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I. ABSTRACT

FUEL CYCLES IN NUCLEAR REACTORS

Raymond T. Shanstrom, Manson Benedict, and Charles T. McDanial

A new IBM 704 computer code, FUELCYC, has been developed for
studying the effect on the fuel cycle of different methods of scheduling’
replacement of fuel and movement of control poisions. Four alternate
fuel scheduling methods have been built into the current code and provision
is made for the addition of other methods. The fueling techniques avail-
able in the current code are: 1) "Batch," the replacement of the entire
fuel charge at one time, with uniform control poisoning during the irra-
diation; 2) "Inout," the progressive shifting of fuel rods from inner posi.
tions to outer positions; 3) "Outin," the progressive shifting of fuel roda
from outer positions to inner positions; and 4) "Graded," the periodic
replacement of the most irradiated fuel rod among different local roups
of rods. .

FUELCYC is designed for the study of fuel cycles in large power reag»
tors with azimuthal symmetry, which are fueled with U235, U238 and '
the higher nuclides in their irradiation chains. It is a two-dimensional
code in which neutron leakage occurs from two energy groups and
neutron absorptions are allowed in the thermal group and also in one of
four resonance groups for each fuel nuclide. Local properties are
homogenized into cells,

FUELCYC calculates the criticality factor, the flux distribution, the
power density distribution, the burnup, the fuel cycle cost, and other
properties during the life history of the fuel, taking into account the .
buildup and decay of nuclides in the fuel irradiation chains. An iterative
method for solution of the flux distribution has been developed which
converges even for very coarse mesh spacings, and allows a typical
fu;el cycle problem to be solved, with good accuracy, in from three to five
minutes. ‘

The code has been compared with experimental data for the irradi-
ation of natural uranium metal in the NRX reactor. Excellent agreement
was obtained with a plutonium isotopic analysis when the base valye for
the Pu240 disadvantage factor, in the FUELCYC input data, was normal«~
ized to experimental data. Fair agreement was obtained with the experir»
mental measurements of reactivity, within 0, 6% &k/k, for irradiations up
to 3000 MWD/ton. The comparison of the FUELCYC calculations with the
experimental data suggested several changes to improve the agreement.
These are: :

1) a reduction in the value for the Sm 149 yield from U235 fissjon



from the conventional value of 1.15%to 0.8% The proposed value is in
agreement with a measurement by Littler, L23, of 0.9 %0, 2%.

2) afew percent increase in the value of the ratio og(ng - 1)/
"5("‘5 - 1) over that of the "World Consistent Values"

3) a few percent reduction in the cross section of Pu239 as
calculated by FUELCYC at high flux-times due to self shielding in the
0,3 ev resonance. .

The effect of the above changes was calculated for the longer irra-
diations of interest for power reactors, It was found that the effect was
small and therefore, (on the basis of this experimental check) that the
FUELCYC calculations can be relied on for prediction of the composition
changes and reactivity changes for fuel cycle studies in power reactors,

It was found that the flux and power density distributions in an irra-
diated reactor core are grossly different from that of the uniformly
loaded core, and that this has an important effect on the calculation of
burnup and costs. A simpler code which assumed a time-invariant
chopped-cos, chopped-J o thermal flux distribution gave values for

average burnup which were approximately 25% lower than those of
FUELCYC.

FUELCYC was used for a study of the effect of different methods
of fuel scheduling for variations in the initial U235 enrichment in a
pressurized light-water reactor similar to the one being developed
by Westinghouse Electric Corporation for Yankee Electric Company.
It was found that Outin fuel movement was particularly attractive
economically. This is because "Outin" gives a high ratio of average
to maximum burnup, which is desirable in increasing the total power
output of a given charge of fuel, and it also gives a low ratio of maximum
to average power density, which would enable the core to be operated
at high power. High power operation reduces both the fuel cycle cost
and the capital charges. Graded fuel scheduling is also attractive, but
Inout produces prohibitively high flux peaking.

The trend of the fuel cycle cost with variations in burnup gives
incentive for the development of fuel elements which can withstand
average burnups of from 20-25,000 MWD/ton and maximum burnups
from 30-40,000 MWD/ton. If burnups of this order could be obtained
the fuel-cycle cost in the pressurized light-water reactor could be
reduced to 3.5 mills/kwh for simple Batch irradiation and 2.5 mills/kwh
for the Graded or Outin fuel scheduling methods. »



II INTRODUC TION

Fuel cycle analysis is concerned with the changes that occur in the
properties of nuclear fuels and nuclear reactors during long term irra-
diation. The properties that are of greatest interest are: the burnup
attainable from a given charge of fuel, the excess reactivity produced,
and the power density distribution. Fuel cycle analysis is also concerned
with the cost of fuel and of the processes to which fuel is subjected before
and after irradiation in the reactor. A typical fuel cycle: study involves
the following steps: 1) the choice of fuel material, where fuel is used to
mean both fissionable and fertile materials; 2) evaluation of the costs
involved in the "purchase" of the fuel and in the fabrication of the fuel
elements (or for a homogeneous reactor, the preparation of the fuel
slurries or solutions); 3) selection of the method of fuel scheduling,

i.e., whether to replace the entire charge fuel as a single batch or to
replace a portion of the fuel at more frequent intervals, and whether to
leave the fuel in one place in the reactor or periodically to ishift the posi-
tion of partially irradiated fuel elements; 4) calculation of the changes in
composition of the fuel during irradiation; 5) calculation of the criticality
factor without control poison, the flux distribution, and the power density
distribution periodically as the irradiation progresses; 6) choice of the
method of control of the reactor so as to maintain criticality during the
irradiation; and 7) evaluation of the costs involved in the reprocessing or
in the disposal of the spent fuel and in the "sale" or recycling of the
fissile material.

It can be seen that in principle the part of fuel cycle analysis dealing



with changes taking place in the reactor involves nearly all of nuclear
reactor statics theory. In practice, simplifications are made by limiting
consideration to certain reactor types and, by assuming that certain
properties of the reactor remain constant during irradiation of the fuel.
In reality, a measure of the refinement of a fuel cycle calculation method
is its lack of assumptions of time-invariant properties.

Many of the fundamental characteristics of fuel cycles can be deter-
mined by calculation of the composition changes that occur in a local
section of fuel as it is irradiated. If neutron leakage is assumed to be
constant, reactivity changes can be obtained from the calculation of cross
section changes. This method is usually referred to as the constant-flux,
or zero-dimensional, approximation, and was used in basic papers by
Dunworth, D10; Lewis, L20; Spinrad, Carter, and Eggler, S6; and
Weinburg, W7. Benedict and Pigford, B4, have published a very .
comprehensive discussion of fuel cycles using this model, and consider
not only batch-irradiated, uranium-fueled reactors but also plutonium
recycle, methods of fuel scheduling, and thorium breeders. |

This zero-dimensional model was still used for most of the fuel
cycles papers presented at the Second Geneva Conference on the Peaceful
Uses of Atomic Energy although considerable refinements had been made
in other aspects. Greebler, Harker, Harriman, and Zebroski, Gl1, took
into account the energy spectrum of the flux and depression of the flux in
cylindrical fuel elements. (The energy' model proposed by Greebler et al
was adopted in part for this work.) Pigford, Benedict, Shanstrom, Loomis,
and Van Ommeslaghe, P3, treated spatial non-uniformity of the flux by

perturbation methods, assuming a time-independent chopped-cos,

4



chopped-J0 flux distribution for various fuel scheduling methods in both
uranium and thorium reactors, and considered the recycle of plutonium
and of U233. Feinberg, Antsiferov, Katkov, Komissarov, Levina,
Nicolsky, Novikov, Osmachkin, Stolarov, and Shevelev, F2, also
considered various fuel scheduling methods and applied the heterogeneous
method to the calculation of fuel burnup.

Spatial variations in the flux distribution during the irradiation
history are important in fuel cycle calculations; however, there has
been little work published in which these variations were considered.
One-dimensional fuel cycle calculations have been made for different
fuel scheduling methods by Minton, M7, and for initially non-uniformly
loaded cores and for different control rod programming techniques by
Graves, Arnold, Eich, Minton, and Wolf, G15, using various Westing-
house IBM 704 computer codes, namely: thé zero-dimensional burnup
code CAP-1; the one-dimensional, few-group, diffusion-theory, criti-
cality code WANDA; the one-dimensional fuel-cycle code MERLIN, which
is a combination of CAP-1 and WANDA; the one-dimensional, few-group,
diffusion-theory, criticality and burnup code CANDLE; and the twop
dimensional, few-group, diffusion-theory, criticality code PDQ. Mention
should be made’of a: British two-dimensional fuel cycle study for Batch
irradiation; that of Hitchcock, Price, and Shenton, H11, performed on
the Eliott 402 digital computer. The operable two-dimensional computer
codes in thé U.S., except for FUELCYC, are primarily designed to
calculate criticality. The KAPL IBM 704 code cystem CUREBO, Alé6,
however, has an additional option allowing depletion of a single fission-

able nuclide in each core region, but no buildup of higher isotopes

5



is accounted for. More elaborate codes are under development at various
laboratories; the most elegant of these is the three—difnensional
Monte Carlo and diffusion theory, criticality and burnup code RBU for

the IBM 709 computer, which is being developed by Leshan, Burr,
Morrison, Temme, and Thompson of American-Stahdard and by Tripleft
of Hanford Laboratories, L26.

As the interest of different power reactor design groups has settled
on particular reactor types, more emphasis has been placed on fuel
cycle variations in order to optimize the operation of these reactors.

The FUELCYC computer code has been developed specifically as a tool
for the solution of these fuel cycle problems. The attempt has been made
to develop a code which will be of general applicability to many reactor
types with the emphasis on large power reactors. | _

Implicit in the effort that has gone into the code is the faith that these
power reactors have a future in the competitive power market. This
economic breakthrough seems certain eventually due to the abundance
of potential nuclear fuel and to the rapidity of the dissipation of fossil
fuels. * The question of how soon the breakthrough can be made is up to
the ingenuity of the reactor designers. Since reactors can be expected to
cost ‘more than fossil-fueled boilers for some time, a requirement for
economic nuclear power is a reduction in the cost of the nuclear fuel

cycle. It is hoped that FUELCYC will be of some use in the development

*Baumeister, B3, estimates the total world energy reserves of
uranium and thorium assuming full utilization of fertile as well as
fissionable material to be twenty-five times that of fossile fuels. Davis,
D2, estimates that the usable U.S. fossil fuel reserves will be exhausted
within fifty years.



of a nuclear fuel cycle that will do this.
This work has been carried out under the M.I. T. Fuel Cycles Project,
AEC Contract No. AT(30-1)-2073 which was initiated at M.I.T. in

September 1957.



III SUMMARY

A. SUMMARY OF THE CALCULATIONAL PROCEDURE

1. FUELCYC Code

A new fuel-cycle code, FUELCYC, has been written for the IBM 704
computer. This code computes the distribution of neiitronflux with re-
spect to energy and position in the reactor, derives effective cross sec-
tions for each nuclide at each point in the reactor, uses the flux and
effective cross sections to project the change of nuclide concentration
at each point with time, ‘determines the conditions under which the reac-
tor is just critical, and evaluates fuel-cycle costs.

The physical model for FUELCYC is two-dimensional diffusion theory

in an axially- sy-mmetri‘c cylinder. Four major energy groups are treated:

fast fission, fast, resonance, and thermal, with the resonance group . ... =

further divided into four sub-groups. Leakage is assumed to occur in
the fast and in the thermal group, and each fuel nuclide is assumed to
absorb neutrons in one of the resonance sub-groups as well as in the

thermal group.

2. Fuel Scheduling Methods
Four methods of charging and discharging fuel have been written into
the code:
(1) "Batch" irradiation of fuel fixed in place in the reactor, with
control poison distributed uniformly throughout the reactor.
(2) "Inout" irradiation, in which fuel rods are moved from the
center of the reactor to the periphery, with no control poison and with

the reactor just critical.



(3) "Outin" irradiation, in which fuel rods are moved from the
periphery of the reactor to the center, with no control poison and with
the reactor just critical.

(4) "Graded" irradiation, in which fuel rods, fixed in place in
the reactor, are discharged individually and replaced by fresh rods on
such a schedule that the average composition of fuel in each region of
the reactor remains time—independent and the reactor, with no control
poison, remains just critical.

Provision is made for writing into the code other methods of charging

and discharging fuel and managing control poison.

3. Nuclear Data
Nuclear data presently written into the code comes principally from
the following sources:

(1) The dependence of cross sections of non 1/v absorbers on
energy is represented by a series of equations of the Breit-Wigner form,
with parameters recommended by Westcott, W1l. Cross sections at
2200 m/sec from these equations are consistent with BNL-325, 2nd edition,
H29.

(2) Cross sections of other nuclides and neutron yield data have
been taken from BNL-325, 2nd edition.

(3) Yields and cross sections of fission products are calculated

from Walker's report, W4.

4. Limitations of Code
The code is limited in applicability to:
(1) Reactors sufficiently well moderated to have the majority of
fissions caused by thermal neutrons.
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(2) Large reactors, in which thermal leakage is small compared
to thermal absorption.

(3) Reactors with azimuthal symmetry.

(4) Reactors in which the spatial variation of flux and nuclide
concentrations may be adequately approximated by specification of
values in 200 regions, 10 radial by 20 axial.

(5) Homogeneous reactors or heterogeneous reactors whose
lattice properties may be represented by an equivalent homogeneous
reactor.

(6) Reactor fuel consisting of any mixture of U235, U238 and
their irradiation products.

All of the large, uranium-fueled power reactors under development
in the United States at the present time, except the fast Enrico Fermi

reactor, meet these conditions and may be handled by this code.

5. Objectives of Code

Development of this code has had as its objectives the reliable pre-
diction of fuel composition, reactivity changes, flux and power-density
distributions, reactivity lifetimes, and fuel cycle costs without calling
for excessive amounts of computer input data or computer time.
FUELCYC requires an IBM 704 computer with a 32, 7‘68—word fast
memory and two magnetic tape units. Calculation of the above fuel
cycle properties for fuel of a specified initial enrichment in a fifty

region reactor uses about three minutes of computer time.

6. Outline of Steps in Code

The computation séquence followed by the code is as follows:

10



(1) For a fuel of specified composition, the energy distribution
of neutrons below 0.45 ev is computed by a fifth order difference solu-
tion of the Wilkins eqﬁation, H24.

(2) From this energy distribution, and the dependence of cross
sections on energy which has been written into the code, effective thermal
cross sections are computed.

(3) Absorptions at resonance energies are computed by the stand-
ard resonance escape probability formulation, using experimentally
determined effective resonance integrals for U238 and Pu240 and infinite-
dilution resonance integrals for U235, U236, Pu239, Pu24l and Pu242.

(4) The change of nuclide concentrations over the first flux-time
interval is computed by solving the differential equations ex}iressing EARN
nuclide material balances by a fourth-order Runge-Kutta-Gill technique.

(5) The neutron energy spectrum and effective cross sections of
fuel at the end of the first flux-time interval is computed by a repetition
of steps (1), (2) and (3).

(6) The change of nuclide concentrations over the second flux-
time interval is computed by a repetition of step (4). This process is
repeated until the entire flux-time interval of interest is covered.

(7) The concentration of each nuclide and certain functions of
these concentrations which appear in the r;eutron balance equation are
represented by polynomials in flux-time.

(8) The neutron balance equation in each region of the reactor is
expressed as a linear difference equation in the flux in the region in ques-

tion and the four adjacent regions. Parameters in the equation are

functions of the nuclide concentrations and effective’cross sections, both

11



of which depend on the flux-time to which the fuel has been exposed,
which depend in turn on the flux distribution in the reactor and the pre-
vious history of the fuel.

(9) The procedure for solving this set of neutron-balance differ-
ence equations will be outlined for the batch irradiation case. At time
zero in this case the reactor is assumed to be charged with fuel of spec-
ified uniform composition. A value for the uniform concentration of
control poison which makes the reactor critical is computed. The set
of linear, second-order difference equations for all regions of the reac-
tor is solved for the relative thermal-neutron flux distribution by an
iterative technique employing the Crout reduction procedure.

(10) A criticality factor for the entire reactor, defined as the
ratio of the over-all production rate of neutrons to the over-all consump-
tion rate excluding control poisons, is computed.

(11) A time step is then taken, the new flux-time in each region
of the reactor is determined, functions of the nuclide concentrations at
this flux-time are evaluated from the polynomials (7), and a new set of
neutron balance difference equations for each region of the reactor is
written.

(12) A new control poison concentration is computed and the set
of difference equations is solved by iteration as in step:(9) to find the
new relative flux distribution.

(13) Steps (10), (11), and (12) are repeated until the reactor is
just critical without control poison.

(14) The average composition of spent fuel is determined by

averaging local concentrations, using the polynomials (7).
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(15) The cost of the fuel cycle is determined from the weight and
composition of a charge of fuel, the time it spends in the reactor, and
the composition of spent fuel (14).

For the other methods of charging and discharging fuel a repeated
iterative solution of the neutron-balance difference equations somewhat
similar to steps (9)-(13) is carried out, to find the rate at which fuel of
a specified initial composition may be moved through a reactor just

critical without control poison.
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B, SUMMARY OF IMPORTANT RESULTS

- 1. Comparison with Experimental Data

FUELCYC results were compared with experimental data for natural |
uranium samples irrédiated in the NRX reactor, Cdmparison was pos-
sible for build-up of,ﬁlutonium‘isotopes and fgr reactivity changes of the
samples with irradiation. The available experimental measurements

were for irradiations of less than 3000 MWD/ton. (Reference Cl1)

1.1, Comparison of the Plutonium Content in tfl_g ERX Samples with

FUELCYC Calculation‘s. Results of one isotopic analysis were available

for the relative amounts of plutonium nuclides in an NRX sample, which
had been irradiated to a flux-time (for 2200 m/s flux) of 0,63 n/kb, This
is equivalent to about 2500 MWD/ton. The experimental results are

compared with those those of FUELCYC in Table 3, 1.

Table 3.1 Isotopic Composition of Plutonium in an NRX Sample
Irradiated to 0. {33 n/kb, Comparison of Experimental
and FUELCYC Values.

Isotopic Composition, %

Measured
Isotope | (Mass Spectrometer) Rt{g'g%l* MT
Pu239 87.117 £ 0,052 87.22 87.30
Pu240 11,244 £ 0,051 11.19 10,72
Pu241l 1.521 £ 0,010 1.47 1.84
Pu242 0.118 + 0,005 0.12 0.14

# .
Zs’ £0 = 230, bifa

Zs, fl = 1160, bifa
14



The macroscopic scattering éross section* of the fuel, = 8,£0° is
used in computing the Pu240 disadvantage factor as recommended in
Reference C13. When the true value of 1160 bifa (Run NRX2) is used,
the agreement between the experimental results and the FUELCYC cal-
culations is fair. If the reduced value of 230, bifa is used (which in.
creases the Pu240 resonance disadvanfage factor from 1.2 to 2,0 at a
flux-time of 0, 6) the agreement is excellent for all nuclides. These
results are further discussed and compared with "blackness" theory
calculations in Section VI.B. 1,

1.2. Comparison of the Experimental Measurements of the Reac-

tivity of NRX Samples with FUELCYC Calculations. The reactivity of

NRX samples,. irradiated from 0.05 to 0.6 n/kb, was determined by
oscillator measurements in the Harwell GLEEP.

In these experiments the signal produced due to variations in the
neutron denasity by the alternate oscillation of irradiated and unirradiated
uranium fuel ﬁvas compared to that of a sténdard boron absorber. This
gives a Yreactivity change term," R, which is proportional to the change .
in reactivity of the irradiated sample from that of the unirradiated
sample., (The true reactivity change is related to changesin R by,
6p ~ §R/1600 if the units of R are bifa.)

The results for the comparison of these experimental meésurements

with the FUELCYC calculations are given in Tahle.3.2. Xenon~135.has

* The Canadian system has been adopted in which the units of micro-
'scopic cross sections are barns and in which nuclide concentrations are
normalized to the initial concentration of U235. This gives macroscopic
cross sections in barns per initial fissile atom, abbreviated as bifa.

: 0
(Zg, 10 % Ngg 7g, 10/N3)
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Table 3.2 Comparison of the Measured Reactivity of NRX Samples with
That Calculated in FUELCYC

Reactivity change term, R Flux-time (n/kb)
(bifa) 0.0 0.0822 |0.164 |0.246]0,411 |0.575
Observed in GLEEP 0.0 0.0 3.1 2.6 -4.3|~15.4

Calculated by FUELCYC

1. 15% yield of Sm 149 0,0 -5.5 -4.7 | -5.2 | =13.5|-21.7
0.80% yield of Sm 149 0.0 =-3.5 2.7 | -3.2 |-11.5|-19.7

Above case plus in- 0.0 0.0 3.1 2.6 | «4.3|-15.4
crease in R.c.r. of 6%
initially reducing to 2%
increase at a flux-time
of 0.575

decayed to a negligible amount by the time the measurements were
made, however, the measurements do include the Samarium group
transieﬁts. This causes an initial reduction in reactivity but saturates
at about 0.05 n/kb, Table 3.2 shows that values from the FUELCYC
calculations using the normal built-in data, which includes a 1. 15%
U235 fission yield for Sm 149, are from zero to nine bifa below the
experimental values for R. (The yield value of 1.15% was recommended
in Reference Cl1l.) This represents a reactivity difference of from zero
to 0. 6%. The behavior of the measured and calculated results at low
flux~-times indicates that the yield value for Sm 149 should be reduced to
0.8%. The latter value is in agreement with a measurement by Littler,
L23. Using the value of 0.8% improves the agreement by 2 bifa.

The curve is very sensitive to the following rat;o of Pu239 and U235
parameters. This ratio has been called the R.c.r., for reactivity

change ratio,
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8Ny og (ng - 1)

&N, o (ng - 1)

R.c.r = - (3.1)

where -6N9/6N5 is the initial conversion ratio (at zero flux-time). The
FUELCYC results can be forced to fit the experimental curve within the
standard deviations of measurements for the 2200 m/s values of the ¢'s
and n's ih Eq. (3.1). The change required to fit the experimental data is a
6% increase in R.c.r. initially reducing to a 2% increase at a flux-time of
0.575 n/kb.

’I‘he’most likely changes to bring the FUELCYC calculations into
agreement with the NRX experiméntal data appear to be:

1) Adoption of a U235 fission yield value for Sm 149 of 0.8%

2) An increase in the value of the ratioiog(ng - 1)/a5(115 -i1)
over that of the "World Consistent Values" for fission parameters.

3) A reduction in the value calculated by FUELCYC for the Pu239
cross section as flux-time increases due to progressive spatial selfs
shielding in its 0.29 ev resonance. ‘

2. Comparison with Results of a Simpler Code

FUELCYC calculations were comp;.red with those of a simplerr ‘code
. for Batch and Graded fuel scheduling. The simpler code was that used
in a former fuel—-cycle‘paber by Pigford et al, P3. The spatial model for
this "simpler" code assumed a time-independent chopped-cos, chopped-
J o flux distribution, where reactor average properties were calculated
from the qonstant-flux properties by perturpation methods. Average burn-
ups calculated by FUELCYC differed in some cases by as much as 25%
from those calculated by the simpler code. This difference is due to the
marked departure of the spatial distribution of neutron flux from a chopped=-

caos, chopped~J0 distribution when the fuel composition becomes non-

uniform.
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3. Fuel Cycle Study of Pressurized Light-Water Reactor

This fuel-cycle code has been aﬁplied toa pressurized light-water
reactor similar to one being developed by Westi.nghouse Electr}c Corpo-
ration for Yankee Atomic Electric Company (Reférence Y1), Fuel for
this reactor consists of slightly enriched UO, rods 0.3 inches in dia.-.l
meter and eight feet long clad in stainless steel. The total uranium
inventory of the reactor is 21,000 kgm. Its rated heat output is 480 Mw,
and the net electric output of the power plant is 134 Mw.

3.1 Qperating,Vari_able,s Considered. The principal operating

variables considered were:
(1) The U235 enrichment of feed to the reactor, and
(2) The procedure for scheduling ana recharging of reactor fuel,
The fuel scheduling procedures, (1) Batch; (2) Inout, (3) Graded. and
(4) Outin, described in Section III. A.2. above were the four procedures
studied.

3.2 Performance Characteristics. For each of thése fuel 'scheduling

procedures it was assumed that the reactor would be so operated as to
obtain the maximum amount of heat allowed by the initial excess re-
activity of the fuel. The principal performance characteristics of the
reactor under these conditions evaluated with the aid of the fuel cycle -
code were:

1)‘ The maximum local burnup experienced by fuel,

2) The everage burnup experienced by a complete chahge of fuel,
and

3) The ratio of maximum- to average power density in the reactor,

The maximum local burnup is important because radiation-damage
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considerations usually set an uppeij limit to the local burnup which can
be taken without distortion or rupture yofv fuel cladding serious enough to
interfere with safe operation of the reactor.

The average burnup isimportantybecause it sets the amount of heat

“and power which can be produced from a given quantify of fuel, It and
thé feed enrichment are the two factors with principal effect on fuel-
cycle costs. | |

The ratio of maximum to avefage power density is important becausae

of the critical effect of this variable on temperatures in the reactor and on
the maximum thermal power at which it may be operated safely. The
“higher this ratio, the lower the safe 'power level.

Table 3.3 summarizes the interrelationships found between these
operating variables and performance characteristics of the pressurized-
water reactor. Results have been tabulated as functions of the fuel~
scheduling method and the maximum local burnup. because these are
the two factors on which the reactor designer or operator is most apt
to wish to exe,rcise choice, \ 4

The first part of this .table shbws the feed enrichment needed to
permit attainment of the specified maximum local burnup for each of
the four fuel-scheduling methods. The enrichment increases nearly
linearly with burnup. Batch fueling requires the highest enrichment for
a given burnup because of the use of neutron-absorbing control poisons
during the early part of the batch cycle. None of the other three fueling
methods need control poisons, because their fuel composition remains
steady during irradiation. The small differences in enrichment needed

for the three steady-state methods are due to differences in fuel
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Table 3,3 Performance Characteristics of Pressurized Light-Water
Reactor for Various Fuel Scheduling Methods.

Fuel Sch'd. Method: Batch Inout Graded Outin
Max. Local Burnup . . Atom %U235.,in Feed:@ .
(MWD/ton)
10, 000 3.14 2,93 2.95 3.02
20, 000 3.58 3.17 3.20 3.39
30, 000 4.10 3.42 3.53 3.79
40, 000 4.71 3.70 3.88 4,20
50, 000 . 5.34 4.06 4.24 .
60, 000 6.09 . - .
.. Average. Burnup, MWD/ton:=. “i ..l(
, 10,000 4,200 7, 900 7,900 7,900
20, 000 10, 000 16, 300 16, 300 16, 300
30, 000 16, 800 25, 100 25, 100 25,100
40, 000 24, 200 34, 400 34,400 34,400
50, 000 32,200 44, 000 44, 000 .
60, 000 41,200 - " .
— Ratio of Max. to Avg. Power Density
10, 000 1.90" 3,28 2.54 1.80
20, 000 | 1.49° 4.20 2.39 1,47
30, 000 1.37" 5.16 2.30 1.38
40, 000 1.29" 6.17 2.23 1.35
50, 000 1.25 7.20 2.18 -
60, 000 1.23 - . .

‘ -*At end of batch cycle
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composition distributions.

The second part of the table shows.the average burnup attainible/from
a complete charge of fuel initially of such an enrichment as to permit
attainment of the specified maximum local burnup. The average burnup
attainable in the last three, steady-state fuel scheduling procedures at
a given maximum local burnup are equal and are much greater than the

average burnup attainable in batch irradiation. For a given maximum

local burnup important advantages for the steady-state fueling methods ¢ =.-..

compared with batch irradiation are:the higher average burnup attainable,
the lower feed enrichment needed, and elimination of control poison.

The ratio of average to maximum burnup increases as burnup increases, .
because of flattening of reactor flux in regions of high burnup.

The third part of this table lists the ratio of maximum to average
power density. In the case of batch irradiation the values are for the end
of the cycle; at the beginning of the cycle the ratio has the value 2.70
independent of burnup. The. Outin method of fueling has a great advantage
over the other steady-state fueling methods in having the lowest maximum-
to-average power density ratio.

.- 3.3 _Flux and Power-Densgity Distributions, Fig. 3.1 shows a two-

dimensional. contour plot of the initial thermal flux or power density
distribution for Batch fuel scheduling. The power density distribution is
inifia’lly the same as that of the flux since the fuel is loaded uniformly.
The initial distribution‘ is slightly more flattened than that of the familiar
chopped cosg-J o distribution due to the uneven distribution of equilibrium
Xe«135. |

Fig. 3.2 shows the flux and the power-density that would exist at the
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end of a Batch irradiation if the average burnup had been 23; 000 MWD/ton;

The point of maximum flux has shifted off the center line both axially and - ..

radially. It is apparent that the final flux shape has little resemblance
to a chopped GOS-’-JO distribution; The final power density distribution;is.f
even more distorted with the maximum shifted further outwards radial‘ly
than for the flux.

Fig. 3.3 shows the steady-state thermal flux and power.-density dis-
tributions for. Outin fuel scheduling for the same average burnup (23, 000
MWD/ton) as the previous Batch case. The distributions peak on the
axial center line but far out radially. The Outin method of fueling, how=
ever, gives considerably flatter distributions than those of the uniformily
loaded reactor (Fig. 3.1).

Similar plots are given for Graded and Inout fuel scheduling in
Chapter VI, Figs. 6.18 and 6. 19.

It is seen that the heat transfer characteristics of the core will be.
strongly dependent on the fuel scheduling method used and that this should
be taken into consideration in the initial core design.

3.4 Fuel Cycle Costs, Fuel cycle costs evaluated from the data of

Table 3.3 are listed in Table 3.4, for two operating conditions. In the
top half of the table, it has been assumed that the power level of the
reactor can be kept constant at the design value of 486 thermal Mw, no
matter how the power density distribution changes. In the bottom half of
the table it is assumed that the maximum power density remains constant
at the value of 190 kw/{ occuring at the beginning of the cycle in Bateh
‘irradiation., In actual operation of the reactor, conditions (and fuel

cycle costs) will probably fall between these two cases as extremes.
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Table 3.4 Fuel Cycle Costs for Various Fuel Scheduling Methods in
Pressurized Light«Water Reactaor.

Fuel Cycle Costs, mills/kwhe

 Fuel Scheduling Method: Batch  Inout  Graded:  Outif.

Max, Local Burnup, MWD/ton Constant Power Output of 480 tMw
10, 000 8.90 5.48 5.48  5.48
20, 000 4.95 3.52 3.52 3,58
30, 000 4.00 2.90 2,94 3.08
40, 000 3.62 2,62 2.68 2.86
50, 000 3.48 2.50 2.58 .
60, 000 3,48 . - .

Constant Max. Power Density of 190kw/%

10, 000 8.88 5.70 5.50 5.25
20,000 4.88 3.81 3.49 3.34
30, 000 3. 87 3. 41 2.88 2.78
40,000 3.44 3.36 2.59 2,51
50, 000 3.24 3.48 2.48 -
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Nothing more precise can be stated without detailed knowledge of the
reactor-cooling, steam-producing and power-generating systems, For
instance, if the output of the power-generating system is limited to 134 ,
ekw, it will not be useful to operate the reactor at more than 480 tkw |
even in theOutin case with its low maximum-to-average ratio, and costs
for this case will not be lower than in the top half of ‘the table. On the
other hand if maximum heat flux rather than maximum heat production
rate limits réactor operation, the costs of the bottom half of the table
are appropriate.

Both parts of the table show the striking cost advantage gained in
| having fuel eleménts which will permit local burnups of 30-40, 000
MWD/ton, no rhatter which fueling method is used. Beyond this burnup,
the apparent cost advantages are too small to offset possible operating
interruptions due to increased frequency of fuel failure, The cost
advantage of the Graded and Outin fueling methods compared with Batch
irradiation areklarge. Although the Inout method appears to have
important cost advantages for operation at constant power output; this
method is not practical because of the extreme non-uniformities in
power density cited earlier,

Table 3.5 show the contribution to overall fuel-cycle costs of each of
the principal components of the fuel cycle for batch fueling with four dif.
ferent feed' enrichments and burnups. The initial decrease in overall.
cost with increasing burnup is due to redﬁction in fabrication and re-
processing charges, which are rearly inversely proportional to average
burnup. The leveling off of overall cost and its ultimate slight increase

is due to the reduction in the plutonium credit and the increase in the
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Table 3.5 Principal Components of Fuel Cycle Costs in Pressurized
Light-Water Reactor, Batch Fuel Scheduling, 480 Mw

Heat Production.

% U235 in Feed
Avg. Burnup, MWD/ton
Max. Burnup, MWD/ton
Mills/kwhe
Uranium feed
Credi>t for U in spent fuel
Credit for Pu in spent fuel
Net material cost
Fabrication
Fuel reprocessing
UF6 leasé charge
Working Capital charges

Overall fuel cycle cost

4,38

5.59

3.44 6.45

8,650 20,500 35,400 45,400
17,900 35,000 53,300 64,500
7.71 4.36 3.37 3.09
-5.23  -2.17  -1.28  -1.02
-0.91 -0.70  -0.57  -0.51

1.57 1.49 1.52 1.56

1.94 0.87 0.54 0. 44

0.73 0.35 0.21 0.18

0.96 0.89 1.04 - 1,17

0.21 0.17 0.17 0.17

5.41 3.77 3.48 3.52
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UF, lease charge at the higher enrichments.

3.5 Cost Bases and their Consequences. The principal cost bases

used for the above fuel cycle costs are

(1) Uranium price as a function of enrichment from the AEC's
current schedule of UF6 prices’(Reference U5), tied to $39.27/kgmU for
natural UFG.

(2) Credit for plutonjum in spent fuel, $12/gm.

(3) Costs for mechanical fabrication of fuel, $90/kgmU.

(4) Cost for producing UF‘6 from the spent fuel from AEC's present
charges for this service (Reférence U6), approximating $25/kgmU for
. this reactor.

(5) UF, inventory lease charge, 4% of value per year, in ac-
cordance with present AEC charges.

(65 Interest charges on working capital tied up in initial fuels
fabrication expenses, 9%/year.

To illustrate the effect of changes in these bases, fuel-cycle costs

have been computed on the three different bases listed in the key of
Fig. 3.4 This figure shows the variation of overall fuel-cycle cost
with maximum local burnup for batch irradiation at a constant thermal
power of 480 Mw. Although the level of fuel cycle costs are quite dif-
ferent for the three bases, their trends with burnup are similar; the
optimum maximum local burnup is in the range of 30-;40,000 MWD/ton

for every basis.
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IV. CALCULATIONAL PROCEDURE

A. PHYSICAL MODEL

1. Energy Considerations
The nuclear events have been divided into four major energy groups:
thermal, resonance, fast, and fast fission; with the resonance group

further subdivided as explained in Section 1. 2.

1.1 The Thermal Cutoff Energy. The thermal group is character-

ized by the occurrence of collisions which increase the energy of the
neutrons as well as those which decrease their energy, so the upper
bound on this group should equal or exceed the cutoff energy for pure
slowing down. This cutoff energy depends on the hardening parameter
A, see Eq. -(4.‘5), as well as the moderator temperature, as shown by
Hurwitz, Nelkin, and Habetler, H24. On the basis of typical core
average values of A for different thermal reactors, the cutoff will fall
in the range of from 5 to 10 kT.*

For'many thermal reactors a cutoff energy of . 45 ev is sufficiently
high, since this is approximately 10 kT for 500° K and 5 kT for 1000° K,
and is also a convenient break point for the following three reasons:

1) This is within the energy region in which molecular binding

effects become important, C7, so as a first approximation it
can be considered that the scattering unit in the thermal region

is a chemically bound molecule and above thermal is a free atom.

ke o .
For a more exact value for a specific reactor, the reader is
referred to Fig. 11.6 given by Weinberg and Wigner in Reference W8.
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2) It is a convenient energy for separating thermal and fast effects
from an experimental standpoint since 0. 45 ev is approximately
the cadmium cutoff energy and is specifically the cutoff used by
Westcott, W11, in normalizing his resonance integrals.

3) This is near the low spot between the important Pu239, Pu24l,
and Pu240 resonances, and as such is a natural division line, as
can be seen by referring to Fig. 4.1, a superimposed plot of |
microscopic cross sections of the fuel nuclides as functions of
energy.

For reactors in which the thermal cutoff falls above 0.45 ev, the ther-
mal region should be extended as necessary, and resonance integrals

reduced accordingly.

1.2 The Thermal Spectrum. The energy distribution of the thermal

flux is dependent upon the degree of moderation, becoming progressively
more distorted from that of a Maxwell-Boltzmann as the ratio of ab-
sorber to moderator increases. Because of these flux shape changes,
it is difficult to prescribe a consistent method of hardening a Maxwell-
Boltzmann spectrum and blending in a. 1/E epithermal tail so as to yield
correct average cross sections. This has been discussed by Cohen,
Cé, for various mixtures of moderator plus 1/v absorber. The diffi-
culty is increased in the case of non 1 /v absorbers such as are present
in the fuel of a reactor, mainly due to flux perturbations introduced by
the resonances in the vicinity of 0. 3 ev. |

The results of several workers in the thermalization field point
towards the Wilkins distribution, in which the moderator is assumed

to behave as heavy monatomic gas, as an attractive model for the
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moderators of most interest, e.g., light and heavy water, graphite and
beryllium. This model is, of course, better for some of these modera-
tors than for others, but in any case should give better results than a
modified Maxwellian. The original derivation of the Wilkins equation,
by Wilkins, is unpublished; however, it has been rederived in published
work by Hurwitz, Nelkin, and Habetler, H24. In terms of Y, the flux
per unit velocity, and x, the normalized velocity of the neutrons, this

equation is as follows:

2
T e -3 F o+ 2 - ax®Am) +3] Y0 = 0 (4. 1)
dx
where,
E \l/2
X= (o= (4. 2)
kT,md)

v-2 (4. 3)
A(x) = Z(0)/(EZy) g | - (4.9)
A(x) = 4% A(x) ‘ : (4.5)

The single term A(x), the inverse moderating ratio of the lattice,
determines the flux spectrum. The term A is often used rather than
A in the thermalization literature dealing with 1/v absorbers since, in
this case, A is a constant. For high energies, i.e., large x, the
solution reduces to a 1/E flux per unit energy and for low energies, as
A(x) goes to zero, the solution reduces to a Maxwell-Boltzmann flux.
A description of the numerical method used for solution of Eq. (4. 1)
is given in Appendix A.

Criteria for the use of the Wilkins equation are that the atoms or
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molecules of the moderator which act as the scattering units have neg-
ligible binding to each other and that the square of the mass of these
units be large compared to one. For crystalline moderators the former
requirement restricts the use of the Wilkins equation to lattices with
small intra-crystalline binding. For light and heavy water moderators
the latter requirement restricts use to that energy region in which the
chemically bound molecule is the scattering unit.

~ Cohen and Nelkin, C7, state that chemical binding is important
below 1 ev and that below 0. 2 ev light water scatters with the effective
mass of 18, i.e., the mass of the water molecule. The mass of 18
for light water is recommended also by Brockhouse, Bl16. This would
indicate that the previously mentioned energy of . 45 ev is.a reasonable
one for a step change in scattering properties from that of the unbound
atom to that of the chemical molecule. H. D. Brown's Monte Carlo
thermalization studies for light water compare favorably with Cohen's
heavy moderator work and the similarity in behavior between his light
and heavy water results indicate that this would also be a reasonable
cutoff for heavy water, B20.

For light water it appears that the thermal spectrum is fairly in-
sensitive to the thermalization model, due mainly to the opposing vari-
ations of £ and o-s,which leaves the product, ({e s)e £ relatively con-
stant. The Wigner-Wilkins model for a moderator with a mass of one
is a possible alternate for light water, W13; however, Amster, A5,
and Poole, P4, have shown that the Wigner-Wilkins equation gives
fluxes which are lower than experimental in the 0.1 to 0. 3 ev region.

This is an important region because of the large resonances in Pu239,
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Pu241, and U235, and as such presents another argument for the use of
the Wilkins equation, since Greebler, G113 and G11, has shown that the '
Wilkins equation gives a better fit to Poole's experimental data than does
the Wigner+Wilkins, and particularly so in this 0.1 to 0.3 ev region.

Support for the use of the heavy-moderator model with crystalline |
moderators is given by Nelkin, N1; however, in later work, C7, he points
out that the spectrum in graphite will be somewhat more hardened than *
that of a heavy gas. In addition, de Sobrino's work, D12,leads one to expect
that Be should moderate similarly to a gas. It is thought, therefore, that
the Wilkins model will give satisfactory results for these two crystalline
moderators, but may require a reduction in the effective gzs term for
carbon to give increased hardening.

The values of A(x) obtained by homogenizing each fuel element with the
moderator region are used in Eq. (4.1) for an approximation to the average
energy spectrum in the fuel.* This average energy spectrum is calculated
periodically throughout the life history of the fuel element, and the thermal
cross sections for the fuel are obtained as averages over these spectra.

Resonance absorption by materials in the moderator region are taken
into account by using an effective cross section for these materials in the
thermal group. This cross section is assumed to be constant throughout
the life of the reactor. This effective thermal cross section is calculated
for the fresh fuel as the average over a hardened Maxwell.Boltzmann
thermal flux plus a resonance contribution. The thermal flux hardening is

estimated by the relationship,

sk
A more detailed description of the variation of energy spectrum
with position in the cell is given in Honeck's thesis, H.26.
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Tneutron = de (1 + .464A) (4. 6)

due to Coveyou, Bate, and Osborn, C10. In Eq. (4.6) A is calculated
as the homogenized cell value which gives the initial neutron tempera-«

ture in the fuel. The moderator cross section is then given by

=T
4-—"—9—-,.[.; - (4. 6A)

md  “md,o heiition

In calculating the neutron absorption rate in moderator materials, the
neutron temperature of the fuel region is used rather than that of the
mioderator region, because the neutron flux used throughout the code is
that of the fuel region, ¢;, = Neo Vegr .rather than that of the moderator
region, d:m 4= \pnflvm q ¢ is the thermal disadvantage factor, defined
as y = n. d/nfl' Neutron absorption by moderator materials is not
dependent on the choice of neutron temperature because of the assumed
1/v dependence of moderator cross section on velocity.

1.3 The Resonance Group. The resonance group accounts for all

absorption in the fuel other than that of the thermal group and, in the
case of U238, the fast fission group. This group is divided into sub-
groups in which absorptions occur in one or more of the fuel nuclides
and the slowing down density, q, is depleted by these resonance ab-
sorptions according to the energy sequence of the subgroups. Fig. 4.1
shows clearly the order of the main resonances in Pu240, Pu242,
and U236. The first and largest U238 resonance is seen at 6.7 ev,
but above this is a region not shown by Fig. 4.1 in which there are

multiple inseparable resonances in U235, U238, Pu239, and Pu24l.
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For this reason (and recalling that the resonances in the vicinity of 0. 3
ev have been included in the thermal group), four resonance subgroups
have been defined as follows, in order of decreasing energy: (1) éon-
current absorptions in U235, U238, Pu239, and Pu241l; (2) absorptions
in U236; (3) absorptions in Pu242; (4) absorptions in Pu240. A hand
calculation was made to check this assumption for a fuel mixture of
Pu239, U235, and U238 typical of discharge compositions in a light
water reactor irradiated to about 6000 MWD/tonne. Resonance absorp-
tions calculated by the above prescription were essentially identical
with results of a twenty-five group calculation using the Eyewash,
OCOSOL-A, group cross. sections.* Fig. 4.2 is a schematic diagram
of this energy model showing the neﬁtron balance.

In calculating fast leakage the age to thermal is used but it is
assumed that all this leakage, i.e., from birth.té.thermal, occurs prior
‘to the resonance region. The arguments for this assumption follow:

1) The main resonance absorptions are at relétively low energies.
Taking 2 Mev for birth, 10 ev for the mid resonance energy,
and .45 ev for'the thermal cutoff, one finds that 80 per cent of
the leakage occurs prior to 10 ev if leakage is assumed propor-
tional to the lethargy span (i. e., leakage proportional to DB; $
where ¢(u) and DB‘;are constant). '

2) The leakage prior to resonance is greater than that indicated by
the previous argument due to the decrease in scattering cross

sections at high energies. .

% .
See Reference Al3 for a tabulation of the Eyewash group constants.
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* (1-p) 5 is defined by Eqs. (4.’]01) and (4.10)
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. 3) We are concerned with the error involved in calculating the
resonance absorptions. The absorptions are proportional to q,
but for large power reactors the fast leakage causes only a few
per cent reduction in q from its initial value, so small errors
in leakage cause negligible errors in values for resonance
absorptions.

The flux is taken to be 1/E immediately above each resonance sub-

group and resonance escape probabilities are of the standard form:

N_I®
m m
p,=exp- |C,—F—— (4.7)
m |: 1 ¢1’m:|
where
Vv
£
C, =t~ — (4. 8)
1 g“"“s de

I;x is the infinite dilution resonance integral and "‘1, m is the epithermal
disadvantage factor for nuclide m. The disadvantage factors for the
calculations of this thesis have been taken as unity, except for U238 and
Pu240, for which shielding is important. 411’ 8 is assumed constant
throughout the life of the fuel and has been given a value such that the
resulting pg agrees with experimental data for the fresh fuel. qu’ 10 is
dependent on the concentration of Pu240 and is re-evaluated periodically
throughout the fuel's history using a simple approximation by Trowther
and Weil, C13, namely

00 00
In Niolio
~— o~ p— (4. 8A)
1,10 eff 2, ¢
St ,
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which they have shown to compare favorably with experimental data.*
Resonance absorption probabilities, denoted by <1 - pm> , are of
the standard form for U236, Pu240, and Pu242, namely:

Q- Py =(1-p) for m = 6, 10, 12 (4.9)

Because of the concurrence of their absorptions, the resonance absorp-
tion probabilities for U235, U238, Pu239, and Pu241 are of the following

form:

00
Nm Im

7
(1-p,) = Lm (1 - PgPgPoP; ;) (4. 10)

00

m=5,8,9,11 Y1, m

.- 1.4 ;Miscellany. The fast leakage region, as mentioned previously,
occurs above the resonance groups and is a domain of leakage and
slowing down only. The choice of one fast group for the slowing down
model is discussed in Sub-Section 2. 2 of Spatial Considerations. The
fast fission group is the normal one in which fast captures and fissions’

occur in U238.

*The standard form for the disadvantage factor for nuclide m, ¢ 1. m’

is,
Ioo
__m eff
q’l,m'leff [1 +XC1 Nm Im ]
m

In cases where the flux has negligible buildup in the moderator over that
of the fuel surface flux, the excess absorption, X, is zero and ¢ 1. m
reduces to,

o0
Im

eff
Im

q’l,m=
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2. Spatial Considerations

2.1 Homogenization. The model for the transport of neutrons

throughout the 'core is that of two-group diffusion theory. Fuel, mod-
erator, and other core materials are homogenized into cells according
to their relative volumes, with the thermal cross sections for materials
in the moderator region weighted by a disadvantage factor appropriate
for the fresh core. This is a simplifying assumption to avoid the
additional complexities and specificities involved in considering flux
changes within the fuel element. The change is not merely one of the
gross average cross section change during the fuel's history but also
involves such things as change in the energy dependence of the total
cross section and preferential building up of Pu239 towards the edge of
the fuel element. Consideration of these effects would in general re-
quire considerably more computer time, since a method more elab-
orate than diffusion theory is required for these local effects, and
would require consideration of specific shapes of fuel elements, both
of which are antagonistic to the purpose of FUELCYC. The most
elaborate treatment of these local effects is by the Monte Carlo

method in the I, B. M. 709 computer code RBU, L26. Anotk\ler approach
that has been used primarily for cylindrical fuel elements is that of
blackness theory; see S10, T2, Gll, Kll.

2.2 The Number of Groups. One fast group is provided to allow

transport of the neutrons in slowing down. The relationship of this
distribution to that of other slowing down models can be illustrated by
calculation of Pr’ the probability that a neutron born at the origin will

be thermalized within a radius r. Given the slowing down kernel, K(r), or

the probability per unit volume that a neutron born at the origin will
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be thermalized at r, we can obtain Pr as the volume integral of K(r).

P_= f 4n r? K(r) dr (4. 14)
r

The one group diffusion kernel, which is the model used in this
study, is,
K(r) = k e _ (4. 15)

which, replacing,:c‘z by L, its age equivalent, and substituting in

Eq. (4. 14) gives,

P =1 -e % (1+u) (4. 16)
where,
us=-— (4. 17)
T

In the limit of an infinite number of groups one obtains the Fermi

Age, or Gaussian, kernel, applicable to a heavy moderator:

2
r_
e°4T
K(r) = ——nr (4. 18)
(471’T) 3/2
which gives the non escape probability,
2
-
Puzerflzl--;—:_e 4 (4. 19)
m

with u defined as before.
Weinberg and Wigner suggest the single collision kernel as a rough
approximation for the slowing down kernel in water, W8, p. 402. This

is given by,
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1
(4. 19)
41rr2

K(r) =

The customary definition of the Fermi Age as one-sixth of the mean
displacement yields the relationship,

1

T= (4. 20)
3x2
which then gives for Pu’
_u
Pu=1-ew (4.21)

These three non-escape probabilities are plotted in Fig. 4.3, which
shows that the single collision kernel tends to concentrate the thermalized
neutrons more at short radii than does the Fermi Age kernel. The one-
group kernel gives an intermediate distribution which lends support to
its use as a general model for different moderators. It should be noted,
however, that a three-group model fits some experimental data for water
better than fhe single collision results, W8, p. 373, and the distribution
characteristic of this model would be between that of the one=group curve
and the Fermi Age curve in Fig. 4.3. In any case, the simplicity of

the one fast-group model is a strong argument for its use.

2.3 Development of the Condensed Two-Group Diffusion Equation.

Using the subscript 1 for the fast group and no subscript for the thermal

group we have the fast diffusion equation,
2 -
q+D1V ¢1-21¢1-0 (4. 22)
q/ € equals the combination of thermal and resonance production terms,
see Fig. 4.2,
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%:’ vEb +(q+ D1v2¢1) (1-p)n (4. 23)

where 7 is an average for the resonance group as defined by Eq. (4. 101).
~ When solved for q this gives,

e[vZ,4 + (1-p)n D, V% ¢,]

q= (4. 24)
1-¢€(l-p)n

. Substitution of (4. 24) for q into Eq. (4.22) yields the fast group equation,

CylevE o + D1V2¢1) -Z$, =0 (4. 25)
where,
1
C, = (4. 26)
1-€(l-p)n

Cz,is unity in the absence of resonance fissions.

The thermal diffusion equation is,
DV¥ ¢ - (E+ 3 )¢ +pZ 4 =0 (4.27)

where the portion of the thermal macroscopic absorption cross section
due to removable poisons, as control rods, is called ZW.

For large power reactors the thermal leakage is very small compared
to thermal absorptions which permits a convenient reduction of the two
diffusion equations to one. This is done as follows. Eliminaté 21¢1

between Eqs. (4.25) and (4. 27) giving
.DVZ ¢$-(Z+Z )¢ +pC,(evZeo + Dlvz ¢,) =0 (4. 28)

Solve Eq. (4.27) for ¢ 1 assuming that DVZ & is negligible in magnitude
comparedto(Z + Z W) ¢, which gives,

(Z+B)e

§>1 "y (4.29)

1
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Assumingz1 to be constant and replacinng/ = 1 by the Fermi Age,
T, we obtain the following equation in only the one unknown ¢ by sub-
stituting (4. 29) for 4’1 in Eq. (4.28). The result of this is the condensed

two group equation,

2 2 (Z + Zw) )
DV™¢ - (Z + Zw)qa + Czp evzfcp + TV — =0 (4.30)
which contains terms for both fast and thermal leakage within the single
equation. Finally it is useful to derive an expression for the fast non-

leakage probability, Pl’ which is defined by,

2
_a+ D Ve,
P, = q (4. 31)
Substituting (4. 24) for q gives,
2

€v2f¢ + DIV ¢1

P, = 3 (4. 32)
€[vE;e + (1-p)n D, V"¢, ]
or solving for the fast leakage term, -Dlvz ¢ 1

(1 -P,)evZ.¢

-Dlvz b, = 1~ f (4. 33)

1-P, €(1-p)n

finally, substitution of (4. 33) in Eq. (4. 24) gives the useful expression
for q in terms of Plz
€v2f ¢

q-= (4. 34)
1 -€P,(1-p)n

2.4 The Difference Form ofiheDEfusmn Equation. We wish to

consider reactor cores in which properties change from cell to cell in

a manner which is always complicated and often impossible to express
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analytically, such as the changes involved in the life history of the fuel
with the initial charging not necessarily uniform, so we cannot solve

‘ Eq. (4. 30) in its exact form. The approximation made is to assume
symmetry in the azimuthal direction and to replace Eq. (4. 30) by the
two-dimensional five-point difference equation for cylindrical geometry.
The core is divided by a mesh of grid lines running radially and axially,
and the difference equation approximation for the differential equation

(4. 30) is written for the flux, ¢ , at each point where these lines

r,z
intersect, commonly referred to as a mesh point. This gives a set of
‘n linear homogeneous equations for the n unknown fluxes where n is
the number of mesh points. This points.out the advantage of the single
‘#condensed two group equation®, Eq. (4.30), since solving the normal
‘two equations, Eqs. (4.25) and (4. 27), would have resulted in a set of
2 n difference équations for the n thermal and n fast fluxes. This is
an important simplification since the spatial solution part of the code
is the most time «consuming, the time required being roughly propor-
tional to the number of mesh points. Fig. 4.4 shows the system of
mesh point spacing and numbering for a typical (r, z) section through
the reactor.  Each mesh point is at the approximate center of the material
region that it represents. The point (r' = 0, z' = 0) is at the radial center
of the reactor, and also at the axial center if there is axial symmetry,
but at the end of the axis in the absence of axial symmetry (here lengths
are distinguished from the radial, r, and axial, z, indices by prime
marks).

In order to develop the difference approximation to Eq. (4. 30) con-

sider first the exact expression for Vz o(r, z):
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2 2
2 _ 9% ¢(r,z) . 19d¢(r,z) , 9~ ¢(r, 2)
Ve o(r, z) = e - (4. 35)

or

The five point difference approximation to Eq. (4. 35) with constant

radial spacing, g, and constant axial spacing, h, is:

vz¢ - <|>r+1,z B 2¢r,z + ¢r-1,z + ¢r+1,z - 4>r--l,z
rz g2 (2r - l)g‘2
¢ - 24 + ¢
4 Laztl ré, z r,z-1, o(gz) + o(hz) (4. 36)
h

or combining terms

1

2 1 2(r - 1) 2r
v ¢r,z= -2 ';'2_+'1:2' ¢r,z + gZ(Zr - 1) ¢r-1,z + gz(Zr - 1) cl°r+1,z

1

. 1 2 2
'}? ¢1",Z-1 +h—2-¢r’ z+1 + o(g ) + o(h ) (4. 37)

+

Applying this rule to Eq. (4. 30) we obtain the difference form of the

condensed two-group diffusion equation, at the mesh point (r, z), as,

d +d ¢ +d

r,z,l¢r,z+ dr,z,2¢r-1,z‘ r,z,3'r+l,z r,z,4¢r, z-1

+d bp gt o(g®) + o(h?) (4. 38)

r,Z,5 ¢r, z+1 - er, A

or to condense the nomenclature, and dropping the error terms,

$ (4. 39)

5
Y d b =e
u=1 ryz,u u r,z r,z

where u replaces the mesh point indices in the ¢ terms with the under-

standing,
when, . u is : then, the radial index is and, the axial index is
1 r z
2 r-1 Z
3 r+l Z
4 r z-1
5 r z+1
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Eq. (4:39), or (4. 38), is thé basic equation for the numerical solution
for the spatial flux-shape in which terms of second degree and higher
in g or h are neglected, and where each mesh point "feels" the flux
at its own mesh point and at the four neighboring mesh points, The

terms in Eq. (4. 39) are defined below:

®r,z ° e(Czvaf)r'z S(EAE ), ‘ (4. 40)
",C_iJr.z'u: -C3,r,z,uc4,r,z,u (4. 41)
where,
» T+ ,
Cor,zyu=PtTCPRy |5 Jpy v=h2nds (242
C =2 u=4,5 (4, 43)
3.r,z,u";;2' ’ =% '
2r

C B g (4. 44)

3,r,z,3 g2(2r - 1)
2(r-1)

C = (4. 45)
3,r,z,2 gz(ar - 1)

C =l c, -2)+4(C, =-2) (4. 46)
3,r,z,1 gz 7, r hz 8,z£ .46

" Terms of Eq. (4. 39) are omitted when their mesh points fall outside
of the material region being calculated, i.e., the core or reflector.
The boundary conditions are accounted for by the terms C7' r and C8, h
in Eq, (4.46). These terms are zero within the mesh and take values
at the border mesh points so that a straight line interpolation between
the flux value just within the material region edge and that at a pseudo
mesh point just outside the region gives the proper boundary condition
on the flux or current. Ir; the radial direction the boundary conditions

are that the current equals zero at the center and that the flux goes
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to zero at a radial distance S beyond the edge of the material region.

This gives for'C.?’ r

26, - g
- R 2r
c = | 4,47
‘7,rL (26R+g) 2r =1 ( )

-1) (4; 48)

C =0 ISrs(rL

In the axial direction the flux goes to zero at an axial distance GH

beyond the material boundary. This gives,

26 ~h

Cg. TTTH (4.49)
2, 28y

C8,z=0 Zszs(zL-l) (4.50)

If there is symmetry in the axial direction, then we have a zero
current at the center of the reactor for the second boundary condition,

giving

Cq p =1 | (4.51)

For no symmetry in the axial direction the second boundary con-

dition is again one of zero flux and we have instead of Eq. (4.51),

26.. -h
Cc, ,=H— (4.52)

8,17 28 +h

2.5 Method of Solving the Set of Difference Equations. The set of

linear homogeneous equations generated by Eq. (4.39) can be written in
matrix form as

Gé=0 (4.53)
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where, if the number of mesh points is n, G is the n x n coefficient matrix
of the dr, z,1 and er, z terms, and ¢ represents the unknown column matrix
of the n unknown fluxes. The problem is to solve for the n = 1 flux ratios,
say -4)—11"-?— ¢ arbitrarily normalizing to ¢l, 1

Thé requirement that Eq. (4.53) have a solution is that the deter-
minant of G, |G| , equals zero, or physically, given a super—critical

system with known material properties, at each point in the reactor, that

we adjust the values of control poison, Zw r.z° S° that the reactor is

=
w,r,2

just critical. Let us assume that the ratios of control poison, b3 have

w,1,1
been previously specified, so that the standard method of solution would

be to solve for the value of Zw t 15° that

|G| =0 (4.54)

Then having satisfied this condition, any one of the n sets of n =1

independent equations from (4.53) could be solved for the n = 1 flux

ratios, ‘¢r, z This standard method of solution is too time-consuming
1,1
for large matrices. This fact can be appreciated by considering that the

. . . . ‘ o DoN'T
formation of a determinant of a n x n matrix requires on the order of ! ; 5.(ieue i

arithmetic operations and the subsequent matrix inversion of an (n=1) x
(n=1) matrix requires on the order of (n=1) (n—1)! operations.

An alternate technique is the so called iterative method in which
guesses are made for a convenient group of the terms in (4.53), henceforth
referred to as the source terms, and the resulting linear inhomogeneous
set of equations is solved for an approximation to the fluxes. The new
fluxes are used to adjust the values of the original source terms and the

procedure is repeated until the flux ratios converge. To illustrate this
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method let us choose the removable poison terms as source terms

and rewrite (4.53) as

G2¢(i+1)' =z o) (4.55)

where G, and Q are known matrices, the Q@ matrix being composed of
: =
W,Tr,Z .
the terms E;V-‘T_l— , and Zw, 1,1 is the unknown eigenvalue. The proce-
dure then is to guess initial values for the ¢ vector on the right hand

side of (4.55), say ¢(0). Eq. (4.55) can then be solved by a Crout reduc-
tion for the new solution vectors ¢(1) , and this procedure iterated until

the ¢ vectors converge. Due to the arrangement of Eq. (4.55) the flux

¢

ratios _¢£,_z_ are independent of the magnitude of Ew ] 12 So one doesn't
1 1, 1 . 3 3

have to solve for this value.

The complete Crout reduction takes on the order of 2n3 arithmetic
operations for a n x n matrix so presents a considerable advantage
over the matrix inversion technique, provided the convergence rate -
of the fluxes is éufficien__tly fast. An abridged Crout reduction applicable
to reactor matrices is described in Appendix B and it further reduces
the solution time required.

In other popular iteration methods source terms are taken in groups
which involve only a portion of the fluxes. In these techniques, the
complete Crout reduction is not used to generate new fluxes but instead
a technique of mesh sweeping is used which generates new fluxes in.gonly
a portion of the mesh at one time. These methods converge more slowly
than ti’le Crout reduction techniques since repeated mesh sweepings are
required to propagate the effect of revisions in flux shape from one part

of the mesh to another, while in the Crout reduction each mesh point
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feelsithe new flux at every other mesh point for each revision. The
disadvantage of the Crout reduction method is that it requres more
computer space than the "mesh sweeping" techniques. The set of equa-
tions in Appendix B for an abridged Crout reduction considerably
reduces the storage requirement and permits the use of the Crout
technique for mesh sizes up to several hundred mesh points, which

is adequate for this work. *

Even though the arrangement of Eq. (4.55) eliminates the need
for calculating Ew, 1, 1> @ more advantageous method, due to the
reasons of convergence mentioned in the next section, is to keep the
terms derived from the Vz terms in Eq. (4.35) on the left side and
the other terms on the right hand side as source terms. Calling the
matrix for the first group, d, and the second, e, we have instead of

Eq. (4.53),

delitl) - og(d) (4.56)

which is the matrix form of the set of equations given by Eq. (4. 39).
(d will be used throughout this section as a matrix symbol, not the
differential symbol.) The Zw, 1,1 term can't be separated out of the
e matrix, see Eq. (4.40), so the iteration is not independent of its
magnitude, as was Eq. (4.55).

While it is time-consuming to calculate Zw 11 exactly, a close

*The main storage requirement is that of the auxiliary matrix which
requires approximately 2n3/ 2 spaces, when the method of Appendix B is
used, where n is the number of mesh points. (Fast memory of the MIT
I.B. M 704 is approximately 32000 words.)
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estimate can easily be made from the results of the solution at the
preceding time step. Since the resulting reactor will be slightly off
critical, the flux will rise or fall, eventually with a constant flux
shape. The estimate of Ew’ 1,1 can be made well enough so that this
persisting time-dependent flux distribution is sufficiently close to the
steady-state flux. So, accepting this distribution we have, instead

of Eq. (4.56),
dé - ed = \o ‘ (4.57)

where \ is a constant proportional to the inverse period of the reactor,

or in terms of differential operator,

N - (4.58)

9
at /

=L
=
Due again to convergence reasons, it is preferable not to solve

Eq. (4.57) but rather the following approximation to it,

d4>(zl+1) - qu,(i) | (4.59)

where y is now the eigenvalue such that Eq. (4.59) has a solution.

If we use Eq. (4.59) for iteration with the right hand side as the
source term, the flux ratios, TZ‘—?- , are independent of the magnitude
of y. The question then arises: what is the relationship of y to the
true physical eigenvalue N\ and under what conditions is it a constant,
(or at least nearly constant)? Considering Eqs. (4.57) and (4.59) as

single equations rather than matrices, for simplicity, we can solve

for y as,
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Y= —IW (4. 60)

1l a =
dé

which reduces to the constant, unity, as \¢ becomes small relative to dé.
Now \¢ represents the excess neutrons (or deficiency, if negative) and,
in the absence of resonance fissions, dé represents the leakage terms,
so the requirement that Y be a constant is met as the excess neutrons
available become small compared to the leakage. In the limit, using the
correct value of Z:W, L1 this results in \¢ = 0 and y=1 for which case,
Eqs. (4.57) and (4. 59) reduce to the steady state relationship Eq. (4.56).
- The advantage of using Eq. (&.59) for iteration instead of Eq. (4.55) is
discussed in the following sub-section and the error involved is further
discussed in Appendix E. 3.2. It should be noted that for the steady-state
types of fuel movements discussed in IV. C. 2, the exact value‘for z w, 1;1
is known, namely, zero, and the solution gives the true steady-state flux.

2.6 Convergence Considerations. It is a characteristic of iterative

solutions that the convergence is very sensitive to the arrangement of
the equation. The arrangement (4.59) of the set of equations (4.39) is
chosen so that the iteration will converge rapidly even with large mesh
spacing. This occurs because the terms obtained from V terms are
separated from the others. The value of this method can be illustrated
simply for the case of a 1 group, 1 dimension, 2 n'ieshj,point case.

Here the critical condition,

vz¢+5;}¢=o | (4. 61)
M
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has the difference form,

2
h
bpq =26, * b+ (k-1) (ﬁ) $.=0 (4. 62)
taking,
L&zll = const. (4. 63)
M .

with the boundary condition,

¢ = &, (4. 64)
4’3 = "¢z (4. 65)

equivalent to zero ceptral current and 5R = 0. For arrangement 1,

equivalent to (4.59), we have

2 .
¢(11+1) . ¢g+1) - (k-1) (‘1\%‘) ¢(11) (4. 66)
(i+1) | L (i+1) h\2 (i) (4. 67)
T 4 3ot < e (B 68
Defining,
)
$
st - (=2 (4. 68)
®)

solving Eqs. (4. 66) and (4. 67) for cbl and ¢2, and taking the ratio yields:

1) _s% 41

(4. 69)
sti) 4 3 ,
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now the true value of S must satisfy,

s=3+1 (4. 70)

From (4.69) and (4. 70) we can derive the convergence factor for the first

arrangement, p,, which is defined as the ratio of the error in S(1+1) to

that in S(l), as S(i) approaches S,

gli+1) > 2
pl = S S = ~ (4 71)

s . s (se3)st 4 3)  (s43)2

Now for this simple problem it is easy to calculate S, from Eq. (4. 70),

as 0.414 which gives,
Py = A7 (4.72)

It is, of course, desired that p be small for fast convergence.
For an alternate arrangement of Eq. (4.62), in which the V 2 terms

aren't isolated, consider,

o (] o s o
A oo (8o o

By the preceding method the convergence factor for this second

arrangement is found to be,
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2 Y
[s +3+ (l%f) ]

It is seen that Py depends on the dimensionless ratio.. of mesh spacing

to migration length, Py has been calculated below for S = 0.414:

Il e

0 0.17
1 0.36
3 0.77
5 0.89
10 ' 0.97
00 1.

It is seen that Py is higher than Py the amount depending on the ratio
of spacing té migration length. It should be noted that not only does
Arrangement 1 always give faster convergence than Arrangement 2 but
also that its convergence rate is independent of the spacing. In the two
dimensional case, the ratio of zgl-,_appears but this causes no trouble so
long as -;l is reasonably near unity.

Because the errors eventually tend to reduce exponentially; the
Aiken 62 proce;s, (see p.445 of H27)} is used to estimate the true
fluxes for the source terms, after the initial adjustment period, rather
“than the direct substitution of the last calculated flux values. This
technique further reduces the number of iteratioﬁs required. Instead of

substituting ¢(i), ¢'(i) would be substituted where,
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(pl1) . =12

¢.(i) = cb(i) . (4.75A)

2.7 Core Average Properties. After the flux distribution has been

obtained, region values and core average values are calculated for the
fast and thermal leakage terms, thermal production and absorption terms,
and the criticality factor with and without control poison. The core
averages are defined as flux volume averages of the cell properties where
the region properties undergo step changes at the boundaries. In

particular, the criticality factor without control poison, C, is defined as

C = total thermal production rate (4.76)
total thermal absorption rate less control absorption
+ total thermal leakage rate
which gives,
r Zy '
L L ¢
Yy v. Y (Lpp = Z)
r=1 T z=1\¢ . z2\%,1
C = = —— 2 (4.77)
- v XI:J 22 (————d)r’z\)- DV2(¢r’ z)
F=1 TaE| A\%L1 ¢

where Vr is the volume of a region with the radial position r.
The flux level is determined by the specified value for the average
power density, P&’ in terms of kw/liter of core. This gives the value

of the central flux in n/cmz sec,
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szL g Vr

dN ®_
-11 ~ (@Npp rz
3.14 X 10 Zer (—————de> (
r z r,z

¢ = (4.78)

d:’1, 1

where the fission energy release is assumed constant and equal to

-11

196 Mev/fission, or in the units of Eq. (4.78), 3.14 X 10 watt

"dN
sec/fission. ' dl;P r oz is the fissions per unit volume per unit of flux

time given by Eq. (4.89) and has units of em™!,

The average burnup is given by:

6 Ngp MWD 4.79)
lf ton of fuel fed :
m=

Non

E =0.917X 10
5

where ton means metric ton and the fission energy constant is

6 MWD
ton of fuel fissioned’

196 Mev/fission if the fissioned material has an average atomic weight

917 X 10 which is strictly consistent with

of 238. NFP

stream reactor time, tR’ or the average time that thé fuel would spend

is the volume-average for the discharged fuel. The on-

in the reactor if operated at full power is then,

6 — v

= 0.993x 10° N__ £ years (4.80)

t
FP Pd

R

= , .,  atoms fissioned *
where NFP has theunits barn cm of Tael

*t - (_1\7 fissions )(1024b)<v cma- fuel)(lo3 cm3 cora
R FP bcm of fuel/\ . 2 3 core/\Fd k-watts |

Vv
-14 k-watt sec 1 year) 6= £
3.14 X 10 s = 0.993 X 10" N, =
( fission )(3.154)( 107 sec FP Pd
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3. Solution of the Nuclide Concentration Equations

The effective composition changes for fuel of U235, U238 and daughter
nuclides are considered in this work. These changes are schematically

given by the chains:

ny
Ng Ng _"§
nf\ \
_, o/
NSL*’N9“’N10"N11"N12“"§

NN \

where, subscript 5 designates U235; 9, Pu239; etc. U239 has been con-

sidered to decay instantaneously. This results in the below listed set of
first order differential equations which are nonlinear since all the terms
except for @ € Mg and x“ are functions of the Nm' The most con-

venient independent variable is flux time, 8, where

t
esf bdt (4.81)
0

The resonance terms Pm and <1 - pm> are defined in Section’IV. A. 1. 3.
Also, Fig. 4.2 is useful for a diagram of the neutron balance. = The L
and N, are averages for nuclide m in the resonance group, or fast
fission group for U238; the Vm refer to thermal group fission and are

considered constant. The differential equations are:

dN
q
U235: —5°= “Ngo, (¢--)P1<1 p5> (4.82)
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dN,
U236: g5 = Nglog = 0p 5) ~Ngog + ) [1 ¥ag G 'ps>

~P5PgPgP; (1 -pé)] (4. 83)
dN 'q (e=1)
-8 - —a - :
U238: —3g° =Ngog - (4, [Pl (1 -p8> t I —_— 1)] (4;84)

dN

Pu239: —35° = Ngog = Noog +()[P(<l pgy ~ {1 = Pg))

: aa(e“l)
+ a7 “8) e('qs =) (4.85)

dN a
L 10 _ - - q 9 -
Pu240: —=— = Ng(0g = % o) “N; 471 + ry Pl["‘"""l Tag <1 Pg)

'p5p8p9pl 1p6p12 (1- plo)] (4.86)

dN A
RS ¥ S - 11 q
Pu24l: D5 =N, N11(11+ ¢)+($)P1

[PspgPgPy1PEPy (1 = Pyo) = (1-ppp) (4.87)
dN
s VA - - q
Puzd2: gg =Ny (0 =% 1) "Nt g Py

a
[“"“"1+a {1=py1) = P5PgPgP1 P (1 - Plz)] (4.88)

NFP represents the number of fission product pairs produced or, equi-
valently, the total number of fissions, and in.differential form is given

by,
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Np _ ) &_cL) (e-1)
® " s mLm (1+ag) elng = 1)

Z <1 — > (4.89)

+P
+.
m=5,9,11 7%y

1

op is defined as the average microscopic cross section per fission,
due to fission products with cross section less than 10, 000 barns, so

that the macroscopic poisoning cross section of this group is simply,

Z .o =N (4.90)

FP - “rP'FP

The value of Tpp is given in Reference S3 for different fissionable
materials, flux-times, fluxes, and methods of irradiation.

The macroscopic Xenon cross section is:

a

z N S T (4.91)
Xe °'Xe¢ + )‘Xe Xe, max '

where,

z
Xe,max .59 ]} mf,m (1+a8) e(ne-l)

= z Yxe, mNm’f, m * (%) [yXe,a (e1)

* Py m=5,Z9, 11 e (r1n+<al . m> (4.92)

The remaining fission products with cross sections greater than

10, 000 barns have relatively long p decay half life and can be grouped

together in what is called here the Samarium group, designated by the sub-

script Sm. The macroscopic absorption cross section for this group is,
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sz = Z ySm. mNmaf,.m * (‘1) [

m=5, 9, 11 ¢/ (1 +ag) elng = 1)

>y <l -p
+ P ), Ysmm w (4.93)
m=5,9, 11 (1+ )

Values for YXe m and YSm. m &¥e also given in Table 4.1
In simplified form the eight nuclide concentrations i'elated by
Eqs. (4.82) to (4.89) can be written as a function of the following

variables,
- q
N, =f [N, o, P, (—5-), ¢, Py, 9] ‘ (4.94)

where N, ¢, and p represent the sets of these terms. Now p and
(%) depend only upon N and o, and ¢ in turn depends only upon N,

see Subsections 1,2 and 1, 3, so the dependence can be condensed to,

Nm = fz(N, $, Pl' 9) (4.95)
The dependence on ¢ is weak since ¢ occurs only in Eq. (4.87) for
N :
Pu241 and there in the term(—il) which is small compared to o)y 80

a constant value for ¢ is used here as a representative core and life-
‘history average for Pu241, The true value of the flux at each mesh
~ point is used, however, in evaluating EXe’ Eq. (4,91).

The only spatial depehdence now remaining in the nuclide concentra-
tion equations is in the epithermal nonleakage proability, Pl' ve{hich
enters as a multiple of the slowing-down-density term in the resonance-

capture part of the equations, However, the variation of P 1 from point
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to point in the core is small for the loadings considered, so for this
reason, and because of the considerable simplification it affords, an
average value is also used for Pl in the solution of the nuclide con-
centration equations. The true variation of P1 is considered, however,
in the calculation of flux shape and criticality.

With these assumptions, the nuclide concentrations are dependent
only upon flux time. The equations are nonlinear, however, due to
the N dependence of o, p, and (72-) . Therefore, the eight equations
are numerically solved, using a fourth-order Runge -Kutta-Gill method,
The variation of (—%) and p with N is considered in the first derivative
evaluation part of this method, which results in their being recalculated
four times for each flux time step. The average microséopic cross
sections, .o, vary more slowly so are reevaluated between flux time
steps only.

The concentrations are then fitted versus flux time as power series
in ® and in addition the following seven properties of the fuel, which
are required for the spatial flux shape and criticality calculation, are

computed and fitted:

1) Zge max = EQ- (4.92) (4.96)
12 |

2) (Bgy ~Fge)= L Eqt Zpp* Fgm (4.97)
m#7

3) E;= Z z (4.98)
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4) vZ, = Z v_Z (4.99)

5) (_1_:2)5 ] )3 (- pgy (4. 100)

0 em= 2 {-p

m=5,9,11

(4.101)

m/ ‘m

7) p= p5p8p9plip6p12p10 (4. 102)

The power-series fit is by the Lagrange collocation method, H27, p. 62,
Truncation errors in this fit and recommendations for the nuber of fit points
are discussed in Appendix E.

Thus the numerical solution of the concentration equations need be
carried out only once for a given intial fuel composition. Thereafter,
the properties at different points in the reactor can be obtained from
the above fitted properties knowing only the cumulative flux time of the
fuel at each mesh point. For the Xenon poisoning the magnitude of the
flux is also needed, and given this, zXe can be calculated at each mesh
has only

point from = according to Eq. (4.91), where T

Xe, max Xe, max

flux-time dependence.
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4, Nuclear Data

Table 4.1 lists the principal nuclear data that is built intd the code
and is intended for use for any uranium-fueled thermal re.actor. The
source of these data unless specified otherwise was C. H. Westcott's
report, AECL 670, Reference W11, vWestcott's report gives equation:s:,,’
for the calculation of thermal cross sections as functions of energy for
all the non - 1/v nuclides required for this study. These equations are

composed of a series of terms of the Breit-Wigner form,

-1 n c.
¢(E)=E 2 I:a + Z J (4. 102A)

2
é .+ -e.
iT1 bJ (B eJ)

The parameters a, bj' cj, and ej, are tabulated in AECL 670, They
are the resolved resonance parameters for the term in the series (4. 102A)
which dominates in the energy range of a large resonance, and are
otherwise empirically chosen so that the sum of 'the' terms in (4. 102A)
fits the BNL-325 curves in regions away from the resonances. These
calculated curves give the o,,,, values of Table 4.1 for non - 1/v nuclides.
The absorption cross sections for U238 é.nd U236 are assumed to be
1/v in the thermal region and are normalized to the 2200 m/s T bs values
given in BNL -325. Values of Vg and vq are from the World Consistent Set
of BNL-325. Also values for Y11 and the beta decay half lives of Xenon
and Pu24l are taken from BNL-325, a and v for fast fission and capture
in U238 are from ANL-5800, Reference A13., The fission yields of Xenon
and the "Samarium group" of fission products (with cross section greater

than 10, 000 b) are calculated from Walker's report,, W4, and are itemized

inS83 and in Cl11,
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Table 4.1 Nuclear Data

Nuclide %5500’ b I%nf . DilutiQn a 14 Fission Yields
es. ir,ltegral, Yxe YSm
I,b
U235(abs) 693.52 370.
U235(f) 582.78 271. 0.365(res.) 2.47 0.064 |0,01649
U236(abs) 7. 257.
U238(abs) 2.71 289.
U238(fast f) N— —_ 0.0687(fast) | 2.60 0.06 [0.03154
Pu239(abs) 1031.1 478.5
Pu239(f) 747.73 319. 0.5(res.) 2,90 0.053]0.03315
Pu240(abs) .300.0 8850,
Pu241(abs) (1.3765 Uf,ll) 781,
Pu24I1(f) 1015.2 567.5 0.3765(res.) | 3.06 0.06 |0.035
Pu242(abs) 30.09 1015.
T, =9.13h T1 =13.2y
5 Xe 5 11




B: BASES FOR THE COST CALCULATIONS

1. Background and Assumptions

The procedure used to calculate costs is essentially that used by
Pigford, Benedict, Shanstrom, Loomis, and Van Ommeslaghe, P3,
Section 8. Since this paper, however, the Technical Appraisal Task
Force on Nuclear Power of the Edison Electrical Institute has published
a report E8, which should help in standardizing the method of fuel cycle
cost calculations. For this reason the method of Pigford, et. al., has
been slightly modified so that the cost breakdown is directly comparable
with the Edison Electrical Institute method. The main modification is
the adoption of the "fixed charge on working capital” technique of roughly
approximating fhe cost due to interest considerations. This method is
a simplified s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>