0* 0.6 1.2 1.8 2.4

N 0 0 1,959 E-5 4. 131 E-5 5. 680 E-5 6. 668 E-5
.10__ _ _ _ _

N11  0 0 1.578E-5 4.361ER-5 6.054E-5 6.707 E-5

N 0 0 1. 413 E-6 8. 645 E-6 1.896 E-5 2.892 E-5

Space Properties

cm (fuel) 0 0.04503 0.04674 0.04184 0.03523 0.02910
Xe, max _____ ______ ____________

(2f a - cm (fuel) 0.-4536 0.4597 0.6197 0.6574 0.6346 0.5892

- 0.1196 0,1179 0.1372 0.1358 0. 1247 0. 1107

lfvf , cm 0.2954 0.2911 0.3637 0.3715 0.3471 0.3112

(1-p)/(1+a) 0.1837 0.1837 0.1592 0,1366 0.1163 0.09890

(1-p) 0.4537 0.4537 0.4056 0.3576 0.3110 0.2686

p 0.5251 0.5251 0.5037 0.4980 0.5032 0.5119

Inverse Mod. Ratio,

Velocity Step,** 4 1. 226 1.302 1.229 1.135 1.038 0.9504

9 0.4900 0.5240 0.5192 0.4943 0,4607( 0.4269

14 0.2926 0.3145 0.3630 0.3707 0.3570 0.3355

19 0.2803 0.2964 0.7525 0.8977 0.9011 0.8491

24 0.1416 0-1543 0 1834 0.1872 0.1802 0.1701

With equilibrium Xenon and "Samarium Group" poison.

The step number is proportional to velocity where step 24 corresponds to an energy of 0.45 ev.
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Table F7 Local Properties of Fuel Dependent on Initial Enrichment and Flux-Time

Initial Enrichment: 6.452 a/o U235 Runs No. 3

Flux-Time (n/kb)

Property 0 0 06 1.2 1.8 2.4

Cross Sections (b)

T5f 234. 5 230.8 226. 2 227. 9 232. 6 238.0

T985.2 998.2 1013. 1001, . 993. 8 977.5
9,f

T 841. 6 641.9 8Z7. I 823. I 823. 9 8Z5. 9

5 282,1 277.8 272.3 274.3 279.8 286.2

W6  3,140 3,095 3.035 3.055 3.112 3.179

T8  1.216 1.198 1.175 1.183 1,205 1.231

1620. 1644,. 1670. 1660. 1634. 1603.

a10 181.4 180.5 180.6 181.4 182.6 183.9

1158. 1159. 1139. 1133. 1134. 1137.

-1 2  14..40 14.22 14.00 14.09 14.31 14.58

Atoms/b cm (of fuel)

N 5  1. 700 E -3 1. 700 E -3 1. 143 E -3 7. 685 E -4 5. 302 E-4 3. 769 E -4

N 6  0 186E-4 1.852 A ~2 -67E -4 2.294E-4

NFp 0 0 5.747 E-4 1. 116E-3 1. 570 E -3 1. 936 E -3

N 2. 465 E-2 2. 465 E -2 2.428E-2 2.391 E-2 2.359 E -2 2. 332 E -2

N9 0 0 1810 E.4 2.257E-5 2,206E- 2. 008 E -4

*
With equilibrium Xenon and "Samarium Group" poison.
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Table F7 (Cont.)

Flux-wTimne (n/kb)

Property 0 0* 06 1. 1.8 2. 4

N 0 0 2.302E-5 4.709E-5 6. 340 E-5 7.1308 E-5

N 0 0 2.092 E-5 5.268 E-5 6.898 E-5 7. 348 E-5

N 0 0 Z. 063 E-6 1. 133 E-5 2 308 E-5 3. 350 E-5

Space Properties

cm 1 (fuel) 0 0.05776 0.05813 0.04946 0.03978 0.03172
Te, max c

), m (fuel) 0.5095 0.5180 0.7110 0.7398 0.6973 0.6348

fj ,c m" 0.1355 0.1334 0.1563 0.1516 0.1359 0.1180

vY ,m 0.3348 0.3295 0.4162 0,4165 0.3792 0.3325

(1-p)/(1+4) 0. 2087 0.2087 0.1773 0.1490 0.1246 0.1044

(1..phi 0.5153 0.5153 0.4526 0.3914 0.3341 0.2839

p 0.4966 0.4966 0.4781 0.4782 0.4881 0.5003

Inyerae Mod. Ratio,

Velocity Step,** 4 1.387 1.4771 1.369 1.240 1.115 1.008

9 0.5526 0.5926 0.5793 0.5413 0.4957 0.4531

14 0.3293 0.3549 0.4084 044092 0.3861 0.3570

19 0.3180 0.3369 0,8729 1.010 0,9838 0.9050

24 0,1581 0.1731 0. 2055 042057 0-.1944 0. 1807

With equilibrium Xenon and "Samarium Group" poison
**The step number is proportional to velocity where step 24 corresponds to an energy of 0.45 ev.
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Table F8 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 2.876 a/o U235

Average Burnup: 1654. (MWD/ton)

Fuel Scheduling

Run No. 4. 1

Method: Batch

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 1VF from A. E. C., mills/kwhe 32.19 * 21.48 25.27

6 UF6 -- UO 2  1.71 3.42 * *

8 Physical Fabrication 8.13 * 2.71 4.06

9 Shipping 0.81 * 0,45 *

10 Solvent Extraction 1. 82 * * *

11 UO2 (NO3) 2  UF 6  0.50 * * *

12 Pu(NO3)4 -. Pu 0.15 * * *

13 UF6 to A. E. C. -28.64 * -19.11 -22.41

14 Pu to A. E. C. -1.20 * -3.00 *

16 UF 6 Lease Charge 2.50 7.51 1.67 1.96

17 Working Capital Charge 0.53 0.62 0.24 0.31

Net Fuel Cycle Cost 18.49 25.30 8.61 12.99

An asterisk means same value as given for Cost Set No. 1
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Table F9 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 4.383 a/o U235

Average Burnup: 20510. (MWD/ton)

Fuel Scheduling Method: Batch

Run No. 9. 1

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. C. , mills/kwhe 4.36 * 2.91 3.49

6 UF6 - UO 2  0.21 0.42 * *

8 Physical Fabrication 0.66 * 0. 22 0.33

9 Shipping 0.07 * 0.04 *

10 Solvent Extraction 0. 15 * * *

11 UO 2 (N0 3 )2 - UF 6  0.04 * * *

12 Pu(NO3)4 - Pu 0.09 * * *

13 UF to A. E. C. -2.17 * -1.45 -1.70
6 -1.45 -1_70

14 Pu to A. E. C. -0.70 * -1.76 *

16 UF 6 Lease Charge 0.89 2.68 0.60 0.71

17 Working Capital Charge 0.17 0.21 0.08 0.10

Net Fuel Cycle Cost 3.76 5.79 1.12 2.78

An asterisk means same value as given for Cost Set No. 1
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Table F10 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 5. 592 a/o U235

Average Burnup: 35380. (MWD/ton)

Fuel Scheduling

Run No. 8. 1

Method: Batch

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 fromA..E.C., mills/kwhe 3.37 * 2.25 2.71

6 UF 6 . UO2  0.16 0.31 *

8 Physical Fabrication 0. 38 * 0. 13 0. 19

9 Shipping 0.04 . 0.02

10 Solvent Extraction 0. 08 * * *

11 UO2 (NO3I)2  UF 6  0.02 * * *

12 Pu(NO3 ) 4 .; Pu 0.07 * * *

13 UF6 to A. E. C. -1.28 * -0.85 -1.00

14 Pu to A. E. C. -0.57 * -1.42

16 UF 6 Lease Charge 1.04 3.11 0.69 0.83

17 Working Capital Charge 0.17 0.22 0.09 0.11

Net Fuel Cycle Cost

An asterisk means same value as given for

3.48 5.75 1.23 2.64

Cost Set No. 1



Table F 11 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 6.452 a/o U235

Average Burnup: 45420. (MWD/ton)

Fuel Scheduling Method: Batch

Run No. 3. 1

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. E., mills/kwhe 3.09 2.06 2.50

6 UF 6 - UO2  0.14 0.28

8 Physical Fabrication 0.30 . 0.10 0.15

9 Shipping 0.03 * 0.02

10 Solvent Extraction 0.07 * *

11 UO2 (NO3) 2  UF 6  0.02 * **
I P (N0 3 )2..P 6_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

12 Pu(NO Pu 0.06 * * *

13 UF 6 to A. E. C. -1.02 * -0.68 -0.80

14 Pu to A. E. C. -0.51 -1.27

16 UF Lease Charge 1.17 3.52 0.78 0.95

17 Working Capital Charge 0.17 0.23 0.09 0.11

Net Fuel Cycle Cost 3.52 6.06 1.39 2.71

*An asterisk means same value as given for Cost Set No. I

0~'
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Table F12 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 2.876 a/o U235

Average Burnup: 5326. (MWD/ton)

Fuel Scheduling Method: Inout

Run No. 4. 2

Fuel Cycle Step Unit Price Set No.

No. Process 12 3 4

2 UF6 from A. E. C., mills/kwhe 9.99 * 6.67 7.85

6 UF 6 - UO 2  0.53 1.06 * i

8 Physical Fabrication 2.52 . * 0.84 1.26

9 Shipping 0.25 * 0.14

10 Solvent Extraction 0.56 *

11 UO 2 (NO 3 )2  UF 6  0.15*

12 Pu(NO3 4 - Pu 0.13

13 UF 6 to A. E. C. -7.35 * -4.91 -5.71

14 Pu to A. E. C. -1.06 * -2.64

16 UF 6 Lease Charge 1.02 3.06 0.68 0.80

17 Working Capital Charge 0.25 0.29 0.11 0.14

Net Fuel Cycle Cost 7.01 9.62 2.28 4.92

An asterisk means same value as given for Cost Set No. 1

LA)
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Table F13 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment:

Average Burn

3. 105 a/o U235

Lup: 14090. (MWD/ton)

Fuel Scheduling Method:

Run No. 7. 2

Inout

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. C., mills/kwh e 4.16 * 2.78 3.28

6 UF-- UO2  _ 0.22 0.43 * *

8 Physical Fabrication 0.95 * 0.32 0.48

9 Shipping 0.09 0.05 *

10 Solvent Extraction 0.21 * * *

11 UO 2 (NO 3 )2 -UF 6  0.06 * *

12 Pu(NO3 )4 -Pu 0.10 * * *

13 UF to A. E. C. -2.06 * -1.37 -1.57

14 Pu to A. E. C. -0.82 -2.04 *

16 UF 6 Lease Charge 0.67 2.00 0.45 0.53

17 Working Capital Charge 0.17 0.20 0.08 0.10

Net Fuel Cycle Cost 3. 77 5. 35 8. 50 2. 68

*
An asterisk means same value as given for Cost Set No. 1

mitimi
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Table F14 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3.4

Average Burnup:

41 a/o U235

25580. (MWD/ton)

Fuel Scheduling Method:

Run No. 1. 2

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 2.61 * 1.74 2.06

6 UF6 -- UO 2  0.13 0.26

8 Physical Fabrication 0.53 0. 18 0.26

9 Shipping 0.05 * 0.03

10 Solvent Extraction 0. 12

11 UO 2 (NO3)2 -.. UF 6  0.03 *

12 Pu(NO3) 4  Pu 0.08

13 UF6 to A. E. C. -0.81 * -0.54 -0.60

14 Pu to A. E. C. -0.63 * -1.58

16 UF 6 Lease Charge 0.62 1.85 0.41 0.49

17 Working Capital Charge 0.15 0.18 0.07 0.09

Net Fuel Cycle Cost 2. 88 4. 28 0.67 2. 08

An asterisk means same value as given for Cost Set No. 1

Inout

IjJ
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Table F15 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 4.272 a/o U235

Average Burnup: 49320. (MWD/ton)

Fuel Scheduling

Run No. 5. 2

Method: Inout

*An asterisk means same value as given for Cost Set No. 1

III

'JJ

0

Unit Price Set No.Fuel Cycle Step

Process 1 2 3 4

UF from A. EC., mills/kwhe 1.76 * 1.17 1.40

UF 6 - UO2 0.09 0.17 * *

Physical Fabrication 0. 27 * 0. 09 0. 14

Shipping 0.03 * 002 *

Solvent Extraction 0. 06 * * *

U (N0.02 * * *

Pu(NO3 4  Pu 0.05 * * *

UF to A. E. C. -023 * -0.15 -0. 16

Pu to A. E. C. -0.42 * -0.11 *

Working Capital Charge 0.15 0.18 0,07 0.09

Net Fuel Cycle Cost 2.47 4.00 0.83 1.85

UF 6 Lease Charge

I i

2. 10 I 0. 470. 70 o. 56



Table F 16

Enrichment: 2.8

Average Burnup:

Partial and Net Fuel Cycle- Costs, in mils/kwhe,
Enrichment, Fuel Scheduling Procedure, and Unit

76 a/o U235

3817. (MWD/ton)

Depending on
Price Basis.

Fuel Scheduling Method:

Run No. 4. 3

Outin

An asterisk means same value as given for Cost Set No. I

'II~IIIII

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. C. , mills/kwhe 13.95 * 9.30 10.95

6 UF6 ... UO 2  0.74 1.48 * *

8 Physical Fabrication 3. 52 * 1. 17 1. 76

9 Shipping 0.35 * 0.20 *

10 Solvent Extraction 0. 79 * * *

11 UO2 (N0 3)2 - F 6  0.22 * * *

12 Pu(NO 3)4 - Pu 0. 14 * * *

13 UF6 to A. E. C. -11.08 * -7.39 -8.63

14 Pu to A..E. C. -1.12 * -2.79 *

16 UF 6 Lease Charge 1.28 3.85 0.86 1.01

17 Working Capital Charge 0.30 0.35 0.13 0.17

Net Fuel Cycle Cost 9.08 12.44 3.36 6.38



Table F17 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3. 105 a/o U235

Average Burnup: 10010. (MWD/ton)

Fuel Scheduling

Run No. 7. 3

Method: Outin

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. EC., mills/kwhe 5.86 3.91 4.62

6 UF 6 - UO2  0.30 0.61 * *

8 Physical Fabrication 1.34 * 0.45 0.67

9 Shipping 0,13 * 0.07 *

10 Solvent Extraction 0.30 * * *

11 UO2 (NO 3)2. - UF 6  0.08 * * *

12 Pu(NO3 )4 - Pu 0.11 * * *

13 UF 6 to A. E. C. -3.53 * -2.35 -2.73

14 Pu to A. E. C. -0.91 * -2.28 *

16 UF 6 Lease Charge 0.78 2.34 0.52 0.62

17 Working Capital Charge 0.19 0.23 0.09 0.11

Net Fuel Cycle Cost 4.67 6.57 1.21 3.31

*
An asterisk means same value as given for

ws,

Cost Set No. 1



Table F:18 Partial and Net Fuel Cycle Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3.441 a/o U235

Average Burnup: 17800. (MWD/ton)

Fuel Scheduling Method: Outin

Run No. 1.3

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 3.75 * 2.50 2.97

6 UF - UO 2  0.19 0.38 * *

8 Physical Fabrication 0. 75 * 0 25 0. 38

9 Shipping 0..08 * 0.04 *

10 Solvent Extraction 0. 17

11 UO2 (NO 3 2 -.UF 6  0.05 * * *

12 Pu(NO 3 4 - Pu 0.09 * * *

13 UF 6 to A. E. C. -1.68 * -1.12 -1.29

14 Pu to A.E.C. -0.75 * -1.88 *

16 UF 6 Lease Charge -0.69 2.08 0.46 0. 55

17 Working Capital Charge 0, 16 0. 20 0. 08 0. 10

Net Fuel Cycle Cost 3.50 5.11 0.83 2.52

An asterisk means same value as given for Cost Set No. 1

HhnI-Ehw

wa
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Table F 19 Partial and Net Fuel Cycle: Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Iasis

Enrichment: 3. 711 a/o U235

Average Burnup: 24120. (MWD/ton)

Fuel Scheduling Method: Outin

Run No. 6. 3

Fuel Cycle Step

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 3.04 * 2.02 2.41

6 U -w UO2 0.15.3* *

& Physical Fabrication 0.56 * 0.19 0.28

9 Shipping 0.06 * 0.03 *

10 Solvent Extraction 0. 12 * * *

11 UO2 (NO3)2 -. UF 6  0.03 * * *

12 Pu(NO 3)4 - Pu 0.08 * * *

13 UF6 to A. E. C. -1.10 * -0.73 -0.84

14 PutoA.E.C. -0.66 * -1.66 *

16 UF 6 Lease Charge 0.69 2.07 0.46 0.55

17 Working Capital Char.ge 0. 16 0, 19 0.07 0. 10

Net Fuel Cycle Cost 3 13 4.69 0.78 2.28

An asterisk means same value as given for Cost Set No. 1

LldI I_7
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Table FZO Partial and Net Fuel Cycle Costs, in miUs/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 4. 272 a/o U235

Average Burnup: 36180. (MWD/ton)

Fuel Scheduling

Run No. 5. 3

Method: Outin

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF from A. E. C., mills/kwhe 2.40 * 1.60 1.92

6 UF-.UO2 0. 12 0.23 *

8 Physical Fabrication 0.37 * 0.12 0.19

9 Shipping 0.04 * 0.02 *

10 Solvent Extraction 0. 08 * *

11 U0 2(NO 3 ) - UF 0.02 * * *

12 Pu(NO3)4 - Pu 0.07

13 UF 6 to A. E. C. -0.61 * -0.41 -0.46

14 Pu to A.E.C. -0.54 * -1.35 *

16 UF Lease Charge 0.74 2.23 0.50 0.59

17 Working Capital Charge 0. 15 0. 19 0. 08 0. 09

Net Fuel Cycle Cost 2.84 4.48 0.85 2. 12

An asterisk means same value as given for Cost Set No. 1

w,



Table F21 Partial and Net Fuel Cycle- Costs, in mills/kwhe Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 2.876 a/o U235

Average Burnup: 4420. (MWD/ton)

Fuel Scheduling

Run No. 4.4

Method: Graded

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF 6 from A. E. C., mills/kwhe 12.04 * 8.03 9.45

6 UF - UO 0.64 1.28 *
6 2

8 Physical Fabrication 3.04 * 1.01 1.52

9 Shipping 0.30 * 0.17 *

10 Solvent Extraction 0.68 * * *

11 UO(NO) -UF 0.19 * * *
_23 2 6 (NO -_

12 Pu(NO3 4 - Pu 0.14 * * *

13 UF 6 to A. E.C. -9.28 * -6.19 -7. 21

14 Pu to A.E.C. -1.09 -2.73 *

16 UF Lease Charge 1.16 3.47 0.77 0.91

17 Working Capital Charge 0.27 0.32 0.12 0.16

Net Fuel Cycle Cost 8.09 11.09 2.83 5.68

An asterisk means same value as given for Cost Set No. 1
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Table F22 Partial and Net Fuel Cycle; Costs, in mills/kwhe Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3. 105 a/o U235

Average Burnup: 12560. (MWD/ton)

Fuel Scheduling Method: Graded

Run No. 7.4

An asterisk means same value as given for Cost Set No. 1

~~III-

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 4.67 * 3.12 3.68

6 UF6 - UO2 0.24 0.49 * *

8 Physical Fabrication 1.07 * 0.36 0.53

9 Shipping 0.11 * 0.06 *

10 Solvent Extraction 0. 24 * * *

11 UO2 (NO3 )2 - UF 6  0.06 * * *

12 Pu(NO3)4 - Pu 0.11 * * *

13 UF6 to A.E.C. -2.49 * -1.66 -1.91

14 Pu to A. E.C. -0.85 * -2.12 *

16 UF 6 Lease Charge 0.70 2.10 0.47 0.55

17 Working Capital Charge 0.18 0.21 0.08 0.10

Net Fuel Cycle Cost 4.04 5.72 0.95 2.87



Table F23 Partial and Net Fuel Cycle. Costs, in mills/kwhe Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3.441 a/o U235

Average Burnup: 22820. (MWD/ton)

Fuel Scheduling Method: Graded

Run No. 1. 4

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 2.92 * 1.95 2.31

6 UF - UO 0.15 0.30 * *
6 2

8 Physical Fabrication 0.59 * 0.20 0.29

9 Shipping 0.06 * 0.03 *

10 Solvent Extraction 0. 13 * * *

11 UO2(NO3 2 - UF6 0.04 * * *

12 Pu(NO3 )4 - Pu 0.08 * * *

13 UF 6 to A. E. C. -1.04 * -0.69 -0.78

14 Pu to A.E.C. -0.67 * -1.68 *

16 UF Lease Charge 0.64 1.92 0.43 0.51

17 Working Capital Charge 0. 16 0. 19 0. 07 0. 09

Net Fuel Cycle Cost 3.06 4.51 0.71 2.21

*An asterisk means same value as given for Cost Set No. 1

00



Table F24 Partial and Net Fuel Cycle, Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 3. 711 a/o U235

Average Burnup: 30450. (MWD/ton)

Fuel Scheduling Method: Graded

Run No. 6. 4

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF from A. E. C., mills/kwhe 2.40 * 1.60 1.91

6 UF - UO 0. 12 0.24 * *
6 2_ _ _ __ __

8 Physical Fabrication 0.44 * 0.15 0. 22

9 Shipping 0.04 * 0.02 *

10 Solvent Extraction 0. 10 * * *

11 UO 2 (NO3 ) 2 - UF 6  0.02 * * *

12 Pu(NO3 ) 4 - Pu 0.07 * * *

13 UF 6 to A. E. C. -0.65 * -0.43 -0.48

14 Pu to A. E. C. -0.58 * -1.45 *

16 UF 6 Lease Charge 0.65 1.95 0.43 0.52

17 Working Capital Charge 0. 15 0. 18 0. 07 0. 09

Net Fuel Cycle Cost 2.78 4.23 0.72 2.03

An asterisk means same value as given for Cost Set No. 1

* 111 91 E--- 
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Table F25 Partial and Net Fuel Cycle. Costs, in mills/kwhe, Depending on
Enrichment, Fuel Scheduling Procedure, and Unit Price Basis.

Enrichment: 4. 272 a/o U235

Average Burnup: 44720. (MWD/ton)

Fuel Scheduling Method: Graded

Run No. 5. 4

Fuel Cycle Step Unit Price Set No.

No. Process 1 2 3 4

2 UF6 from A. E. C., mills/kwhe 1.94 * 1. 29 1.55

6 UF6 - UO 0.09 0.19 * *

8 Physical Fabrication 0.30 * 0.10 0.15

9 Shipping 0.03 * 0.02 *

10 Solvent Extraction 0. 07 * * *

11 UO 2 (NO 3) 2 - UF 6  0.02 * * *

12 Pu(NO 3)4 - Pu 0.06 * * *

13 UF6 to A. E. C. -0.32 * -0.22 -0.24

14 Pu to A. E.C. -0.46 * -1.15 *

16 UF 6 Lease Charge 0.71 2.14 0. 48 0.57

17 Working Capital Charge 0.15 0.19 0.07 0.09

Net Fuel Cycle Cost 2.59 4.14 0.83 1.93

An asterisk means same value as given for Cost Set No. 1
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G. NOMEMCLAUTRE

The text references give the location of a section that contains a

more detailed definition of the symbol or of an equation that uses the

symbol. Equation numbers are placed in parenthesis. A set of com-

patible units for input data for FUELCYC is given in Appendix D. 1.

Section 1. of this Appendix defines English letters; Section 2., Greek

letters; Section 3. , subscripts; and Section 4. , superscripts.

1. English Letters

Definition

Inverse of the moderating
ratio.

Constants in Wilkins equation
startup series.

Denominator of Lagrangian fit
coefficient.

Lagrangian fit coefficient.

Constants in Nuclide concen-
tration equations.

Geometric buckling.

Term for evaluating reproc-
essing rate.

Westcott parameter (br= -

Constants in Wilkins equation
startup series.

Criticality factor for the reactor
in the absence of control poison.

Text
Reference

(4.4)

IX. A.

IX. C. 23.

IX, C. 23.

IX. C. 14.

V. A. 2.

(4. 130)

V.B.2.

IX. A.

(4.76)

351

Text

Symbol

A(x)

ak

aLag

aLag2

Fortran
Symbol.

A(I)

A(K)

ALAG

ALAG2

A(M)am

B
g

b B

b

b.

C

B(J)

C

." w ..................



Text
Symbol

Cr, z

Cw

CE

CF

C.

Cmt

Cfb

C rp
C
Ccp
C. .

1, j

Ck

C,

C2 , r, z

Fortran
Symbol

C50(I, J)

C52

CE

CP

CA(I, J)

EDS(1)

EDS(2)

EDS(3)

C(I, J)

CK

C1

C2(I, J)

P (1-, J)

C 3 , r, z, u

C 4 , r, z, u

Definition

Local (or regional) crit-
icality factor in the absence
of control poison.

Criticality factor for the
reactor with control poison.

Unit price of separative work.

Unit price of the UF6 cascade
feed material.

Unit price for enriched uranium.

Partial fuel-cycle cost for cost
step i, cost set j.

Material partial fuel-cycle cost.

Fabrication partial fuel-cycle
cost.

Reprocessing partial fuel-cycle
cost.
Capital charge
Unit price for cost step i,
cost set j.

Constant K in the reactor-
physics equations; e. g. , see
following seven definitions.

Constant terms in resonance
escape probability exponent
(V fl/' Es Vmd)'-

Reactor-physics constants No. 2.

(1 - EL(1-P) Jr, z)

Reactor-physics constants No. 3.

Reactor-physics constants No. 4.

Text
Reference

IV. B. 2. 7.

IV. C. 2. 1.

(4.119)

(4. 120)

(4. 119)

(4. 104)

(4. 144)

(4. 145)

(4. 146)

(6.3)
(4. 104)

(4.8)

(4.26)

(4.41)

(4.42)

352



Text
Definition Reference

C5

C7(I)

C8(J)

C(N)

D

D(I, J, K)
or

DL(I, J, K)

DI

E

E

E(I, J)
or

EL(I, J)

FT(i)

FN

FW

FCUM(I)

C 5

C7, r

C 8 , z

IX. C. 14.

(4.47)

(4.49)

IX. B. (17)

IX. B. (1)

Ratio of average to maximum
Xe poisoning.

Reactor-physics constant No. 7.

Reactor-physics constant No. 8.

"Source" terms for flux-shape
iteration.

Matrix of the above terms.

Diffusion coefficient.

"f2" terms in the spatial flux-
shape equations.

Matrix of the above coefficients.

Price for use in cost step i.

Energy.

Burnup (MWD/ton).

Non-"V 2 " terms in the spatial
flux-shape equations.

Matrix of the above terms.

Relative error; used with
various subscripts.

Truncation error in ith stop
of Wilkins equation solution.
Fract.chg. on cap. invest.
Lease charge on UF6 (fraction
of initial cost per year).

Working capital charge rate
(fraction year).

Cumulative "truncation error
in Wilkins equation solution.

(4.39)

(4. 56)

IV. B. 2.

(4.2)

(4.79)

(4.39)

(4.56)

IX. E.

IX. A. (22)

(6.3)
(4. 142)

(4. 143)

IX. A. (24)

353

Test
Symbol

Fortran
Symbol

(4.27)

c n

c

D

dr, z, u

d

d.
1

E

E

e r, z

e

F

F .iFT, i

F
- IFN

F W

F cum, 1



Text
Symbol

Height of core.

Axial spacing between
mesh points.
Capital investment
Integral.

Infinite dilution resonance
integral for nuclide m.

Effective resonance integral
for nuclide m.

Text
Reference

(4. 158)

Fortran
Symbol

f

IX. C. 18.

(4.36)

(6.3)
IX. C. 26.

(4.7)

(4.8A)

354

Definition

Number of flux-time points
included in polynomial fit,

n- 1
sp

Damping factor in criticality
iteration.

Material adjustment factor
for cost step i,

Fraction of the fresh U235
obtained from natural uranium.

Fractional recovery term
for Pu recycle.

One of the seven "space
properties".

Inverse energy yield term.

Coefficient matrix.

Coefficient matrix No. 2.

R adial spacing between
mesh points.

Westcott factor
(g = 1 for 1/v material).

(4.55)

(4.36)

V. B. 2.

(4. 151A)

(4. 104)

(4. 106)

Fig. 4. 7.

(4. 156)

(4. 103)

(4.53)

DAMP 1

f .

fnat

f
recy

f(q)

G

F(I)

FNAT

FRECY

G

G

GLg

g

H H

h HL

I00
m RI(M)

1 eff
m



Text
ReferenceDefinition

i

Index for "a".

Load factor.

Migration length.
Mlax.-to-avg. power-den. ratio
Nuclide index; see listings
under subscripts for special
values.

Number of passes through
NUCON.

Concentration of nuclide m.

Central concentration of
nuclide m.

Recycled concentration of
nuclide m.

355

IX. A(5)

Table D3.

V. B.

(4. 158)

(I) Velocity index, in steps of
x (or V for WILK2).

Designator for cost
input data.

Initial conversion ratio.

Loop count of SPACFX
iterations.

Index for b.

Index for cost input set.

Number of cost input data
sets.

Slowing down kernel.

Infinite multiplication
factor.

Boltzmann constant.

Diagonal (or second)
index for Crout reduction.

(4.61)

IV. A. 1. 1.

IX. B.

IX. A. (8)

(4. 142)

(4.61)
(6.3)
IV. A. 3.

(4. 158)

IV. A. 3.

IX. C. 30.

IX. B. 2.

Text
Symbol

Fortran
Symbol

IX.A.

(4. 104)

Table D3.

IV. A. 2. 2.

cst

icr

i

i

j

jcst, L

INPCST

(J)

(J)

JCOSTL

K(r)

(K)

k

k

k

k

L

M
M
m

F LOAD

(M)

N(M)

m

NNm

N "c, m

NR, m



Text
ReferenceDefinition

(N)n

n

nth

NL

NUMPOZ

NUMSPA

POWERD

n sp

P1P1

PC

P u

p PL
or
PTOT

1-p C54

PL(M)

(1-p) C11

Row (or first) index for
Crout reduction.

Neutron density.

Thermal neutron density.

Epithermal neutron density
(total less thermal).

Number of mesh points.

The number of flux-time
points at which nuclide con-
centrations are calculated
(including the zero flux-time
point).

The spacing in the above
points for a flux-time fit;
see definition of f.

Average power density in
the core.

Fast non-leakage probability.

Initial resonance escape
probability for structural
and coolant material.

Thermalization probability
for normalized radius u.

Total resonance escape
probability.

Resonance fission probability.

Resonance escape probability
for nuclide m.

"Resonance production"
probability.

IX. B.

IV. A. 1.

V. B. s

V. B. 2.

(4. 158)

IX. D.

IX. D.

(4.78)

(4.31)

V. A. 2.

IV. A. 2. 2.

(4. 102)

(4. 100)

(4.7)

(4. 101)
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Text
Symbol

Fortran
Symbol



Text
Symbol

Q

Moderator temperature,

Fortran
Symbol

(4. 2)

T 1/2
0

Td /

t

t L

T

TL

Conversion variable for
velocity normalization.

Time.

Lease charge time for en-
riched uranium excluding
the time spent in the reactor.
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Definition

"Source" matrix in flux-
shape iteration.

Slowing-down density just
below the fast fission group.

Slowing-down density per
unit thermal flux.

Radius of core.
Reactivity-.change ratio
Radial index.

Radial length from origin.

Reprocessing rate.

Read-in time for FUELCYC.

Radial length from origin.

Flux ratio.

Square root of x.

Westcott factor for epi-
thermal absorption.

Number of passes through
spacial subroutine (SPACE2).

Temperature.

Room temperature, 293. 60 K.

Text
Reference

(4.55)

(4.23)

(4.34)

IX. C. 18.
(6.18)
(4.36)

IV. A. 2. 2.

(4. 129)

(4. 158)

Fig. 4.4

(4.68)

IX. A. (6)

V. B. 2.

(4. 158)

IV. A. 1. 1.

IX. C. 9.

q

QOPHI

c. r.
R

(I)

R

R
R.
r

r

r

r

r'

S

s

s

s

T

'I0

Tmd

IX. C. 9.

(4.58)

(4. 142)



Text
ReferenceDefinition

TR (4. 142)t R

tv

t W

TV

Text
Symbol.

Fortran
Symbol

Average time the fuel spends
in the reactor if operated at
full power (on stream time).

Time per unit volume, or in-
verse volumetric flow rate
constant, for Inout and Outin.

Working capital charge time
excluding reactor time.

Lethargy.

Normalized radius, r-r--1/2

Neighbor mesh point identi-
fication index.

Velocity normalized to v :

fEN

Volume fraction of fuel in the
core.

Volume fraction of moderator
(1 - V-)..

Volume of region (r, z) (nor-
malized to V 1 = 1).

Neutron velocity.

Velocity of 2200 m/s.

Weight of required material
upon which unit cost i is based
to the weight of fuel entering
the reactors(ratio of).

Term used in above weight
ratios that is proportional to
the weight of fuel fed to the
reactor.
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IV. A. 1.

(4. 104)

(4. 105)

(4. 146A)

(4. 143)

IV. A. 1. 3.

(4.17)

(4.39)

IX. 6. 7.

(4.8)

(4. 8)'

(4. 146A)

IV. A. 1. 2.

TW

u

u

u

v T V

VFLV f

V md

V r C13(I)

v

v
0

W. W(I)

W d WD



Definition

WFL

Text
Reference

(4. 129)

X

x

Weight of fuel fed to the reactor.

Excess absorption term for res-
onance region due to the higher
value of the average moderator
flux to that of the fuel-moderator
interface.

Velocity normalized to that
corresponding to kTmd

(E/kTmd)1/2

Weight fraction of U235 in the
feed for the UF6 diffusion
cascade.

Weight fraction of U235 in
product UF 6 '

Optimum weight fraction of
U235 in the waste stream from
the diffusion cascade.

Flux per unit velocity, dt/dx.

Modified Y term used in solu-
tion of Wilkins equation

(x- 3/Z ex/2 y(x))

Fission yield.

Designator for axial symmetry.

Axial index.

Axial length from origin.
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Text
Symbol

Fortran
Symbol

IV. A. 1. 3.

(4.2)

(4. 120)

(4.119)

(4. 119)

(4. 1)

IX. A. (3)

(4.92)

IX. D.

(4.36)

X

xF

x P

x 0

XP

XO

Y(x)

y(x)

Y(I)
or

DPDX(I)

Y(I)

y

Z sym

z

ZSYM

(J)

z I Fig. 4.4

I

1,01" 41



2. Greek Letters

Fortran
Symbol

ALPHA(M)

GAMMA

4

662

DELH

DELR

6i.

Text .
ReferenceDefinition

Average ratio of capture cross
section to fission cross. section
for nuclide m in the resonance
region.

Beta particle decay.

Eigenvalue for flux-shape
iteration.

Net thermal efficiency.

Gamma ray.

Spectrum parameter for
Wilkins Equation; 4 1 A(x).

Small increment.,

Central difference operator.

Axial extrapolation distance
to zero flux (axial reflector
savings when only core
regions are specified).

Radial extrapolation distance
to zero flux (radial reflector
savings when only core
regions are specified).

Print option designator.

(IV. A. 3)

IV. A. 3.

(4.59)

(4. 103)

IV. A. 3.

(4.5)

IX. A.

IX. E. 3. 3.

(4. 49)

(4.47)

(4. 158)

IX. B. (11)Option designator.

Fast fission factor.

Spacing in flux-time.

Fission neutrons produced
per resonance absorption in
nuclide m.

360

Text
Symbo 1

P

Y

Y

Y

6(k)

EPSI

ZETA

ETA(M)

(4. 23)

IX. C. 14.

(4. 101)



Fortran
Symbol

THETA
or TH

THETAC

THE TA(I, T)

THETAL(I, J)

XELAM

ALAM Il

AMU

AMUV

ANU(M)

SDP

p

SIGMA

(1J - 1Xe ) SIGMAl

Definition

Flux-time.

ec

Text
Reference

(4.81)

r, z

r, z, L

Text
Symbol

e

Flux-time of central axial
portion of fuel.

Flux-time of fuel in region
(r, z).

Flux-time of fuel leaving
region (r, z).

Reciprocal diffusion length.

Beta-decay constant of
Xenon,

Beta-decay constant of PuZ41.

(1/v) times the inverse
reactor period.

Spacing in x velocity (6x).

Spacing in vT velocity (6vT
0 0

Neutrons produced per fission
in nuclide m.

Average logarithmic energy
decrement.

Slowing-down power.

Convergence factor.

Macroscopic cross section for
thermal absorption excluding :
control poison, iwhen not other-
wise subscripted.

Macroscopic fast removal cross
section.

Macroscopic thermal absorption
cross section for the fuel ex-
cluding Xenon absorptions.
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(4. 146B)

(4. 150)

(4. 148)

(4.15)

(4. 91)

(4.87)

(4.57)

IX. A. (5)

IX. C. 7.

(4. 99)

(4.8)

(4.4)

(4.71)

(4.27)

(4. 22)

(4.97)

K

Xe

X 1

'4.

ILv

v



Text
Symbol

w

VI; f

Fortran
Symbol

SIGMAW

C10

C53

EXe, max

m

rFP

i' m

SGXEMX

SIG(M)
or CSF2

SIG(7)

SIGX(I, M)

Definition

Macroscopic thermal absorp-
tion cross section for control
poison.

tThermal production" cross
section.

Macroscopic thermal fission
cross section.

Maximum nacroscopic Xe
cross section (high flux).

Average thermal microscopic
cross section for nuclide m.

Average cross section for low
cross section fission product
pairs.

Microscopic cross section for
nuclide m at velocity, v T
step 1. o

Text
Reference

(4. 27)

(4.99)

(4.98)

(4.92)

(4. 82)

(4.90)

IX. C, 7.

Fermi age. IV. A. 2. 2

Thermal neutron flux.

Thermal disadvantage factor

(md/f'

Resonance disadvantage
factor for nuclide m.
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T TAU

PHI or
FLFZ

+

* m

PSI

PSIl(M)

(4.27)

IX. C. 8.

(4.7)



3. Subscripts

Fortran
Symbol Definition

Text
Reference

(4. 146B)Central value.

See pC'

Cost.

See Pd' Wd'

Epithermal.

See CE.

Effective value.

See CF'

Fission products group having
cross sections less than
10, 000 b.

Table D3.

IV. B. 2.

(4.8A)

(4.90)

Fission.

See Cfb'

Fuel.

Velocity index, x or v
T0

b index.

Cost set index,

Diagonal or second index
for Crout reduction.

Lagrangian coefficient.

Last (i. e, final) value.

See tL'

Nuclide index.

Maximum value.
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Text
Symbol

c

c

C

cst CST

d

e

E

eff

F

FP (7)

f

fb

ff

k

(4.98)

FL

(I)

(J)

(J)-

(K)

Lag LAG

L

L

L

(4.8)

IX. A(5)

IX. A.

IV. B. 2.

IX. B.

IX. C. 23.

(4.47)

IV. A. 3,

(4.92)

(M)

max



Text
ReferenceDefinition

Moderator.

See Cmt'

See FN'

md

mt

N

n

nat

P

See frecy'

See Crp'

Samaiium group of fission
products with cross section
greater than 10, 009 b ex-
cluding Xe 135.

Scattering (for cross
sections).

Thermal.

See nsp'

See v

Neighbor mesh point ident-
ification index.

See tv.
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Text
Symbol

Fortran
Symbol

Row (or first) index for
Crout reduction.

See fnat

Product (UZ35), see C
and xy.

Recycled (in Nm, R)

See tR*

Radial index.

N

(N)

(4.8)

IX. B.

R

R

r

P

R

R

()

(4. 119)

IV. B. Z.

r ecy

rp

Sm

RECY

SM

(4. 36)

s

th

sp

T
0

SP

(4. 93)

(4.4)

IV. B. 2.

u

V

(4.39)



Text
ReferenceDefinition

See '

W

w

Xe

z

365

Fortran
Symbol

V

Text
Symbol

v

W

W

XE

(J)

Working capital.

Control poison.

Xenon 135.

Axial index.

Flux-time step.

Flux-time.

2200 m/s value, v0 T .

Seex

Fast group index.

Fast fission terms for U238

('8-1'48' YXe, 8'1 YSm, 8)

Fission terms for U235 (rf, 5

v5' t5'15' ke, S' osm, 5.

Fission terms for PuZ39.

Fission terms for Pu241.

U235 (other than fission
terms).

U236,

Low cross section fission
products.

U238 (other than fast fission
terms).

Pu239 (other than fission
terms).

Pu240.

0

1

8

5

9

11

5

6

FP

(4. 143)

(4.27)

(4. 92)

(4. 36)

IX. C. 14.

IX. C. 14.

(4. 22)

IV. A. 3.

IV. A. 3.

11

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

8

9

10



Definition

PuZ41 (other than fission
terms).

Pu242.

Text
Reference

IV. A. 3.

i

4. Superscripts

Effective value, see I .

Value for ith iteration.

2ZOO m/s value.

Initial value,

To distinguish a length
from an index, see z'.

To distinguish the true
value from the approximate
value.

IX. E. 1.

(5.9)

IV. B. 2.

IX. E. 3. 2.

Infinite dilution value,

see I .In

Effective cross
ZZ00 mi/s flux.

section for

366

Text
Symbol

Fortran
Symbol

11

12

(11)

(12)

eff

(i)

0

0

A (5.20)

I
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